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Abstract

In this paper, we give an algorithm to compute the hat version of Heegaard
Floer homology of a closed oriented three-manifold. This method also allows us
to compute the filtration coming from a null-homologous link in a three-manifold.

1. Introduction

Heegaard Floer homology is a collection of invariants for closed oriented
three-manifolds, introduced by Peter Ozsváth and Zoltán Szabó [14], [13]. There
are four versions, denoted by cHF;HF1;HFC and HF�, which are graded abelian
groups. The hat version cHF.Y / is defined as the homology of a chain complexcCF.Y / coming from a Heegaard diagram of the three-manifold Y . The differentials
count the number of points in certain moduli spaces of holomorphic disks, which
are hard to compute in general.

There is also a relative version of the theory corresponding to pairs .Y;K/,
where K is a knot in Y . If K is null-homologous, then a Seifert surface S of K
induces a filtration of the chain complex cCF.Y /, and the chain homotopy type of
the filtered chain complex is a knot invariant. The homology groups bHFK.Y;K/
of successive quotients of filtration levels are called knot Floer homology groups
([12], [18], [16]).

A cobordism between two three-manifolds induces homomorphisms on the
Heegaard Floer homology groups of the two three-manifolds. In fact, the homo-
morphisms on HF� and HFC can be used to construct an invariant of smooth four-
manifolds with bC2 > 1 ([15]), called the Ozsváth-Szabó invariant. Conjecturally,
the Ozsváth-Szabó four-manifold invariant is equivalent to the gauge-theoretic
Seiberg-Witten invariant.

Heegaard Floer homology turns out to be a fruitful and powerful theory in
the study of three-dimensional and four-dimensional topology. It gives an alter-
nate proof of the Donaldson diagonalization theorem and the Thom conjecture for
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CP2 ([8]). Heegaard Floer homology also detects the Thurston norm of a three-
manifold ([17], [6]). Moreover, knot Floer homology detects the genus ([11]) and
fiberedness ([1], [7], [2]) of knots and links in the three-sphere. There is an invari-
ant � coming from the knot filtration, whose absolute value gives a lower-bound
of the slice genus for knots in the three-sphere ([9]).

Despite its success, there was no general method to compute the invariants.
There were combinatorial descriptions in certain special cases, but the computation
for an arbitrary three-manifold was an open problem ([10]). In this paper, we give
an algorithm to compute cHF.Y / for a three-manifold Y , and also bHFK.Y;K/ for a
knot K in any three-manifold. All our computations will be done with coefficients
in F2 D Z=2Z. We show that one can always find Heegaard diagrams satisfying
certain properties (Definition 3.1). Using such Heegaard diagrams, which we call
nice, it will be easy to compute cHF and bHFK. Our main results are summarized in
the following theorems.

THEOREM 1.1. Given a nice Heegaard diagram of a closed oriented three-
manifold Y , cHF.Y / can be computed combinatorially. Similarly, for a knot K � Y ,
bHFK.Y;K/ can be computed combinatorially in a nice Heegaard diagram.

THEOREM 1.2. Every closed oriented three-manifold Y admits a nice Hee-
gaard diagram. For a null-homologous knot K in a closed oriented three-mani-
fold Y , the pair .Y;K/ admits a compatible nice Heegaard diagram. In fact, there
is an algorithm to convert any pointed Heegaard diagram to a nice Heegaard dia-
gram via isotopies and handleslides.

It will be interesting to compare our result with the recent work of Ciprian
Manolescu, Peter Ozsváth and the first author in [5], where they gave a combina-
torial description of knot Floer homology of knots in S3, in all versions.

We hope this method can be generalized to compute some of the other ver-
sions, notably HF�.Y / and HFC.Y /. It would also be nice to have a proof of the
invariance of the combinatorial description without using holomorphic disks.

The paper is organized as follows. In Section 2, we give an overview of
certain concepts in Heegaard Floer theory. In Section 3, we give a combinatorial
characterization of index one holomorphic disks in nice Heegaard diagrams. In
Section 4, we give an algorithm to get such Heegaard diagrams. In Section 5, we
give examples to demonstrate our algorithm for three-manifolds and knots in the
three-sphere.

2. Preliminaries

In this section, we review the definition of Heegaard Floer homology. See
[14], [13], [16], [3] for details.
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2.1. Definition of cHF. The Heegaard Floer homology of a closed oriented
three-manifold Y is defined from a pointed Heegaard diagram representing Y .

A Heegaard splitting of Y is a decomposition of Y into two handlebodies
glued along their boundaries. We fix a self-indexing Morse function f on Y with
k index zero critical points and k index three critical points. (We usually choose
k D 1.) Then f gives a Heegaard splitting of Y , where the two handlebodies are
given by f �1.�1; 3

2
� and f �1Œ3

2
;1/. If the number of index one critical points

or the number of index two critical points of f is .gCk�1/, then †D f �1.3=2/
is a genus g surface. We fix a gradient like flow on Y corresponding to f . We
require f to have the property that Y contains a disjoint union of k flow lines, each
flowing from an index zero critical point to an index three critical point. We get a
collection ˛D .˛1; � � � ; ˛gCk�1/ of ˛ circles on † which flow down to the index
one critical points, and another collection ˇ D .ˇ1; � � � ; ˇgCk�1/ of ˇ circles on
† which flow up to the index two critical points. Note that both † n˛ and † nˇ
have k components.

