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Abstract

When a plane shock hits a wedge head on, it experiences a reflection-diffraction
process and then a self-similar reflected shock moves outward as the original shock
moves forward in time. Experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and
Mach reflection. However, most of the fundamental issues for shock reflection
have not been understood, including the global structure, stability, and transition
of the different patterns of shock reflection. Therefore, it is essential to establish
the global existence and structural stability of solutions of shock reflection in order
to understand fully the phenomena of shock reflection. On the other hand, there
has been no rigorous mathematical result on the global existence and structural
stability of shock reflection, including the case of potential flow which is widely
used in aerodynamics. Such problems involve several challenging difficulties in
the analysis of nonlinear partial differential equations such as mixed equations of
elliptic-hyperbolic type, free boundary problems, and corner singularity where an
elliptic degenerate curve meets a free boundary. In this paper we develop a rigor-
ous mathematical approach to overcome these difficulties involved and establish a
global theory of existence and stability for shock reflection by large-angle wedges
for potential flow. The techniques and ideas developed here will be useful for other
nonlinear problems involving similar difficulties.

1. Introduction

We are concerned with the problems of shock reflection by wedges. These
problems arise not only in many important physical situations but also are funda-
mental in the mathematical theory of multidimensional conservation laws since
their solutions are building blocks and asymptotic attractors of general solutions
to the multidimensional Euler equations for compressible fluids (for example, see

1067



1068 GUI-QIANG CHEN and MIKHAIL FELDMAN

Courant-Friedrichs [16], von Neumann [49], and Glimm-Majda [22]; also see [4],
[9], [21], [30], [44], [45], [48]). When a plane shock hits a wedge head on, it
experiences a reflection-diffraction process and then a self-similar reflected shock
moves outward as the original shock moves forward in time. The complexity of
the reflection configurations was first reported by Ernst Mach [41] in 1878, and
experimental, computational, and asymptotic analysis has shown that various pat-
terns of shock reflection may occur, including regular and Mach reflection (cf. [4],
[19], [22], [25], [26], [27], [44], [48], [49]). However, most of the fundamental
issues for shock reflection have not been understood, including the global structure,
stability, and transition of the different patterns of shock reflection. Therefore, it
is essential to establish the global existence and structural stability of solutions of
shock reflection in order to understand fully the phenomena of shock reflection.
On the other hand, there has been no rigorous mathematical result on the global
existence and structural stability of shock reflection, including the case of potential
flow which is widely used in aerodynamics (cf. [5], [15], [22], [42], [44]). One
of the main reasons is that the problems involve several challenging difficulties in
the analysis of nonlinear partial differential equations such as mixed equations of
elliptic-hyperbolic type, free boundary problems, and corner singularity where an
elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous
mathematical approach to overcome these difficulties and establish a global theory
of existence and stability for shock reflection by large-angle wedges for potential
flow. The techniques and ideas developed here will be useful for other nonlinear
problems involving similar difficulties.

The Euler equations for potential flow consist of the conservation law of mass
and the Bernoulli law for the density � and velocity potential ˆ:

@t�C divx.�rxˆ/D 0;(1.1)

@tˆC
1

2
jrxˆj

2
C i.�/DK;(1.2)

where K is the Bernoulli constant determined by the incoming flow and/or bound-
ary conditions, and

i 0.�/D p0.�/=�D c2.�/=�

with c.�/ being the sound speed. For polytropic gas,

p.�/D �� ; c2.�/D ���1;  > 1; � > 0:

Without loss of generality, we choose � D . � 1/= so that

i.�/D ��1; c.�/2 D . � 1/��1;

which can be achieved by the following scaling:

.x; t; K/! .˛x; ˛2t; ˛�2K/; ˛2 D �=. � 1/:
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Equations (1.1) and (1.2) can be written as the following nonlinear equation of
second order:

(1.3) @t O�
�
K � @tˆ�

1

2
jrxˆj

2
�
C divx

�
O�
�
K � @tˆ�

1

2
jrxˆj

2
�
rxˆ

�
D 0;

where O�.s/D s1=.�1/ D i�1.s/ for s � 0.
When a plane shock in the .x; t /-coordinates, xD .x1; x2/2R2, with left state

.�;rx‰/D .�1; u1; 0/ and right state .�0; 0; 0/; u1 > 0; �0 < �1, hits a symmetric
wedge

W WD fjx2j< x1 tan �w ; x1 > 0g

head on, it experiences a reflection-diffraction process, and the reflection problem
can be formulated as the following mathematical problem.

Problem 1 (Initial-boundary value problem). Seek a solution of system (1.1)
and (1.2) with K D ��10 , the initial condition at t D 0:

(1.4) .�;ˆ/jtD0 D

(
.�0; 0/ for jx2j> x1 tan �w ; x1 > 0;

.�1; u1x1/ for x1 < 0;

and the slip boundary condition along the wedge boundary @W :

(1.5) rˆ � �j@W D 0;

where � is the exterior unit normal to @W (see Fig. 1.1).

x2

x1
θw

(0)(1)

ν

∇Φ · ν = 0

Figure 1.1. Initial-boundary value problem
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Notice that the initial-boundary value problem (1.1)–(1.5) is invariant under
the self-similar scaling:

.x; t /! .˛x; ˛t/; .�;ˆ/! .�;ˆ=˛/ for ˛ ¤ 0:

Thus, we seek self-similar solutions with the form

�.x; t /D �.�; �/; ˆ.x; t /D t  .�; �/ for .�; �/D x=t:

Then the pseudo-potential function ' D  � 1
2
.�2 C �2/ satisfies the following

Euler equations for self-similar solutions:

div .�D'/C 2�D 0;(1.6)
1

2
jD'j2C'C ��1 D �

�1
0 ;(1.7)

where the divergence div and gradient D are with respect to the self-similar vari-
ables .�; �/. This implies that the pseudo-potential function '.�; �/ is governed by
the following potential flow equation of second order:

(1.8) div
�
�.jD'j2; '/D'

�
C 2�.jD'j2; '/D 0

with

(1.9) �.jD'j2; '/D O�
�
�
�1
0 �' �

1

2
jD'j2

�
:

Then we have

(1.10) c2 D c2.jD'j2; '; �
�1
0 /D . � 1/

�
�
�1
0 �

1

2
jD'j2�'

�
:

(1.8) is a mixed equation of elliptic-hyperbolic type. It is elliptic if and only
if

(1.11) jD'j< c.jD'j2; '; �
�1
0 /;

which is equivalent to

(1.12) jD'j< c�.'; �0; / WD

s
2. � 1/

 C 1
.�
�1
0 �'/:

Shocks are discontinuities in the pseudo-velocity D'. That is, if �C and �� WD
� n�C are two nonempty open subsets of � � R2 and S WD @�C \� is a C 1

curve where D' has a jump, then ' 2 W 1;1
loc .�/\C

1.�˙ [ S/\C 2.�˙/ is a
global weak solution of (1.8) in � if and only if ' is in W 1;1

loc .�/ and satisfies
(1.8) in �˙ and the Rankine-Hugoniot condition on S :

(1.13)
�
�.jD'j2; '/D' � �

�
S
D 0:
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The continuity of ' is followed by the continuity of the tangential derivative of '
across S , which is a direct corollary of irrotationality of the pseudo-velocity. The
discontinuity S of D' is called a shock if ' further satisfies the physical entropy
condition that the corresponding density function �.jD'j2; '/ increases across S
in the pseudo-flow direction. We note that the Rankine-Hugoniot condition (1.13)
with the continuity of ' across a shock for (1.8) is also a fairly good approximation
to the corresponding Rankine-Hugoniot conditions for the full Euler equations for
shocks of small strength, since the errors are third-order in strength of the shock.

The plane incident shock solution in the .x; t /-coordinates with states .�;rx‰/

D .�0; 0; 0/ and .�1; u1; 0/ corresponds to a continuous weak solution ' of (1.8)
in the self-similar coordinates .�; �/ with the following form:

'0.�; �/D�
1

2
.�2C �2/ for � > �0;(1.14)

'1.�; �/D�
1

2
.�2C �2/Cu1.� � �0/ for � < �0;(1.15)

respectively, where

(1.16) �0 D �1

vuut2.�
�1
1 � �

�1
0 /

�21 � �
2
0

D
�1u1

�1� �0
> 0

is the location of the incident shock, uniquely determined by .�0; �1; / through
(1.13). Since the problem is symmetric with respect to the axis �D 0, it suffices
to consider the problem in the half-plane � > 0 outside the half-wedge

ƒ WD f� � 0; � > 0g[ f� > � tan �w ; � > 0g:

Then the initial-boundary value problem (1.1)–(1.5) in the .x; t /-coordinates can be
formulated as the following boundary value problem in the self-similar coordinates
.�; �/.

Problem 2 (Boundary value problem) (see Fig. 1.2). Seek a solution ' of (1.8)
in the self-similar domain ƒ with the slip boundary condition on @ƒ:

(1.17) D' � �j@ƒ D 0

and the asymptotic boundary condition at infinity:

(1.18) '! N' D

(
'0 for � > �0; � > � tan �w ;

'1 for � < �0; � > 0;
when �2C �2!1;

where (1.18) holds in the sense that lim
R!1

k' �'kC.ƒnBR.0// D 0:

Since '1 does not satisfy the slip boundary condition (1.17), the solution must
differ from '1 in f� < �0g\ƒ; thus a shock diffraction by the wedge occurs. In this
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ξ
θω

ξ0

ν

η

ϕ

ϕ

ϕ0

ϕ1

ϕη = 0

∇ϕ · ν = 0

Figure 1.2. Boundary value problem in the unbounded domain

paper, we first follow the von Neumann criterion to establish a local existence the-
ory of regular shock reflection near the reflection point and show that the structure
of the solution is as in Figure 1.3, when the wedge angle is large and close to �=2,
in which the vertical line is the incident shock S D f� D �0g that hits the wedge at
the point P0D .�0; �0 tan �w/, and state (0) and state (1) ahead of and behind S are
given by '0 and '1 defined in (1.14) and (1.15), respectively. The solutions ' and
'1 differ only in the domain P0P1P2P3 because of shock diffraction by the wedge
vertex, where the curve P0P1P2 is the reflected shock with the straight segment
P0P1. State (2) behind P0P1 can be computed explicitly with the form:

(1.19) '2.�; �/D�
1

2
.�2C �2/Cu2.� � �0/C .�� �0 tan �w/u2 tan �w ;

which satisfies
D' � � D 0 on @ƒ\f� > 0gI

the constant velocity u2 and the angle �s between P0P1 and the �-axis are deter-
mined by .�w ; �0; �1; / from the two algebraic equations expressing (1.13) and
continuous matching of state (1) and state (2) across P0P1, whose existence is
exactly guaranteed by the condition on .�w ; �0; �1; / under which regular shock
reflection is expected to occur.

We develop a rigorous mathematical approach to extend the local theory to a
global theory for solutions of regular shock reflection, which converge to the unique
solution of the normal shock reflection when �w tends to �=2. The solution ' is
pseudo-subsonic within the sonic circle for state (2) with center .u2; u2 tan �w/
and radius c2 > 0 (the sonic speed) and is pseudo-supersonic outside this circle
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(0)

(1)

(2)

Incident
Shock

Sonic Circle

Reflected
Shock

ξ

P1

P4

θω

Ω

P2 P3

P0

Figure 1.3. Regular reflection

containing the arc P1P4 in Figure 1.3, so that '2 is the unique solution in the
domain P0P1P4, as argued in [9] and [45]. In the domain �, the solution is
expected to be pseudo-subsonic, smooth, and C 1-smoothly matching with state
(2) across P1P4 and to satisfy '� D 0 on P2P3; the transonic shock curve P1P2
matches up to second-order with P0P1 and is orthogonal to the �-axis at the point
P2 so that the standard reflection about the �-axis yields a global solution in the
whole plane. Then the solution of Problem 2 can be shown to be the solution of
Problem 1.

Main Theorem (see §9 for the proof). There exist �cD �c.�0; �1; /2 .0; �=2/
and ˛D˛.�0; �1; /2 .0; 1=2/ such that, when �w 2 Œ�c ; �=2/, there exists a global
self-similar solution

ˆ.x; t /D t '
�x
t

�
C
jxj2

2t
for

x
t
2ƒ; t > 0

with

�.x; t /D
�
�
�1
0 �ˆt �

1

2
jrxˆj

2
� 1
�1

of Problem 1 (equivalently, Problem 2) for shock reflection by the wedge, which
satisfies that, for .�; �/D x=t ,

' 2 C1.�/\C 1;˛. N�/;

' D

8<:
'0 for � > �0 and � > � tan �w ;
'1 for � < �0 and above the reflection shock P0P1P2;
'2 in P0P1P4;

(1.20)
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' is C 1;1 across the part P1P4 of the sonic circle including the endpoints P1 and
P4, and the reflected shock P0P1P2 is C 2 at P1 and C1 except P1. Moreover,
the solution ' is stable with respect to the wedge angle in W 1;1

loc and converges in
W
1;1

loc to the solution of the normal reflection described in Section 3.1 as �w! �=2.

One of the main difficulties for the global existence is that the ellipticity con-
dition (1.12) for (1.8) is hard to control, in comparison to our earlier work on
steady flow [10] and [12]. The second difficulty is that the ellipticity degenerates
at the sonic circle P1P4 (the boundary of the pseudo-subsonic flow). The third
difficulty is that, on P1P4, we need to match the solution in � with '2 at least
in C 1, that is, the two conditions on the fixed boundary P1P4: the Dirichlet and
conormal conditions, which are generically overdetermined for an elliptic equation
since the conditions on the other parts of the boundary have been prescribed. Thus
we have to prove that, if ' satisfies (1.8) in �, the Dirichlet continuity condition
on the sonic circle, and the appropriate conditions on the other parts of @� derived
from Problem 2, then the normal derivative D' � � automatically matches with
D'2 � � along P1P4. We show that, in fact, this follows from the structure of
elliptic degeneracy of (1.8) on P1P4 for the solution '. Indeed, (1.8), written in
terms of the function uD ' �'2 in the .x; y/-coordinates defined near P1P4 such
that P1P4 becomes a segment on fx D 0g, has the form:

(1.21)
�
2x� . C 1/ux

�
uxxC

1

c22
uyy �ux D 0 in x > 0 and near x D 0;

plus the “small” terms that are controlled by �=2��w in appropriate norms. (1.21)
is elliptic if ux < 2x=. C 1/. Thus, we need to obtain the C 1;1 estimates near
P1P4 to ensure juxj< 2x=. C 1/ which in turn implies both the ellipticity of the
equation in � and the match of normal derivatives D' � � DD'2 � � along P1P4.
Taking into account the “small” terms to be added to (1.21), we need to make the
stronger estimate juxj � 4x=

�
3. C 1/

�
and assume that �=2 � �w is appropri-

ately small to control these additional terms. Another issue is the non-variational
structure and nonlinearity of this problem which makes it hard to apply directly
the approaches of Caffarelli [6] and Alt-Caffarelli-Friedman [1], [2]. Moreover,
the elliptic degeneracy and geometry of the problem makes it difficult to apply the
hodograph transform approach in Kinderlehrer-Nirenberg [28] and Chen-Feldman
[11] to fix the free boundary.

For these reasons, one of the new ingredients in our approach is to further
develop the iteration scheme in [10] and [12] to a partially modified equation. We
modify (1.8) in � by a proper cutoff that depends on the distance to the sonic
circle, so that the original and modified equations coincide for ' satisfying juxj �
4x=

�
3. C 1/

�
, and the modified equation N' D 0 is elliptic in � with elliptic

degeneracy on P1P4. Then we solve a free boundary problem for this modified
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equation: The free boundary is the curve P1P2, and the free boundary conditions
on P1P2 are ' D '1 and the Rankine-Hugoniot condition (1.13).

On each step, an “iteration free boundary” curve P1P2 is given, and a solution
of the modified equation N' D 0 is constructed in � with the boundary condition
(1.13) on P1P2, the Dirichlet condition ' D '2 on the degenerate circle P1P4, and
D' � � D 0 on P2P3 and P3P4. Then we prove that ' is in fact C 1;1 up to the
boundary P1P4, especially jD.' �'2/j � Cx, by using the nonlinear structure of
elliptic degeneracy near P1P4 which is modeled by (1.21) and a scaling technique
similar to Daskalopoulos-Hamilton [17] and Lin-Wang [40]. Furthermore, we
modify the “iteration free boundary” curve P1P2 by using the Dirichlet condition
' D '1 on P1P2. A fixed point ' of this iteration procedure is a solution of the
free boundary problem for the modified equation. Moreover, we prove the precise
gradient estimate: juxj< 4x=

�
3.C1/

�
, which implies that ' satisfies the original

equation (1.8).
Some efforts have been made mathematically for the reflection problem via

simplified models. One of these models, the unsteady transonic small-disturbance
(UTSD) equation, was derived and used in Keller-Blank [27], Hunter-Keller [26],
Hunter [25], Morawetz [44], and the references cited therein for asymptotic anal-
ysis of shock reflection. Also see Zheng [50] for the pressure gradient equation
and Canic-Keyfitz-Kim [7] for the UTSD equation and the nonlinear wave system.
On the other hand, in order to deal with the reflection problem, some asymptotic
methods have also been developed. Lighthill [38], [39] studied shock reflection
under the assumption that the wedge angle is either very small or close to �=2.
Keller-Blank [27], Hunter-Keller [26], and Harabetian [24] considered the problem
under the assumption that the shock is so weak that its motion can be approximated
by an acoustic wave. For a weak incident shock and a wedge with small angle in
the context of potential flow, by taking the jump of the incident shock as a small
parameter, the nature of the shock reflection pattern was explored in Morawetz
[44] by a number of different scalings, a study of mixed equations, and matching
the asymptotics for the different scalings. Also see Chen [14] for a linear approx-
imation of shock reflection when the wedge angle is close to �=2 and Serre [45]
for an a priori analysis of solutions of shock reflection and related discussions in
the context of the Euler equations for isentropic and adiabatic fluids.

The organization of this paper is the following. In Section 2, we present the
potential flow equation in self-similar coordinates and exhibit some basic properties
of solutions to the potential flow equation. In Section 3, we discuss the normal re-
flection solution and then follow the von Neumann criterion to derive the necessary
condition for the existence of regular reflection and show that the shock reflection
can be regular locally when the wedge angle is large. In Section 4, the shock
reflection problem is reformulated and reduced to a free boundary problem for a
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second-order nonlinear equation of mixed type in a convenient form. In Section 5,
we develop an iteration scheme, along with an elliptic cutoff technique, to solve the
free boundary problem and set up the ten detailed steps of the iteration procedure.

Finally, we complete the remaining steps in our iteration procedure in Sec-
tions 6–9: Step 2 for the existence of solutions of the boundary value problem
to the degenerate elliptic equation via the vanishing viscosity approximation in
Section 6; Steps 3–8 for the existence of the iteration map and its fixed point in
Section 7; and Step 9 for the removal of the ellipticity cutoff in the iteration scheme
by using appropriate comparison functions and deriving careful global estimates
for some directional derivatives of the solution in Section 8. We complete the proof
of the Main Theorem in Section 9. Careful estimates of the solutions to both the
“almost tangential derivative” and oblique derivative boundary value problems for
elliptic equations are made in the appendix, which are applied in Sections 6 and 7.

2. Self-similar solutions of the potential flow equation

In this section we present the potential flow equation in self-similar coordi-
nates and exhibit some basic properties of solutions of the potential flow equation
(also see Morawetz [44]).

2.1. The potential flow equation for self-similar solutions. (1.8) is a mixed
equation of elliptic-hyperbolic type. It is elliptic if and only if (1.12) holds. The
hyperbolic-elliptic boundary is the pseudo-sonic curve: jD'j D c�.'; �0; /.

We first define the notion of weak solutions of (1.8) and (1.9). Essentially, we
require the equation to be satisfied in the distributional sense.

Definition 2.1 (Weak solutions). A function ' 2 W 1;1
loc .ƒ/ is called a weak

solution of (1.8) and (1.9) in a self-similar domain ƒ if

(i) ��10 �' � 1
2
jD'j2 � 0 a.e. in ƒ;

(ii) .�.jD'j2; '/; �.jD'j2; '/jD'j/ 2 .L1loc.ƒ//
2;

(iii) For every � 2 C1c .ƒ/,Z
ƒ

�
�.jD'j2; '/D' �D� � 2�.jD'j2; '/�

�
d�d�D 0:

It is straightforward to verify the equivalence between time-dependent self-
similar solutions and weak solutions of (1.8) defined in Definition 2.1 in the weak
sense. It can also be verified that, if ' 2C 1;1.ƒ/ (and thus ' is twice differentiable
a.e. in ƒ), then ' is a weak solution of (1.8) in ƒ if and only if ' satisfies (1.8) a.e.
inƒ. Finally, it is easy to see that, ifƒC andƒ�DƒnƒC are two nonempty open
subsets of ƒ� R2 and S D @ƒC \ƒ is a C 1 curve where D' has a jump, then
' 2W

1;1
loc .D/\C

1.ƒ˙[S/\C 1;1.ƒ˙/ is a weak solution of (1.8) in ƒ if and
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only if ' is in W 1;1
loc .ƒ/ and satisfies (1.8) a.e. in ƒ˙ and the Rankine-Hugoniot

condition (1.13) on S .
Note that, for ' 2 C 1.ƒ˙[S/, the condition ' 2W 1;1

loc .ƒ/ implies

(2.1) Œ'�S D 0:

Furthermore, the Rankine-Hugoniot conditions imply

(2.2) Œ'� �Œ�'� �� Œ'��Œ�'��D 0 on S

which is a useful identity.
A discontinuity of D' satisfying the Rankine-Hugoniot conditions (2.1) and

(1.13) is called a shock if it satisfies the physical entropy condition: The density
function � increases across a shock in the pseudo-flow direction. The entropy con-
dition indicates that the normal derivative function '� on a shock always decreases
across the shock in the pseudo-flow direction.

2.2. The states with constant density. When the density � is constant, (1.8)
and (1.9) imply that ' satisfies

�'C 2D 0;
1

2
jD'j2C' D const:

This implies .�'/� D 0; .�'/� D 0; and .'�� C 1/2C'2�� D 0. Thus, we have

'�� D�1; '�� D 0; '�� D�1;

which yields

(2.3) '.�; �/D�
1

2
.�2C �2/C a�C b�C c;

where a; b, and c are constants.

2.3. Location of the incident shock. Consider state .0/: .�0;u0; v0/D .�0; 0;0/
with �0 > 0 and state .1/: .�1; u1; v1/ D .�1; u1; 0/ with �1 > �0 > 0 and u1 > 0.
The plane incident shock solution with state (0) and state (1) corresponds to a
continuous weak solution ' of (1.8) in the self-similar coordinates .�; �/ with form
(1.14) and (1.15) for state (0) and state (1) respectively, where � D �0 > 0 is the
location of the incident shock.

The unit normal to the shock line is � D .1; 0/. Using (2.2), we have

u1 D
�1� �0

�1
�0 > 0:

Then (1.9) implies

�
�1
1 � �

�1
0 D�

1

2
jD'1j

2
�'1 D

1

2

�21 � �
2
0

�21
�20 :
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Therefore, we have

(2.4) u1 D .�1� �0/

vuut2.�
�1
1 � �

�1
0 /

�21 � �
2
0

;

and the location of the incident shock in the self-similar coordinates is � D �0 > u1
determined by (1.16).

3. The von Neumann criterion and local theory for shock reflection

In this section, we first discuss the normal reflection solution. Then we follow
the von Neumann criterion to derive the necessary condition for the existence of
regular reflection and show that the shock reflection can be regular locally when
the wedge angle is large, that is, when �w is close to �=2 and, equivalently, the
angle between the incident shock and the wedge

(3.1) � WD �=2� �w

tends to zero.

3.1. Normal shock reflection. In this case, the wedge angle is �=2, i.e., � D 0,
and the incident shock reflects normally (see Fig. 3.1). The reflected shock is also
a plane at � D N� < 0, which will be defined below. Then Nu2 D Nv2 D 0, state (1) has
form (1.15), and state (2) has the form:

(3.2) '2.�; �/D�
1

2
.�2C �2/Cu1. N� � �0/ for � 2 . N�; 0/;

where �0 D �1u1=.�1 � �0/ > 0 may be regarded as the position of the incident
shock.

At the reflected shock �D N� < 0, the Rankine-Hugoniot condition (2.2) implies

(3.3) N� D�
�1u1

N�2� �1
< 0:

We use the Bernoulli law (1.7):

�
�1
0 D �

�1
1 C

1

2
u21�u1�0 D N�

�1
2 Cu1. N� � �0/

to obtain

(3.4) N�
�1
2 D �

�1
1 C

1

2
u21C

�1u
2
1

N�2� �1
:

It can be shown that there is a unique solution N�2 of (3.4) such that

N�2 > �1:
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Figure 3.1. Normal reflection

Indeed, for fixed  > 1 and �1; u1 > 0 and for F. N�2/ that is the right-hand side of
(3.4), we have

lim
s!1

F.s/D �
�1
1 C

1

2
u21 > �

�1
1 ; lim

s!�1C
F.s/D1;

F 0.s/D�
�1u

2
1

.s� �1/2
< 0 for s > �1:

Thus there exists a unique N�2 2 .�1;1/ satisfying N��12 D F. N�2/, i.e., (3.4). Then
the position of the reflected shock � D N� < 0 is uniquely determined by (3.3).

Moreover, for the sonic speed Nc2 D
q
. � 1/ N�

�1
2 of state (2), we have

(3.5) j N�j< Nc2:

This can be seen as follows. First note that

(3.6) N�
�1
2 � �

�1
1 D ˇ. N�2� �1/;

where ˇ D . � 1/�
�2
� > 0 for some �� 2 .�1; N�2/. We consider two cases,

respectively.

Case 1.  � 2. Then

(3.7) 0 < . � 1/�
�2
1 � ˇ � . � 1/ N�

�2
2 :

Since ˇ > 0 and N�2 > �1, we use (3.4) and (3.6) to find

N�2 D �1C
u1

4ˇ

�
u1C

q
u21C 16ˇ�1

�
;
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and hence

(3.8) N� D�
4ˇ�1

u1C

q
u21C 16ˇ�1

:

Then by (3.7) and (3.8), N�2 > �1 > 0, and u1 > 0 yields

j N�j D
4ˇ�1

u1C

q
u21C 16ˇ�1

<
p
ˇ�1 �

q
. � 1/ N�

�2
2 N�2 D Nc2:

Case 2. 1 <  < 2. Then, since N�2 > �1 > 0,

(3.9) 0 < . � 1/ N�
�2
2 � ˇ � . � 1/�

�2
1 :

Since ˇ > 0, (3.8) holds by the calculation as in Case 1. Now we use (3.8) and
(3.9), N�2 > �1 > 0, u1 > 0, and 1 <  < 2 to find again

j N�j<
p
ˇ�1 �

q
. � 1/�

�1
1 �

q
. � 1/ N�

�1
2 D Nc2:

This shows that (3.5) holds in general.

3.2. The von Neumann criterion and local theory for regular reflection. In
this subsection, we first follow the von Neumann criterion to derive the necessary
condition for the existence of regular reflection and show that, when the wedge an-
gle is large, there exists a unique state (2) with two-shock structure at the reflected
point, which is close to the solution . N�2; Nu2; Nv2/D . N�2; 0; 0/ of normal reflection
for which �w D �=2 in �3.1.

For a possible two-shock configuration satisfying the corresponding boundary
condition on the wedge �D � tan �w , the three state functions 'j ; j D 0; 1; 2, must
be of form (1.14), (1.15), and (1.19) (cf. (2.3)).

Let P0 D .�0; �0 tan �w/ be the reflection point (i.e., the intersection point of
the incident shock with the wall), and let the reflected straight shock separating
states (1) and (2) be the line that intersects with the axis �D 0 at the point . Q�; 0/
with the angle �s between the line and �D 0.

Note that '1.�; �/ is defined by (1.15). The continuity of ' at . Q�; 0/ yields

(3.10) '2.�; �/D�
1

2
.�2C �2/Cu2�C v2�Cu1. Q� � �0/�u2 Q�:

Furthermore, '2 must satisfy the slip boundary condition at P0:

(3.11) v2 D u2 tan �w :

Also we have

(3.12) Q� D �0� �0
tan �w
tan �s

:
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The Bernoulli law (1.7) becomes

(3.13) �
�1
0 D �

�1
2 C

1

2
.u22C v

2
2/C .u1�u2/

Q� �u1�0:

Moreover, the continuity of ' on the shock implies that D.'2�'1/ is orthogonal
to the tangent direction of the reflected shock:

(3.14) .u2�u1; v2/ � .cos �s; sin �s/D 0I

that is,

(3.15) u2 D u1
cos �w cos �s
cos.�w � �s/

:

The Rankine-Hugoniot condition (1.13) along the reflected shock is

Œ�D'� � .sin �s;� cos �s/D 0I

that is,

(3.16) �1.u1� Q�/ sin �s D �2

 
u2

sin.�s � �w/
cos �w

� Q� sin �s

!
:

Combining (3.12)–(3.16), we obtain the following system for .�2; �s; Q�/:

. Q� � �0/ cos �w C �0 sin �w cot �s D 0;(3.17)

�
�1
2 C

u21 cos2 �s
2 cos2.�w � �s/

C
u1 sin �w sin �s
cos.�w � �s/

Q� �u1�0� �
�1
0 D 0;(3.18) �

u1 cos �s tan.�s � �w/� Q� sin �s
�
�2� �1.u1� Q�/ sin �s D 0:(3.19)

The condition for solvability of this system is the necessary condition for the exis-
tence of regular shock reflection.

Now we compute the Jacobian J in terms of .�2; �s; Q�/ at the normal reflection
solution state . N�2; �2 ;

N�/ in Section 3.1 for state .2/ when �w D �=2 to obtain

J D��0

�
. � 1/ N�

�2
2 . N�2� �1/�u1 N�

�
< 0;

since N�2 > �1 and N� < 0. Then, by the Implicit Function Theorem, when �w is near
�=2, there exists a unique solution .�2; �s; Q�/ close to . N�2; �2 ;

N�/ of system (3.17)–
(3.19). Moreover, .�2; �s; Q�/ are smooth functions of � D �=2� �w 2 .0; �1/ for
�1 > 0 depending only on �0; �1, and  . In particular,

j�2� N�2jC j�=2� �sjC j Q� � N�jC jc2� Nc2j � C�;(3.20)

where c2 D
q
. � 1/�

�1
2 is the sonic speed of state (2).
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Reducing �1 > 0 if necessary, we find that, for any � 2 .0; �1/,

(3.21) Q� < 0

from (3.3) and (3.20). Since �w 2 .�=2� �1; �=2/, then �s 2 .�=4; 3�=4/ if �1 is
small, which implies sin �s > 0. We conclude from (3.17), (3.21), and �0 > 0 that
tan �w > tan �s > 0. Thus,

(3.22) �=4 < �s < �w < �=2:

Now, given �w , we define '2 as follows: We have shown that there exists a
unique solution .�2; �s; Q�/ close to . N�2; �2 ;

N�/ of system (3.17)–(3.19). Define u2
by (3.15), v2 by (3.11), and '2 by (3.10). Then the shock connecting state (1)
with state (2) is the straight line S12 D f.�; �/ W '1.�; �/ D '2.�; �/g, which is
� D � cot �sC Q� by (1.15), (3.10), and (3.15). Now (3.19) implies that the Rankine-
Hugoniot condition (1.13) holds on S12. Moreover, (3.11) and (3.15) imply (3.14).
Thus the solution .�s; �2; u2; v2/ satisfies (3.11)–(3.19). Furthermore, (3.17) im-
plies that the point P0 lies on S12, and (3.18) implies (3.13) that is, the Bernoulli
law:

(3.23) �
�1
2 C

1

2
jD'2j

2
C'2 D �

�1
0 :

Thus we have established the local existence of the two-shock configuration near
the reflected point so that, behind the straight reflected shock emanating from the
reflection point, state (2) is pseudo-supersonic up to the sonic circle of state (2).
Furthermore, this local structure is stable in the limit �w ! �=2, i.e., � ! 0.

We also notice from (3.11) and (3.15) with the use of (3.20) and (3.22) that

(3.24) ju2jC jv2j � C�:

Furthermore, from (3.5) and the continuity of �2 and Q� with respect to �w on
.�=2� �1; �=2�, it follows that, if � > 0 is small,

(3.25) j Q�j< c2:

In Sections 4–9, we prove that this local theory for the existence of two shock
configuration can be extended to a global theory for regular shock reflection.

4. Reformulation of the shock reflection problem

We first assume that ' is a solution of the shock reflection problem in the
elliptic domain � in Figure 1.3 and that ' � '2 is small in C 1.�/. Under such
assumptions, we rewrite the equation and boundary conditions for solutions of the
shock reflection problem in the elliptic region.
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4.1. Shifting coordinates. It is more convenient to change the coordinates in
the self-similar plane by shifting the origin to the center of the sonic circle of
state (2). Thus we define

.�; �/new WD .�; �/� .u2; v2/:

For simplicity of notation, throughout this paper below, we will always work in the
new coordinates without changing the notation .�; �/, and we will not emphasize
this again later.

