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Abstract

When a plane shock hits a wedge head on, it experiences a reflection-diffraction
process and then a self-similar reflected shock moves outward as the original shock
moves forward in time. Experimental, computational, and asymptotic analysis has
shown that various patterns of shock reflection may occur, including regular and
Mach reflection. However, most of the fundamental issues for shock reflection
have not been understood, including the global structure, stability, and transition
of the different patterns of shock reflection. Therefore, it is essential to establish
the global existence and structural stability of solutions of shock reflection in order
to understand fully the phenomena of shock reflection. On the other hand, there
has been no rigorous mathematical result on the global existence and structural
stability of shock reflection, including the case of potential flow which is widely
used in aerodynamics. Such problems involve several challenging difficulties in
the analysis of nonlinear partial differential equations such as mixed equations of
elliptic-hyperbolic type, free boundary problems, and corner singularity where an
elliptic degenerate curve meets a free boundary. In this paper we develop a rigor-
ous mathematical approach to overcome these difficulties involved and establish a
global theory of existence and stability for shock reflection by large-angle wedges
for potential flow. The techniques and ideas developed here will be useful for other
nonlinear problems involving similar difficulties.

1. Introduction

We are concerned with the problems of shock reflection by wedges. These
problems arise not only in many important physical situations but also are funda-
mental in the mathematical theory of multidimensional conservation laws since
their solutions are building blocks and asymptotic attractors of general solutions
to the multidimensional Euler equations for compressible fluids (for example, see
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Courant-Friedrichs [16], von Neumann [49], and Glimm-Majda [22]; also see [4],
[9], [21], [30], [44], [45], [48]). When a plane shock hits a wedge head on, it
experiences a reflection-diffraction process and then a self-similar reflected shock
moves outward as the original shock moves forward in time. The complexity of
the reflection configurations was first reported by Ernst Mach [41] in 1878, and
experimental, computational, and asymptotic analysis has shown that various pat-
terns of shock reflection may occur, including regular and Mach reflection (cf. [4],
[19], [22], [25], [26], [27], [44], [48], [49]). However, most of the fundamental
issues for shock reflection have not been understood, including the global structure,
stability, and transition of the different patterns of shock reflection. Therefore, it
is essential to establish the global existence and structural stability of solutions of
shock reflection in order to understand fully the phenomena of shock reflection.
On the other hand, there has been no rigorous mathematical result on the global
existence and structural stability of shock reflection, including the case of potential
flow which is widely used in aerodynamics (cf. [5], [15], [22], [42], [44]). One
of the main reasons is that the problems involve several challenging difficulties in
the analysis of nonlinear partial differential equations such as mixed equations of
elliptic-hyperbolic type, free boundary problems, and corner singularity where an
elliptic degenerate curve meets a free boundary. In this paper we develop a rigorous
mathematical approach to overcome these difficulties and establish a global theory
of existence and stability for shock reflection by large-angle wedges for potential
flow. The techniques and ideas developed here will be useful for other nonlinear
problems involving similar difficulties.

The Euler equations for potential flow consist of the conservation law of mass
and the Bernoulli law for the density p and velocity potential ®:

(1.1) drp + divx(pVx®) =0,
1
(1.2) a,q>+§|vxq>|2+i(p):1<,

where K is the Bernoulli constant determined by the incoming flow and/or bound-
ary conditions, and

i'(p)=p'(p)/p=c*(p)/p
with c¢(p) being the sound speed. For polytropic gas,
pp)=kp’.  Fp)=kyp’"".  y>1 k>0
Without loss of generality, we choose k = (y — 1)/y so that
i(p)=p"""  c=@-Dp"",
which can be achieved by the following scaling:

(x,t,K) — (ax,a’t,a ?K), o®=xy/(y—1).
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Equations (1.1) and (1.2) can be written as the following nonlinear equation of
second order:

1 1
(13)  8p(K—8,®— E|vxc1>|2) + divy (,6(1( —9,®— §|vxq>|2)vxq>) — 0,

where p(s) = s/=D =i ~1(s) for s > 0.
When a plane shock in the (x, 7)-coordinates, x = (x1, x2) € R?, with left state
(p, VxW¥) = (p1,u1,0) and right state (pg,0,0),u1 > 0, po < p1, hits a symmetric
wedge
W :={|x2] < x1tan by, x; > 0}
head on, it experiences a reflection-diffraction process, and the reflection problem
can be formulated as the following mathematical problem.

Problem 1 (Initial-boundary value problem). Seek a solution of system (1.1)
and (1.2) with K = pg _1, the initial condition at ¢ = O:

I TSP
and the slip boundary condition along the wedge boundary dW:
(1.5) Vo vy =0,

where v is the exterior unit normal to W (see Fig. 1.1).

T2
A

(1) (0)

v

VO -v=0"]

Figure 1.1. Initial-boundary value problem
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Notice that the initial-boundary value problem (1.1)—(1.5) is invariant under
the self-similar scaling:

(x,1) = (aex,at), (p,P)— (p, /) for «a #0.
Thus, we seek self-similar solutions with the form

px. 1) =p&.n), Px.1) =1y n) for (§.m) =x/1.

Then the pseudo-potential function ¢ = ¥ — %(52 + n?) satisfies the following
Euler equations for self-similar solutions:

(1.6) div(p D) +2p =0,
1 _ -1
1.7) SIDelP+o+p"  =0p

where the divergence div and gradient D are with respect to the self-similar vari-
ables (&, n). This implies that the pseudo-potential function ¢(&, n) is governed by
the following potential flow equation of second order:

(1.8) div (p(ID¢[*, ¢) Do) +2p(|Dg|*.¢) = 0
with
A y—1 1
(1.9) p(IDgI?.0) = plpy  —¢ —3IDgl?).
Then we have
- -1 1
1 1
10 2 =c2(DpPg.py ) = =D (o) = 51Del? —9).
(1.8) is a mixed equation of elliptic-hyperbolic type. It is elliptic if and only
if
(L1D) Dyl <c(1Dg. 9.0 ),

which is equivalent to

2(y—1)
y+1

(1.12) Dyl <C*(<p,po,y):=\/ oy " = ).

Shocks are discontinuities in the pseudo-velocity Dg. That is, if QT and Q™ :=
Q \Q_+ are two nonempty open subsets of @ C R? and S := dQT NQisa C!
curve where Dg has a jump, then ¢ € W,>'(2) N CH(QT U S) N C2(QF) is a
global weak solution of (1.8) in €2 if and only if ¢ is in Wl;éoo (€2) and satisfies
(1.8) in 7 and the Rankine-Hugoniot condition on S:

(1.13) [o(ID¢|*, 9) D -v] g =0.
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The continuity of ¢ is followed by the continuity of the tangential derivative of ¢
across S, which is a direct corollary of irrotationality of the pseudo-velocity. The
discontinuity S of D¢ is called a shock if ¢ further satisfies the physical entropy
condition that the corresponding density function p(|D¢|?, ¢) increases across S
in the pseudo-flow direction. We note that the Rankine-Hugoniot condition (1.13)
with the continuity of ¢ across a shock for (1.8) is also a fairly good approximation
to the corresponding Rankine-Hugoniot conditions for the full Euler equations for
shocks of small strength, since the errors are third-order in strength of the shock.

The plane incident shock solution in the (x, #)-coordinates with states (p,Vx V)
= (po,0,0) and (p1,u1,0) corresponds to a continuous weak solution ¢ of (1.8)
in the self-similar coordinates (&, ) with the following form:

119 =@+ for £,
115 @ =5+ v unE—g) o E<,

respectively, where

-1 —1
200y —py ) piu

(1.16) §o=p1 =
i =05 p1—po

is the location of the incident shock, uniquely determined by (po, p1, ) through

(1.13). Since the problem is symmetric with respect to the axis n = 0, it suffices

to consider the problem in the half-plane 1 > 0 outside the half-wedge
A:={<0,7>0}U{n>Etan by, £ > 0}.

Then the initial-boundary value problem (1.1)—(1.5) in the (x, t)-coordinates can be
formulated as the following boundary value problem in the self-similar coordinates

&.m.

Problem 2 (Boundary value problem) (see Fig. 1.2). Seek a solution ¢ of (1.8)
in the self-similar domain A with the slip boundary condition on dA:

(1.17) Dy -v[ga =0
and the asymptotic boundary condition at infinity:

©o for £ > &p,n > Etan Oy,

when £2 4 % — oo,
g1 for § <&.n>0,

(1.18) ¢ — @ =

where (1.18) holds in the sense that lim [¢ —@|lc(a\Br(0)) = 0-
R—o0

Since ¢; does not satisfy the slip boundary condition (1.17), the solution must
differ from ¢; in {§ < &p} N A; thus a shock diffraction by the wedge occurs. In this
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Figure 1.2. Boundary value problem in the unbounded domain

paper, we first follow the von Neumann criterion to establish a local existence the-
ory of regular shock reflection near the reflection point and show that the structure
of the solution is as in Figure 1.3, when the wedge angle is large and close to /2,
in which the vertical line is the incident shock S = {§ = &y} that hits the wedge at
the point Py = (&9, &o tan 6,), and state (0) and state (1) ahead of and behind S are
given by ¢o and ¢; defined in (1.14) and (1.15), respectively. The solutions ¢ and
@1 differ only in the domain Py P; P> P53 because of shock diffraction by the wedge
vertex, where the curve Pg P; P> is the reflected shock with the straight segment
Po Pyq. State (2) behind Py P; can be computed explicitly with the form:

(119) 26,1 = 5 + 1)+ ua(E —E0) + (1~ o tan By uz an By,

which satisfies
Dp-v=0 on dA N{& > 0};

the constant velocity u, and the angle 65 between Py Py and the &£-axis are deter-
mined by (6y, po, p1,y) from the two algebraic equations expressing (1.13) and
continuous matching of state (1) and state (2) across Py P;, whose existence is
exactly guaranteed by the condition on (6, pg, p1, ) under which regular shock
reflection is expected to occur.

We develop a rigorous mathematical approach to extend the local theory to a
global theory for solutions of regular shock reflection, which converge to the unique
solution of the normal shock reflection when 6y, tends to /2. The solution ¢ is
pseudo-subsonic within the sonic circle for state (2) with center (u2, us tan 6y,)
and radius ¢, > 0 (the sonic speed) and is pseudo-supersonic outside this circle
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Sonic Circle

P, Ps

Figure 1.3. Regular reflection

containing the arc P; P4 in Figure 1.3, so that ¢, is the unique solution in the
domain PgP; P4, as argued in [9] and [45]. In the domain €2, the solution is
expected to be pseudo-subsonic, smooth, and C !-smoothly matching with state
(2) across P1 P4 and to satisfy ¢, = 0 on P5 P3; the transonic shock curve P P>
matches up to second-order with P P; and is orthogonal to the &-axis at the point
P5 so that the standard reflection about the £-axis yields a global solution in the
whole plane. Then the solution of Problem 2 can be shown to be the solution of
Problem 1.

Main Theorem (see §9 for the proof). There exist 6, = 0. (po, p1,Y) € (0, 77/2)
and o = a(pg, p1, ¥) € (0, 1/2) such that, when 8y, € [0, 7r/2), there exists a global
self-similar solution

® N X e a0
(x,t)—zw(;)+2—t or;e , >
with

_ 1 71
p(x,t) = (p’.f o, - §|Vx<1>|2)y 1
of Problem 1 (equivalently, Problem 2) for shock reflection by the wedge, which
satisfies that, for (¢, 1) = x/1t,
P eC®Q)NCH¥(Q),

©o for & > &y and n > £tan 0y,
(1.20) 0 =1 ¢ for & < &y and above the reflection shock Py Py P,
®2 in Po Py Py,
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@ is C11 across the part Py P4 of the sonic circle including the endpoints P; and
P4, and the reflected shock Py Py P, is C2 at P; and C*® except P;. Moreover,
the solution ¢ is stable with respect to the wedge angle in Wléc’l and converges in
Wléc’l to the solution of the normal reflection described in Section 3.1 as 6y, — /2.

One of the main difficulties for the global existence is that the ellipticity con-
dition (1.12) for (1.8) is hard to control, in comparison to our earlier work on
steady flow [10] and [12]. The second difficulty is that the ellipticity degenerates
at the sonic circle Py P4 (the boundary of the pseudo-subsonic flow). The third
difficulty is that, on P; P4, we need to match the solution in €2 with ¢, at least
in C1, that is, the two conditions on the fixed boundary P P4: the Dirichlet and
conormal conditions, which are generically overdetermined for an elliptic equation
since the conditions on the other parts of the boundary have been prescribed. Thus
we have to prove that, if ¢ satisfies (1.8) in €2, the Dirichlet continuity condition
on the sonic circle, and the appropriate conditions on the other parts of 92 derived
from Problem 2, then the normal derivative D¢ - v automatically matches with
Dy, - v along Py P4. We show that, in fact, this follows from the structure of
elliptic degeneracy of (1.8) on P; P4 for the solution ¢. Indeed, (1.8), written in
terms of the function u = ¢ — ¢5 in the (x, y)-coordinates defined near P; P4 such
that Py P4 becomes a segment on {x = 0}, has the form:

(L.21) (2x —(y+ l)ux)uxx + Cizuyy —uUy =0 in x > 0 and near x =0,
2

plus the “small” terms that are controlled by /2 — 6,, in appropriate norms. (1.21)
is elliptic if ux < 2x/(y + 1). Thus, we need to obtain the C !>! estimates near
Py P4 to ensure |uy| <2x/(y + 1) which in turn implies both the ellipticity of the
equation in €2 and the match of normal derivatives D¢ -v = D@, - v along Pp Py.
Taking into account the “small” terms to be added to (1.21), we need to make the
stronger estimate |u,| < 4x/ (3()/ + 1)) and assume that /2 — 6y, is appropri-
ately small to control these additional terms. Another issue is the non-variational
structure and nonlinearity of this problem which makes it hard to apply directly
the approaches of Caffarelli [6] and Alt-Caffarelli-Friedman [1], [2]. Moreover,
the elliptic degeneracy and geometry of the problem makes it difficult to apply the
hodograph transform approach in Kinderlehrer-Nirenberg [28] and Chen-Feldman
[11] to fix the free boundary.

For these reasons, one of the new ingredients in our approach is to further
develop the iteration scheme in [10] and [12] to a partially modified equation. We
modify (1.8) in © by a proper cutoff that depends on the distance to the sonic
circle, so that the original and modified equations coincide for ¢ satisfying |uy| <
4x/ (3()/ + 1)), and the modified equation Ng = 0 is elliptic in 2 with elliptic
degeneracy on P P4. Then we solve a free boundary problem for this modified
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equation: The free boundary is the curve Py P;, and the free boundary conditions
on Py P, are ¢ = ¢; and the Rankine-Hugoniot condition (1.13).

On each step, an “iteration free boundary” curve P; P, is given, and a solution
of the modified equation No = 0 is constructed in 2 with the boundary condition
(1.13) on Pq P, the Dirichlet condition ¢ = ¢, on the degenerate circle P P4, and
Dg-v =0o0n PPz and P3P4. Then we prove that ¢ is in fact chl! up to the
boundary P; P4, especially | D(¢ —¢2)| < Cx, by using the nonlinear structure of
elliptic degeneracy near Py P4 which is modeled by (1.21) and a scaling technique
similar to Daskalopoulos-Hamilton [17] and Lin-Wang [40]. Furthermore, we
modify the “iteration free boundary” curve P; P, by using the Dirichlet condition
@ = @1 on Py P>. A fixed point ¢ of this iteration procedure is a solution of the
free boundary problem for the modified equation. Moreover, we prove the precise
gradient estimate: |uy| <4x/ (3()/ + 1)), which implies that ¢ satisfies the original
equation (1.8).

Some efforts have been made mathematically for the reflection problem via
simplified models. One of these models, the unsteady transonic small-disturbance
(UTSD) equation, was derived and used in Keller-Blank [27], Hunter-Keller [26],
Hunter [25], Morawetz [44], and the references cited therein for asymptotic anal-
ysis of shock reflection. Also see Zheng [50] for the pressure gradient equation
and Canic-Keyfitz-Kim [7] for the UTSD equation and the nonlinear wave system.
On the other hand, in order to deal with the reflection problem, some asymptotic
methods have also been developed. Lighthill [38], [39] studied shock reflection
under the assumption that the wedge angle is either very small or close to /2.
Keller-Blank [27], Hunter-Keller [26], and Harabetian [24] considered the problem
under the assumption that the shock is so weak that its motion can be approximated
by an acoustic wave. For a weak incident shock and a wedge with small angle in
the context of potential flow, by taking the jump of the incident shock as a small
parameter, the nature of the shock reflection pattern was explored in Morawetz
[44] by a number of different scalings, a study of mixed equations, and matching
the asymptotics for the different scalings. Also see Chen [14] for a linear approx-
imation of shock reflection when the wedge angle is close to 7/2 and Serre [45]
for an a priori analysis of solutions of shock reflection and related discussions in
the context of the Euler equations for isentropic and adiabatic fluids.

The organization of this paper is the following. In Section 2, we present the
potential flow equation in self-similar coordinates and exhibit some basic properties
of solutions to the potential flow equation. In Section 3, we discuss the normal re-
flection solution and then follow the von Neumann criterion to derive the necessary
condition for the existence of regular reflection and show that the shock reflection
can be regular locally when the wedge angle is large. In Section 4, the shock
reflection problem is reformulated and reduced to a free boundary problem for a
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second-order nonlinear equation of mixed type in a convenient form. In Section 5,
we develop an iteration scheme, along with an elliptic cutoff technique, to solve the
free boundary problem and set up the ten detailed steps of the iteration procedure.