We fix k points w1; : : : ; wk (called basepoints) in the complement of the ˛
circles and the ˇ circles in †, such that each component of † n˛ contains exactly
one wi and each component of † nˇ contains exactly one wj . This is equivalent
to the condition that the trajectories of wi ’s under the gradient like flow, hit all the
index zero and all the index three critical points. We write wD .w1; � � � ; wk/. The
tuple .†;˛;ˇ;w/ is called a pointed Heegaard diagram for Y .

There are some moves on a Heegaard diagram that do not change the under-
lying three-manifold. An isotopy moves the ˛ curves and ˇ curves in two one-
parameter families ˛t and ˇ t in † nw, moving by isotopy, such that the ˛ curves
remain disjoint and the ˇ curves remain disjoint for each t . In a handleslide of ˛,
we replace a pair of ˛ curves ˛i and j̨ with a pair ˛i and ˛0j , such that the three
curves ˛i , j̨ and ˛0j bound a pair of pants in † nw disjoint from all the other
˛ curves. A handleslide of ˇ is defined similarly. There is also a move called
stabilization, but we will not be using it in the present paper. These moves are
called Heegaard moves.

Heegaard Floer homology is a certain version of Lagrangian Floer homology.
The ambient symplectic manifold is the symmetric product SymgCk�1.†/. The
two half-dimensional totally real subspaces are the tori T˛ D ˛1�� � ��˛gCk�1 and
Tˇ D ˇ1�� � ��ˇgCk�1. The generators for the chain complex cCF.†;˛;ˇ;w/ are
the intersection points between these two tori, and the boundary maps are given by
counting certain holomorphic disks. For more details see [14], and see [16] for the
issue of boundary degenerations when k > 1.

THEOREM 2.1 (Ozsváth-Szabó, [14], [16]). When k D 1, the homology of the
chain complex cCF.†;˛;ˇ;w/ is an invariant for the three-manifold Y , written as
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cHF.Y /. For a general k, and Y a rational homology three-sphere, we have

H�.cCF.†;˛;ˇ;w//Š cHF.Y /˝H�.T k�1/;

where H�.T k�1/ is the singular homology of the .k � 1/-dimensional torus with
coefficients in F2.

When we have a link L in Y , we ensure that L is a union of flow lines from
index zero critical points to index three critical points. We also ensure that L
contains all index zero and index three critical points and contains no index one or
two critical points. We orient L and † and define wi ’s as the positive intersection
points between L and †. We write the other k intersections as zD .z1; � � � ; zk/.
Such a Heegaard diagram, denoted by .†;˛;ˇ;w; z/, is called a pointed Heegaard
diagram for the pair .Y; L/. (For a link with l components, we usually choose
k D l .) The knot (link) Floer homology bHFK.Y; L/ is defined similarly, where the
boundary maps count a more restricted class of holomorphic disks. See [12], [18],
[16] for details.

2.2. Cylindrical reformulation of cHF. In the present paper, we will use the
cylindrical reformulation of the Heegaard Floer homology by Lipshitz. See [3] for
details.

Given a pointed Heegaard diagram .†;˛;ˇ;w/, the generators of the chain
complex cCF are given by formal sums of .gC k � 1/ distinct points in †, x D
x1 C � � � C xgCk�1, such that each ˛ circle contains some xi and each ˇ circle
contains some xj . A connected component of † n .˛[ ˇ/ is called a region. A
formal sum of regions with integer coefficients is called a 2-chain. Given two
generators x and y , we define �2.x;y/ to be the collection of all 2-chains �
such that @.@.�/j˛/ D y � x. Such 2-chains are called domains. Given a point
p 2 † n .˛ [ ˇ/, let np.�/ be the coefficient of the region containing p in �.
A domain � is positive if np.�/ � 0 for all points p 2 † n .˛[ ˇ/. We define
�02 .x;y/D f� 2 �2.x;y/ j nwi

.�/D 0 8ig. A Heegaard diagram is admissible,
if, for every generator x, any positive domain � 2 �02 .x;x/ is trivial. If the three-
manifold Y has b1.Y / > 0, we require the Heegaard diagram to be admissible.

Fix two generators x, y and a domain � 2 �02 .x;y/. Let S be a surface with
boundary, with 2.gC k � 1/ marked points .X1; � � � ; XgCk�1; Y1; � � � ; YgCk�1/
on @S , such that the X points and the Y points alternate. The 2.gC k� 1/ arcs on
@S in the complement of the marked points are divided into two groups A and B ,
each containing .gCk� 1/ arcs, such that the A arcs and the B arcs alternate. Let
p1 and p2 be the projection maps from †�D2 onto its first and second factors.
Look at maps u W S !†�D2 such that the image of p1 ıu is � (as 2-chains) and
the image of p2 ıu is .gC k� 1/D2 (in second homology). We also want the X
points on @S to map injectively by p1 ıu to the xi ’s and to map to �i in the unit
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disk by p2 ıu. Similarly, we want the Y points to map injectively to the yi ’s by
p1 ıu and to i in the unit disk by p2 ıu. Furthermore we also require the A arcs
in @S to map to ˛ arcs by p1 ıu and under p2 ıu to map to the arc e1 in @.D2/
joining �i to i in half-plane Re.s/ > 0. Similarly, we require the B arcs to map to
ˇ arcs by p1 ıu and to map to the arc e2 in @.D2/ in the half-plane Re.s/ < 0 by
p2 ıu.

