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Abstract

In this paper we answer a question of J. Bourgain which was motivated by
questions A. Bellow and H. Furstenberg. We show that the sequence fn2g1nD1 is
L1-universally bad. This implies that it is not true that given a dynamical system
.X;†;�; T / and f 2 L1.�/, the ergodic means

lim
N!1

1

N

NX
nD1

f .T n
2

.x//

converge almost surely.

1. Introduction

Research related to almost everywhere convergence of ergodic averages along
the squares was initiated by questions of A. Bellow (see [3]) and of H. Fursten-
berg [10]. Results of Bourgain [4], [5], [7] imply that given a dynamical system
.X;†;�; T / and f 2 Lp.�/, for some p > 1, the ergodic means

(1) lim
N!1

1

N

NX
nD1

f .T n
2

.x//

converge almost surely. Bourgain also asked in [6], [7] whether this result is true
for L1-functions. In this paper we give a negative answer to this question.

Let us recall some concepts related to this problem.
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Definition 1. A sequence fnkg1kD1 is L1-universally bad if for all ergodic
dynamical systems there is some f 2 L1 such that

lim
N!1

1

N

NX
kD1

f .T nkx/

fails to exist for all x in a set of positive measure.

By the Conze principle and the Banach principle of Sawyer (see [9], [16], or
[17]), the sequence fnkg1kD1 is L1-universally bad if there is no constant C <1
such that for all systems .X;†;�; T / and all f 2 L1.�/ we have the following
weak .1; 1/ inequality for all t 2 R W

(2) �

 (
x W sup

N�1

ˇ̌̌̌
ˇ 1N

NX
kD1

f .T nkx/

ˇ̌̌̌
ˇ> t

)!
�
C

t

Z
jf jd�:

The main result of this paper is

THEOREM 1. The sequence fk2g1
kD1

is L1-universally bad.

This theorem will be proved by showing that there is no constant C such that
the weak .1; 1/ inequality given in (2) holds.

This paper is a new and substantially modified version of our preprint from
2003. The proof in that preprint contained a gap but the methods of that paper lead
to a solution of a counting problem raised by I. Assani (see [1] and [2]).

The paper is organized as follows. In Section 2 we develop the necessary
ingredients we need concerning the asymptotic distribution of squares modulo q
where q is the product of � distinct primes. The specific technical property we
need is given in Lemma 2. In Section 3 we develop the notion of a periodic re-
arrangement of a given periodic set. Lemma 3 states a property about the frequency
squares hit such sets; we will need this later in our construction. Section 4 is the
technical heart of the paper. For positive integers K, M and a periodic set ƒ we
define the notion of a K �M family living on ƒ. What we need for the proof of
our main theorem is the existence of some specific families living on ƒD R. The
properties of these families are stated in Lemma 5. However, we need a double
induction argument to show that such families exist. In Section 4.1, in Lemma 6
assuming K �M families exist for all parameter values on R, we show that they
exist on periodic sets ƒ. In Section 4.2 we turn to the proof that if K �M families
exist, then .K C 1/�M families exist as well, this induction on K is our outer
inductive construction. In Sections 4.2.1 through 4.2.8 we carry out the first step
of this induction, while in Sections 4.2.9 through 4.2.15 we show how this first
step of the induction should be altered for .KC 1/�M families when K > 0. The
proof of the existence of .KC1/�M families involves an intricate inner inductive
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construction, the “leakage process”, which is outlined in Section 4.2.1 and carried
out in Sections 4.2.2 through 4.2.7. Once it has halted, it is shown in Section 4.2.8
how to adjust the functions so that the next stage of the outer induction holds. In
Section 5, we give the proof of the main theorem. We construct a sequence of
rational rotations Tp, functions fp and numbers tp which witness that there is no
constant C satisfying (2).

To understand the heuristics behind our proof it might also be useful to look
at [8].

If someone prefers to have a general overview of the main ideas of the paper
before turning to the details here is a recommended quick tour: After reading the
introduction read Definition 3. Then jump to Section 5 and read the statement of
Theorem 8. Skip the proof of this theorem and read the details of the proof of
Theorem 1 at the end of Section 5. Then continue with Section 2 and read it until
(3). Jump to Definition 2 and Remark 1. Then read Section 4 starting at Definition
4 until the statements of Lemmas 5 and 6. From here jump to Section 4.2 and
read it until the paragraph above 4.2.1. Continue with Lemma 2 and the paragraph
above it. Read Remark 2. Then jump to Section 3 and read it until Lemma 3 is
stated. Finally, read Section 4.2.1 until the paragraph containing (57).

Let us fix some notation. Given f W R! R, periodic by p we putZ
f D

1

p

Z p

0

f .x/dx:

Given a Lebesgue measurable set A, periodic by p we put

x�.A/D
1

p
�.A\ Œ0; p//D lim

N!1

�.A\ Œ�N;N �/

2N
:

2. Number theory/quadratic residues

For each q 2N and n2Z set ".n; q/D 1 if n is congruent to a square modulo q,
and let ".n; q/D 0 if not. We denote by �q the number of squares modulo q. If p
is an odd prime, then �p D

pC1
2

. If q D p1 � � �p� where p1; : : : ; p� are distinct
odd primes, then (by the fact that something is a square modulo q if and only
if it is a square modulo each pi plus by using the Chinese remainder theorem)
�q D

Q�
iD1

piC1
2

. For elementary properties of quadratic residues see [11, pp. 67–
69], or [14, Ch. 3]. We remark that though 02 D 0, when talking about quadratic
residues usually only those are considered which are not congruent to 0, but since
".n; q/D 1 when n is congruent to 0 modulo q we will regard 0 a quadratic residue
(or square) in this paper.

In Section 3 we will use the Legendre symbol. If � is an odd prime the Le-

gendre symbol
�
n

�

�
D

�
n

�

�
L

equals 0 if � divides n, otherwise it equals C1 if
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n is a square modulo � and equals �1 if n is not a square modulo � . To avoid
notational confusion we will use the subscript L for the Legendre symbol. It is a

character, that is,
�
nm

�

�
L

D

�
n

�

�
L

�
m

�

�
L

, and 1C
�
n

�

�
L

equals the number of

solutions x mod � to the congruence x2 � n mod � .
Put ƒ0.q/ D fn 2 Z W ".n; q/ D 1g, the set of integers which are quadratic

residues modulo q. Clearly,

(3) #.ƒ0.q/\ Œ0; q//D �q >
q

2�
:

Next we discuss some results from [15] concerning the distribution of the
squares modulo q. Given K, consider a fixed sequence ."1; : : : ; "K/ of zeros and
ones. Assume that a1; : : : ; aK are distinct integers modulo an odd prime p.

Set �p."1; : : : ; "K I a1; : : : ; aK/D #fn W 0� n < p; ".nC ai ; p/D "i for i D
1; : : : ; Kg; that is, �p."1; : : : ; "K I a1; : : : ; aK/ counts the number of occurrences
of ."1; : : : ; "K/ in translated copies of a1; : : : ; aK modulo p. Then

p

2K
�K.3C

p
p/� �p."1; : : : ; "K I a1; : : : ; aK/�

p

2K
CK.3C

p
p/:

The “probability” of the occurrence of ."1; : : : ; "K/ in translated copies of
.a1; : : : ; aK/ is

Pp."1; : : : ; "K I a1; : : : ; aK/D
�p."1; : : : ; "K I a1; : : : ; aK/

p

and by the above result if .a1; : : : ; aK/ is fixed, then

(4) Pp."1; : : : ; "K I a1; : : : ; aK/!
1

2K
as the odd prime p!1:

Next we want to choose square free numbers q D p1 � � �p� , where p1; : : : ; p�
are distinct sufficiently large odd primes with good statistical properties.

A number n is a square modulo q if and only if it is a square modulo each of
the primes p1; : : : ; p� . By (4), given a1; : : : ; aK and keeping �, fixed as minfp1; : : :
: : : ; p�g !1 we have

(5) Pq."1; : : : ; "K I a1; : : : ; aK/!

�
1

2�

�PK
iD1 "i

�
1�

1

2�

�K�PKiD1 "i
I

that is, statistically squares modulo q look like outcomes of independent Bernoulli
trials with probabilities 1

2�
and

�
1� 1

2�

�
. Without going into technical details of

this fact from number theory, we just give an outline of a proof by induction on �.
For � D 1, (5) follows from (4). Suppose � > 1 and (5) holds for � � 1. Set
q0Dp1 ���p��1. For any possible choice of "0D ."01; : : : ; "

0
K/ and "00D ."001; : : : ; "

00
K/,

set W."0; "00/D fn W 0� n < q; ".nC ai ; q0/D "0i and ".nC ai ; p�/D "00i for i D
1; : : : ; Kg, W0."0/ D fn W 0 � n < q0; ".n C ai ; q0/ D "0i for i D 1; : : : ; Kg;
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and W�."00/ D fn W 0 � n < p� ; ".nC ai ; p�/ D "00i for i D 1; : : : ; Kg. Observe
that for any n the numbers nC jq0, j D 0; : : : ; p� � 1 hit each residue class
modulo p� exactly once, and ".nC jq0C ai ; q0/ D ".nC ai ; q0/ for all i . Us-
ing this one can see that W0."0/ and W�."00/ are independent in the sense that
#W."0; "00/D #W0."0/#W�."00/. For "D ."1; : : : ; "K/, set G."/D fn W 0 � n < q,
".nCai ; q/D "i for i D 1; : : : ; Kg. Then #G."/D

P
#W."0; "00/, where the sum is

taken over all pairs ."0; "00/ whose coordinatewise product is ". Taking the limit as
minp1; : : : ; p� goes to infinity of #G."/=q, using (4) for the limit of #W�."00/=p�
and (5) for the limit of #W0."0/=q0, and noting that the only thing that matters
in these limiting probabilities is the number of 1’s in the sequence, we have after
setting mD

PK
iD1 "i , that the limiting value is

1

2K

K�mX
iD0

 
K �m

i

!�
1

2��1

�m �
1�

1

2��1

�i
D .

1

2�
/m
�
1�

1

2�

�K�m
;

which is what we wanted.
Consider an infinite sequence of pairwise independent random variables Xi W

Y !f0; 1g with P.Xi .!/D 1/D 1
2�

, P.Xi .!/D 0/D 1� 1
2�

. Then E.Xi .!//D
1
2�

. By the law of large numbers if � > 0 and K!1, then

P

 ˇ̌̌̌
ˇ 1K

KX
iD1

Xi .!/�
1

2�

ˇ̌̌̌
ˇ� �

!
! 0:

Given �; �1 > 0 if K is large enough, then

P

 ˇ̌̌̌
ˇ 1K

KX
iD1

Xi .!/�
1

2�

ˇ̌̌̌
ˇ� �

!
< �1:

For odd primes p1 < p2 < � � � < p� put q D p1 � � � p� . Given distinct inte-
gers a1; : : : ; aK consider Xi .n/D ".nC ai ; q/. By (5) as p1!1 the variables
Xi .n/ approximate independent random variables with Bernoulli distribution 1

2�
,�

1� 1
2�

�
. Hence, given a sufficiently large K if p1 is sufficiently large then

#fn 2 Œ0; q/ W
ˇ̌̌
1
K

PK
iD1 ".nC ai ; q/�

1
2�

ˇ̌̌
� �g

q
< �1:

In particular, we have

(6) #
�
n 2 Œ0; q/ W

KX
iD1

".nC ai ; q/�
K

2�
CK�

�
< �1q:

For later arguments we now introduce some parameters. We will need a suit-
ably small “leakage constant”  2 .0; 1/ of the form  D 2�c where c 2N. Then
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we work with � > c . Furthermore we use small constants �; �1 > 0. For large K1
we have

(7) K2
def
Dd.1C �12

�/K1e< .1C �1/.1C �12
�/K1 and 2�=K1 < �1:

Thus for a large K1 we can choose p01 such that

(8) p01 >maxfK1C 2� ; K1=�1g

and, in addition if p1 > p01 we have for any q D p1 � � �p� ; p1 < � � �< p� ,

(9) #
�
n 2 Œ0; q/ W

ˇ̌̌̌
1

K1

K1X
iD1

".nC i; q/�
1

2�

ˇ̌̌̌
� �

�
< �1q:

Also, we can choose p001 � p01 such that if p1 > p001 then given any integers
a1; : : : ; aK2 so that the difference of any two of them is less than p01 we also
have, after a simple change of notation in (6)

(10) #
�
n 2 Œ0; q/ W

K2X
iD1

".�.nC ai /; q/�
K2

2�
CK2�1

�
< �1q;

the negative sign in the first argument of ".�; q/ is due to technical reasons in later
arguments; it is clear that if n takes all possible values modulo q then so does �n.

Let n1 2 Œ0;1/ be the first number for which

D.K1; n1; q/
def
D

ˇ̌̌̌
1

K1

K1X
iD1

".n1C i; q/�
1

2�

ˇ̌̌̌
< �:

Next choose the least n2 � n1CK1 such that D.K1; n2; q/ < �.
Continue and set JD fj 2N W 0� nj < qg. If n0 2 Œ0; q/n[j2JŒnj ; nj CK1/,

then D.K1; n
0; q/� � holds.

Hence, by (9)

(11) #
�
n 2 Œ0; q/ W n 62

[
j2J

Œnj ; nj CK1/

�
< �1q:

If j 2 J, then by the definition of ".n; q/

(12) K1

�
1

2�
� �

�
< #

�
ƒ0.q/\ Œnj C 1; nj CK1�

�
<K1

�
1

2�
C �

�
;

so that the number of quadratic residues modulo q in the interval Œnj C1; nj CK1�
is approximately K1=2� .

Definition 2. Set ƒ .q/ D �ƒ0.q/ C fj 2 Z W 0 � j < 2�g; xƒ .q/ D

ƒ .q/C Œ0; 1/D�ƒ0.q/Cfx W 0� x < 2
�g. For ease of notation in the sequel

if we have a fixed  and we do not want to emphasize the dependence on  we
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will write ƒ.q/ and xƒ.q/, instead of ƒ .q/ and xƒ .q/, respectively. (To make it
easier to memorize our notation for these ƒ type sets it will be useful to keep in
mind that the sets ƒ without the bars will be subsets of Z and the sets xƒ� R will
be obtained from the corresponding ƒ sets by adding Œ0; 1/.)

Remark 1. Here are some “heuristic” comments related to the above defini-
tion.

If ƒ0.q/ equaled fk � 2� W k 2 Zg, then x�.xƒ.q// would equal  .
Next suppose that ƒ0.q/ is the set of quadratic residues. If the intervals mak-

ing up xƒ .q// were disjoint, then x�.xƒ .q// would be 
Q�
iD1

piC1
pi

, somewhat
larger than  . However, by results in [13] for a fixed  as � goes to1, the nor-
malized gaps between consecutive elements of ƒ0.q/ converge to an exponential
distribution. We will make explicit use of this fact in Lemma 7. Since the nor-
malizing factor is �q , the number of squares modulo q approximately equals q=2�

and the average value of the spacing between elements of ƒ0.q/ is very close to
2� . For each � sufficiently large if p1 is sufficiently large, for a certain percentage
of different elements i; i 0 2ƒ0.q/ the intervals Œi; i C 2�/ and Œi 0; i 0C 2�/ will
overlap. Under these conditions x�.xƒ.q// will be less than  , but the smaller  is,
the closer x�.xƒ.q//= is to 1 for large q’s. We will take advantage of this property
particularly when we fix a leakage constant.

By Remark 1, #..Z\ Œ0; q// nƒ.q// is a little larger than .1� /#.Z\ Œ0; q//
for large � and p1.