Finally, we complete the remaining steps in our iteration procedure in Sec-
tions 6-9: Step 2 for the existence of solutions of the boundary value problem
to the degenerate elliptic equation via the vanishing viscosity approximation in
Section 6; Steps 3-8 for the existence of the iteration map and its fixed point in
Section 7; and Step 9 for the removal of the ellipticity cutoff in the iteration scheme
by using appropriate comparison functions and deriving careful global estimates
for some directional derivatives of the solution in Section 8. We complete the proof
of the Main Theorem in Section 9. Careful estimates of the solutions to both the
“almost tangential derivative” and oblique derivative boundary value problems for
elliptic equations are made in the appendix, which are applied in Sections 6 and 7.

2. Self-similar solutions of the potential flow equation

In this section we present the potential flow equation in self-similar coordi-
nates and exhibit some basic properties of solutions of the potential flow equation
(also see Morawetz [44]).

2.1. The potential flow equation for self-similar solutions. (1.8) is a mixed
equation of elliptic-hyperbolic type. It is elliptic if and only if (1.12) holds. The
hyperbolic-elliptic boundary is the pseudo-sonic curve: |Dg| = c« (@, po, V).

We first define the notion of weak solutions of (1.8) and (1.9). Essentially, we
require the equation to be satisfied in the distributional sense.

Definition 2.1 (Weak solutions). A function ¢ € Wléél (A) is called a weak
solution of (1.8) and (1.9) in a self-similar domain A if
My
(i) (p(I1D¢l?, ). p(ID@I*, 9)| D)) € (L, (A))?;
(iii) For every { € CX°(A),

—¢—3Dpl*> > 0ae. in A;

/A (p(1D¢I2. 9) Dy - DL ~20(1Dg . 9)¢) didn = 0.

It is straightforward to verify the equivalence between time-dependent self-
similar solutions and weak solutions of (1.8) defined in Definition 2.1 in the weak
sense. It can also be verified that, if ¢ € C1*1(A) (and thus ¢ is twice differentiable
a.e. in A), then ¢ is a weak solution of (1.8) in A if and only if ¢ satisfies (1.8) a.e.
in A. Finally, it is easy to see that, if AT and A= = A \F are two nonempty open
subsets of A CR? and S = AT N A isa C! curve where D has a jump, then
pewr i D)yncl (AU S)NCl1(A%) is a weak solution of (1.8) in A if and

loc
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only if ¢ is in Wl;;oo (A) and satisfies (1.8) a.e. in A¥* and the Rankine-Hugoniot
condition (1.13) on S.
Note that, for ¢ € C1(A* U S), the condition ¢ € W,**°(A) implies

2.1) [¢ls = 0.

Furthermore, the Rankine-Hugoniot conditions imply

(2.2) [pellppel — [onllpen] =0 on S

which is a useful identity.

A discontinuity of D¢ satisfying the Rankine-Hugoniot conditions (2.1) and
(1.13) is called a shock if it satisfies the physical entropy condition: The density
function p increases across a shock in the pseudo-flow direction. The entropy con-
dition indicates that the normal derivative function ¢, on a shock always decreases
across the shock in the pseudo-flow direction.

2.2. The states with constant density. When the density p is constant, (1.8)
and (1.9) imply that ¢ satisfies

1
Ap+2=0, §|D(p|2+<p=const.
This implies (Ag)g = 0, (Ap), =0, and (pgg + 2% + (pi?n = 0. Thus, we have

pse=—1, ¢ep =0, ¢y =-1,
which yields

1
(2.3) o) =—5E +n) +ak+bn+c,
where a, b, and ¢ are constants.

2.3. Location of the incident shock. Consider state (0): (po, %0, v0) = (00,0, 0)
with pg > 0 and state (1): (p1,u1,v1) = (p1,u1,0) with p; > pp > 0 and u; > 0.
The plane incident shock solution with state (0) and state (1) corresponds to a
continuous weak solution ¢ of (1.8) in the self-similar coordinates (£, ) with form
(1.14) and (1.15) for state (0) and state (1) respectively, where £ = &y > 0 is the
location of the incident shock.

The unit normal to the shock line is v = (1, 0). Using (2.2), we have
__P1—p0

P1

ui §0>0.

Then (1.9) implies

_ _ 1 1 p? — p?

y—1 y—1 2 1 02

b1 —Po =—=|Do1|"—¢1 = = &o-
2 2 p%
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Therefore, we have

200y =y
(2.4) ur = (p1 — po) %
P1—Po

’

and the location of the incident shock in the self-similar coordinates is & = &y > u;
determined by (1.16).

3. The von Neumann criterion and local theory for shock reflection

In this section, we first discuss the normal reflection solution. Then we follow
the von Neumann criterion to derive the necessary condition for the existence of
regular reflection and show that the shock reflection can be regular locally when
the wedge angle is large, that is, when 6y, is close to /2 and, equivalently, the
angle between the incident shock and the wedge

(3.1 0:=7/2—06y

tends to zero.

3.1. Normal shock reflection. In this case, the wedge angle is /2, i.e., 0 =0,
and the incident shock reflects normally (see Fig. 3.1). The reflected shock is also
aplane at £ = é < 0, which will be defined below. Then u» = v, = 0, state (1) has
form (1.15), and state (2) has the form:

62w =@+ tuE-t)  forie @0,

where £&9 = p1u1/(p1 — po) > 0 may be regarded as the position of the incident
shock. .
At the reflected shock £ = £ < 0, the Rankine-Hugoniot condition (2.2) implies

3.3) g —_ _/01“1
P2 — p1

< 0.

We use the Bernoulli law (1.7):

1 -
-1 -1 ~y—1
Py =pt +5”%—”150=P§ +u1(§ —%o)
to obtain

_y— - 1 p1u

1 y—1 2 1

(3.4) Py =Py Foui+ =

2 ! 271 =

It can be shown that there is a unique solution p; of (3.4) such that

P2 > p1.
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Figure 3.1. Normal reflection

Indeed, for fixed y > 1 and p1,u1 > 0 and for F(p2) that is the right-hand side of
(3.4), we have

1 _
: — =1, 2 2 y—1 ; —
sl_l)rgoF(s)—pl +2u1>p1 , s_l)lzrll+F(s) 00,
2
u
F/(s):—p1—12<0 for s > py.
(s —p1)

Thus there exists a unique py € (p1, 00) satisfying ,5;_1 = F(p2), i.e., (3.4). Then
the position of the reflected shock & = £ < 0 is uniquely determined by (3.3).

Moreover, for the sonic speed ¢z = 4/ (y — 1) ,6;/ 1 of state (2), we have
(3.5) €] < .
This can be seen as follows. First note that
_y—1 -1 _
(3.6) Py =P =B(p2—p1),

where f = (y — 1),03,f_2 > 0 for some p« € (p1,p2). We consider two cases,
respectively.

Case 1. y > 2. Then
(3.7) 0<(-Dpl2<B=(y-Dp; .

Since B > 0 and p, > p1, we use (3.4) and (3.6) to find

_ u
P2 = p1+ ﬁ(ul + \/u% + 16,3/)1),
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and hence

(3.8) § __ 4Bp1

u + ,/u%+ 16801

Then by (3.7) and (3.8), p2 > p1 > 0, and u; > 0 yields

: 4Bp1 / y=25 o
&l = <VBp1 =\ (y =Py 2 pr = 6.
u + ,/u% + 16801

Case 2. 1 <y < 2. Then, since p > p; > 0,

(3.9) 0<(y-1py 2<p<(y—Dp >

Since 8 > 0, (3.8) holds by the calculation as in Case 1. Now we use (3.8) and
(3.9), p2 > p1 >0,u; >0,and 1 < y <2 to find again

|ﬁ<vﬁm§\ﬂy—0ﬁ_%§¢W—1m§*=52
This shows that (3.5) holds in general.

3.2. The von Neumann criterion and local theory for regular reflection. In
this subsection, we first follow the von Neumann criterion to derive the necessary
condition for the existence of regular reflection and show that, when the wedge an-
gle is large, there exists a unique state (2) with two-shock structure at the reflected
point, which is close to the solution (pz2, U2, U2) = (02, 0, 0) of normal reflection
for which 6, = 7/2 in §3.1.

For a possible two-shock configuration satisfying the corresponding boundary
condition on the wedge n = & tan 8y, the three state functions ¢;, j =0, 1, 2, must
be of form (1.14), (1.15), and (1.19) (cf. (2.3)).

Let Py = (&9, &o tan 6y,) be the reflection point (i.e., the intersection point of
the incident shock with the wall), and let the reflected straight shock separating
states (1) and (2) be the line that intersects with the axis n = 0 at the point (§ ,0)
with the angle 6; between the line and n = 0.

Note that @1 (&, n) is defined by (1.15). The continuity of ¢ at (§ ,0) yields

1 ~ ~
(3.10) p2(8.m) = —5(52 +10%) + u2§ + van +ur (€ — o) —u2k.
Furthermore, ¢, must satisfy the slip boundary condition at Py:
3.11) Uy = Ug tan Oy,.

Also we have

3.12) E=£—&o
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The Bernoulli law (1.7) becomes

- -1 1 ~
(3.13) Py =P 3+ 03) + (- ) — o,

Moreover, the continuity of ¢ on the shock implies that D (@, — ¢1) is orthogonal
to the tangent direction of the reflected shock:

(3.14) (uz —uq,v3) - (cos by, sinfs) = 0;

that is,

€08 By, cos B
Uy——.
! cos(By — 6s)
The Rankine-Hugoniot condition (1.13) along the reflected shock is

(3.15) Uy =

[0 D] - (sin 8, — cos Os) = 0;

that is,

cos Oy

(3.16) p1(uy —é) sin Oy = pa (uzM —§sin Qs).

Combining (3.12)—(3.16), we obtain the following system for (o2, 6;, §):

(3.17) (E — &) cos By, + £ sin By, cot by = 0,

_ 2cos? 6 U1 8in By, sin O ~ _
3.18 yly  Mio% B LSMPw SO 2 go—p? L =0
(3-18) Pt 2c082(0y, — 05) + cos(By — 05) § ko= po '
(3.19) (1 cos Oy tan(Bs — Oyy) — & sin O5) po — p1 (u1 — £) sin by = 0.

The condition for solvability of this system is the necessary condition for the exis-
tence of regular shock reflection.

Now we compute the Jacobian J in terms of (p2, 65, £) at the normal reflection
solution state (p2, 7. £) in Section 3.1 for state (2) when 6, = /2 to obtain

J==ko((r =1 (B2 = p) i) <0.

since pp > p; and § < 0. Then, by the Impligit Function Theorem, when 0y is near
/2, there exists a unique s~olution (02,05, &) close to (p2, 5., &) of system (3.17)-
(3.19). Moreover, (p2, 05, £) are smooth functions of ¢ = /2 — 6, € (0, 01) for
o1 > 0 depending only on pg, p1, and y. In particular,

(3.20) |p2 — pa| + |7/2 = Os| + |E—&| + |c2 — 2| < Co,

where ¢, = /(y — 1) p;/ ~! is the sonic speed of state (2).
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Reducing o7 > 0 if necessary, we find that, for any o € (0, 01),
(3.21) £<0

from (3.3) and (3.20). Since 6y, € (/2 —01,7/2), then 65 € (7/4,37/4) if 07 is
small, which implies sin 85 > 0. We conclude from (3.17), (3.21), and &y > O that
tan 6, > tan 6 > 0. Thus,

(3.22) /4 <Os <Oy <m/2.

Now, given 6, we define ¢, as follows: We have shown that there exists a
unique solution (py., 65, £) close to (72, 2 £) of system (3.17)—(3.19). Define u»
by (3.15), vy by (3.11), and ¢, by (3.10). Then the shock connecting state (1)
with state (2) is the straight line S12 = {(€,7n) : ¢1(&,n) = @2(&, 1)}, which is
& =ncotby +§ by (1.15), (3.10), and (3.15). Now (3.19) implies that the Rankine-
Hugoniot condition (1.13) holds on S1,. Moreover, (3.11) and (3.15) imply (3.14).
Thus the solution (85, p2, Uz, v2) satisfies (3.11)—(3.19). Furthermore, (3.17) im-
plies that the point Py lies on S13, and (3.18) implies (3.13) that is, the Bernoulli
law:

(3.23) ! +%|D¢2|2+<o2 =py
Thus we have established the local existence of the two-shock configuration near
the reflected point so that, behind the straight reflected shock emanating from the
reflection point, state (2) is pseudo-supersonic up to the sonic circle of state (2).
Furthermore, this local structure is stable in the limit 6, — /2, i.e., 0 — 0.

We also notice from (3.11) and (3.15) with the use of (3.20) and (3.22) that

(3.24) |uz| + |v2| < Co.

Furthermore, from (3.5) and the continuity of p, and g? with respect to 6y, on
(r/2 — o1, /2], it follows that, if ¢ > 0 is small,

(3.25) €] < ca.
In Sections 4-9, we prove that this local theory for the existence of two shock
configuration can be extended to a global theory for regular shock reflection.
4. Reformulation of the shock reflection problem

We first assume that ¢ is a solution of the shock reflection problem in the
elliptic domain € in Figure 1.3 and that ¢ — ¢, is small in C'(Q). Under such
assumptions, we rewrite the equation and boundary conditions for solutions of the
shock reflection problem in the elliptic region.



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 1083

4.1. Shifting coordinates. It is more convenient to change the coordinates in
the self-similar plane by shifting the origin to the center of the sonic circle of
state (2). Thus we define

(E’ n)new = (éa 7’) - (u21 v2)-

For simplicity of notation, throughout this paper below, we will always work in the
new coordinates without changing the notation (&, 1), and we will not emphasize
this again later.

In the new shifted coordinates, the domain €2 is expressed as

4.1 Q=B 0)N{n>—-v2}N{f(n) <& <ncotby},

where f is the position function of the free boundary, i.e., the curved part of the
reflected shock T'gpock := {€ = f(n)}. The function f in (4.1) will be determined
below so that

(4.2) If =1l <Co

in an appropriate norm, specified later. Here £ = /() is the location of the reflected
shock of state (2) which is a straight line; that is,

4.3) I(n) = neot s + £
and
4.4) ézé—u2+v2cot9s<0,

if 0 = /2 — 6, > 0 is sufficiently small, since u, and v, are small and é <0by
(3.3) in this case. Also note that, since u, = v, cot 8y, > 0, it follows from (3.22)
that

(4.5) E>E.

Another condition on f comes from the fact that the curved part and straight
part of the reflected shock should match at least up to first-order. Denote by P; =
(&1, 1) with n1 > 0 the intersection point of the line £ = /(n) and the sonic circle
£24n?= c%, i.e., (€1, 11) is the unique point for small o > 0 satisfying

(4.6) I(m)* +nt = c3, &1 =1(m), n > 0.

The existence and uniqueness of such a point (£1, 1) follows from —c, < § <0,
which holds from (3.22), (3.25), (4.4), and the smallness of u, and v,. Then f
satisfies

4.7) S(1) =1(n), f'(n) =1'(n1) = cot b.



1084 GUI-QIANG CHEN and MIKHAIL FELDMAN

Note also that, for small o > 0, we obtain from (3.25), (4.4), (4.5), and I’(n) =
cot Oy > 0 that

4.8) —cr<E<E<E <0, 62—|§|2_ > 0.

Furthermore, equations (1.8) and (1.9) and the Rankine-Hugoniot conditions (1.13)
and (2.1) on I'yhock do not change under the shift of coordinates. That is, we seek ¢
satisfying (1.8) and (1.9) in €2, so that the equation is elliptic on ¢, and satisfying
the following boundary conditions on I'yhock: the continuity of the pseudo-potential
function across the shock:

(49) =01 on 1—‘shock
and the gradient jump condition:
(4.10) p(ID@|?,9)Dg-vs = p1Dg1-vs  on Tshock,

where vy is the interior unit normal to €2 on I'gpock.
The boundary conditions on the other parts of 92 are

4.11) =92 on Fgopic = 02N 8B62 (0),
(4.12) @y =0 on Iyeqge = Q2 N{n =Etan Oy §,
(4.13) 0y, =0 on IR N{n=—vy}.

Rewriting the background solutions in the shifted coordinates, we find

1 1
@4.14)  @o(t,n) = —5(52 +17%) — (u2§ + van) — Eqﬁ,

4.15)  ¢1(€,n) = —%(52 +1%) + (U1 —uz)€ —van — %613 +u1(uz — o),

@16) a6 m) = —5 (624 1)~ 303+ (i —u2)é + s (ua — o).

where q% = u% + v%.
Furthermore, substituting £ in (4.4) into (3.17) and using (3.11) and (3.14),
we find

N ~ (U — M2)2 +v2
(4.17) paf = p1 (£~ 2),
Uy —uz
which expresses the Rankine-Hugoniot conditions on the reflected shock of state
(2) in terms of £. We use this equality below.

4.2. The equations and boundary conditions in terms of v = ¢ — @o. It is
convenient to study the problem in terms of the difference between our solution
¢ and the function ¢, that is a solution for state (2) given by (4.16). Thus we
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Figure 4.1. Regular reflection in the new coordinates

introduce a function
(4.18) Y=¢0—q@ in Q.

Now it follows from (1.8)—(1.10), (3.23), and (4.16) by explicit calculation that
satisfies the following equation in €2:

4.19)  (2(DY. Y. E.m) — (Ve —6)°) Vee
+ (2(DY Y. E.0) — Wy — 1)) Yy — 2(Wg — E) (Y — MYy = 0,

and the expressions of the density and sound speed in €2 in terms of y are

1

_ 1 =1

(4200 p(DY. k) = (o} H v 4y —5IDYP—v)
1

@21 DY) =S+ (= D(§ve + vy — S IDYP - ).

where ps is the density of state (2). In the polar coordinates (r, ) with r =

VEZ 4+ n?, ¥ satisfies
2
(422) (¢* = Wr =) )¥rr = S (Wr =1)¥oV¥rg

Ly, 1, c? 1 ’
+ 5 (= V3 ) Voo + —vr + 5y — 2195 =0

with

— 1 1
(4.23) c2=(y—1)<p3 1—w+rwr—5(w3+r—2w§)>-
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Also, from (4.11), (4.12), and (4.16)—(4.18), we obtain

(4.24) Y =0 on sonic = 02 N 0B, (0),
(4.25) Yy =0 on Iyegee = Q2 N{n =Etan Oy §,
(4.26) Yy =—v2 on 0Q2N{n=—va}.