Now fix complex structures on † and D2 and take the product complex struc-
ture on †�D2. A generic perturbation gives an almost complex structure which
achieves transversality for the homology class �. In our case, we can achieve this
by a generic perturbation of the ˛ curves and the ˇ curves ([3, Lemma 3.10]).

The holomorphic embeddings u which satisfy the above conditions and whose
homology class is � form a moduli space, which we denote by M.�/. The Maslov
index �.�/ of � gives the expected dimension of M.�/. It can be computed combi-
natorially in terms of the Euler measure and the point measures, which are defined
as follows. For a generator x D

P
xi and a domain �, �xi

.�/ is defined to be the
average of the coefficients of the four regions around xi in �. The point measure
�x.�/ is defined as

P
�xi

.�/. If we fix a metric on † which makes all the ˛
and ˇ circles geodesic, intersecting each other with right angles, then the Euler
measure e.�/ is defined to be 1

2�
of the integral of the curvature on �. The Euler

measure is clearly additive, and if D is a 2n-gon region, then e.D/D 1� n
2

.

PROPOSITION 2.2 (Lipshitz, [3]). For a domain � 2 �2.x;y/, the Maslov
index is given by

�.�/D e.�/C�x.�/C�y.�/:

If � is nontrivial, the moduli space M.�/ admits a free R-action coming from
the one-parameter family of holomorphic automorphisms of D2 which preserve˙i
and the boundary arcs e1 and e2. In particular, if �.�/D 1, the unparametrized
moduli space M.�/=R is a zero-dimensional manifold, and then the count function
c.�/ is defined to be the number of points in M.�/=R, counted modulo 2. The
boundary map in the chain complex cCF is given by

@x D
X

y

X
f�2�0

2 .x;y/ j �.�/D1g

c.�/y:

THEOREM 2.3 (Lipshitz, [3]). For a three-manifold Y , the homology of the
chain complex .cCF; @/ is isomorphic to H�.cCF.†;˛;ˇ;w//.

Note that the only noncombinatorial part of the theory is the count function c.�/.

2.3. Positivity of domains with holomorphic representatives. We will need
the following proposition, which asserts that only positive domains can have holo-
morphic representatives.



1218 SUCHARIT SARKAR and JIAJUN WANG

PROPOSITION 2.4. Let � be a domain in �02 .x;y/. If � has a holomorphic
representative, then � is a positive domain. In particular, if c.�/¤ 0, then � is a
positive domain.

Proof. If � has a holomorphic representative, then there exists some holomor-
phic embedding u of the type described above. Then for any point p 2†n .˛[ˇ/,
np.�/ is simply the intersection number of u.S/ and fpg �D2. Since both of
them are holomorphic objects in the product complex structure, they have positive
intersection number and hence np.�/� 0. Here we require the complex structure
on †�D2 to be standard near the basepoints. See [3] for a general discussion. �

If a domain � has a holomorphic representative, the number of branch points
of p2 ıu is given by �xC�y � e.�/ ([3], [18]). Furthermore, in such a situation
the Maslov index can also be calculated as �.�/D 2e.�/C gC k � 1��.S/D
e.�/C b C 1

2
.g C k � 1 � t /, where b denotes the number of branch points of

p1 ıu, and t denotes the number of trivial disks, i.e. the components of S which
are mapped to a point by p1 ı u (which correspond to coordinates xi of x with
�xi
D 0).

3. Holomorphic disks in nice Heegaard diagrams

In this section, we study index one holomorphic disks in nice Heegaard dia-
grams.

Definition 3.1. Let H D .†;˛;ˇ;w/ be a pointed Heegaard diagram for a
three-manifold Y . H is called nice if any region that does not contain any basepoint
wi in w is either a bigon or square.

Let Y be a closed oriented three-manifold. Suppose Y has a nice admissible
Heegaard diagram HD .†;˛;ˇ;w/. We choose a product complex structure on
†�D2.

Definition 3.2. A domain � 2 �02 .x;y/ with coefficients 0 and 1 is called an
empty embedded 2n-gon, if it is topologically an embedded disk with 2n vertices
on its boundary, such that at each vertex v, �v.�/D 1

4
, and it does not contain any

xi or yi in its interior.

The following two theorems show that, for a domain � 2 �02 .x;y/, the count
function c.�/¤ 0 if and only if � is an empty embedded bigon or an empty embed-
ded square, and in that case c.�/D 1. Thus c.�/ can be computed combinatorially
in a nice Heegaard diagram.