In the new shifted coordinates, the domain � is expressed as

(4.1) �D Bc2.0/\f� > �v2g\ ff .�/ < � < � cot �wg;

where f is the position function of the free boundary, i.e., the curved part of the
reflected shock �shock WD f� D f .�/g. The function f in (4.1) will be determined
below so that

(4.2) kf � lk � C�

in an appropriate norm, specified later. Here � D l.�/ is the location of the reflected
shock of state (2) which is a straight line; that is,

l.�/D � cot �sC O�(4.3)

and
O� D Q� �u2C v2 cot �s < 0;(4.4)

if � D �=2� �w > 0 is sufficiently small, since u2 and v2 are small and Q� < 0 by
(3.3) in this case. Also note that, since u2 D v2 cot �w > 0, it follows from (3.22)
that

(4.5) O� > Q�:

Another condition on f comes from the fact that the curved part and straight
part of the reflected shock should match at least up to first-order. Denote by P1 D
.�1; �1/ with �1 > 0 the intersection point of the line � D l.�/ and the sonic circle
�2C �2 D c22 , i.e., .�1; �1/ is the unique point for small � > 0 satisfying

(4.6) l.�1/
2
C �21 D c

2
2 ; �1 D l.�1/; �1 > 0:

The existence and uniqueness of such a point .�1; �1/ follows from �c2 < Q� < 0,
which holds from (3.22), (3.25), (4.4), and the smallness of u2 and v2. Then f
satisfies

(4.7) f .�1/D l.�1/; f 0.�1/D l
0.�1/D cot �s:
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Note also that, for small � > 0, we obtain from (3.25), (4.4), (4.5), and l 0.�/ D
cot �s > 0 that

(4.8) �c2 < Q� < O� < �1 < 0; c2� jQ�j �
Nc2� jN�j

2
> 0:

Furthermore, equations (1.8) and (1.9) and the Rankine-Hugoniot conditions (1.13)
and (2.1) on �shock do not change under the shift of coordinates. That is, we seek '
satisfying (1.8) and (1.9) in �, so that the equation is elliptic on ', and satisfying
the following boundary conditions on �shock: the continuity of the pseudo-potential
function across the shock:

(4.9) ' D '1 on �shock

and the gradient jump condition:

(4.10) �.jD'j2; '/D' � �s D �1D'1 � �s on �shock;

where �s is the interior unit normal to � on �shock.
The boundary conditions on the other parts of @� are

' D '2 on �sonic D @�\ @Bc2.0/;(4.11)

'� D 0 on �wedge D @�\f�D � tan �wg;(4.12)

'� D 0 on @�\f�D�v2g:(4.13)

Rewriting the background solutions in the shifted coordinates, we find

'0.�; �/D�
1

2
.�2C �2/� .u2�C v2�/�

1

2
q22 ;(4.14)

'1.�; �/D�
1

2
.�2C �2/C .u1�u2/� � v2��

1

2
q22 Cu1.u2� �0/;(4.15)

'2.�; �/D�
1

2
.�2C �2/�

1

2
q22 C .u1�u2/

O�Cu1.u2� �0/;(4.16)

where q22 D u
2
2C v

2
2 .

Furthermore, substituting Q� in (4.4) into (3.17) and using (3.11) and (3.14),
we find

(4.17) �2 O� D �1

�
O� �

.u1�u2/
2C v22

u1�u2

�
;

which expresses the Rankine-Hugoniot conditions on the reflected shock of state
(2) in terms of O�. We use this equality below.

4.2. The equations and boundary conditions in terms of  D ' � '2. It is
convenient to study the problem in terms of the difference between our solution
' and the function '2 that is a solution for state (2) given by (4.16). Thus we
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Figure 4.1. Regular reflection in the new coordinates

introduce a function

(4.18)  D ' �'2 in �:

Now it follows from (1.8)–(1.10), (3.23), and (4.16) by explicit calculation that  
satisfies the following equation in �:

(4.19)
�
c2.D ; ; �; �/� . � � �/

2
�
 ��

C
�
c2.D ; ; �; �/� . � � �/

2
�
 �� � 2. � � �/. � � �/ �� D 0;

and the expressions of the density and sound speed in � in terms of  are

�.D ; ; �; �/D
�
�
�1
2 C � � C � � �

1

2
jD j2� 

� 1
�1

;(4.20)

c2.D ; ; �; �/D c22 C . � 1/
�
� � C � � �

1

2
jD j2� 

�
;(4.21)

where �2 is the density of state (2). In the polar coordinates .r; �/ with r Dp
�2C �2,  satisfies

(4.22)
�
c2� . r � r/

2
�
 rr �

2

r2
. r � r/ � r�

C
1

r2

�
c2�

1

r2
 2�

�
 �� C

c2

r
 r C

1

r3
. r � 2r/ 

2
� D 0

with

(4.23) c2 D . � 1/

 
�
�1
2 � C r r �

1

2

�
 2r C

1

r2
 2�

�!
:
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Also, from (4.11), (4.12), and (4.16)–(4.18), we obtain

 D 0 on �sonic D @�\ @Bc2.0/;(4.24)

 � D 0 on �wedge D @�\f�D � tan �wg;(4.25)

 � D�v2 on @�\f�D�v2g:(4.26)

Using (4.15) and (4.16), the Rankine-Hugoniot conditions in terms of  take
the following form: The continuity of the pseudo-potential function across (4.9) is
written as

(4.27)  �
1

2
q22 C

O�.u1�u2/Cu1.u2� �0/

D �.u1�u2/� �v2�
1

2
q22 Cu1.u2� �0/ on �shockI

that is,

(4.28) � D
 .�; �/C v2�

u1�u2
C O�;

where O� is defined by (4.4). The gradient jump condition (4.10) is
(4.29)
�.D ; / .D � .�; �// � �s D �1 .u1�u2� �;�v2� �/ � �s on �shock;

where �.D ; / is defined by (4.20) and �s is the interior unit normal to � on
�shock. If j.u2; v2;D /j< u1=50, the unit normal �s can be expressed as

(4.30) �s D
D.'1�'/

jD.'1�'/j
D

.u1�u2� � ;�v2� �/q
.u1�u2� �/

2C .v2C �/2
;

where we have used (4.15), (4.16), and (4.18) to obtain the last expression.
Now we rewrite the jump condition (4.29) in a more convenient form for  

satisfying (4.9) when � > 0 and k kC1. N�/ are sufficiently small.
We first discuss the smallness assumptions for � > 0 and k kC1. N�/. By (2.4),

(3.20), and (3.24), it follows that, if � is small depending only on the data, then

(4.31)
5 Nc2

6
� c2 �

6 Nc2

5
;

5 N�2

6
� �2 �

6 N�2

5
;

q
u22C v

2
2 �

u1

50
:

We also require that k kC1. N�/ be sufficiently small so that, if (4.31) holds, the
expressions (4.20) and (4.30) are well defined in �, and � defined by the right-
hand side of (4.28) satisfies j�j � 7 Nc2=5 for � 2 .�v2; c2/, which is the range of �
on �shock. Since (4.31) holds and �� Bc2.0/ by (4.1), it suffices to assume

(4.32) k kC1. N�/ �min

 
N�
�1
2

50.1C 4 Nc2/
;min.1; Nc2/

u1

50

!
DW ı�:
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For the rest of this section, we assume that (4.31) and (4.32) hold.
Under these conditions, we can substitute the right-hand side of (4.30) for �s

into (4.29). Thus, we rewrite (4.29) as

(4.33) F.D ; ; u2; v2; �; �/D 0 on �shock;

where, with p D .p1; p2/ 2 R2 and z 2 R,

(4.34) F.p; z; u2; v2; �; �/D
�
Q� .p� .�; �//� �1 .u1�u2� �;�v2� �/

�
� O�

with Q� WD Q�.p; z; �; �/ and O� WD O�.p; u2; v2/ defined by

Q�.p; z; �; �/D

�
�
�1
2 C �p1C �p2�

jpj2

2
� z

� 1
�1

;(4.35)

O�.p; u2; v2/D
.u1�u2�p1;�v2�p2/p
.u1�u2�p1/2C .v2Cp2/2

:(4.36)

From the explicit definitions of Q� and O�, it follows from (4.31) that

Q� 2 C1.Bı�.0/� .�ı
�; ı�/�B2 Nc2.0//; O� 2 C1.Bı�.0/�Bu1=50.0//;

where BR.0/ denotes the ball in R2 with center 0 and radius R and, for k 2 N (the
set of nonnegative integers), the C k-norms of Q� and O� over the regions specified
above are bounded by the constants depending only on ; u1; N�2; Nc2, and k, that is,
by Section 3, the C k-norms depend only on the data and k. Thus,

(4.37) F 2 C1.Bı�.0/� .�ı
�; ı�/�Bu1=50.0/�B2 Nc2.0//;

with its C k-norm depending only on the data and k.
Furthermore, since  satisfies (4.9) and hence (4.28), we can substitute the

right-hand side of (4.28) for � into (4.33). Thus we rewrite (4.29) as

(4.38) ‰.D ; ; u2; v2; �/D 0 on �shock;

where

(4.39) ‰.p; z; u2; v2; �/D F.p; z; u2; v2; .zC v2�/=.u1�u2/C O�; �/:

If � 2 .�6 Nc2=5; 6 Nc2=5/ and jzj � ı�, then, from (4.8), (4.31), and (4.32), it follows
that

ˇ̌
.zC v2�/=.u1�u2/C O�

ˇ̌
� 7 Nc2=5. That is, ..zC v2�/=.u1�u2/C O�; �/ 2

B2 Nc2.0/ if � 2 .�6 Nc2=5; 6 Nc2=5/ and jzj � ı�. Thus, from (4.37) and (4.39), ‰ 2
C1.A/with k‰kCk.A/ depending only on the data and k 2N, where ADBı�.0/�

.�ı�; ı�/�Bu1=50.0/� .�6 Nc2=5; 6 Nc2=5/.
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Using the explicit expression of ‰ given by (4.34)–(4.36) and (4.39), we cal-
culate

‰..0; 0/; 0; u2; v2; �/D�
.u1�u2/�2 O�q
.u1�u2/2C v

2
2

��1

 q
.u1�u2/2C v

2
2 �

.u1�u2/ O�q
.u1�u2/2C v

2
2

!
:

Now, using (4.17), we have

‰..0; 0/; 0; u2; v2; �/D 0 for any .u2; v2; �/ 2 Bu1=50.0/� .�6 Nc2=5; 6 Nc2=5/:

Then, denoting p0 D z and XD ..p1; p2/; p0; u2; v2; �/ 2A, we have

(4.40) ‰.X/D

2X
iD0

piDpi‰..0; 0/; 0; u2; v2; �/C

2X
i;jD0

pipjgij .X/;

where gij .X/ D
R 1
0 .1 � t /D

2
pipj

‰..tp1; tp2/; tp0; u2; v2; �/dt for i; j D 0; 1; 2.
Thus, gij 2 C1.A/ and kgij kCk.A/ � k‰kCkC2.A/ depending only on the data
and k 2 N.

Next, denoting �02 WD O�
0.�

�1
2 /D �2=c

2
2 > 0; we compute from the explicit

expression of ‰ given by (4.34)–(4.36) and (4.39):

D.p;z/‰..0; 0/; 0; 0; 0; �/D
�
�02.c

2
2 �
O�2/;

��2� �1
u1

� �02
O�
�
�; �02

O� �
�2� �1

u1

�
:

Note that, for i D 0; 1; 2,

@pi‰..0; 0/; 0; u2; v2; �/D @pi‰..0; 0/; 0; 0; 0; �/C hi .u2; v2; �/

with khikCk.Bu1=50.0/�.�6 Nc2=5;6 Nc2=5//
�k‰kCkC2.A/ for k 2N, and jhi .u2; v2; �/j

� C.ju2jC jv2j/ with C D kD2‰kC.A/. Then we obtain from (4.40) that, for all
XD .p; z; u2; v2; �/ 2A,

(4.41) ‰.X/D�02.c
2
2�
O�2/p1C

��2� �1
u1

��02
O�
�
.�p2�z/C OE1.X/�pC OE2.X/z;

where OE1 2 C1.AIR2/ and OE2 2 C1.A/ with

k OEikCk.A/ � k‰kCkC2.A/; i D 1; 2; k 2 N;

j OEi .p; z; u2; v2; �/j � C.jpjC jzjC ju2jC jv2j/ for all .p; z; u2; v2; �/ 2A;

for C depending only on kD2‰kC.A/.
From now on, we fix .u2; v2/ to be equal to the velocity of state (2) obtained

in Section 3.2 and write Ei .p; z; �/ for OEi .p; z; u2; v2; �/. We conclude that, if
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(4.31) holds and  2 C 1.�/ satisfies (4.32), then  D ' � '2 satisfies (4.9) and
(4.10) on �shock if and only if  satisfies conditions (4.28) on �shock,

(4.42) �02.c
2
2 �
O�2/ � C

��2� �1
u1

� �02
O�
�
.� � � /

CE1.D ; ; �/ �D CE2.D ; ; �/ D 0;

and the functions Ei .p; z; �/; i D 1; 2; are smooth on

Bı�.0/� .�ı
�; ı�/� .�6 Nc2=5; 6 Nc2=5/

and satisfy that, for all .p; z; �/ 2 Bı�.0/� .�ı�; ı�/� .�6 Nc2=5; 6 Nc2=5/,

(4.43) jEi .p; z; �/j � C .jpjC jzjC �/

and, for all .p; z; �/ 2 Bı�.0/� .�ı�; ı�/� .�6 Nc2=5; 6 Nc2=5/,

(4.44) j.D.p;z;�/Ei ; D
2
.p;z;�/Ei /j � C;

where we have used (3.24) in the derivation of (4.43) and C depends only on the
data.

Denote by �0 the unit normal on the reflected shock to the region of state (2).
Then �0 D .sin �s;� cos �s/ from the definition of �s . We compute

(4.45)
�
�02.c

2
2 �
O�2/; .

�2� �1

u1
� �02
O�/�
�
� �0

D �02.c
2
2 �
O�2/ sin �s �

��2� �1
u1

� �02
O�
�
� cos �s �

1

2
�02.c

2
2 �
O�2/ > 0;

if �=2 � �s is small and � 2 Proj�.�shock/. From (3.14) and (4.30), we obtain
k�s � �0kL1.�shock/ � CkD kC.�/. Thus, if � > 0 and kD kC.�/ are small
depending only on the data, then (4.42) is an oblique derivative condition on �shock.

4.3. The equation and boundary conditions near the sonic circle. For the
shock reflection solution, (1.8) is expected to be elliptic in the domain � and
degenerate on the sonic circle of state (2) which is the curve �sonicD @�\@Bc2.0/.
Thus we consider the subdomains:

�0 WD�\f.�; �/ W dist..�; �/; �sonic/ < 2"g;(4.46)

�00 WD�\f.�; �/ W dist..�; �/; �sonic/ > "g;

where the small constant " > 0 will be chosen later. Obviously, �0 and �00 are
open subsets of �, and �D�0[�00. (1.8) is expected to be degenerate elliptic in
�0 and uniformly elliptic in �00 on the solution of the shock reflection problem.

In order to display the structure of the equation near the sonic circle where
the ellipticity degenerates, we introduce the new coordinates in �0 which flatten
�sonic and rewrite (1.8) in these new coordinates. Specifically, denoting .r; �/ the
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polar coordinates in the .�; �/-plane, i.e., .�; �/ D .r cos �; r sin �/, we consider
the coordinates:

(4.47) x D c2� r; y D � � �w on �0:

By Section 3.2, the domain D0 does not contain the point .�; �/ D .0; 0/ if " is
small. Thus, the change of coordinates .�; �/! .x; y/ is smooth and smoothly
invertible on �0. Moreover, it follows from the geometry of domain � especially
from (4.2)–(4.7) that, if � > 0 is small, then, in the .x; y/-coordinates,

�0 D f.x; y/ W 0 < x < 2"; 0 < y < � C arctan
� �.x/

f .�.x//

�
� �wg;

where �.x/ is the unique solution, close to �1, of the equation �2 C f .�/2 D
.c2� x/

2.
We write the equation for  in the .x; y/-coordinates. As discussed in Section

4.2,  satisfies (4.22) and (4.23) in the polar coordinates. Thus, in the .x; y/-
coordinates in �0, the equation for  is
(4.48)�
2x�.C1/ xCO1

�
 xxCO2 xyC

� 1
c2
CO3

�
 yy�.1CO4/ xCO5 y D 0;

where

(4.49)

O1.D ; ; x/D�
x2

c2
C
 C 1

2c2
.2x� x/ x �

 � 1

c2

�
 C

1

2.c2� x/2
 2y

�
;

O2.D ; ; x/D�
2

c2.c2� x/2
. xC c2� x/ y ;

O3.D ; ; x/D
1

c2.c2� x/2

 
x.2c2� x/� . � 1/

�
 C .c2� x/ xC

1

2
 2x

�
�

 C 1

2.c2� x/2
 2y

!
;

O4.D ; ; x/D
1

c2� x

 
x�

 � 1

c2

�
 C .c2� x/ xC

1

2
 2x

C
. C 1/ 2y

2. � 1/.c2� x/2

�!
;

O5.D ; ; x/D�
2

c2.c2� x/3

�
 xC c2� x

�
 y :
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The terms Ok.D ; ; x/ are small perturbations of the leading terms of (4.48) if
the function  is small in an appropriate norm considered below. In order to see
this, we note the following properties: For any .p; z; x/ 2 R2 �R� .0; c2=2/ with
jpj< 1,

jO1.p; z; x/j � C.jpj
2
CjzjC jxj2/;(4.50)

jO3.p; z; x/jC jO4.p; z; x/j � C.jpjC jzjC jxj/;

jO2.p; z; x/jC jO5.p; z; x/j � C.jpjC jxjC 1/jpj:

In particular, dropping the terms Ok , k D 1; : : : ; 5, from (4.48), we obtain the
transonic small disturbance equation (cf. [44]):

(4.51)
�
2x� . C 1/ x

�
 xxC

1

c2
 yy � x D 0:

Now we write the boundary conditions on �sonic, �shock, and �wedge in the
.x; y/-coordinates. Conditions (4.24) and (4.25) become

 D 0 on �sonic D @�\fx D 0g;(4.52)

 � �  y D 0 on �wedge D @�\fy D 0g:(4.53)

It remains to write condition (4.42) on �shock in the .x; y/-coordinates. Ex-
pressing  � and  � in the polar coordinates .r; �/ and using (4.47), we write (4.42)
on �shock\fx < 2"g in the form:

(4.54)�
��02.c

2
2 �
O�2/ cos.yC �w/�

�
�2� �1

u1
� �02
O�

�
.c2� x/ sin2.yC �w/

�
 x

C sin.yC �w/
�
�

�02
c2� x

.c22 �
O�2/C

�
�2� �1

u1
� �02
O�

�
cos.yC �w/

�
 y

�

�
�2� �1

u1
� �02
O�

�
 C zE1.D.x;y/ ; ; x; y/ �D.x;y/ 

C zE2.D.x;y/ ; ; x; y/ D 0;

where zEi .p; z; x; y/; i D 1; 2; are smooth functions of .p; z; x; y/ 2 R2 �R�R2

satisfying

j zEi .p; z; x; y/j � C .jpjC jzjC �/ for jpjC jzjC x � "0.u1; N�2/:

We now rewrite (4.54) noting first that, in the .�; �/-coordinates, the point
P1 D �sonic \ �shock has the coordinates .�1; �1/ defined by (4.6). Using (3.20),
(3.22), (4.3), and (4.6), we find

0� jO�j � j�1j � C�:
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In the .x; y/-coordinates, the point P1 is .0; y1/, where y1 satisfies

(4.55) c2 cos.y1C �w/D �1; c2 sin.y1C �w/D �1;

from (4.6) and (4.47). Using this and noting that the leading terms of the coeffi-
cients of (4.54) near P1D .0; y1/ are the coefficients at .x; y/D .0; y1/, we rewrite
(4.54) as follows:

(4.56)

�
�2� �1

u1c2
�21 x �

 
�02�

�2� �1

u1c
2
2

�1

!
�1 y

�

�
�2� �1

u1
� �02�1

�
 C OE1.D.x;y/ ; ; x; y/ �D.x;y/ 

C OE2.D.x;y/ ; ; x; y/ D 0 on �shock\fx < 2"g;

where the terms OEi .p; z; x; y/; i D 1; 2; satisfy

(4.57) j OEi .p; z; x; y/j � C .jpjC jzjC xCjy �y1jC �/

for .p; z; x; y/ 2 T WD f.p; z; x; y/ 2 R2 �R�R2 W jpjC jzj � "0.u1; N�2/g and

(4.58) k.D.p;z;x;y/ OEi ; D
2
.p;z;x;y/

OEi /kL1.T/ � C:

We note that the left-hand side of (4.56) is obtained by expressing the left-
hand side of (4.42) on �shock \ fc2 � r < 2"g in the .x; y/-coordinates. Assume
" < Nc2=4. In this case, transformation (4.47) is smooth on f0 < c2� r < 2"g and
has nonzero Jacobian. Thus, condition (4.56) is equivalent to (4.42) and hence to
(4.29) on �shock\fx < 2"g if � > 0 is small so that (4.31) holds, and if k kC1.�/
is small depending only on the data such that (4.32) is satisfied.

5. Iteration scheme

In this section, we develop an iteration scheme to solve the free boundary
problem and set up the detailed steps of the iteration procedure in the shifted coor-
dinates.

5.1. Iteration domains. Fix �w < �=2 close to �=2. Since our problem is a
free boundary problem, the elliptic domain � of the solution is a priori unknown
and thus we perform the iteration in a larger domain

(5.1) D� D�w WD Bc2.0/\f� > �v2g\ fl.�/ < � < � cos �wg;

where l.�/ is defined by (4.3). We will construct a solution with ��D. Moreover,
the reflected shock for this solution coincides with f� D l.�/g outside the sonic
circle, which implies @D\@Bc2.0/D @�\@Bc2.0/DW�sonic. Then we decompose
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D similar to (4.46):

D0 WD D\f.�; �/ W dist..�; �/; �sonic/ < 2"g;(5.2)

D00 WD D\f.�; �/ W dist..�; �/; �sonic/ > "=2g:

The universal constant C > 0 in the estimates of this section depends only on the
data and is independent on �w .

We will work in the .x; y/-coordinates (4.47) in the domain D\fc2�r < �0g,
where �0 2 .0; Nc2/ will be determined depending only on the data for the sonic speed
Nc2 of state (2) for normal reflection (see Section 3.1). Now we determine �0 so
that '1�'2 in the .x; y/-coordinates satisfies certain bounds independent of �w
in D\fc2� r < �0g if � D �=2� �w is small.

We first consider the case of normal reflection �w D �=2. Then, from (1.15)
and (3.2) in the .x; y/-coordinates (4.47) with c2 D Nc2 and �w D �=2, we obtain

'1�'2 D�u1. Nc2� x/ siny �u1 N� for 0 < x < Nc2; 0 < y < �=2:

Recall N� < 0 and j N�j < Nc2 by (3.25). Then, in the region D0 WD f0 < x < Nc2; 0 <

y < �=2g, we have '1�'2 D 0 only on the line

y D Of0;0.x/ WD arcsin
�
j N�j

Nc2� x

�
for x 2 .0; Nc2� jN�j/:

Denote �0 WD . Nc2� jN�j/=2. Then �0 2 .0; Nc2/ by (3.5) and depends only on
the data. Now we show that there exists �0 > 0 small, depending only on the data,
such that, if �w 2 .�=2� �0; �=2/, then

C�1 � @x.'1�'2/;�@y.'1�'2/� C(5.3)

on Œ0; �0��
h Of0;0.0/

2
;
Of0;0.�0/C�=2

2

i
;

'1�'2 � C
�1 > 0 on Œ0; �0��

h
0;
Of0;0.0/

2

i
;(5.4)

'1�'2 � �C
�1 < 0 on Œ0; �0��

n Of0;0.�0/C�=2
2

o
;(5.5)

where
Of0;0.�0/C�=2

2
< �=2.

We first prove (5.3)–(5.5) in the case of normal reflection �w D �=2. We
compute from the explicit expressions of '1�'2 and Of0;0 given above to obtain

0 < arcsin
�
j N�j

Nc2

�
< Of0;0.x/ < arcsin

� 2j N�j

Nc2CjN�j

�
<
�

2
;

C�1 � Of 00;0.x/� C for x 2 Œ0; �0�;
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@x.'1�'2/D u1 siny, and @y.'1�'2/D�u1. Nc2� x/ cosy, which imply (5.3).
Now, (5.4) is true since N� D�Nc2 sin. Of0;0.0// and thus

'1�'2 D u1
�
Nc2 sin. Of0;0.0//� . Nc2� x/ siny

�
;

and (5.5) follows from (5.3) since .'1�'2/.�0; Of0;0.�0//D 0 and

Of0;0.�0/C�=2

2
� Of0;0.�0/� C

�1:

Now let �w < �=2. Then, from (3.14)–(4.16) and (4.47), we have

'1�'2 D�.c2� x/ sin.yC �w � �s/
q
.u1�u2/2C v

2
2 � .u1�u2/

O�:

By Section 3.2, when �w ! �=2, we know that .u2; v2/ ! .0; 0/, �s ! �=2,
Q� ! N�, and thus, by (4.4), we also have O� ! N�. This shows that, if �0 > 0 is
small depending only on the data, then, for all �w 2 .�=2� �0; �=2/, estimates
(5.3)–(5.5) hold with C which is equal to twice the constant C from the respective
estimates (5.3)–(5.5) for �w D �=2.

From (5.3)–(5.5) for �w 2 .�=2� �0; �=2/ and since

D\fc2� r < �0g D f'1 > '2g\

�
0� x � �0; 0� y �

Of0;0.�0/C�=2

2

�
;

there exists Of0 WD Of0;�=2��w 2 C
1.RC/ such that

D\fc2� r < �0g D f0 < x < �0; 0 < y < Of0.x/g;(5.6)

Of0.0/D yP1
; C�1 � Of 00.x/� C on Œ0; �0�;(5.7)

Of0;0.0/

2
� Of0.0/ < Of0.�0/�

Of0;0.�0/C�=2

2
:(5.8)

In fact, the line y D Of0.x/ is the line � D l.�/ expressed in the .x; y/-coordinates,
and thus we obtain explicitly with the use of (3.14) that

(5.9) Of0.x/D arcsin

 
j O�j sin �s
.c2� x/

!
� �w C �s on Œ0; �0�:

5.2. Hölder norms in �. For the elliptic estimates, we need the Hölder norms
in � weighted by the distance to the corners P2 D �shock\f�D�v2g and P3 D
.�u2;�v2/, and with a “parabolic” scaling near the sonic circle.

More generally, we consider a subdomain �� D of the form � WD D\f� �

f .�/g with f 2 C 1.R/ and set the subdomains �0 WD�\D0 and �00 WD�\D00

defined by (4.46). Let †� @�00 be closed. We now introduce the Hölder norms in
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�00 weighted by the distance to †. Denote by X D .�; �/ the points of �00 and set

ıX WD dist.X;†/; ıX;Y WDmin.ıX ; ıY / for X; Y 2�00:

Then, for k 2 R, ˛ 2 .0; 1/, and m 2 N, define

(5.10)

kuk
.k;†/
m;0;�00 WD

X
0�jˇ j�m

sup
X2�00

�
ı

max.jˇ jCk;0/
X jDˇu.X/j

�
;

Œu�
.k;†/
m;˛;�00 WD

X
jˇ jDm

sup
X;Y2�00;X¤Y

 
ı

max.mC˛Ck;0/
X;Y

jDˇu.X/�Dˇu.Y /j

jX �Y j˛

!
;

kuk
.k;†/
m;˛;�00 WDkuk

.k;†/
m;0;�00 C Œu�

.k;†/
m;˛;�00 ;

where Dˇ D @ˇ1
�
@
ˇ2
� , and ˇ D .ˇ1; ˇ2/ is a multi-index with ǰ 2 N and jˇj D

ˇ1Cˇ2. We denote by C .k;†/m;˛;�00 the space of functions with finite norm k �k.k;†/m;˛;�00 .

Remark 5.1. Ifm��k� 1, and k is an integer, then any function u2C .k;†/m;˛;�00

is C jkj�1;1 up to †, but not necessarily C jkj up to †.

In �0, the equation is degenerate elliptic, for which the Hölder norms with
parabolic scaling are natural. We define the norm k k.par/

2;˛;�0 as follows: Denoting
z D .x; y/ and Qz D . Qx; Qy/ with x; Qx 2 .0; 2"/ and

ı
.par/
˛ .z; Qz/ WD

�
jx� Qxj2Cmin.x; Qx/jy � Qyj2

�˛=2
;

then, for u2C 2.�0/\C 1;1.�0/ written in the .x; y/-coordinates (4.47), we define

(5.11)

kuk
.par/
2;0;�0 WD

X
0�kCl�2

sup
z2�0

�
xkCl=2�2j@kx@

l
yu.z/j

�
;

Œu�
.par/
2;˛;�0 WD

X
kClD2

sup
z;Qz2�0;z¤Qz

�
min.x; Qx/˛�l=2

j@kx@
l
yu.z/� @

k
x@
l
yu. Qz/j

ı
.par/
˛ .z; Qz/

�
;

kuk
.par/
2;˛;�0 WDkuk

.par/
2;0;�0 C Œu�

.par/
2;˛;�0 :

To motivate this definition, especially the parabolic scaling, we consider a scaled
version of the function u.x; y/ in the parabolic rectangles:

(5.12) R.x;y/D
n
.s; t/ W js�xj<

x

4
; jt�yj<

p
x

4

o
\� for zD .x; y/2�0:

Denote Q1 WD .�1; 1/2. Then the rescaled rectangle (5.12) is

(5.13) Q
.z/
1 WD

n
.S; T / 2Q1 W .xC

x

4
S; yC

p
x

4
T / 2�

o
:
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Denote by u.z/.S; T / the following function in Q.z/1 :

(5.14) u.z/.S; T / WD
1

x2
u
�
xC

x

4
S; yC

p
x

4
T
�

for .S; T / 2Q.z/1 :

Then we have

C�1 sup
z2�0\fx<3"=2g

ku.z/k
C2;˛

�
Q
.z/
1

� � kuk.par/
2;˛;�0 � C sup

z2�0
ku.z/k

C2;˛
�
Q
.z/
1

�;
where C depends only on the domain � and is independent of " 2 .0; �0=2/.

5.3. Iteration set. We consider the wedge angle close to �=2, that is, � D
�
2
� �w > 0 is small which will be chosen below. Set †0 WD @D \ f� D �v2g.

Let "; � > 0 be the constants from (5.2) and (3.1). Let M1;M2 � 1. We define
K� K.�; ";M1;M2/ by
(5.15)

K WD

�
� 2C 1;˛.D/\C 2.D/ W k�k

.par/
2;˛;D0�M1; k�k

.�1�˛;†0/
2;˛;D00 �M2�; ��0 in D

�
for ˛ 2 .0; 1=2/. Then K is convex. Also, � 2 K implies that

k�kC1;1.D0/ �M1; k�kC1;˛.D00/ �M2�;

so that K is a bounded subset in C 1;˛.D/. Thus, K is a compact and convex subset
of C 1;˛=2.D/.

We note that the choice of constants M1;M2 � 1 and "; � > 0 below will
guarantee the following property:

(5.16) � max.M1;M2/C "
1=4M1C �M2="

2
� yC�1

for some sufficiently large yC > 1 depending only on the data. In particular, (5.16)
implies that � � yC�1 since max.M1;M2/ � 1, which implies �=2� �w � yC�1

from (3.1). Thus, if we choose yC large depending only on the data, then (4.31)
holds. Also, for  2 K, we have

j.D ; /.x; y/j �M1x
2
CM1x in D0; k kC1. ND00/ �M2�:

Furthermore, 0 < x < 2" in D0 by (4.47) and (5.2). Now it follows from (5.16)
that k kC1 � 2= yC . Then (4.32) holds if yC is large depending only on the data.
Thus, in the rest of this paper, we always assume that (4.31) holds and that  2 K

implies (4.32). Therefore, (4.29) is equivalent to (4.43) and (4.44) for  2 K.
We also note the following fact.

LEMMA 5.1. There exist yC and C depending only on the data such that, if
�; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), then, for every � 2 K,

(5.17) k�k
.�1�˛;†0[�sonic/
2;˛;D � C.M1"

1�˛
CM2�/:
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Proof. In this proof, C denotes a universal constant depending only on the
data. We use definitions (5.10) and (5.11) for the norms. We first show that

(5.18) k�k
.�1�˛;�sonic/
2;˛;D0 � CM1"

1�˛;

where ı.x;y/ WD dist..x; y/; �sonic/ in (5.10). First we show (5.18) in the .x; y/-
coordinates. Using (5.6), we have D0D f0 < x < 2"; 0 < y < Of0.x/g with �sonicD

fx D 0; 0 < y < Of0.x/g, where kf 00kL1..0;2"// depends only the data, and thus

dist..x; y/; �sonic/ � Cx in D0. Then, since k�k.par/
2;˛;D0 �M1, we obtain that, for

.x; y/ 2 D0,

j�.x; y/j �M1x
2
�M1"

2; jD�.x; y/j �M1x �M1";

ı1�˛.x;y/jD
2�.x; y/j D x1�˛jD2�.x; y/j � "1�˛M1:

Furthermore, from (5.16) with yC � 16, we obtain " � 1=2. Thus, denoting z D
.x; y/ and Qz D . Qx; Qy/ with x; Qx 2 .0; 2"/, we have

ı
.par/
˛ .z; Qz/ WD

�
jx� Qxj2Cmin.x; Qx/jy � Qyj2

�˛=2
�
�
jx� Qxj2C 2"jy � Qyj2

�˛=2
� jz� Qzj˛;

and min.ız; ıQz/Dmin.x; Qx/, which implies

min.ız; ıQz/
jD2�.z/�D2�. Qz/j

jz� Qzj˛
� C"1�˛ min.x; Qx/˛

jD2�.z/�D2�. Qz/j

ı
.par/
˛ .z; Qz/

� C"1�˛M1:

Thus we have proved (5.18) in the .x; y/-coordinates. By (4.31) and (5.16), we
have "� c2=50 if yC is large depending only on the data. Then the change .�; �/!
.x; y/ in D0 and its inverse have bounded C 3-norms in terms of the data. Thus,
(5.18) holds in the .�; �/-coordinates.

Since � 2 K, then k�k.�1�˛;†0/2;˛;D00 � M2� . Thus, in order to complete the

proof of Lemma 5.1, it suffices to estimate fmin.ız; ıQz/
jD2�.z/�D2�.Qz/j

jz�Qzj˛
g in the

case z 2 D0 nD00 and Qz 2 D00 nD0 for ız D dist.z; �sonic [†0/. From z 2 D0 nD00

and Qz 2D00 nD0, we obtain 0 < c2�jzj< "=2 and c2�jQzj � 2", which implies that
jz� Qzj � 3"=2. We have c2�jzj � dist.z; �sonic/�C.c2�jzj/, where we have used
(4.31) and (5.1). Thus, min.ız; ıQz/� C.c2�jzj/� C". Also we have jD2�.z/j �
M1 by (5.11). If ıQz � ız , then ıQz � "=2 and thus jD2�. Qz/j � ."=2/�1C˛M2� by
(5.10). Then we have

min.ız; ıQz/
jD2�.z/�D2�. Qz/j

jz� Qzj˛
�C"

M1C .2"/
�1C˛M2�

.3"=2/˛
�C

�
"1�˛M1CM2�

�
:
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If ıQz � ız , then dist. Qz;†0/� dist. Qz; �sonic/, which implies by (4.8) that jz� Qzj �
1=C if " is sufficiently small, depending only on the data. Then jD2�. Qz/j �
ı�1C˛
Qz

M2� and

min.ız; ıQz/
jD2�.z/�D2�. Qz/j

jz� Qzj˛
�C

�
ızM1CıQzı

�1C˛
Qz

M2�
�
�C

�
"M1CM2�

�
:

�

5.4. Construction of the iteration scheme and choice of ˛. In this section, for
simplicity of notation, the universal constant C depends only on the data and may
be different at each occurrence.