Suppose � > 0 is given. If a q-periodic set A� Z is “not sufficiently �-inde-
pendent” from ƒ.q/ it may happen that

(13) #..A nƒ.Q//\ Œ0; q// < .1� �/.1� /#.A\ Œ0; q//:

In the next lemma we consider translated copies of ƒ0.q/. We show that for q’s
with large prime factors there is only a small portion of n’s when An D nCƒ0.q/
satisfies (13).

LEMMA 2. Given a positive integer � and �, � > 0 there exists p001 such that
if the odd primes satisfy p001 < p1 < � � �< p� and q D p1 � � �p� , then

#
�
n 2 Œ0; q/ W #

��
.nCƒ0.q// nƒ.q/

�
\ Œ0; q/

�
(14)

< .1� �/.1� /#
�
ƒ0.q/\ Œ0; q/

��
< �q:

Remark 2. The heuristics behind (14) are the following. The number of n 2
Œ0; q/ for which n 2 ƒ.q/ is a little less than q, due to “overlaps”. This means
that the number of those n’s for which n 62 ƒ.q/ is a little larger than .1� /q.
Now one can examine what happens when we look at translated copies of ƒ0.q/.
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Formula (14) says that for “most” translated copies of ƒ0.q/ we cannot have much
less than .1� /#.ƒ0.q/\ Œ0; q// elements of nCƒ0.q/ outside ƒ.q/.

Before beginning the proof of Lemma 2 we choose �0 > 0 such that

(15)
�
1�

1

.1� �0/2


�
> .1� �/.1� /:

Recall from number theory that if p001 is sufficiently large then we have

(16) .1� �0/
q

2�
< #.ƒ0.q/\ Œ0; q//D �q <

1

.1� �0/

q

2�
:

Proof. We can assume that � < 1. Take 0 < �1 < �2=32 and then choose K1,
p01 and p001 as above. By (8) and q > p001 � p

0
1 we have q > K1=�1 and by (11)

(17) #
�
n 2 Œ0; q/ W n 62

[
j2J

Œnj ; nj CK1/

�
< �1q

for a suitable index set J, defined above, and for each j 2J we have D.K1; nj ; q/<

�1 for a suitable �1 > 0. This means that

(18) K1

�
1

2�
� �1

�
< #.ƒ0.q/\ Œnj C 1; nj CK1�/ < K1

�
1

2�
C �1

�
:

By Definition 2 for n2 Œ0; q/ we have nCn0 2ƒ.q/Dƒ .q/ if nCn0�i 2�ƒ0.q/
holds for an i D 0; : : : ; 2� � 1. Set ƒj0.q/Dƒ0.q/\ Œnj C 1; nj CK1� and

ƒj .q/D�

�2��1[
iD0

.ƒ
j
0.q/� i/

�
for each j 2 J. Using the definition of K2 in (7), and (18) choose distinct numbers
ai 0;j , i 0 D 1; : : : ; K2, so that

(19) �ƒj .q/D

2��1[
iD0

ƒ
j
0.q/� i � Aj

def
D

K2[
i 0D1

fai 0;j g � Œnj � 2
� ; nj CK1�:

Clearly, by the choice of p01 in (8) the difference of any two of the ai 0;j ’s is less
than p01. By (19)

.nCƒ0.q//\ƒ
j .q/� .nCƒ0.q//\ .�Aj /:

Observe that there exists n0 2 ƒ0.q/ such that nC n0 2 �Aj if and only if
there exists i 0 such that nCn0 D�ai 0;j , that is, nC ai 0;j D�n0 2 �ƒ0.q/.

Recall that nC ai 0;j 2 �ƒ0.q/ if and only if ".�.nC ai 0;j /; q/ D 1. Set
Nj D fn 2 Œ0; q/ W

PK2
i 0D1 ".�.nCai 0;j /; q/�K2.

1
2�
C�1/g. If n 62Nj , n 2 Œ0; q/
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then

(20) #
�
.nCƒ0.q//\ƒ

j .q/

�
<K2

�
1

2�
C �1

�
:

By (10)

(21) #Nj < �1q:

Here we remark that (10) can be used so that we have (21) for all j 2 J. Indeed,
assume A� Œ�2� ; K1� and ACnj D Aj , then

Nj DNA
def
D

�
n 2 Œ0; q/ W

X
a2A

".�.nC a/; q/�K2

�
1

2�
C �1

��
:

There are 22
�CK1C1 subsets of Œ�2� ; K1�. So, we can choose p001 before (10)

so that we have #NA < �1q for all subsets A of Œ�2� ; K1�.
If n 62Nj , n 2 Œ0; q/, then by (7) and (20)

#..nCƒ0.q//\ƒj .q// < K2

�
1

2�
C �1

�
(22)

< .1C �1/.1C �12
�/K1

�
1

2�
C �1

�
:

On the other hand, by (17)

(23)
q� �1q

K1
� #J<

q

K1
C 1:

For 0� n < q set J.n/D fj 2 J W n 62Nj g.
Consider an n such that

(24) #J.n/ > q
1� �1

K1
.1�
p
�1/:

Later we show that for most n’s this inequality holds.
Observe that if x 2 Œ�.nj CK1/C2� �1;�nj �1�\ƒ.q/ then there exists

i 2 f0; : : : ; 2� � 1g such that x� i 2 �ƒ0.q/ and x� i 2 Œ�.nj CK1/;�nj � 1�,
that is, x � i 2 �ƒj0.q/ and hence x 2 ƒj .q/. Therefore, Œ�.nj CK1/C 2� �
1;�nj � 1�\ƒ.q/�ƒ

j .q/.
We want to estimate

#
�
..nCƒ0.q// nƒ.q//\ Œ0; q/

�
D #

�
..nCƒ0.q// nƒ.q//\ .�q; 0�

�
:

By (22) for any j 2 J.n/

#..nCƒ0.q//\ƒ.q/\ Œ�.nj CK1/C 2� � 1;�nj � 1/(25)

< .1C �1/.1C �12
�/K1

�
1

2�
C �1

�
:
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Put

Tn D

�
t 2 Z W t 2 .�q; 0� n

[
j2J.n/

Œ�.nj CK1/C 2
�
� 1;�nj � 1�

�
:

It is clear that

.nCƒ0.q//\ƒ.q/\ .�q; 0�

(26)

� Tn[
[

j2J.n/

.nCƒ0.q//\ƒ.q/\ Œ�.nj CK1/C 2
�
� 1;�nj � 1�:

We need to estimate #Tn. Since the intervals Œ�.njCK1/;�nj�1� are disjoint
and, with the possible exception of the one with the largest index, are subsets of
.�q; 0� we have by using (7) and (24)

#Tn < q� #J.n/.K1� 2
�/ < q� #J.n/.1� �1/K1

< q� q
.1� �1/

2

K1
.1�
p
�1/K1 D q.1� .1� �1/

2.1�
p
�1// < qc1.�1/;

where c1.�1/! 0 as �1! 0. Now we use this, (25) and (26) to estimate

#
�
.nCƒ0.q//\ƒ.q/\ .�q; 0�

�
< #J.n/ � .1C �1/.1C �12

�/K1

�
1

2�
C �1

�
C qc1.�1/

(using (23))

<

�
q

K1
C 1

�
.1C �1/.1C �12

�/K1

�
1

2�
C �1

�
C qc1.�1/

D

�
1C

K1

q

�
.1C �1/.1C �12

�/2q
1

2�
C qc1.�1/

(using (8) and q > p01 >K1=�1)

< .1C �1/.1C �1/.1C �12
�/2q

1

2�
C qc1.�1/

D

�
.1C �1/.1C �1/.1C �12

�/2C
2�


c1.�1/

�
q

1

2�
D c2.�1; �1/q

1

2�
;

where c2.�1; �1/! 1 as �1; �1! 0.
We can choose �1; �1 > 0 so that

c2.�1; �1/ <
1

.1� �0/
:
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This by (16) implies

c2.�1; �1/q
1

2�
<

1

.1� �0/2
#.ƒ0.q/\ Œ0; q//:

By (15) we obtain

#
�
..nCƒ0.q// nƒ.q//\ Œ0; q/

�
> #.ƒ0.q/\ Œ0; q//.1�

1

.1� �0/2
/(27)

> #.ƒ0.q/\ Œ0; q//.1� �/.1� /:

To prove (14) we need to show that there are sufficiently many n’s which satisfy
the above inequality.

Let b be the number of n’s for which

(28) #J.n/� q
1� �1

K1
.1�
p
�1/:

If we can show that b < �q, then we have finished the proof of Lemma 2 since
if (24) holds for an n then we have (27). If n satisfies (28) then by the definition
of J.n/ from (23) we infer that n 2 Nj for at least

p
�1
1��1
K1

q many j ’s. Hence,
using (21) and (23)

b
p
�1
1� �1

K1
q �

X
j2J

#Nj � �1q.
q

K1
C 1/ <

2�1q
2

K1

which implies

b �
2
p
�1

1� �1
q < �q: �

3. Periodic rearrangements

We need a lemma concerning the fact that one can make a periodic perturba-
tion of certain given periodic sets so that averages of the characteristic function of
the perturbed set taken along squares is close to the average measure of the original
set.

Assume F � R is periodic by � 0 2 N and if x 2 F then Œbxc; bxcC 1/ � F .
Given a natural number � > � 0, the �-periodic rearrangement of F is denoted by
F � and it is periodic by �; and F � \ Œ0; �/D Œ0; b�=� 0c � � 0/\F .

For the proof of the next lemma we recall that by the Pólya-Vinogradov The-
orem (see for example page 324 of [12]) for any n 2 Z, l 2 N and odd prime � , we

have
nCl�1X
jDn

�
j

�

�
L

� 6
p
� log � .

LEMMA 3. Suppose � 2N, F � R periodic by � 0 and � > 0 are given. There
exists M� such that if � >M� is a prime number then for any n 2 N and x 2 R, if
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� jm, then

(29)
1

m

nCm�1X
kDn

�F � .xC k
2/� .1� �/x�.F /:

Proof. For each a 2 f1; : : : ; � 0g, let Fa D[n�a .mod � 0/Œn; nC 1/. Since F is
the disjoint union of finitely many of the sets Fa, it suffices to prove the lemma
for some fixed Fa. Also, note that it is enough to show that there is some M� such
that if � >M� is a prime number, then for any n 2 N and x 2 R,

(30)
1

�

nC��1X
kDn

�F �a .xC k
2/� .1� �/x�.Fa/D

1� �

� 0
:

Put l D b�=� 0c.
Note �F �a .x C k

2/ D 1 for an integer x if and only if there is some j 2
f0; : : : ; l � 1g such that xC k2 � aC j� 0 .mod �/.

Thus, using the Legendre symbol
�
k

n

�
L

, we have

1

�
#fk 2 f0; : : : ; � � 1g W k2 � aC j� 0� x; .mod �/ for a j 2 f0; : : : ; l � 1gg

D
1

�

l�1X
jD0

#fk 2 f0; : : : ; � � 1g W k2 � aC j� 0� x; .mod �/g

D
1

�

l�1X
jD0

�
1C

�
aC j� 0� x

�

�
L

�
D
l

�
C
1

�

l�1X
jD0

�
aC j� 0� x

�

�
L

D
b�=� 0c

�
C
1

�

l�1X
jD0

�
aC j� 0� x

�

�
L

:

Now as � !1, b�=�
0c

�
!

1
� 0

. Setting S D
l�1X
jD0

�
aC j� 0� x

�

�
L

we only need to

show S=� ! 0, as � !1.
We argue this as follows. Since � 0 is a prime with � 0 < � , choose b such that

b� 0�a�x; .mod �/ and set ��D .� 0/�1; .mod �/ so that b� .a�x/���; .mod �/.
Since the Legendre symbol is a character,�

.aC j� 0� x/ � ��

�

�
L

D

�
aC j� 0� x

�

�
L

�

�
��

�

�
L

:
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Also, we have j
�
��

�

�
L
j D 1. Since�

.aC j� 0� x/ � ��

�

�
L

D

�
.a� x/��C j� 0��

�

�
L

D

�
bC j

�

�
L

;

we have by the Pólya-Vinogradov inequality

jS j D

ˇ̌̌̌ l�1X
jD0

�
bC j

�

�
L

ˇ̌̌̌
� 6
p
� log � and

jS j

�
! 0 as � !1:

This completes the proof of Lemma 3. �

4. K �M families

Definition 3. For a positive integer M we say that a periodic function or a
“random variable”, X W R! R is conditionally M�0:99 distributed on the set ƒ,
which is periodic by the same period, ifX.x/2f0; 0:99; 0:99� 1

2
; : : : ; 0:99�2�MC1g,

and x�.fx2ƒ WX.x/D0:99 �2�lg/D0:99 �2�MCl�1x�.ƒ/ for lD0; : : : ;M�1. (We
regard R as being periodic by 1 with x�.R/D 1 and if ƒD R then we just simply
say that X is M�0:99-distributed.) By an obvious adjustment this definition will
also be used for random variables SX defined on Œ0; 1/ equipped with the Lebesgue
measure �. If we have two “random variables” X1 and X2 both conditionally
M�0:99 distributed on ƒ then they are called pairwise independent (on ƒ) if for
any y1; y2 2 R

x�fx 2ƒ WX1.x/D y1 and X2.x/D y2gx�.ƒ/
(31)

D x�.fx 2ƒ WX1.x/D y1g/x�.fx 2ƒ WX2.x/D y2g/

or, equivalently,

x�fx 2ƒ WX1.x/D y1 and X2.x/D y2g=x�.ƒ/

D .x�.fx 2ƒ WX1.x/D y1g/=x�.ƒ//.x�.fx 2ƒ WX2.x/D y2g/=x�.ƒ//:

If we say that X1 and X2 are pairwise independent, without specifying ƒ then
we mean ƒD R.

We will use the following simple properties. Assume ƒ1 and ƒ2 are two
disjoint sets with a common period. If X1 and X2 are conditionally M�0:99
distributed on ƒ1 and on ƒ2, then X1 (and similarly X2) is conditionally M�0:99
distributed on ƒ1[ƒ2. If, in addition X1 and X2 are pairwise independent on each
ƒ1 and ƒ2, then X1 and X2 are pairwise independent on ƒ1 [ƒ2. We note the
last property depends on X1 and X2 having the same distribution on ƒ1 and ƒ2.
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Similar properties hold if we have finitely many functions X1; : : : ; XK with the
same conditional distribution.

For our argument a wide range of independent, identically distributed uni-
formly bounded “random variables” with expectations bounded from below by
constant times M2�M could be used. However, as the remark above shows we
need identically distributed random variables and out of the many possible choices
we picked the M � 0:99 distributed ones. For a motivation for this choice see [8].

We say that X W R! R is M � 0:99 super distributed if

(32) X.x/ 2 f0; 0:99; 0:99 � 2�1; : : : ; 0:99 � 2�MC1g;

and

x�.fx 2 R WX.x/D 0:99 � 2�lg/� 0:99 � 2�MCl�1 for l D 0; : : : ;M � 1:

We need the following lemma:

LEMMA 4. Suppose � 2 N, X1; : : : ; XK W R ! Œ0;1/ are M � 0:99 dis-
tributed, � periodic and X 0KC1 is M � 0:99 super distributed � periodic and
X 0KC1 is pairwise independent from Xh for all hD 1; : : : ; k. Then we can choose
0�XKC1 �X

0
KC1 such that XKC1 is M �0:99 distributed and pairwise indepen-

dent from Xh for all hD 1; : : : ; k.