Using (4.15) and (4.16), the Rankine-Hugoniot conditions in terms of Y take
the following form: The continuity of the pseudo-potential function across (4.9) is
written as

1 .
(427) ¥ —2g3 + £ —u2) + 11 (uz o)
1
=E(ur —uz) —nuay — qu +uy(uz —£&) on Dspocks
that is,

£ = v n)+van 2

(4.28) +&,
Ui —us

where é‘ is defined by (4.4). The gradient jump condition (4.10) is
(4.29)

p(DY, ) (DY —(§.7n))-vs = p1 (U1 —uz —§,—v2—1) - s on Ishocks

where p(D v, ) is defined by (4.20) and vy is the interior unit normal to €2 on
Cshock- If [ (U2, v2, DY)| < u1/50, the unit normal vg can be expressed as

_ D(p1—¢) _ (1 —uz—Ye, —v2 —Yy)
1D(g1 =)l \/(“1 —uz = Yg)? + (v2 + Yp)?

where we have used (4.15), (4.16), and (4.18) to obtain the last expression.

Now we rewrite the jump condition (4.29) in a more convenient form for
satisfying (4.9) when o > 0 and ||/ || -1 () are sufficiently small.

We first discuss the smallness assumptions for o > 0 and ||/ || -1 ©)- By (2.4),
(3.20), and (3.24), it follows that, if o is small depending only on the data, then
(431) 5%5@56%, 5%5;»56%, Vid+? =2
We also require that ”W”CI(Q) be sufficiently small so that, if (4.31) holds, the
expressions (4.20) and (4.30) are well defined in €2, and ¢ defined by the right-
hand side of (4.28) satisfies |&| < 7¢»/5 for n € (—vy, ¢2), which is the range of 5
on [gpock- Since (4.31) holds and 2 C B¢, (0) by (4.1), it suffices to assume

(4.30) Vs

_y—1
i . %) : Fy) L) . g
(4.32) ¥l 1 gy < min (m,mm(l,cz)%) =: 8",
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For the rest of this section, we assume that (4.31) and (4.32) hold.
Under these conditions, we can substitute the right-hand side of (4.30) for v
into (4.29). Thus, we rewrite (4.29) as

(433) F(DWs W7 u29 UZ, éa 7]) = 0 on FShOCk’

where, with p = (p1, p2) € R? and z € R,

4.34)  F(p,z,uz,v2,6&n) = (o (p—E ) —p1 (u1 —uz—&,—va—n)) -9

with p:= p(p, z,&, 1) and D := D(p, us, vp) defined by

| |2 1l
- 1 14 v
(4.35) p(p.z, 6, n) = (pZ +ép1 +npz—7—2) ,

(U1 —uz — p1,—v2—p2)

(4.36) V(p,uz,v3) = .
= V@i —uz— p1)2 + (v2+ p2)?

From the explicit definitions of ¢ and 7, it follows from (4.31) that

p € C(Bs«(0) x (=6*,8%) x By, (0)), e C®(Bs«(0) x By, /50(0)),

where Bg(0) denotes the ball in R? with center 0 and radius R and, for k € N (the
set of nonnegative integers), the C k_norms of o and D over the regions specified
above are bounded by the constants depending only on y, u1, p2, ¢2, and k, that is,
by Section 3, the C k _norms depend only on the data and k. Thus,

(4.37) F € C%(Bg«(0) x (=8*,8%) x By, /50(0) X B2z, (0)),

with its C¥-norm depending only on the data and k.
Furthermore, since ¥ satisfies (4.9) and hence (4.28), we can substitute the
right-hand side of (4.28) for £ into (4.33). Thus we rewrite (4.29) as

(438) “I’(DW, w» M2’ U2, T’) = 0 on l—‘ShOCka

where

(4.39) W(p,z,u2,v2,0) = F(p,z,uz, v2, (z + v21) /(1 —uz) + £, ).

If n € (—6¢2/5,6C2/5) and |z| < §*, then, from (4.8), (4.31), and (4.32), it follows
that |(z + v2n)/(u1 —uz) + é{ <7¢2/5. That is, ((z 4 van)/(u1 —uz) + &, 1) €
B, (0) if n € (—6¢2/5,6¢2/5) and |z| < §*. Thus, from (4.37) and (4.39), ¥ €
C () with || W|| ¢k z7) depending only on the data and k € N, where o = Bj+(0) x
(=8%,8%) X By, /50(0) x (—6¢2/5,6¢2/5).
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Using the explicit expression of W given by (4.34)—(4.36) and (4.39), we cal-
culate

(1 —uz)pa
\/(”1 —u)2 +v3

—p1 (\/(m —u2)% +v3 — \/( o _M;)i 2).
uipy—Uus v2

W((0,0),0,uz,v2,1n) = —

Now, using (4.17), we have
¥((0,0),0,u2,v2,n) =0 forany (uz,v2,n) € By, /50(0) X (=6¢2/5,6¢2/5).

Then, denoting po = z and ¥ = ((p1, p2), po, U2, V2, 1) € 4, we have

2 2

(4.40) W) =Y piDp,¥((0.0).0,u2.v2. ) + > pip;&ij (&),
i=0 i,j=0

where g;; (¥X) = fol(l — t)DgipilIl((tpl,tpz),tpo,uz, va,mdt fori,j =0,1,2.
Thus, g;; € C*°(sd) and ||gi; ek ry = 1W ]| cx+2 () depending only on the data
and k € N.

Next, denoting p) := p’ (pg_l) = pp/c2 > 0, we compute from the explicit
expression of W given by (4.34)—(4.36) and (4.39):

2 p2—p
D (p.)¥((0,0),0,0,0, 1) = (p5(c5 —&2), ( m
Note that, fori = 0,1, 2,

dp; ¥((0,0),0,uz,v2,1) = dp; ¥((0,0),0,0,0,n) + h; (uz, v2, 1)

L b, ppé - P20,

with |Ai || ok (5 |Vl cx+2( for k €N, and |hi (uz, v2, )|
Ck( ()

T30 OX(65275,66275) = |
< C(luz| + |vz|) with C = ||D2\If||c(g). Then we obtain from (4.40) that, for all
&= (p.z,uz,v2,1n) €4,

(441) W) = ph(c3—E2) pr + (P2

—05€) (pa—2)+ Ev (@) p+ Er @)z,

where E; € C*®(s4; R?) and Eye C*®(sd) with
Ei(p.z,uz2,v2, M| < C(Ip| + |2] + luz| + [va]) forall (p,z,uz,v2,7) € o,

for C depending only on ||D2\Il||c(g).
From now on, we fix (12, v2) to be equal to the velocity of state (2) obtained
in Section 3.2 and write E;(p, z,n) for E;(p, z,uz, v2,n). We conclude that, if
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(4.31) holds and ¥ € C1(Q) satisfies (4.32), then ¥ = ¢ — ¢, satisfies (4.9) and
(4.10) on T'ghock if and only if i satisfies conditions (4.28) on I'shock,

PL— o) 1t — )
-’rEl(DW’E/f»’?)D\/f‘i‘Ez(Dl/f»‘/f»’I)W =0,

and the functions E;(p, z,7),i = 1,2, are smooth on
B(g*(O) X (—8*, 8*) X (—66‘_2/5, 66_‘2/5)
and satisfy that, for all (p, z, n) € Bg«(0) x (—=8*,8%) x (=6¢2/5,6¢2/5),

@40 pp(3 -8+ (2

1

(4.43) |Ei(p.z,m)| =C (Ip|+|z|+0)
and, for all (p, z,n) € Bg«(0) x (—=8*,8%) x (—6¢2/5,6¢2/5),
(4.44) ((Dp.zm Eir D{yzmyEDI<C,

where we have used (3.24) in the derivation of (4.43) and C depends only on the
data.

Denote by v the unit normal on the reflected shock to the region of state (2).
Then vy = (sin 6y, — cos 65) from the definition of 6. We compute

P2 — P1
Ui

= (3 €% sin s —
if 7/2 — 65 is small and 7 € Proj,([shock). From (3.14) and (4.30), we obtain

[vs = vollLoo (M) = C||Dw||c(§). Thus, if ¢ > 0 and ||D¢||C(§) are small
depending only on the data, then (4.42) is an oblique derivative condition on ['gpock.

445) (ph(e3 &%), (=21 — phfyn) -vo

P2 — P1

R 1 R
— phé )ncos bs = 2 ph(c3 — %) > 0.

4.3. The equation and boundary conditions near the sonic circle. For the
shock reflection solution, (1.8) is expected to be elliptic in the domain 2 and
degenerate on the sonic circle of state (2) which is the curve Isonic = 92 N B¢, (0).
Thus we consider the subdomains:

(4.46) Q" :=Qn{(E n) : dist((§, 1), Tsonic) < 2¢},
Q,/ =Qn {(Ea 7]) : diSt((g’ 7])’ Fsonic) > 8}’

where the small constant ¢ > 0 will be chosen later. Obviously, Q" and Q" are
open subsets of 2, and 2 = Q' U Q”. (1.8) is expected to be degenerate elliptic in
Q' and uniformly elliptic in " on the solution of the shock reflection problem.
In order to display the structure of the equation near the sonic circle where
the ellipticity degenerates, we introduce the new coordinates in " which flatten
Tsonic and rewrite (1.8) in these new coordinates. Specifically, denoting (r, 8) the
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polar coordinates in the (&, n)-plane, i.e., (§,71) = (r cos 8, r sin 8), we consider
the coordinates:

(4.47) X=cy—r, y=0-0, on Q.

By Section 3.2, the domain %’ does not contain the point (§,1) = (0,0) if ¢ is
small. Thus, the change of coordinates (§,71) — (x, y) is smooth and smoothly
invertible on . Moreover, it follows from the geometry of domain 2 especially
from (4.2)—(4.7) that, if 0 > 0 is small, then, in the (x, y)-coordinates,

n(x)
f(n(x))

where 7(x) is the unique solution, close to 7y, of the equation % + f(n)? =
(2 —x)2.

We write the equation for v in the (x, y)-coordinates. As discussed in Section
4.2, ¥ satisfies (4.22) and (4.23) in the polar coordinates. Thus, in the (x, y)-
coordinates in €', the equation for ¥ is

Q' ={(x,y) : 0<x<2¢ 0<y<m+arctan(

) = 0w},

(4.48)
1
2x =y +D¥x + O1)Pxx + Ozwxy+(a + 03)wyy — (14 04)¥x + Osry, =0,
where
(4.49)
— _x_z V_H _ _r- 1 1 2
O1DY. Yx) = =+ = Qx =Y = (¥ + 55593,

O2(Dy, 1/’,x)=—62 (Yx +c2—x)Yy,

(c2—x)?

1 1
O3(Dy, ¢, x) = cz(cz——x)z(x(zcz —x)—(y— 1)(1” +(c2—=Xx)¥x + 5%%)

y+1 5
_2(C2—x)2wy)’
1 —1 1
O4(DY, w’x)zcz—x<x_yc2 (1/f+(cz—x)1ﬂx+§%%

(v + Dy )
2(y =2 —x)2/ )

(Wx + o —X)Wy.

OS(DW’ W’x) = -

c2(c2—x)3
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The terms Oy (DY, ¥, x) are small perturbations of the leading terms of (4.48) if
the function ¥ is small in an appropriate norm considered below. In order to see
this, we note the following properties: For any (p, z, x) € R> x R x (0, ¢2/2) with
lpl <1,
(4.50) 101(p, 2, %) < C(Ip|* + 2] + |x[?),

103(p. 2. X)| +|0a(p. 2. ¥)| = C(Ip[ + |z + |x]).

|02(p. 2, x)| +|O0s(p.z, x)| = C(Ip| + |x] + D] p|.

In particular, dropping the terms Oy, kK = 1,...,5, from (4.48), we obtain the
transonic small disturbance equation (cf. [44]):

1
4.51) (2x —-(y+ 1)wx)‘pxx + awyy —Yx=0.

Now we write the boundary conditions on I'sonic, I'shock, and I'yedge in the
(x, y)-coordinates. Conditions (4.24) and (4.25) become

(4.52) Y =0 on [gonic = 92 N {x = 0},
(4.53) Yy =9y, =0 on Iyedge = 02 N{y =0}.

It remains to write condition (4.42) on [syock in the (x, y)-coordinates. Ex-
pressing V¢ and v/, in the polar coordinates (r, ) and using (4.47), we write (4.42)
on Lgpock N {x < 2¢} in the form:

(4.54)
(—p;(c% —E2) cos(y + ) — ("Zu_l" L p’zé) (c2 —x) sin®(y + ew)) Y

/

%)
Cy — X

T sin(y + ) (— (G-8) 4 (” —p1 —p’zé) cos(y + ew)) v,

Ui

p2—p1 g ~
_( _0/25)Vf"‘EI(D(x,y)W’Vf’x’y)'D(X’J’)w

Ui
+EZ(D(x,y)W7 v, x, Y)Y =0,

where E;(p,z,x,y),i = 1,2, are smooth functions of (p, z, x, y) € R? x R x R?
satisfying

|Ei(p.z,x, )| <C (Ipl+ |zl +0)  for |p|+|z]+x < so(u1, p2).

We now rewrite (4.54) noting first that, in the (£, n)-coordinates, the point
P1 = Tsonic N Cshock has the coordinates (£1, 1) defined by (4.6). Using (3.20),
(3.22), (4.3), and (4.6), we find

0<|&|—|&] < Co.
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In the (x, y)-coordinates, the point P; is (0, y1), where y; satisfies
(4.55) cacos(yr + Oy) = &1, co sin(y1 + Ow) =11,

from (4.6) and (4.47). Using this and noting that the leading terms of the coeffi-
cients of (4.54) near P; = (0, y1) are the coefficients at (x, y) = (0, y1), we rewrite
(4.54) as follows:

(4.56)
P2 —p1 P2 —pP1
— n x_(:o/z_ 2 51) mvy

Uuicz 165

P2 — p1 5
_CTZ_—%&)W+EdmeWWWJTD@wW

+E2 (D yy ¥ o x, )Y =0 on Typoek N {x < 2},
where the terms E,-(p,z,x, y),i = 1,2, satisfy
(4.57) |Ei(p.z,x, )| <C (Ip|+ |zl +x + 1y —y1] +0)
for (p,z,x,y) €T :={(p,z,x,y) e RZ>xRxR?: |p|+|z| < eo(u1,p2)} and

(4.58) I(Dp.zxy) Eis DFy s yy ED)llLoo) < C.

We note that the left-hand side of (4.56) is obtained by expressing the left-
hand side of (4.42) on I'shock N {c2 —r < 2¢} in the (x, y)-coordinates. Assume
& < ¢z /4. In this case, transformation (4.47) is smooth on {0 < ¢, —r < 2¢} and
has nonzero Jacobian. Thus, condition (4.56) is equivalent to (4.42) and hence to
(4.29) on Tsnock N {x < 2¢} if 0 > 0 is small so that (4.31) holds, and if [|¥/[| o1 (g
is small depending only on the data such that (4.32) is satisfied.

5. Iteration scheme

In this section, we develop an iteration scheme to solve the free boundary
problem and set up the detailed steps of the iteration procedure in the shifted coor-
dinates.

5.1. Iteration domains. Fix 6y, < m/2 close to /2. Since our problem is a
free boundary problem, the elliptic domain €2 of the solution is a priori unknown
and thus we perform the iteration in a larger domain

5D D =Dy, = Be, (0) N{n>—v2y N{I(n) <& <ncosby},

where /(1) is defined by (4.3). We will construct a solution with Q C %. Moreover,
the reflected shock for this solution coincides with {§ = /(n)} outside the sonic
circle, which implies 0% N 0B, (0) = 02 N dB¢, (0) =: ['sonic. Then we decompose
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9 similar to (4.46):

(5.2) D" =D N{(E, n) : dist((§, 1), Tonic) < 2¢},
D" :=DN{(E, n) : dist((€, 1), Tsonic) > £/2}.

The universal constant C > 0 in the estimates of this section depends only on the
data and is independent on 6.

We will work in the (x, y)-coordinates (4.47) in the domain & N {c, —r < K¢},
where «¢ € (0, ¢3) will be determined depending only on the data for the sonic speed
cp of state (2) for normal reflection (see Section 3.1). Now we determine k¢ SO
that ¢1 — ¢5 in the (x, y)-coordinates satisfies certain bounds independent of 6,,
in@N{cy—r <ko}ifo =mn/2—0, is small.

We first consider the case of normal reflection 6,, = /2. Then, from (1.15)
and (3.2) in the (x, y)-coordinates (4.47) with ¢, = ¢ and 6, = /2, we obtain

01— @2 = —ui(Ca—x)siny —u € for 0<x<cp, O<y<m/2.

Recall £ < 0 and |&| < & by (3.25). Then, in the region g := {0 < x < &>, 0 <
y < m/2}, we have ¢ — @2 = 0 only on the line

y = fo,0(x) := arcsin (Ezl?x) for x € (0,5 — |€]).