By (3.24), it follows that, if � is sufficiently small depending on the data, then

(5.19) q2 � u1=10;

where q2 D
q
u22C v

2
2 . Let � 2 K. From (4.15), (4.16), and (5.19), it follows that

(5.20) .'1�'2��/�.�; �/� u1=2 > 0 in D:

Since '1 � '2 D 0 on f� D l.�/g and � � 0 in D, we have � � '1 � '2 on
f� D l.�/g \ @D, where l.�/ is defined by (4.3). Then there exists f� 2 C 1;˛.R/
such that

(5.21) f� D '1�'2g\DD f.f�.�/; �/ W � 2 .�v2; �2/g:

It follows that f�.�/� l.�/ for all � 2 Œ�v2; �2/ and

(5.22) �C.�/ WD f� > f�.�/g\DD f� < '1�'2g\D:

Moreover, @�C.�/D �shock[�sonic[�wedge[†0, where

�shock.�/ WD f� D f�.�/g\ @�
C.�/; �sonic WD @D\ @Bc2.0/;(5.23)

�wedge WD @D\f�D � tan �wg; †0.�/ WD @�
C.�/\f�D�v2g:

We denote by Pj ; 1 � j � 4, the corner points of �C.�/. Specifically, P2 D
�shock.�/ \†0.�/ and P3 D .�u2;�v2/ are the corners on the symmetry line
f�D�v2g, and P1D�sonic\�shock.�/ and P4D�sonic\�wedge are the corners on
the sonic circle. Note that, since � 2K implies �D 0 on �sonic, it follows that P1 is
the intersection point .�1; �1/ of the line � D l.�/ and the sonic circle �2C�2D c22 ,
where .�1; �1/ is determined by (4.6).

We also note that f0 D l for 0 2 K. From � 2 K and Lemma 5.1 with
˛ 2 .0; 1=2/, we obtain the following estimate of f� on the interval .�v2; �1/:

(5.24) kf� � lk
.�1�˛;f�v2;�1g/

2;˛;.�v2;�1/
� C

�
M1"

1=2
CM2�

�
� "1=4;

where the second inequality in (5.24) follows from (5.16) with sufficiently large yC .
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We also work in the .x; y/-coordinates. Denote � WD �0=2. Choosing yC in
(5.16) large depending only on the data, we conclude from (5.3)–(5.5) that, for
every � 2 K, there exists a function Of � Of� 2 C

.�2;f0g/

2;˛;.0;�/
such that

(5.25) �C.�/\fc2� r < �g D f0 < x < �; 0 < y < Of�.x/g;

with

(5.26)
Of�.0/D Of0.0/>0; Of

0
�>0 on .0; �/; k Of�� Of0k

.�1�˛;f0g/

2;˛;.0;�/
�C

�
M1"

1�˛
CM2�

�
;

where we have used Lemma 5.1. More precisely,

(5.27)
2X
kD0

sup
x2.0;2"/

�
xk�2jDk. Of� � Of0/.x/j

�
C sup
x1¤x22.0;2"/

 
.min.x1; x2//˛

j. Of 00� �
Of 000 /.x1/� .

Of 00� �
Of 000 /.x2/j

jx1� x2j˛

!
� CM1;

with k Of� � Of0k2;˛;."=2;�/ � CM2� .
Note that, in the .�; �/-coordinates, the angles �P2 and �P3 at the corners P2

and P3 of �C.�/ respectively satisfy

(5.28) j�Pi �
�

2
j �

�

16
for i D 2; 3:

Indeed, �P3 D �=2� �w . The estimate for �P2 follows from (5.24) with (5.16) for
large yC .

We now consider the following problem in the domain �C.�/:

N. / WD A11 �� C 2A12 ��CA22 �� D 0 in �C.�/;(5.29)

M. / WD �02.c
2
2 �
O�2/ � C

��2� �1
u1

� �02
O�
�
.� � � /(5.30)

CE
�
1 .�; �/ �D CE

�
2 .�; �/ D 0 on �shock.�/;

 D 0 on �sonic;(5.31)

 � D 0 on �wedge;(5.32)

 � D�v2 on @�C.�/\f�D�v2g;(5.33)

where Aij D Aij .D ; �; �/ (which will be defined below), and (5.30) is obtained
from (4.42) by substituting � into Ei ; i D 1; 2; i.e.,

(5.34) E
�
i .�; �/DEi .D�.�; �/; �.�; �/; �/:
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Note that, for � 2 K and .�; �/ 2 D, we have .D�.�; �/; �.�; �/; �/ 2 Bı�.0/ �
.�ı�; ı�/ � .�6 Nc2=5; 6 Nc2=5/ by (4.31) and (4.32). Thus, the right-hand side of
(5.34) is well-defined.

Also, we now fix ˛ in the definition of K. Note that the angles �P2 and
�P3 at the corners P2 and P3 of �C.�/ satisfy (5.28). Near these corners, (5.29)
is linear and its ellipticity constants near the corners are uniformly bounded in
terms of the data. Moreover, the directions in the oblique derivative conditions
on the arcs meeting at the corner P3 (resp. P2) are at the angles within the range
.7�=16; 9�=16/, since (5.30) can be written in the form  �Ce ��d D 0, where
jej � C� near P2 from �.P2/D�v2, (3.24), (4.43), (4.44), and (5.16). Then, by
[35], there exists ˛0 2 .0; 1/ such that, for any ˛ 2 .0; ˛0/, the solution of (5.29)–
(5.33) is in C 1;˛ near and up to P2 and P3 if the arcs are in C 1;˛ and the coefficients
of the equation and the boundary conditions are in the appropriate Hölder spaces
with exponent ˛. We use ˛D ˛0=2 in the definition of K for ˛0D ˛0.9�=16; 1=2/,
where ˛0.�0; "/ is defined as in [35, Lemma 1.3]. Note that ˛ 2 .0; 1=2/ since
˛0 2 .0; 1/.

5.5. An elliptic cutoff and the equation for the iteration. In this subsection,
we fix � 2 K and define (5.29) such that

(i) It is strictly elliptic inside the domain �C.�/ with elliptic degeneracy at the
sonic circle �sonic D @�

C.�/\ @Bc2.0/;

(ii) For a fixed point  D � satisfying an appropriate smallness condition of jD j,
(5.29) coincides with the original equation (4.19).

We define the coefficients Aij of (5.29) in the larger domain D. More precisely,
we define the coefficients separately in the domains D0 and D00 and then combine
them.

In D00, we define the coefficients of (5.29) by substituting � into the coeffi-
cients of (4.19); i.e.,

A111.�; �/D c
2.D�; �; �; �/� .�� � �/

2;(5.35)

A122.�; �/D c
2.D�; �; �; �/� .�� � �/

2;

A112.�; �/D A
1
21.�; �/D�.�� � �/.�� � �/;

where �; �� , and �� are evaluated at .�; �/. Thus, (5.29) in �C.�/\D00 is a linear
equation

A111 �� C 2A
1
12 ��CA

1
22 �� D 0 in �C.�/\D00:

From the definition of D00, it follows that
p
�2C �2� c2�" in D00. Then calculating

explicitly the eigenvalues of matrix .A1ij /1�i;j�2 defined by (5.35) and using (4.31)
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yield that there exists C D C.; Nc2/ such that, if " <min.1; Nc2/=10 and k�kC1 �
"=C , then
(5.36)
" Nc2

8
j�j2 �

2X
i;jD1

A1ij .�; �/�i�j � 4 Nc
2
2 j�j

2 for any .�; �/ 2 D00 and � 2 R2.

The required smallness of " and k�kC1 is achieved by choosing sufficiently large
yC in (5.16), since � 2 K.

In D0, we use (4.48) and substitute � into the terms O1; : : : ; O5. However, it
is essential that we do not substitute � into the term . C 1/ x of the coefficient
of  xx in (4.48), since this nonlinearity allows us to obtain some crucial estimates
(see Lemma 7.3 and Proposition 8.1). Thus, we make an elliptic cutoff of this term.
In order to motivate our construction, we note that, if

jOkj �
x

10max.c2; 1/. C 1/
;  x <

4x

3. C 1/
in D0;

then (4.48) is strictly elliptic in D0. Thus we want to replace the term . C 1/ x in

the coefficient of  xx in (4.48) by .C1/x�1
� x
x

�
, where �1.�/ is a cutoff function.

On the other hand, we also need to keep form (5.29) for the modified equation in
the .�; �/-coordinates, i.e., the form without lower-order terms. This form is used
in Lemma 8.1. Thus we perform a cutoff in (4.19) in the .�; �/-coordinates such
that the modified equation satisfies the following two properties:

(i) Form (5.29) is preserved;

(ii) When written in the .x; y/-coordinates, the modified equation has the main
terms as in (4.48) with the cutoff described above and corresponding modifi-
cations in the terms O1; : : : ; O5 of (4.48).

Also, since the equations in D0 and D00 will be combined and the specific form
of the equation is more important in D0, we define our equation in a larger domain
D04" WD D\fc2� r < 4"g.

We first rewrite (4.19) in the form

I1C I2C I3C I4 D 0;

where

I1 WD
�
c2.D ; ; �; �/� .�2C �2/

�
� ;

I2 WD �
2 �� C �

2 �� � 2�� ��;

I3 WD 2
�
� � �� C .� �C � �/ ��C � � ��

�
;

I4 WD �
1

2

�
 �.jD j

2/� C �.jD j
2/�
�
:
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Note that, in the polar coordinates, I1; : : : ; I4 have the following expressions:

I1 D

�
c22 � r

2
C . � 1/

�
r r �

1

2
jD j2� 

��
� ;

I2 D  �� C r r ;

I3 D r.jD j
2/r D 2r r rr C

2

r
 � r� �

2

r2
 2� ;

I4 D�
1

2

�
 r.jD j

2/r C
1

r2
 � .jD j

2/�

�
with jD j2 D  2r C

1
r2
 2
�

and � D  rr C 1
r2
 �� C

1
r
 r .

From this, by (4.47), we see that the dominating terms of (4.48) come only
from I1; I2, and the term 2r r rr of I3, i.e., the remaining terms of I3 and I4
affect only the terms O1; : : : ; O5 in (4.48). Moreover, the term . C 1/ x in
the coefficient of  xx in (4.48) is obtained as the leading term in the sum of the
coefficient . � 1/r r of  rr in I1 and the coefficient 2r r of  rr in I3. Thus
we modify the terms I1 and I3 by cutting off the  r -component of first derivatives
in the coefficients of second-order terms as follows. Let �1 2 C1.R/ satisfy

(5.37) �1.s/D

�
s; if jsj< 4=

�
3. C 1/

�
;

5 sign.s/=.3. C 1//; if jsj> 2=. C 1/;

so that

�01.s/� 0; �1.�s/D��1.s/ on RI(5.38)

�001.s/� 0 on fs � 0g:(5.39)

Obviously, such a smooth function �1 2C1.R/ exists. Property (5.39) will be used
only in Proposition 8.1. Now we note that �D

�
r
 r�

�

r2
 � and �D

�
r
 rC

�

r2
 � ,

and define

OI1 WD

�
c22 � r

2
C . � 1/r.c2� r/�1

�� � C � �
r.c2� r/

�
� . � 1/

�
1

2
jD j2C 

��
� ;

OI3 WD 2

�
�

r
.c2� r/�1

�� � C � �
r.c2� r/

�
�
�

r2
.� � � � �/

�
.� �� C � ��/

C2

�
�

r
.c2� r/�1

�� � C � �
r.c2� r/

�
C
�

r2
.� � � � �/

�
.� ��C � ��/:

The modified equation in the domain D04" is

(5.40) OI1C I2C OI3C I4 D 0:

By (5.37), the modified (5.40) coincides with the original (4.19) ifˇ̌̌̌
�

r
 � C

�

r
 �

ˇ̌̌̌
<
4.c2� r/

3. C 1/
;
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i.e., if j xj < 4x=
�
3. C 1/

�
in the .x; y/-coordinates. Also, (5.40) is of form

(5.29) in the .�; �/-coordinates.
Now we define (5.29) in D04" by substituting � into the coefficients of (5.40)

except for the terms involving �1.
� � C � �

r.c2� r/
/. Thus, we obtain an equation of

form (5.29) with the coefficients:

A211.D ; �; �/(5.41)

D c22 � . � 1/

�
r.c2� r/�1

�� � C � �
r.c2� r/

�
C
1

2
jD�j2C�

�
�.�2� C �

2/C 2�

�
�

r
.c2� r/�1

�� � C � �
r.c2� r/

�
�
�

r2
.��� � ���/

�
;

A222.D ; �; �/

D c22 � . � 1/

�
r.c2� r/�1

�� � C � �
r.c2� r/

�
C
1

2
jD�j2C�

�
�.�2� C �

2/C 2�

�
�

r
.c2� r/�1

�� � C � �
r.c2� r/

�
C
�

r2
.��� � ���/

�
;

A212.D ; �; �/

D�.����C ��/

C2

�
��

r
.c2� r/�1

�� � C � �
r.c2� r/

�
C
�2� �2

r2
.��� � ���/

�
;

A221.D ; �; �/D A
2
12.D ; �; �/;

where �; �� , and �� are evaluated at .�; �/.
Now we write (5.40) in the .x; y/-coordinates. By calculation, the terms OI1

and OI3 in the polar coordinates are

OI1 D

�
c22 � r

2
C . � 1/

�
r.c2� r/�1

�  r

c2� r

�
�
1

2
jD j2� 

��
� ;

OI3 D 2r.c2� r/�1
�  r

c2� r

�
 rr C

2

r
 � r� �

2

r2
 2� :

Thus, (5.40) in the .x; y/-coordinates in D04" has the form

(5.42)
�
2x� . C 1/x�1

� x
x

�
CO

�
1

�
 xxCO

�
2 xy

C

�
1

c2
CO

�
3

�
 yy � .1CO

�
4 / xCO

�
5 y D 0;
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with O�
k
.p; x; y/ defined by

(5.43)

O
�
1 .p; x; y/D�

x2

c2
C
 C 1

2c2

�
2x2�1

�p1
x

�
��2x

�
�
 � 1

c2

�
�C

1

2.c2� x/2
�2y

�
;

O
�

k
.x; y/DOk.D�.x; y/; �.x; y/; x/ for i D 2; 5;

O
�
3 .p; x; y/D

1

c2.c2� x/2

 
x.2c2� x/�

 C 1

2.c2� x/2
�2y

� . � 1/
�
�C .c2� x/x�1

�p1
x

�
C
1

2
�2x

�!
;

O
�
4 .p; x; y/D

1

c2� x

 
x�

 � 1

c2

�
�C .c2� x/x�1

�p1
x

�
C
�2x
2
C

. C 1/�2y

2. � 1/.c2� x/2

�!
;

where p D .p1; p2/, and .D�; �/ are evaluated at .x; y/. The estimates in (4.50),
the definition of the cutoff function �1, and � 2 K with (5.16) imply

(5.44) O
�
1 .p; x; y/j � C jxj

3=2; jO
�

k
.x; y/j � C jxj for k D 2; : : : ; 5;

for all p 2R2 and .x; y/ 2D04". Indeed, using that � 2K implies k�k.par/
2;˛;D0 �M1,

we find that, for all p 2 R2 and .x; y/ 2 D0 � D02",

jO
�
1 .p; x; y/j � C.M

2
1 C 1/jxj

2
� C jxj3=2;(5.45)

jO
�

k
.x; y/j � C.1CM1jxj/M1jxj

3=2
� C jxj for k D 2; 5;

jO
�

k
.p; x; y/j � C.jxjCM 2

1 jxj
2/� C jxj for k D 3; 4:

In order to obtain the corresponding estimates in the domain D04"nD02", we note that
D04"nD02"�D00. Since 2"�x� 4" in D04"nD02" and � 2K implies k�k.�1�˛;†0/2;˛;D00 �

M2� , we find that, for any p 2 R2 and .x; y/ 2 D04" nD02",

jO
�
1 .p; x; y/j � C.1CM

2
2 �

2
CM2�/"

2
� C"2 � C jxj2;(5.46)

jO
�

k
.x; y/j � C.1CM2�/M2� � C"

2
� C jxj2 for k D 2; 5;

jO
�

k
.p; x; y/j � C."CM 2

2 �
2
CM2�/� C"� C jxj for k D 3; 4:

Estimates (5.45) and (5.46) imply (5.44).
The estimates in (5.44) imply that, if � 2K, and " is sufficiently small depend-

ing only on the data (which are guaranteed by (5.16) with sufficiently large yC ),
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(5.42) is strictly but nonuniformly elliptic in D0. First, in the .x; y/-coordinates,
writing (5.42) as

a11 xxC 2a12 xy C a22 yy C a1 xC a2 y D 0;

with aij D aij .D ; x; y/D aj i and ai D ai .D ; x; y/, and using (4.31), we have

x

6
j�j2�

2X
i;jD1

aij .p; x; y/�i�j �
2

Nc2
j�j2 for any .p; x; y/2R2�D04" and�2R2:

In order to show similar ellipticity in the .�; �/-coordinates, we note that, by (4.31),
the change of coordinates .�; �/ to .x; y/ in D04" and its inverse have C 1 norms
bounded by a constant depending only on the data if " < Nc2=10. Then there exists
Q�>0 depending only on the data such that, for any .p; �; �/2R2�D04" and �2R2,

(5.47) Q�.c2� r/j�j
2
�

2X
i;jD1

A2ij .p; �; �/�i�j �
Q��1j�j2;

where A2ij .p; �; �/; i; j D 1; 2; are defined by (5.41), and r D
p
�2C �2.

Next, we combine the equations introduced above by defining the coefficients
of (5.29) in D as follows. Let �2 2 C1.R/ satisfy

�2.s/D

�
0; if s � 2";
1; if s � 4";

and 0� �02.s/� 10=" on R:

Then we define that, for p 2 R2 and .�; �/ 2 D,

(5.48) Aij .p; �; �/D �2.c2� r/A
1
ij .�; �/C

�
1� �2.c2� r/

�
A2ij .p; �; �/:

Then (5.29) is strictly elliptic in D and uniformly elliptic in D00 with ellipticity
constant � > 0 depending only on the data and ". We state this and other properties
of Aij in the following lemma.

LEMMA 5.2. There exist constants � > 0, C , and yC depending only on the
data such that, if M1;M2; ", and � satisfy (5.16), then, for any � 2 K, the coeffi-
cients Aij .p; �; �/ defined by (5.48), i; j D 1; 2, satisfy

(i) For any .�; �/ 2 D and p;� 2 R2,

�.c2� r/j�j
2
�

2X
i;jD1

Aij .p; �; �/�i�j � �
�1
j�j2 with r D

q
�2C �2I

(ii) Aij .p; �; �/DA1ij .�; �/ for any .�; �/ 2D\fc2� r > 4"g and p 2R2, where
A1ij .�; �/ are defined by (5.35). Moreover,

A1ij 2 C
1;˛.D\fc2� r > 4"g/

with kA1ij k1;˛.D\fc2�r>4"g/ � C I

(iii) jAij jCjD.p;�;�/Aij j �C for any .�; �/ 2D\f0 < c2� r < 12"g and p 2R2.
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Proof. Property (i) follows from (5.36), (5.47), and (5.48). Properties (ii) and
(iii) follow from the explicit expressions (5.35) and (5.41) with � 2K. In estimating
these expressions in property (iii), we use that js�01.s/j � C which follows from
the smoothness of �1 and (5.37). �

Also, (5.29) coincides with (5.42) in the domain D0. Assume that " < �0=24,
which can be achieved by choosing yC large in (5.16). Then, in the larger domain
D\fc2� r < 12"g, (5.29) written in the .x; y/-coordinates has form (5.42) with
the only difference that the term x�1.

 x
x
/ in the coefficient of  xx of (5.42) and

in the terms QO�1 , QO�3 , and QO�4 given by (5.43) is replaced by

x

�
�2.x/�1

��x
x

�
C .1� �2.x//�1

� x
x

��
:

From this, we have

LEMMA 5.3. There exist C and yC depending only on the data such that the
following holds. Assume that M1;M2; ", and � satisfy (5.16). Let � 2 K. Then
equation (5.29) written in the .x; y/-coordinates in D\fc2� r < 12"g has the form

(5.49) OA11 xxC 2 OA12 xy C OA22 yy C OA1 xC OA2 y D 0;

where OAij D OAij . x; x; y/, OAi D OAi . x; x; y/, and OA21 D OA12. Moreover, the
coefficients OAij .p; x; y/ and OAi .p; x; y/ with p D .p1; p2/ 2 R2 satisfy

(i) For any .x; y/ 2 D\fx < 12"g and p;� 2 R2,

(5.50)
x

6
j�j2 �

2X
i;jD1

OAij .p; x; y/�i�j �
2

Nc2
j�j2I

(ii) For any .x; y/ 2 D\fx < 12"g and p 2 R2,

j. OAij ;D.p;x;y/ OAij /jC j. OAi ;D.p;x;y/ OAi /j � C I

(iii) OA11, OA22, and OA1 are independent of p2;

(iv) OA12, OA21, and OA2 are independent of p, and

j. OA12; OA21; OA2/.x; y/j � C jxj; jD. OA12; OA21; OA2/.x; y/j � C jxj
1=2:

The last inequality in Lemma 5.3(iv) is proved as follows. Note that

. OA12; OA2/.x; y/D .O2; O5/.D�.x; y/; �.x; y/; x/;

where O2 and O5 are given by (4.50). Then, by � 2 K and (5.16), we find that, for
.x; y/ 2 D0, i.e., x 2 .0; 2"/,

jD. OA12; OA21; OA2/.x; y/j � C.1CM1"/jD�y.x; y/jC .1CM1/j�y.x; y/j

� C.1CM1"/M1x
1=2
CC.1CM1/M1x

3=2
� Cx1=2I
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and, for .x; y/ 2 D\f"� x � 12"g � D00, we have dist.x;†0/� c2=2� Nc2=4 so
that

jD. OA12; OA21; OA2/.x; y/j � C.1CM2�/M2� � C"� Cx:

The next lemma follows directly from both (5.37) and the definition of Aij .

LEMMA 5.4. Let � � D,  2 C 2.�/, and  satisfy equation (5.29) with
� D in �. Assume also that  , written in the .x; y/-coordinates, satisfies j xj �
4x=

�
3. C 1/

�
in �0 WD�\fc2� r < 4"g. Then  satisfies (4.19) in �.

5.6. The iteration procedure and choice of the constants. With the previous
analysis, our iteration procedure will consist of the following ten steps, in which
Steps 2–9 will be carried out in detail in Sections 6–8 and the Main Theorem is
completed in Section 9.

Step 1. Fix � 2 K. This determines the domain �C.�/, (5.29), and condition
(5.30) on �shock.�/, as described in Sections 5.4 and 5.5 above.

Step 2. In Section 6, using the vanishing viscosity approximation of (5.29)
via a uniformly elliptic equation

N. /C ı� D 0 for ı 2 .0; 1/

and sending ı ! 0, we establish the existence of a solution  2 C.�C.�// \
C 1.�C.�/n�sonic/\C

2.�C.�// to problem (5.29)–(5.33). This solution satisfies

(5.51) 0�  � C� in �C.�/;

where C depends only on the data.

Step 3. For every s 2 .0; c2=2/, set �00s WD�
C.�/\fc2� r > sg. By Lemma

5.2, if (5.16) holds with sufficiently large yC depending only on the data, then
(5.29) is uniformly elliptic in �00s for every s 2 .0; c2=2/, the ellipticity constant
depends only on the data and s, and the bounds of coefficients in the corresponding
Hölder norms also depend only on the data and s. Furthermore, (5.29) is linear on
fc2 � r > 4"g, which implies that it is also linear near the corners P2 and P3.
Then, by the standard elliptic estimates in the interior and near the smooth parts of
@�C.�/\�00s and using Lieberman’s estimates [35] for linear equations with the
oblique derivative conditions near the corners .�u2;�v2/ and �shock.�/\f�D�v2g,
we have

(5.52) k k
.�1�˛;†0/

2;˛;�00
s=2

� C.s/.k k
L1.�00s /

Cjv2j/;

if k k
L1.�00s /

C jv2j � 1, where the second term on the right-hand side comes
from the boundary condition (5.33), and the constant C.s/ depends only on the
ellipticity constants, the angles at the corners P2 D �shock.�/\ f� D �v2g and
P3 D .�u2;�v2/, the norm of �shock.�/ in C 1;˛, and s, which implies that C.s/
depends only on the data and s.
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Now, using (5.51) and (3.24), we obtain k k
L1.�00s /

Cjv2j � 1 if � is suffi-

ciently small, which is achieved by choosing yC in (5.16) sufficiently large. Then,
from (5.52), we obtain

(5.53) k k
.�1�˛;†0/

2;˛;�00
s=2

� C.s/�

for every s 2 .0; c2=2/, where C depends only on the data and s.

Step 4. Estimates of  in y�0.�/ WD �C.�/\ fc2 � r < "g. We work in the
.x; y/-coordinates, and then (5.29) is (5.42) in �0.

Step 4:1. L1 estimates of  in �C.�/ \ D0. Since � 2 K, the estimates
in (5.44) hold for large yC in (5.16) depending only on the data. We also rewrite
the boundary condition (5.30) in the .x; y/-coordinates and obtain (4.56) with OEi
replaced by OE�i .x; y/ WD OEi .D�.x; y/; �.x; y/; x; y/. Using � 2K, (4.57), (4.58),
and (5.27) with Of�.0/D Of0.0/D y1, we obtain

(5.54) j OE
�
i .x; y/j � C.M1"CM2�/� C= yC ; i D 1; 2;

for .x; y/ 2 �shock.�/\ f0 < x < 2"g. Then, if OC in (5.16) is large, we find that
the function

w.x; y/D
3x2

5. C 1/

is a supersolution of (5.42) in�0.�/ with the boundary condition (5.30) on �shock.�/

\f0 < x < 2"g. That is, the right-hand sides of (5.30) and (5.42) are negative on
w.x; y/ in the domains given above. Also, w.x; y/ satisfies the boundary condi-
tions (5.31) and (5.32) within �0.�/. Thus,

(5.55) 0�  .x; y/�
3x2

5. C 1/
in �0.�/;

if w �  on x D ". By (5.51), w �  on x D " if

C� � "2;

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied
with large yC . The details of the argument of Step 4.1 are in Lemma 7.3.

Step 4:2. Estimates of the norm k k.par/
2;˛;y�0.�/

. We use the parabolic rescaling

in the rectangle Rz defined by (5.12) in which �0 is replaced by �0.�/. Note that
Rz ��

0 for every z D .x; y/ 2 y�0.�/. Thus,  satisfies (5.42) in Rz . For every
z 2 y�0.�/, we define the functions  .z/ and �.z/ by (5.14) in the domain Q.z/1
defined by (5.13). Then (5.42) for  yields the following equation for  .z/.S; T /
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in Q.z/1 :

(5.56)

 �
1C

S

4

� �
2� . C 1/�1

� 4 .z/S
1CS=4

��
C xO

.�;z/
1

!
 
.z/
SS C xO

.�;z/
2  

.z/
ST

C

�
1

c2
C xO

.�;z/
3

�
 
.z/
T T �

�
1

4
C xO

.�;z/
4

�
 
.z/
S C x

2O
.�;z/
5  

.z/
T D 0;

where the terms O.�;z/
k

.S; T; p/, k D 1; : : : ; 5, satisfy

(5.57) kO
.�;z/

k
k
C1;˛.Q

.z/
1 �R2/

� C.1CM 2
1 /:

Estimate (5.57) follows from the explicit expressions of O.�;z/
k

obtained from both
(5.43) by rescaling and the fact that

k�.z/k
C2;˛.Q

.z/
1 /
� CM1;

which is true since k�k.par/
2;˛;�0.�/

� M1. Now, since every term O
.�;z/

k
in (5.56)

is multiplied by xˇk with ˇk � 1 and x 2 .0; "/, condition (5.16) (possibly after
increasing yC depending only on the data) implies that (5.56) is uniformly elliptic
in Q.z/1 and has the C 1;˛ bounds on the coefficients by a constant depending only
on the data.

Now, if the rectangle Rz does not intersect @�C.�/, then Q.z/1 DQ1, where
Qs D .�s; s/

2 for s > 0. Thus, the interior elliptic estimates in Theorem A.1 in
the appendix imply

(5.58) k .z/kC2;˛.Q1=2/ � C;

where C depends only on the data and k .z/kL1.Q1/. From (5.55), we have

k .z/kL1.Q1/ � 1=. C 1/:

Therefore, we obtain (5.58) with C depending only on the data.
Now consider the case when the rectangle Rz intersects @�C.�/. From its

definition, Rz does not intersect �sonic. Thus, Rz intersects either �shock or the
wedge boundary �wedge. On these boundaries, we have the homogeneous oblique
derivative conditions (5.30) and (5.32). In the case when Rz intersects �wedge, the
rescaled condition (5.32) remains the same form, thus oblique, and we use the
estimates for the oblique derivative problem in Theorem A.3 to obtain

(5.59) k .z/k
C2;˛.Q

.z/

1=2
/
� C;

where C depends only on the data, since the L1 bound of  .y/ in Q.z/1 follows
from (5.55). In the case when Rz intersects �shock, the obliqueness in the rescaled
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condition (5.30) is of order x1=2, which is small since x 2 .0; 2"/. Thus we use the
estimates for the “almost tangential derivative” problem in Theorem A.2 to obtain
(5.59).

Finally, rescaling back, we have

(5.60) k k
.par/
2;˛;y�0.�/

� C:

The details of the argument of Step 4.2 are in Lemma 7.4.

Step 5. In Lemma 7.5, we extend  from the domain �C.�/ to D working
in the .x; y/-coordinates (or, equivalently in the polar coordinates) near the sonic
line and in the rest of the domain in the .�; �/-coordinates, by using the procedure
of [10]. If yC is sufficiently large, the extension of  satisfies

k k
.par/
2;˛;D0 � C;(5.61)

k k
.�1�˛;†0/
2;˛;D00 � C."/�;(5.62)

with C depending only on the data in (5.61) and C."/ depending only on the data
and " in (5.62). This is obtained by using (5.60) and (5.53) with s > 0 determined
by the data and ", and by using the estimates of the functions f� and Of� in (5.22),
(5.26), and (5.27).

Step 6. We fix yC in (5.16) large depending only on the data, so that Lemmas
5.2–5.3 hold and the requirements on yC stated in Steps 1–5 above are satisfied. Set
M1 Dmax.2C; 1/ for the constant C in (5.61) and choose

(5.63) "D
1

10max.. yCM1/4; yC/
:

This choice of " fixes C in (5.62) depending only on the data and yC . Now set
M2 Dmax.C; 1/ for C from (5.62) and let

0 < � � �0 WD
. yC�1� "� "1=4M1/"

2

2
�
"2 max.M1;M2/CM2

� ;
where �0 > 0 since " is defined by (5.63). Then (5.16) holds with constant yC fixed
above.

Note that the constants �0; ";M1, and M2 depend only on the data and yC .

Step 7. With the constants �;";M1, and M2 chosen in Step 6, estimates (5.61)
and (5.62) imply

k�k
.par/
2;˛;D0 �M1; k k

.�1�˛;†0/
2;˛;D00 �M2�:

Thus,  2 K.�; ";M1;M2/. Then the iteration map J W K! K is defined.
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Step 8. In Lemma 7.5 and Proposition 7.1, by the argument similar to [10]
and the fact that K is a compact and convex subset of C 1;˛=2.D/, we show that the
iteration map J is continuous, by uniqueness of the solution  2C 1;˛.D/\C 2.D/
of (5.29)–(5.33). Then, by the Schauder Fixed Point Theorem, there exists a fixed
point  2 K. This is a solution of the free boundary problem.

Step 9. Removal of the cutoff. By Lemma 5.4, a fixed point  D � satisfies the
original equation (4.19) in�C. / if j xj�4x=

�
3.C1/

�
in�C. /\fc2�r <4"g.

We prove this estimate in Section 8 by choosing yC sufficiently large depending only
on the data.

Step 10. Since the fixed point  2 K of the iteration map J is a solution of
(5.29)–(5.33) for � D  , we conclude

(i)  2 C 1;˛.�C. //\C 2;˛.�C. //;

(ii)  D 0 on �sonic by (5.31), and  satisfies the original equation (4.19) in
�C. / by Step 9;

(iii) D D 0 on �sonic since k�k.par/
2;˛;D0 �M1;

(iv)  D '1�'2 on �shock. / by (5.21)–(5.23) since � D  ;

(v) The Rankine-Hugoniot gradient jump condition (4.29) holds on �shock. /.
Indeed, as we showed in (iv) above, the function ' D  C '2 satisfies (4.9)
on �shock. /. Since  2 K, it follows that  satisfies (4.28). Also,  on
�shock. / satisfies (5.30) with � D  , which is (4.42). Since  2 K satisfies
(4.28) and (4.42), it has been shown in Section 4.2 that ' satisfies (4.10) on
�shock. /, i.e.,  satisfies (4.29).