Proof. Set

‚0KC1;l
def
Dfx 2 R WX 0KC1.x/D 0:99 � 2

�l
g:

Then x�.‚0
KC1;l

/� 0:99 � 2�MCl�1 and

1� cl
def
D
0:99 � 2�MCl�1

x�.‚0
KC1;l

/
:

We also set SK D f0; 0:99; : : : ; 0:99 � 2
�MC1gK and for .y1; : : : ; yK/ 2 SK set

‚0KC1;l.y1; : : : ; yK/
def
Dfx 2‚0KC1;l WXh.x/D yh; hD 1; : : : ; Kg:

Clearly, ‚0
KC1;l

.y1; : : : ; yK/ is � periodic and for .y1; : : : ; yK/ 6D .y01; : : : ; y
0
K/ 2

SK the sets ‚0
KC1;l

.y1; : : : ; yK/ and ‚0
KC1;l

.y01; : : : ; y
0
K/ are disjoint. For all

.y1; : : : ; yK/ 2 SK choose a Borel measurable

‚KC1;l.y1; : : : ; yK/�‚
0
KC1;l.y1; : : : ; yK/

such that
x�.‚KC1;l.y1; : : : ; yK//D clx�.‚

0
KC1;l.y1; : : : ; yK//

and ‚KC1;l.y1; : : : ; yK/ is periodic by � .
For x 2‚KC1;l.y1; : : : ; yK/ set XKC1.x/D X 0KC1.x/D 0:99 � 2

�l and for
x 2‚0

KC1;l
.y1; : : : ; yK/ n‚KC1;l.y1; : : : ; yK/ set XKC1.x/D 0. Do this for all
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.y1; : : : ; yK/ 2 SK and for all l D 0; : : : ;M � 1. Finally, for those x’s for which
X 0KC1.x/D 0 set XKC1.x/D 0. Then 0�XKC1 �X 0KC1.

Suppose l 2 f0; : : : ;M � 1g is fixed. Then

x�.fx WXKC1.x/D 0:99 � 2
�l
g/D

X
.y1;:::;yK/2SK

x�.‚KC1;l.y1; : : : ; yK//

D

X
.y1;:::;yK/2SK

clx�.‚
0
KC1;l.y1; : : : ; yK//D cl

x�.‚0KC1;l/D 0:99 � 2
�MCl�1:

This and (32) also implies that

(33) x�.fx WXKC1.x/D 0g/D 1�

M�1X
lD0

0:99 � 2�MCl�1:

Suppose xyh 2 f0; 0:99; 0:99 � 2�1; : : : ; 0:99 � 2�MC1g is fixed and denote by
SK;xyh the set of those .y1; : : : ; yK/2SK for which yhD xyh. Then by the pairwise
independence of Xh and X 0KC1 on R we have

x�.fx WXh.x/D xyh and X 0KC1.x/D 0:99 � 2
�l
g/(34)

D x�.fx WXh.x/D xyhg/x�.fx WX
0
KC1.x/D 0:99 � 2

�l
g/

D x�.fx WXh.x/D xyhg/x�.‚
0
KC1;l/:

On the other hand,X
.y1;:::;yK/2SK;xyh

x�.‚0KC1;l.y1; : : : ; yK//(35)

D x�.fx WXh.x/D xyh and X 0KC1.x/D 0:99 � 2
�l
g/:

Since

cl
X

.y1;:::;yK/2SK;xyh

x�.‚0KC1;l.y1; : : : ; yK//

D

X
.y1;:::;yK/2SK;xyh

x�.‚KC1;l.y1; : : : ; yK//

D x�.fx WXh.x/D xyh and XKC1.x/D 0:99 � 2�lg/;

if we multiply (34) and (35) by cl we obtain

x�.fx WXh.x/D xyh and XKC1.x/D 0:99 � 2�lg/

D x�.fx WXh.x/D xyhg/ � cl � x�.‚
0
KC1;l/

D x�.fx WXh.x/D xyhg/ � 0:99 � 2
�MCl�1

D x�.fx WXh.x/D xyhg/x�.fx WXKC1.x/D 0:99 � 2
�l
g/:
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By (32) and (33) we also have

x�.fx WXh.x/D xyh and XKC1.x/D 0g/

D x�.fx WXh.x/D xyhg/�

M�1X
lD0

x�.fx WXh.x/D xyh and XKC1.x/D 0:99 � 2�lg/

D x�.fx WXh.x/D xyhg/.1�

M�1X
lD0

0:99 � 2�MCl�1/

D x�.fx WXh.x/D xyhg/x�.fx WXKC1.x/D 0g/:

This completes the proof of the fact that XKC1 is pairwise independent from Xh
for all hD 1; : : : ; K. �

Definition 4. We say that a set P � N has sufficiently large complement if
there are infinitely many primes relatively prime to any number in P.

Sometimes we need to work with the “real” squares modulo q:

Definition 5. Assume q D p1 � � �p� , where p1 < � � �< p� are odd primes. Set

ƒ00.q/D fn 2ƒ0.q/ W pj 6 jn; for all j D 1; : : : ; �g:

If n 2ƒ00.q/, then there are 2� many solutions of x2 � n mod q, also observe that
for fixed �

(36) if p1!1; then
#.ƒ0.q/\ Œ0; q//
#.ƒ00.q/\ Œ0; q//

! 1:

Given  2 .0; 1/ we also put

ƒ0 .q/D�ƒ
0
0.q/Cfj 2 Z W 0� j < 2�g;

xƒ0 .q/Dƒ
0
 .q/C Œ0; 1/D�ƒ

0
0.q/Cfx W 0� x < 2

�
g:

In the sequel often if  is fixed we will suppress the dependence on  by writing
ƒ0.q/ and xƒ0.q/ instead of ƒ0 .q/ and xƒ0 .q/, respectively. To help to memorize
our notation of these sets, “ƒ0” means that the set “ƒ” is built as “ƒ” but instead
of ƒ0 we use ƒ00 in our construction. We keep our earlier convention as well and
hence “xƒ0” is the set obtained from “ƒ0” by adding Œ0; 1/.

Definition 6. SupposeK;M 2N, ƒ�R is periodic by zq. There is a parameter
 0 associated to ƒ. (If ƒ D R then zq D  0 D 1. Otherwise one should think of
ƒD xƒ0 0.zq/ and  0 is the parameter used in the definition of ƒ.) In the sequel we
assume that P�N has sufficiently large complement. A K �M family living on
ƒ with input parameters ı > 0; �, � > 1, A 2 N; P with output objects � , fh, Xh
(hD 1; : : : ; K); Eı , !.x/, ˛.x/ and �.x/ is a system satisfying:
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(i) There exist a period � , functions fh W R ! Œ0;1/, pairwise independent,
conditionally M�0:99-distributed on ƒ “random” variables Xh W R! R, for
hD 1; : : : ; K; and a set Eı such that all these objects are periodic by � where
� is an integer multiple of zq.

(ii) We have x�.Eı/ < ı. For all x 62 Eı , there exist !.x/ > ˛.x/ > A; �.x/ < �
such that !2.x/ < �; !.x/

˛.x/
>� � �.x/; moreover if ˛.x/� n < nCm� !.x/

and �.x/jm, then for all hD 1; : : : ; K;

(37)
1

m

nCm�1X
kDn

fh.xC k
2/ > Xh.x/:

(iii) For all p 2 P, .�.x/; p/D 1; .�; p/D 1.

(iv) For all x 2ƒ nEı , for all h 2 f1; : : : ; Kg

(38) fh.xC j C �.x//D fh.xC j /

whenever ˛2.x/� j < j C �.x/� !2.x/.

(v) Finally, for hD 1; : : : ; K

(39)
1

�

Z �

0

fh D

Z
fh < � � 

0
� 2�MC1:

Remark 3. The input parameters in the above definition should be regarded as
something given in advance while the output objects are defined and constructed
later. The most important property is (37), while the numerous other technical
properties are needed in order to verify by mathematical induction the existence of
K �M families.

If x is not in the exceptional set Eı , then (37) says that the average of fh
taken along the squares of a run of integers staying in the window Œ˛.x/; !.x/�

dominates Xh.x/, provided that the length of the run is a multiple of �.x/. In (38)
we claim that these functions appear to be periodic in the window Œ˛2.x/; ˇ2.x/�;

that is, when squares stay in the window Œ˛.x/; ˇ.x/�.

LEMMA 5. Let M 2 N, ƒ D R (this implies zq D  0 D 1). Then for each
positive integer K and parameters ı > 0; �; � > 1, A 2 N; and P� N such that
P has sufficiently large complement there exist a K �M family living on R with
these parameters.

4.1. PuttingK�M families on quadratic residue classes. The proof of Lemma
5 is quite involved. It will be done by induction on K. We will build a .KC1/�M
family for a given set of input parameters, provided we know the existence of
K �M families for all possible input parameters. To carry out this induction step
we need to verify that a generalized version of Lemma 5 holds.
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So we assume thatK�M families on R exist for a fixedK 2N for all possible
parameter values.

We will use the following lemma about “putting a K �M -family on a residue
class”. We assume that P is a set of natural numbers with sufficiently large com-
plement and we have a number zq such that

(40) .zq; p/D 1 for all p 2 P; zq D p0;1 � � �p0;� ;

and p0;1 < � � �< p0;� are odd primes.
We also assume that a constant  D 2�c , the so called “leakage constant” is

given with c 2 N and � > c . This  is used in the definition of xƒ0.zq/D xƒ0 .zq/.

LEMMA 6. Let M 2 N be given and suppose for some K 2 N that K �M
families exist on R for all possible parameter values. Suppose that P, zq and the
parameter  associated to xƒ0.zq/ satisfy the above assumptions. In addition, let
ı > 0; �; � > 1, and A 2 N be given. Then for the above input parameters there
exists aK�M family living on xƒ0.zq/ with output objects x� , xfh, SXh (hD 1; : : : ; K);
SEı , x!.x/, ˛.x/ and x�.x/. Moreover, x� D �zq with a suitable � 2 N and if x„.zq/D
[j2ZŒj zq; j zqC 2

�/ then xfh.x/D 0 for x 62 x„.zq/ and hD 1; : : : ; K.

Proof. Using P D P[ fzqg, choose a K �M family living on R with input
parameters ı; �0D�zq; �; A. This K�M family provides us with � , fh, Xh, Eı ;
!.x/; ˛.x/, and �.x/, satisfying (i)–(v) of Definition 6. Especially,

(41) for all p 2 P[fzqg we have .�.x/; p/D 1 and .�; p/D 1:

We construct a new K-system, marked by overlines, which lives on xƒ0.zq/ and is
periodic by x� D �zq.

Set xfh.x/ D fh.x/zq=2� if x 2 x„.zq/ D [j2ZŒj zq; j zqC 2
�/, otherwise put

xfh.x/D 0. Then xfh is periodic by �zq.
Next we define SXh.x/ so that SXh.x/D Xh.x/ for x 2 xƒ0.zq/, and otherwise

let SXh.x/D 0. Clearly, SXh is periodic by �zq and is supported on xƒ0.zq/.
Next we check the distribution of SXh.x/jxƒ0.zq/. We know that Xh.xC �/D

Xh.x/. From (41), .�; zq/D 1 and thus the numbers j� , j D 0; : : : ; zq� 1 cover all
residue classes modulo zq. Now we can compute

x�.fx 2 xƒ0.zq/ W SXh.x/D 0:99 � 2
�l
g/

D x�.fx 2 R W SXh.x/D 0:99 � 2
�l
g/

D
1

�zq
�.fx 2 Œ0; �zq/ W SXh.x/D 0:99 � 2

�l
g/

D
1

�zq

zq�1X
jD0

�.fx 2 Œj�; .j C 1/�/ W SXh.x/D 0:99 � 2
�l
g/



DIVERGENT SQUARE AVERAGES 1497

D
1

�zq

zq�1X
jD0

�.fx 2 Œ0; �/ W SXh.xC j�/D 0:99 � 2
�l
g/

D
1

�zq
#.ƒ0.zq/\ Œ0; zq// ��.fx 2 Œ0; �/ WXh.x/D 0:99 � 2

�l
g/

(using that #.ƒ0.zq/\ Œ0; zq//=zq D x�.xƒ0.zq//)

D x�.xƒ0.zq// �
1

�
�.fx 2 Œ0; �/ WXh.x/D 0:99 � 2

�l
g/

D x�.xƒ0.zq// � x�.fx 2 R WXh.x/D 0:99 � 2
�l
g/D x�.xƒ0.zq// � 0:99 � 2�MCl�1:

Thus the “conditional distribution” of SXh on xƒ0.zq/ is M�0:99.
Set ‡ D f0; 0:99; 0:99 � 2�1; : : : ; 0:99 � 2�MC1g and ‡C D ‡ n f0g. Next we

show that the functions SXh are pairwise independent on xƒ0.zq/. Suppose h1 6D h2.
First assume y1; y2 2 ‡C. Then the above argument shows

(42) x�.fx 2 xƒ0.zq/ W SXhj .x/D yj g/D
x�.fx 2 R WXhj .x/D yj g/

x�.xƒ0.zq//

for j D 1; 2. A similar argument shows

x�.fx 2 xƒ0.zq/ W SXh1.x/D y1 and SXh2.x/D y2g/(43)

D x�.fx 2 R WXh1.x/D y1 and Xh2.x/D y2g/x�.xƒ
0.zq//:

The range of SXhj andXhj equals‡D‡C[f0g and (42) holds for all yj 2‡C.
Therefore,

(44) x�.fx 2 xƒ0.zq/ W SXhj .x/D 0g/D
x�.fx 2 R WXhj .x/D 0g/

x�.xƒ0.zq//

should also hold for j D 1; 2.
Recalling that Xhj are M � 0:99 distributed and pairwise independent on R,

using for a fixed y2 2 ‡C, (43) for all y1 2 ‡C, and using (42) with j D 2 one
can deduce

x�.fx 2 xƒ0.zq/ W SXh1.x/D 0 and SXh2.x/D y2g/(45)

D x�.fx 2 xƒ0.zq/ W SXh2.x/D y2g/

�x�.fx 2 xƒ0.zq/ W SXh1.x/ 2 ‡C and SXh2.x/D y2g/

D x�.fx 2 R WXh1.x/D 0 and Xh2.x/D y2g/x�.xƒ
0.zq//:

Similarly, one can see that for any y1 2 ‡C

x�.fx 2 xƒ0.zq/ W SXh1.x/D y1 and SXh1.x/D 0g/(46)

D x�.fx 2 R WXh1.x/D y1 and Xh2.x/D 0g/x�.xƒ
0.zq//:
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Recalling that Xh2 is M � 0:99-distributed on R and using (45) for all y2 2 ‡C
and (44) with j D 1 one can see that

x�.fx 2 xƒ0.zq/ W SXh1.x/D 0 and SXh2.x/D 0g/(47)

D x�.fx 2 xƒ0.zq/ W SXh1.x/D 0g/

�x�.fx 2 xƒ0.zq/ W SXh1.x/D 0 and SXh2.x/ 2 ‡Cg/

D x�.fx 2 R WXh1.x/D 0 and Xh2.x/D 0g/x�.xƒ
0.zq//:

Since Xh1 and Xh2 are pairwise independent and M � 0:99-distributed on R, from
(42)–(47) it follows that SXh1 and SXh2 are pairwise independent on xƒ0.zq/.

Put SEı D Eı . Clearly, SEı is periodic by x� and this completes the proof of
property (i) in the definition of a K �M family.