Denote ko := (¢2 — |€])/2. Then ko € (0, ) by (3.5) and depends only on
the data. Now we show that there exists og > 0 small, depending only on the data,
such that, if 8, € (/2 — 09, 7/2), then

©-3) C™ = 0x(p1—92). —0y(p1 —g2) = C
f0.000)  fo,0(ko) + /2
on [O,Ko]x[ > ; ]’
(54 @1—e2=C7'>0  on[0.x0] % [O, fo,;(o)l
(55) ¢1—¢2<=—C71<0 on [O,Ko]x{w}’

where
We first prove (5.3)—(5.5) in the case of normal reflection 6y, = 7/2. We
compute from the explicit expressions of ¢1 — @2 and fo o given above to obtain

fo.o(Kg)-i-ﬂ/Z < /2.

A 2lE
0 < arcsin ('_S—|> < fo,0(x) < arcsin (_ |§|_ ) < z,
2 co + |§'| 2
c'< fAO/’O(x) <C forx €0, «o],




1094 GUI-QIANG CHEN and MIKHAIL FELDMAN

0x(p1 —@2) =uysiny, and 9, (¢1 — goz) —u1(¢2 — x) cos y, which imply (5.3).
Now, (5.4) is true since £ = —¢; sin( fo 0(0)) and thus

p1—2 =u1(c2 sin( f,0(0)) — (é2 — x) sin ),
and (5.5) follows from (5.3) since (¢1 — ¢2)(ko, ﬁ)’o(Ko)) =0 and

—fO’O(KO; /2 fo.olie) = CL.

Now let 8, < 7/2. Then, from (3.14)—(4.16) and (4.47), we have

01— @2 = —(c2 —x) sin(y + Oy —9s)\/(u1 —u2)? +v3 — (uy —un)E.

By Section 3.2, when Oy — m/2, we know that (up,v2) — (0,0), 8y — 7/2,
5 — €, and thus, by (4.4), we also have S — €. This shows that, if og > 0 is
small depending only on the data, then, for all 6,, € (7/2 — 09, 7/2), estimates
(5.3)—(5.5) hold with C which is equal to twice the constant C from the respective
estimates (5.3)—(5.5) for 8, = 7 /2.

From (5.3)—(5.5) for 6y, € (/2 — 09, 7/2) and since

{ 2
DN{ca—r <Ko} ={p1> @2} N 0§x§K0,0§y§M

2 b
there exists fg = fAO’,T /2—6, €C % (R ) such that
(5.6) DN{cr—r <kol={0<x <Ko, 0<y< folx)}
(5.7) fo©) =yp. CTl<fi(x)<C on[0.xol.
0 7 2
(5.8) fo 0( ) < £0) < Fko) < fo,o(Kog + 7/ _

In fact, the line y = f() (x) is the line & = [(n) expressed in the (x, y)-coordinates,
and thus we obtain explicitly with the use of (3.14) that

(5.9) fo(x) = arcsin M — 0w + 05 on [0, xg].
(c2 —x)

5.2. Holder norms in Q2. For the elliptic estimates, we need the Holder norms
in Q weighted by the distance to the corners Py = ['yhock N {n = —v2} and P3 =
(—uz, —v2), and with a “parabolic” scaling near the sonic circle.

More generally, we consider a subdomain 2 C 9 of the form Q := % N {£& >
f(n)} with f € C1(R) and set the subdomains Q' := QN%’ and Q" := QN D"
defined by (4.46). Let ¥ C 02" be closed. We now introduce the Holder norms in
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Q" weighted by the distance to X. Denote by X = (£, n) the points of Q" and set

8y :=dist(X,X), 8x,y :=min(8x,dy) for X,Y € Q".
Then, for k € R, @ € (0, 1), and m € N, define

(5.10)
||”||;(q]:,’02,;22~3: Z sup (S;ax(|ﬂ|+k,0)|Dﬂu(X)|) ,
0<|Bl<m X<
B _DnB
*.=) . gmax(m-+a-+k,0) |DPu(X)— DPu(Y)|
[u]m,(x,Q”‘_ sup X,Y X Y| ’
Bl XY €97 XAY | |
) k.3 k.2
| 92 = ) &y + B,

where DB = 3%1952 and B = (B1, B2) is a multi-index with §; € N and || =
I J

B1+ B2. We denote by C,ff’fs)z,, the space of functions with finite norm || - ||gfo(E )Q,,.
Remark 5.1. If m > —k > 1, and k is an integer, then any function u € C,ff,fgz,/

is ClkI-1.1 up to X, but not necessarily C up to X.

In ©’, the equation is degenerate elliptic, for which the Holder norms with
parabolic scaling are natural. We define the norm ||y ||gpzf)9, as follows: Denoting
z=(x,y)and Z = (¥, y) with x, X € (0, 2¢) and

- - . - ~ 2
Sépar)(z, £) = (]x — ¥|* + min(x, %) |y — ylz)a/ ,
then, for u € C2(Q")N C 11 (Q’) written in the (x, y)-coordinates (4.47), we define
(5.11)

o= > sup (x*H22j0k8ku)]).
T o<ktl<2 7Y

|a§a’yu<z>—a§alyu<2>|)

(par) . _ : ~\a—I[/2
[u] 1= sup (mm(x, X) :
2,0,Q2 Z Sépar) (z,%)

k_H:Zz,EeQ’,z;éE

(par) (par) (par)
”ullzlia,gz/-: ”u”z[j(),gz/ + [ulzp,a’Qh

To motivate this definition, especially the parabolic scaling, we consider a scaled
version of the function u(x, y) in the parabolic rectangles:

X X
(5:12) Repy={(s.)  ls—x| < Tl=yl< T}
Denote Q1 := (—1, 1)2. Then the rescaled rectangle (5.12) is

(5.13) @ . — {(S, T)e 0 : (x—i—%S,y—I—gT)eQ}.

N for z=(x,y)eQ’.
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Denote by u(#) (S, T) the following function in Q(z).
—u(x+ = S y+ £T)

g for (S, T) € 07,

(5.14) u@(S§,T) =
Then we have
(par)

c' sup u@ 5y < 2%, < € sup u@|
zeQ/N{x<3¢/2} c2e(of?) 2,0, zeQ

C2.« (W) ’
where C depends only on the domain €2 and is independent of ¢ € (0, k/2).

5.3. Iteration set. We consider the wedge angle close to /2, that is, 0 =
% — 0y > 0 is small which will be chosen below. Set X := 0% N {n = —va2}.
Let &,0 > 0 be the constants from (5.2) and (3.1). Let M, M> > 1. We define
H =% (o, e, My, M) by
(5.15)

Hi=1peCH@NC2@) : [$IF2, <M1, [pl5 oo™ < M20,¢>0in %

for o € (0, 1/2). Then ¥ is convex. Also, ¢ € ¥ implies that

éllcra@n = M, llcre@r = Mo,
so that  is a bounded subset in C 1'*(%). Thus, % is a compact and convex subset
of C12/2(g).

We note that the choice of constants M1, M, > 1 and ¢, > 0 below will
guarantee the following property:

(5.16) omax(My, M) +&/* My + oM, /> <C~!

for some sufﬁc1ently large C>1 depending only on the data. In particular, (5 16)
implies that o0 < C~! since max(M 1, M) > 1, which implies /2 — 6, < Cc!
from (3.1). Thus, if we choose C large depending only on the data, then (4.31)
holds. Also, for Y € X, we have

(DY, ¥)(x, p)| < Mix? + Mix in &', |[¥llcr gy < Mao.

Furthermore, 0 < x < 2¢ in @’ by (4.47) and (5.2). Now it follows from (5.16)
that |[Y | c1 <2/ C. Then (4.32) holds if C is large depending only on the data.
Thus, in the rest of this paper, we always assume that (4.31) holds and that ¥ € X
implies (4.32). Therefore, (4.29) is equivalent to (4.43) and (4.44) for ¢ € K.

We also note the following fact.

LEMMA 5.1. There exist C and C depending only on the data such that, if
0,8 >0and My, My > 1 in (5.15) satisfy (5.16), then, for every ¢ € K,

(5.17) I lIS o500 < C(My1e!' ™ + Myo).
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Proof. In this proof, C denotes a universal constant depending only on the
data. We use definitions (5.10) and (5.11) for the norms. We first show that

— 1= 1—‘sonic —
(5.18) 1115 o ot ") < CMye! =,

where 8y, ) := dist((x, y), Fsonic) in (5.10). First we show (5.18) in the (x, y)-
coordinates. Using (5.6), we have @' = {0 <x <2¢, 0 <y < fo(x)} with Tgopic =
{x=0,0<y< fo(x)}, where || fgllLeo((0,2¢)) depends only the data, and thus
dist((x, ¥), Tsonic) < Cx in %', Then, since ||¢|| gﬁ)@, < M1, we obtain that, for
(x.y) e,

¢ (x, )| < M1x?* < Mye?, |IDp(x,y)| < Mix < Mqe,
S D%(x, )] = x' D2, )| < €My,

Furthermore, from (5.16) with C > 16, we obtain & < 1 /2. Thus, denoting z =
(x,y)and Z = (X, y) with x, X € (0,2¢), we have

ar ~ ~ . ~ ~ 2
83’ )(Z,Z) = (|x —x|2 + min(x, X)|y —y|2)a/

< (7P +2ely—32)"* <z 2%,
and min(d;, §) = min(x, X), which implies
D? —D2¢(z D? —D?¢(z
|D=¢(z) ~a¢(z)|§C81_“min(x,)?)a| ¢(2) $(2)|
2] 58 (2. %)

< C&‘l_aMl.

min(SZ ’ 52)

Thus we have proved (5.18) in the (x, y)-coordinates. By (4.31) and (5.16), we
have ¢ < ¢ /50 if C is large depending only on the data. Then the change (&, n) —
(x,y) in @’ and its inverse have bounded C3-norms in terms of the data. Thus,

(5.18) holds in the (&, n)-coordinates.
Since ¢ € ¥, then ||¢||(_1_a’20) < Mjo. Thus, in order to complete the
D29()-D2@)y iy e

2,0,9%"

proof of Lemma 5.1, it suffices to estimate {min(§, 85)' G

case z € @'\ 9" and Z € 3" \ 9’ for 8, = dist(z, ['sonic U Tg). From z € 9’ \ 9"
and Z € 9"\ @', we obtain 0 < ¢ —|z| < &/2 and ¢, — |Z| > 2¢, which implies that
|z—Z| > 3e/2. We have ¢ —|z| < dist(z, ['sonic) < C(c2—|z|), where we have used
(4.31) and (5.1). Thus, min(8;, §3) < C(ca —|z|) < Ce. Also we have | D?¢(z)| <
M by (5.11). If 83 > §,, then 83 > £/2 and thus | D?¢(2)| < (¢/2) "1 T M50 by
(5.10). Then we have

D29(2)=D2¢()| _ . Mi+(2e) "+ M0 _
B Ge/2* -

min(d;, 63) C(sl_“Ml—l—Mzo).
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If 85 <§,, then dist(Z, Z¢) < dist(Z, T'sonic), which implies by (4.8) that |z — Z| >
1/C if ¢ is sufficiently small, depending only on the data. Then |D?¢(Z)| <
S;H“Mza and

|D?¢(2) — D*¢(2)|

min(§;, §3) P < C(8: My +8:8 "7 Mya) < C (eMy + My0).
O

5.4. Construction of the iteration scheme and choice of o. In this section, for
simplicity of notation, the universal constant C depends only on the data and may
be different at each occurrence.

By (3.24), it follows that, if o is sufficiently small depending on the data, then

(5.19) q2 <u/10,
where g2 = {/u3 +v3. Let ¢ € H. From (4.15), (4.16), and (5.19), it follows that
(5.20) (p1—p2—¢)e(6,n) >u1/2>0 in D.

Since ¢1 — @2 = 0 on {§ = I(n)} and ¢ > 0 in D, we have ¢ > @1 — @2 on
{& = 1(n)} N 09, where [(n) is defined by (4.3). Then there exists fy € C1¥(R)
such that

(5:21) {p=01—023ND={(fp().n) : ne€(—v2,m2)}
It follows that fy(n) > I(n) for all n € [-v2, n2) and
(5.22) QT (@) :={E> fe(NIND={¢ <1 -2} NGD.

Moreover, 927 (¢) = Fshock U Tsonic U wedge U X, where

(5.23) l—‘shock((]b) = {E = f¢(7])} N aQ+(¢)’ Fsonic 1= 09 N 8302 (0)»
Puegge == 00N {n=Etanby},  To(d) =927 () N{n=—va}.

We denote by P;,1 < j < 4, the corner points of Q%" (¢). Specifically, P, =
Cshock (@) N Xo(¢) and P3 = (—uy, —vp) are the corners on the symmetry line
{n = —v2}, and P = Tonic N Fsnock (@) and P4 = 'gonic N l'yeqge are the corners on
the sonic circle. Note that, since ¢ € K implies ¢ = 0 on [sopic, it follows that Py is
the intersection point (£1,71) of the line £ = /(1) and the sonic circle £2 + n? = c%,
where (€1, 171) is determined by (4.6).

We also note that fo = [/ for 0 € H. From ¢ € ¥ and Lemma 5.1 with
a € (0,1/2), we obtain the following estimate of fy on the interval (—v2, 71):

G2 o=l iy = C(Mi!/2 4 Mao) <!V,

where the second inequality in (5.24) follows from (5.16) with sufficiently large C.
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We also work in the (x, y)-coordinates. Denote k := k¢/2. Choosing C in
(5.16) large depending only on the data, we conclude from (5.3)—(5.5) that, for
every ¢ € X, there exists a function f = f4 € C (2.9 Guch that

2,0,(0,1)
(5.25) QT @) N{cr—r<ky={0<x<k, 0<y< f3(x)h
with
(5.26)

f60)=fo(0)>0, f§>00n0,), [l o= folly g <C (Mg +Mao),
where we have used Lemma 5.1. More precisely,
2

(5.27) Z sup (xk_2|Dk(f¢—f0)(x)|)
k:0x€(0,28)

<CM;,

(fy = f ) = (fy - },“)(xzn)

+ sup (min(xy, x2))%
[x1 —x2]®

x1#x2€(0,2¢)

with ||f¢ - f0||2,a,(s/2,/c) <CM>o.
Note that, in the (£, n)-coordinates, the angles 6p, and 0p, at the corners P,
and P3 of Q71 (¢) respectively satisfy

7T b4
2 - < — fori =2,3.
(5.28) |0p, 2|_16 or | ,3
Indeed, 0p, = /2 — 0y,. The estimate for 6p, follows from (5.24) with (5.16) for
large C.
We now consider the following problem in the domain QT (¢):

(529)  N(¥):= A1V + 2412¥en + APy =0 in Q1 (9),

(5.30) M) = ph(cZ — E2)yre + (2 zu_lp = 05E) (nyn —¥)

+EYE ) DY +E2E MY =0 on Tyoa(®),

(531) w =0 on 1_‘sonic,
(5.32) Yy =0 on [yedge,
(5.33) Yy =—v2  on IRV (P)N{n=—v},

where A;; = A;; (D, &, n) (which will be defined below), and (5.30) is obtained
from (4.42) by substituting ¢ into E;,i = 1,2, i.e.,

(5.34) E?(&,n) = E:(D (&, 1), p(E. 1), ).
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Note that, for ¢ € X and (&, 7n) € @, we have (D¢ (€,1), ¢ (&, 1), n) € Bsg«(0) x
(—8*,8%) x (—6C2/5,6C2/5) by (4.31) and (4.32). Thus, the right-hand side of
(5.34) is well-defined.

Also, we now fix « in the definition of ¥. Note that the angles 6p, and
O p, at the corners P and P3 of QT (¢) satisfy (5.28). Near these corners, (5.29)
is linear and its ellipticity constants near the corners are uniformly bounded in
terms of the data. Moreover, the directions in the oblique derivative conditions
on the arcs meeting at the corner P3 (resp. P,) are at the angles within the range
(7m/16, 97 /16), since (5.30) can be written in the form V¢ + ey, —dy = 0, where
le| < Co near P from n(P2) = —va, (3.24), (4.43), (4.44), and (5.16). Then, by
[35], there exists g € (0, 1) such that, for any o € (0, ), the solution of (5.29)—
(5.33)is in C 1 near and up to P, and P3 if the arcs are in C L and the coefficients
of the equation and the boundary conditions are in the appropriate Holder spaces
with exponent o. We use o = g /2 in the definition of ¥ for g = a9 (97/16, 1/2),
where ao(8o, €) is defined as in [35, Lemma 1.3]. Note that & € (0, 1/2) since
o € (O, 1).

5.5. An elliptic cutoff and the equation for the iteration. In this subsection,
we fix ¢ € K and define (5.29) such that

(i) It is strictly elliptic inside the domain Q7 (¢) with elliptic degeneracy at the
sonic circle onic = 02T (¢) N 0B, (0);

(ii) For a fixed point {r = ¢ satisfying an appropriate smallness condition of | D/,
(5.29) coincides with the original equation (4.19).

We define the coefficients A;; of (5.29) in the larger domain %. More precisely,
we define the coefficients separately in the domains %’ and %" and then combine
them.

In 9", we define the coefficients of (5.29) by substituting ¢ into the coeffi-
cients of (4.19); i.e.,

(5.35) Al E.n) =c*(Dp. ¢, E. 1) — (¢ —£)°,
AéZ(E’ 77) = 02(D¢’ ¢’ E, 77) - (¢7] - 77)2’

Al (& ) = A3 (6 ) = —(de — E)(pn — 1),

where ¢, ¢¢, and ¢, are evaluated at (§, 7). Thus, (5.29) in QF () ND” is a linear
equation

Al Wee + 241000 + Apa¥nn =0 in Q*(p)na”.