Extend the function ' D  C'2 from � WD�C. / to the whole domain ƒ
by using (1.20) to define ' in ƒ n�. Denote ƒ0 WD f� > �0g\ƒ, ƒ1 the domain
with � < �0 and above the reflected shock P0P1P2, and ƒ2 WD ƒ n .ƒ0 [ƒ1/.
Set S0 WD f� D �0g \ƒ the incident shock and S1 WD P0P1P2 \ƒ the reflected
shock. We show in Section 9 that S1 is a C 2-curve. Then we conclude that the
domains ƒ0, ƒ1, and ƒ2 are disjoint, @ƒ0 \ƒ D S0, @ƒ1 \ƒ D S0 [ S1, and
@ƒ2 \ƒD S1. Properties (i)–(v) above and the fact that  satisfies (4.19) in �
imply that

' 2W
1;1

loc .ƒ/; ' 2 C 1.ƒi /\C
1;1.ƒi / for i D 0; 1; 2;

' satisfies (1.8) a.e. in ƒ and the Rankine-Hugoniot condition (1.13) on the C 2-
curves S0 and S1, which intersect only at P0 2 @ƒ and are transversal at the
intersection point. Using this, Definition 2.1, and the remarks after Definition 2.1,
we conclude that ' is a weak solution of Problem 2, thus of Problem 1. Note that
the solution is obtained for every � 2 .0; �0�, i.e., for every �w 2 Œ�=2� �0; �=2�
by (3.1), and that �0 depends only on the data since yC is fixed in Step 9.
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6. Vanishing viscosity approximation and
existence of solutions of problem (5.29)–(5.33)

In this section we perform Step 2 of the iteration procedure described in Sec-
tion 5.6. Through this section, we keep � 2K fixed, denote by P WDfP1;P2;P3;P4g

the set of the corner points of�C.�/, and use ˛ 2 .0; 1=2/ as defined in Section 5.4.
We regularize (5.29) by the vanishing viscosity approximation via the uni-

formly elliptic equations

N. /C ı� D 0 for ı 2 .0; 1/:

That is, we consider the equation

(6.1) Nı. / WD .A11C ı/ ��C2A12 ��C .A22C ı/ �� D 0 in �C.�/:

In the domain �0 in the .x; y/-coordinates defined by (4.47), this equation has the
form

(6.2)
�
ıC 2x� . C 1/x�1

� x
x

�
CO

�
1

�
 xxCO

�
2  xy

C

�
1

c2
C

ı

.c2� x/2
CO

�
3

�
 yy �

�
1�

ı

c2� x
CO

�
4

�
 xCO

�
5  y D 0

by use of (5.42) and with the Laplacian operator � in the .x; y/-coordinates. This
is easily derived from the form of � in the polar coordinates. The terms O�

k
in

(6.2) are defined by (5.43).
We now study (6.1) in �C.�/ with the boundary conditions (5.30)–(5.33).
We first note some properties of the boundary condition (5.30). Using Lemma

5.1 with ˛ 2 .0; 1=2/ and (5.16), we find k�k.�1�˛;†0[�sonic/
2;˛;D � C , where C de-

pends only on the data. Then, writing (5.30) as

(6.3) M. /.�; �/ WD b1.�; �/ �Cb2.�; �/ �Cb3.�; �/ D 0 on �shock.�/

and using (4.43)–(4.45), we obtain

(6.4) kbik
.�˛;fP1;P2g/

1;˛;�shock.�/
� C for i D 1; 2; 3;

where C depends only on the data.
Furthermore, � 2 K with (5.16) implies that

k�kC1 �M1"CM2� � "
3=4= OC :

Then, using (4.43)–(4.45) and assuming that yC in (5.16) is sufficiently large, we
obtain that, for any .�; �/ 2 �shock.�/,
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.b1.�; �/; b2.�; �// � �.�; �/�
1

4
�02.c

2
2 �
O�2/ > 0;(6.5)

b1.�; �/�
1

2
�02.c

2
2 �
O�2/ > 0;ˇ̌̌̌

b2.�; �/� �

�
�2� �1

u1
� �02
O�

�ˇ̌̌̌
� "3=4;ˇ̌̌̌

b3.�; �/C

�
�2� �1

u1
� �02
O�

�ˇ̌̌̌
� "3=4:

Now we write condition (5.30) in the .x; y/-coordinates on �shock.�/\D0.
Then we obtain the following condition of the form

(6.6) M. /.x; y/D Ob1.x; y/ xCOb2.x; y/ yCOb3.x; y/ D0 on �shock.�/\D0;

where Ob1.x; y/ D b1.�; �/
@x
@�
C b2.�; �/

@x
@�
; Ob2.x; y/ D b1.�; �/

@y
@�
C b2.�; �/

@y
@�
;

and Ob3.x; y/ D b3.�; �/. Condition (5.30) is oblique, by the first inequality in
(6.5). Then, since transformation (4.47) is smooth on f0 < c2 � r < 2"g and has
nonzero Jacobian, it follows that (6.6) is oblique; that is,

(6.7) . Ob1.x; y/; Ob2.x; y// � �s.x; y/� C
�1 > 0 on �shock.�/\D0;

where O�s D O�s.x; y/ is the interior unit normal at .x; y/ 2 �shock.�/\D0 to �.�/.
As we showed in Section 4.3, writing the left-hand side of (4.42) in the .x; y/-

coordinates, we obtain the left-hand side of (4.56). Thus, (6.6) is obtained from
(4.56) by substitution of �.x; y/ into OE1 and OE2. Also, from (5.27) with Of�.0/D
Of0.0/D y1, we estimate jy�y1j D j Of�.x/� Of�.0/j �CM1" on �shock\fx < 2"g.

Then, using (4.56)–(4.58) and �1 < 0, we find that, if yC in (5.16) is sufficiently
large depending only on the data, then

k Obik
.�1;fP1g/

1;˛;�shock.�/\D0
� CM1 for i D 1; 2; 3;(6.8)

Ob1.x; y/� �
1

2

�2� �1

u1

�21
c2
< 0 for .x; y/ 2 �shock.�/\D0;

Ob2.x; y/� �
1

2
�1

 
�02C

�2� �1

u1c
2
2

j�1j

!
< 0 for .x; y/ 2 �shock.�/\D0;

Ob3.x; y/� �
1

2

�
�02j�1jC

�2� �1

u1

�
< 0 for .x; y/ 2 �shock.�/\D0;

where C depends only on the data.
Now we state the main existence result for the regularized problem.

PROPOSITION 6.1. There exist yC ;C; ı0 > 0 depending only on the data such
that, if �; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), then, for every ı 2 .0; ı0/,
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there exists a unique solution  2 C .�1�˛;P/
2;˛;�C.�/

of (6.1) and (5.30)–(5.33), and this
solution satisfies

40�  .�; �/� C� for .�; �/ 2�C.�/;(6.9)

j .x; y/j � C
�

"
x for .x; y/ 2�0;(6.10)

where we have used coordinates (4.47) in (6.10). Moreover, for any s 2 .0; c2=4/,
there exists C.s/ > 0 depending only on the data and s, but independent of ı 2
.0; ı0/, such that

(6.11) k k
.�1�˛;fP2;P3g/

2;˛;�
C
s .�/

� C.s/�;

where �Cs .�/ WD�
C.�/\fc2� r > sg.

Proof. Note that (6.1) is nonlinear and the boundary conditions (5.30)–(5.33)
are linear. We find a solution of (5.30)–(5.33) and (6.1) as a fixed point of the map

(6.12) OJ W C 1;˛=2.�C.�//! C 1;˛=2.�C.�//

defined as follows: For O 2 C 1;˛=2.�C.�//, we consider the linear elliptic equa-
tion obtained by substituting O into the coefficients of (6.1):

(6.13) a11 �� C 2a12 ��C a22 �� D 0 in �C.�/;

where
(6.14)
aij .�; �/D Aij .D O .�; �/; �; �/C ı ıij for .�; �/ 2�C.�/; i; j D 1; 2;

with ıij D 1 for i D j and 0 for i ¤ j , i; j D 1; 2. We establish below the existence
of a unique solution  2 C .�1�˛;P/

2;˛=2;�C.�/
to the linear elliptic equation (6.13) with

the boundary conditions (5.30)–(5.33). Then we define OJ . O /D  .
We first state some properties of (6.13).

LEMMA 6.1. There exists yC > 0 depending only on the data such that, if
�; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/, then, for any
O 2 C 1;˛=2.�C.�//, equation (6.13) is uniformly elliptic in �C.�/:

(6.15) ıj�j2�
2X

i;jD1

aij .�; �/�i�j � 2�
�1
j�j2 for .�; �/2�C.�/; �2R2;

where � is from Lemma 5.2. Moreover, for any s 2 .0; c2=2/, the ellipticity con-
stants depend only on the data and are independent of ı in �Cs .�/ D �

C.�/\

fc2� r > sg:
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(6.16)

�.c2�s/j�j
2
�

2X
i;jD1

aij .�; �/�i�j �2�
�1
j�j2 for zD .�; �/2�Cs .�/; �2R2:

Furthermore,

(6.17) aij 2 C
˛=2.�C.�//:

Proof. Facts (6.15) and (6.16) directly follow from the definition of aij and
both the definition and properties of Aij in Section 5.5 and Lemma 5.2.

Since Aij .p; �; �/ are independent of p in �C.�/\fc2� r > 4"g, it follows
from (5.35), (5.41), and � 2 K that aij 2 C

.�˛;†0/

1;˛=2;�C.�/\D00
� C ˛.�C.�/\D00/.

To show aij 2C
˛=2.�C.�//, it remains to prove that aij 2C ˛=2.�.�/\D0/.

To achieve this, we note that the nonlinear terms in the coefficients Aij .p; �; �/ are
only the terms

.c2� r/�1
�� � C � �
r.c2� r/

�
:

Since �1 is a bounded and C1-smooth function on R, and �01 has compact support,
there exists C > 0 such that, for any s > 0, q 2 R,

(6.18)
ˇ̌̌
s�1
�q
s

�ˇ̌̌
�

�
sup
t2R
j�1.t/j

�
s;

ˇ̌̌
D.q;s/

�
s�1
�q
s

��ˇ̌̌
� C:

Then it follows that the function

F.p; �; �/D .c2� r/�1
��p1C �p2
r.c2� r/

�
satisfies jF.p;�;�/j�k�1kL1.R/.c2�r/ for any .p;�;�/2R2�D0, and jD.p;�;�/F j
is bounded on compact subsets of R2 �D0. From this and O 2 C 1;˛=2.�C.�//,
we have aij 2 C ˛=2.�C.�//. �

Now we state some properties of (6.13) written in the .x; y/-coordinates.

LEMMA 6.2. There exist �> 0 and C; yC > 0 depending only on the data such
that, if �; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/, then, for
any O 2 C 1;˛=2.�C.�//, equation (6.13) written in the .x; y/-coordinates has the
structure

(6.19) Oa11 xxC 2 Oa12 xy C Oa22 yy C Oa1 xC Oa2 y D 0 in �C.�/\D04";

where Oaij D Oaij .x; y/ and Oai D Oai .x; y/ satisfy

(6.20) Oaij ; Oai 2 C
˛=2.�C.�/\D04"/ for i; j D 1; 2;
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and the ellipticity condition
(6.21)

ı�j�j2�

2X
i;jD1

Oaij .�; �/�i�j ��
�1
j�j2 for any .x; y/ 2�C.�/\D04"; �2R2:

Moreover,

ı � Oa11.x; y/� ıC 2x;
1

2c2
� Oa22.x; y/�

2

c2
; �2� Oa1.x; y/� �

1

2
;

(6.22)

j. Oa12; Oa21; Oa2/.x; y/j � C jxj; jD. Oa12; Oa21; Oa2/.x; y/j � C jxj
1=2;

j Oai i .x; y/� Oai i .0; Qy/j � C j.x; y/� .0; Qy/j
˛ for i D 1; 2;

for all .x; y/; .0; Qy/ 2�C.�/\D04".

Proof. By (4.31), if " � Nc2=10, then the change of variables from .�; �/ to
.x; y/ in D04" is smooth and smoothly invertible with Jacobian bounded away from
zero, where the norms and lower bound of the Jacobian depend only on the data.
Now (6.21) follows from (6.16).

(6.13) written in the .x; y/-coordinates can be obtained by substituting O into

the term x�1.
 x

x
/ in the coefficients of (6.2). Using (6.18), the assertions in (6.20)

and (6.22), except the last inequality, follow directly from (6.2) with (5.43) and
(4.50), � 2 K with (5.16), and O 2 C 1;˛=2.�C.�//.

Then we prove the last inequality in (6.22). We note that, from (6.2) and
(5.43), it follows that Oai i .x; y/D Fi i .D�; �; x; y/CGi i .x/x�1.

O x
x
/, where Fi i

and Gi i are smooth functions, and � and O are evaluated at .x; y/. In particular,
since �1.�/ is bounded, Oai i .0; y/D Fi i .D�.0; y/; �.0; y/; 0; y/. Thus, assuming
x > 0, we use the boundedness of �1 and Gi i , smoothness of Fi i , and � 2 K with
Lemma 5.1 to obtain

j Oai i .x; y/� Oai i .0; Qy/j

�

ˇ̌̌
Fi i .D�.x; y/; �.x; y/; x; y/�Fi i .D�.0; Qy/; �.0; Qy/; 0; Qy/

ˇ̌̌
C x

ˇ̌̌
Gi i .x/�1

� O x.x; y/
x

�ˇ̌̌
� CxCC.M1�

1�˛
CM2�/j.x; y/� .0; Qy/j

˛
� C j.x; y/� .0; Qy/j˛;

where the last inequality holds since ˛ 2 .0; 1=2/ and (5.16). If x D 0, the only
difference is that the first term is dropped in the estimates. �

LEMMA 6.3 (Comparison Principle). There exists yC > 0 depending only on
the data such that, if �; "> 0 andM1;M2� 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/,
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the following comparison principle holds: Let

 2 C.�C.�//\C 1.�C.�/ n�sonic/\C
2.�C.�//;

let the left-hand sides of (6.13), (5.30), (5.32), and (5.33) be nonpositive for  , and
let  � 0 on �sonic. Then

 � 0 in �C.�/:

Proof. We assume that yC is large so that (5.19)–(5.22) hold. We first note that
the boundary condition (5.30) on �shock.�/, written as (6.3), satisfies

.b1; b2/ � � > 0; b3 < 0 on �shock.�/,

by (6.5) combined with O� < 0 and �2 > �1. Thus, if  is not a constant in �C.�/,
a negative minimum of  over �C.�/ cannot be achieved:

(i) In the interior of �C.�/, by the Strong Maximum Principle for linear elliptic
equations;

(ii) In the relative interiors of �shock.�/, �wedge, and @�C.�/\ f� D �v2g, by
Hopf’s Lemma and the oblique derivative conditions (5.30), (5.32), and (5.33);

(iii) In the corners P2 and P3, by the result in Lieberman [33, Lemma 2.2], via a
standard argument as in [20, Th. 8.19]. Note that we have to flatten the curve
�shock in order to apply [33, Lemma 2.2] near P2, and this flattening can be
done by using the C 1;˛ regularity of �shock.

Using that  � 0 on �sonic, we conclude the proof. �

LEMMA 6.4. There exists yC > 0 depending only on the data such that, if
�; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/, then any solution
 2 C.�C.�//\C 1.�C.�/ n �sonic/\C

2.�C.�// of (6.13) and (5.30)–(5.33)
satisfies (6.9) and (6.10) with the constant C depending only on the data.

Proof. First we note that, since �C.�/� f� < c2g, the function

w.�; �/D�v2.�� c2/

is a nonnegative supersolution of (6.13) and (5.30)–(5.33): Indeed,

(i) w satisfies (6.13) and (5.33);

(ii) w is a supersolution of (5.30). This can be seen by using (6.3), (6.5), �2 > �1,
u1 > 0, �02 > 0, O� < 0, and j�j � c2 to compute on �shock:

M.w/D�b2v2� b3v2.�� c2/� �v2

�
�02j
O�jC

�2� �1

u1
� "3=4.1C 2c2/

�
< 0

if " is small depending on the data, which is achieved by the choice of yC in
(5.16);
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(iii) w is a supersolution of (5.32). This follows from Dw � � D �v2 cos �w < 0
since the interior unit normal on �wedge is � D .� sin �w ; cos �w/;

(iv) w � 0 on �sonic.

Similarly, Qw� 0 is a subsolution of (6.13) and (5.30)–(5.33). Thus, by the Compar-
ison Principle (Lemma 6.3), any solution  2 C.�C.�//\C 1.�C.�/ n�sonic/\

C 2.�C.�// satisfies

0�  .�; �/� w.�; �/ for any .�; �/ 2�C.�/:

Since jv2j � C� , then (6.9) follows.
To prove (6.10), we work in the .x; y/-coordinates in D0\�C.�/ and assume

that yC in (5.16) is sufficiently large so that the assertions of Lemma 6.2 hold. Let
v.x; y/D L�x for L> 0. Then

(i) v is a supersolution of (6.19) in �0 \ fx < "g: Indeed, the left-hand side
of (6.19) on v.x; y/D L�x is Oa1.x; y/L� , which is negative in D0 \�C.�/ by
(6.22);

(ii) v satisfies the boundary conditions (4.52) on @�C.�/\fxD 0g and (4.53)
on @�C.�/\fy D 0g;

(iii) The left-hand side of (6.6) is negative for v on �shock\fx < "g: Indeed,
M.v/.x; y/D L�. Ob1C Ob3x/ < 0 by (6.8) and since x � 0 in �0.

Now, choosing L large so that L" > C where C is the constant in (6.9), we
have by (6.9) that v �  on fx D "g. By the Comparison Principle, which holds
since (6.19) is elliptic and condition (6.6) satisfies (6.7) and Ob3 < 0 where the last
inequality follows from (6.8), we obtain v �  in �C.�/\ fx < "g. Similarly,
� � �v in �C.�/\fx < "g. Then (6.10) follows. �

LEMMA 6.5. There exists yC > 0 depending only on the data such that, if
�; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/, any solution
 2 C.�C.�//\C 1.�C.�/ n �sonic/\C

2.�C.�// of (6.13) and (5.30)–(5.33)
satisfies

(6.23) k k
.�1�˛;fP2;P3g/

2;˛=2;�
C
s .�/

� C.s; O /�

for any s 2 .0; c2=2/, where the constant C.s; O / depends only on the data, s, and
k O k

C1;˛=2.�C.�//
.

Proof. From (5.22), (5.24), (6.4), (6.5), (6.16), (6.17), and the choice of ˛ in
Section 5.4, it follows by [35, Lemma 1.3] that
(6.24)
k k

.�1�˛;†0[�shock.�/[�wedge/

2;˛=2;�
C
s .�/

� C.s; O /.k kC.�C.�//Cjv2j/� C.s; O /�;

where we have used (3.24) and Lemma 6.4 in the second inequality.
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In deriving (6.24), we have used (5.24) and (6.4) only to infer that �shock.�/

is a C 1;˛-curve and bi 2 C ˛.�shock.�//. To improve (6.24) to (6.23), we use
the higher regularity of �shock.�/ and bi , given by (5.24) and (6.4) (and a similar
regularity for the boundary conditions (5.32) and (5.33), which are given on the flat
segments and have constant coefficients), combined with rescaling from the balls
Bd=2.z/\�

C.�/ for any z 2�Cs .�/nfP2; P3g (with d D dist.z; fP2; P3g[†0/)
into the unit ball and the standard estimates for the oblique derivative problems for
linear elliptic equations. �

Now we show that the solution  is C 2;˛=2 near the corner P4 D �sonic \

�wedge.�/. We work in D0 in the .x; y/-coordinates.

LEMMA 6.6. There exists yC > 0 depending only on the data such that, if
�; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; 1/, any solution
 2 C.�C.�//\C 1.�C.�/n�sonic/\C

2.�C.�// of (6.13) and (5.30)–(5.33) is
in C 2;˛=2.B%.P4/\�C.�// for sufficiently small % > 0.

Proof. In this proof, the universal constant C depends only on the data, ı, and
k. Oaij ; Oai /kC˛=2.�C.�// for i; j D 1; 2, i.e., C is independent of %.

Step 1. We work in the .x; y/-coordinates. Then P4 D .0; 0/ and �C.�/\
B2% D fx > 0; y > 0g/\B2% for % 2 .0; "/. Denote

BC% WD B%.0/\fx > 0g; BCC% WD B%.0/\fx > 0; y > 0g:

Then  satisfies (6.19) in BCC2% and

 D 0 on �sonic\B2% D B2%\fx D 0; y > 0g;(6.25)

 � �  y D 0 on �wedge\B2%D B2%\fy D 0; x > 0g:(6.26)

Rescale  by

v.z/D  .%z/ for z D .x; y/ 2 BCC2 :

Then v 2 C.BCC2 /\C 1.BCC2 n fx D 0g/\C 2.BCC2 / satisfies

(6.27) kvk
L1.B

CC

2 /
D k k

L1.B
CC

2% /
;

and v is a solution of

(6.28) Oa
.%/
11 vxxC 2 Oa

.%/
12 vxy C Oa

.%/
22 vyy C Oa

.%/
1 vxC Oa

.%/
2 vy D 0 in BCC2 ;

v D 0 on @BCC2 \fx D 0g;(6.29)

v� � vy D 0 on @BCC2 \fy D 0g;(6.30)
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where

(6.31) Oa
.%/
ij .x; y/D Oaij .%x; %y/; Oa

.%/
i .x; y/D % Oai .%x; %y/

for .x; y/ 2 BCC2 ; i; j D 1; 2:

Thus, Oa.%/ij satisfy (6.21) with the unchanged constant � > 0 and, since %� 1,

(6.32) k. Oa.%/ij ; Oa
.%/
i /k

C˛=2.B
CC

2 /
� k. Oaij ; Oai /kC˛=2.�C.�// for i; j D 1; 2:

Denote Q WD fz 2 BCC2 W dist.z; @BCC2 / > 1=50g. The interior estimates for the
elliptic equation (6.28) imply kvkC2;˛=2.Q/ � CkvkL1.BCC2 /

. The local estimates
for the Dirichlet problem (6.28) and (6.29) imply

(6.33) kvk
C2;˛=2.B1=10.z/\B

CC

2 /
� Ckvk

L1.B
CC

2 /

for every z D .x; y/ 2 fx D 0; 1=2� y � 3=2g. The local estimates for the oblique
derivative problem (6.28) and (6.30) imply (6.33) for every z2f1=2�x�3=2;yD0g.
Then we have

(6.34) kvk
C2;˛=2.B

CC

3=2
nB
CC

1=2
/
� Ckvk

L1.B
CC

2 /
:

Step 2. We modify the domain BCC1 by mollifying the corner at .0; 1/ and
denote the resulting domain by DCC. That is, DCC denotes an open domain
satisfying

DCC � BCC1 ; DCC nB1=10.0; 1/D B
CC
1 nB1=10.0; 1/;

and

@DCC\B1=5.0; 1/ is a C 2;˛=2-curve:

Then we prove the following fact: For any g 2 C ˛=2.DCC/, there exists a unique
solution w 2 C 2;˛=2.DCC/ of the problem:

Oa
.%/
11 wxxC Oa

.%/
22 wyy C Oa

.%/
1 wx D g in DCC;(6.35)

w D 0 on @DCC\fx D 0; y > 0g;

w� � wy D 0 on @DCC\fx > 0; y D 0g;

w D v on @DCC\fx > 0; y > 0g;

with

(6.36) kwk
C2;˛=2.DCC/

� C.kvk
L1.B

CC

2 /
Ckgk

C˛=2.DCC/
/:
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This can be seen as follows. Denote by DC the even extension of DCC from
fx; y > 0g into fx > 0g, i.e.,

DC WDDCC[f.x; 0/ W x 2 .0; 1/g[DC�;

where DC� WD f.x; y/ W .x;�y/ 2DCCg. Then BC
7=8
�DC � BC1 and @DC is a

C 2;˛=2-curve. Extend F D .v; g; Oa.%/11 ; Oa
.%/
22 ; Oa

.%/
1 / from BCC2 to BC2 by setting

F.x;�y/D F.x; y/ for .x; y/ 2 BCC2 :

Then it follows from (6.29), (6.30), and (6.34) that, denoting by Ov the restriction
of (extended) v to @DC, we have Ov 2 C 2;˛=2.@DC/ with

(6.37) k OvkC2;˛=2.@DC/ � CkvkL1.BCC2 /
:

Also, the extended g satisfies g 2C ˛=2.DC/ with kgk
C˛=2.DC/

Dkgk
C˛=2.DCC/

.

The extended . Oa.%/11 ; Oa
.%/
22 ; Oa

.%/
1 / satisfy (6.21) and

k. Oa
.%/
11 ; Oa

.%/
22 ; Oa

.%/
1 /k

C˛=2.B
C

2 /
D k. Oa

.%/
11 ; Oa

.%/
22 ; Oa

.%/
1 /k

C˛=2.B
CC

2 /

�

2X
i;jD1

k. Oaij ; Oai /kC˛=2.�C.�//:

Then, by [20, Th. 6.8], there exists a unique solution w 2 C 2;˛=2.DC/ of the
Dirichlet problem

Oa
.%/
11 wxxC Oa

.%/
22 wyy C Oa

.%/
1 wx D g in DC;(6.38)

w D Ov on @DC;(6.39)

and w satisfies

(6.40) kwk
C2;˛=2.DC/

� C.k OvkC2;˛=2.@DC/CkgkC˛=2.DC//:

From the structure of (6.38) and the symmetry of the domain and the coefficients
and right-hand sides obtained by the even extension, it follows that Ow, defined by
Ow.x; y/D w.x;�y/ in DC, is also a solution of (6.38) and (6.39). By uniqueness

for (6.38) and (6.39), we find

w.x; y/D w.x;�y/ in DC:

Thus, w restricted to DCC is a solution of (6.35), where we use (6.29) to see that
w D 0 on @DCC \ fx D 0; y > 0g. Moreover, (6.37) and (6.40) imply (6.36).
The uniqueness of the solution w 2 C 2;˛=2.DCC/ of (6.35) follows from the
Comparison Principle (Lemma 6.3).
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Step 3. Now we prove the existence of a solution w 2 C 2;˛=2.DCC/ of the
problem:
(6.41)

Oa
.%/
11 wxxC 2 Oa

.%/
12 wxy C Oa

.%/
22 wyy C Oa

.%/
1 wxC Oa

.%/
2 wy D 0 in DCC;

w D 0 on @DCC\fx D 0; y > 0g;

w� � wy D 0 on @DCC\fy D 0; x > 0g;

w D v on @DCC\fx > 0; y > 0g:

Moreover, we prove that w satisfies

(6.42) kwk
C2;˛=2.DCC/

� Ckvk
L1.B

CC

2 /
:

We obtain such w as a fixed point of mapK WC 2;˛=2.DCC/!C 2;˛=2.DCC/

defined as follows. Let W 2 C 2;˛=2.DCC/. Define

(6.43) g D�2 Oa
.%/
12 Wxy � Oa

.%/
2 Wy :

By (6.22) and (6.31) with % 2 .0; 1/, we find

(6.44) k.a
.%/
12 ; a

.%/
2 /k

C˛=2.DCC/
� C%1=2;

which implies
g 2 C ˛=2.DCC/:

Then, by the results of Step 2, there exists a unique solution w 2 C 2;˛=2.DCC/ of
(6.35) with g defined by (6.43). We set KŒW �D w.

Now we prove that, if % > 0 is sufficiently small, the map K is a contraction
map. Let W .i/ 2 C 2;˛=2.DCC/ and w.i/ WD KŒW .i/� for i D 1; 2. Then w WD
w.1/�w.2/ is a solution of (6.35) with

g D�2 Oa
.%/
12 .W

.1/
xy �W

.2/
xy /� Oa

.%/
2 .W .1/

y �W .2/
y /;

v � 0:

Then g 2 C ˛=2.DCC/ and, by (6.44),

kgk
C˛=2.DCC/

� C%1=2kW .1/
�W .2/

k
C2;˛=2.DCC/

:

Since v � 0 satisfies (6.29) and (6.30), we can apply both (6.36) and the results of
Step 2 to obtain

kw.1/�w.2/k
C2;˛=2.DCC/

� C%1=2kW .1/
�W .2/

k
C2;˛=2.DCC/

�
1

2
kW .1/

�W .2/
k
C2;˛=2.DCC/

;

where the last inequality holds if % > 0 is sufficiently small. We fix such %. Then
the map K has a fixed point w 2 C 2;˛=2.DCC/ which is a solution of (6.41).
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Step 4. Since v satisfies (6.28)–(6.30), it follows from the uniqueness of solu-
tions in C.DCC/\C 1.DCCnfx D 0g/\C 2.DCC/ of problem (6.41) that wD v
in DCC. Thus v 2 C 2;˛=2.DCC/ so that  2 C 2;˛=2.B%=2.P4/\�C.�//. �

Now we prove that the solution  is C 1;˛ near the corner P1 D �sonic\�shock.�/

if ı is small.

LEMMA 6.7. There exist yC > 0 and ı0 2 .0; 1/ depending only on the data
such that, if �; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; ı0/,
then any solution  2 C.�C.�//\C 1.�C.�/ n �sonic/\C

2.�C.�// of (6.13)
and (5.30)–(5.33) is in C 1;˛.B%.P1/\�C.�//\C 2;˛=2.B%.P1/\�C.�//, for
sufficiently small % > 0 depending only on the data and ı, and satisfies

(6.45) k k
.�1�˛;fP1g/

2;˛=2;�C.�/
� C.ı; O /�;

where C depends only on the data, ı, and k O k
C1;˛=2.�C.�//

. Moreover, for ı as
above,

(6.46) j .x/j � zC.ı/.dist.x; P1//1C˛ for any x 2�C.�/;

where zC depends only on the data and ı, and is independent of O .

Proof. In Steps 1–3 of this proof below, the positive constants C and Li ; 1�
i � 4; depend only on the data.

Step 1. We work in the .x; y/-coordinates. Then the point P1 has the coordi-
nates .0; y

P1
/ with y

P1
D�=2Carctan .j�1j=�1/��w >0. From (5.25) and (5.26),

we have
�C.�/\B�.P1/D fx > 0; y < Of�.x/g\B".P1/;

where Of�.0/D yP1 , Of 0�.0/ > 0, and Of� > yP1 on RC by (5.7) and (5.26).

Step 2. We change the variables in such a way that P1 becomes the origin
and the second-order part of (6.13) at P1 becomes the Laplacian. Denote

(6.47) �D
p
Oa11.P1/= Oa22.P1/:

Then, using (6.22) and x
P1
D 0, we have

(6.48)
p
c2ı=2� ��

p
2c2ı:

Now we introduce the variables

.X; Y / WD .x=�; y
P1
�y/:

Then, for %D ", we have

(6.49) �C.�/\B% D fX > 0; Y > F.X/g\B%;
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where F.X/Dy
P1
� Of�.�X/. By (5.26), we have 0< Of 0�.X/�C for allX 2 Œ0; 2"�

if yC is sufficiently large in (5.16) so that 2" � �. With this, we use Of�.0/D yP1
and (6.48) to obtain

F.0/D 0; �L1
p
ı � F 0.X/ < 0 for X 2 Œ0; %�:(6.50)

We now write  in the .X; Y /-coordinates. Introduce the function

v.X; Y / WD  .x; y/D  .�X; yP1 �Y /:

Since  satisfies (6.6) and the boundary conditions (5.32) and (6.19), then v satis-
fies

(6.51) Av WD
1

�2
Qa11vXX �

2

�
Qa12vXY C Qa22vY Y C

1

�
Qa1vX � Qa2vY D 0

in fX > 0; Y > F.X/g\B%;

Bv WD
1

�
Qb1vX � Qb2vY C Qb3v D 0 on fX > 0; Y D F.X/g\B%;(6.52)

v D 0 on fX D 0; Y > 0g\B%;(6.53)

where

Qaij .X; Y /D Oaij .�X; yP1
�Y /; Qai .X; Y /D Oai .�X; yP1

�Y /;

Qbi .X; Y /D Obi .�X; yP1
�Y /:

In particular, from (6.20), (6.22), and (6.47), we have

Qaij ; Qai 2 C
˛=2.fX > 0; Y > F.X/g\B%/;(6.54)

Qa22.0; 0/D
1

�2
Qa11.0; 0/; Qa12.0; 0/D Qa2.0; 0/D 0;(6.55)

j Qai i .X; Y /� Qai i .0; 0/j � C j.X; Y /j
˛ for i D 1; 2;(6.56)

j Qa12.X; Y /jC j Qa21.X; Y /jC j Qa2.X; Y /j � C jX j
1=2; j Qa1.X; Y /j � C:(6.57)

From (6.8), there exists L2 > 0 such that

(6.58) �L�12 � Qbi .X; Y /��L2 for any .X; Y /2fX >0; Y DF.X/g\B%:

Moreover, (6.7) implies

(6.59) . Qb1; Qb2/ � �F > 0 on fX > 0; Y D F.X/g\B%;

where �
F
D �

F
.X; Y / is the interior unit normal at .X; Y / 2 fX > 0; Y D F.X/g

\B%. Thus condition (6.52) is oblique.

Step 3. We use the polar coordinates .r; �/ on the .X; Y /-plane, i.e.,

.X; Y /D .r cos �; r sin �/:
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From (6.50), we have F;F 0 < 0 on .0; %/, which implies that .X2CF.X/2/0 > 0
on .0; %/. Then it follows from (6.50) that, if ı > 0 is a small constant depending
only on the data and % is a small constant depending only on the data and ı, there
exist a function �F 2 C 1.RC/ and a constant L3 > 0 such that

(6.60) fX > 0; Y > F.X/g\B% D f0 < r < %; �F .r/ < � < �=2g

with

(6.61) �L3
p
ı � �F .r/� 0:

Choosing sufficiently small ı0>0, we show that, for any ı 2 .0; ı0/, a function

(6.62) w.r; �/D r1C˛ cosG.�/; with G.�/D
3C˛

2

�
� �

�

4

�
;

is a positive supersolution of (6.51)–(6.53) in fX > 0; Y > F.X/g\B%.
By (6.49), (6.60), and (6.61), we find that, when 0 < ı � ı0 �

� .1�˛/�
8.3C˛/L3

�2
;

�
�

2
C
1�˛

16
� �G.�/�

�

2
�
1�˛

8
� for all .r; �/ 2�C.�/\B%:

In particular,
(6.63)

cos.G.�//� sin
�1�˛
16

�
�
> 0 for all .r; �/ 2�C.�/\B% n fX D Y D 0g;

which implies
w > 0 in fX > 0; Y > F.X/g\B%:

By (6.60) and (6.61), we find that, for all r 2 .0; %/ and ı 2 .0; ı0/ with small
ı0 > 0,

cos.�F .r//� 1�Cı0 > 0; j sin.�F .r//j � C
p
ı0:

Now, possibly further reducing ı0, we show that w is a supersolution of (6.52).
Using (6.48), (6.52), (6.58), the estimates of .�F ; G.�F // derived above, and the
fact that � D �F on fX > 0; Y D F.X/g\B%, we have

Bw �
Qb1

�
r˛
�
.˛C 1/ cos.�F / cos.G.�F //C

3C˛

2
sin.�F / sin.G.�F //

�
CCr˛j Qb2jCCr

˛C1
j Qb3j

� �r˛

 
.1�Cı0/

�sin.1�˛
16
�/

CL2
p
ı0
�CL2

�
�C

!
< 0;

if ı0 is sufficiently small. We now fix ı0 that satisfies all the smallness assumptions
made above.
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Finally, we show that w is a supersolution of (6.51) in .X; Y / 2 fX > 0; Y >

F.X/g\B% if % is small. Denote by A0 the operator obtained by fixing the coeffi-
cients of A in (6.51) at .X; Y /D .0; 0/. Then A0D Qa22.0; 0/� by (6.55). By (6.22),
we obtain Qa22.0; 0/D Oa22.0; yP1 /� 1=.4 Nc2/ > 0. Now, by an explicit calculation
and using (6.48), (6.55)–(6.57), (6.60), and (6.63), we find that, for ı 2 .0; ı0/ and
.X; Y / 2 fX > 0; Y > F.X/g\B%,

Aw.r; �/D a2.0; 0/�w.r; �/C .A�A0/w.r; �/

� Qa22.0; 0/r
˛�1

�
.˛C 1/2�

�3C˛
2

�2�
cos.G.�//

CCr˛�1
�
1

�2
j Qa11.X; Y /� Qa11.0; 0/jC j Qa22.X; Y /� Qa22.0; 0/j

�
C
C

�
r˛�1j Qa12.X; Y /jC

C

�
r˛j Qa1.X; Y /jCCr

˛
j Qa2.X; Y /j

� r˛�1
�
�
.1�˛/.5C 3˛/

8 Nc2
sin
�1�˛
16

�
�
CC

%˛=2
p
ı

�
< 0

for sufficiently small % > 0 depending only on the data and ı.
Thus, all the estimates above hold for small ı0 > 0 and % > 0 depending only

on the data.
Now, since

min
fX�0; Y�F.X/g\@B%

w.X; Y /D L4 > 0;

we use the Comparison Principle (Lemma 6.3) (which holds since condition (6.52)
satisfies (6.59) and Qb3 < 0 by (6.58)) to obtain

k kL1.�C.�//

L4
w � v in fX > 0; Y > F.X/g\B%:

Similar estimate can be obtained for �v. Thus, using (6.9), we obtain (6.46) in
B%. Since % depends only on the data and ı >0, we use (6.9) to obtain the full
estimate (6.46).