It is clear that x�.SEı/Dx�.Eı/ < ı. For all x 62 SEı , h 2 f1; : : : ; Kg, let ˛.x/D
˛.x/, x!.x/ D !.x/, x�.x/ D zq�.x/, then we have x!.x/

˛.x/
> �0�.x/ D �zq�.x/ D

�x�.x/.
Now we verify (37) for xfh and SXh. Assume x 2 xƒ0.zq/ n SEı , ˛.x/D ˛.x/�

n < nCm� !.x/D x!.x/; x�.x/D �.x/zqjm. In fact, it is enough to consider the
case when �.x/zq DmD x�.x/. We claim that for any hD 1; : : : ; K we have

1

m

nCm�1X
kDn

fh.xC k
2/�

1

m

nCm�1X
kDn

xfh.xC k
2/;

then we will apply (37) for fh, and Xh.
Since �.x/zqDm and x 2 xƒ0.zq/n SEı implies x 62Eı , using (38) several times

we obtain

1

m

nCm�1X
kDn

fh.xC k
2/D

1

m

nC�.x/�1X
k0Dn

zq�1X
jD0

fh.xC .k
0
C j�.x//2/

D
1

m

nC�.x/�1X
k0Dn

zqfh.xC k
02/:

From x 2 xƒ0.zq/; it follows that there exists k0 such that

x 2 �k20 C Œik0zq; ik0zqC 2
�/I

that is, xC k20 2 Œik0zq; ik0zqC 2
�/ for an ik0 2 Z; and k20 2 ƒ

0
0.zq/. Recall that

there are 2� many solutions of x2 � k20 modulo zq.
Since .�.x/; zq/D 1 for a fixed k0, the set k0Cj�.x/ forms a complete residue

system modulo zq as j runs from 0 to zq�1, hence there are at least 2� many jk0;l ’s
l D 1; : : : ; 2� with .k0C jk0;l�.x//2 � k20 modulo zq, where k0 is defined above.
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Recalling that x 2 xƒ0.zq/ n SEı , for any k0 D n; : : : ; nC �.x/� 1, we have

zq�1X
jD0

xfh.xC .k
0
C j�.x//2/�

2�X
lD1

xfh.xC .k
0
C jk0;l�.x//

2/

D

2�X
lD1

fh.xC .k
0
C jk0;l�.x//

2/
zq

2�
� 2�fh.xC k

02/
zq

2�
:

Therefore,

1

m

nCm�1X
kDn

xfh.xC k
2/D

1

m

nC�.x/�1X
k0Dn

zq�1X
jD0

xfh.xC .k
0
C j�.x//2/

applying (37) for fh and Xh

�
1

m

nC�.x/�1X
k0Dn

zqfh.xC k
02/D

1

m

nCm�1X
kDn

fh.xC k
2/�Xh.x/� SXh.x/:

This proves (ii) for x 2 xƒ0.zq/ n SEı . Since SXh.x/D 0 for x 2 R n .xƒ0.zq/[ SEı/ for
these x’s (37) holds obviously for xfh and SXh.

Using (41) and .zq; p/D 1 for all p 2 P we have .x�.x/; p/D .zq�.x/; p/D 1
and .�zq; p/D .x�; p/D 1 for all p 2 P. This proves (iii).

To verify (iv), suppose x 2 xƒ0.zq/ n SEı , h 2 f1; : : : ; Kg and ˛2.x/D ˛2.x/�
j < j C zq�.x/� x!2.x/D !2.x/.

If xC j 2 x„.zq/, then

xfh.xC j /D fh.xC j /zq=2
�
D fh.xC j C �.x//zq=2

�(48)

D � � � D fh.xC j C zq�.x//zq=2
�
D xfh.xC j C zq�.x//

when ˛2.x/D ˛2.x/� j < j C zq�.x/� x!2.x/D !2.x/.
If xCj 62 x„.zq/, then xfh.xCj /D 0D xfh.xCj Czq�.x//. This verifies (iv).
Next we prove (v):

(49)
1

�zq

Z �zq

0

xfh D

Z
xfh � � �  � 2

�MC1:

Indeed,

1

�zq

zq�1X
jD0

Z �

0

xfh.xC j�/dx D
1

�

Z �

0

1

zq

zq�1X
jD0

xfh.xC j�/dx D .�/:

To continue this computation recall that from .�; zq/D 1 it follows that bxcCj� hits
each residue class modulo zq once as j varies from 0 to zq�1 and fh.xCj�/Dfh.x/
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for all j . Thus, recalling that  0 associated to ƒD R equals 1 and using (v) for fh

.�/D
1

�

Z �

0

1

zq
fh.x/

zq

2�
2�dx D

1

�


Z �

0

fh.x/dx � �2
�MC1:

This proves (49). �

4.2. Proof of Lemma 5. Let a positive integer M be given together with input
parameters ı > 0;�; � < 1;A 2 N and P� N with sufficiently large complement.
To show the existence of a .KC 1/�M family living on R, we need to fix several
constants for the induction argument.

To begin with we will use the following Lemma 7 to choose a “leakage con-
stant” which will remain fixed during the inductive construction of a .KC 1/�M
family from K �M families. This lemma is a more exact expression of the ideas
given in Remark 1.

Considering the sets xƒ0 .q/, a direct calculation shows:

(50) x�.xƒ0 .q// <  and x�.R n xƒ0 .q// > 1� :

However, the closer  to 0, the smaller the percentage of “loss due to overlaps”.
To obtain estimates from the opposite sides we will use Lemma 7.

LEMMA 7. For each 0 <  < 1=7, one can choose constants C > 1> �C > 0,
� 2N; such that for each � > � there exists p;� for which if p;� <p1< � � �<p�
and q D p1 � � �p� , then

(51) C >


x�.xƒ0 .q//
and �Cx�.R n xƒ0 .q// < 1�  � 2:

In fact, we can choose

C D
1

1� 7
and �C D 1�  � 2

1�  C 72
:

Therefore, C ! 1 and �C ! 1 as  ! 0C.

We remark that in (51) the second order term in .1 �  � 2/ appears for
technical reasons. It is clear that .1�  � 2/=.1� /! 1 as  ! 0C.

Proof. We use the fact that the limiting distribution of the gaps between
squares is continuous. In fact, consider q D p1 � : : : � p� where p1 < � � � < p�
are odd primes. Let 0 D x1 < x2 < � � � < x�q < q D x�qC1 be the squares mod
q so that �q D

Q�
1.
piC1
2
/. Let each gap gi D xiC1 � xi have weight 1=�q . The

expected gap size is sq D 1
�q

P�q
1 gi D

q
�q
D 2�

Q�
1 .

pi
1Cpi

/. Let us normalize the
gaps; yi D

gi
sq

. Kurlberg and Rudnick in [13, Lemma 14] proved the following
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result. For each x 2 R,

(52) lim
�!1

#fi W yi � xg

�q
D 1� e�x :

Choose � such that if � > � , then #fi W yi � 2g
�q

< 1 � e�3 < 3 . For each

� > � choose p;� such that if p;� < p1 < � � � < p� then
Q�
1.1C

1
pi
/ < 2 andQ�

1.1�
1
pi
/ > 1�  . Let q D p1 � � � p� . Letting x0i be the squares modulo q in

Œ0; q/ which are not divisible by any of the prime factors of q, we have

x�.xƒ0 .q//�
2�

q
#fj W x0jC1� x

0
j > 2

�
g

(53)

�
2�

q

 
�Y
1

.
pi � 1

2
/� #fi W yi �

2�

sq
D 

�Y
1

.1C
1

pi
/ < 2g

!
:

By (52) and our assumptions, we get

x�.xƒ0 .q//� 

 
.1� /� 3

�Y
1

.1C
1

pi
/

!
(54)

> ..1� /� 3 � 2/D .1� 7/D


C
:

We have
x�.xƒ0 .q// > .1� 7/D 1�

1�  � 2�C :

So,
1�  � 2�C > 1�x�.xƒ0 .q//D

x�.R n xƒ0 .q//: �

In order to apply Lemma 6 we need to choose a positive “leakage constant,”  ,
which remains fixed during all steps of the leakage producing the .K C 1/�M
family.

Fixing the leakage constant  . We choose 0 < 0 < 10�7 so that

(55) C0 D
1

1� 70
< �:

Moreover, for each  < 0 with  D 2�c where c 2 N, by Lemma 7 we choose
� such that for all � > � there exists p;� for which if p;� < p1 < � � � < p� ,
q D p1 � � �p� ; then

(56) x�.xƒ0 .q// >


C0
D .1� 70/ >

9

10
and x�.R n xƒ0 .q// < 1�

9

10
:
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We also have, �C > 1� 0� 20 > 1� 10�6:
From now on a value of  < 0, with  D 2�c , c 2N satisfying the above

assumptions is fixed.
We note that the only input parameter that the leakage constant depends on

is � .
We will write ƒ.q/, xƒ.q/ and xƒ0.q/ instead of ƒ .q/, xƒ .q/ and xƒ0 .q/,

respectively.
Next, after giving an outline we start the details of the proof of Lemma 5.

4.2.1. Setting up the induction argument for Lemma 5.

Proof. We proceed by mathematical induction. To start our induction we
need to show that 1�M families exist. During the general step of our induction
we show that from the existence of K �M families one can deduce the existence
of .KC 1/�M families. Since many steps of the 1�M family case are shared
with the general K �M family case we work out our argument so that it can be
used for the later induction steps without any unnecessary duplication. Therefore,
working on the first step of our induction one should think of K D 0 during the first
reading of Sections 4.2.2–4.2.8 and obtain this way the .KC 1/�M , that is, the
1�M families. Then in Sections 4.2.9–4.2.15 we discuss the alterations needed
for K > 0. It will be useful to keep in mind that if K D 0 then fKC1;0D f1;0, only
hD 1 2 f1; : : : ; KC 1g and there is no h 2 f1; : : : ; Kg.

Now we discuss briefly our general plan. When K > 0 we assume that K�M
families living on R exist for all possible input parameter choices. Let ı > 0; �;
� > 1, A 2 N and P� N be given. We will define our .KC 1/�M family with
these input parameters. We can assume that P is closed under products. During
the definition of the .KC 1/�M family another, “inner” finite induction is used
(with respect to L) which is called the leakage process. This technically delicate
process is the focus of the next several sections. During this process we will use
Lemma 6 to define families which are almost .K C 1/�M families on sets of
the type xƒ0.q/, except for the new functions fKC1;L and XKC1;L. Each fKC1;L
is the indicator function of a set. As L grows the support of fKC1;L decreases.
Lemmas 2 and 3 are used to ensure that “squares hit sufficiently often” the support
of fKC1;L. (This motivated the term “leakage” since the values of fKC1;L leak
onto some larger sets when we consider averages along the squares. See also [8].)
This also requires that before defining fKC1;L one uses Lemma 3 to choose � 0L�1
and make a � 0L�1 rearrangement to yield an intermediate function f 0KC1;L�1. At
the same time we must keep track of our new random variable XKC1;L and other
auxiliary functions. It is essential in this induction that we can vary � and �.
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To help the reader going through the details of the proof here is an outline of
the main features of the various sections of the proof. We hope this outline might
help prevent the reader from becoming lost in the details of the proof.

When K D 0 in Section 4.2.2 we start the leakage process. We define fKC1;0
� 1 and XKC1;0. At this stage fKC1;0 is supported on R. During the leakage
process the size of the support of the functions fKC1;L is shrinking and we are
interested in how much of fKC1;L is “leaking” onto larger sets. When K > 0 in
Section 4.2.9, in addition, we introduce a K �M family periodic by �0, consisting
of functions fh;0, Xh;0 for hD 1; : : : ; K.

In Section 4.2.3 (see also Section 4.2.10 when K >0) we assume that we have
accomplished step L� 1 of the leakage and we have a family periodic by �L�1,
consisting of functions fh;L�1; Xh;L�1 for hD 1; : : : ; KC 1. We also introduce
the auxiliary sets SL�1;l , l D 0; : : : ; L � 1 used to describe the distribution of
XKC1;L�1.

In Section 4.2.4 (see also Section 4.2.11 when K > 0) we choose a prime
number � 0L�1 which is much larger than �L�1 and by using Lemma 3 we perform a
� 0L�1 rearrangement of the family coming from Section 4.2.3. This way we obtain a
family periodic by � 0L�1, consisting of functions f 0

h;L�1
, X 0

h;L�1
, hD 1; : : : ; KC1.

The auxiliary sets used for describing the distribution of X 0KC1;L�1 are denoted
by S 0

L�1;l
, l D 0; : : : ; L� 1.

In Section 4.2.5 we choose a �L and a square free number qL D p1;L � � �

q�L;L such that 2�L is much larger than � 0L�1. The average value of the difference
between elements of ƒ0.qL/ is close to 2�L . We introduce some auxiliary sets,
among them ˆL and ‰L, so that ˆL � R n xƒ0.qL/�‰L and these two auxiliary
sets consist of intervals of the form Œj� 0L�1; .j C 1/�

0
L�1/; j 2 Z. If 2�L is much

larger than � 0L�1, then x�.ˆL/ and x�.‰L/ both approximately equal x�.R n xƒ0.qL//.
To define our .KC 1/�M family on ‰L (which is approximately R n xƒ0.qL/) we
will use mainly the functions coming from Section 4.2.4. We define Xh;L.x/D
X 0
h;L�1

.x/ if h�KC 1 and x 2ˆL. This section is identical for the cases K D 0
and K > 0.

For K > 0 in Section 4.2.13 by using Lemma 6 we put a K �M family onto
xƒ0.qL/. This will yield functions xfh;L, SXh;L periodic by x�LqL. For hD 1; : : : ; K
we define Xh;L on xƒ0.qL/ by using SXh;L. For h D 1; : : : ; K our functions will
be sums of f 0

h;L�1
restricted to ˆL and of the functions xfh;L “living” on xƒ0.qL/.

This combined family will be periodic by �L D qLx�L� 0L�1. The K D 0 version
discussed in Section 4.2.6 is much simpler because we do not have to deal with
this putting a lower level family on the xƒ0.qL/ step.

The “leakage” is done when we define fKC1;L so that it equals the restriction
of f 0KC1;L�1 onto the set ‰L. This means that the support FL of fKC1;L will have
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a very small intersection with xƒ0.qL/. “Most” of FL will be a subset of Rn xƒ0.qL/

and will approximately equal the auxiliary set SL;0. The nested sequence SL;l ,
l D 0; : : : ; L will describe the distribution XKC1;L, the larger l , the smaller the
values XKC1;L can take on SL;l nSL;l�1.

In Section 4.2.7 we make the calculations needed to show that we have enough
“leakage” from the support of fKC1;L so that we have the domination inequality
(37) with fKC1;L and XKC1;L. This section is again the same for the cases K D 0
and K > 0.

Finally, in Section 4.2.8 (see also Section 4.2.15 when K > 0) we terminate
the leakage process when we have reached a suitably large L D L00 � L0. The
functions fh;L00 for hD 1; : : : ; KC 1 will yield the functions fh we need for the
.K C 1/ �M family. For h D 1; : : : ; K the functions Xh of the .K C 1/ �M
family will equal the functions Xh;L00 . To define XKC1 we use the sets SL00;l ,
l D 0; : : : ; L00 related to the distribution of XKC1;L00 . We will choose XKC1 so
that it is M�0:99 distributed and less or equal than XKC1;L00 .

Before turning to the details of the induction to help the reader going through
the details of the proof for easy reference we collect some definitions and properties
(some of them will be discussed later during the proof) at the same place.

Quick reference summary:

ƒ.q/Dƒ .q/D�ƒ0.q/Cfj 2 Z W 0� j < 2�g;

xƒ.q/D xƒ .q/Dƒ .q/C Œ0; 1/D�ƒ0.q/Cfx W 0� x < 2
�g;

ƒ00.q/D fn 2ƒ0.q/ W pj 6 jn; for all j D 1; : : : ; �g;

ƒ0.q/Dƒ0 .q/D�ƒ
0
0.q/Cfj 2 Z W 0� j < 2�g;

xƒ0.q/D xƒ0 .q/Dƒ
0
 .q/C Œ0; 1/D�ƒ

0
0.q/Cfx W 0� x < 2

�g.

At Step LD 0 of the leakage process we have: fKC1;0� 1, F0DR; S0;0DR,

r0 D 1; XKC1;0
def
D.1� �0/�C D .1� �0/�Cx�.F0/ < 1.