From the definition of @”, it follows that v/£2 + n? < ¢, —e& in 9”. Then calculating
explicitly the eigenvalues of matrix (A,'lj)lsi, j<2 defined by (5.35) and using (4.31)
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yield that there exists C = C(y, ¢2) such that, if ¢ < min(1,¢3)/10 and [|¢| o1 <
¢/ C, then
(5.36)
€C2, 1» - 1 221,12 % 2
— Il = > AL E mpipn; <453|u*> forany (£.) € 9" and p € R,
i,j=1
The required smallness of ¢ and ||¢|| 1 is achieved by choosing sufficiently large
C in (5.16), since ¢ € .

In &', we use (4.48) and substitute ¢ into the terms Oy, ..., Os. However, it
is essential that we do not substitute ¢ into the term (y + 1)y of the coefficient
of V¥xx in (4.48), since this nonlinearity allows us to obtain some crucial estimates
(see Lemma 7.3 and Proposition 8.1). Thus, we make an elliptic cutoff of this term.
In order to motivate our construction, we note that, if

X 4x

Ok| < , -
|0kl = 10 max(cz, 1)(y + 1) Y < 3(y+1)

then (4.48) is strictly elliptic in @’. Thus we want to replace the term (y + 1)¥ in

the coefficient of ¥y in (4.48) by (y + )x{y (ﬁ), where {1 (+) is a cutoff function.
X

On the other hand, we also need to keep form (5.29) for the modified equation in
the (&, n)-coordinates, i.e., the form without lower-order terms. This form is used
in Lemma 8.1. Thus we perform a cutoff in (4.19) in the (&, n)-coordinates such
that the modified equation satisfies the following two properties:

in 9,

(1) Form (5.29) is preserved;

(i) When written in the (x, y)-coordinates, the modified equation has the main
terms as in (4.48) with the cutoff described above and corresponding modifi-
cations in the terms O, ..., Os of (4.48).

Also, since the equations in @’ and 9" will be combined and the specific form
of the equation is more important in %’, we define our equation in a larger domain
Dy i =DN{cr—r1 <4e}.

We first rewrite (4.19) in the form

I+ 1+ 13+ 14=0,

where
Iy := (2 (DY. ¥. 6. ) — (£ + 17)) Ay,
I = 7721055 + EZWnn _2SUW§n,
I3 :=2(EYeVee + Evg + V) Vey + 1Vn¥an).
1
= =5 WDV e + Y (IDY[?)y).

N

~
N
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Note that, in the polar coordinates, /1, ..., I4 have the following expressions:

n=(d=r o= (ree =3 10vE v )) v,
Iy = Y99 +1Yr,

2 2
I=r(IDY ")y = 2ryr¥er + “VoVre — 5V,

1 1
Is=— (wr(lwa)r + r—zwe(ww)e)

with [DY|? = Y2 + Ly 2 and AY = Yrr + S V69 + + U7

From this, by (4.47), we see that the dominating terms of (4.48) come only
from I, I, and the term 2ry, vy, of I3, i.e., the remaining terms of /3 and I4
affect only the terms Oq,..., Os in (4.48). Moreover, the term (y 4+ 1)¥, in
the coefficient of ¥, in (4.48) is obtained as the leading term in the sum of the
coefficient (y — 1)ry, of ¥, in I and the coefficient 2ry, of ¥, in I3. Thus
we modify the terms /1 and I3 by cutting off the 1/,.-component of first derivatives
in the coefficients of second-order terms as follows. Let {; € C °°(R) satisfy

s, if |s|<4/(3(y + 1)),

(5:37) SV =0 ssign)/Gy £ 1), i [s]>2/( + 1),
so that

(5.38) £1(s) =0, &i(—s)=—Cti(s) on R;

(5.39) {(s) <0 on {s>0}.

Obviously, such a smooth function ¢; € C *°(R) exists. Property (5.39) will be used
only in Proposition 8.1. Now we note that /¢ = %Wr — L g and Yy = Ly + r%w@,
and define

fl = (C% —r2 4+ (y—=Dr(ca— r);l(—w‘f 1Y

r(cy—r)
+
5;”(502—_’7;”)") — v - Ws)) (EVes +1¥en)

+
ff(fcz—_’?f)ﬂ) - m/fs)) EVen +1¥an).

)= G- (5109 +v) ) s
Iy:= 2 (%(62 —r)&(

e (?(a i

The modified equation in the domain %/, is

(5.40) h+DL+I+1,=0.

By (5.37), the modified (5.40) coincides with the original (4.19) if
£ n 4(c2—r)
rwE+ rwn = 3y+1)°
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ie., if [Yx| < 4x/(3(y + 1)) in the (x, y)-coordinates. Also, (5.40) is of form
(5.29) in the (&, n)-coordinates.

Now we define (5.29) in QZ)’ . Dy substituting ¢ into the coefficients of (5.40)
EVe + iy
r(ca—r)

except for the terms involving &1 ( ). Thus, we obtain an equation of

form (5.29) with the coefficients:

(5.41) A3 (DY.£.7)
—-(y—-1 (r(cz - (—éiﬂ(g T U;ﬂ)n
—(¢F +87) +2§ (E (c2—1r) (wf i n:ﬁ") — (Epy — '7¢g)) ,

A%z(DW» )

)+1|D¢|2+¢)

—(y—l)(r(cz—r)cl(g‘”(“—”f’)”) l|D¢|2+<;/>)
Eve +nyy

@2t +2n( (e2 =1

A%z(DW,E, 7’])
= —(Pepn +£n)
&n §Ve +nyy
+2(Mea - (L
A%I(Dw’ %" 77) = 12(DW, E’ 7}),

e R TCIRTR) R

E—n

)+ ¢y — 77¢s)) |

where ¢, ¢¢, and ¢, are evaluated at (£, n).
Now we write (5.40) in the (x, y)-coordinates. By calculation, the terms I

and /3 in the polar coordinates are
v 1
—)—5IDY -y | ) Ay,
—-r’ 2

)Wrr + - W‘/fre 2‘/’92

I = (C%—"z‘i‘(y—l) (r(CZ_r)CI(
Vr

f3=2”(02—")§1(

Thus, (5.40) in the (x, y)-coordinates in %/, has the form

(5.42) (2x —(y+ 1)x§1( ) + 0¢) Vxx + 02 Vxy

1
+ (3 + og’) Yyy —(1+ 0Dy + 02y, =0,
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with O;f (p, x,y) defined by

(5.43)
® y+1 5y y—1 1 s
0 (pxn ==+ L2 (220, (2) = 42) - Lt (g 503,
0P (x,y) = Ox(Dp(x, ), ¢(x,y),x)  for i =2,5,

1

- - 1)(¢ + (2= x)xt () + ¢x))

1 1
Of(P’x,)’)Zcz_x(x—ycz (¢+(02—x)x§1(%)
i (v + D3
F )|

where p = (p1, p2), and (D¢, ¢) are evaluated at (x, y). The estimates in (4.50),
the definition of the cutoff function ¢1, and ¢ € J with (5.16) imply

544) Of(p.x. | <ClxP2, |10, <Clx| for k=2,...,5,

forall p € R? and (x, y) € @)y~ Indeed, using that ¢ € ¥ implies ||¢||gp2{r)@, < Mj,
we find that, for all p € R? and (x,y) €9 =9,
(545 0P (p.x.y)| = C(ME+ D|x? < C|x2,
102 (x, )| < C(1+ My |xDMy|x|P? < Clx|  for k =2,5,
102 (p. x, y)| < Cllx| + MP|x|?) < Clx] for k =34,

In order to obtain the corresponding estimates in the domain %/, .\ 97, we note that

@, \ D, CD". Since 2¢ < x <4de in @}, \Dh, and ¢ €I implies || |5 1 55> <

M>o, we find that, for any p € R? and (x, y) € Do \ D

(5.46) 0% (p.x,y)| < C(1 + M262 + Myo)s? < C&® < C|x|?,
108 (x, )| < C(1 + Ma0)Ma0 < Ce? < C|x|? for k = 2,5,
108 (p.x,¥)| < C(e + M26% + Mao) < Ce < Clx|  for k =3,4.

Estimates (5.45) and (5.46) imply (5.44).
The estimates in (5.44) imply that, if ¢ € ¥, and ¢ is sufficiently small depend-
ing only on the data (which are guaranteed by (5.16) with sufficiently large C),
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(5.42) is strictly but nonuniformly elliptic in %’. First, in the (x, y)-coordinates,
writing (5.42) as
anYxx +2a12¥xy + a2¥yy + a1yx + a2y =0,
witha;; =a;; (DY, x,y) =aj; and a; = a; (DY, x,y), and using (4.31), we have
2
2

%W < Y aij(p.x, y)pwipj < —|pf* for any (p, x, y) € R*x @, and p € R>.

R Cc2

i,j=1
In order to show similar ellipticity in the (&, n)-coordinates, we note that, by (4.31),
the change of coordinates (£, 7) to (x, y) in @/, and its inverse have C ! norms
bounded by a constant depending only on the data if £ < > /10. Then there exists
A > 0 depending only on the data such that, for any (p, £, ) € R*x%/,_ and u € R?,

2
(5.47) Mea—n)|ul? < > A% (p Empigy < A7 pl?,
i,j=1
where Al.zj (p.&.m),i,j = 1,2, are defined by (5.41), and r = /2 + 2.
Next, we combine the equations introduced above by defining the coefficients

of (5.29) in 9 as follows. Let {; € C*°(R) satisfy

0, if s <2g,
£a(s) = % 1. if 5> 4e,

Then we define that, for p € R? and (£, ) € 9,
(548)  Aij(p.&.m) =alca—r)ALE ) + (1 —alca — 1)) A7 (p. €. ).

Then (5.29) is strictly elliptic in @ and uniformly elliptic in 9" with ellipticity

and 0<¢5(s) <10/e on R.

constant A > 0 depending only on the data and . We state this and other properties
of A;; in the following lemma.

LEMMA 5.2. There exist constants . > 0, C, and C depending only on the
data such that, if My, M, ¢, and o satisfy (5.16), then, for any ¢ € K, the coeffi-
cients A;j(p,&,n) defined by (5.48), i, j = 1,2, satisfy

(i) Forany (£,1) € D and p, u € R?,
2
Mez=n)ul> < Y Ay(p. & mpipy <A7Mul> with r = /&2 + 7%
ij=1
(i) Aij(p.E.m) = AL (€. n) forany (€.1) € DN {ca —r > 4} and p € R2, where
Al-lj (&, n) are defined by (5.35). Moreover,

A € CH*(@N{cy —r > 4e})
; 1 .
with ”Aij ||1,a(€bﬂ{cz—r>4s}) =C;
(iii) |Aij|+|D(p.e.mAijl <C forany (£.1) € DN{0 < co—r < 12} and p € R2.
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Proof. Property (i) follows from (5.36), (5.47), and (5.48). Properties (ii) and
(iii) follow from the explicit expressions (5.35) and (5.41) with ¢ € I. In estimating
these expressions in property (iii), we use that |s¢] (s)| < C which follows from
the smoothness of ¢; and (5.37). O

Also, (5.29) coincides with (5.42) in the domain %’. Assume that & < k¢ /24,
which can be achieved by choosing c large in (5.16). Then, in the larger domain
D N{cy —r < 12¢}, (5.29) written in the (x, y)-coordinates has form (5.42) with
the only difference that the term x{; (%) in the coefficient of ¥ of (5.42) and

in the terms Of, 0~§5 , and éf given by (5.43) is replaced by

(Zz(X)él( =)+ (1= L()8 (= ))

From this, we have

LEMMA 5.3. There exist C and C depending only on the data such that the
following holds. Assume that M1, M», e, and o satisfy (5.16). Let ¢ € K. Then
equation (5.29) written in the (x, y)-coordinates in @ N {cy —r < 12¢} has the form

(5.49) A1Vax + 24120y + AaVryy + A1y + A2y, =0,
where Aj = Au WYx,x,¥), A; = A; (Yx,x,y), and Az1 = A1p. Moreover, the
coefficients A,] (p,x,y) and A; (p.x,y) with p = (p1, p2) € R? satisfy
(i) Forany (x,y) €D N{x < 12¢} and p, n € R?,
2

X
(5.50) clul = Y0 Aip.x ymin < _—|M|2
i,j=1

(ii) Forany (x,y) € DN {x < 12¢} and p € R?,
((Aij . D x,yy Aip)| + [(Ai. D(p x,) A1) < C:
(ii1) 1411, /122, and /Il are independent of pa;
@iv) 1412, /121, and /12 are independent of p, and
|(A12, A21. A2)(r )| < Clxl. ID(A12, Ao1, A2)(x, y)] < Clx|'/2.
The last inequality in Lemma 5.3(iv) is proved as follows. Note that
(A12, A2)(x.y) = (02, 05)(Dp(x. y). § (x. ). %),

where O, and Os are given by (4.50). Then, by ¢ € ¥ and (5.16), we find that, for
(x,y) €9, ie., x €(0,2¢),

|D(A12, A1, A2)(x, y)| < C(1 + M18)| Dy (x, y)| + (1 + M1)|py (x, y)|
<C(+ Mie)Mix"? + C(1 + My)Mx3/? < CxV/?;
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and, for (x,y) € D N{e < x < 12¢} C D", we have dist(x, X¢) > ¢/2 > ¢2/4 s0
that
|D(A12, A21, A2)(x, y)| < C(1 + Mao)Mpo < Ce < Cx.
The next lemma follows directly from both (5.37) and the definition of A4;;.

LEMMA 5.4. Let Q C @, ¥ € C%(RQ), and ¥ satisfy equation (5.29) with
¢ = in Q. Assume also that W, written in the (x, y)-coordinates, satisfies | x| <
4x/(3(y +1)) in Q' := QN {ca —r < 4e}. Then ¥ satisfies (4.19) in .

5.6. The iteration procedure and choice of the constants. With the previous
analysis, our iteration procedure will consist of the following ten steps, in which
Steps 2-9 will be carried out in detail in Sections 6—8 and the Main Theorem is
completed in Section 9.

Step 1. Fix ¢ € %. This determines the domain Q7 (¢), (5.29), and condition
(5.30) on I'shock(¢p), as described in Sections 5.4 and 5.5 above.

Step 2. In Section 6, using the vanishing viscosity approximation of (5.29)
via a uniformly elliptic equation

N@)+8Ay =0  for §€(0,1)

and sending § — 0, we establish the existence of a solution ¥ € C(QT(¢)) N
CHQT(¢)\ Tsonic) NC2(21(¢)) to problem (5.29)—(5.33). This solution satisfies

(5.51) 0<y <Co in QT (p),

where C depends only on the data.

Step 3. For every s € (0, c2/2), set Q7 := Q1 (¢) N{ca —r > s}. By Lemma
5.2, if (5.16) holds with sufficiently large C depending only on the data, then
(5.29) is uniformly elliptic in Q7 for every s € (0, c2/2), the ellipticity constant
depends only on the data and s, and the bounds of coefficients in the corresponding
Holder norms also depend only on the data and s. Furthermore, (5.29) is linear on
{co — r > 4¢&}, which implies that it is also linear near the corners P, and Ps.
Then, by the standard elliptic estimates in the interior and near the smooth parts of
dQ+(¢) N QY and using Lieberman’s estimates [35] for linear equations with the
oblique derivative conditions near the corners (—u2,—v3) and Ishock (@) N{n=—02},
we have

(5.52) 115 g < COUY I ooy + 02D

if Y]] 0o @ T |va| < 1, where the second term on the right-hand side comes
from the boundary condition (5.33), and the constant C(s) depends only on the
ellipticity constants, the angles at the corners Py = [gpock(¢p) N {n = —v2} and
P3 = (—uy, —v3), the norm of Tgpock(¢p) in C Le and s, which implies that C(s)
depends only on the data and s.
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Now, using (5.51) and (3.24), we obtain ||W||Loo(@) + |vz| < 1if o is suffi-

ciently small, which is achieved by choosing C in (5.16) sufficiently large. Then,
from (5.52), we obtain

—1—0,2
(5.53) 115 agyr.” < C)o

for every s € (0, c2/2), where C depends only on the data and s.

Step 4. Estimates of ¥ in Q/(¢) = QT (¢p) N{cy —r < &}. We work in the
(x, y)-coordinates, and then (5.29) is (5.42) in ’.

Step 4.1. L™ estimates of ¥ in Q1 (¢) ND'. Since ¢ € ¥, the estimates
in (5.44) hold for large C in (5.16) depending only on the data. We also rewrite
the boundary condition (5.30) in the (x, y)-coordinates and obtain (4.56) with E;
replaced by £? (x, y) 1= Ei (D¢ (x, y), (x,y), x, y). Using ¢ € K, (4.57), (4.58),
and (5.27) with f3(0) = fo(0) = y1, we obtain

(5.54) EP(x.p)] < C(Mye+ Mao) <C/C. i=1.2,

for (x, ¥) € Tshock (@) N {0 < x < 2¢&}. Then, if C in (5.16) is large, we find that
the function

3x?
5(0+1)
is a supersolution of (5.42) in ©(¢) with the boundary condition (5.30) on Tyhock (¢)
N {0 < x < 2¢&}. That is, the right-hand sides of (5.30) and (5.42) are negative on
w(x, y) in the domains given above. Also, w(x, y) satisfies the boundary condi-
tions (5.31) and (5.32) within '(¢). Thus,

w(x,y) =

3x2
5.55 0<v(x,y)< —— in Q(¢),
(5.55) =¥l y)_S(VH) (¢)
ifw>vy onx=¢ By(5.51), w>1yonx=c¢if

Co <é&2,

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied
with large C. The details of the argument of Step 4.1 are in Lemma 7.3.