Step 4. Estimate (6.45) can be obtained from (6.8), (6.20), and (6.46), com-
bined with rescaling from the balls Bdz=L.z/\�

C.�/ for z 2�Cs .�/nfP1g (with
dz D dist.z; P1/ and L sufficiently large depending only on the data) into the unit
ball and the standard interior estimates for the linear elliptic equations and the
local estimates for the linear Dirichlet and oblique derivative problems in smooth
domains. Specifically, from the definition of sets K and �C.�/ and by (5.16), there
exists L� 1 depending only on the data such that

Bd=L.z/\ .@�
C.�/ n�shock/D∅ for any z 2 �shock\�%;

and
Bd=L.z/\ .@�

C.�/ n�sonic/D∅ for any z 2 �sonic\�%:
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Then, for any z 2 �C.�/\B%.P1/, we have at least one of the following three
cases:

(1) B d
10L
.z/��C.�/;

(2) z 2 Bdz1
2L

.z1/ and dz
dz1
2 .1

2
; 2/ for some z1 2 �sonic;

(3) z 2 Bdz1
2L

.z1/ and dz
dz1
2 .1

2
; 2/ for some z1 2 �shock.

Thus, it suffices to make the C 2;˛-estimates of  in the following subdomains
for z0 D .x0; y0/:

(i) B dz0
20L

.z0/ when B dz0
10L

.z0/��
C.�/;

(ii) Bdz0
2L

.z0/\�
C.�/ for z0 2 �sonic\B%.P1/;

(iii) Bdz0
2L

.z0/\�
C.�/ for z0 2 �shock\B%.P1/.

We discuss only case (iii), since the other cases are simpler and can be handled
similarly.

Let z0 2 �shock \B%.P1/. Denote Od D dz0
2L

> 0. Without loss of generality,
we can assume that Od � 1.

We rescale z D .x; y/ near z0:

Z D .X; Y / WD
1

Od
.x� x0; y �y0/:

Since B Od .z0/\ .@�
C.�/ n�shock/D∅, then, for � 2 .0; 1/, the domain obtained

by rescaling �C.�/\B
� Od
.z0/ is

y�z0� WD B� \

(
Y < OF .X/ WD

Of�.x0C OdX/� Of�.x0/

Od

)
;

where Of� is the function in (5.25). Note that y0 D Of�.x0/ since .x0; y0/ 2 �shock.
Since L� 1, we have

k OF kC2;˛.Œ�1;1�/ � k
Of�k
.�1�˛;f0g/
2;˛;RC

and k Of�k
.�1�˛;f0g/
2;˛;RC is estimated in terms of the data by (5.26).

Define

(6.64) v.Z/D
1

Od1C˛
 .z0C OdZ/ for Z 2 y�z01 :

Then

(6.65) kvk
L1.y�

z0
1 /
� C

by (6.46) with C depending only on the data.
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Since  satisfies (6.19) in �C.�/ \ D04" and the oblique derivative condi-
tion (6.6) on �shock \D04", then v satisfies an equation and an oblique derivative
condition of the similar form in y�z01 and on @ y�z01 \ fY D OF .X/g, respectively,
whose coefficients satisfy properties (6.8) and (6.21) with the same constants as
for the original equations, where we have used Od � 1 and the C ˛=2-estimates of
the coefficients of the equation depending only on the data, ı, and O . Then, from
the standard local estimates for linear oblique derivative problems, we have

kvk
C2;˛=2. O�

z0
1=2
/
� C;

with C depending only on the data, ı, and O .
We obtain similar estimates for cases (i) and (ii), by using the interior esti-

mates for elliptic equations for case (i) and the local estimates for the Dirichlet
problem for linear elliptic equations for case (ii).

Writing the above estimates in terms of  and using the fact that the whole
domain �C.�/\B%.P1/ is covered by the subdomains in (i)–(iii), we obtain (6.45)
by an argument similar to the proof of [20, Th. 4.8] (see also the proof of Lemma
A.3 below). �

LEMMA 6.8. There exist yC > 0 and ı0 2 .0; 1/ depending only on the data
such that, if �; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16), and ı 2 .0; ı0/, there
exists a unique solution  2 C .�1�˛;P/

2;˛=2;�C.�/
of (6.13) and (5.30)–(5.33). The solution

 satisfies (6.9) and (6.10).

Proof. In this proof, for simplicity, we write �C for �C.�/ and denote by
�1, �2, �3, and �D the relative interiors of the curves �shock.�/, †0.�/, �wedge,
and �sonic respectively.

We first prove the existence of a solution for a general problem P of the form

2X
i;jD1

aijD
2
ij Df in �CI

2X
iD1

b
.k/
i Di Dgi on �k; kD1; 2; 3I  D0 on �D;

where the equation is uniformly elliptic in �C and the boundary conditions on �k ,
k D 1; 2; 3; are uniformly oblique; i.e., there exist constants �1; �2; �3 > 0 such
that

�1j�j
2
�

2X
i;jD1

aij .�; �/�i�j � �
�1
1 j�j

2 for all .�; �/ 2�C; � 2 R2;

2X
iD1

b
.k/
i .�; �/�i .�; �/� �2;
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ˇ .b

.k/
1 ; b

.k/
2 /

j.b
.k/
1 ; b

.k/
2 /j

.Pk/�
.b
.k�1/
1 ; b

.k�1/
2 /

j.b
.k�1/
1 ; b

.k�1/
2 /j

.Pk/

ˇ̌̌̌
ˇ� �3 for k D 2; 3;

and kaij kC˛.�C/Ckb
.k/
i kC1;˛.�k/

� L for some L> 0.
First we derive an a priori estimate of a solution of problem P. For that, we

define the following norm for  2 C k;ˇ .�C/, k D 0; 1; 2; : : : , and ˇ 2 .0; 1/:

k k�;k;ˇ WD

3X
iD2

k k
�kC1�ˇ;fPi g

k;ˇ;B2%.Pi /\�C
C

X
iD1;4

k k
�kC2�ˇ;fPi g

k;ˇ;B2%.Pi /\�C

Ck k
Ck;ˇ.�Cn.[4

iD1
B%.Pi ///

;

where % > 0 is chosen small so that the balls B2%.Pi / for i D 1; : : : ; 4 are disjoint.
Denote C �;k;ˇ WD f 2C �;k;ˇ W k k�;k;ˇ <1g. Then C �;k;ˇ with norm k�k�;k;ˇ
is a Banach space. Similarly, define

kgkk�;ˇ WD

3X
iD2

kgkk
�ˇ;fPi g

1;ˇ;B2%.Pi /\�k
C

X
iD1;4

kgkk
1�ˇ;fPi g

1;ˇ;B2%.Pi /\�k

CkgkkC1;ˇ.�kn.[4iD1B%.Pi ///
;

where the respective terms are zero if B2%.Pi /\ �k D ∅. Using the regularity
of boundary of �C, from the localized version of the estimates of [31, Th. 2]
applied in B2r.Pi / \ �C, i D 1; 4, and of the estimates of [35, Lemma 1.3]
applied in B2r.Pi /\�C, i D 2; 3, and the standard local estimates for the Dirich-
let and oblique derivative problems of elliptic equations in smooth domains ap-
plied similarly to Step 4 in the proof of Lemma 6.7, we obtain that there exists
ˇDˇ.�C; �2; �3/2.0; 1/ such that any solution  2C ˇ .�C/\C 1;ˇ .�Cn�D/
\C 2.�C/ of problem P satisfies

(6.66) k k�;2;ˇ � C

 
kf k�;0;ˇ C

3X
kD1

kgkk�;ˇ Ck k0;�C

!
for C D C.�C; �1; �2; �3; L/. Next, we show that  satisfies

(6.67) k k�;2;ˇ � C

 
kf k�;0;ˇ C

3X
kD1

kgkk�;ˇ

!
for C D C.�C; �1; �2; �3; L/. By (6.66), it suffices to estimate k k0;�C by the
right-hand side of (6.67). Suppose that such an estimate is false. Then there exists
a sequence of problems Pm for mD 1; 2; : : : with coefficients amij and b.k/;mi , the
right-hand sides f m and gm

k
, and solutions  m 2 C �;2;ˇ , where the assumptions

on amij and b.k/;mi stated above are satisfied with uniform constants �1; �2; �3,
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and L, and kf mk�;0;ˇ C
P3
kD1 kg

m
k
k�;ˇ ! 0 as m!1, but k mk0;�C D 1 for

mD 1; 2; : : : . Then, from (6.66), we obtain k mk�;2;ˇ �C with C independent of
m. Thus, passing to a subsequence (without change of notation), we find amij ! a0ij

in C ˇ=2.�C/, b.k/;mi ! b
.k/;0
i in C 1;ˇ=2.�k/, and  m!  0 in C �;2;ˇ=2, where

k 0k0;�C D 1, and a0ij and b.k/;0i satisfy the same ellipticity, obliqueness, and

regularity conditions as amij and b.k/;mi . Moreover,  0 is a solution of the ho-

mogeneous Problem P with coefficients a0ij and b.k/;0i . Since k 0k0;�C D 1, this
contradicts the uniqueness of a solution in C �;2;ˇ of problem P (the uniqueness for
problem P follows by the same argument as in Lemma 6.3). Thus (6.67) is proved.

Now we show the existence of a solution for problem P if yC in (5.16) is
sufficiently large. We first consider problem P0 defined as follows:

� D f in �CI D� D gk on �k; k D 1; 2; 3I  D 0 on �D:

By the fact that �2 and �3 lie on �D 0 and �D � tan �w respectively, and by (3.1)
and (5.24), it is easy to construct a diffeomorphism

F W �C!Q WD f.X; Y / 2 .0; 1/2g

satisfying

kF k
C1;˛.�

C
/
� C; kF�1kC1;˛.Q/ � C;

F.�D/D†D WD fX D 1; Y 2 .0; 1/g;

and

(6.68) kDF�1� IdkC˛.Q\fX<�1=2g/ � C"
1=4;

where C depends only on the data, and .�1; �1/ are the coordinates of P1 defined
by (4.6) with �1 > 0. The mapping F transforms problem P0 into the following
problem QP0:

2X
i;jD1

Di . QaijDju/D Qf in QI

2X
i;jD1

QaijDju �i D Qgk on Ik; k D 1; 2; 3I

uD 0 on †D;

where Ik D F.Gk/ are the respective sides of @Q, � is the unit normal on Ik ,
k Qaij kC˛.Q/ � C , and Qaij satisfy the uniform ellipticity in Q with elliptic constant
Q� > 0. Using (6.68), we obtain

(6.69) k Qaij � ı
j
i kC˛.Q\fX<�1=2g/ � C"

1=4;
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where ıii D 1 and ıji D 0 for i ¤ j , and C depends only on the data. If " > 0
is sufficiently small depending only on the data, then, by [13, Th. 3.2, Prop. 3.3],
there exists ˇ 2 .0; 1/ such that, for any Qf 2 C ˇ .Q/ and Qgk 2 C ˇ .Ik/ with
k D 1; 2; 3, there exists a unique weak solution u 2H 1.Q/ of problem QP0, and
this solution satisfies u 2 C ˇ .Q/\C 1;ˇ .Q n†D/. We note that, in [13, Th. 3.2,
Prop. 3.3], condition (6.69) is stated in the whole Q, but in fact this condition was
used only in a neighborhood of I2 D f0g � .0; 1/, i.e., the results can be applied
to the present case. We can assume that ˇ � ˛. Then, mapping back to �C, we
obtain the existence of a solution  2 C ˇ .�C/\C 1;ˇ .�C n�D/\C 2.�C/ of
problem P0 for any f 2 C ˇ .�C/ and gk 2 C ˇ .�k/, k D 1; 2; 3. Now, reducing
ˇ if necessary and using (6.67), we conclude that, for any .f; g1; g2; g3/ 2 Yˇ WD

f.f; g1; g2; g3/ W kf k�;0;ˇ C
P3
kD1 kgkk�;ˇ <1g, there exists a unique solution

 2 C �;2;ˇ of problem P0, and  satisfies (6.67).
Now the existence of a unique solution  2 C �;2;ˇ of problem P, for any

.f; g1; g2; g3/ 2 Yˇ with sufficiently small ˇ 2 .0; 1/, follows by the method of
continuity, applied to the family of problems tPC .1� t /P0 for t 2 Œ0; 1�. This
proves the existence of a solution  2 C �;2;ˇ of problem (6.13) and (5.30)–(5.33).

Estimates (6.9) and (6.10) then follow from Lemma 6.4. The higher regularity
 2 C

.�1�˛;P/

2;˛=2;�C.�/
follows from Lemmas 6.5–6.7 and the standard estimates for

the Dirichlet problem near the flat boundary, applied in a neighborhood of �sonic n

.B%=2.P1/ [ B%=2.P4// in the .x; y/-coordinates, where % > 0 may be smaller
than the constant % in Lemmas 6.6–6.7. In fact, from Lemma 6.6, we obtain even a
higher regularity than that in the statement of Lemma 6.8:  2 C .�1�˛;fP2;P3;P4g/

2;˛=2;�C.�/
.

The uniqueness of solutions follows from the Comparison Principle (Lemma 6.3).
�

Lemma 6.8 justifies the definition of map OJ in (6.12) defined by OJ . O / WD  .
In order to apply the Leray-Schauder Theorem, we make the following a priori
estimates for solutions of the nonlinear equation.

LEMMA 6.9. There exist yC > 0 and ı0 2 .0; 1/ depending only on the data
such that the following holds. Let �; " > 0 and M1;M2 � 1 in (5.15) satisfy (5.16).
Let ı 2 .0; ı0/ and � 2 Œ0; 1�. Let  2 C .�1�˛;P/

2;˛=2;�C.�/
be a solution of (6.1), (5.30)–

(5.32), and

(6.70)  � D��v2 on †0.�/ WD @�
C.�/\f�D�v2g:

Then

(i) There exists C > 0 independent of  and � such that

k k
C1;˛.�C.�//

� C I
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(ii)  satisfies (6.9) and (6.10) with constant C depending only on the data;

(iii)  2 C .�1�˛;P/
2;˛;�C.�/

. Moreover, for every s 2 .0; c2=2/, estimate (6.11) holds with
constant C depending only on the data and s;

(iv) Solutions of problem (6.1), (5.30)–(5.32), and (6.70) satisfy the following com-
parison principle: Denote by Nı. /, B1. /, B2. /, and B3. / the left-hand
sides of (6.1), (5.30), (5.32), and (6.70), respectively. If  1;  2 2 C

.�1�˛;P/

2;˛;�C.�/

satisfy
Nı. 1/� Nı. 2/ in �C.�/;

Bk. 1/� Bk. 2/ on �shock.�/; �wedge; and †0.�/ for k D 1; 2; 3;

 1 �  2 on �sonic;

then

 1 �  2 in �C.�/:

In particular, problem (6.1), (5.30)–(5.32), and (6.70) has at most one solu-
tion  2 C .�1�˛;P/

2;˛;�C.�/
.

Proof. The proof consists of six steps.

Step 1. Since a solution  2 C .�1�˛;P/
2;˛=2;�C.�/

of (6.1), (5.30)–(5.32), and (6.70)

with � 2 Œ0; 1� is the solution of the linear problem for (6.13) with O WD  and
boundary conditions (5.30)–(5.32) and (6.70). Thus, estimates (6.9) and (6.10)
with constant C depending only on the data follow directly from Lemma 6.4.

Step 2. Now, from Lemma 5.2(ii), (6.1) is linear in�C.�/\fc2�r > 4"g, i.e.,
(6.1) is (6.13) in�C.�/\fc2�r >4"g, with coefficients aij .�; �/DA1ij .�; �/Cııij
for A1ij defined by (5.35). Then, by Lemma 5.2(ii),

aij 2 C
˛.�C.�/\fc2� r > 4"g/

with the norm estimated in terms of the data. Also, �shock.�/ and the coefficients
bi of (6.3) satisfy (5.24), (6.4), and (6.5). Then, repeating the proof of Lemma 6.5
with the use of the L1 estimates of  obtained in Step 1 of the present proof, we
conclude that  2 C .�1�˛;fP2;P3g/

2;˛;�C.�/\fc2�r>6"g
with

(6.71) k k
.�1�˛;fP2;P3g/

2;˛;�C.�/\fc2�r>6"g
� C�

for C depending only on the data.

Step 3. Now we prove (6.11) for all s 2 .0; c2=2/. If s � 6", then (6.11)
follows from (6.71). Thus, it suffices to consider the case s 2 .0; 6"/ and show that

(6.72) k k
C2;˛.�C.�/\fs=2<c2�r<6"Cs=4g/

� C.s/�;

with C depending only on the data and s. Indeed, (6.71) and (6.72) imply (6.11).
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In order to prove (6.72), it suffices to prove the existence of C.s/ depending
only on the data and s such that

(6.73) k k
C2;˛.Bs=16.z//

� C.s/k kL1.Bs=8.z//

for all z WD .�; �/2�C.�/\fs=2< c2�r < 6"Cs=4g with dist.z; @�C.�//> s=8
and such that

(6.74) k k
C2;˛.Bs=8.z/\�C.�//

� C.s/k kL1.Bs=4.z/\�C.�//

for all z 2 .�shock.�/[�wedge/\fs=2<c2�r <6"Cs=4g. Note that all the domains
in (6.73) and (6.74) lie within �C.�/\ fs=4 < c2 � r < 12"g. We can assume
that " < c2=24. Since (6.1) is uniformly elliptic in �C.�/\fs=4 < c2� r < 12"g
by Lemma 5.2(i), and the boundary conditions (5.30) and (5.32) are linear and
oblique with C 1;˛-coefficients estimated in terms of the data, then (6.73) follows
from Theorem A.1 and (6.74) follows from Theorem A.4 (in Appendix A). Since
k kL1.�C.'// � 1 by (6.9), the constants in the local estimates depend only on
the ellipticity, the constants in Lemma 5.2(iii), and, for the case of (6.74), also
on the C 2;˛-norms of the boundary curves and the obliqueness and C 1;˛-bounds
of the coefficients in the boundary conditions (which, for condition (5.30), follow
from (5.24) and (6.4) since our domain is away from the points P1 and P2). All
these quantities depend only on the data and s. Thus, the constant C.s/ in (6.73)
and (6.74) depends only on the data and s.

Step 4. In this step, the universal constant C depends only on the data and ı,
unless specified otherwise. We prove that  2 C 2;˛.B%.P4/\�C.�// for suffi-
ciently small % > 0, depending only on the data and ı, and

(6.75) k k
C2;˛.B%.P4/\�C.�//

� C:

We follow the proof of Lemma 6.6. Since B%.P4/\�C.�/�D0 for small %,
we work in the .x; y/-coordinates. We use the notation BC% and BCC% , introduced
in Step 1 of Lemma 6.6, and consider the function

v.x; y/D
1

%
 .%x; %y/:

Then, by (6.10), v satisfies

(6.76) kvk
L1.B

CC

2 /
� 2C

�

"
� 1;

where the last inequality holds if yC in (5.16) is sufficiently large. Moreover, v is a
solution of

(6.77) OA
.%/
11 vxxC 2

OA
.%/
12 vxy C

OA
.%/
22 vyy C

OA
.%/
1 vxC OA

.%/
2 vy D 0 in BCC2 ;
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v D 0 on B2\fx D 0; y > 0g;(6.78)

v� � vy D 0 on B2\fy D 0; x > 0g;(6.79)

with .A.%/ij ; A
.%/
i / D .A

.%/
ij ; A

.%/
i /.Dv; x; y/, where we use (6.2) to find that, for

.x; y/ 2 BCC2 , p 2 R2, i; j D 1; 2;

OA
.%/
11 .p; x; y/D

OA11.p; %x; %y/C ı;(6.80)

OA
.%/
12 .p; x; y/D

OA
.%/
21 .p; x; y/D

OA12.p; %x; %y/;

OA
.%/
22 .p; x; y/D

OA22.p; %x; %y/C
ı

.c2� %x/2
;

OA
.%/
1 .p; x; y/D % OA1.p; %x; %y/C

ı

c2� %x
;

OA
.%/
2 .p; x; y/D % OA2.p; %x; %y/;

with OAij and OAi as in Lemma 5.3. Since %� 1, OA.%/ij and OA.%/i satisfy the assertions

of Lemma 5.3(i), (ii) with the unchanged constants. Moreover, OA.%/11 , OA.%/22 , and
OA
.%/
1 satisfy the property in Lemma 5.3(iii). The property in Lemma 5.3(iv) is now

improved to
(6.81)
j. OA

.%/
12 ;
OA
.%/
21 ;
OA
.%/
2 /.x; y/j � C%jxj; jD. OA

.%/
12 ;
OA
.%/
21 ;
OA
.%/
2 /.x; y/j � C j%xj1=2:

Combining the estimates in Theorems A.1, A.3, and A.4 with the argument
that has led to (6.34), we have

(6.82) kvk
C2;˛.B

CC

3=2
nB
CC

1=2
/
� C;

where C depends only on the data and ı > 0 by (6.76), since OA.%/ij and OA.%/i satisfy
(A.2) and (A.3) with the constants depending only on the data and ı. In particular,
C in (6.82) is independent of %.

We now use the domain DCC introduced in Step 2 of the proof of Lemma
6.6. We prove that, for any g 2 C ˛.DCC/ with kgk

C˛.DCC/
� 1; there exists a

unique solution w 2 C 2;˛.DCC/ of the problem:

OA
.%/
11 wxxC

OA
.%/
22 wyy C

OA
.%/
1 wx D g in DCC;(6.83)

w D 0 on @DCC\fx D 0; y > 0g;(6.84)

w� � wy D 0 on @DCC\fx > 0; y D 0g;(6.85)

w D v on @DCC\fx > 0; y > 0g;(6.86)
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with .A.%/i i ; A
.%/
1 /D .A

.%/
i i ; A

.%/
1 /.Dw; x; y/. Moreover, we show

(6.87) kwk
C2;˛.DCC/

� C;

where C depends only on the data and is independent of %. For that, similar to
Step 2 of the proof of Lemma 6.6, we consider the even reflection DC of the set
DCC, and the even reflection of .v; g; OA.%/11 ; OA

.%/
22 ;
OA
.%/
1 / from BCC2 to BC2 , without

change of notation, where the even reflection of . OA.%/11 ; OA
.%/
22 ;
OA
.%/
1 /, which depends

on .p; x; y/, is defined by

OA
.%/
i i .p; x;�y/D

OA
.%/
i i .p; x; y/;

OA
.%/
1 .p; x;�y/D OA

.%/
1 .p; x; y/

for .x; y/ 2 BCC2 .
Also, denote by Ov the restriction of (the extended) v to @DC. It follows from

(6.78), (6.79), and (6.82) that Ov 2 C 2;˛.@DC/ with

(6.88) k OvkC2;˛.@DC/ � C;

depending only on the data and ı. Furthermore, the extended g satisfies g 2
C ˛.DC/ with kgk

C˛.DC/
Dkgk

C˛.DCC/
� 1. The extended OA.%/11 ; OA

.%/
22 , and OA.%/1

satisfy (A.2) and (A.3) in DC with the same constants as the estimates satisfied by
Ai i and Ai in �C.�/. We consider the Dirichlet problem

OA
.%/
11 wxxC

OA
.%/
22 wyy C

OA
.%/
1 wx D g in DC;(6.89)

w D Ov on @DC;(6.90)

with .A.%/i i ; A
.%/
1 / WD .A

.%/
i i ; A

.%/
1 /.Dw; x; y/. By the Maximum Principle,

kwkL1.DC/ � kOvkL1.DC/:

Thus, using (6.88), we obtain an estimate of kwkL1.DC/. Now, using Theorems
A.1 and A.3 and the estimates of kgk

C˛.DC/
and k OvkC2;˛.@DC/ discussed above,

we obtain the a priori estimate for the C 2;˛-solution w of (6.89) and (6.90):

(6.91) kwk
C2;˛.DC/

� C;

where C depends only on the data and ı. Moreover, for every Ow 2 C 1;˛.DC/,
the existence of a unique solution w 2 C 2;˛.DC/ of the linear Dirichlet problem,
obtained by substituting Ow into the coefficients of (6.89), follows from [20, Th. 6.8].
Now, by a standard application of the Leray-Schauder Theorem, there exists a
unique solution w 2 C 2;˛.DC/ of the Dirichlet problem (6.89) and (6.90) which
satisfies (6.91).

From the structure of (6.89), especially the fact that OA.%/11 , OA.%/22 , and OA.%/1 are
independent of p2 by Lemma 5.3 (iii), and from the symmetry of the domain and
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the coefficients and right-hand sides obtained by the even extension, it follows that
Ow, defined by Ow.x; y/ D w.x;�y/, is also a solution of (6.89) and (6.90). By

uniqueness for problem (6.89) and (6.90), we find w.x; y/ D w.x;�y/ in DC.
Thus, w restricted to DCC is a solution of (6.83)–(6.86), where (6.84) follows
from (6.78) and (6.90). Moreover, (6.91) implies (6.87).

The uniqueness of a solution w 2 C 2;˛.DCC/ of (6.83)–(6.86) follows from
the Comparison Principle (Lemma 6.3).

Now we prove the existence of a solution w 2 C 2;˛.DCC/ of the problem:

(6.92) OA
.%/
11 wxxC2

OA
.%/
12 wxyC

OA
.%/
22 wyyC

OA
.%/
1 wxC OA

.%/
2 wy D 0 in DCC;

w D 0 on @DCC\fx D 0; y > 0g;

w� � wy D 0 on @DCC\fy D 0; x > 0g;

w D v on @DCC\fx > 0; y > 0g;

where .A.%/ij ; A
.%/
i / WD .A

.%/
ij ; A

.%/
i /.Dw; x; y/. Moreover, we prove that w satisfies

(6.93) kwk
C2;˛.DCC/

� C

for C > 0 depending only on the data and ı.
Let N be chosen below. Define

(6.94) S.N / WD
n
W 2 C 2;˛.DCC/ W kW k

C2;˛.DCC/
�N

o
:

We obtain such w as a fixed point of the map K W S.N /! S.N / defined as
follows (if R is small and N is large, as specified below). For W 2 S.N /, define

(6.95) g D�2 OA
.%/
12 .x; y/Wxy �

OA
.%/
2 .x; y/Wy :

By (6.81),
kgk

C˛.DCC/
� CN

p
%� 1;

if % � %0 with %0 D 1
CN 2

, for C depending only on the data and ı. Then, as we

have proved above, there exists a unique solution w 2C 2;˛.DCC/ of (6.83)–(6.86)
with g defined by (6.95). Moreover, w satisfies (6.87). Then, if we choose N to
be the constant C in (6.87), we get w 2 S.N /. Thus, N is chosen depending
only on the data and ı. Now our choice of %0 D 1

CN 2
and % � %0 (and the other

smallness conditions stated above) determines % in terms of the data and ı. We
define KŒW � WD w and thus obtain K W S.N /! S.N /.

Now the existence of a fixed point of K follows from the Schauder Fixed
Point Theorem in the following setting: From its definition, S.N / is a compact
and convex subset in C 2;˛=2.DCC/. The map K W S.N / ! S.N / is continu-
ous in C 2;˛=2.DCC/: Indeed, if Wk 2 S.N / for k D 1; : : : , and Wk ! W in
C 2;˛=2.DCC/, then it is easy to see that W 2 S.N /. Define gk and g by (6.95)
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for Wk and W respectively. Then gk ! g in C ˛=2.DCC/ since . OA12; OA2/ D
. OA12; OA2/.x; y/ by Lemma 5.3(iv). Let wkDKŒWk�. Then wk 2S.N /, and S.N /

is bounded in C 2;˛.DCC/. Thus, for any subsequence wkl , there exists a further
subsequence wklm converging in C 2;˛=2.DCC/. Then the limit Qw is a solution
of (6.83)–(6.86) with the limiting function g in the right-hand side of (6.83). By
uniqueness of solutions in S.N / to (6.83)–(6.86), we have Qw DKŒW �. Then it fol-
lows that the whole sequence KŒWk� converges to KŒW �. Thus K WS.N /!S.N /

is continuous in C 2;˛=2.DCC/. Therefore, there exists w 2 S.N / which is a fixed
point of K. This function w is a solution of (6.92).

Since v satisfies (6.77)–(6.79), it follows from the uniqueness of solutions in
C.DCC/ \ C 1.DCC n fx D 0g/ \ C 2.DCC/ of problem (6.92) that w D v in
DCC. Thus, v 2 C 2;˛.DCC/ and satisfies (6.75).

Step 5. It remains to make the following estimate near the corner P1:

(6.96) k k
.�1�˛;fP1g/

2;˛;�C.�/
� C;

where C depends only on the data, � , and ı.
Since  is a solution of the linear equation (6.13) for O D  and satisfies

the boundary conditions (5.30)–(5.33), it follows from Lemma 6.7 that  satisfies
(6.46) with constant yC depending only on the data and ı.

Now we follow the argument of Lemma 6.7 (Step 4): We consider cases (i)–
(iii) and define the function v.X; Y / by (6.64). Then  is a solution of the nonlinear
equation (6.2). We apply the estimates in Appendix A. From Lemma 5.3 and the
properties of the Laplacian in polar coordinates, the coefficients of (6.2) satisfy
(A.2) and (A.3) with � depending only on the data and ı. It is easy to see that v
defined by (6.64) satisfies an equation of the similar structure and properties (A.2)
and (A.3) with the same �, where we use that 0� Od � 1. Also, v satisfies the same
boundary conditions as in the proof of Lemma 6.7 (Step 4). Furthermore, since  
satisfies (6.46), we obtain the L1-estimates of v in terms of the data and ı, e.g.,
v satisfies (6.65) in case (iii). Now we obtain the C 2;˛-estimates of v by using
Theorem A.1 for case (i), Theorem A.3 for case (ii), and Theorem A.4 for case
(iii). Writing these estimates in terms of  , we obtain (6.96), similar to the proof
of Lemma 6.7 (Step 4).

Step 6. Finally, we prove the Comparison Principle, assertion (iv). The func-
tion uD 1� 2 is a solution of a linear problem of form (6.13), (5.30), (5.32), and
(5.33) with right-hand sides Nı. 1/�Nı. 2/ andBk. 1/�Bk. 2/ for kD1; 2; 3,
respectively, and u � 0 on �sonic. Now the Comparison Principle follows from
Lemma 6.3. �



1138 GUI-QIANG CHEN and MIKHAIL FELDMAN

Using Lemma 6.8 and the definition of map OJ in (6.12), and using Lemma 6.9
and the Leray-Schauder Theorem, we conclude the proof of Proposition 6.1. �

Using Proposition 6.1 and sending ı ! 0, we establish the existence of a
solution of problem (5.29)–(5.33).

PROPOSITION 6.2. Let �; ";M1; and M2 be as in Proposition 6.1. Then there
exists a solution  2 C.�C.�//\C 1.�C.�/ n�sonic/\C

2.�C.�// of problem
(5.29)–(5.33) so that the solution  satisfies (6.9)–(6.11).

Proof. Let ı 2 .0; ı0/. Let  ı be a solution of (6.1) and (5.30)–(5.33) obtained
in Proposition 6.1. Using (6.11), we can find a sequence ıj for j D 1; : : : and
 2 C 1.�C.�/ n�sonic/\C

2.�C.�// such that, as j !1, we have

(i) ıj ! 0;

(ii)  ıj !  in C 1.�Cs .�// for every s 2 .0; c2=2/, where �Cs .�/D�
C.�/\

fc2� r > sg;

(iii)  ıj !  in C 2.K/ for every compact K ��C.�/.

Then, since each  ıj satisfies (6.1), (5.30), (5.32), and (5.33), it follows that  sat-
isfies (5.29), (5.30), (5.32), and (5.33). Also, since each  ıj satisfies (6.9)–(6.11),
 also satisfies these estimates. From (6.10), we conclude that  2 C.�C.�// and
satisfies (5.31). �

7. Existence of the iteration map and its fixed point

In this section we perform Steps 4–8 of the procedure described in Section
5.6. In the proofs of this section, the universal constant C depends only on the
data.

We assume that � 2K and the coefficients in problem (5.29)–(5.33) are deter-
mined by �. Then the existence of a solution

 2 C.�C.�//\C 1.�C.�/ n�sonic/\C
2.�C.�//

of (5.29)–(5.33) follows from Proposition 6.2.
We first show that a comparison principle holds for (5.29)–(5.33). We use the

operators N and M introduced in (5.29) and (5.30). Also, for � > 0, we denote

�C;�.�/ WD�C.�/\fc2� r < �g; �
�
shock.�/ WD �shock.�/\fc2� r < �g;

�
�
wedge WD �wedge\fc2� r < �g:

LEMMA 7.1. Let �; ";M1, and M2 be as in Proposition 6.2, and � 2 .0; �/,
where � is defined as in Section 5.1. Then the following comparison principle
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holds: If  1;  2 2 C.�C;�.�//\ C 1.�C;�.�/ n �sonic/\ C
2.�C;�.�// satisfy

that

N. 1/� N. 2/ in �C;�.�/;

M. 1/�M. 2/ on ��shock.�/;

@� 1 � @� 2 on ��wedge;

 1 �  2 on �sonic and �C.�/\fc2� r D �g;

then

 1 �  2 in �C;�:

Proof. Denote †� WD�C.�/\fc2� r D�g. If � 2 .0; �/, then @�C;�.�/D
�
�
shock.�/[�

�
wedge[�sonic[†�.