THEOREM 3.3. Let � 2 �02 .x;y/ be a domain such that �.�/D 1. If � has
a holomorphic representative, then � is an empty embedded bigon or an empty
embedded square.
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Proof. We know that only positive domains can have holomorphic representa-
tives. We also know that bigons and squares have nonnegative Euler measure. We
will use these facts to limit the number of possible cases.

Suppose �D
P
aiDi , whereDi ’s are regions containing no basepoints. Since

� has a holomorphic representative, we have ai � 0;8i . Since each Di is a bigon
or a square, we have e.Di / � 0 and hence e.�/ � 0. So, by Lipshitz’ formula
�.�/D e.�/C�x.�/C�y.�/, we get 0� �xC�y � 1 .

Now let xD x1C� � �Cxg and y D y1C� � �Cyg , with xi ; yi 2 ˛i . We say �
hits some ˛ circle if @� is nonzero on some part of that ˛ circle. Since � ¤ n†, it
has to hit at least one ˛ circle, say ˛1, and hence �x1

; �y1
�
1
4

as @.@�j˛/D y�x.
Also if � does not hit ˛i , then xi D yi and they must lie outside the domain �,
since otherwise we have �xi

D �yi
�
1
2

and hence �xC�y becomes too large.
We now note that e.�/ can only take half-integral values, and thus only the

following cases might occur:

� Case 1. � hits ˛1 and another ˛ circle, say ˛2, � consists of squares, �x1
D

�x2
D �y1

D �y2
D

1
4

, and there are .gC k� 3/ trivial disks.

� Case 2. � hits ˛1, D.�/ consists of squares and exactly one bigon, �x1
D

�y1
D

1
4

, and there are .gC k� 2/ trivial disks.

� Case 3. � hits ˛1, D.�/ consists of squares, �x1
C�y1

D 1, and there are
.gC k� 2/ trivial disks.

Using the reformulation by Lipshitz, in each of these cases, we will try to
figure out the surface S which maps to †�D2. Recall that a trivial disk is a com-
ponent of S which maps to a point in † after post-composing with the projection
†�D2!†.

The first case corresponds to a map from S to † with �.S/ D .gC k � 2/,
and S has .gC k � 3/ trivial disk components. If the rest of S is F , then F is a
double branched cover overD2 with �.F /D 1 and 1 branch point (for holomorphic
maps, the number of branch points is given by �xC�y � e.�/); i.e., F is a disk
with four marked points on its boundary. Call the marked points corners, and call
F a square.

In the other two cases, S has .gC k � 2/ trivial disk components, so if F
denotes the rest of S , then F is just a single cover over D2. Thus the number of
branch points has to be 0. But in the third case the number of branch points is 1,
so the third case cannot occur. In the second case, F is a disk with two marked
points on its boundary. Call the marked points corners, and call F a bigon.

Thus in both the first and the second cases, � is the image of F and all the
trivial disks map to the x-coordinates (which are also the y-coordinates) which do
not lie in �. Note that in both cases, the map from F to � has no branch point,
so it is a local diffeomorphism, even at the boundary of F . Furthermore using the
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condition that �xi
(or �yi

) D 1
4

whenever it is nonzero, we conclude that there is
exactly one preimage for the image of each corner of F .

All we need to show is that the map from F to † is an embedding, or in other
words, the local diffeomorphism from F to � is actually a diffeomorphism. We
will prove this case by case.

Case 1. In this case we have an immersion f W F !†, where F is a square
(with boundary). Look at the preimage of all the ˛ and ˇ circles in F . Using the
fact f is a local diffeomorphism, we see that each of the preimages of ˛ and ˇ
arcs are also 1-manifolds, and by an abuse of notation, we will also call them ˛ or
ˇ arcs. Using the embedding condition near the four corners, we see that at each
corner only one ˛ arc and only one ˇ arc can come in. The different ˛ arcs cannot
intersect and the different ˇ arcs cannot intersect, and all intersections between ˛
and ˇ arcs are transverse.

Note that since the preimage of each square region is a square, F (with all the
˛ and ˇ arcs) is also tiled by squares. Thus the ˛ arcs in F cannot form a closed
loop, for in that case F n finsideof loopg has negative Euler measure and hence
cannot be tiled by squares. Similarly the ˇ arcs cannot form a loop. Also no ˛
arc can enter and leave F through the same ˇ arc on the boundary, for again the
outside will have negative Euler measure. Thus the ˛ arcs slice up F into vertical
rectangles, and in each rectangle, no ˇ arc can enter and leave through the same
˛ arc. This shows that the ˛ arcs and ˇ arcs make the standard co-ordinate chart
on F , as in Figure 1.

Figure 1. Preimage of ˛ and ˇ arcs for a square. We make
the convention for all figures in the paper that the thick solid arcs
denote ˛ arcs and the thin solid arcs denote ˇ arcs.

We call the intersection points between ˛ and ˇ arcs in F vertices (and we
are still calling the four original vertices on the boundary of the square F corners).
Note that to show f is an embedding, it is enough to show that no two different
vertices map to the same point. Assume p; q 2 F are distinct vertices with f .p/D
f .q/. There could be two subcases:
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� Both p and q are in VF .
� At least one of p and q is in @F .