After Step L� 1 of the leakage process we have: The set FL�1, an excep-
tional set EL�1, a period �L�1 such that FL�1, EL�1, Xh;L�1; fh;L�1, .h D
1; : : : ; KC 1/ are periodic by �L�1; fh;L�1 W R! Œ0;1/, the “random” variables
Xh;L�1 W R ! R are pairwise independent for h D 1; : : : ; K C 1; Xh;L�1 are
M�0:99-distributed for hD 1; : : : ; K, but not for hDKC 1. For the distribution
of XKC1;L�1 the auxiliary sets SL�1;l are used. For all x 62 EL�1 there exist
!L�1.x/ > ˛L�1.x/ > A; �L�1.x/ < �L�1.

Then we do a � 0L�1 periodic rearrangement. We choose and fix a sufficiently

large prime � 0L�1. The set F
� 0L�1
L�1 is the � 0L�1 periodic rearrangement of FL�1. We

modify our sets and functions so that they are all periodic with respect to � 0L�1.
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The new functions are: f 0
h;L�1

˛0L�1.x/ !
0
L�1.x/ �

0
L�1.x/ X

0
h;L�1

.x/. We define

E 0
L�1 so that it satisfies (72). We set S 0L�1;L�1 D R and define the sets S 0

L�1;l
.

These sets are used in (75) for the distribution of X 0KC1;L�1.

Then we choose a sufficiently large qL, and several important auxiliary sets:
x„.qL/D[j2ZŒjqL; jqLC 2

�L/,�̂
L D fx W dist.x; xƒ0.qL/[ x„.qL// > 2� 0L�1g;

ˆL D [fŒj�
0
L�1; .j C 1/�

0
L�1/ W

�̂
L \ Œj�

0
L�1; .j C 1/�

0
L�1/ 6D ∅g; which sat-

isfy: �̂L � ˆL � b̂L � R n xƒ0.qL/ � b‰L � ‰L � �‰L The sets ˆL and ‰L
are periodic by � 0L�1qL and the sets �̂L, b̂L, �‰L, and b‰L are periodic by qL.
They satisfy (90). We put E 0L D ‰L \ E

0L�1, E 00L D R n .xƒ0.qL/ [ �̂L/ and
zE 00L D R n .xƒ0.qL/ [ ˆL/ � E

00
L. The set E 00L is periodic by qL, while zE 00L is

periodic by � 0L�1qL. The exceptional set SE 000L is defined at (112) and E 000L in (114).

From this place on our definition of our new objects, like the functions fh;L
and Xh;L splits and follows two different paths. One will be the definition of these
objects on R n xƒ0.qL/ and the other the definition of these objects on xƒ0.qL/.

For the first path we are unable to use exactly the set R n xƒ0.qL/. We need to
use the auxiliary sets ˆL and ‰L which are good approximations of this set. We
have for example fKC1;L D f 0KC1;L�1�‰L .

For the second path by our induction assumption we put a K �M -family on
xƒ0.qL/. The sets and functions obtained at this step are periodic by x�LqL. They
are xfh;L; ˛L; x!L; x�L, SXh;L and there is an exceptional set Eı;L.

We combine these two paths when we define fh;L D f 0h;L�1 ��ˆLC
xfh;L for

hD 1; : : : ; K.
Quick reference summary ends here.

Next we turn to the details of our argument. We start by choosing some
constants.

Choose a positive integer L0 such that

(57)
�
1�



2

�L0
<

1

2M
:

By recursion we construct pairs of functions fKC1;0; XKC1;0; : : : ; fKC1;L,
XKC1;L and some associated objects. The inner finite induction, the “leakage”
will halt at some step L00 � L0. We show that the functions fKC1;L00 ; XKC1;L00
and their associated objects form a .KC 1/�M family except for the distribution
of XKC1;L00 . However we will know enough about its distribution to easily obtain
a .KC 1/�M family.

By (55) we have C < C0 < � .



1506 ZOLTÁN BUCZOLICH and R. DANIEL MAULDIN

We recall that the only input parameter that the leakage constant depends on
is � . This dependence, and the possibility of using different values for � will play
an important role during the definition of .KC 1/�M families with K > 0.

Fix a constant �0 > 1 such that

(58) C�0 < �:

Put

ıL D
ı

4.L0C 1/
for LD 0; : : : ; L0:

Next we choose sufficiently small positive constants �, �0 and z�.
We suppose that

(59) .1� �/.1� 2/ > 1� 3:

Recall that 1 > �C > 1� 10�6 and we choose �0 > 0 such that

(60) 0:999 < �C .1� �0/ < 1 < 1:001:
Since 0 <  < 0 < 10�7 and 1 > �C > 1� 10�6 we can suppose that � and

�0 are so small that

(61) .1� �/2.1� 2/2.1� �0/�C � .1� �0/�C
0:999 � .1� �/2

�
1

2
> 0:99 �

1

2
:

Moreover, choose z� > 0 such that

(62)
�
1�

�0

2

�
.1� 2z�/ > 1� �0:

Finally, we set P0 D P [ P00 [ � � � [ P0L0 where P and each P0j contains
infinitely many primes and all their possible products, but numbers in different
sets are relatively prime; moreover P0 has sufficiently large complement.

4.2.2. Step LD 0 of the leakage process. We put fKC1;0 � 1. Set F0 D R;

S0;0DR, r0D 1. So, x�.F0/D 1 and XKC1;0
def
D.1��0/�C D .1��0/�Cx�.F0/ < 1,

see (60).
For the case K D 0 we use the following argument. For K > 0 see a different

argument in 4.2.9.
We choose a sufficiently large �0, and functions ˛0.x/, !0.x/, �0.x/ taking

integer values for all x 2 R (in fact, these functions can be constant on R), such
that the following assumptions hold: !0.x/ > ˛0.x/ > A; �0.x/ < �0, !20.x/ < �0;
!0.x/
˛0.x/

>��0.x/D�0�0.x/, and for all p 2 P0, .�0.x/; p/D 1; .�0; p/D 1. For
example, we could take ˛0.x/D AC 1, �0.x/ to be the smallest odd prime which
is relatively prime to all elements of P0, !0.x/ D �0.x/�.AC 2/ and �0 be the
smallest prime relatively prime to the elements of P0 and greater than .!0.x//2.
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By our choices; fKC1;0 D f1;0 � 1. We put Eı0 D∅ and E0 D∅. For any
m 2 N we have the all important “domination” property: for all x 2 R nE0,

1

m

nCm�1X
kDn

f1;0.xC k
2/ > X1;0.x/:

It is also clear that for all x 2R, f1;0.xCj C �0.x//D f1;0.xCj / for any j 2R.

4.2.3. The setting after step L� 1 of the leakage. Assume we have accom-
plished step L � 1 of the leakage process. We have constructed some objects
satisfying the following conditions. There is an exceptional set EL�1 with

(63) x�.EL�1/ <
L

.L0C 1/
ıI

PL�1 D P[P0L[ � � � [P0L0 I there exists a period �L�1 such that EL�1, Xh;L�1;
fh;L�1, .h D 1; : : : ; K C 1/ are periodic by �L�1; fh;L�1 W R ! Œ0;1/, (for
K > 0) the “random” variables Xh;L�1 W R ! R are pairwise independent for
h D 1; : : : ; K C 1; Xh;L�1 are M�0:99-distributed for h D 1; : : : ; K (in (67)–
(70) we list the assumptions about the distribution of XKC1;L�1, recall that for
K D 0 there is no h satisfying h D 1; : : : ; K). For all x 62 EL�1 there exist
!L�1.x/ > ˛L�1.x/ > A; �L�1.x/ < �L�1 such that !2L�1.x/ < �L�1;

!L�1.x/
˛L�1.x/

>

��L�1.x/; moreover if ˛L�1.x/ � n < nCm � !L�1.x/ and �L�1.x/jm, then
for all hD 1; : : : ; KC 1,

(64)
1

m

nCm�1X
kDn

fh;L�1.xC k
2/ > Xh;L�1.x/I

for all p 2 PL�1, .�L�1.x/; p/ D 1; .�L�1; p/ D 1I moreover for all x 62 EL�1,
fh;L�1.xCjC�L�1.x//Dfh;L�1.xCj /whenever ˛2L�1.x/�j <jC�L�1.x/�
!2L�1.x/ for all h 2 f1; : : : ; KC 1g.

We suppose that the values of fKC1;L�1 are 0 or 1, that is, it is an indicator
function.

If L� 1D 0, then XKC1;L�1 is constant.
If L � 1 > 0, that is, L � 2 then we give the extra assumptions about the

distribution of XKC1;L�1 as follows.
Recall F0 D R and also recall that for a Lebesgue measurable set F , periodic

by p we have x�.F /D 1
p
�.F \ Œ0; p//D limN!1

�.F\Œ�N;N�/
2N

. We suppose that
the sets Fl periodic by �l and the numbers rl have been defined for l D 0; : : : ; L�2
during the previous steps of our induction,

(65)
x�.Fl/

x�.Fl�1/
D rl and 1� 2 < rl < 1�



2



1508 ZOLTÁN BUCZOLICH and R. DANIEL MAULDIN

hold for l D 1; : : : ; L � 1. Clearly, x�.Fl/ D r0 � � � rl . We also have �l periodic
functions fKC1;l D �Fl for each 0� l � L� 1.

Set FL�1Dfx WfKC1;L�1.x/D 1g and rL�1D
x�.FL�1/
x�.FL�2/

<1. We also assume

(66) 1� 2 < rL�1 < 1�


2
;

x�.FL�1/D r1 � � � rL�1 D r0 � � � rL�1. In (103) we explicitly show that this holds
for r1. The sets SL�1;0 � : : :� SL�1;L�1 D R are defined so that

(67)
1

1� �
x�.FL�1/ > x�.SL�1;0/ > .1� �/x�.FL�1/;

if x 2 SL�1;0 then XKC1;L�1.x/ D .1 � �0/�C D .1 � �0/�Cx�.F0/. For l D
0; : : : ; L� 1 we have

(68)
1

.1� �/r0 � � � rl

x�.SL�1;0/ > x�.SL�1;l/ >
1� �

r0 � � � rl

x�.SL�1;0/;

which is equivalent to

(69)
1

.1� �/
x�.SL�1;0/ > x�.Fl/ � x�.SL�1;l/ > .1� �/x�.SL�1;0/:

If x 2 SL�1;l nSL�1;l�1 for l 2 f1; : : : ; L� 1g; then

(70) XKC1;L�1.x/D .1� �
0/r0 � � � rl�C D .1� �0/x�.Fl/�C :

The sets SL�1;l are increasing almost by a factor 1=rl in size, whereas the value
of XKC1;L�1 on the difference is decreasing by a factor rl . We also assume that
FL�1 has the property that if x 2 FL�1 then Œbxc; bxcC 1/� FL�1.

We note that by (65)Z
fKC1;l �

�
1�



2

�l
for l D 0; : : : ; L� 1:

4.2.4. Rearrangement with respect to � 0L�1, choice of � 0L�1. In order to con-
struct the next set of objects in the recursion, we first create, by rearrangement,
some associated objects to the .L � 1/-st step which are denoted by attaching
primes.

Since the set FL�1 is periodic by �L�1 and is the union of some integral
intervals we can apply Lemma 3. We choose M�0=2 such that for all prime numbers

� 0L�1 > M�0=2 if we consider F
� 0L�1
L�1 , the � 0L�1 periodic rearrangement of FL�1,

then for any x 2 R if � 0L�1jm, then

(71)
1

m

nCm�1X
kDn

�
F
�0
L�1
L�1

.xC k2/�

�
1�

�0

2

�
x�.FL�1/:



DIVERGENT SQUARE AVERAGES 1509

We will choose and fix a sufficiently large prime � 0L�1 2 P0L�1. We define the
numbers Ti , i D 1; : : : ; 5 below. We choose � 0L�1 so that it is larger than the
maximum of T1,. . . ,T5 and M�0=2. Hence (71), (73), (76), (77), (78), (80), (81),
and (82) hold.

Now, we modify our sets and functions so that they are all periodic with
respect to � 0L�1. Since we are going to define functions which are periodic by
� 0L�1; it is sufficient to define them on Œ0; � 0L�1/.

If x 2 Œ0; b� 0L�1=�L�1c��L�1/ and the right-hand side of the equation is defined
at x, set

f 0h;L�1.x/D fh;L�1.x/; hD 1; : : : ; KC 1;

˛0L�1.x/D ˛L�1.x/;

!0L�1.x/D !L�1.x/;

� 0L�1.x/D �L�1.x/;

X 0h;L�1.x/DXh;L�1.x/; hD 1; : : : ; KC 1:

On Œb� 0L�1=�L�1c�L�1; �
0
L�1/ we define all the above functions equal to zero

with the exception of the functions X 0
h;L�1

, hD 1; : : : ; KC 1.
When K > 0 for these functions some minor adjustments will be made on this

interval in order to ensure that they are pairwise independent for hD 1; : : : ; KC 1
and are M�0:99-distributed for hD 1; : : : ; K.

We can also assume that X 0KC1;L�1 has constant value .1� �0/x�.FL�1/�C
on Œb� 0L�1=�L�1c�L�1; �

0
L�1/. When L� 1D 0 then this implies that X 0KC1;L�1

takes this constant value on R.
We define E 0L�1 so that it is periodic by � 0L�1 and

E 0
L�1
\ Œ0; � 0L�1/

(72)

D

�
EL�1\

�
0;

��
� 0L�1
�L�1

�
� 1

�
�L�1

��
[

���
� 0L�1
�L�1

�
� 1

�
�L�1; �

0
L�1

�
:

By choosing � 0L�1 sufficiently large we can make 0 � x�.E 0L�1/� x�.EL�1/ as
small as we wish, hence, using (63) there is T1 such that if � 0L�1 > T1, then

(73) x�.E 0
L�1

/ <
L

.L0C 1/
ı:

When L� 1D 0 then

(74) X 0KC1;0.x/D .1� �
0/x�.F0/�C for all x 2 R:

If L� 1 > 0, that is, L � 2 we need to deal with the auxiliary sets related
to the distribution of X 0KC1;L�1. We put S 0L�1;L�1 D R. Observe that (72) holds
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with E 0L�1; EL�1 being replaced by S 0L�1;L�1; and SL�1;L�1 D R; respectively.
For l D 0; : : : ; L� 2 we define the sets S 0

L�1;l
so that they are periodic by � 0L�1

and we have

S 0L�1;l \ Œ0; �
0
L�1/D SL�1;l \ Œ0; .b�

0
L�1=�L�1c� 1/�L�1/:

The above definitions and (70) imply

X 0KC1;L�1.x/D .1� �
0/�Cx�.F0/ for x 2 S 0L�1;0;

(75)

and

X 0KC1;L�1.x/D .1� �
0/�Cx�.Fl/ for x 2 S 0L�1;l nS

0
L�1;l�1; l D 1; : : : ; L� 1:

By the strict inequalities in (67), (68) and (69) we can choose T2 such that if
� 0L�1 > T2 then

(76)
1

1� �
x�.FL�1/ > x�.S

0
L�1;0/ > .1� �/

x�.FL�1/

and for l D 0; : : : ; L� 1

(77)
1

.1� �/r0 � � � rl

x�.S 0L�1;0/ >
x�.S 0L�1;l/ > .1� �/

1

r0 � � � rl

x�.S 0L�1;0/;

or, equivalently,

(78)
1

1� �
x�.S 0L�1;0/ >

x�.Fl/ � x�.S
0
L�1;l/ > .1� �/

x�.S 0L�1;0/:

Set F 0L�1 D fx W f
0
KC1;L�1.x/ D 1g, that is, F 0L�1 \ Œ0; �

0
L�1/ D FL�1 \

Œ0; b� 0L�1=�L�1c�L�1/ D F
� 0L�1
L�1 \ Œ0; b�

0
L�1=�L�1c�L�1/ and f 0KC1;L�1.x/ D

�
F
�0
L�1
L�1

.x/ for all x 2 R. Clearly, x�.F 0L�1/�
x�.FL�1/.