From N. 1/ � N. 2/, the difference  1 � 2 is a supersolution of a linear
equation of form (6.13) in �C;�.�/ and, by Lemma 5.2 (i), this equation is uni-
formly elliptic in �C;�.�/\fc2� r > sg for any s 2 .0; �/. Then the argument of
Steps (i) and (ii) in the proof of Lemma 6.3 implies that  1� 2 cannot achieve
a negative minimum in the interior of �C;�.�/\fc2� r > sg and in the relative
interiors of ��shock.�/\ fc2 � r > sg and ��wedge \ fc2 � r > sg. Sending s! 0C,
we conclude the proof. �

LEMMA 7.2. A solution  2 C.�C.�//\C 1.�C.�/n�sonic/\C
2.�C.�//

of (5.29)–(5.33) is unique.

Proof. If  1 and  2 are two solutions, then we repeat the proof of Lemma
7.1 to show that  1� 2 cannot achieve a negative minimum in �C.�/ and in the
relative interiors of �shock.�/ and �wedge. Now (5.29) is linear, uniformly elliptic
near †0 (by Lemma 5.2), and the function  1� 2 is C 1 up to the boundary in a
neighborhood of †0. Then the boundary condition (5.33) combined with Hopf’s
Lemma yields that  1� 2 cannot achieve a minimum in the relative interior of
†0. By the argument of Step (iii) in the proof of Lemma 6.3,  1 �  2 cannot
achieve a negative minimum at the points P2 and P3. Thus,  1 �  2 in �C.�/
and, by symmetry, the opposite is also true. �

LEMMA 7.3. There exists yC > 0 depending only on the data such that, if
�; ";M1, andM2 satisfy (5.16), the solution 2C.�C.�//\C 1.�C.�/n�sonic/\

C 2.�C.�// of (5.29)–(5.33) satisfies

(7.1) 0�  .x; y/�
3

5. C 1/
x2 in �0.�/ WD�C;2".�/:
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Proof. We first notice that  � 0 in �C.�/ by Proposition 6.2. Now we make
estimate (7.1). Set

w.x; y/ WD
3

5. C 1/
x2:

We first show that w is a supersolution of (5.29). Since (5.29) rewritten in the
.x; y/-coordinates in �0.�/ has form (5.42), we write it as

N1. /CN2. /D 0;

where

N1. /D

�
2x� . C 1/x�1

� x
x

��
 xxC

1

c2
 yy � x;

N2. /DO
�
1 xxCO

�
2 xy CO

�
3 yy �O

�
4 xCO

�
5 y :

Now we substitute w.x; y/. By (5.37),

�1
�wx
x

�
D �1

� 6

5. C 1/

�
D

6

5. C 1/
I

thus

N1.w/D�
6

25. C 1/
x:

Using (5.44), we have

jN2.w/jD
ˇ̌̌ 6

5. C 1/
O
�
1 .Dw; x; y/C

6x

5. C 1/
O
�
4 .Dw; x; y/

ˇ̌̌
�Cx3=2�C"1=2x;

where the last inequality holds since x 2 .0; 2"/ in �0.�/. Thus, if " is small, we
find

N.w/ < 0 in �0.�/:

The required smallness of " is achieved if (5.16) is satisfied with large yC .
Also, w is a supersolution of (5.30): Indeed, since (5.30) rewritten in the

.x; y/-coordinates has form (6.6), estimates (6.8) hold, and x > 0, we find

M.w/D Ob1.x; y/
6

5. C 1/
xC Ob3.x; y/

3

5. C 1/
x2 < 0 on �shock.�/\D0:

Moreover, on �wedge, w� �wy D 0D  � . Furthermore, w D 0D  on �sonic

and, by (6.9),  � w on fx D 2"g if

C� � "2;

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied
with large yC . Thus,  � w in �0.�/ by Lemma 7.1. �

We now estimate the norm k k.par/
2;˛;y�0.�/

in the subdomain y�0.�/ WD�C.�/\

fc2� r < "g of �0.�/ WD�C.�/\fc2� r < 2"g.
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LEMMA 7.4. There exist yC ;C > 0 depending only on the data such that, if
�; ";M1, andM2 satisfy (5.16), the solution 2C.�C.�//\C 1.�C.�/n�sonic/\

C 2.�C.�// of (5.29)–(5.33) satisfies

(7.2) k k
.par/
2;˛;y�0.�/

� C:

Proof. We assume yC in (5.16) is sufficiently large so that �; ";M1, and M2

satisfy the conditions of Lemma 7.3.

Step 1. We work in the .x; y/-coordinates and, in particular, we use (5.25)
and (5.26). We can assume " < �=20, which can be achieved by increasing yC in
(5.16).

For z WD .x; y/ 2 y�0.�/ and � 2 .0; 1/, define
(7.3)
QRz;� WD

n
.s; t/ W js� xj<

�

4
x; jt �yj<

�

4

p
x
o
; Rz;� WD QRz;� \�

C.�/:

Since �0.�/D�C.�/\fc2� r < 2"g, then, for any z 2 y�0.�/ and � 2 .0; 1/,

(7.4) Rz;� ��
C.�/\f.s; t/ W

3

4
x < s <

5

4
xg ��0.�/:

For any z 2 y�0.�/, we have at least one of the following three cases:

(i) Rz;1=10 D QRz;1=10;

(ii) z 2Rzw;1=2 for zw D .x; 0/ 2 �wedge;

(iii) z 2Rzs ;1=2 for zs D .x; Of�.x// 2 �shock.�/.

Thus, it suffices to make the local estimates of D and D2 in the following
rectangles with z0 WD .x0; y0/:

(i) Rz0;1=20 for z0 2 y�0.�/ and Rz0;1=10 D QRz0;1=10;

(ii) Rz0;1=2 for z0 2 �wedge\fx < "g;

(iii) Rz0;1=2 for z0 2 �shock.�/\fx < "g.

Step 2. We first consider case (i) in Step 1. Then

Rz0;1=10 D

��
x0C

x0

4
S; y0C

p
x0

4
T
�
W .S; T / 2Q1=10

�
;

where Q� WD .��; �/2 for � > 0.
Rescale  in Rz0;1=10 by defining

(7.5)  .z0/.S; T / WD
1

x20
 
�
x0C

x0

4
S; y0C

p
x0

4
T
�

for .S; T / 2Q1=10:
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Then, by (7.1) and (7.4),

(7.6) k .z0/kC.Q1=10/ � 1=. C 1/:

Moreover, since  satisfies (5.42) and (5.43) in Rz0;1=10, then  .z0/ satisfies

(7.7) �
1C

1

4
S

� �
2� . C 1/�1

� 4 .z0/S

1CS=4

��
C x0O

.�;z0/
1

!
 
.z0/
SS C x0O

.�;z0/
2  

.z0/
ST

C

�
1

c2
C x0O

.�;z0/
3

�
 
.z0/
T T �

�
1

4
C x0O

.�;z0/
4

�
 
.z0/
S C x20O

.�;z0/
5  

.z0/
T D 0

in Q1=10, where

(7.8)

O
.�;z0/
1 .p;S;T /D�

.1CS=4/2

c2
C
 C 1

2c2

�
2.1CS=4/2�1

� 4p1

1CS=4

�
� 16j�

.z0/
S j

2
�

�
 � 1

c2

�
�.z0/C

8x0

.c2� x0.1CS=4//2
j�
.z0/
T j

2
�
;

O
.�;z0/
2 .p;S;T /D�

8

c2.c2� x0.1CS=4//2

�
4x0�

.z0/
S C c2� x0.1CS=4/

�
�
.z0/
T ;

O
.�;z0/
3 .p; S; T /

D
1

c2.c2� x0.1CS=4//2

�
.1CS=4/

�
2c2� x0.1CS=4/

�
�. � 1/

�
x0�

.z0/C.c2� x0.1CS=4//.1CS=4/�1
� 4p1

1CS=4

�
C 8x0j�

.z0/
S j

2

�
�

8. C 1/

.c2� x0.1CS=4//2
x20 j�

.z0/
T j

2

�
;

O
.�;z0/
4 .p; S; T /

D
1

c2� x0.1CS=4/

�
1CS=4�

 � 1

c2

�
x0�

.z0/C 8x0j�
.z0/
S j

2

C
�
c2� x0.1CS=4/

�
.1CS=4/�1

� 4p1

1CS=4

�
C

8jx0�
.z0/
T j2

.c2� x0.1CS=4//2

��
;

O
.�;z0/
5 .p; S; T /D

8

c2.c2� x0.1CS=4//2

�
4x0�

.z0/
S C2c2� 2x0.1CS=4/

�
�
.z0/
T ;

where �.z0/ is the rescaled � as in (7.5). By (7.4) and � 2 K, we have

k�.z0/kC2;˛.Q1=10/ � CM1;
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and thus

(7.9) kO
.�;z0/

k
k
C1.Q

.z/

1=10
�R2/
� C.1CM 2

1 /; k D 1; : : : ; 5:

Now, since every term O
.�;z0/

k
in (7.7) is multiplied by xˇk0 with ˇk � 1 and

x0 2 .0; "/, condition (5.16) (possibly after increasing yC ) depending only on the
data implies that (7.7) satisfies conditions (A.2) and (A.3) in Q1=10 with � > 0
depending only on c2, i.e., on the data by (4.31). Then, using Theorem A.1 and
(7.6), we find

(7.10) k .z0/kC2;˛.Q1=20/ � C:

Step 3. We then consider case (ii) in Step 1. Let z0 2 �wedge\fx < "g. Using
(5.25) and assuming that � and " are sufficiently small depending only on the data,
we have Rz0;1\ @�

C.�/� �wedge and thus, for any � 2 .0; 1�,

Rz0;� D

��
x0C

x0

4
S; y0C

p
x0

4
T
�
W .S; T / 2Q� \fT > 0g

�
:

The choice of parameters for that can be made as follows: First choose � small so
that j N� � �1j � j N�j=10, where N� is defined by (3.3), which is possible since �1! N�
as �w ! �=2, and then choose " < .j N�j=10/2.

Define  .z0/.S; T / by (7.5) for .S; T / 2Q1 \ fT > 0g. Then, by (7.1) and
(7.4),

(7.11) k .z0/kC.Q1\fT�0g/ � 1=. C 1/:

Moreover, similar to Step 2,  .z0/ satisfies (7.7) in Q1\fT > 0g, and the terms
QO
�;z0
k

satisfy estimate (7.9) in Q1 \ fT > 0g. Then, as in Step 2, we conclude
that (7.7) satisfies conditions (A.2) and (A.3) in Q1\fT > 0g if (5.16) holds with
sufficiently large yC . Moreover, since  satisfies (5.32), it follows that

@T 
.z0/ D 0 on fT D 0g\Q1:

Then, from Theorem A.4,

(7.12) k .z0/kC2;˛.Q1=2\fT�0g/ � C:

Step 4. We now consider case (iii) in Step 1. Let z0 2 �shock.�/\ fx < "g.
Using (5.25) and the fact that y0 D Of�.x0/ for z0 2 �shock.�/ \ fx < "g, and
assuming that � and " are small as in Step 3, we have Rz0;1\@�

C.�/� �shock.�/

and thus, for any � 2 .0; 1�,

Rz0;� D

��
x0C

x0

4
S; y0C

p
x0

4
T
�
W .S; T / 2Q� \fT < "

1=4F.z0/.S/g

�
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with

F.z0/.S/D 4
Of�.x0C

x0
4
S/� Of�.x0/

"1=4
p
x0

:

Then we use (5.27) and x0 2 .0; 2"/ to obtain

F.z0/.0/D 0;

kF.z0/kC1.Œ�1=2;1=2�/ �
k Of 0�kL1.Œ0;2"�/x0

"1=4
p
x0

� C.1CM1"/"
1=4;

kF 00.z0/kC˛.Œ�1=2;1=2�/ �
k Of 00� kL1.Œ0;2"�/x

2
0 C Œ

Of 00� �˛;.x0=2;"/x
2C˛
0

4"1=4
p
x0

� C.1CM1/"
5=4;

and thus, from (5.16),

(7.13) kF.z0/kC2;˛.Œ�1=2;1=2�/ � C=
yC � 1

if yC is large. Define  .z0/.S; T / by (7.5) for .S; T / 2Q1\fT < "1=4F.z0/.S/g.
Then, by (7.1) and (7.4),

(7.14) k .z0/kC.Q1\fT�F.z0/.S/g/
� 1=. C 1/:

Similar to Steps 2 and 3,  .z0/ satisfies (7.7) in Q1 \ fT < "1=4F.z0/.S/g and
the terms QO�;z0

k
satisfy estimate (7.9) in Q1 \ fT < "1=4F.z0/.S/g. Then, as

in Steps 2 and 3, we conclude that (7.7) satisfies conditions (A.2) and (A.3) in
Q1 \ fT < "

1=4F.z0/.S/g if (5.16) holds with sufficiently large yC . Moreover,  
satisfies (5.30) on �shock.�/, which can be written in form (6.6) on �shock.�/\D0.
This implies that  .z0/ satisfies

@S 
.z0/ D "1=4

�
B2@T 

.z0/CB3 
.z0/

�
on fT D "1=4F.z0/.S/g\Q1=2;

where

B2.S; T /D�

p
x0

"1=4

Ob2

Ob1

�
x0C

x0

4
S; y0C

p
x0

4
T
�
;

B3.S; T /D�
x0

4"1=4

Ob3

Ob1

�
x0C

x0

4
S; y0C

p
x0

4
T
�
:

From (6.8),

k.B2; B3/k1;˛;Q1\fT�"1=4F.z0/.S/g
� C"1=4M1 � C= yC � 1:

Now, if " is sufficiently small, it follows from Theorem A.2 that

(7.15) k .z0/kC2;˛.Q1=2\fT�"1=4F.z0/.S/g/
� C:

The required smallness of " is achieved by choosing large yC in (5.16).
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Step 5. Combining (7.10), (7.12), and (7.15) with an argument similar to the
proof of [20, Th. 4.8] (see also the proof of Lemma A.3 below), we obtain (7.2). �

Now we define the extension of solution  from the domain �C.�/ to the
domain D.

LEMMA 7.5. There exist yC ;C1 > 0 depending only on the data such that, if
�; ";M1, and M2 satisfy (5.16), there exists C2."/ depending only on the data and
" and, for any � 2 K, there exists an extension operator

P� W C
1;˛.�C.�//\C 2;˛.�C.�/ n�sonic[†0/! C 1;˛.D/\C 2;˛.D/

satisfying the following two properties:

(i) If  2 C 1;˛.�C.�//\C 2;˛.�C.�/ n �sonic[†0/ is a solution of problem
(5.29)–(5.33), then

kP� k
.par/
2;˛;D0 � C1;(7.16)

kP� k
.�1�˛;†0/
2;˛;D00 � C2."/� I(7.17)

(ii) Let ˇ2.0; ˛/. If a sequence �k2K converges to � in C 1;ˇ .D/, then � 2 K.
Furthermore, if  k 2 C 1;˛.�C.�k//\C 2;˛.�C.�k/ n�sonic[†0/ and  2
C 1;˛.�C.�// \ C 2;˛.�C.�/ n �sonic[†0/ are the solutions of problems
(5.29)–(5.33) for �k and � respectively, then P�k k! P� in C 1;ˇ .D/.

Proof. Let � >0 be the constant in (5.25) and "<�=20. For any � 2K, we first
define the extension operator separately on the domains�1 WD�C.�/\fc2�r <�g
and �2 WD�C.�/\fc2� r > �=2g and then combine them to obtain the operator
P� globally.

In the argument below, we will state various smallness requirements on �
and ", which will depend only on the data, and can be achieved by choosing yC
sufficiently large in (5.16). Also, the constant C in this proof depends only on
the data.

Step 1. First we discuss some properties on the domains �C.�/ and D to be
used below. Recall N� < 0 defined by (3.3), and the coordinates .�1; �1/ of the point
P1 defined by (4.6). We assume � small so that j N���1j � j N�j=10, which is possible
since �1! N� as �w ! �=2. Then �1 < 0. By (5.24) and P1 2 �shock.�/, it follows
that

(7.18) �shock.�/� D\f� < �1C "
1=4
g:

Also, choosing "1=4 < j N�j=10, we have

(7.19) �1C "
1=4 < N�=2 < 0:
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Furthermore, when � is sufficiently small,

(7.20) if .�; �/ 2 D\f� < �1C "
1=4g, .� 0; �/ 2 D, and � 0 > � , then j� 0j< j�j.

Indeed, from the conditions in (7.20), we have

�c2 < � < �1C "
1=4 < N�=2 < 0:

Thus, j� 0j< j�j if � 0<0. It remains to consider the case � 0>0. Since D�Bc2.0/\

f� < � cot �wg, it follows that j� 0j � c2 cos �w . Thus j� 0j< j�j if c2 cos �w � jN�j=2.
Using (4.31) and (3.1), we see that the last inequality holds if � > 0 is small
depending only on the data. Then (7.20) is proved.

Now we define the extensions.

Step 2. First, on�1, we work in the .x; y/-coordinates. Then�1Df0<x<�,
0 < y < Of�.x/g by (5.25). Denote Q.a;b/ WD .0; �/� .a; b/. Define the mapping
ˆ WQ.�1;1/!Q.�1;1/ by

ˆ.x; y/D .x; 1�y= Of�.x//:

The mapping ˆ is invertible with the inverse ˆ�1.x; y/D .x; Of�.x/.1�y//. By
definition of ˆ,

ˆ.�1/DQ.0;1/; ˆ.�shock.�/\f0 < x < �g/D .0; �/� f0g;(7.21)

ˆ.D\f0 < x < �g/�Q.�1;1/;

where the last property can be seen as follows: First we note that Of�.x/�
Of0;0.0/
2

> 0 for x 2 .0; �/ by (5.8) and (5.26); then we use

D\f0 < x < �g D f0 < x < �; 0 < y < Of0.x/g

and (5.27) to obtain y
Of�.x/

> 0 on D\f0 < x < �g and

sup
.x;y/2D\f0<x<�g

 
y

Of�.x/

!
D sup
x2.0;�/

 
Of0.x/

Of�.x/

!
� 1C

2

Of0;0.0/
k Of� � Of0kC.0;�/

< 1CC.M1"CM2�/ < 2;

if M1" and M2� are small, which can be achieved by choosing yC in (5.16) suffi-
ciently large.

We first define the extension operator:

E2 W C
1;ˇ .Q.0;1//\C

2;ˇ .Q.0;1/ n fx D 0g/

! C 1;ˇ .Q.�1;1//\C
2;ˇ .Q.�1;1/ n fx D 0g/
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for any ˇ 2 .0; 1�. Let v 2C 1;ˇ .Q.0;1//\C 2;ˇ .Q.0;1/nfxD 0g/. Define E2vD v

in Q.0;1/. For .x; y/ 2Q.�1;0/, define

(7.22) E2v.x; y/D

3X
iD1

aiv
�
x;�

y

i

�
;

where a1 D 6, a2 D�32, and a3 D 27, which are determined by
P3
iD1 ai

�
�
1
i

�m
D 1 for mD 0; 1; 2.

Now let  2 C 1;˛.�C.�//\C 2;˛.�C.�/ n�sonic[†0/. Let

v D  j�1 ıˆ
�1:

Then v2C 1;˛.Q.0;1//\C 2;˛.Q.0;1/ n fxD0g/. By (7.21), we have D\fc2�r<�g

�ˆ�1.Q.�1;1//. Thus, we define an extension operator on �1 by

P1� D .E2v/ ıˆ on D\fc2� r < �g:

Then P1� 2 C
1;˛.D1/\C

2;˛.D1 n�sonic/ with D1 WD D\fc2� r < �g.
Next we estimate P1� separately on the domains D0 D D\fc2� r < 2"g and

D1\fc2� r > "=2g.
In order to estimate the Hölder norms of P1� on D0, we note that ˆ.�0.�//D

.0; 2"/ � .0; 1/ and D0 � ˆ�1..0; 2"/ � .�1; 1// in the .x; y/-coordinates. We
first show the following estimates, in which the sets are defined in the .x; y/-
coordinates:

k ıˆ�1k
.par/
2;˛;.0;2"/�.0;1/

� Ck k
.par/
2;˛;�0.�/

for any  2 C .par/
2;˛;�0.�/

;(7.23)

kw ıˆk
.par/
2;˛;D0 � Ckwk

.par/
2;˛;.0;2"/�.�1;1/

for any w 2 C .par/
2;˛;.0;2"/�.�1;1/

;(7.24)

kE2vk
.par/
2;˛;.0;2"/�.�1;1/

� Ckvk
.par/
2;˛;.0;2"/�.0;1/

for any v 2 C .par/
2;˛;.0;2"/�.�1;1/

:

(7.25)

To show (7.23), we denote v D  ıˆ�1 and estimate every term in definition
(5.11) for v. Note that v.x; y/D  .x; Of�.x/.1� y//. In the calculations below,
we denote

.v;Dv;D2v/D .v;Dv;D2v/.x; y/;

. ;D ;D2 /D . ;D ;D2 /.x; Of�.x/.1�y//;

and

. Of� ; Of
0
� ;
Of 00� /D .

Of� ; Of
0
� ;
Of 00� /.x/:

We use that, for x 2 .0; 2"/, 0 < M1x < 2M1" < 2= yC by (5.16). Then, for any
.x; y/ 2 .0; 2"/� .0; 1/, we have
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jvj D j j � k k
.par/
2;˛;�0.�/

x2;

jvxj D j xC .1�y/ y Of
0
� j

� k k
.par/
2;˛;�0.�/

�
xC x3=2.1CM1x/

�
� Ck k

.par/
2;˛;�0.�/

x;

jvxxj D j xxC 2.1�y/ xy Of
0
� C .1�y/

2 yy. Of
0
�/
2
C .1�y/ y Of

00
� j

� k k
.par/
2;˛;�0.�/

�
1C x1=2.1CM1x/C x.1CM1x/

2
CM1x

3=2
�

� Ck k
.par/
2;˛;�0.�/

:

The estimates of the other terms in (5.11) for v follow from similar straightforward
(but lengthy) calculations. Thus, (7.23) is proved. The proof of (7.24) is similar
by using that Of�.x/� Of0;0.0/=2 > 0 for x 2 .0; �/ from (5.8) and (5.26) and that
Of0;0.0/ depends only on the data. Finally, estimate (7.25) follows readily from

(7.22).
Now, let  2 C 1;˛.�C.�// \ C 2;˛.�C.�/ n �sonic[†0/ be a solution of

(5.29)–(5.33). Then

kP1� k
.par/
2;˛;D0 D kE2. j�1 ıˆ

�1/ ıˆk
.par/
2;˛;D0

� CkE2. j�1 ıˆ
�1/k

.par/
2;˛;.0;2"/�.�1;1/

� Ck j�1 ıˆ
�1
k
.par/
2;˛;.0;2"/�.0;1/

� Ck k
.par/
2;˛;�0.�/

� C;

where the first inequality is obtained from (7.24), the second inequality from (7.25),
the third inequality from (7.23), and the last inequality from (7.2). Thus, (7.16)
holds for P1� .

Furthermore, using the second estimate in (5.27), noting that M2� � 1 by
(5.16), and using the definition of P1� and the fact that the change of coordinates
.x; y/! .�; �/ is smooth and invertible in D\f"=2 < x < �g, we find that, in the
.�; �/-coordinates,

(7.26) kP1� kC2;˛.D\f"=2�c2�r��g/ � Ck kC2;˛.�C.�/\f"=2�c2�r��g/
:

Step 3. Now we define an extension operator in the .�; �/-coordinates. Let

QE2 W C
1.Œ0; 1�� Œ�v2; �1�/\C

2.Œ0; 1�� .�v2; �1�/

! C 1.Œ�1; 1�� Œ�v2; �1�/\C
2.Œ�1; 1�� .�v2; �1�/

be defined by

QE2v.X; Y / WD

3X
iD1

aiv
�
�
X

i
; Y
�

for .X; Y / 2 .�1; 0/� .�v2; �1/;

where a1; a2, and a3 are the same as in (7.22).
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Let y�2 WD�C.�/\f�v2 � �� �1g. Define the mapping ‰ W y�2! .0; 1/�

.�v2; �1/ by

‰.�; �/ WD
� � �f�.�/

� cot �w �f�.�/
; �
�
;

where f�.�/ is the function from (5.21) and (5.22). Then the inverse of ‰ is

‰�1.X; Y /D .f�.Y /CX.Y cot �w �f�.Y //; Y /;

and thus, from (5.24),

(7.27) k‰k.�1�˛;�
C.�/\.f�D�v2g[f�D�1g/

2;˛;y�2
Ck‰�1k

.�1�˛;Œ0;1��f�v2;�1g/

2;˛;.0;1/�.�v2;�1/
� C:

Moreover, by (5.24), for sufficiently small " and � (which are achieved by choosing
large yC in (5.16)), we have D\f�v2<�<�1g�‰

�1.Œ�1; 1�� Œ�v2; �1�/. Define

P2� WD
QE2. ı‰

�1/ ı‰ on D\f�v2 < � < �1g:

Then P2� 2 C
1;˛.D/\C 2;˛.D n�sonic[†0/ since

D n�C.�/� D\f�v2 < � < �1g:

Furthermore, using (7.27) and the definition of P2� , we find that, for any s 2
.�v2; �1�,

(7.28) kP2� k
.�1�˛;†0/

2;˛;D\f��sg
� C.�1� s/k k

.�1�˛;fP2;P3g/

2;˛;�C.�/\f��sg
;

where C.�1� s/ depends only on the data and �1� s > 0.
Choosing yC large in (5.16), we have " < �=100. Then (5.25) implies that

there exists a unique point P 0 D �shock.�/\ fc2 � r D �=8g. Let P 0 D .� 0; �0/ in
the .�; �/-coordinates. Then �0 > 0. Using (7.18) and (7.20), we find

.D n�C.�//\fc2� r > �=8g � D\f�� �0g;

�C.�/\f�� �0g ��C.�/\fc2� r > �=8g:

Also, �=C � �1��0 � C� by (5.22), (5.24), and (4.3). These facts and (7.28) with
s D �0 imply

(7.29) kP2� k
.�1�˛;†0/

2;˛;D\fc2�r>�=8g
� Ck k

.�1�˛;fP2;P3g/

2;˛;�C.�/\fc2�r>�=8g
:

Step 4. Finally, we choose a cutoff function � 2 C1.R/ satisfying

� � 1 on .�1; �=4/; � � 0 on .3�=4;1/; �0 � 0 on R;

and define

P� WD �.c2� r/P
1
� C .1� �.c2� r//P

2
� in D:
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Since Pk� D  on �C.�/ for k D 1; 2, so is P� . Also, from the properties of
Pk� above, P� 2 C

1;˛.D/\C 2;˛.D/ if

 2 C 1;˛.�C.�//\C 2;˛.�C.�/ n�sonic[†0/:

If such  is a solution of (5.29)–(5.33), then we prove (7.16) and (7.17): P� �

P1� on D0 by the definition of � and by " < �=100. Thus, since (7.16) has been
proved in Step 2 for P1� , we obtain (7.16) for P� . Also,  satisfies (6.11) by
Proposition 6.2. Using (6.11) with s D "=2, (7.26), and (7.29), we obtain (7.17).
Assertion (i) is then proved.

Step 5. Finally we prove assertion (ii). Let �k 2 K converge to � in C 1;ˇ .D/.
Then obviously � 2 K. By (5.20) and (5.22), it follows that

(7.30) f�k ! f� in C 1;ˇ .Œ�v2; �1�/;

where f�k ; f� 2 C
.�1�˛;f�v2;�1g/

2;˛;.�v2;�1/
are the functions from (5.21) corresponding to

�k; �, respectively. Let  k;  2 C 1;˛.�C.�k//\C 2;˛.�C.�k/n�sonic[†0/ be
the solutions of problems (5.29)–(5.33) for �k; �. Let f kmg be any subsequence
of f kg. By (7.16) and (7.17), it follows that there exist a further subsequence
f�kmn g and a function x 2 C 1;˛.D/\C 2;˛.D/ such that

P�kmn kmn !
x in C 2;˛=2 on compact subsets of D and in C 1;˛=2.D/:

Then, using (7.30) and the convergence �k ! � in C 1;ˇ .D/, we prove (by the
argument as in [10, p. 479]) that x is a solution of problem (5.29)–(5.33) for �.
By uniqueness in Lemma 7.2, x D in �C.�/. Now, using (7.30) and the explicit
definitions of extensions P1� and P2� , it follows by the argument as in [10, pp. 477
and 478] that

�P1�kmn
 kmn ! �P1� x j�C.�/ in C 1;ˇ .D/;

.1� �/P2�kmn
 kmn ! .1� �/P2� x j�C.�/ in C 1;ˇ .D/:

Therefore, x D P� in D. Since a convergent subsequence f kmn g can be ex-
tracted from any subsequence f kmg of f kg and the limit x D P� is indepen-
dent of the choice of subsequences f kmg and f kmn g, it follows that the whole
sequence P�k k converges to P� in C 1;ˇ .D/. This completes the proof. �

Now we denote by yC0 the constant in (5.16) sufficiently large to satisfy the
conditions of Proposition 6.2 and Lemma 7.5. Fix OC � yC0. Choose M1 D

max.2C1; 1/ for the constant C1 in (7.16) and define " by (5.63). This choice
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of " fixes the constant C2."/ in (7.17). Define M2 Dmax.C2."/; 1/. Finally, let

�0 D
yC�1� "� "1=4M1

2
�
M 2
2 C "

2 max.M1;M2/
�"2:

Then �0 > 0, since " is defined by (5.63). Moreover, �0, ", M1, and M2 depend
only on the data and yC . Furthermore, for any � 2 Œ0; �0�, the constants � , ", M1,
and M2 satisfy (5.16) with yC fixed above. Also,  � 0 on �C.�/ by (6.9) and
thus

(7.31) P� � 0 on D

by the explicit definitions of P1� ;P
2
� , and P� . Now we define the iteration map J

by J.�/DP� . By (7.16), (7.17), and (7.31) and the choice of � , ", M1, and M2,
we find that J W K! K. Now, K is a compact and convex subset of C 1;˛=2.D/.
The map J W K! K is continuous in C 1;˛=2.D/ by Lemma 7.5(ii). Thus, by the
Schauder Fixed Point Theorem, there exists a fixed point � 2 K of the map J . By
definition of J , such  is a solution of (5.29)–(5.33) with � D  . Therefore, we
have

PROPOSITION 7.1. There exists yC0 � 1 depending only on the data such that,
for any yC � yC0, there exist �0; " > 0 and M1;M2 � 1 satisfying (5.16) so that,
for any � 2 .0; �0�, there exists a solution  2 K.�; ";M1;M2/ of problem (5.29)–
(5.33) with � D  (i.e.,  is a “fixed point” solution). Moreover,  satisfies (6.11)
for all s 2 .0; c2=2/ with C.s/ depending only on the data and s.

8. Removal of the ellipticity cutoff

In this section we assume that OC0 � 1 is as in Proposition 7.1 which depends
only on the data, yC � yC0, and assume that �0; " > 0 and M1;M2 � 1 are defined
by yC as in Proposition 7.1 and � 2 .0; �0�. We fix a “fixed point” solution  
of problem (5.29)–(5.33), that is,  2 K.�; ";M1;M2/ satisfying (5.29)–(5.33)
with � D  . Its existence is established in Proposition 7.1. To simplify notation,
in this section we write �C, �shock, and †0 for �C. /, �shock. /, and †0. /,
respectively, and the universal constant C depends only on the data.

We now prove that the “fixed point” solution  satisfies j xj � 4x=
�
3.C1/

�
in �C\fc2� r < 4"g for sufficiently large yC , depending only on the data, so that
 is a solution of the regular reflection problem; see Step 10 of Section 5.6.

We also note the higher regularity of  away from the corners and the sonic
circle. Since (5.29) is uniformly elliptic in every compact subset of �C (by Lemma
5.2) and the coefficients Aij .p; �; �/ of (5.29) are C 1;˛ functions of .p; �; �/ in
every compact subset of R2 ��C (which follows from the explicit expressions of
Aij .p; �; �/ given by (5.35), (5.41), and (5.48)), then substituting p DD .�; �/
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with  2K into Aij .p; �; �/, rewriting (5.29) as a linear equation with coefficients
being C 1;˛ in compact subsets of �C, and using the interior regularity results for
linear, uniformly elliptic equations yield

(8.1)  2 C 3;˛
�
�C

�
:

First we bound  x from above. We work in the .x; y/-coordinates in �C\
fc2� r < 4"g. By (5.25),

(8.2) �C.�/\fc2� r < 4"g D f0 < x < 4"; 0 < y < Of�.x/g;

where Of� satisfies (5.26).