We will reduce the first subcase to the second. Assume both p and q are in
the interior of F . Choose a direction on the ˛ arc passing through f .p/D f .q/
in †, and keep looking at successive points of intersection with ˇ arcs, and locate
their inverse images in F . For each point, we will get at least a pair of inverse
images, one on the ˛ arc through p, and one on the ˛ arc through q, until one of
the points falls on @F , and thus we have reduced it to the second subcase.

In the second subcase, without loss of generality, we assume that p lies on a
ˇ arc on @F . Then choose a direction on the ˇ arc in † through f .p/D f .q/ and
proceed as above, until one of the preimages hits an ˛ arc on @F . If that preimage
is on the ˇ arc through q, then reverse the direction and proceed again, and this
time we can ensure that the preimage which hits ˛ arc on @F first is the one that
was on the ˇ arc through p. Thus we get two distinct vertices in F mapping to
the same point in †, one of them being a corner. This is a contradiction to the
embedding assumption near the corners.

Case 2. In this case we have an immersion f W F !† with F being a bigon.
Again look at the preimage of ˛ and ˇ circles. All intersections will be transverse
(call them vertices), and at each of the two corners there can be only one ˛ arc and
only one ˇ arc. Again there cannot be any closed loops. We get an induced tiling
on F with squares and 1 bigon.

This time the ˛ arcs can (in fact they have to) enter and leave F through the
same ˇ arc, but they have to do it in a completely nested fashion; i.e., there is
only one bigon piece in F n˛, the “innermost bigon”. Thus F decomposes into
two pieces, the innermost bigon and the rest. In case there are no ˛ arcs in VF ,
the rest might be empty, but otherwise it is a square. From the arguments in the
earlier case, the ˇ arcs must cut up the square piece in a standard way, and from the
previous argument the ˇ arcs must enter and leave the bigon in a nested fashion,
as in Figure 2.

Again to show f is an embedding, it is enough to show that it is an embedding
restricted to vertices. Take two distinct vertices p; q mapping to the same point,
and follow them along ˛ arcs in some direction, until one of them hits a ˇ arc on
@F . Then follow them along ˇ arcs, and there exists some direction such that one
of them will actually hit a corner, giving the required contradiction.

So in either case, f is an embedding. �
THEOREM 3.4. If � 2 �02 .x;y/ is an empty embedded bigon or an empty

embedded square, then the product complex structure on †�D2 achieves transver-
sality for � under a generic perturbation of the ˛ and the ˇ circles, and �.�/D
c.�/D 1.
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Figure 2. Preimage of ˛ and ˇ arcs for a bigon.

Proof. Let � be an empty embedded 2n-gon. Each of the corners of � must
be an x-coordinate or a y-coordinate, and at every other x (resp. y) coordinate the
point measure �xi

(resp. �yi
) is zero. Therefore �x.�/C�y.�/ D 2n �

1
4
D

n
2

.
Also � is topologically a disk, so it has Euler characteristic 1. Since it has 2n
corners each with an angle of �

4
, the Euler measure e.�/D 1� 2n

4
D 1� n

2
. Thus

the Maslov index �.�/D 1.
By [3, Lemma 3.10], we see that � satisfies the boundary injective condition,

and hence under a generic perturbation of the ˛ and the ˇ circles, the product
complex structure achieves transversality for �.

When � is an empty embedded square, we can choose F to be a disk with four
marked points on its boundary, which is mapped to � diffeomorphically. Given a
complex structure on †, the holomorphic structure on F is determined by the cross-
ratio of the four points on its boundary, and there is an one-parameter family of
positions of the branch point in D2 which gives that cross-ratio. Thus there is a
holomorphic branched cover F !D2 satisfying the boundary conditions, unique
up to reparametrization. Hence � has a holomorphic representative, and from the
proof of Theorem 3.3 we see that this determines the topological type of F , and
hence it is the unique holomorphic representative.

When � is an empty embedded bigon, we can choose F to be a disk with
two marked points on its boundary, which is mapped to � diffeomorphically. A
complex structure on † induces a complex structure on F , and there is a unique
holomorphic map from F to the standard D2 after reparametrization. Thus again
� has a holomorphic representative, and similarly it must be the unique one. �

Proof of Theorem 1.1. Theorems 3.3 and 3.4 make the count function c.�/
combinatorial in a nice Heegaard diagram. For a domain � 2 �02 .x;y/ with �.�/
D 1, we have c.�/D 1 if � is an empty embedded bigon or an empty embedded
square, and c.�/D 0 otherwise. �
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4. Algorithm to get nice Heegaard diagrams

In this section, we prove Theorem 1.2. We will demonstrate an algorithm
which, starting with an admissible pointed Heegaard diagram, gives an admissible
nice Heegaard diagram by doing isotopies and handleslides on the ˇ curves.

For a Heegaard diagram, we call bigon and square regions good and all other
regions bad. We will first do some isotopies to ensure all the regions are disks. We
will then define a complexity for the Heegaard diagram which attains its minimum
only if all the regions not containing the basepoints are good. We will do an isotopy
or a handleslide which will decrease the complexity if the complexity is not the
minimal one.