For the case L� 1D 0 we note that F0\ Œ0; � 0L�1/D Œ0; b�
0
L�1=�L�1c�L�1/.

By (71) for any x 2 R from � 0L�1jm, it follows that letting f 0KC1;L�1 D
�
F
�0
L�1
L�1

we have

(79)
1

m

nCm�1X
kDn

f 0KC1;L�1.xC k
2/ >

�
1�

�0

2

�
x�.FL�1/:

This formula is the main motivation for introducing the � 0L�1 periodic rearrange-
ments.

Observe that if � 0L�1!1 then x�.F 0L�1/=
x�.FL�1/! 1.
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Hence we can choose T3 such that if � 0L�1 > T3, then

(80) 1� � <
x�.F 0L�1/

x�.FL�1/
� 1:

We remark that for L� 1D 0 inequality (80) simply means 1� � < x�.F 00/.
Moreover, we can choose T4 such that if � 0L�1 > T4, then

(81) 1�


10
<
x�.F 0L�1/

x�.FL�1/
� 1 < 1C



10
:

Finally, by (67) and (76) if L� 2 we can choose T5 such that if � 0L�1 > T5 then

(82)
1

1� �
x�.F 0L�1/ >

x�.S 0L�1;0/ > .1� �/
x�.F 0L�1/

holds as well.
If x 2 Œ0; � 0L�1/nE

0L�1, then put ˛0L�1.x/D ˛L�1.x/; !
0
L�1.x/D!L�1.x/;

� 0L�1.x/D �L�1.x/<�L�1� � 0L�1. This defines ˛0L�1.x/, !
0
L�1.x/, and � 0L�1.x/

for all x 2 R nE 0
L�1 as well since these functions are periodic by � 0L�1. It is also

clear that .� 0L�1.x/; p/D 1 for all p 2 PL�1. We have .!0L�1.x//
2 < �L�1 and

(83)
!0L�1.x/

˛0L�1.x/
> �� 0L�1.x/:

Suppose ˛0L�1.x/ � n < nCm � !0L�1.x/ and � 0L�1.x/ D �L�1.x/jm. Since
x 62 E 0

L�1, formula (72) implies that x C k2 2 Œ0; b� 0L�1=�L�1c�L�1/ for k 2
fn; : : : ; nCm� 1g we infer by (64) for hD 1; : : : ; KC 1

1

m

nCm�1X
kDn

f 0h;L�1.xC k
2/D

1

m

nCm�1X
kDn

fh;L�1.xC k
2/(84)

>Xh;L�1.x/DX
0
h;L�1.x/:

For all x 2 Œ0; � 0L�1/ n E
0L�1, h 2 f1; : : : ; K C 1g, if ˛02L�1.x/ � j <

jC� 0L�1.x/�!
02
L�1.x/; fh;L�1.xCjC�L�1.x//Df

0
h;L�1

.xCjC� 0L�1.x//D

f 0
h;L�1

.xC j /D fh;L�1.xC j /. By periodicity with respect to � 0L�1, the above

estimates hold for any x 62E 0L�1.

4.2.5. Choice of �L, qL, ˆL, ‰L, and Xh;L on R n xƒ0.qL/. Our goal in this
section is to describe some sets, in particular ˆL and ‰L, so that we can take
fKC1;L D f

0
KC1;L�1�‰L in Section 4.2.6. The functions f 0KC1;L�1 and �‰L are

“independent” which allows us to reduce the integral of fKC1;L. In this section we
construct three components of the next exceptional set EL. The fourth component
will be defined in Section 4.2.13. This last component is the exceptional set coming
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from the K �M family which we put on xƒ0.qL/. We also construct the function
XKC1;L. To construct the sets mentioned above we choose a number qL 2 P0L;

qL D p1;L � � �p�L;L, p1;L < � � �< p�L;L, where �L and p1;L are both sufficiently
large.

In fact, we will suppose that �L is larger than the maximum of the numbers
Ki , i D 1; : : : ; 7 and � , we also suppose that p1;L is larger than the maximum of
�i .�L/, i D 0; : : : ; 7, p001;L, and p;� , where Ki , �i and p001;L are defined below, the
numbers � and p;� were defined in Lemma 7. With these assumptions we will
be able to use (85), (92), (94), (98), (100), (102), (107), and (113) simultaneously.

Recall that we assumed that z� > 0 satisfies (62). An application of Lemma 2
with �L; � D ı=4L0 and z� instead of � yields p001;L sufficiently large so that qL D
p1;L ���p�L;L, with p001;L<p1;L satisfies (14) and hence we will be able to use (113).

By (36) for given �L we can choose �0.�L/ such that for p1;L > �0.�L/ we
have

(85) #..ƒ0.qL/ nƒ00.qL//\ Œ0; qL// < z�.1� /#.ƒ0.qL/\ Œ0; qL//:

Recall from Remark 1 that the average gap length between points of ƒ0.qL/
is approximately 2�L and we can assume that it is much larger than � 0L�1. The
normalized difference between elements of ƒ0.qL/ approximates Poisson distri-
bution by the results in [13], see also Lemma 7. We also recall from Lemma 6 that
x„.qL/D[j2ZŒjqL; jqLC 2

�L/. We put�̂
L D fx W dist.x; xƒ0.qL/[ x„.qL// > 2� 0L�1g;(86)

ˆL D[fŒj�
0
L�1; .j C 1/�

0
L�1/ W

�̂
L\ Œj�

0
L�1; .j C 1/�

0
L�1/ 6D∅g;(87) b̂

L D fx W dist.x; xƒ0.qL// > � 0L�1g;b‰L D fx W dist.x;R n xƒ0.qL//� � 0L�1g;

‰L D[fŒj�
0
L�1; .j C 1/�

0
L�1/ W

b‰L\ Œj� 0L�1; .j C 1/� 0L�1/ 6D∅g;
and finally�‰L D fx W dist.x;R n xƒ0.qL//� 2� 0L�1g:

It is clear that

(88) �̂
L �ˆL � b̂L � R n xƒ0.qL/� b‰L �‰L � �‰L:

It is also important that by (86) and (87) we have

(89) ˆL\ x„.qL/D∅:

The sets ˆL and ‰L are periodic by � 0L�1qL and the sets �̂L, b̂L, �‰L, and b‰L
are periodic by qL. If �L is sufficiently large, then 2�L and hence most of the
gaps between points of ƒ0.qL/ are much larger than � 0L�1. In the sequel by �
we mean that if p1;L and 2�L (compared to � 0L�1) are sufficiently large, then the
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ratio of the two sides of � is sufficiently close to 1, later we will specify further
this assumption. Since xƒ0.qL/ consists of intervals of length 2�L which is much
larger than � 0L�1, we have

x�.�‰L/� x�.�̂L/� x�.‰L/� x�.ˆL/� x�.b‰L/� x�.b̂L/;(90)
x�.ˆL/� x�.R n xƒ

0.qL//� x�.‰L/ and x�.R n xƒ0.qL//� x�.‰L/:(91)

Using this and (50) we can choose K1 and a function �1 such that if �L >K1
and p1;L > �1.�L/ then

(92) x�.ˆL/ > x�.R n xƒ
0.qL//=2 > .1� /=2:

Set E 00L D R n .xƒ0.qL/[ �̂L/; this will be part of the new exceptional set EL.
We also introduce

(93) zE 00L D R n .xƒ0.qL/[ˆL/�E
00
L:

It is clear that E 00L is periodic by qL, while zE 00L is periodic by � 0L�1qL.
We can choose K2 and a function �2 such that if �L >K2 and p1;L >�2.�L/

then

(94) x�. zE 00L/�
x�.E 00L/ <

ı

4L0
:

Set

(95) Xh;L.x/DX
0
h;L�1.x/ if h�KC 1 and x 2ˆL:

For K > 0 we can make the following comment: Since ˆL consists of in-
tervals of the form Œj� 0L�1; .j C 1/�

0
L�1/; this definition and the remark after the

definition of X 0
h;L�1

in Section 4.2.4 ensures that the functions Xh;L are pairwise
independent for h D 1; : : : ; K C 1 and are conditionally M�0:99 distributed on
ˆL for hD 1; : : : ; K.

On zE 00L we will have

(96) XKC1;L.x/D .1� �
0/x�.FL�1/�C

and we define Xh;L for hD 1; : : : ; K so that they are pairwise independent on zE 00L,
furthermore, (for K > 0) the functions Xh;L are conditionally M�0:99-distributed
on zE 00L for h D 1; : : : ; K. Since XKC1;L is constant on zE 00L it is automatically
independent on this set from Xh;L for hD 1; : : : ; K.

The functions Xh;L are periodic on zE 00L by � 0L�1qL for hD 1; : : : ; KC 1. In
this way the Xh;L’s are defined on ˆL[ zE 00L D R n xƒ0.qL/.

We set E 0L D‰L\E
0L�1.

Next we consider some sets which are used to describe the distribution of
XKC1;L.
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If LD 1 set S1;0 D R n xƒ0.q1/ and S1;1 D R.
If L � 2 first we define SL;l for l D 0; : : : ; L � 1 so that SL;l \ ˆL D

S 0
L�1;l

\ˆL for l D 0; : : : ; L�1. We choose SL;l so that SL;l \ .RnˆL/D∅ for

l D 0; : : : ; L� 2. We choose SL;L�1 so that SL;L�1 D zE 00L[ .S
0
L�1;L�1\ˆL/D

zE 00L[ˆL D R n xƒ0.qL/. Finally, we set SL;L D R; then SL;L nSL;L�1 D xƒ0.qL/.
We have by (75), (for the case LD 1 by (74)) and (95)

XKC1;L.x/D .1� �
0/x�.F0/�C for x 2 SL;0; and(97)

XKC1;L.x/D .1� �
0/x�.Fl/�C for x 2 SL;l nSL;l�1; l D 1; : : : ; L� 1:

The case when l D L will be considered in (101). By (93) we have zE 00L\ˆL D∅
and hence SL;l \ zE 00L D ∅ for l � L� 2. This implies zE 00L � SL;L�1 n SL;L�2.
Hence (97) applied with l D L� 1 implies (96).

Let FL D‰L\F 0L�1. Using the fact that F 0L�1 is periodic by � 0L�1 and ‰L
is the union of some intervals of the form Œj� 0L�1; .j C 1/�

0
L�1/ and is periodic by

� 0L�1qL one can easily see that x�.FL/D x�.‰L/x�.F 0L�1/. Moreover,

rL
def
D

x�.FL/

x�.FL�1/
D x�.‰L/

x�.F 0L�1/

x�.FL�1/
� x�.‰L/� x�.ˆL/� x�.R n xƒ

0.qL//:

Since x�.F 0L�1/ �
x�.FL�1/ by (91) there is K3 and a function �3 such that if

�L > K3 and p1;L > �3.�L/, then

(98) x�.‰L/
x�.F 0L�1/

x�.FL�1/
<

1� 

1�  � 2
x�.R n xƒ0.qL//:

By (51) we obtain

(99) �CrL D �C x�.FL/
x�.FL�1/

D �Cx�.‰L/x�.F 0L�1/
x�.FL�1/

< 1� :

By (50), (56), (81) and x�.‰L/� x�.Rn xƒ0.qL// there is K4 and a function �4 such
that if �L > K4 and p1;L > �4.�L/, then

(100) 1� 2 < rL D
x�.FL/

x�.FL�1/
D x�.‰L/

x�.F 0L�1/

x�.FL�1/
< 1�



2
:

We set

(101) XKC1;L.x/D .1� �
0/x�.FL/�C for x 2 SL;L nSL;L�1 D xƒ0.qL/:

If L D 1 then x�.F1/ D x�.‰1/x�.F 00/ � x�.R n xƒ
0.q1// and x�.S1;0/ D x�.R n

xƒ0.q1//. Furthermore, x�.S1;1/D x�.R/D 1; r1 � x�.R n xƒ0.q1//.
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By (50), (51), (90) and (91) there is K5 and a function �5 such that if �1 >K5
and p1;1 > �5.�1/, then

(102) 1� 1:1 < x�.‰1/ < 1�
8

10
and 1� � <

x�.R n xƒ0.q1//

x�.‰1/
� 1:

From (80), (81), (91) and (102) it follows that

(103)

1� 2 < r1 D x�.‰1/
x�.F 00/

x�.F0/
< 1�



2
;

1

1� �
x�.F1/D

1

1� �
x�.‰1/x�.F

0
0/

> x�.S1;0/D x�.R n xƒ
0.q1// > .1� �/x�.‰1/x�.F

0
0/D .1� �/

x�.F1/;

(keeping in mind F0 D R)

(104)

1

.1� �/r0r1
x�.S1;0/D

x�.R n xƒ0.q1//x�.F0/

.1� �/x�.‰1/x�.F
0
0/
> x�.S1;1/D 1

> .1� �/
x�.R n xƒ0.q1//x�.F0/

x�.‰1/x�.F
0
0/

D .1� �/
1

r0r1
x�.S1;0/

and

(105)
1

1� �
x�.S1;0/ > x�.F1/x�.S1;1/ > .1� �/x�.S1;0/:

This shows that (109) and (110) below hold for LD 1 and l D 1. For LD 1 and
l D 0, (109) and (110) are obvious.

If L� 2 we have x�.SL;0/D x�.ˆL/ � x�.S 0L�1;0/. From (82) it follows that

(106) 1 > .1� �/
x�.F 0L�1/

x�.S 0L�1;0/
:

Therefore, by (90) and (91) there is K6 and a function �6 such that if �L >K6 and
p1;L > �6.�L/ then

(107) 1�
x�.ˆL/

x�.‰L/
> .1� �/

x�.F 0L�1/

x�.S 0L�1;0/
:

Using this, (82) and (91) a simple calculation shows that

1

1� �
x�.FL/D

1

1� �
x�.‰L/x�.F

0
L�1/ >

x�.SL;0/D x�.ˆL/x�.S
0
L�1;0/(108)

> .1� �/x�.‰L/x�.F
0
L�1/D .1� �/

x�.FL/:
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It is also clear that x�.SL;l/D x�.ˆL/ � x�.S 0L�1;l/ for l D 0; : : : ; L� 2. Using (77)
we have for l D 0; : : : ; L� 2

(109)
1

.1� �/r0 � � � rl

x�.SL;0/ > x�.SL;l/ > .1� �/
1

r0 � � � rl

x�.SL;0/

and by x�.Fl/D r0 � � � rl , we have

(110)
1

1� �
x�.SL;0/ > x�.Fl/x�.SL;l/ > .1� �/x�.SL;0/:

When l D L� 1 a little caution is needed. We have x�.SL;L�1/D .x�.ˆL/C
x�. zE 00L//

x�.S 0L�1;L�1/D
x�.R n xƒ0.qL//. By (77),

1

.1� �/r0 � � � rL�1
�

x�.S 0L�1;0/

x�.S 0L�1;L�1/
> 1:

Hence, there is K7 � K1 and a function �7 � �1 such that if �L > K7 and
p1;L > �7.�L/, then using (92) and (94),

1

.1� �/r0 � � � rL�1
�

x�.S 0L�1;0/

x�.S 0L�1;L�1/
> 1C

2x�.E 00L/

1� 
(111)

> 1C
x�. zE 00L/

x�.ˆL/
D

x�.ˆL/Cx�. zE
00
L/

x�.ˆL/
:

Using this and (77) one can deduce that (109) and (110) hold when l D L� 1.
From x�.SL;L/D 1 and (108) it follows that

1

1� �
x�.SL;0/ > x�.FL/x�.SL;L/ > .1� �/x�.SL;0/:

Using the fact that x�.FL/D r0 � � � rL we find that (109) and (110) hold for l D L
as well.