Step 4.2. Estimates of the norm ||y ||;p :)ﬁ/(¢).

in the rectangle R, defined by (5.12) in which Q’ is replaced by ©’(¢). Note that
R, C Q' for every z = (x, y) € Q/(¢). Thus, ¥ satisfies (5.42) in R;. For every
ze (¢), we define the functions ¥ () and ¢@ by (5.14) in the domain Qiz)
defined by (5.13). Then (5.42) for ¥ yields the following equation for v (?)(S, T)

We use the parabolic rescaling
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in Q(Z).

(5.56) ((1+§) (2 (v + )C1( 41/r(2) ))+ O(qb z)) w(z)Jr 0(¢ z)w(z)
4 1+S/4

1
+( +x0(¢z))w(z) (+ 0("”))1#(2) 200Dy g,

where the terms O,E¢’Z)(S, T,p),k=1,...,5, satisfy

(557) 10&] < C(1+M7).

ClLe(Q7xR?) ~

Estimate (5.57) follows from the explicit expressions of 0]£¢,z) obtained from both
(5.43) by rescaling and the fact that

lp@ |

c2a@) = CM1.

which is true since ||¢||gj2i)9,( 8 = M. Now, since every term 0,(:5’2) in (5.56)
is multiplied by x#* with 8 > 1 and x € (0, &), condition (5.16) (possibly after
increasing C depending only on the data) implies that (5.56) is uniformly elliptic
in QEZ) and has the C ** bounds on the coefficients by a constant depending only
on the data.

Now, if the rectangle R, does not intersect Q" (¢), then Q(Z) 01, where
Qs = (—s,5)? for s > 0. Thus, the interior elliptic estimates in Theorem A.1 in
the appendix imply

(5.58) WDl c2w@r <€

where C depends only on the data and ||y (2 Loo(gy)- From (5.55), we have

1@l ooy < 1/ (v + D).

Therefore, we obtain (5.58) with C depending only on the data.

Now consider the case when the rectangle R, intersects Q™ (¢p). From its
definition, R, does not intersect I'sonic. Thus, R, intersects either I'gock Or the
wedge boundary I'yegge. On these boundaries, we have the homogeneous oblique
derivative conditions (5.30) and (5.32). In the case when R intersects I'yedge, the
rescaled condition (5.32) remains the same form, thus oblique, and we use the
estimates for the oblique derivative problem in Theorem A.3 to obtain

(2)
(559) VPl igir, <€
where C depends only on the data, since the L°° bound of w(y ) in Qiz) follows
from (5.55). In the case when R; intersects ['spock, the obliqueness in the rescaled
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condition (5.30) is of order x!/2, which is small since x € (0, 2¢). Thus we use the
estimates for the “almost tangential derivative” problem in Theorem A.2 to obtain
(5.59).

Finally, rescaling back, we have

(5.60) W ) = C-

The details of the argument of Step 4.2 are in Lemma 7.4.

Step 5. In Lemma 7.5, we extend v from the domain Q7 (¢) to % working
in the (x, y)-coordinates (or, equivalently in the polar coordinates) near the sonic
line and in the rest of the domain in the (&, n)-coordinates, by using the procedure
of [10]. If C is sufficiently large, the extension of i satisfies

(5.61) I I¥Y,, < c.
(5.62) WIS oo™ < C(eo,

with C depending only on the data in (5.61) and C(eg) depending only on the data
and ¢ in (5.62). This is obtained by using (5.60) and (5.53) with s > 0 determined
by the data and ¢, and by using the estimates of the functions fy and f¢ in (5.22),
(5.26), and (5.27).

Step 6. We fix C in (5.16) large depending only on the data, so that Lemmas
5.2-5.3 hold and the requirements on C stated in Steps 1-5 above are satisfied. Set
M; = max(2C, 1) for the constant C in (5.61) and choose

1
&= — —.
10 max((C M1)4,C)
This choice of ¢ fixes C in (5.62) depending only on the data and C. Now set
M, = max(C, 1) for C from (5.62) and let
(6_1 —e—eV/4My)e?
2 (¢2 max(My1, M2) + M3)’
where gg > 0 since ¢ is defined by (5.63). Then (5.16) holds with constant C fixed

above.
Note that the constants o9, &, M1, and M» depend only on the data and C.

(5.63)

O0<o<o0p:=

Step 7. With the constants o, &, M, and M chosen in Step 6, estimates (5.61)
and (5.62) imply

(par) —1—a,%
IIFY,, < Mi. IS on™ < Mao

Thus, ¢ € (o, e, M1, M3). Then the iteration map J : 5 — ¥ is defined.
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Step 8. In Lemma 7.5 and Proposition 7.1, by the argument similar to [10]
and the fact that ¥ is a compact and convex subset of C L/ 2(@), we show that the
iteration map J is continuous, by uniqueness of the solution ¥ € C1%(@) N C?(%)
of (5.29)—(5.33). Then, by the Schauder Fixed Point Theorem, there exists a fixed
point ¢ € J. This is a solution of the free boundary problem.

Step 9. Removal of the cutoff. By Lemma 5.4, a fixed point ¢ = ¢ satisfies the
original equation (4.19) in Q¥ (y) if |y | < 4x/(3(y + 1)) in QT (Y)N{cr—r <4de}.
We prove this estimate in Section 8 by choosing c sufficiently large depending only
on the data.

Step 10. Since the fixed point ¥ € K of the iteration map J is a solution of
(5.29)—(5.33) for ¢ = ¥, we conclude

(i) ¥ € CHUQT(Y) NC>*(QT(¥));
(i) ¥ = 0 on I'sonic by (5.31), and ¢ satisfies the original equation (4.19) in
QT (¥) by Step 9;

(iii) DY =0 on Tyonie since [|¢[| T2, < Mi:

(iv) ¥ = @1 — @2 on Lok (¥) by (5.21)—(5.23) since ¢ = 3

(v) The Rankine-Hugoniot gradient jump condition (4.29) holds on [gyock (V).
Indeed, as we showed in (iv) above, the function ¢ = ¥ + ¢, satisfies (4.9)
on [ghock(¥). Since ¥ € I, it follows that v satisfies (4.28). Also, ¥ on
Cshock () satisfies (5.30) with ¢ = v, which is (4.42). Since ¥ € ¥ satisfies
(4.28) and (4.42), it has been shown in Section 4.2 that ¢ satisfies (4.10) on
Cshock (), 1.e., ¥ satisfies (4.29).

Extend the function ¢ = ¥ 4 ¢, from Q := QF (¥) to the whole domain A
by using (1.20) to define ¢ in A \ 2. Denote Ay :={& > &} N A, A1 the domain
with £ < & and above the reflected shock PyP;Ps, and Ay := A\ (Ag U A1).
Set Sp := {& = &y} N A the incident shock and S := Py Py P> N A the reflected
shock. We show in Section 9 that S; is a C2-curve. Then we conclude that the
domains Ag, A1, and A, are disjoint, dAg N A = Sg, A1 N A = Sp U S1, and
dA, N'A = S;. Properties (i)—(v) above and the fact that v satisfies (4.19) in Q
imply that

g e W), ¢eClAHNCY YA fori=0,1,2,

¢ satisfies (1.8) a.e. in A and the Rankine-Hugoniot condition (1.13) on the C?-
curves Sp and S;, which intersect only at Py € dA and are transversal at the
intersection point. Using this, Definition 2.1, and the remarks after Definition 2.1,
we conclude that ¢ is a weak solution of Problem 2, thus of Problem 1. Note that
the solution is obtained for every o € (0, 09|, i.e., for every 6,, € [7/2 — 09, /2]
by (3.1), and that g depends only on the data since C is fixed in Step 9.
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6. Vanishing viscosity approximation and
existence of solutions of problem (5.29)—(5.33)

In this section we perform Step 2 of the iteration procedure described in Sec-
tion 5.6. Through this section, we keep ¢ € K fixed, denote by P :={ Py, P, P3, P4}
the set of the corner points of Q1 (¢), and use « € (0, 1/2) as defined in Section 5.4.

We regularize (5.29) by the vanishing viscosity approximation via the uni-
formly elliptic equations

NW)+8Ay =0  for § € (0,1).
That is, we consider the equation
6.1) N3(¥):= (A1 +8)Yge + 24128y + (A2 +8)Yyn =0 in Q7 (9).

In the domain €’ in the (x, y)-coordinates defined by (4.47), this equation has the
form

(6.2) (8 +2x—(y+ Dx& (%) + 0?) Vxx + 0;5 Yy

+(i+L+O;”)¢W—(1—

2 (c2—x)?

+0:{’) Yx+ 0Ly, =0
Cyr)— X
by use of (5.42) and with the Laplacian operator A in the (x, y)-coordinates. This
is easily derived from the form of A in the polar coordinates. The terms Ol‘f in
(6.2) are defined by (5.43).
We now study (6.1) in Q1 (¢) with the boundary conditions (5.30)—(5.33).
We first note some properties of the boundary condition (5.30). Using Lemma
5.1 with @ € (0,1/2) and (5.16), we find [|¢]|5 ;57" < C, where C de-
pends only on the data. Then, writing (5.30) as

(6.3) M(Y)(E,m) :=b1(E. Mg +b2(6, MYy +b3(5. MY =0 on Fhock(9)
and using (4.43)—(4.45), we obtain

(6:4) ISt < for i =1.2.3,

where C depends only on the data.
Furthermore, ¢ € ¥ with (5.16) implies that

Ipllcr < Mie+ Moo <&34/C.

Then, using (4.43)—(4.45) and assuming that C in (5.16) is sufficiently large, we
obtain that, for any (£, 1) € Ishock (@),
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(6.5) (b (&), bo (. m) v (E 1) = 0h(3 —E7) >0,
bi1(§,n) > 1p’2(c§ —£2)>0,

ba(&,m) —n (pzu — P> §)

A —pég)

Now we write condition (5.30) in the (x, y)-coordinates on I'goei () N D,
Then we obtain the following condition of the form

(6.6) M(Y)(x,y)=b1(x, Y)Yx+b2(x, Y)Vy+b3(x, y)¥ =0 0on Typock(p)NT,

where by (x, y) = bi(E, )5 + ba(§, M, ba(x,y) = b1E. MFE + ba(E M
and b3 (x,y) = b3(&,n). Condition (5.30) is oblique, by the first inequality in
(6.5). Then, since transformation (4.47) is smooth on {0 < ¢y —r < 2¢} and has
nonzero Jacobian, it follows that (6.6) is oblique; that is,

<34,

< 83/4.

ba(E.m) + (”

67 (b1(x,¥).b2(x,¥) - vs(x,») = C7' >0 on Tyoek(d) D/,

where Uy = Dg(x, y) is the interior unit normal at (x, y) € Fshock () N D' to Q(¢h).

As we showed in Section 4.3, writing the left-hand side of (4.42) in the (x, y)-
coordinates, we obtain the left-hand side of (4 56). Thus, (6.6) is obtained from
(4 56) by substitution of ¢ (x, y) into Ey and E2 Also, from (5.27) with f¢ 0) =
fo(0) = y1. we estimate |y — y1| = | f(x) — f(0)] < CMye on Tapoac N {x < 26},
Then, using (4.56)—(4.58) and &; < 0, we find that, if C in (5.16) is sufficiently
large depending only on the data, then

L (CLEPY) L

(6.8) ||b; Hl,a,Fshock(qb)ﬂ@ <CM,; for i =1,2,3,
A Lpa—p1m; o
bix.y)<—-2=PLT for (x,y) € Cypoek(p) N T,

2 175} (&)
N 1 — _
by(x,y) < —=m (pa + ”—Q’Hsu) <0 for (x,7) € Dypock(¢) N T,
2 u1c;
R 1 — _
ba(x.y) = —3 (p’2|e;1| + 2L 1) <0 for (x,) € Tynoek(¢p) N T,
1

where C depends only on the data.
Now we state the main existence result for the regularized problem.

PROPOSITION 6.1. There exist C, C, 80 > 0 depending only on the data such
that, if 0,& > 0 and My, My > 1 in (5.15) satisfy (5.16), then, for every § € (0, &p),
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there exists a unique solution \r € Cz(;ls_zi’?z) of (6.1) and (5.30)—~(5.33), and this

solution satisfies
(6.9) 0<yEn<Co  for (,7)eQt(¢),
(6.10) ¥ (x, )| EC%x for (x,y) e,

where we have used coordinates (4.47) in (6.10). Moreover, for any s € (0, c»/4),
there exists C(s) > 0 depending only on the data and s, but independent of § €
(0, 80), such that

(—1—&,{P2,P3})
611 WIS 52 < co.

where QF (¢) := QT (¢) N{ca —r > s}.

Proof. Note that (6.1) is nonlinear and the boundary conditions (5.30)—(5.33)
are linear. We find a solution of (5.30)—(5.33) and (6.1) as a fixed point of the map

(6.12) J:cle2(Qr(g) — C12(QT(9))

defined as follows: For 1} e C12/2(Q+(¢)), we consider the linear elliptic equa-
tion obtained by substituting v into the coefficients of (6.1):

(6.13) anyee +2a129e, +anyyy =0 in Q1 (9),

where
(6.14)

aij(E.n) = Ay (DY (£, 1).6.0) + 8 8 for (£,n) e QT (), i,j =1,2,

with §;; =1fori = j and O fori # j, i, j =1,2. We establish below the existence

C(—l—a,@]’)
2,0/2,27% () .

the boundary conditions (5.30)—(5.33). Then we define J (¢) = .

We first state some properties of (6.13).

of a unique solution ¥ € to the linear elliptic equation (6.13) with

LEMMA 6.1. There exists C > 0 depending only on the data such that, if
0,6 > 0 and My, My > 1 in (5.15) satisfy (5.16), and & € (0, 1), then, for any
W € CL2(Q+(¢)), equation (6.13) is uniformly elliptic in Q% (¢):

2

6.15) 8|pl> < Y aiE muipy <27 > for (6, e Q¥ (), peR?,
i,j=1

where A is from Lemma 5.2. Moreover, for any s € (0, ca/2), the ellipticity con-
stants depend only on the data and are independent of § in QF (¢) = QT (¢) N
{ca—r>s}:
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(6.16)
2
Mea=9)|l> < Y aijE iy <247 p> forz=(En)eQf (@), peR>
ij=1
Furthermore,
(6.17) aij € C*2(QF ().

Proof. Facts (6.15) and (6.16) directly follow from the definition of a;; and
both the definition and properties of A;; in Section 5.5 and Lemma 5.2.
Since A;; (p, &, n) are independent of p in QT (¢) N {ca —r > 4e}, it follows

from (5.35), (5.41), and ¢ € ¥ that a;; € Cl(;"/‘fgL o CCHQT (@) ND).

To show a;; € C%/2(Q+(¢)), it remains to prove that aij € C*2(Q(p) ND).
To achieve this, we note that the nonlinear terms in the coefficients 4;; (p, §, n) are
only the terms

EW";‘ +77w71)
r(ca—r) "

(c2—r)i(

Since ¢ is a bounded and C *°-smooth function on R, and ¢} has compact support,
there exists C > 0 such that, for any s > 0, g € R,

619 [ = (i) s |pas (ah)|<c.

teR

Then it follows that the function

Ep1+np2
F(p.&m) = (2= (3—)
r(ca—r)
satisfies | F(p,&.m)| < [1{1]| Loow) (c2—7) fgany (p.£,1)€eR?*x%/, and IDp.emFl
is bounded on compact subsets of R? x %’. From this and ¥ € C l’a/2(9+(¢))’
we have a;; € C*2(Q*(¢)). =

Now we state some properties of (6.13) written in the (x, y)-coordinates.

LEMMA 6.2. There exist A > 0and C, C >0 depending only on the data such
that, if o,& > 0 and M1, M, > 1 in (5.15) satisfy (5.16), and § € (0, 1), then, for
any ¥ € C12(Q+(¢)), equation (6.13) written in the (x, y)-coordinates has the
structure

(6.19) a11¥xx +2012Vxy + d22Wyy + a1Yx +a29, =0 in QT (¢) ND,.
where 4;; = d;j(x,y) and d; = d;(x,y) satisfy

(6.20) aij,a; € CY2(QT(p)ND,,)  fori,j=1,2,



1116 GUI-QIANG CHEN and MIKHAIL FELDMAN

and the ellipticity condition

(6.21)
2

SMul? < > aijE mupipny <A Hul? forany (x,y) € Q7 (¢) N D). p R
Q=1

Moreover,
(6.22)

1 2 1
SS&II(X,Y)§5+ZX, 5&22(3@)’)5 ) _25&1()(9.);)5__,
262 Cc2 2

(@12, d21,G2)(x, )| < C|x|, |D(G12,d21,a2)(x,y)| < Clx|Y/2,

|aii(x, y) = aii (0. )| = C |(x, y) = O, )I*  for i =12,

forall (x,),(0,7) € QT (¢p) ND),.

Proof. By (4.31), if ¢ < ¢,/10, then the change of variables from (&, n) to
(x,y) in @), is smooth and smoothly invertible with Jacobian bounded away from
zero, where the norms and lower bound of the Jacobian depend only on the data.
Now (6.21) follows from (6.16).

(6.13) written in the (x, y)-coordinates can be obtained by substituting 1} into

the term x¢ 1(&) in the coefficients of (6.2). Using (6.18), the assertions in (6.20)
and (6.22), exc)zcept the last inequality, follow directly from (6.2) with (5.43) and
(4.50), ¢ € I with (5.16), and ¥ € C1*/2(Q+(¢)).