4.1. The algorithm. Let H D .†;˛;ˇ; w/ be a pointed Heegaard diagram
with a single basepoint w. We consider Heegaard diagrams with more basepoints
in the last subsection.

Step 1. Killing nondisk regions. We do finger moves on ˇ circles to create
new intersections with ˛ circles. After doing this sufficiently many times, every
region in H becomes a disk. We first ensure that every ˛ circle intersects some ˇ
circle and every ˇ circle intersects some ˛ circle.

If ˛i does not intersect any ˇ circle, we can find an arc c connecting ˛i to
some ǰ avoiding the intersections of ˛ and ˇ circles, as indicated in Figure 3(a).
We can select c such that c intersects ˇ just at the endpoint. Doing a finger move
of ǰ along c as in Figure 3(b) will make ˛i intersect some ˇ circle.

(a) (b)

αiαi

c

βj βj

Figure 3. Making each ˛ circle intersect some ˇ circle.

Similarly, if ˇi does not intersect any ˛ circle, we find an arc c connecting ˇi
to some j̨ so that c \˛ contains a single point as in Figure 4(a). We then do the
operation as depicted in Figure 4(b).

Repeating the above process, we can make sure that every ˛ circle intersects
some ˇ circle and every ˇ circle intersects some ˛ circle.



1224 SUCHARIT SARKAR and JIAJUN WANG

(a) (b)
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Figure 4. Making each ˇ circle intersect some ˛ circle.

Note that the complement of the ˛ curves is a punctured sphere. Thus every
region is a planar surface. A nondisk region D has more than one boundary com-
ponent. Every boundary component must contain both ˛ and ˇ arcs since every ˛
(resp. ˇ) circle intersects some ˇ (resp. ˛) circle. Then we make a finger move on
the ˇ curve to reduce the number of boundary components of D without generating
other nondisk regions. See Figure 5 for this finger move operation. Repeating this
process as many times as necessary, we will kill all the nondisk regions.

D

Figure 5. Killing nondisk regions. The dotted arcs indicate our
finger moves. After our finger move, the region D becomes a disk
region.

Step 2. Making all but one region bigons or squares. We consider Heegaard
diagrams with only disk regions. Note that our algorithm will not generate nondisk
regions.

Let D0 be the disk region containing the basepoint w. For any region D, pick
an interior point w0 2D and define the distance of D, denoted by d.D/, to be the
smallest number of intersection points between the ˇ curves and an arc connecting
w and w0 in the complement of the ˛ circles. For a 2n-gon disk region D, define
the badness of D as b.D/Dmaxfn� 2; 0g.
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For a pointed Heegaard diagram H with only disk regions, define the distance
d.H/ of H to be the largest distance of bad regions. Define the distance d com-
plexity of H to be tuple

cd .H/D

 
mX
iD1

b.Di /;�b.D1/;�b.D2/; � � � ;�b.Dm/

!
;

where D1; � � � ;Dm are all the distance d bad regions, ordered so that b.D1/ �
b.D2/� � � � � b.Dm/. We call the first term the total badness of distance d of H,
and denote it by bd .H/. If there are no distance d bad regions, then cd .H/D .0/.
We order the set of distance d complexities lexicographically.

LEMMA 4.1. For a distance d pointed Heegaard diagram H with only disk
regions, if cd .H/ ¤ .0/, we can modify H by isotopies and handleslides to get a
new Heegaard diagram H0 with only disk regions, satisfying d.H0/ � d.H/ and
cd .H

0/ < cd .H/.

Proof. We order the bad regions of distance d as in the definition of the
distance d complexity. Now we look at Dm. It is a .2n/-gon with n� 3. Pick an
adjacent region D� with distance d �1 having a common ˇ edge with Dm. Let b�
be (one of) their common ˇ edge(s). We order the ˛ edges ofDm counterclockwise,
and denote them by a1; a2; � � � ; an starting at b�.

We try to make a finger move on b� into the Dm and out of Dm through a2,
as indicated in Figure 6 when Dm is an octagon. Our finger will separate Dm into
two parts, Dm;1 and Dm;2.

Dm,1

Dm,2

D∗

a1

a2

a3

a4

Dm

b∗

Figure 6. Starting our finger move.
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If we reach a square region of distance � d , we push up our finger outside the
region via the opposite edge, as in Figure 7. Note that doing a finger move through
regions of distance � d does not change the distance of any of the bad regions,
since they all have distance � d .

(a) (b)

Figure 7. Moving across a square region.

We continue to push up our finger as far as possible, until we reach one of the
following:

(1) a bigon region.

(2) a region with distance � d � 1.

(3) a bad region with distance d other than Dm, i.e., Di with i < m.

(4) Dm.

We will prove our lemma case by case.

Case 1. A bigon is reached. Before we reach the bigon region, all regions
in between are square regions with distance � d . After our finger moves inside a
bigon region, our finger separates the bigon into a square and a new bigon, as in
Figure 8.

Denote the new Heegaard diagram by H0. We have b.Dm;1/ D b.Dm/� 1.
Since Dm;2 is a square and is good, we get bd .H0/D bd .H/�1. Note that we will
not increase the distance of any bad region since we do not pass through any region
of distance � d � 1 and all bad regions has distance � d . Hence d.H0/ � d.H/
and cd .H0/ < cd .H/.