PROPOSITION 8.1. For sufficiently large yC depending only on the data,

(8.3)  x �
4

3. C 1/
x in �C\fx � 4"g:

Proof. To simplify notation, we denote AD 4
3.C1/

and

�Cs WD�
C
\fx � sg for s > 0:

Define a function

(8.4) v.x; y/ WD Ax� x.x; y/ on �C4":

From  2 K and (8.1), it follows that

(8.5) v 2 C 0;1
�
�C4"

�
\C 1

�
�C4" n fx D 0g

�
\C 2

�
�C4"

�
:

Since  2 K, we have j x.x; y/j �M1x in �C4". Thus

(8.6) v D 0 on @�C4"\fx D 0g:

We now use the fact that  satisfies (5.30), which can be written as (6.6) in the
.x; y/-coordinates, and (6.8) holds. Since  2 K implies that

j .x; y/j �M1x
2; j y.x; y/j �M1x

3=2;

it follows from (6.6) and (6.8) that

j xj � C.j y jC j j/� CM1x
3=2 on �shock\fx < 2"g;

and hence, by (5.16), if yC is large depending only on the data, then

j xj< Ax on �shock\f0 < x < 2"g:

Thus we have

(8.7) v � 0 on �shock\f0 < x < 2"g:
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Furthermore, condition (5.32) on �wedge in the .x; y/-coordinates is

 y D 0 on f0 < x < 2"; y D 0g:

Since  2K implies that  is C 2 up to �wedge, then differentiating the condition on
�wedge with respect to x, i.e., in the tangential direction to �wedge, yields  xy D 0
on f0 < x < 2"; y D 0g, which implies

(8.8) vy D 0 on �wedge\f0 < x < 2"g:

Furthermore, since  2 K,

(8.9) j xj �M2� � A" on �C\f"=2� x � 4"g;

where the second inequality holds by (5.16) if OC is large, depending only on the
data. Thus, for such yC ,

(8.10) v � 0 on �C4"\fx D 2"g:

Now we show that, for large yC , v is a supersolution of a linear homogeneous
elliptic equation on �C2". Since  satisfies (5.42) with (5.43) in �C4", we differ-
entiate the equation with respect to x and use the regularity of  in (8.1) and the
definition v in (8.4) to obtain
(8.11)
a11vxxC a12vxy C a22vyy
C .A� vx/

�
� 1C . C 1/

�
�1.A�

v
x
/C �01.A�

v
x
/. v
x
� vx/

��
DE.x; y/;

where

a11 D 2x� . C 1/x�1
� x
x

�
C OO1; a12 D OO2; a22 D

1

c2
C OO3;(8.12)

E.x; y/D  xx@x OO1C xy@x OO2C yy@x OO3� xx OO4� x@x OO4(8.13)

C xy OO5C y@x OO5;

with

(8.14) OOk.x; y/DO
 

k
.D .x; y/; x; y/ for k D 1; : : : ; 5;

for O 
k

defined by (5.43) with � D  . From (5.37), we have

�1 .A/D A:

Thus we can rewrite (8.11) in the form

(8.15) a11vxxCa12vxyCa22vyyC bvxC cv D�A
�
. C 1/A� 1

�
CE.x; y/;
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with

b.x; y/D 1� . C 1/
�
�1
�
A�

v

x

�
C �01

�
A�

v

x

� �v
x
� vx �A

��
;(8.16)

c.x; y/D . C 1/
A

x

�
�01
�
A�

v

x

�
�

Z 1

0

�01.A� s
v

x
/ds

�
;(8.17)

where v and vx are evaluated at the point .x; y/.
Since  2 K, and v is defined by (8.4), we have

aij ; b; c 2 C
�
�C4" n fx D 0g

�
:

Combining (8.12) with (5.16), (5.37), (5.45), and (8.14), we obtain that, for
sufficiently large yC depending only on the data,

a11 �
1

6
x; a22 �

1

2c2
; ja12j �

1

3
p
c2
x1=2 on �C2":

Thus, 4a11a22 � .a12/2 � 2
9c2
x on �C2", which implies that (8.15) is elliptic on

�C2" and uniformly elliptic on every compact subset of �C2" n fx D 0g.
Furthermore, using (5.39) and (8.17) and noting A > 0 and x > 0, we have

(8.18) c.x; y/� 0 for every .x; y/ 2�C2" such that v.x; y/� 0:

Now we estimate E.x; y/. Using (8.14), (5.43), (4.50), and  2 K, we find
that, on �C2",

j@x OO1j � C
�
xCj jC jD jC xj xxjC j x xxjC j y xy jC jD j

2
�
� CM 2

1 x;

j@x OO2;5j � C
�
jD jC jD j2Cj y xxjC .1Cj xj/j xy j

�
� CM1x

1=2.1CM1x/;

j@x OO3;4j � C
�
1Cj jC

ˇ̌ x
x
�01
� x
x

�ˇ̌
C .1CjD j/jD2 jC jD j2

�
� CM1.1CM1x/;

where we have used the fact that js�01.s/j � C on R. Combining these estimates
with (8.13), (8.14), (5.44), and  2 K, we obtain from (8.13) that

jE.x; y/j � CM 2
1 x.1CM1x/� C= yC on �C2":

From this and . C 1/A > 1, we conclude that the right-hand side of (8.15) is
strictly negative in �C2" if yC is sufficiently large, depending only on the data.

We fix yC satisfying all the requirements above (thus depending only on the
data). Then we have

(8.19) a11vxxC a12vxy C a22vyy C bvxC cv < 0 on �C2"I
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the equation is elliptic in �C2" and uniformly elliptic on compact subsets of �C2" n
fx D 0g, and (8.18) holds. Moreover, v satisfies (8.5) and the boundary conditions
(8.6)–(8.8) and (8.10). Then it follows that

v � 0 on �C2":

Indeed, let z0 WD .x0; y0/ 2�C2" be a minimum point of v over �C2" and v.z0/ < 0.
Then, by (8.6), (8.7), and (8.10), either z0 is an interior point of �C2" or z0 2
�wedge\f0< x < 2"g. If z0 is an interior point of �C2", then (8.19) is violated since
(8.19) is elliptic, v.z0/ < 0, and c.z0/� 0 by (8.18). Thus, the only possibility is
z0 2�wedge\f0<x<2"g, i.e., z0D .x0; 0/with x0>0. Then, by (8.2), there exists
� > 0 such that B�.z0/\�C2" D B�.z0/\fy > 0g. (8.19) is uniformly elliptic in
B�=2.z0/\fy � 0g, with the coefficients aij ; b; c 2C.B�=2.z0/\fy � 0g/. Since
v.z0/ < 0 and v satisfies (8.5), then, reducing � > 0 if necessary, we have v < 0 in
B�.z0/\fy > 0g. Thus, c � 0 on B�.z0/\fy > 0g by (8.18). Moreover, v.x; y/
is not a constant in Bx0=2.x0/\fy � 0g since its negative minimum is achieved
at .x0; 0/ and cannot be achieved in any interior point, as we showed above. Thus,
@yv.z0/ > 0 by Hopf’s Lemma, which contradicts (8.8). Therefore, v � 0 on �C2"
so that (8.3) holds on �C2". Then, using (8.9), we obtain (8.3) on �C4". �

Now bounding  x from below, we first prove the following lemma in the
.�; �/-coordinates.

LEMMA 8.1. If yC in (5.16) is sufficiently large, depending only on the data,
then

(8.20)  � � 0 in �C:

Proof. We divide the proof into six steps.

Step 1. Set w D  �: From  2 K and (8.1),

(8.21) w 2 C 0;˛
�
�C

�
\C 1

�
�C n�sonic[†0

�
\C 2

�
�C

�
:

In the next steps, we derive the equation and boundary conditions for w in
�C. To achieve this, we use the following facts:

(i) If yC in (5.16) is sufficiently large, then the coefficient A11 of (5.29) satisfies

(8.22) jA11 .D .�; �/; �; �/ j �
Nc22 �
N�2

2
> 0 in �C;

where Nc2 and N� are defined as in Section 3.1. Indeed, since Nc2 > j N�j by (3.5) and
.c2; Q�/! . Nc2; N�/ as �w!�=2 by Section 3.2, we have c22� Q�

2
� 9. Nc22 �

N�2/=10>0

if � is small. Furthermore, for any .�; �/ 2 D, we have c2 cos �w � � � Q� and thus,
assuming that � is small so that j Q�j � 2j N�j and c2 � 2 Nc2, we obtain j�j � C . Now,
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since  2K, it follows that, if yC in (5.16) is sufficiently large, then A111 defined in
(5.35) with � D implies A111 � . Nc

2
2 �
N�2/=2 on D, and A211 in (5.41) with � D 

implies A211 � . Nc
2
2 �
N�2/=2 on D\fc2� r < 4"g. Then (8.22) follows from (5.48).

(ii) Since  satisfies (5.29) in �C with (8.22), we have

(8.23)  �� D�
2 OA12 ��C OA22 ��

OA11
in �C;

where OAij .�; �/D Aij .D .�; �/; �; �/ in �C.

Step 2. We differentiate (5.29) with respect to � and substitute the right-hand
side of (8.23) for  �� to obtain the following equation for w:

(8.24) OA11w�� C 2 OA12w��C OA22w��

C 2

 
@� OA12�

@� OA11

OA11

OA12

!
w� C

 
@� OA22�

@� OA11

OA11

OA22

!
w� D 0:

By Lemma 5.2, (8.22), and  2 K, the coefficients of (8.24) are continuous in
�C n �sonic[†0, and the equation is uniformly elliptic on compact subsets of
�C n�sonic.

Step 3. By (5.33), we have

(8.25) w D�v2 on †0 WD @�
C
\f�D�v2g:

Since  2K, it follows that jD .�; �/j � CM1.c2� r/ for all .�; �/ 2�C\
fc2� r � 2"g. Thus,

(8.26) w D 0 on �sonic:

Step 4. We derive the boundary condition for  on �wedge. Then  satisfies
(5.32), which can be written as

(8.27) � sin �w  � C cos �w  � D 0 on �wedge:

Since  2K, we have  2 C 2.�C n�sonic[†0/. Thus we can differentiate (8.27)
in the direction tangential to �wedge, i.e., apply @� WD cos �w @�Csin �w @� to (8.27).
Differentiating and substituting the right-hand side of (8.23) for  �� , we have
(8.28) 

cos.2�w/C
OA12

OA11
sin.2�w/

!
w� C

1

2
sin.2�w/

 
1C

OA22

OA11

!
w� D 0 on �wedge:
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This condition is oblique if � is small: Indeed, since the unit normal on �wedge is
.� sin �w ; cos �w/, we use (3.1) and (8.22) to find�

cos.2�w/C
OA12

OA11
sin.2�w/;

1

2
sin.2�w/

�
1C

OA22

OA11

��
� .� sin �w ; cos �w/

� 1�C� �
1

2
:

Step 5. In this step, we derive the condition for w on �shock. Since  is a
solution of (5.29)–(5.33) for � D  , the Rankine-Hugoniot conditions hold on
�shock: Indeed, the continuous matching of  with '1 � '2 across �shock holds
by (5.21)–(5.23) since � D  . Then (4.28) holds and the gradient jump condition
(4.29) can be written in form (4.42). On the other hand,  on �shock satisfies (5.30)
with � D  , which is (4.42). Thus,  satisfies (4.29).

Since  2 K which implies  2 C 2.�
C
n�sonic[†0/, we can differentiate

(4.29) in the direction tangential to �shock. The unit normal �s on �shock is given
by (4.30). Then the vector

(8.29) �s � .�
1
s ; �

2
s / WD

�v2C �
u1�u2

; 1�
 �

u1�u2

�
is tangential to �shock. Note that �s ¤ 0 if yC in (5.16) is sufficiently large, since

(8.30) jD j � C.� C "/ in �C; ju2jC jv2j � C�;

and u1 > 0 from  2 K and Section 3.2. Thus, we can apply the differential
operator @�s D �

1
s @� C �

2
s @� to (4.29).

In the calculation below, we use the notation in Section 4.2. We showed that
condition (4.29) can be written in form (4.33), where F.p; z; u2; v2; �; �/ is defined
by (4.34)–(4.36) and satisfies (4.37). Also, we denote

(8.31) O�.p; u2; v2/� . O�
1; O�2/.p; u2; v2/ WD

�v2Cp2
u1�u2

; 1�
p1

u1�u2

�
;

where p D .p1; p2/ 2 R2 and z 2 R. Then O� 2 C1.Bı�.0/�Bu1=50.0//. Now,
applying the differential operator @�s , we obtain that  satisfies

(8.32) ˆ.D2 ;D ; ; u2; v2; �; �/D 0 on �shock;

where
(8.33)

ˆ.R; p; z; u2; v2; �; �/D

2X
i;jD1

O� iFpjRijC

2X
iD1

O� i .Fzpi CF�i / for RD.Rij /2i;jD1:

In both (8.33) and the calculation below,D.�1;�2/F denotesD.�;�/F , .Fpj ; Fz; F�i /
denotes .Fpj ; Fz; F�i /.p; z; u2; v2; �; �/, . O�; O�/ denotes . O�; O�/.p; u2; v2/, and Q�
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denotes Q�.p; z; �; �/, with Q�.�/ and O�.�/ defined by (4.35) and (4.36), respectively.
By explicit calculation, we apply (4.34)–(4.36) and (8.31) to obtain that, for every
.p; z; u2; v2; �; �/,

(8.34)
2X
iD1

O� i .Fzpi CF�i /D .�1� Q�/ O� � O� D 0:

We note that (4.28) holds on �shock. Using (8.32) and (8.34) and expressing
� from (4.28), we see that  satisfies
(8.35) Q̂ .D2 ;D ; ; u2; v2; �/D 0 on �shock;

where

(8.36) Q̂ .R; p; z; u2; v2; �/D

2X
i;jD1

O� i‰pj .p; z; u2; v2; �/Rij ;

‰ is defined by (4.39) and satisfies ‰ 2 C1.A/ with k‰kCk.A/ depending only
on the data and k 2N, and ADBı�.0/�.�ı

�; ı�/�Bu1=50.0/�.�6 Nc2=5; 6 Nc2=5/.
Now, from (4.34)–(4.36), (4.39), and (8.31), we find

O�..0; 0/; 0; 0/D .0; 1/;

Dp‰..0; 0/; 0; 0; 0; �/D
�
�02.c

2
2 �
O�2/;

��2� �1
u1

� �02
O�
�
�
�
:

Thus, by (8.36), we obtain that, on R2�2 �A,

Q̂ .R; p; z; u2; v2; �/D �
0
2.c

2
2 �
O�2/R21C

�
�2� �1

u1
� �02
O�

�
�R22(8.37)

C

2X
i:jD1

OEij .p; z; u2; v2; �/Rij ;

where OEij 2 C1.A/ and

j OEij .p; z; u2; v2; �/j � C.jpjC jzjC ju2jC jv2j/ for any .p; z; u2; v2; �/ 2A;

with C depending only on kD2‰kC0.A/.
From now on, we fix .u2; v2/ to be equal to the velocity of state (2) obtained

in Section 3.2 and write Eij .p; z; �/ for OEij .p; z; u2; v2; �/. Then, from (8.35)
and (8.37), we conclude that  satisfies
(8.38)

�02.c
2
2�
O�2/ ��C

��2� �1
u1

��02
O�
�
� ��C

2X
i;jD1

Eij .D ; ; �/Dij D0 on �shock;

and Eij DEij .p; z; �/; i; j D 1; 2; are smooth on

B WD Bı�.0/� .�ı�; ı�/� .�6 Nc2=5; 6 Nc2=5/
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and satisfy (4.43) with C depending only on the data. Note that

.D .�; �/;  .�; �/; �/ 2B on �shock;

since  2K and (5.16) holds with sufficiently large yC . Expressing  �� from (8.23)
and using (8.22), we can rewrite (8.38) in the form�
�02.c

2
2 �
O�2/CE1.D ; ; �/

�
 ��

C

���2� �1
u1

� �02
O�
�
�CE2.D ; ; �/

�
 ��D0

on �shock, where the functions Ei D Ei .p; z; �/; i D 1; 2; are smooth on B and
satisfy (4.43). Thus, w satisfies
(8.39)�
�02.c

2
2 �
O�2/CE1.D ; ; �/

�
w�C

���2� �1
u1

� �02
O�
�
�CE2.D ; ; �/

�
w�D0

on �shock. Condition (8.39) is oblique if yC is sufficiently large in (5.16). Indeed,
we have c2 � 9

10
Nc2, which implies c22 � jO�j

2 � Nc2
Nc2�jN�j
4

> 0 by using (4.8). Now,
combining (4.30) and (4.43) with  2 K and (3.24), we find that, on �shock,�
�02.c

2
2 �
O�2/CE1.D ; ; �/;

��2� �1
u1

� �02
O�
�
�CE2.D ; ; �/

�
� �s

� �02 Nc2
Nc2� jN�j

4
�C.M1"CM2�/� �

0
2 Nc2
Nc2� jN�j

8
> 0:

Also, the coefficients of (8.39) are continuous with respect to .�; �/ 2 �shock.

Step 6. Both the regularity of w in (8.21) and the fact that w satisfies (8.24)
that is uniformly elliptic on compact subsets of�Cn�sonic imply that the maximum
of w cannot be achieved in the interior of �C, unless w is constant on �C, by
the Strong Maximum Principle. Since w satisfies the oblique derivative conditions
(8.28) and (8.39) on the straight segment �wedge and on the curve �shock that is C 2;˛

in its relative interior, and since (8.24) is uniformly elliptic in a neighborhood of
any point from the relative interiors of �wedge and �shock, it follows from Hopf’s
Lemma that the maximum of w cannot be achieved in the relative interiors of
�wedge and �shock, unless w is constant on �C. Now conditions (8.25) and (8.26)
imply that w � 0 on �C. This completes the proof. �

Using Lemma 8.1 and working in the .x; y/-coordinates, we have

PROPOSITION 8.2. If yC in (5.16) is sufficiently large, depending only on the
data, then

(8.40)  x � �
4

3. C 1/
x in �C\fx � 4"g:



1160 GUI-QIANG CHEN and MIKHAIL FELDMAN

Proof. By definition of the .x; y/-coordinates in (4.47), we have

(8.41)  � D� sin �  xC
cos �
r
 y ;

where .r; �/ are the polar coordinates in the .�; �/-plane.
From (7.20), it follows that, for sufficiently small � and ", depending only on

the data,
�� �� for all .�; �/ 2 D\fc2� r < 4"g;

where .l.��/; ��/ is the unique intersection point of the segment f.l.�/; �/ W � 2
.0; �1�g with the circle @Bc2�4".0/. Let N�� be the corresponding point for the case

of normal reflection, i.e., N�� D
q
. Nc2� 4"/2� N�2. By (3.5), N�� �

q
Nc22 �
N�2=2 > 0

if " is sufficiently small. Also, from (4.3), (4.4), and (3.24), and using the conver-
gence .�s; c2; Q�/! .�=2; Nc2; N�/ as �w!�=2, we obtain ��� N��=2 and c2� 2 Nc2 if
� and " are sufficiently small. Thus, we conclude that, if yC in (5.16) is sufficiently
large depending only on the data, then, for every .�; �/ 2 D\ fc2 � r < 4"g, the
polar angle � satisfies

(8.42) sin � D
�p

�2C �2
> 0; j cot � j D

ˇ̌̌̌
�

�

ˇ̌̌̌
�

8 Nc2q
Nc22 �
N�2
� C:

From (8.41), (8.42), and Lemma 8.1, we find that, on �C\fc2� r < 4"g,

(8.43)  x D�
1

sin �
 �C

cot �
r
 y �

cot �
r
 y � �C j y j:

Note that  2K implies j y.x; y/j �M1x
3=2 for all .x; y/ 2�C\fc2� r < 2"g.

Then, using (8.43) and (5.16) and choosing large yC , we have

 x � �
4

3. C 1/
x in �C\fx � 2"g:

Also,  2 K implies

j xj �M2� �
4

3. C 1/
.2"/ on �C\f2"� x � 4"g;

where the second inequality holds by (5.16) if OC is sufficiently large depending
only on the data. Thus, (8.40) holds on �C4". �

9. Proof of the Main Theorem

Let yC be sufficiently large to satisfy the conditions in Propositions 7.1, 8.1,
and 8.2. Then, by Proposition 7.1, there exist �0; " > 0 and M1;M2 � 1 such that,
for any � 2 .0; �0�, there exists a solution  2K.�; ";M1;M2/ of problem (5.29)–
(5.33) with � D  . Fix � 2 .0; �0� and the corresponding “fixed point” solution  ,
which, by Propositions 8.1 and 8.2, satisfies



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 1161

j xj �
4

3. C 1/
x in �C\fx � 4"g:

Then, by Lemma 5.4,  satisfies (4.19) in �C. /. Moreover,  satisfies properties
(i)–(v) in Step 10 of Section 5.6 by following the argument in Step 10 of Section
5.6. Then, extending the function ' D  C '2 from � WD �C. / to the whole
domain ƒ by using (1.20) to define ' in ƒ n�, we obtain

' 2W
1;1

loc .ƒ/\
�
[
2
iD0C

1.ƒi [S/\C
1;1.ƒi /

�
;

where the domains ƒi , i D 0; 1; 2, are defined in Step 10 of Section 5.6. From
the argument in Step 10 of Section 5.6, it follows that ' is a weak solution of
Problem 2, provided that the reflected shock S1 D P0P1P2\ƒ is a C 2-curve.

Thus, it remains to show that S1DP0P1P2\ƒ is a C 2-curve. By definition of
' and since  2K.�; ";M1;M2/, the reflected shock S1DP0P1P2\ƒ is given by
S1Df�DfS1.�/ W �P2

<�<�
P0
g, where �

P2
D�v2, �

P0
DjO�j sin �s sin �w

sin.�w��s/
>0, and

(9.1) fS1.�/D

(
f .�/ if � 2 .�

P2
; �
P1
/;

l.�/ if � 2 .�
P1
; �
P0
/;

where l.�/ is defined by (4.3), �
P1
D �1 > 0 is defined by (4.6), and �

P0
> �

P1
if �

is sufficiently small, which follows from the explicit expression of �
P0

given above

and the fact that .�s; c2; O�/! .�=2; Nc2; N�/ as �w!�=2. The function f is defined
by (5.21) for � D  .

Thus we need to show that fS1 2 C
2.Œ�

P2
; �
P0
�/. By (4.3) and (5.24), it

suffices to consider fS1 near the points �
P1

and �
P2

.
First, we show fS1 is twice differentiable at �

P1
. We change the coordinates

to the .x; y/-coordinates in (4.47). Then, for sufficiently small "1 > 0, the curve
f� D fS1.�/g\fc2�"1 < r < c2C"1g has the form fyD OfS1.x/ W �"1 <x < "1g,
where

(9.2) OfS1.x/D

(
Of .x/ if x 2 .0; "1/;
Of0.x/ if x 2 .�"1; 0/;

with Of0 and Of defined by (5.9) and (5.25) for � D  . In order to show that fS1
is twice differentiable at �P1 , it suffices to show that OfS1 is twice differentiable at
x D 0 and . Of 00S1 �

Of 000 /.0/D 0.

From (5.26), (5.27), and (5.9), it follows that OfS1 2 C
1..�"1; "1//. More-

over, from (5.3), (5.6), (5.22), and (5.27), we write '1; '2; and  in the .x; y/-
coordinates to obtain that

(9.3) Of 0S1.x/D

8<: �
@x.'1�'2� /
@y.'1�'2� /

.x; OfS1.x// if x 2 .0; "1/;

�
@x.'1�'2/
@y.'1�'2/

.x; OfS1.x// if x 2 .�"1; 0�;
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and that Of 00.x/ is given for x 2 .�"1; "1/ by the second line of the right-hand side
of (9.3). Using (5.3) and  2 K with (5.16) for sufficiently large yC , we have

(9.4) j Of 0S1.x/�
Of 00.x/j � C jD.x;y/ .x;

Of .x//j for all x 2 .0; "1/:

Since  satisfies (5.30) with � D  , it follows that, in the .x; y/-coordinates,  
satisfies (6.6) on fy D Of .x/ W x 2 .0; "1/g, and (6.8) holds. Then it follows that

j x.x; Of .x//j � C.j y.x; Of .x//jC j .x; Of .x//j/� Cx
3=2;

where the last inequality follows from  2 K. Combining this with (9.2), (9.4),
and OfS1 ; Of0 2 C

1..�"1; "1// yields

j Of 0S1.x/�
Of 00.x/j � Cx

3=2 for all x 2 .�"1; "1/:

Then it follows that Of 0S1.x/�
Of 00.x/ is differentiable at x D 0. Since

Of0 2 C
1..�"1; "1//;

we conclude that OfS1 is twice differentiable at x D 0 and . Of 00S1 �
Of 000 /.0/D 0. Thus,

fS1 is twice differentiable at �
P1

.

Now we prove that f 00 is continuous at �P1 , or equivalently, that Of 00S1 �
Of 000 ! 0 as x ! 0C. Differentiating (9.3), we see that it suffices to show that
jD2 x.x; Of .x//j ! 0 as x ! 0C. To see this, we rewrite equation (8.38) in
the .x; y/-coordinates, by a calculation similar to deriving equation (4.56). Then
(8.38), near P1 D .0; y1/, has the form

b11 xxC b12 xy C b22 yy C b1 xC b2 y D 0 on �shock\fx < 2"g;

where .bij ; bi /D .bij ; bi /.D.x;y/ ; ; x; y/, and .bij ; bi /.p; z; x; y/ are smooth
functions up to x D 0. Furthermore,

b11 D�
�2� �1

u1c
2
2

�31CE.D.x;y/ ; ; x; y/;

where E.p; z; x; y/ satisfies (4.57). Here �1 is the �-coordinate of P1, which
implies that �1 > 0. Then, using that jD.x;y/ j � Cx and choosing �; " > 0 small,
we obtain

b11 � �ı on �shock\fx < "g;

where ı > 0. Also, since D.x;y/ is continuous up to x D 0, then .bij ; bi / are
bounded on �shock\fx < 2"g. Thus we have

j xxj � C.j xy jC j yy jC jD.x;y/ j/� Cx
1=2 on �shock\fx < "g;

where the last inequality follows from  2 K. Then

jD2 j � Cx1=2 on �shock\fx < "g:
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This implies the continuity of Of 00S1 �
Of 000 at x D 0, that is, the continuity of f 00S1

at �P1 .
In order to prove the C 2-smoothness of fS1 up to �

P2
D �v2, we extend

the solution � and the free boundary function fS1 into f� < �v2g by the even
reflection about the line †0 � f�D�v2g so that P2 becomes an interior point of
the shock curve. Note that we continue to work in the shifted coordinates defined
in Section 4.1; that is, for .�; �/ such that � <�v2 and .�;�2v2��/ 2�C. /, we
define .'; '1/.�; �/D .'; '1/.�;�2v2��/ and fS1.�/D�2v2�� for '1 given by
(4.15). Denote �C"1.P2/ WD B"1.P2/\f� > fS1.�/g for sufficiently small "1 > 0.
From ' 2 C 1;˛.�C. //\C 2;˛.�C. // and (4.13), we have

' 2 C 1;˛.�C"1.P2//\C
2;˛.�C"1.P2//:

Also, the extended function '1 is in fact given by (4.15). Furthermore, from (5.20)
and (5.22), we can see that the same is true for the extended functions and hence

f� > fS1.�/g\B"1.P2/D f' < '1g\B"1.P2/;

fS1 2 C
1;˛
��
� v2�

"1

2
;�v2C

"1

2

��
:

Furthermore, from (1.8), (1.9), and (4.13), it follows that the extended ' satisfies
(1.8) with (1.9) in �C"1.P2/, where we have used the form of equation, i.e., the
fact that there is no explicit dependence on .�; �/ in the coefficients and that the
dependence of D' is only through jD'j. Finally, the boundary conditions (4.9)
and (4.10) are satisfied on �"1.P2/ WD f� D fS1.�/g\B"1.P2/. (1.8) is uniformly
elliptic in �C"1.P2/ for ', which follows from ' D '2C and Lemmas 5.2 and
5.4. Condition (4.10) is uniformly oblique on �"1.P2/ for ', which follows from
Section 4.2.

Next, we rewrite (1.8) in �C"1.P2/ and the boundary conditions (4.9) and
(4.10) on �"1.P2/ in terms of u WD '1�'. Substituting uC'1 for ' into (1.8) and
(4.10), we obtain that u satisfies

F.D2u;Du; u; �; �/D 0 in �C"1.P2/; uDG.Du; u; �; �/D 0 on �"1.P2/;

where the equation is quasilinear and uniformly elliptic, the second boundary con-
dition is oblique, and the functions F and G are smooth. Also, from (5.20) which
holds for the even extensions as well, we find that @�u > 0 on �"1.P2/. Then,
applying the hodograph transform of [28, �3], i.e., changing .�; �/! .X; Y / D

.u.�; �/; �/, and denoting the inverse transform by .X; Y /! .�; �/D .v.X; Y /; Y /,
we obtain

v 2 C 1;˛.BC
ı
..0;�v2///\C

2;˛.BC
ı
..0;�v2///;
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where BC
ı
..0;�v2// WDBı..0;�v2//\fX > 0g for small ı > 0, v.X; Y / satisfies

a uniformly elliptic quasilinear equation

QF .D2v;Dv; v;X; Y /D 0 in BC
ı
..0;�v2//

and the oblique derivative condition

QG.Dv; v; Y /D 0 on @BC
ı
..0;�v2//\fX D 0g;

and the functions QF and QG are smooth. Then, from the local estimates near the
boundary in the proof of [32, Th. 2], v 2 C 2;˛.BC

ı=2
..0;�v2///. Since fS1.�/D

v.0; �/, it follows that fS1 is C 2;˛ near �
P2
D�v2.

It remains to prove the convergence of the solutions to the normal reflection
solution as �w ! �=2. Let � iw ! �=2 as i !1. Denote by 'i and f i the corre-
sponding solution and the free-boundary function respectively, i.e., P0P1P2\ƒ for
each i is given by f�D f i .�/ W �2 .�

P2
; �
P0
/g. Denote by '1 and f1.�/D N� the

solution and the reflected shock for the normal reflection respectively. For each i ,
we find that 'i �'i2D 

i in the subsonic domain �Ci , where  i is the correspond-
ing “fixed point solution” from Proposition 7.1 and  i 2K.�=2�� iw ; "

i ;M i
1;M

i
2/

with (5.16). Moreover, f i satisfies (5.24). We also use the convergence of state (2)
to the corresponding state of the normal reflection obtained in Section 3.2. Then we
conclude that, for a subsequence, f i!f1 in C 1loc and 'i!'1 in C 1 on compact
subsets of f� > N�g and f� < N�g. Also, we obtain k.D'i ; 'i /kL1.K/ � C.K/ for
every compact setK � Nƒ1 WD f� � �; �� 0g. Then 'i! '1 inW 1;1

loc .ƒ1/ by the
Dominated Convergence Theorem. Since such a converging subsequence can be
extracted from every sequence � iw! �=2, it follows that '�w! '1 as �w! �=2.

Appendix A. Estimates of solutions to elliptic equations

In this appendix, we make some careful estimates of solutions of boundary
value problems for elliptic equations in R2, which are applied in Sections 6 and 7.
Throughout the appendix, we denote by .x; y/ or .X; Y / the coordinates in R2,
by R2

C
WD fy > 0g, and, for z D .x; 0/ and r > 0, denote BCr .z/ WD Br.z/\R2

C

and †r.z/ WD Br.z/\fy D 0g. We also denote Br WD Br.0/, BCr WD B
C
r .0/, and

†r WD†r.0/.
We consider an elliptic equation of the form

(A.1) A11uxxC 2A12uxy CA22uyy CA1uxCA2uy D f;

where Aij D Aij .Du; x; y/, Ai D Ai .Du; x; y/, and f D f .x; y/. We study the
following three types of boundary conditions: (i) the Dirichlet condition, (ii) the
oblique derivative condition, (iii) the “almost tangential derivative” condition.
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One of the new ingredients in our estimates below is that we do not assume
that the equation satisfies the “natural structure conditions”, which are used in
the earlier related results; see, e.g., [20, Ch. 15] for the interior estimates for the
Dirichlet problem and [37] for the oblique derivative problem. For (A.1), the natu-
ral structure conditions include the requirement that jpjjDpAij j �C for all p 2R2.
Note that equations (5.42) and (5.49) do not satisfy this condition because of the
term x�1.

 x
x
/ in the coefficient of  xx . Thus we have to derive the estimates

for the equations without the “natural structure conditions”. We consider only the
two-dimensional case here.

The main point at which the “natural structure conditions” are needed is the
gradient estimates. The interior gradient estimates and global gradient estimates
for the Dirichlet problem, without requiring the natural structure conditions, were
obtained in the earlier results in the two-dimensional case; see Trudinger [47] and
references therein. However, it is not clear how this approach can be extended
to the oblique and “almost tangential” derivative problems. We also note a related
result by Lieberman [34] for fully nonlinear equations and the boundary conditions
without obliqueness assumption in the two-dimensional case, in which the Hölder
estimates for the gradient of a solution depend on both the bounds of the solution
and its gradient.

In this appendix, we present the C 2;˛-estimates of the solution only in terms
of its C -norm. For simplicity, we restrict to the case of quasilinear (A.1) and linear
boundary conditions, which is the case for the applications in this paper. Below,
we first present the interior estimate in the form that is used in the other parts of
this paper. Then we give a proof of the C 2;˛-estimates for the “almost tangen-
tial” derivative problem. Since the proofs for the Dirichlet and oblique derivative
problems are similar to that for the “almost tangential” derivative problem, we just
sketch these proofs.

THEOREM A.1. Let u 2 C 2.B2/ be a solution of equation (A.1) in B2. Let
Aij .p; x; y/, Ai .p; x; y/, and f .x; y/ satisfy that there exist constants � > 0 and
˛ 2 .0; 1/ such that

�j�j2 �

nX
i;jD1

Aij�i�j � �
�1
j�j2 for all .x; y/ 2 B2; p; � 2 R2;(A.2)

k.Aij ; Ai /kC˛.R2�B2/CkDp.Aij ; Ai /kC.R2�B2/Ckf kC˛.B2/ � �
�1:(A.3)

Assume that kukC.B2/ �M . Then there exists C > 0 depending only on .�;M/

such that
(A.4) kukC2;˛.B1/ � C.kukC.B2/Ckf kC˛.B2//:

Proof. We use the standard interior Hölder seminorms and norms as defined
in [20, Eqs. (4.17) and (6.10)]. By [20, Th. 12.4], there exists ˇ 2 .0; 1/ depending
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only on � such that
Œu��1;ˇ;B2 � C.�/

�
kuk0;B2 Ckf �A1D1u�A2D2uk

.2/
0;B2

�
� C.�;M/

�
1Ckf k

.2/
0;B2
CkDuk

.2/
0;B2

�
:

Then, applying the interpolation inequality [20, (6.82)] with the argument similar
to that for the proof of [20, Th. 12.4], we obtain

kuk�1;ˇ;B2 � C.�;M/
�
1Ckf k

.2/
0;B2

�
:

Now we consider (A.1) as a linear elliptic equation
nX

i;jD1

aij .x/uxixj C

nX
iD1

ai .x/uxi D f .x/ in B3=2

with coefficients aij .x/ D Aij .Du.x/; x/ and ai D Ai .Du.x/; x/ in C ˇ .B3=2/
satisfying

k.aij ; ai /kCˇ.B3=2/ � C.�;M/:

We can assume ˇ � ˛. Then the local estimates for linear elliptic equations yield

kukC2;ˇ.B5=4/ � C.�;M/
�
kukC.B3=2/Ckf kCˇ.B3=2/

�
:

With this estimate, we have k.aij ; ai /kC˛.B5=4/ � C.�;M/: Then the local esti-
mates for linear elliptic equations in B5=4 yield (A.4). �

Now we make the estimates for the “almost tangential derivative” problem.