Denote by SE 000L the set of those n’s for which

(112) #
�
..nCƒ0.qL//nƒ.qL//\ Œ0; qL/

�
<.1�z�/.1�/#.ƒ0.qL/\ Œ0; qL//:

Recall that by our choice p1;L > p01;L and hence qL satisfies (14) with � D ı=4L0

and z� instead of �. Lemma 2 yields

(113) #.SE 000L \ Œ0; qL// <
ı

4L0
qL:

Set

(114) E 000L D fx 2 R W bxc 2 SE 000L g:
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Then x�.E 000L / < ı=4L
0 and if x 62E 000L we have

1

qL
#fk0 2 Œ0; qL/\Z W bxcC k0

2
62ƒ.qL/g(115)

�
1

qL
#fk0 2 Œ0; qL/\Z W bxcC k0

2
62ƒ.qL/; k

02
2ƒ00.qL/g

�
1

qL
2�L#...bxcCƒ00.qL// nƒ.qL//\ Œ0; qL//

�
1

qL
2�L

�
#...bxcCƒ0.qL// nƒ.qL//\ Œ0; qL//

�#..ƒ0.qL/ nƒ00.qL//\ Œ0; qL//
�

(using that for bxc 62 SE 000L we have the negation of (112))

�
1

qL
2�L

�
..1� z�/.1� /#.ƒ0.qL/\ Œ0; qL///

�#..ƒ0.qL/ nƒ00.qL//\ Œ0; qL//
�
D .�/:

Recall that we assumed that p1;L > �0.�L/. Thus we can apply (85) yielding

.�/�
1

qL
2�L.1� 2z�/.1� /#.ƒ0.qL/\ Œ0; qL//D .��/:

Using (3) we can finish with the inequality

(116) .��/ >
1

qL
2�L.1� 2z�/.1� /

qL

2�L
D .1� 2z�/.1� /:

4.2.6. Putting K �M families on xƒ0.qL/. In this section we check the dom-
ination property of averages along squares for one part of the complement of EL.

We put

(117) fKC1;L D f
0
KC1;L�1 ��‰L :

Then indeed, FL D fx W fKC1;L.x/D 1g D‰L\F 0L�1; and we have
R
fKC1;L D

x�.FL/. Since f 0KC1;L�1 is periodic by � 0L�1 2P0L�1 and‰L is periodic by � 0L�1qL
the function fKC1;L is also periodic by � 0L�1qL.

When K > 0 and h 2 f1; : : : ; Kg we will define fh;L in (135) so that

fh;L.x/D f
0
h;L�1.x/ for x 2ˆL:

Choose P00L � P0L such that it contains infinitely many primes and all their
possible products, moreover all numbers in P00L are relatively prime to qL 2 P0L
and set PL D P[P00L[P0LC1[ � � � [P0L0 .
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When K D 0, i.e., when constructing a 1�M family we have to put a vacuous
“0�M family” on xƒ0.qL/.

Hence, for K D 0, for the definition of a 1 �M family we just set x�L D
qL.�

0
L�1/

3, EıL D∅.
When K � 1 this step is crucial, see Section 4.2.13.
Set PL D P[P0LC1 [ � � � [P0L0 � PL � PL�1. We also put EL D EıL [

E 0L [E
00
L [E

000
L , and �L D qLx�L� 0L�1. When K D 0 we defined x�L D qL.� 0L�1/

3

and hence �L D q2L.�
0
L�1/

4. Then for all p 2 PL � PL we have .�L; p/ D 1

and .� 0L�1.x/; p/D 1 when x 2 R nEL. Assume x 2 R n .xƒ0.qL/[E
L/. Then

x 2 �̂L �ˆL and the old estimates work.
In other words, for x 2 R n .xƒ0.qL/ [ E

L/ � �̂L; set ˛L.x/ D ˛0L�1.x/;

!L.x/D!
0
L�1.x/; �L.x/D �

0
L�1.x/D �L�1.x/. Then !2L.x/<�L�1<�

0
L�1<�L

and by (83) we have

!0L�1.x/

˛0L�1.x/
D
!L.x/

˛L.x/
> �� 0L�1.x/D��L.x/:

Observe that if x 2Rn.xƒ0.qL/[E
L/� �̂L nE 0LD �̂L nE 0L�1� �̂L�ˆL,

then from x 62E 0
L�1

; ˛L.x/� n� k <nCm�!L.x/, and !2L.x/< �L�1<�
0
L�1

it follows that x C k2 2 ˆL � ‰L and hence by (117), fKC1;L.x C k2/ D
f 0KC1;L�1.xC k

2/ and by (84) , if �L.x/D � 0L�1.x/jm, then

1

m

nCm�1X
kDn

f 0KC1;L�1.xC k
2/D

1

m

nCm�1X
kDn

fKC1;L.xC k
2/

> XKC1;L.x/DX
0
KC1;L�1.x/:

Finally, for all x 2 R n .xƒ0.qL/ [ E
L/ � �̂L n E 0L D �̂

L n E
0L�1 � �̂L,

h D 1; : : : ; K C 1, if ˛2L.x/ � j < j C �L.x/ � !
2
L.x/ < �L�1, then xC j; xC

j C �L.x/ 2ˆL and

f 0h;L�1.xCjC�
0
L�1.x//Dfh;L.xCjC�L.x//Dfh;L.xCj /Df

0
h;L�1.xCj /:

�Assume x 2 xƒ0.qL/ nEL � xƒ0.qL/ nEıL .
For the K D 0 case set ˛L.x/ D ˛0L�1.x/; !L.x/ D �

0
L�1qL!

0
L�1.x/; and

�L.x/D �
0
L�1qL�

0
L�1.x/. Then !2L.x/ < .�

0
L�1/

2q2L.�
0
L�1/

2 D �L and

!L.x/

˛L.x/
D
!0L�1.x/�

0
L�1qL

˛0L�1.x/
> �� 0L�1.x/�

0
L�1qL D��L.x/:

Since fKC1;L is periodic by � 0L�1qL and � 0L�1qLj�L.x/ we have fKC1;L.xCj C
�L.x//D fKC1;L.xC j / for all x and j .

Instead of the above paragraph we will have a different argument in Section
4.2.13 for the K > 0 case.
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4.2.7. Properties of fKC1;L. In this section we check the domination prop-
erty for averages along squares for x in the remaining part of the complement
of EL.

We need to check (64) when hDKC 1 and

x 2 xƒ0.qL/ nE
L
D .SL;L nSL;L�1/ nE

L; and �L.x/D � 0L�1qL�
0
L�1.x/jm:

If we can show that (64) holds when m D � 0L�1qL then this clearly implies that
it holds when �L.x/jm. Recall that b‰L is periodic by qL. Since � 0L�1 2 P0L�1,
qL 2 P0L implies .� 0L�1; qL/D 1, k0C jqL covers all residues modulo � 0L�1 as j
runs from 0 to � 0L�1�1. Since f 0KC1;L�1 is periodic by � 0L�1, using (79) we obtain

(118)
1

� 0L�1

� 0L�1�1X
jD0

f 0KC1;L�1.xC .k
0
C jqL/

2/ >

�
1�

�0

2

�
x�.FL�1/:

Also observe that from the periodicity of b‰L by qL it follows that if xC k02 2 b‰L
then xC .k0C jqL/2 2 b‰L � ‰L as well. Hence from xC k0

2
2 b‰L it follows

that fKC1;L.xC .k0C jqL/2/D f 0KC1;L�1.xC .k
0C jqL/

2/. Therefore,

1

� 0L�1qL

nC� 0L�1qL�1X
kDn

fKC1;L.xC k
2/

D
1

� 0L�1qL

nCqL�1X
k0Dn

� 0L�1�1X
jD0

fKC1;L.xC .k
0
C jqL/

2/

�
1

� 0L�1qL

nCqL�1X
k0Dn

xCk0
2
2b‰L

� 0L�1�1X
jD0

fKC1;L.xC .k
0
C jqL/

2/

D
1

qL

nCqL�1X
k0Dn

xCk0
2
2b‰L

1

� 0L�1

� 0L�1�1X
jD0

f 0KC1;L�1.xC .k
0
C jqL/

2/

(using (118))

>
1

qL

nCqL�1X
k0Dn

xCk0
2
2b‰L

�
1�

�0

2

�
x�.FL�1/
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(using (88))

�
1

qL

�
1�

�0

2

�
x�.FL�1/#fk0 2 Œ0; qL/\Z W xC k0

2
62 xƒ0.qL/g

�
1

qL

�
1�

�0

2

�
x�.FL�1/#fk0 2 Œ0; qL/\Z W xC k0

2
62 xƒ.qL/g

D

�
1�

�0

2

�
x�.FL�1/

1

qL
#fk0 2 Œ0; qL/\Z W bxcC k0

2
62ƒ.qL/g:

Now use the estimates (115) through (116) and obtain that for x 62E 000L �E
L

1

qL
#fk0 2 Œ0; qL/\Z W bxcC k0

2
62ƒ.qL/g � .1� 2z�/.1� /:

Thus, if x 2 .SL;L nSL;L�1/ nEL D xƒ0.qL/ nEL we have

1

� 0L�1qL

nC� 0L�1qL�1X
kDn

fKC1;L.xC k
2/

>

�
1�

�0

2

�
x�.FL�1/.1� 2z�/.1� /

(using (62), (99) and (101))
� .1� �0/.1� /x�.FL�1/ > .1� �

0/�Cx�.FL/DXKC1;L.x/:
4.2.8. Finishing the leakage. We keep repeating the leakage steps until for the

first time for some L00 we have x�.FL00/ < 2�M which implies x�.FL00�1/ � 2�M .
By (57) and (100) applied to all L� L0 we have L00 � L0 and by  < 0 < 10�7

we have L00 � 2.
We set fh D fh;L00 for hD 1; : : : ; KC 1; and Xh DXh;L00 for hD 1; : : : ; K.

From the induction steps we have Eı
def
DEL

00

such that x�.Eı/ <
.L00C1/
.L0C1/

ı� ı. There

exists �def
D�L00 such that fh, h D 1; : : : ; K C 1, Xh, h D 1; : : : ; K and XKC1;L00

are periodic by �; Xh, hD 1; : : : ; K and XKC1;L00 are pairwise independent Xh,
h D 1; : : : ; K are M�0:99-distributed. By using the distributional properties of
XKC1;L00 we will define XKC1 at the end of this section.

For all x 62 Eı there exist !.x/ D !L00.x/ > ˛.x/ D ˛L00.x/ > A; �.x/ D
�L00.x/ < � such that !2.x/ < �; !.x/

˛.x/
> ��.x/. Setting fKC1 D fKC1;L00 (see

also (117)), if �.x/jm then

(119)
1

m

nCm�1X
kDn

fKC1.xC k
2/ > XKC1;L00.x/:

When K > 0 one also needs to use (139); see Section 4.2.15.
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For all p 2 PL00 � P, .�.x/; p/ D 1; .�; p/ D 1. For all x 62 Eı and for
all h 2 f1; : : : ; K C 1g, fh.x C j C �.x// D fh.x C j / whenever ˛2.x/ � j <
j C �.x/� !2.x/. Finally,

(120)
Z
fKC1 D x�.FL00/ < 2

�MC1 < � � 2�MC1;

when K > 0 we also need (140) from Section 4.2.15.
We have met all the requirements for a .KC1/�M family except the distribu-

tion of XKC1;L00 is not quite right. We need to replace XKC1;L00 by a suitably cho-
sen XKC1 which isM�0:99-distributed, moreover forK >0 it is pairwise indepen-
dent from Xh when hD 1; : : : ; K. By choosing XKC1 so that XKC1 �XKC1;L00
from (119) we infer that if ˛.x/� n < nCm� !.x/ and �.x/jm, then

(121)
1

m

nCm�1X
kDn

fKC1.xC k
2/ > XKC1.x/:

Since L00 is the first index when x�.FL00/ < 2�M we have x�.FL00�1/ � 2�M

which by (100) implies

(122) x�.FL00/ > .1� 2/2
�M :

What is the distribution of XKC1;L00? Recall FL00 D fx W fKC1.x/ D 1g,
1�2 < rLDx�.FL/=x�.FL�1/<1�


2
; for LD 1; : : : ; L00; and x�.FL/D r0 ���rLD

r1 � � � rL. By (108) and (59)

(123)
1

1� �
2�M >

1

1� �
x�.FL00/ > x�.SL00;0/ > .1� �/x�.FL00/ > .1� 3/2

�M :

By (97), XKC1;L00.x/D .1� �0/�C � 1D .1� �0/�Cx�.F0/ if x 2 SL00;0.
By (97) and (101) if x 2 SL00;l nSL00;l�1 then for l D 1; : : : ; L00,

(124) XKC1;L00.x/D .1� �
0/r0 � � � rl�C D .1� �0/x�.Fl/�C :

This and (60) imply that for x 2 SL00;L00 nSL00;L00�1

(125) XKC1;L00.x/D .1� �
0/�Cx�.FL00/ < 2�M .1� �0/�C < 0:999 � 2�MC1:

Using (109) we have the following measure estimate:

1

.1� �/r0 � � � rl

x�.SL00;0/ > x�.SL00;l/ > .1� �/
1

r0 � � � rl

x�.SL00;0/;

which by (110) is equivalent to

(126)
1

1� �
x�.SL00;0/ > x�.Fl/x�.SL00;l/ > .1� �/x�.SL00;0/:
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Suppose for l D 0; : : : ;M � 1; `0.l/ is chosen so that

(127) XKC1;L00.x/� 0:999 � 2
�l when x 2 SL00;`0.l/;

butXKC1;L00.x/<0:999�2�l for some x 2SL00;`0.l/C1, by (125) such an `0.l/�L00

exists. By (124)
.1� �0/x�.F`0.l/C1/�C < 0:999 � 2�l ;

and
.1� �0/x�.F`0.l//�C � 0:999 � 2�l

hold. Therefore, using x�.F`0.l/C1/=x�.F`0.l// > .1� 2/ we infer

(128) 0:999 � 2�l � .1� �0/x�.F`0.l//�C < 0:999

1� 2
2�l :

Set SL00;`0.�1/ D ∅. By using (124) and the above definitions, estimates for
l D 0; : : : ;M � 1; x 2 SL00;`0.l/ nSL00;`0.l�1/ we have

(129) 0:999 � 2�l �XKC1;L00.x/ < 0:999 � 2
�.l�1/:

By (126)

x�.SL00;`0.l// <
1

1� �
x�.SL00;0/

1

x�.F`0.l//

(using (123) and (128))

<
1

.1� �/2
x�.FL00/

.1� �0/�C
0:999 � 2�l

<
.1� �0/�C2l
0:999 � .1� �/2

2�M ;

on the other hand, by using (126)

x�.SL00;`0.l// >
.1� �/x�.SL00;0/

x�.F`0.l//

(using (123) and (128) again)

>
.1� �/2x�.FL00/.1� �

0/�C .1� 2/
0:999 � 2�l

(using (122))
> .1� �/2.1� 2/22�M � 2l.1� �0/�C :

Thus using (61) for l D 0; : : : ;M � 1

x�.SL00;`0.l/ nSL00;`0.l�1//(130)

> .1� �/2.1� 2/22�MCl.1� �0/�C � .1� �0/�C
0:999 � .1� �/2

� 2�MCl�1

> 0:99 � 2�MCl�1:



DIVERGENT SQUARE AVERAGES 1523

By (129) if l D 0; : : : ;M � 1; x 2 SL00;`0.l/ nSL00;`0.l�1/ we have XKC1;L00.x/ �
0:999 � 2�l .