Case 2. A smaller distance region is reached. Let D0 be the region with dis-
tance < d we reached by our finger. Suppose d.D0/ D d 0. Let H0 be the new
Heegaard diagram. See Figure 9. Note that D0 might be a bigon, which could be
covered in both Case 1 and Case 2.

We have b.Dm;1/D b.Dm/� 1 and Dm;2 is good. Our finger separates D0

into a bigon region D01 and the other part D02. When D0 is a square or a bad region,
D02 will be a bad region of distance d 0 < d . We might have increased the distance
d 0 complexity, but we have d.H0/� d.H/ and cd .H0/ < cd .H/.
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Figure 8. Case 1. A bigon is reached.

D′
1

D′
2

D′

Figure 9. Case 2. A smaller distance region is reached.

Case 3. Another distance d bad region is reached. In this case, we reach
some distance d bad region Di with i < m. See Figure 10 for an indication.
Denote by Di;1 and Di;2 the two parts of Di separated by our finger. Then Di;1 is
good while Di;2 is a bad region of distance d . We have b.Di;2/D b.Di /C 1 and
b.Dm;1/D b.Dm/�1. Thus the total badness of distance d remains the same. But
we are decreasing the distance d complexity since we are moving the badness from
a later bad region to an earlier bad region. Hence for the new Heegaard diagram
H0, we have d.H0/D d.H/ and cd .H0/ < cd .H/.

Case 4. Coming back to Dm. This is the worst case and we need to pay more
attention. We divide this case into two subcases, according to which edge the finger
is coming back through.
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Di,1

Di,2

Di

Figure 10. Case 3. Another distance d bad region is reached.

Dm,1

Dm,2

D∗

a1

a2

a3

a4

Dm

b∗

βi

Figure 11. Case 4:1 Coming back via an adjacent edge-finger
move. The finger is denoted by the dotted arc.

Subcase 4:1. Coming back via an adjacent edge. This subcase is indicated in
Figure 11. Without loss of generality, we assume the finger comes back via a1. In
this case, we see the full copy of some ˇ curve, say ˇi , one the right side along
our long finger. Suppose b� � ǰ . Note that i ¤ j since otherwise b� � ˇi and
we will reach either Dm or D� at an earlier time. Now instead of doing the finger
move, we handleslide ǰ over ˇi . This is indicated in Figure 12.

Note that after the handle slides, we are not increasing the distance of any
bad region. We have increased the badness of D�, but it is a distance d � 1 region.
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Dm,1

Dm,2

D∗

a1

a2

a3

a4

Dm

b∗

βi

Figure 12. Cases 4:1 and 4:2 Coming back via an adjacent edge-
handleslide. The dotted arc denotes the ˇ curve after the han-
dleslide.

Dm;2 is a bigon region and b.Dm;1/ D b.Dm/� 1. Thus for the new Heegaard
diagram H0 after the handleslide, the total badness of distance d is decreased by 1.
We have d.H0/� d.H/ and cd .H0/ < cd .H/.

Subcase 4:2. Coming back via a nonadjacent edge. If we return through ak
with 3 < k � n, then, instead of the finger move through a2, we do a finger move
through a3 (starting from b�). If we reach one of the first three cases, we are
decreasing the distance d complexity by similar arguments as before.

Suppose instead that we come back toDm, say via ai . We claim that 3< i <k.
Certainly we can not come back via a3. The finger can not come back via ak since
the chain of squares from ak is connected to a2. If i > k or i < 3, we could close
the cores the two fingers to get two simple closed curves c1 and c2, as indicated in
Figure 13. Then c1 and c2 intersect transversely at exactly one point and they are
in the complement of the ˇ curves. The complement of the ˇ curves is a punctured
sphere. Attach disks to get a sphere. Then as homology classes, we get Œc1��Œc2�D 1.
But H1.S2/ Š 0. This is a contradiction. Thus we must have 3 < i < k. (The
argument of this claim was suggested by Dylan Thurston.)

Now, instead of the finger move through a3, we do another finger move
through a4. Continuing the same arguments, we see that we either end up with a
finger which does not come back, or we get some finger that starts at aj and comes
back via ajC1. If the finger does not come back, we reduce it to the previous cases
and the lemma follows.
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a1

a2

a3

ak

ai

c1
c2

b∗

Dm

D∗

Figure 13. Case 4:2 There are no crossing fingers. The fingers
are not showed here. Instead, the two dotted arcs denote the cores
of the two fingers.

If there is a finger which starts at aj and comes back at ajC1, we see a
full ˇ circle. We do a handleslide similar to the one in Subcase 4.1. We have
b.Dm;1/ D maxfn � j � 1; 0g and b.Dm;2/ D maxfj � 2; 0g. We also have
b.Dm;1/C b.Dm;2/ � n� 3. Thus for the new Heegaard diagram H0 after the
handleslide, the total badness of distance d decreases. We have d.H0/� d.H/ and
cd .H

0/ < cd .H/.
Thus we end the proof of our lemma. �

Repeat this process to make cd D .0/. Repeating the whole process sufficiently
many times will eventually kill all the bad regions other than D0.