Then we prove the last inequality in (6.22). We note that, from (6.2) and
(5.43), it follows that @;; (x, y) = F;; (D¢, ¢, x,y) + G,-,-(x)xé‘l(%), where Fj;
and G;; are smooth functions, and ¢ and 1} are evaluated at (x, y). In particular,
since ¢1(+) is bounded, d;; (0, y) = F;; (D¢ (0, y), $(0, ),0, y). Thus, assuming
x > 0, we use the boundedness of {; and G;;, smoothness of Fj;, and ¢ € I with
Lemma 5.1 to obtain

laii(x,y)—ai;i (0, )]
Fii(Dgp(x,y).¢(x,y),x,y)— F;ii(D¢(0,5),$(0, 7).,0, )

AX( ’ )
W%))

=

+X‘Gii(x)§l(
< Cx+ C(M1€' ™ + M50)|(x,y) — (0. 5)|* < C|(x. ) — (0. 5)|*,

where the last inequality holds since o € (0,1/2) and (5.16). If x = 0, the only
difference is that the first term is dropped in the estimates. O

LEMMA 6.3 (Comparison Principle). There exists C>0 depending only on
the data such that, if 6, & > 0 and My, M > 1 in (5.15) satisfy (5.16), and § € (0, 1),
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the following comparison principle holds: Let

¥ € C(QH () NCHQT($) \ Tsonic) N C2(QT(9)),

let the left-hand sides of (6.13), (5.30), (5.32), and (5.33) be nonpositive for , and
let ¥ = 0 on Usopic. Then

v>0  in QT(¢).

Proof. We assume that Cis large so that (5.19)—(5.22) hold. We first note that
the boundary condition (5.30) on Ishock(¢), Written as (6.3), satisfies

(b1,b2)-v >0, b3 <0 on Fspock (P),

by (6.5) combined with é <0 and py > p;. Thus, if ¥ is not a constant in Q7 (¢),
a negative minimum of ¥ over 27 (¢) cannot be achieved:

(i) In the interior of Q27 (¢), by the Strong Maximum Principle for linear elliptic
equations;

(ii) In the relative interiors of Ispock(¢), I'wedge, and Q1 (p) N {n = —vy}, by
Hopf’s Lemma and the oblique derivative conditions (5.30), (5.32), and (5.33);

(iii) In the corners P, and Ps, by the result in Lieberman [33, Lemma 2.2], via a
standard argument as in [20, Th. 8.19]. Note that we have to flatten the curve
[shock in order to apply [33, Lemma 2.2] near P», and this flattening can be
done by using the C 1* regularity of T'gpock.

Using that ¥ > 0 on ['sopic, we conclude the proof. O

LEMMA 6.4. There exists C > 0 depending only on the data such that, if
0, >0and My, My > 1in (5.15) satisfy (5.16), and § € (0, 1), then any solution
¥ € C(QF () N CHQH($) \ Taonic) N C(QF(9)) of (6.13) and (5.30)~(5.33)
satisfies (6.9) and (6.10) with the constant C depending only on the data.

Proof. First we note that, since Q7 (¢p) C {n < ¢}, the function
w(€,n) = —va(n—c2)
is a nonnegative supersolution of (6.13) and (5.30)—(5.33): Indeed,
(1) w satisfies (6.13) and (5.33);

(i) w is a supersolution of (5.30). This can be seen by using (6.3), (6.5), p2 > p1,
u1 >0, p,>0,&<0,and 5| <cy to compute on I'ghock:

M(w) = ~brvz —b3va(n —c2) < —va (o] + P 41 +2¢2)) <0

if ¢ is small depending on the data, which is achieved by the choice of C in
(5.16);
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(iii) w is a supersolution of (5.32). This follows from Dw-v = —vy cos Gy, <0
since the interior unit normal on I'yeqge 1S V = (—sin 8y, cos 0y,);

(iv) w = 0 on Tyonic-

Similarly, W = 0 is a subsolution of (6.13) and (5.30)—(5.33). Thus, by the Compar-
ison Principle (Lemma 6.3), any solution ¥ € C(Q7T(¢)) N C1(Q1(¢) \ Tsonic) N
C2(Q1(¢)) satisfies

O<y(Emn=<wEn forany (1) eQT(9).

Since |v3| < Ca, then (6.9) follows.

To prove (6.10), we work in the (x, y)-coordinates in @’ N Q1 (¢) and assume
that C in (5.16) is sufficiently large so that the assertions of Lemma 6.2 hold. Let
v(x,y) = Lox for L > 0. Then

(i) v is a supersolution of (6.19) in Q' N {x < &}: Indeed, the left-hand side
of (6.19) on v(x, y) = Lox is d1(x, y)Lo, which is negative in @' N Q¥ (¢) by
(6.22);

(ii) v satisfies the boundary conditions (4.52) on 321 (¢) N {x = 0} and (4.53)
on QT (¢) N {y = 0}

(iii) The left-hand side of (6.6) is negative for v on [ghock N {x < €}: Indeed,
M) (x,y) = Lo(bl + b3x) < 0 by (6.8) and since x > 0 in Q'

Now, choosing L large so that Le > C where C is the constant in (6.9), we
have by (6.9) that v > v on {x = ¢}. By the Comparison Principle, which holds
since (6.19) is elliptic and condition (6.6) satisfies (6.7) and 153 < 0 where the last
inequality follows from (6.8), we obtain v > ¥ in Q1 (¢) N {x < &}. Similarly,
— > —vin QT (¢) N {x < &}. Then (6.10) follows. O

LEMMA 6.5. There exists C > 0 depending only on the data such that, if
0,6 > 0 and My, M, > 1 in (5.15) satisfy (5.16), and § € (0, 1), any solution
¥ € C(QH($) N CHRH () \ Tuonic) N C*(QF($)) of (6.13) and (5.30)~(5.33)
satisfies

(—1-a,{P2,P3}) 0
(623) [ et tsd < s, o

for any s € (0, c2/2), where the constant C (s, 1}) depends only on the data, s, and

IVl crar2 i@ @)

Proof. From (5.22), (5.24), (6.4), (6.5), (6.16), (6.17), and the choice of « in
Section 5.4, it follows by [35, Lemma 1.3] that
(6.24)

[l < Ci. V)Vl ca+@y + v2]) < Cls, P)o,

where we have used (3.24) and Lemma 6.4 in the second inequality.

(_ 1—a, Z:O ) l-‘shock (¢) Urwedge)
2,0/2,2F ()
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In deriving (6.24), we have used (5.24) and (6.4) only to infer that spock (¢)
is a C1%-curve and b; € C¥*(Tghock(¢p)). To improve (6.24) to (6.23), we use
the higher regularity of ['shock(¢) and b;, given by (5.24) and (6.4) (and a similar
regularity for the boundary conditions (5.32) and (5.33), which are given on the flat
segments and have constant coefficients), combined with rescaling from the balls
Bgja(z)N Q1 (¢) forany z € QF () \ { P2, P3} (with d = dist(z, { P>, P3}U X))
into the unit ball and the standard estimates for the oblique derivative problems for
linear elliptic equations. O

Now we show that the solution v is C 2.a/2 pear the corner Py = T'sonic N
Fyedge(¢). We work in @' in the (x, y)-coordinates.

LEMMA 6.6. There exists C > 0 depending only on the data such that, if
o, > 0and My, My > 1 in (5.15) satisfy (5.16), and § € (0, 1), any solution
v e C(QT () NCHRT(P)\ Tsonic) N C2(QLT(¢)) of (6.13) and (5.30)~(5.33) is
in C2%/2(B,(Pg) N Q¥ (p)) for sufficiently small o > 0.

Proof. In this proof, the universal constant C depends only on the data, §, and
||(&ij,&i)”ca/2(m) fori, j =1,2,1i.e., C is independent of g.

Step 1. We work in the (x, y)-coordinates. Then P4 = (0,0) and QT (¢) N
By =1{x >0,y > 0}) N By, for ¢ € (0, ¢). Denote

B := By(0) N {x > 0}, BT :=B,(0)N{x >0,y >0}
Then 1 satisfies (6.19) in BZJ“QJr and
(6.25) Y =0 on Isonic N Bag = BypN{x =0,y >0},
(6.26) Yy =9y =0 on [yedge N Bap= B2p N{y =0,x > 0}.
Rescale by
v(z) =¥ (o2) forz=(x,y)eBz++.

Then v e C(B H)NCH(BS+\ {x =0}) N C2(BS ) satisfies

(6.27) 1ol oo g+) = ||W||Loo(Bz+Q+),

and v is a solution of

6.28)  aQvyx +2aQvyy +aQvyy +aQvx +aPvy, =0 in B},
(6.29) v=0 on B T N{x=0}

(6.30) vw=vy,=0 on 3BT N{y=0}
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where

631) @ (x.y) =aij(ox.0¥). 4P (x.y) =0di(ox.0y)
for (x,y) € Bz++, i,j=12.

Thus, a( Q) satisfy (6.21) with the unchanged constant A > 0 and, since ¢ <1,
©32) 1@.a/)| < lI@ij.an for i, j =12
' ij cerzpfty = N ENcer2(@F (9) : s

Denote Q :={z € BZJFJr . dist(z, 8Bz++) > 1/50}. The interior estimates for the

elliptic equation (6.28) imply ||U||c2,a/2(§) <C ||v||LOO(B++). The local estimates
2

for the Dirichlet problem (6.28) and (6.29) imply

(6.33) () ey @/2(By no()NBIT) = = Clvllpoopz+y

for every z = (x,y) € {x =0,1/2 <y <3/2}. The local estimates for the oblique
derivative problem (6.28) and (6.30) imply (6.33) for every ze{1/2<x<3/2,y=0}.
Then we have

(6.34) (] sy wr (B INBTT) = = Clvllpoo(pz+y-

Step 2. We modify the domain Bl+ * by mollifying the corner at (0, 1) and
denote the resulting domain by D**. That is, D" denotes an open domain
satisfying

DY BT, DT\ By10(0.1) = BT\ By10(0. 1),
and
DTt N B1/5(0,1) is a C2%/2_cyrve.
Then we prove the following fact: For any g € C @/2(D++), there exists a unique

solution w € C2*/2(D+7) of the problem:

(6.35) agﬁ)wxx +a§%)wyy +a§g)wx =g in DT,

w=0 on dDTTN{x=0,y>0},
wy=wy, =0 on DTt N{x>0,y=0}
w=v on D TTN{x>0,y>0}

with

6360) Wl eanrr) = CUVlocgrs) + 18] a5
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This can be seen as follows. Denote by D the even extension of D+ from
{x,y >0} into {x > 0}, i.e.,

DT =DV T U{(x,0) : xe(0,1)}uDT,
where DV~ := {(x,y): (x,—y) € D1} Then B7+/8 c Dt c B anddD*tisa
C22/2_curve. Extend F = (v, g, &igl), &ggz), &gg)) from E to B_2Jr by setting
F(x,—y)=F(x,y) for (x,y)eﬁ.
Then it follows from (6.29), (6.30), and (6.34) that, denoting by ¥ the restriction
of (extended) v to D, we have § € C2%/2(dD*) with
(6.37) 18llc2r20p+) < ClIvloogg+).

Also, the extended g satisfies g € C*/2(D+) with ”g”Caﬂ(F) = ||g||Ca/2(m).
The extended (&gﬁ), &g%), &gg)) satisfy (6.21) and

~(@) ~(@) ~(0) —_ (7@ 5@ A0

2

< D @i a)l cor gy
l:.]=1

Then, by [20, Th. 6.8], there exists a unique solution w € CZ’“/Z(D"') of the
Dirichlet problem
(6.38) aQu +aQwy, +2@w, =g in DY,

(6.39) w=?0 on oD,

and w satisfies

640)  [wlgawnpr < CUblcaer@ps) + 12l canr)-

From the structure of (6.38) and the symmetry of the domain and the coefficients
and right-hand sides obtained by the even extension, it follows that 1, defined by
W(x,y) =w(x,—y)in DT, is also a solution of (6.38) and (6.39). By uniqueness
for (6.38) and (6.39), we find

w(x,y)=w(x,—y) in DT,

Thus, w restricted to DT is a solution of (6.35), where we use (6.29) to see that
w=0o0ndDTT N{x =0,y > 0}. Moreover, (6.37) and (6.40) imply (6.36).
The uniqueness of the solution w € C 2,0/ 2(F) of (6.35) follows from the
Comparison Principle (Lemma 6.3).
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Step 3. Now we prove the existence of a solution w € C2*/2(D++) of the
problem:

(6.41)
4w, +2aQw,, +aQwy, +aPw, +aPw, =0  in DT,

w=0 on D T N{x=0,y>0},
wy =wy =0 on DT N{y=0,x>0},
w=v on DTTN{x>0,y>0.
Moreover, we prove that w satisfies
(6.42) e ol ] ey

We obtain such w as a fixed point of map K : C2:%/2(D++) — C2%/2(D++)
defined as follows. Let W € C2:%/2(D++). Define
(6.43) g =—-2a9w,, —aPw,.
By (6.22) and (6.31) with p € (0, 1), we find

(6.44) 1@, a5l casa ) < Co'/2,
which implies -
g € CY2(D++).
Then, by the results of Step 2, there exists a unique solution w € C2:%*/2 (F) of
(6.35) with g defined by (6.43). We set K[W] = w.

Now we prove that, if o > 0 is sufficiently small, the map K is a contraction
map. Let W@ ¢ Cz’“/z(ﬁ) and w® := K[W®] fori = 1,2. Then w :=
w® — w? is a solution of (6.35) with

g =22 WD -w)—al? WD —w2),
v=0.
Then g € C¥/2(D++) and, by (6.44),

1/2||W(1) _

18]l car2 ) < Co WOl crar o7y

Since v = 0 satisfies (6.29) and (6.30), we can apply both (6.36) and the results of
Step 2 to obtain

lw® = w P s 0p oy < C2IWD =W s 0o vy
1 1 2
=< §||W( ) W( )||C2,a/2(DT)a

where the last inequality holds if ¢ > 0 is sufficiently small. We fix such p. Then
the map K has a fixed point w € C2:%/2(D++) which is a solution of (6.41).
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Step 4. Since v satisfies (6.28)—(6.30), it follows from the uniqueness of solu-
tions in C(DtH)NCY(D*T+\{x = 0})NC2(DTT) of problem (6.41) that w = v
in DT+, Thus v € C2%/2(D++) so that y € C2%/2(B,,(Pa) NQH(¢)). O

Now we prove that the solution y is C L& pear the corner P; = Isonic N Tshock (¢)
if § is small.

LEMMA 6.7. There exist C > 0 and 8y € (0, 1) depending only on the data
such that, if o,& > 0 and M1, My > 1 in (5.15) satisfy (5.16), and § € (0, ),
then any solution ¥ € C(Q1(¢)) N CH(Q2T(¢) \ Tsonic) N C2(QT(¢)) of (6.13)
and (5.30)—(5.33) is in C1¥(Bo(P1) N QH(¢)) N C2%2(By(P1) N QT (), for
sufficiently small o > 0 depending only on the data and §, and satisfies

(—1-a,{P1}) N
(6.45) WIS 240D < 0. ),
where C depends only on the data, §, and ”1&||C1~“/2(Q+7(¢ﬂ)‘ Moreover, for § as
above,
(6.46) [y (x)] < C@)(dist(x, P))'T*  forany x € QT (¢),

where C depends only on the data and §, and is independent of @

Proof. In Steps 1-3 of this proof below, the positive constants C and L;, 1 <
i <4, depend only on the data.

Step 1. We work in the (x, y)-coordinates. Then the point P; has the coordi-
nates (0, yPl) with Yp, = /2~ arctan (|€1]/n1) — By > 0. From (5.25) and (5.26),
we have

QF(¢) N Be(P1) = {x > 0,y < fp(x)} N Be(Py),
where f¢(0) = Vp,» f;;(O) > 0, and f¢ > yp, on Ry by (5.7) and (5.26).

Step 2. We change the variables in such a way that P; becomes the origin
and the second-order part of (6.13) at P; becomes the Laplacian. Denote

(6.47) p= vai(P1)/axn(Pr).

Then, using (6.22) and x P = 0, we have

(6.48) Ve28/2 < < v2c58.

Now we introduce the variables

(X.Y):= (x/1, yp, =)

Then, for o = ¢, we have

(6.49) QT(P)NB,={X>0,Y > F(X)}N By,
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where F(X) =y, — fo(uX). By (5.26), we have 0 < f; (X) < C forall X €0, 2¢]

if C is sufficiently large in (5.16) so that 2¢ < k. With this, we use f:p 0) = Yp,
and (6.48) to obtain

(6.50) F(0) =0, —L\V§<F'(X)<0 for X €[0,0].
We now write ¥ in the (X, Y')-coordinates. Introduce the function
V(X Y) =y (x,y) =y (uX,yp, —Y).
Since ¥ satisfies (6.6) and the boundary conditions (5.32) and (6.19), then v satis-
fies
1 . 2. N 1. -
(6.51) Av:=—daivxx — —di2vxy +d2oVyy + —ajvx —dazvy =0
2 2 2
in {X>0,Y>F(X)}NB,,
1- - -
(6.52) Bv:= —bjvxy —byvy +b3v =0 on {X>0,Y =F(X)}NB,,
n
(6.53) v=0 on {X=0,Y >0}NB,,
where
aij(X,Y)=aij(uX,yp —Y), ai(X,Y) =di(uX,yp —Y),
bi(X,Y) =bi(uX, yp —Y).
In particular, from (6.20), (6.22), and (6.47), we have

(6.54) dij,a; € C*2({X >0, Y > F(X)} N By),

3 1. 3 3
(6.55) a22(0,0) = Eau(O, 0), a12(0,0) =a»(0,0) =0,
(6.56) laii (X,Y)—a;;(0,0)| <C|(X,Y)* for i =1,2,

(6.57) |a2(X,Y)| +|a (X. V)| +1a2(X.Y)| < C|X|'2, |ai(X. V)| <C.
From (6.8), there exists L, > 0 such that

(6.58) —L5! <bi(X,Y)<—L, forany (X,Y)e{X>0,Y =F(X)}NB,.
Moreover, (6.7) implies

(6.59) (b1.b2)-vp, >0 on {X >0,Y =F(X)}NB,.

where v, = v, (X, Y) is the interior unit normal at (X, Y) € {X >0, ¥ = F(X)}
N By. Thus condition (6.52) is oblique.