By (124), XKC1;L00 takes different constant values on the set SL00;0 and on
the sets SL00;l nSL00;l�1 for l D 1; : : : ; L00.

When K > 0 we also know that XKC1;L00 is pairwise independent from
Xh for h D 1; : : : ; K. Hence, any function which is constant on the sets SL00;0,
SL00;l nSL00;l�1, l D 1; : : : ; L00 is still independent from each Xh for hD 1; : : : ; K.

Set X 0KC1.x/D 0:99 � 2
�l if x 2 SL00;`0.l/ nSL00;`0.l�1/ for lD 0; : : : ;M �1.

Set X 0KC1.x/D 0 if x 62 SL00;`0.M�1/. Now X 0KC1 � XKC1;L00 . When K > 0,
X 0KC1 is still independent from each Xh, hD 1; : : : ; K and it takes its values in
f0; 0:99; : : : ; 0:99 � 2�MC1g. But it is M�0:99 super distributed. By Lemma 4 we
can choose an M�0:99-distributed XKC1 �X 0KC1 which is still independent from
Xh for each hD 1; : : : ; K. This completes the part of our proof when we build the
1�M family, that is for K D 0 our argument ends here.

4.2.9. The K > 0 cases of our induction Step. L D 0 of our leakage. Next
we assume that K � 1 and we can define K �M families.

We use the definitions of the first paragraph of Section 4.2.2. After the defi-
nition of XKC1;0 we argue this way:

Choose a K �M family on R with input constants ı0 D ı
4.L0C1/

, �0 D �,
�0C <� , A0 DA, P0. Then there exist a period �0; functions fh;0 W R! Œ0;1/,
pairwise independent M�0:99-distributed “random” variables Xh;0 W R! R, for
hD 1; : : : ; K; a setEı0 periodic by �0; with x�.Eı0/< ı0. Moreover, for all x 62Eı0 ,
there exist !0.x/>˛0.x/>A; �0.x/<�0 such that !20.x/<�0;

!0.x/
˛0.x/

>��0.x/D

�0�0.x/, if ˛0.x/�n<nCm�!0.x/, and �0.x/jm then for all hD 1; : : : ; KC1
(for h D 1; : : : ; K by the definition of the K �M family, for h D K C 1 by the
definition in the first line of Section 4.2.2) there exists 0� fh;0 such that

1

m

nCm�1X
kDn

fh;0.xC k
2/ > Xh;0.x/:

For all p2P0, .�0.x/; p/D1; .�0; p/D1. For all x 62Eı0 and all hD1; : : : ; KC1;
fh;0.xC j C �0.x// D fh;0.xC j / whenever ˛20.x/ � j < j C �0.x/ � !

2
0.x/.

Finally,

1

�0

Z �0

0

fh;0 D

Z
fh;0 < C�0 � 2

�MC1;

for hD 1; : : : ; K.

4.2.10. Case K > 0, the setting after step L� 1 of the leakage. We can re-
peat almost exactly the argument of Section 4.2.3. We only need to add after the
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paragraph ending with (64) that for hD 1; : : : ; K

(131)
1

�L�1

Z �L�1

0

fh;L�1 D

Z
fh;L�1 < C�0 � 2

�MC1:

We emphasize that we do not expect that (131) holds for hDKC 1 and continue
with the paragraphs of Section 4.2.3 concerning the distribution of XKC1;L�1.

4.2.11. Case K > 0, rearrangement with respect to � 0L�1, choice of � 0L�1.
This subsection is again almost completely identical to Section 4.2.4. The only
extra remark we need after the first line of the last paragraph of Section 4.2.4 is
the following: We also have

(132)
Z
f 0h;L�1 �

Z
fh;L�1 < C�0 � 2

�MC1;

for hD 1; : : : ; K.

4.2.12. Case K > 0, choice of �L, qL, ˆL, ‰L, and Xh;L on R n xƒ0.qL/.
This subsection is identical to Section 4.2.5.

4.2.13. CaseK>0, puttingK�M families on xƒ0.qL/. This is the subsection
where we have a huge difference. This is where we need to use the results from
the previous step of the induction on K.

The first four paragraphs until the definition of PL are identical to the ones
in Section 4.2.6.

Contrary to the K D 0 case now we have to put a K �M family on xƒ0.qL/.
For the choice of the K �M family living on xƒ0.qL/ use Lemma 6 with PL;

ıL D ı=4.L
0C 1/, �L D� � qL� 0L�1, �0 and A.

(i) We obtain functions xfh;L, SXh;L periodic by x�LqL for hD 1; : : : ; K, where x�L
is a suitable natural number. The functions SXh;L W R! R are pairwise inde-
pendent and conditionally M�0:99 distributed on xƒ0.qL/. There exists EıL
periodic by x�LqL. For hD1; : : : ; K and x 62 x„.qL/D[j2ZŒjqL; jqLC2

�L/

we have xfh;L.x/D 0.

(ii) We have x�.EıL/ < ıL D ı=4.L
0C 1/. For all x 62 EıL , there exist x!L.x/ >

˛L.x/ > A, x�L.x/ < x�LqL; x!2L.x/ < x�LqL,

x!L.x/

˛L.x/
> �Lx�L.x/D�qL�

0
L�1x�L.x/:

Moreover, if ˛L.x/�n<nCm� x!L.x/ and x�L.x/jm then for hD 1; : : : ; K,

(133)
1

m

nCm�1X
kDn

xfh;L.xC k
2/ > SXh;L.x/:

(iii) For all p 2 PL; .x�L.x/; p/D 1, .x�LqL; p/D 1.
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(iv) For all x 2 xƒ0.qL/ nEıL ; for all hD 1; : : : ; K,

xfh;L.xC j Cx�L.x//D xfh;L.xC j /;

when ˛2L.x/� j < j Cx�L.x/� x!
2
L.x/.

(v) Finally, for all hD 1; : : : ; K

(134)
Z
xfh;L < �0 �  � 2

�MC1:

We now define the functions Xh;L on xƒ0.qL/ for h D 1; : : : ; K, by setting
Xh;L.x/D SXh;L.x/ if x 2 xƒ0.qL/; hD 1; : : : ; K; also define

(135) fh;L D f
0
h;L�1 ��ˆL C

xfh;L for hD 1; : : : ; K:

Where f 0
h;L�1

is defined in Section 4.2.4 and ˆL in Section 4.2.5. It is important
that by (89), x„.qL/, which contains the support of xfh;L is disjoint from ˆL which
contains the support of f 0

h;L�1
��ˆL .

Recall from (132) that
R
f 0
h;L�1

�
R
fh;L�1 for hD 1; : : : ; K.

Using (134) and that f 0
h;L�1

is periodic by � 0L�1 andˆL�Rn xƒ0.qL/ consists
of blocks of length � 0L�1

(136)
Z
fh;L � x�.ˆL/ �

Z
fh;L�1C�0

�


x�.xƒ0.qL//

�
2�MC1x�.xƒ0.qL//D .�/:

Since ˆL � R n xƒ0.qL/ by (132) we have Z
fh;L�1

!
x�.ˆL/

x�.R n xƒ0.qL//
< �0 �C2

�MC1:

Hence, we can continue our estimation by using (54)

(137)

.�/ <

 Z
fh;L�1

!
x�.ˆL/

x�.R n xƒ0.qL//
� x�.R n xƒ0.qL//C�0C2

�MC1x�.xƒ0.qL//

< �0 �C � 2
�MC1:

After these observations we can return to Section 4.2.6, to the definition of
PL and read everything until the paragraph marked by a �.

When K > 0 we need to add the following estimate to the case when x 2
R n .xƒ0.qL/[E

L/� �̂L �ˆL.
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If ˛L.x/ � n < n C m � !L.x/ and �L.x/jm then by (84) and (95) for
hD 1; : : : ; K

(138)
1

m

nCm�1X
kDn

f 0h;L�1.xC k
2/D

1

m

nCm�1X
kDn

fh;L.xC k
2/ > Xh;L.x/DX

0
h;L�1.x/:

Next suppose x 2 xƒ0.qL/nEL� xƒ0.qL/nEıL . For hD1; : : : ; K the estimates
which we have for the K�M family put on xƒ0.qL/ can be applied. In other words,
for these x, set !L.x/

def
Dx!L.x/ > ˛L.x/

def
D˛L.x/; �L.x/

def
Dx�L.x/qL�

0
L�1 < �L D

qLx�L�
0
L�1. Then !2L.x/ < �L, and

!L.x/

˛L.x/
> �Lx�L.x/D��L.x/:

Furthermore, if ˛L.x/� n < nCm� !L.x/ and �L.x/jm, then x�L.x/jm and by
(133) and (135) we have for hD 1; : : : ; K

1

m

nCm�1X
kDn

fh;L.xC k
2/ > Xh;L.x/:

For all p 2 PL � PL we have .x�L.x/qL� 0L�1; p/ D .�L.x/; p/ D 1 and for
h D 1; : : : ; K, if ˛2L.x/ � j < j C �L.x/ � !

2
L.x/ then ˛2L.x/ D ˛

2
L.x/ � j <

j Cx�L.x/ < � � �< j C qL�
0
L�1x�L.x/� !

2
L.x/D x!

2
L.x/ and hence

fh;L.xC j C �L.x//D xfh;L.xC j C �L.x//D xfh;L.xC j C qL�
0
L�1x�L.x//

D xfh;L.xC j C .qL�
0
L�1� 1/x�L.x//

D � � � D xfh;L.xC j /D fh;L.xC j /:

4.2.14. Case K > 0, properties of fKC1;L. This section is again identical to
Section 4.2.7.

4.2.15. Case K > 0, finishing the leakage. We start to argue as in Section
4.2.8. We need to insert just before the sentence containing (119) the remark:
Moreover, if ˛.x/ � n < nCm � !.x/ and �.x/jm, then for all h D 1; : : : ; K
letting fh D fh;L00 (see also (64) which is used with LD L00C 1)

(139)
1

m

nCm�1X
kDn

fh.xC k
2/ > Xh.x/:

Before (120) we need to add the comment that by (136)–(137) for hD1; : : : ; K

(140)
Z
fh < C�02

�MC1 < � � 2�MC1:
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The rest of the argument is identical to Section 4.2.8 and this way we can
complete our induction. �

5. Proof of the main result

Lemma 5 yields the next theorem which, as we will see, easily implies Theo-
rem 1.

THEOREM 8. Given ı > 0, M and K there exist �0 2 N; SEı � Œ0; 1/; a
measurable transformation T W Œ0; 1/! Œ0; 1/, T .x/DxC 1

�0
modulo 1, f W Œ0; 1/!

Œ0;C1/, SXh; hD 1; : : : ; K which are pairwise independent M�0:99-distributed
random variables defined on Œ0; 1/ equipped with the Lebesgue measure, �, such
that �.SEı/ < ı, for all x 2 Œ0; 1/ n SEı there exists Nx satisfying

1

Nx

NxX
kD1

f .T k
2

.x// >

KX
hD1

SXh.x/;

and
R
Œ0;1/ fd� < K � 2

�MC2.

Proof. Use Lemma 5 with ı, �D 1000; � D 1:1, AD 1; PD∅ to obtain a
K �M family with Eı , fh and Xh periodic by � D �0. Set SEı D 1

�0
Eı \ Œ0; 1/

and for x 2 Œ0; 1/ set xfh.x/D 1:01 �fh.�0 � x/; SXh.x/DXh.�0 � x/.
Assume x 2 Œ0; 1/n SEı . Since�˛.�0 �x/�.�0 �x/<!.�0 �x/we have ˛.�0 �x/D

n < nC .�� 1/˛.�0 �x/�.�0 �x/ < !.�0 �x/ and (37) used with nD ˛.�0 �x/ and
mD .�� 1/˛.�0 � x/�.�0 � x/ implies

1

.�� 1/˛.�0 � x/�.�0 � x/

˛.�0�x/C.��1/˛.�0�x/�.�0�x/�1X
kD˛.�0�x/

fh.�0 � .T
k2x//

D
1

.�� 1/˛.�0 � x/�.�0 � x/

˛.�0�x/C.��1/˛.�0�x/�.�0�x/�1X
kD˛.�0�x/

fh.�0�xCk
2/>Xh.�0�x/:

Since fh � 0, if we let Nx D ˛.�0 � x/C .�� 1/˛.�0 � x/�.�0 � x/� 1, then since
�D 1000, Nx=.�� 1/˛.�0 � x/�.�0 � x/ < 1:01, for all hD 1; : : : ; K

(141)
1

Nx

NxX
kD1

xfh.T
k2x/D

1:01

Nx

NxX
kD1

fh.�0 � .T
k2x//� SXh.x/:

Let f .x/ be the restriction of
PK
hD1

xfh.x/ onto Œ0; 1/. Therefore, using (39) with
 0 D 1 from Lemma 5 we obtainZ 1

0

f .x/d�.x/D 1:01

KX
hD1

Z
fh < 1:01 �� �K � 2

�MC1 <K � 2�MC2:
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For all x 2 Œ0; 1/ n SEı by (141) there exists Nx such that

1

Nx

NxX
kD1

f .T k
2

x/ >

KX
hD1

SXh.x/: �

Now we can complete the proof of Theorem 1.

Proof. For each p 2 N set Mp D 4p . On the probability space .Œ0; 1/; �/ con-
sider Mp�0:99-distributed random variables SXh for hD 1; : : : ; K for a sufficiently
large K. Assume that u denotes the mean of these variables. An easy calculation
shows that

uD

Z
Œ0;1�

SXh.x/d�.x/D

Mp�1X
lD0

0:992 � 2�l � 2�MpCl�1 > 0:9 �Mp � 2
�Mp�1:

By the weak law of large numbers

�

(
x W

ˇ̌̌̌
ˇ 1K

KX
hD1

SXh.x/�u

ˇ̌̌̌
ˇ� u2

)
! 0:

Fix K so large that

�

(
x W

1

K

KX
hD1

SXh.x/�
u

2

)
> 1�

1

p
;

and let

U 0p D

(
x W

1

K

KX
hD1

SXh.x/ >
0:9

2
�Mp � 2

�Mp�1

)
:

We have �.U 0p/ > 1 � 1
p

. By Theorem 8 used with ı D 1
p
; Mp and K there

exist �0 2 N; SE1=p � Œ0; 1/ and a periodic transformation T W Œ0; 1/ ! Œ0; 1/;

T .x/DxC 1
�0

modulo 1; f W Œ0; 1/! Œ0;C1/, SXh pairwise independentMp�0:99-
distributed random variables defined on Œ0; 1/ such that �.SE1=p/ < 1

p
and for all

x 2 Œ0; 1/ n SE1=p there exists Nx such that

1

Nx

NxX
kD1

f .T k
2

x/ >

KX
hD1

SXh.x/

and
R
Œ0;1/ fd� < K � 2

�MpC2. Put Up D U 0p n SE1=p . Then �.Up/ > 1� 2
p

and for
x 2 Up there exists Nx such that

1

Nx

NxX
kD1

f .T k
2

x/ >

KX
hD1

SXh.x/ > K �
0:9

2
�Mp � 2

�Mp�1:
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Thus letting tp DK � 0:92 �Mp � 2
�Mp�1, and

eUp D (x W sup
N

1

N

NX
kD1

f .T k
2

x/ > tp

)

we have Up � eUp and hence �.eUp/ > 1� 2
p

. On the other handR
fd�

tp
D

R
jf jd�

tp
<

K � 2�MpC2

K � 0:9
2
�Mp � 2�Mp�1

<
32

Mp
:

Hence, �.eUp/! 1 and
R
jf jd�=tp ! 0 as p ! 1. Therefore there is no C

for which (2) holds with � D �. This implies that the sequence nk D k2 is L1-
universally bad. �
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