4.2. Admissibility. In this subsection, we show that our algorithm will not
change the admissibility, that is, if we start with an admissible Heegaard diagram,
then our algorithm ends with an admissible Heegaard diagram. There are two oper-
ations involved in our algorithm: isotopies and handleslides, and we will consider
them one by one.

The isotopy is the operation in Figure 14. Let H and H0 be the Heegaard
diagrams before and after the isotopy. Suppose H is admissible. For a periodic
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D2

D1

D3

D′
1

D′
2 D′

4 D′
3

D′
5

Figure 14. Isotopy of the ˇ curve.

domain in H0

�0 D c1D
0
1C c2D

0
2C c3D

0
3C c4D

0
4C c5D

0
5C � � � ;

we have c2 � c1 D c4 � c3 D c2 � c5 and c1 � c3 D c2 � c4 D c5 � c3. Hence
c1 D c5 and c4 D c2C c3� c1. Note that the regions are all the same except those
in Figure 14. Therefore,

� D c1D1C c2D2C c3D3C � � �

is a periodic domain for H. Since H is admissible, � has both positive and negative
coefficients, and so does �0. Hence H0 is admissible.

Our handleslide operation is indicated in Figure 15. Suppose H is admissible.
For a periodic domain in H0

�0Dc�D
0
�Cc1D

0
m;1Cc2D

0
m;2Cc1;1S

0
1;1Cc1;2S

0
1;2C� � �Cck;1S

0
k;1Cck;2S

0
k;2C� � �

we get c1� c� D c1;1� c1;2 D � � � D ck;1� ck;2 D c2� c�. Suppose c1� c� D c0,
then ci;1 D ci;2C c0 and c1 D c2. Now

� D c�D�C c1DmC c1;1S1C � � �C ck;1SkC � � �

is a periodic domain for H. Since H is admissible, � has both positive and neg-
ative coefficients. Hence �0 has both positive and negative coefficients, so H0 is
admissible.

Remark. In fact, it can be shown that nice Heegaard diagrams are always
(weakly) admissible ([4, Cor. 3.2]).

We have similar conclusions for Heegaard diagrams with multiple basepoints.
Our algorithm could be modified to get nice Heegaard diagrams in that case. Note
that every region is connected to exactly one region containing some w point in the
complement of the ˛ curves, so we can define the distance and hence the complexity
in the same way, and thus our algorithm works as before.
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Dm

D∗

S1

S2

Sk

H− before the handleslide

D′
∗

D′
m,2

S ′
k,2

S ′
k,1

S ′
2,2S

′
2,1

S ′
1,2

S ′
1,1

D′
m,1

H′ − after the handleslide

Figure 15. Handleslide of the ˇ curve.

Proof of Theorem 1.2. Starting with an admissible one-pointed Heegaard dia-
gram, our algorithm described in Section 4.1 gives an admissible Heegaard diagram
with only one bad region, the one containing the basepoint w. The algorithm can
be modified for multiple basepoints as described above. �

5. Examples

In this section, we give two examples to demonstrate our algorithm. One
is on knot Floer homology and the other is on the Heegaard-Floer homology of
three-manifolds.
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w

zα α

Figure 16. A Heegaard diagram for the trefoil knot. We make
the convention that every two thick circles with the same ˛ labels
are identified so that the two dark points on them are identified.

w z

α α

Figure 17. A nice Heegaard diagram for the trefoil knot. We use
the same convention as in Figure 16. The trefoil is given by the
dotted curve.

5.1. The trefoil. We start with the Heegaard diagram of the trefoil knot in
Figure 16, where the two circles labeled by ˛ are identified to get a genus one
Heegaard diagram.

After isotopy using the algorithm in Section 4, we end up with the Heegaard
diagram as in Figure 17. So we have nine generators. It is routine to find all
boundary holomorphic disks and determine the Alexander and Maslov gradings of
each generator.
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α1

β1

α2

β2

Figure 18. A Heegaard diagram for the Poincaré homology
sphere. The two darkly shaded circles on the left are the feet of
one handle, and the two darkly shaded circles on the right are the
feet of the other handle.

α1α1

α2 α2

β1

β2

w

Figure 19. A Heegaard diagram for the Poincaré homology
sphere. We use the same convention as in Figure 16.

5.2. The Poincaré homology sphere †.2; 3; 5/. We start with the Heegaard
diagram of †.2; 3; 5/ in Figure 18, viewed as the +1 surgery on the right-handed
trefoil knot. By cutting the Heegaard surface along the ˛ circles, we get a planar
presentation of the Heegaard diagram in Figure 19.
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α1

α1 α2

α2
β1

β2

w

Figure 20. A nice Heegaard diagram for the Poincaré homology
sphere. We use the same convention as in Figure 16.

It is easy to see that there are 21 generators for the chain complex. However,
the authors do not know how to compute the differentials.

After applying our algorithm, we get a nice Heegaard diagram as in Figure 20.
There are 335 generators and 505 differentials for this diagram. We leave the actual
computation using this diagram to the patient reader.
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