THEOREM A.2. Let � > 0, ˛ 2 .0; 1/, and "� 0. Let ˆ 2 C 2;˛.R/ satisfy

(A.5) kˆkC2;˛.R/ � �
�1;

and denote �CR WD BR \ fy > "ˆ.x/g for R > 0. Let u 2 C 2.BC2 /\ C
1.BC2 /

satisfy (A.1) in �C2 and

ux D "b.x; y/uy C c.x; y/u on �ˆ WD B2\fy D "ˆ.x/g:(A.6)

Let Aij .p; x; y/, Ai .p; x; y/, b.x; y/, c.x; y/, and f .x; y/ satisfy that there exists
a constant � > 0 such that

�j�j2 �

nX
i;jD1

Aij�i�j � �
�1
j�j2 for .x; y/ 2�C2 ; p; � 2 R2;(A.7)

k.Aij ; Ai /k
C˛.�

C

2 �R2/
CkDp.Aij ; Ai /k

C.�
C

2 �R2/
Ckf k

C˛.�
C

2 /
� ��1;

(A.8)

k.b; c/k
C1;˛.�

C

2 /
� ��1:(A.9)
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Assume that kuk
C.�

C

2 /
�M . Then there exist "0.�;M; ˛/ > 0 and C.�;M; ˛/ > 0

such that, if " 2 .0; "0/,

(A.10) kuk
C2;˛.�

C

1 /
� C

�
kuk

C.�
C

2 /
Ckf k

C˛.�
C

2 /

�
:

To prove this theorem, we first flatten the boundary part �ˆ by defining
the variables .X; Y / D ‰.x; y/ with .X; Y / D .x; y � "ˆ.x//. Then .x; y/ D
‰�1.X; Y /D .X; Y C "ˆ.X//. From (A.5), we have

(A.11) k‰� Idk
C2;˛.�

C

2 /
Ck‰�1� Idk

C2;˛.B
C

2 /
� "��1:

Then, for sufficiently small " depending only on �, the transformed domain DC2 WD

‰.�C2 / satisfies
(A.12)
BC
2�2"=�

� DC2 � B
C

2C2"=�
; DC2 � R2C WD fY > 0g; @DC2 \fY D 0g D‰.�ˆ/I

the function

v.X; Y /D u.x; y/ WD u.‰�1.X; Y //

satisfies an equation of form (A.1) in DC2 with (A.7), (A.8), and the corresponding
ellipticity constant �=2; and the boundary condition for v by an explicit calculation
is
(A.13)
vX D ".b.‰

�1.X; 0//Cˆ0.X//vY C c.‰
�1.X; 0//v on DC2 \fY D 0gI

i.e., it is of form (A.6) with (A.9) satisfied on DC2 with ellipticity constant �=4.
Moreover, by (A.11) and (A.12), it suffices for this theorem to show the following
estimate for v.X; Y /:

(A.14) kvk
2;˛;B

C

6=5

� C.�;M; ˛/
�
kvk

0;B
C

2�2"=�

Ckf k
˛;B
C

2�2"=�

�
:

That is, we can consider the equation in BC
2�2"=�

and condition (A.13) on †2�2"=�
or, by rescaling, we can simply consider our equation in BC2 and condition (A.13)
on †2 WD B2\fY D 0g. In other words, without loss of generality, we can assume
ˆ� 0 in the original problem.

For simplicity, we use the original notation .x; y; u.x; y// to replace the no-
tation .X; Y; v.X; Y //. Then we assume that ˆ� 0. Thus, (A.1) is satisfied in the
domain BC2 , the boundary condition (A.6) is prescribed on †2 D B2 \ fy D 0g,
and conditions (A.7)–(A.9) hold in BC2 . Also, we use the partially interior norms
[20, Eq. 4.29] in the domain BC2 [†2 with the related distance function dz D
dist.z; @BC2 n†2/. The universal constant C in the argument below depends only
on � and M , unless otherwise specified.
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As in [20, �13.2], we introduce the functions wi DDiu for i D 1; 2. Then we
conclude from (A.1) that w1 and w2 are weak solutions of the following equations
of divergence form:

(A.15)

D1

 
A11

A22
D1w1C

2A12

A22
D2w1

!
CD22w1DD1

 
f

A22
�
A1

A22
D1u�

A2

A22
D2u

!
;

(A.16)

D11w2CD2

 
2A12

A11
D1w2C

A22

A11
D2w2

!
DD2

 
f

A11
�
A1

A11
D1u�

A2

A11
D2u

!
:

From (A.6), we have
(A.17) w1 D g on †2;
where
(A.18) g WD "bw2C cu for BC2 :

We first obtain the following Hölder estimates of D1u.

LEMMA A.1. There exist ˇ 2 .0; ˛� and C > 0 depending only on � such that,
for any z0 2 BC2 [†2,
(A.19)

dˇz0 Œw1�0;ˇ;Bdz0=16.z0/\B
C

2

� C
�
k.Du; f /k

0;0;Bdz0=2
.z0/\B

C

2

C dˇz0 Œg�0;ˇ;Bdz0=2.z0/\B
C

2

�
:

Proof. We first prove that, for z1 2†2 and BC2R.z1/� B
C
2 ,

(A.20) Rˇ Œw1�0;ˇ;BCR .z1/
� C

�
k.Du;Rf /k

0;0;B
C

2R.z1/
CRˇ Œg�

0;ˇ;B
C

2R.z1/

�
:

We rescale u, w1, and f in BC2R.z1/ by defining

(A.21) Ou.Z/D
1

2R
u.z1C2RZ/; Of .Z/D 2Rf .z1C2RZ/ for Z 2BC1 ;

and Owi D DZi Ou. Then Ow1 satisfies an equation of form (A.15) in BC1 with u
replaced by Ou whose coefficients OAij and OAi satisfy (A.7) and (A.8) with un-
changed constants (this holds for (A.8) since R � 1). Then, by the elliptic version
of [36, Th. 6.33] stated in the parabolic setting (it can also be obtained by using
[36, Lemma 4.6] instead of [20, Lemma 8.23] in the proofs of [20, Ths. 8.27 and
8.29] to achieve ˛ D ˛0 in [20, Th. 8.29]), we find constants Q̌.�/ 2 .0; 1/ and
C.�/ such that

Œ Ow1�0;ˇ;BC
1=2

� C
�
k.D Ou; Of /k

0;0;B
C

1

C Œ Ow1�0;ˇ;B1\fyD0g

�
for ˇ Dmin. Q̌; ˛/. Rescaling back and using (A.17), we have (A.20).
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If z1 2 BC2 and B2R.z1/ � BC2 , then an argument similar to the proof of
(A.20) by using the interior estimates [20, Th. 8.24] yields

(A.22) Rˇ Œw1�0;ˇ;BR.z1/ � Ck.Du;Rf /k0;0;B2R.z1/:

Now let z0 D .x0; y0/ 2 BC2 [†2. When y0 � dz0=8, then, denoting z00 D
.x0; 0/ and noting that dz00 � dz0 , we easily see that

Bdz0=16
.z0/\B

C
2 � B

C

dz0=8
.z00/� B

C
2 ; BC

dz0=8
.z00/� Bdz0=2

.z0/\B
C
2 :

Then applying (A.20) with z1 D z00 and R D dz0=8 � 1 and using the inclusions
stated above yield (A.19). When y0 � dz0=8, Bdz0=8.z0/� B

C
2 . Then application

of (A.22), with z1 D z0 and RD dz0=16� 1, yields (A.19). �

Next, we make the Hölder estimates for Du. We first note that, by (A.9) and
(A.18), g satisfies

jDgj � C."jD2ujC jDujC juj/ in BC2 ;(A.23)

Œg�
0;ˇ;Bdz=2.z/\B

C

2

� C
�
"ŒDu�

0;ˇ;Bdz=2.z/\B
C

2

Ckuk
1;0;Bdz=2.z/\B

C

2

�
:

(A.24)

LEMMA A.2. Let ˇ be as in Lemma A.1. Then there exist "0.�/ > 0 and
C.�/ > 0 such that, if 0� "� "0,

dˇz0 ŒDu�0;ˇ;Bdz0=32.z0/\B
C

2

(A.25)

� C
�
kuk

1;0;Bdz0=2
.z0/\B

C

2

C"dˇz0 ŒDu�0;ˇ;Bdz0=2.z0/\B
C

2

Ckf k
0;0;Bdz0=2

.z0/\B
C

2

�
for any z0 2 BC2 [†2.

Proof. The Hölder norm of D1u has been estimated in Lemma A.1. It remains
to estimate D2u. We follow the proof of [20, Th. 13.1].

Fix z0 2 BC2 [†2. In order to prove (A.25), it suffices to show that, for every
Oz 2 Bdz0=32

.z0/\B
C
2 and every R > 0 such that BR. Oz/� Bdz0=16.z0/, we have

(A.26)
Z
BR. Oz/\B

C

2

jD2uj2dz �
L2

d
2ˇ
z0

R2ˇ ;

where L is the right-hand side of (A.25) (cf. [20, Th. 7.19] and [36, Lemma 4.11]).
In order to prove (A.26), we consider separately case (i) B2R. Oz/\†2 ¤ ∅

and case (ii) B2R. Oz/\†2 D∅.
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We first consider case (i). Let B2R. Oz/\†2¤∅. Since BR. Oz/�Bdz0=32.z0/,
then B2R. Oz/� Bdz0=16.z0/ so that

(A.27) 2R � dz0 :

Let � 2 C 10 .B2R. Oz// and � D �2.w1� g/. Note that � 2W 1;2
0 .B2R. Oz/\B

C
2 / by

(A.17). We use � as a test function in the weak form of (A.15):
(A.28)Z

B
C

2

1

A22

2X
i;jD1

AijDiw1Dj �dz D

Z
B
C

2

1

A22

 
�

2X
iD1

AiDiuCf

!
D1�dz;

and apply (A.7), (A.8), and (A.23) to obtain

(A.29)Z
B
C

2

jDw1j
2�2dz

� C

Z
B
C

2

 �
.ıC "/jDw1j

2
C "jD2uj2

�
�2

C

�
1

ı
C 1

� �
.jD�j2C �2/.w1�g/

2
C .jDuj2Cjuj2Cf 2/�2

� !
dz;

where C depends only on �, and the sufficiently small constant ı > 0 will be chosen
below. Since

(A.30) jDw1j
2
D .D11u/

2
C .D12u/

2;

it remains to estimate jD22uj2. Using the ellipticity property (A.7), we can express
D22u from (A.1) to obtainZ

B
C

2

jD22uj
2�2dz � C.�/

Z
B
C

2

.jD11uj
2
CjD12uj

2
CjDuj2Cf 2/�2dz:

Combining this with (A.29) and (A.30) yield

(A.31)Z
B
C

2

jD2uj2�2dz

� C

Z
B
C

2

 
."C ı/jD2uj2�2

C

�1
ı
C 1

� �
.jD�j2C �2/.w1�g/

2
C .jDuj2Cjuj2Cf 2/�2

� !
dz:
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Choose "0 D ı D .4C /�1. Then, when " 2 .0; "0/,
(A.32)Z
B
C

2

jD2uj2�2dz�C

Z
B
C

2

�
.jD�j2C�2/.w1�g/

2
C.jDuj2Cjuj2Cf 2/�2

�
dz:

Now we make a more specific choice of �: In addition to � 2 C 10 .B2R. Oz//,
we assume that � � 1 on BR. Oz/, 0 � � � 1 on R2, and jD�j � 10=R. Also,
since B2R. Oz/\†2¤∅, then, for any fixed z�2B2R. Oz/ \†2, we have jz�z�j
� 2R for any z 2 B2R. Oz/. Moreover, .w1 � g/.z�/ D 0 by (A.17). Then, since
B2R. Oz/� Bdz0=16

.z0/, we find from (A.19), (A.24), and (A.27) that, for any z 2
B2R. Oz/\B

C
2 ,

j.w1�g/.z/j

D j.w1�g/.z/� .w1�g/.z
�/j � jw1.z/�w1.z

�/jC jg.z/�g.z�/j

�
C

d
ˇ
z0

�
k.Du; f /k

0;0;Bdz0=2
.z0/\B

C

2

C dˇz0 Œg�0;ˇ;Bdz0=2.z0/\B
C

2

�
jz� z�jˇ

CŒg�
0;ˇ;Bdz0=2

.z0/\B
C

2

jz� z�jˇ

� C
� 1

d
ˇ
z0

k.Du; f /k
0;0;Bdz0=2

.z0/\B
C

2

C "ŒDu�
0;ˇ;Bdz0=2

.z0/\B
C

2

Ckuk
0;0;Bdz0=2

.z0/\B
C

2

�
Rˇ :

Using this estimate and our choice of �, we obtain from (A.32) thatZ
BR. Oz/\B

C

2

jD2uj2dz

� C

 
1

d
2ˇ
z0

k.Du; f /k2
0;0;Bdz0=2

.z0/\B
C

2

C "2ŒDu�2
0;ˇ;Bdz0=2

.z0/\B
C

2

!
R2ˇ

CC

�
kuk2

1;0;Bdz0=2
.z0/\B

C

2

Ckf k2
0;0;Bdz0=2

.z0/\B
C

2

�
.R2ˇ CR2/;

which implies (A.26) for case (i).
Now we consider case (ii): Oz 2 BC2 and R > 0 satisfy BR. Oz/� Bdz0=32.z0/

and B2R. Oz/\†2 D∅. Then B2R. Oz/� Bdz0=16.z0/\B
C
2 . Let � 2 C 10 .B2R. Oz//

and � D �2.w1�w1. Oz//. Note that � 2W 1;2
0 .BC2 / since B2R. Oz/� BC2 . Thus we

can use � as a test function in (A.28). Performing the estimates similar to those
that have been done to obtain (A.32), we have
(A.33)Z
B
C

2

jD2uj2�2dz�C.�/

Z
B
C

2

�
.jD�j2C�2/.w1�w1. Oz//

2
C.jDuj2Cf 2/�2

�
dz:
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Choose �2C 10 .B2R. Oz// so that ��1 onBR. Oz/, 0���1 on R2, and jD�j�10=R.
Note that, for any z 2 B2R. Oz/,

jw1.z/�w1. Oz/j � C

 
1

d
ˇ
z0

k.Du; f /k
0;0;Bdz0=2

.z0/\B
C
2

C "ŒDu�
0;ˇ;Bdz0=2

.z0/\B
C
2

!
Rˇ

by (A.19) since B2R. Oz/� Bdz0=16.z0/\B
C
2 . Now we obtain (A.26) from (A.33)

similar to that for case (i). Then Lemma A.2 is proved. �

LEMMA A.3. Let ˇ and "0 be as in Lemma A.2. Then, for " 2 .0; "0/, there
exists C.�/ such that

(A.34) Œu��
1;ˇ;B

C

2 [†2
� C

�
kuk�

1;0;B
C

2 [†2
C "Œu��

1;ˇ;B
C

2 [†2
Ckf k

0;0;B
C

2

�
;

where Œ��� and k � k� denote the standard partially interior seminorms and norms
[20, Eq. 4.29].

Proof. Estimate (A.34) follows directly from Lemma A.2 and an argument
similar to the proof of [20, Th. 4.8]. Let z1; z2 2BC2 with dz1 � dz2 (thus dz1;z2 D
dz1) and let jz1� z2j � dz1=64. Then z2 2Bdz0=32.z0/\B

C
2 and, by Lemma A.2

applied to z0 D z1, we find

d1Cˇz1;z2

jDu.z1/�Du.z2/j

jz1� z2jˇ

� C
�
dz1kuk1;0;Bdz1=2.z1/\B

C

2

C "d1Cˇz1
ŒDu�

0;ˇ;Bdz1=2
.z1/\B

C

2

Ckf k
0;0;Bdz1=2

.z1/\B
C

2

�
� C

�
kuk�

1;0;B
C

2 [†2
C "Œu��

1;ˇ;B
C

2 [†2
Ckf k

0;0;B
C

2

�
;

where the last inequality holds since 2dz � dz1 for all z 2 Bdz1=2.z1/\B
C
2 . If

z1; z2 2 B
C
2 with dz1 � dz2 and jz1� z2j � dz1=64, then

d1Cˇz1;z2

jDu.z1/�Du.z2/j

jz1� z2jˇ
�64.dz1 jDu.z1/jCdz2 jDu.z2/j/�64 kuk

�

1;0;B
C

2 [†2
:

�

Now we can complete the proof of Theorem A.2. For sufficiently small "0 > 0
depending only on �, when " 2 .0; "0/, we use Lemma A.3 to obtain

(A.35) Œu��
1;ˇ;B

C

2 [†2
� C.�/

�
kuk�

1;0;B
C

2 [†2
Ckf k

0;0;B
C

2

�
:

We use the interpolation inequality [20, Eq. (6.89)] to estimate

kuk�
1;0;B

C

2 [†2
� C.ˇ; ı/kuk

0;B
C

2

C ıŒu��
1;ˇ;B

C

2 [†2
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for ı > 0. Since ˇ D ˇ.�/, we choose sufficiently small ı.�/ > 0 to find

(A.36) kuk�
1;ˇ;B

C

2 [†2
� C.�/

�
kuk

0;0;B
C

2

Ckf k
0;0;B

C

2

�
from (A.35). In particular, we obtain a global estimate in a smaller half-ball:

(A.37) kuk
1;ˇ;B

C

9=5

� C.�/
�
kuk

0;0;B
C

2

Ckf k
0;0;B

C

2

�
:

We can assume ˇ � ˛. Now we consider (A.15) as a linear elliptic equation

(A.38)
2X

i;jD1

Di .aij .x; y/Djw1/DD1F in BC
9=5
;

where aij .x; y/D .Aij =A22/.Du.x; y/; x; y/ for iCj <4, a22D1, andF.x; y/D�
A1D1uCA2D2uC f

�
=A22 with .Aij ; Ai /D .Aij ; Ai /.Du.x; y/; x; y/. Then

(A.36), combined with (A.8), implies

(A.39) kaij k0;ˇ;BC
9=5

� C.�;M/:

From now on, dz denotes the distance related to the partially interior norms in
BC
9=5
[†9=5, i.e., for z 2 BC

9=5
, dz WD dist.z; @BC

9=5
n†9=5/. Now, similar to the

proof of Lemma A.1, we rescale (A.38) and the Dirichlet condition (A.17) from
the balls BCR .z

0
1/� B

C

9=5
and BR.z1/� BC9=5 with R � 1 to B D BC1 or B D B1,

respectively, by defining

. Ow1; Og; Oaij /.Z/D .w1; g; aij /.z1CRZ/; OF .Z/DRF.z1CRZ/ for Z2B:

Then
P2
i;jD1Di . Oaij .x; y/Dj Ow1/ D D1 OF in B , the ellipticity of this rescaled

equation is the same as that for (A.38), and k Oaij k0;ˇ;B � C for C D C.�;M/

in (A.39), where we have used R � 1. This allows us to apply the local C 1;ˇ

interior and boundary estimates for the Dirichlet problem [20, Th. 8.32, Cor. 8.36]
to the rescaled problems in the balls BC

3dz0=8
.z00/ and Bdz0=8.z0/ as in Lemma

A.1. Then, scaling back and multiplying by dz0 , applying the covering argument
as in Lemma A.1, and recalling the definition of F , we obtain that, for any z0 2
BC
9=5
[†9=5,

d2Cˇz0
Œw1�1;ˇ;Bdz0=16.z0/\B

C

9=5

C d2z0 Œw1�1;0;Bdz0=16.z0/\B
C

9=5

(A.40)

� C
�
dz0kDuk0;0;Bdz0=2.z0/\B

C

9=5

C d1Cˇz0
Œu�
1;ˇ;Bdz0=2

.z0/\B
C

9=5

Ckf k
0;ˇ;Bdz0=2

.z0/\B
C

9=5

C d2Cˇz0
Œg�
1;ˇ;Bdz0=2

.z0/\B
C

9=5

C

X
kD0;1

dkC1z0
Œg�
k;0;Bdz0=2

.z0/\B
C

9=5

�
;
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where we have used dz0 < 2. Recall that Dw1 D .D11u;D12u/. Expressing
D22u from (A.1) by using (A.7), (A.8), and (A.36) to estimate the Hölder norms
of D22u, in terms of the norms of D11u;D22u, and Du, and by using (A.18) and
(A.9) to estimate the terms involving g in (A.40), we obtain from (A.40) that, for
every z0 2 BC9=5[†2,

d2Cˇz0
ŒD2u�

0;ˇ;Bdz0=16
.z0/\B

C

9=5

C d2z0 ŒD
2u�

0;0;Bdz0=16
.z0/\B

C

9=5

� C
�
dz0kDukC.Bdz0=2.z0/\B

C

9=5
/
C d1Cˇz0

Œu�
1;ˇ;Bdz0=2

.z0/\B
C

9=5

Cdz0kuk1;0;Bdz0=2.z0/\B
C

9=5

Ckf k
0;ˇ;Bdz0=2

.z0/\B
C

9=5

C"
�
d2Cˇz0

ŒD2u�
0;ˇ;Bdz0=2

.z0/\B
C

9=5

C d2z0 ŒD
2u�

0;0;Bdz0=2
.z0/\B

C

9=5

��
:

From this estimate, the argument of Lemma A.3 implies
(A.41)

kuk�
2;ˇ;B

C

9=5
[†9=5

�C

�
kuk�

1;ˇ;B
C

9=5
[†9=5

C "kuk�
2;ˇ;B

C

9=5
[†9=5

Ckf k
0;ˇ;B

C

9=5

�
:

Thus, reducing "0 if necessary and using (A.37), we conclude

(A.42) kuk�
2;ˇ;B

C

9=5
[†9=5

� C.�;M/.kuk
0;B
C

2

Ckf k
0;ˇ;B

C

2

/:

Estimate (A.42) implies a global estimate in a smaller ball and, in particular,

kuk
1;ˇ;B

C

8=5

� C.�;M/.kuk
0;B
C

2

Ckf k
0;ˇ;B

C

2

/:

Now we can repeat the argument, which leads from (A.37) to (A.42) with ˇ re-
placed by ˛, in BC

8=5
(and, in particular, further reducing "0 depending only on

.�;M; ˛/) to obtain

kuk�
2;˛;B

C

8=5
[†8=5

� C.�;M; ˛/
�
kuk

0;B
C

2

Ckf k
0;˛;B

C

2

�
;

which implies (A.14) and hence (A.10) for the original problem. Theorem A.2 is
proved. �

Now we show that the estimates also hold for the Dirichlet problem.

THEOREM A.3. Let � > 0 and ˛ 2 .0; 1/. Let ˆ 2 C 2;˛.R/ satisfy (A.5) and
�CR WD BR \ fy > ˆ.x/g for R > 0. Let u 2 C 2.�C2 /\C.�

C
2 / satisfy (A.1) in

�C2 and

uD g on �ˆ WD B2\fy Dˆ.x/g;(A.43)
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where Aij D Aij .Du; x; y/ and Ai D Ai .Du; x; y/, i; j D 1; 2, and f D f .x; y/
satisfy (A.7) and (A.8), and g D g.x; y/ satisfies

(A.44) kgk
C2;˛.�

C

2 /
� ��1;

with .�; ˛/ as defined above. Assume that kuk
C.�

C

2 /
�M . Then

(A.45) kuk
C2;˛.�

C

1 /
� C.�;M/

�
kuk

C.�
C

2 /
Ckf k

C˛.�
C

2 /
Ckgk

C2;˛.�
C

2 /

�
:

Proof. By replacing u with u�g, we can assume without loss of generality
that g � 0. Also, by flattening the boundary as in the proof of Theorem A.2, we
can assume ˆ � 0. That is, we have reduced to the case when (A.1) holds in
BC2 and uD 0 on †2. Thus, ux D 0 on †2. Then estimate (A.45) follows from
Theorem A.2. �

We now derive the estimates for the oblique derivative problem.

THEOREM A.4. Let � > 0 and ˛ 2 .0; 1/. Let ˆ 2 C 2;˛.R/ satisfy (A.5) and
�CR WD BR \fy > ˆ.x/g for R > 0. Let u 2 C 2.�C2 /\C

1.�C2 / satisfy

A11uxxC 2A12uxy CA22uyy CA1uxCA2uy D 0 in �C2 ;(A.46)

b1uxC b2uy C cuD 0 on �ˆ WD B2\fy Dˆ.x/g;(A.47)

where Aij D Aij .Du; x; y/ and Ai D Ai .Du; x; y/, i; j D 1; 2, satisfy (A.7) and
(A.8), and bi D bi .x; y/; i D 1; 2; and cD c.x; y/ satisfy the following obliqueness
condition and C 1;˛-bounds:

b2.x; y/� � for .x; y/ 2 �ˆ;(A.48)

k.b1; b2; c/k
C1;˛.�

C

2 /
� ��1:(A.49)

Assume that kuk
C.�

C

2 /
�M . Then there exists C D C.�;M; ˛/ > 0 such that

(A.50) kuk
C2;˛.�

C

1 /
� Ckuk

C.�
C

2 /
:

Proof. Step 1. First, we flatten the boundary �ˆ by the change of coordinates
.X; Y /D‰.x; y/D .x; y �ˆ.x//. Then .x; y/D‰�1.X; Y /D .X; Y Cˆ.X//.
From (A.5), k‰k

C2;˛.�
C

2 /
Ck‰�1k

C2;˛.DC2 /
� C.�/; where DC2 WD ‰.�

C
2 / sat-

isfies DC2 � R2
C
WD fY > 0g and �0 WD @DC2 \ fY D 0g D ‰.�ˆ/: By a standard

calculation, v.X; Y / D u.x; y/ WD u.‰�1.X; Y // satisfies the equation of form
(A.46) in DC2 and the oblique derivative condition of form (A.47) on �0, where
(A.7), (A.8), (A.48), and (A.49) are satisfied with modified constant O� > 0 depend-
ing only on �. Also, kvk

C.DC2 /
�M . Thus, (A.50) follows from

(A.51) kvk�
2;˛;DC2 [�0

� C.�;M; ˛/kvk
0;DC2

:
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Next we note that, in order to prove (A.51), it suffices to prove that there exist
K and C depending only on .�;M; ˛/ such that, if v satisfies (A.46) and (A.47)
in BC1 and †1 WD B1\fy D 0g respectively, (A.7), (A.8), (A.48), and (A.49) hold
in BC1 , and jvj �M in BC1 , then

(A.52) kvk
C2;˛.B

C

1=K
/
� Ckvk

C.B
C

1 /
:

Indeed, if (A.52) is proved, then, using also the interior estimates (A.4) in Theorem
A.1 and applying the scaling argument similar to the proof of Lemma A.1, we
obtain that, for any z0 2 DC2 [†2,

d2C˛z0
kvk

C2;˛.Bdz0=.16K/
.z0/\DC2 /

� Ckvk
C.Bdz0=2

.z0/\DC2 /
:

From this, we use the argument of the proof of Lemma A.3 to obtain (A.51).
Thus it remains to show (A.52). First we make a linear change of variables to

normalize the problem so that

(A.53) b1.0/D 0; b2.0/D 1

for the modified problem. Let

.X; Y /D Q‰.x; y/ WD
1

b2.0/
.b2.0/x� b1.0/y; y/:

Then

.x; y/D Q‰�1.X; Y /D .X C b1.0/Y; b2.0/Y /; jD Q‰jC jD Q‰�1j � C.�/;

where the estimate follows from (A.48) and (A.49). Then the function w.X; Y / WD
v.x; y/� v.XCb1.0/Y; b2.0/Y / is a solution of the equation of form (A.46) in the
domain Q‰.BC1 / and the boundary condition of form (A.47) on the boundary part
Q‰.†1/ such that (A.7), (A.8), (A.48), and (A.49) are satisfied with constant O� > 0
depending only on �, and (A.53) holds, which can be verified by a straightforward
calculation. Also, kwk

C. Q‰.B
C

1 //
�M .

Note that Q‰.BC1 / � R2
C
WD fY > 0g and Q‰.†1/ D @ Q‰.BC1 / \ fY D 0g.

Moreover, since jD Q‰jC jD Q‰�1j � C.�/, there exists K1 DK1.�/ > 0 such that,
for any r > 0, Br=K1 � Q‰.Br/� BK1r . Thus it suffices to prove

kwk
C2;˛.B

C

r=2
/
� Ckwk

C.B
C
r /

for some r 2 .0; 1=K1/. This estimate implies (A.52) with K D 2K1=r .

Step 2. As a result of the reduction performed in Step 1, it suffices to prove
the following: There exist " 2 .0; 1/ and C depending only on .�; ˛;M/ such that,
if u satisfies (A.46) and (A.47) in BC2" and on †2" respectively, if (A.7), (A.8),
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(A.48), and (A.49) hold in BC2", and if (A.53) holds and kuk
0;B
C

2"

�M , then

kuk
2;˛;B

C
"
� Ckuk

0;B
C

2"

:

We now prove this claim. For " > 0 to be chosen later, we rescale from BC2"
into BC2 by defining

(A.54) v.x; y/D
1

"

�
u."x; "y/�u.0; 0/

�
for .x; y/ 2 BC2 :

Then v satisfies

QA11vxxC 2 QA12vxy C QA22vyy C QA1vxC QA2vy D 0 in BC2 ;(A.55)

vy D Qb1vxC Qb2vy C QcvC cu.0; 0/ on †2;(A.56)

where

QAij .p; x; y/D Aij .p; "x; "y/; QAi .p; x; y/D "Ai .p; "x; "y/;

Qb1.x; y/D�b1."x; "y/; Qb2.x; y/D�b2."x; "y/C 1; Qc.x; y/D�"c."x; "y/:

Then QAij and QAi satisfy (A.7) and (A.8) in BC2 and, using (A.49), (A.53), and
"� 1, we have

(A.57) k. Qb1; Qb2; Qc/k1;˛;BC2
� C" for some C D C.�/:

Now we follow the proof of Theorem A.2. We use the partially interior norms
[20, Equation 4.29] in the domain BC2 [ †2 whose distance function is dz D
dist.z; @BC2 n†2/: We introduce the functions wi D Div, i D 1; 2, to conclude
from (A.55) that w1 and w2 are weak solutions of the equations:

D1

 
QA11
QA22
D1w1C

2 QA12
QA22

D2w1

!
CD22w1D�D1

 
QA1
QA22
D1vC

QA2
QA22
D2v

!
;(A.58)

D11w2CD2

 
2 QA12
QA11

D1w2C
QA22
QA11
D2w2

!
D�D2

 
QA1
QA11
D1vC

QA2
QA11
D2v

!
(A.59)

in BC2 , respectively. From (A.56), we have

(A.60) w2 D Qg on †2;

where Qg WD Qb1vxC Qb2vy C QcvC Qcu.0; 0/ in BC2 .
Using (A.59) and the Dirichlet boundary condition (A.60) for w2 and fol-

lowing the proof of Lemma A.1, we can show the existence of ˇ 2 .0; ˛� and C
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depending only on � such that, for any z0 2 BC2 [†2,

(A.61) dˇz0 Œw2�0;ˇ;Bdz0=16.z0/\B
C

2

� C
�
kDvk

0;Bdz0=2
.z0/\B

C

2

C dˇz0 Œ Qg�0;ˇ;Bdz0=2.z0/\B
C

2

�
:

Next we obtain the Hölder estimates of Dv if " is sufficiently small. We first
note that, by (A.57), Qg satisfies

jD Qgj � C"
�
jD2vjC jDvjC jvjC kuk

0;B
C

2"

�
in BC2 ;(A.62)

Œ Qg�
0;ˇ;Bdz=2.z/\DC2

� C"
�
kvk

1;ˇ;Bdz=2.z/\DC2 /
Ckuk

0;B
C

2"

�
(A.63)

forCDC.�/. The term "kuk
0;B
C

2"

in (A.62) and (A.63) comes from the term Qcu.0; 0/
in the definition of Qg. We follow the proof of Lemma A.2, but we now use the
integral form of (A.59) with test functions �D �2.w2� Qg/ and �D �2.w2�w2. Oz//
to get an integral estimate of jDw2j and thus of jDij vj for i C j > 2, and then
use (A.55) to estimate the remaining derivative D11v. In these estimates, we use
(A.61)–(A.63). We obtain that, for sufficiently small " depending only on �,

(A.64)

dˇz0 ŒDv�0;ˇ;Bdz0=32.z0/\B
C

2

� C
�
kvk

C1.Bdz0=2
.z0/\B

C

2 /
C "dˇz0 ŒDv�0;ˇ;Bdz0=2.z0/\DC2

C "dˇz0kuk0;BC2"

�
for any z0 2 BC2 [†2, with C D C.�/. Using (A.64), we follow the proof of
Lemma A.3 to obtain

(A.65) Œv��
1;ˇ;B

C

2 [†2
� C

�
kvk�

1;0;B
C

2 [†2
C "Œv��

1;ˇ;B
C

2 [†2
C "kuk

0;B
C

2"

�
:

Now we choose sufficiently small " > 0 depending only on � to have

Œv��
1;ˇ;B

C

2 [†2
� C.�/

�
kvk�

1;0;B
C

2 [†2
Ckuk

0;B
C

2"

�
:

Then we use the interpolation inequality, similar to the proof of (A.36), to have

(A.66) kvk�
1;ˇ;B

C

2 [†2
� C.�/

�
kvk

0;B
C

2

Ckuk
0;B
C

2"

�
:

By (A.54) with "D ".�/ as chosen above, (A.66) implies

(A.67) kuk�
1;ˇ;B

C

2"[B
0
2"

� C.�/kuk
0;B
C

2"

:

Then problem (A.46) and (A.47) can be regarded as a linear oblique derivative
problem in BC

7"=4
whose coefficients aij .x; y/ WDAij .Du.x; y/; x; y/ and ai .x; y/

WD Ai .Du.x; y/; x; y/ have the estimate in C 0;ˇ .BC
7"=4

/ by a constant depending



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 1179

only on .�;M/ from (A.67) and (A.8). Moreover, we can assume ˇ � ˛ so that
(A.49) implies the estimates of .bi ; c/ in C 1;ˇ .BC

7"=4
/ with " D ".�/. Then the

standard estimates for linear oblique derivative problems [20, Lemma 6.29] imply

(A.68) kuk
2;ˇ;B

C

3"=2

� C.�;M/kuk
0;B
C

7"=4

:

In particular, the C 0;˛.BC
3"=2

/-norms of the coefficients .aij ; ai / of the linear equa-
tion (A.46) are bounded by a constant depending only on .�;M/, which implies

kuk
2;˛;B

C
"
� C.�;M/kuk

0;B
C

3"=2

;

by again applying [20, Lemma 6.29]. This implies the assertion of Step 2, thus
Theorem A.4. �
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