Step 3. We use the polar coordinates (r, ) on the (X, Y)-plane, i.e.,
(X,Y)=(rcosf,rsinf).
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From (6.50), we have F, F’ < 0 on (0, ¢), which implies that (X2 4+ F(X)?)' >0
on (0, 0). Then it follows from (6.50) that, if § > 0 is a small constant depending
only on the data and o is a small constant depending only on the data and &, there
exist a function r € C!1(R,) and a constant L3 > 0 such that

(6.60) {(X>0,Y>FX)INBy={0<r<op, Op(r)<0 <m/2}
with
(6.61) —L3vV8§ < 6p(r) <0.

Choosing sufficiently small 8o > 0, we show that, for any é € (0, §¢), a function

3
(6.62) w(r ) =r'tcosG(O),  with G(0) = er“ = %) ,

is a positive supersolution of (6.51)—(6.53) in {X >0, ¥ > F(X)} N B,.
By (6.49), (6.60), and (6.61), we find that, when 0 < § < o < (g4=97_)?,

8(3+a)L3
1-— 1-—
—g+1—6aﬂ <G(H) < %—Tan for all (r, 0) €Q+(¢)OBQ.
In particular,
(6.63)

cos(G()) > sin ( ! 1_6a 7)>0 for all (r,0) € QT (¢) N By \ {X =Y =0},

which implies
w >0 in {X>0,Y >F(X)}NB,.
By (6.60) and (6.61), we find that, for all r € (0,9) and § € (0, §¢) with small
50 >0,
cos(0F(r)) > 1—C8 >0,  [sin(0F(r))| < CVdo.
Now, possibly further reducing 8o, we show that w is a supersolution of (6.52).

Using (6.48), (6.52), (6.58), the estimates of (F, G(fF)) derived above, and the
fact that @ = 6 on {X >0, Y = F(X)} N B,, we have

b 3
Bw < —r® ((a + 1) cos(8F) cos(G(OF)) + ~|2—a sin(6F) sin(G(QF)))
n
+Cr¥by| + Crot by
sin(1=% 1)
<—r%((1-Cép)(—L—=—-CL,)-C| <0,
< (( o)( CLa3n 2) )

if 8¢ is sufficiently small. We now fix §o that satisfies all the smallness assumptions
made above.



1126 GUI-QIANG CHEN and MIKHAIL FELDMAN

Finally, we show that w is a supersolution of (6.51)in (X,Y) e {X >0, Y >
F(X)} N By if o is small. Denote by Aq the operator obtained by fixing the coeffi-
cients of 4 in (6.51) at (X, Y) = (0,0). Then A9 =d»2(0,0)A by (6.55). By (6.22),
we obtain d»7(0,0) = d»2(0, yPl) > 1/(4c2) > 0. Now, by an explicit calculation
and using (6.48), (6.55)-(6.57), (6.60), and (6.63), we find that, for § € (0, §g) and
(X.Y)e{X >0,Y > F(X)}N B,,

Aw(r,0) = az(0,0)Aw(r, 0) + (A — Ag)w(r, 0)
< Giny(0,0)r®"! ((a +1)2— (%)2) cos(G(8))
+Cro! (%Wu(xv Y)—a11(0,0)| +]axn(X,Y) _d22(0’o)|)
+%r“—1|au(x, V)l + %r“wl(x, V)] + Crélay(X. Y)|

8% s1n( T 71) C\/g

for sufficiently small ¢ > 0 depending only on the data and §.

Thus, all the estimates above hold for small §o > 0 and ¢ > 0 depending only
on the data.

Now, since

min w(X,Y)=L4>0,
{X=0,Y=F(X)}NdB,

we use the Comparigon Principle (Lemma 6.3) (which holds since condition (6.52)
satisfies (6.59) and b3 < 0 by (6.58)) to obtain

[V oo+ (4)) .

Ly -

Similar estimate can be obtained for —v. Thus, using (6.9), we obtain (6.46) in

B,. Since o depends only on the data and § > 0, we use (6.9) to obtain the full
estimate (6.46).

Step 4. Estimate (6.45) can be obtained from (6.8), (6.20), and (6.46), com-

bined with rescaling from the balls By, /7,(z) N QF () for z € QF (¢) \ {P1} (with
d, = dist(z, Py) and L sufficiently large depending only on the data) into the unit
ball and the standard interior estimates for the linear elliptic equations and the
local estimates for the linear Dirichlet and oblique derivative problems in smooth
domains. Specifically, from the definition of sets % and Q*(¢) and by (5.16), there
exists L > 1 depending only on the data such that

Bd/L(Z) N (aQ+(¢) \ 1_‘Ishock) =J for any z € I'shock N QQ9

v in {X>0,Y > F(X)}NB,.

and
Bd/L(Z) N (8Q+(¢) \ 1_‘sonic) =g for any z € Csonic N QQ~
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Then, for any z € Q1 (¢) N B,(Py), we have at least one of the following three
cases:
1) B z) C Q1 (¢);
(1) B_g () CQF(@);

(2) z € Baz, (z1) and jzzl € (%,2) for some z1 € Tsonic;
2L

(3) z € Ba:, (z1) and jz € (%, 2) for some z1 € Ishock-
2L Zl

Thus, it suffices to make the C?*-estimates of v in the following subdomains

for zo = (xo0, yo):
(i) Ba-, (zo) when B dzo (zo) C QT (¢);
20L
(ii) deo (zo) N Q+(¢) fOI‘ 20 € Tsonic N BQ(PI)

(iii) deo (z0) N Q27T (¢) for zg € Fspock N Bo(P1).
2L

We discuss only case (iii), since the other cases are simpler and can be handled
similarly.

Let zg € I'spock N Bo(P1). Denote d=
we can assume that d <.

We rescale z = (X, y) near zg:
1
Z= (X? Y) = E(X_XO»)’_YO)-

Since B ;(zo) N (027 (¢) \ Tshock) = @, then, for p € (0, 1), the domain obtained
by rescaling Q1 (¢) N Bpa; (zo) is
fo(xo+dX)— fp(x0)

Q20:=B,N{Y < F(X):= 3 ,

where f¢ is the function in (5.25). Note that yy = f¢ (xo) since (xg, Y0) € Fshock-
Since L > 1, we have

A 2 (=1—a,{0
| Ellczaqon < I fplSars ™

and || fA¢ ||g;;fr’{0} ) is estimated in terms of the data by (5.26).
Define

for Z € Qfo.

1
(6.64) v(Z) = e
Then
(6.65) ||U||Loo(§§0) <C
by (6.46) with C depending only on the data.
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Since ¥ satisfies (6.19) in Q7 (¢p) N %@, and the oblique derivative condi-
tion (6.6) on I'goek N QDT“, then v satisfies an equation and an oblique derivative
condition of the similar form in Qfo and on BSAZTO N{Y = F(X)}, respectively,
whose coefficients satisfy properties (6.8) and (6.21) with the same constants as
for the original equations, where we have used d <1 and the C*/2-estimates of
the coefficients of the equation depending only on the data, §, and 1} Then, from
the standard local estimates for linear oblique derivative problems, we have

V)¢ aragmy < C:
with C depending only on the data, §, and 1[7

We obtain similar estimates for cases (i) and (ii), by using the interior esti-
mates for elliptic equations for case (i) and the local estimates for the Dirichlet
problem for linear elliptic equations for case (ii).

Writing the above estimates in terms of ¥ and using the fact that the whole
domain QT (¢)N B, (Py) is covered by the subdomains in (i)—(iii), we obtain (6.45)
by an argument similar to the proof of [20, Th. 4.8] (see also the proof of Lemma
A.3 below). O

LEMMA 6.8. There exist C > 0 and 8y € (0, 1) depending only on the data
such that, if o,& > 0 and M1, My > 1 in (5.15) satisfy (5.16), and § € (0, ¢), there
exists a unique solution r € Cz(;l/;fgg?( ) of (6.13) and (5.30)—(5.33). The solution
v satisfies (6.9) and (6.10).

Proof. In this proof, for simplicity, we write Q for Q1 (¢) and denote by
I'1, Iz, '3, and T'p the relative interiors of the curves Ishock(¢0), Zo(@), I'wedges
and [gopic respectively.

We first prove the existence of a solution for a general problem % of the form

2 2
Y aDiy=finQ*: Y b Dy =g onTy. k=123 y=00nTp,
ij=1 i=1
where the equation is uniformly elliptic in T and the boundary conditions on Iy,

k = 1,2, 3, are uniformly oblique; i.e., there exist constants A1, A, A3 > 0 such
that

2

Mlpl? < Y ayE iy <27 el forall (6,m) e QF, peR?,
i,j=1

2
SO i) = Ao,

i=1
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(bgk),bék)) . (bgk_l),bék_l))
(GRS [ ]

(Pr)| = A3 for k =2,3,

k
and [|a;; ”C“(Qj) + ||bl( )”Cha(ﬁ) < L for some L > 0.
First we derive an a priori estimate of a solution of problem %. For that, we
define the following norm for ¢ € CK(Q1), k =0,1,2,...,and B € (0, 1):

3
— —k+1-8,{P;} —k+2—B.{P;}
1V ke = DWWl g 5 poyoas + 2 Wl i (pryat

+Hv| CRB(QH\(Uf_, Bo(P})))’

where ¢ > 0 is chosen small so that the balls By,(P;) fori =1,...,4 are disjoint.
Denote C*%:8 .= {y e C**:B . 1V |l k.8 <oc}. Then C*k-F with norm |- I+ k.8
is a Banach space. Similarly, define

3
o —B.{P;i} 1-B.{P;}
”gk”*,ﬂ = Z ||gk||1,/3’320(pi)mpk + Z ”gk”l,ﬂ,BZQ(P[)an
=2 i=1,4

+||gk||cl.ﬂ(m)’

where the respective terms are zero if B, (P;) NI’y = &. Using the regularity
of boundary of Q¥, from the localized version of the estimates of [31, Th. 2]
applied in B2, (P;) N QT, i = 1,4, and of the estimates of [35, Lemma 1.3]
applied in By, (P;) NQ™1, i =2,3, and the standard local estimates for the Dirich-
let and oblique derivative problems of elliptic equations in smooth domains ap-
plied similarly to Step 4 in the proof of Lemma 6.7, we obtain that there exists
B=p(2T, A2, A3)€(0,1) such that any solution ¥ € C#(Q+)NCLA(Q+\Tp)
NC2(QT) of problem P satisfies

3
(6.66) ¥ ll«2,8 =C (”f”*,o,ﬁ + ) lgklles + ||¢||o,sz+)

k=1
for C = C(Q71, A1, A2, A3, L). Next, we show that v satisfies

3
6.67) W llanp <C (||f||*,0,ﬂ +3 ||gk||*,ﬂ)

k=1

for C = C(Q71, A1, 12, A3, L). By (6.66), it suffices to estimate [¥lp. o+ by the
right-hand side of (6.67). Suppose that such an estimate is false. Then there exists

a sequence of problems ™ for m =1, 2, ... with coefficients al’-’J’- and bl.(k)’m, the

right-hand sides /™ and g7, and solutions ¥ € C *2.8  where the assumptions

on a™ and bl-(k)’m stated above are satisfied with uniform constants A1, A, A3,

ij
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and L, and || /™ [lx.0,5 + Y—y llg" .5 — 0 as m — 00, but [y g g+ = 1 for
m=1,2,.... Then, from (6.66), we obtain ||y ||+ > g < C with C independent of
m. Thus, passing to a subsequence (without change of notation), we find a;’]’. — a?j
in Cﬂ/2(9_+), bl.(k)’m — bl.(k)’o in CLA/2(T}), and y™ — 0 in C*2:8/2 where
VAl 0.+ =1, and a?j and bl-(k)’o satisfy the same ellipticity, obliqueness, and

regularity conditions as a;’} and bl-(k)’m. Moreover, ¥ is a solution of the ho-

mogeneous Problem % with coefficients a?j and bl.(k)’o. Since ||y ° llo,@+ = 1, this
contradicts the uniqueness of a solution in C 2.8 of problem % (the uniqueness for
problem % follows by the same argument as in Lemma 6.3). Thus (6.67) is proved.

Now we show the existence of a solution for problem % if C in (5.16) is
sufficiently large. We first consider problem % defined as follows:

Ay =finQt; DyWw=gronTy, k=1,2,3; ¥ =0 onTp.

By the fact that I'; and I'3 lie on n = 0 and 1 = £ tan 6,, respectively, and by (3.1)
and (5.24), it is easy to construct a diffeomorphism

F: Q7> 0:={X.Y)e (0,1

satisfying
||F||c1,a(§+) = C’ ||F_1||C1,a(§) = C7
F(Tp)=%p:={X=1Y €(0. )},
and
(6.68) IDF~! —1d|ca(onix <nijan < Ce'*,

where C depends only on the data, and (£, 171) are the coordinates of P; defined
by (4.6) with n; > 0. The mapping F transforms problem % into the following
problem Py:

2
Y Di@yDjuy=f inQ:
i,j=1
2
Z dl-iju Vi ng on Ik’ k= 1,2,3;
i,j=1
u=20 on Xp,

where I = F(Gy) are the respective sides of dQ, v is the unit normal on /I,
llaij ”Ca(Q) < C, and a;; satisfy the uniform ellipticity in 'O with elliptic constant
x> 0. Using (6.68), we obtain

(6.69) ldij — 8 |l ceconix <mjap < CeM*,
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where 81’.' =1 and 8l.j = 0 for i # j, and C depends only on the data. If ¢ > 0
is sufficiently small depending only on the data, then, by [13, Th. 3.2, Prop. 3.3],
there exists 8 € (0, 1) such that, for any f e CP(0Q) and g, € CP(Iy) with
k =1,2,3, there exists a unique weak solution u € H'(Q) of problem %, and
this solution satisfies u € C#(Q) N C# (0 \ Tp). We note that, in [13, Th. 3.2,
Prop. 3.3], condition (6.69) is stated in the whole Q, but in fact this condition was
used only in a neighborhood of I, = {0} x (0, 1), i.e., the results can be applied
to the present case. We can assume that 8 < . Then, mapping back to QT , we
obtain the existence of a solution ¥ € C# (ﬁ) nctA (@ \Tp)NC*QT) of
problem % for any f € cﬂ(ﬁ) and g5 € CB(T}), k = 1,2, 3. Now, reducing
B if necessary and using (6.67), we conclude that, for any ( f, g1, g2, g3) € ¥P :=
{(f.g1.82.83) : | fllx,0,8+ Zi=1 gk ll«,p < oo}, there exists a unique solution
Ve C*2P of problem Pg, and ¥ satisfies (6.67).

Now the existence of a unique solution ¥ € C *2:B of problem P, for any
(f.g1.82.83) € Y8 with sufficiently small 8 € (0, 1), follows by the method of
continuity, applied to the family of problems (% + (1 — ¢)%g for ¢ € [0, 1]. This
proves the existence of a solution ¢ € C 2.8 of problem (6.13) and (5.30)—(5.33).

Estimates (6.9) and (6.10) then follow from Lemma 6.4. The higher regularity
(/S Cz(;l/zxg’ﬁ?( ) follows from Lemmas 6.5-6.7 and the standard estimates for
the Dirichlet problem near the flat boundary, applied in a neighborhood of Tyonic \
(Bg/2(P1) U By/2(P4)) in the (x, y)-coordinates, where ¢ > 0 may be smaller

than the constant ¢ in Lemmas 6.6-6.7. In fact, from Lemma 6.6, we obtain even a
C(_l_aa{P23P37P4})
2,0/2,Q1(¢) )

The uniqueness of solutions follows from the Comparison Principle (Lemma 6.3).
O

higher regularity than that in the statement of Lemma 6.8: ¢ €

Lemma 6.8 justifies the definition of map J in (6.12) defined by J (1}) =Y.
In order to apply the Leray-Schauder Theorem, we make the following a priori
estimates for solutions of the nonlinear equation.

LEMMA 6.9. There exist C > 0 and 8y € (0, 1) depending only on the data
such that the following holds. Let o,¢ > 0 and M1, M3 > 1 in (5.15) satisfy (5.16).
Let § € (0,8¢9) and i € [0, 1]. Let € CTED  pe g solution of (6.1), (5.30)-

2,0/2,21 ()
(5.32), and
(6.70) Yn=—pv2  on Eo(p):= 32T ()N {n=—va}.
Then

(1) There exists C > 0 independent of ¥ and u such that

IV llere@regy = C:
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(i1) ¥ satisfies (6.9) and (6.10) with constant C depending only on the data;

(iii) ¥ € Cz(;l,g_zi’?;s))' Moreover, for every s € (0, c2/2), estimate (6.11) holds with

constant C depending only on the data and s;

(iv) Solutions of problem (6.1), (5.30)-(5.32), and (6.70) satisfy the following com-
parison principle: Denote by Ng(¥), B1(¥), B>(¥), and B3 () the left-hand
sides of (6.1), (5.30), (5.32), and (6.70), respectively. If 1, > € Cz(;fs‘z‘i’f’;g)
satisfy

Ns (1) <Ns(y2) in Q7 (9),
Bi (Y1) < Br(Y2)  on Lok (@), 1ﬁwedge, and Xo(¢) fork =1,2,3,
(S on Tsonic,
then
V1= V2 in Q1 ().

In particular, problem (6.1), (5.30)—(5.32), and (6.70) has at most one solu-

. —1-a,
tion r € Cz(,a,szi(q;)'

Proof. The proof consists of six steps.

Step 1. Since a solution y € C{ |75 " of (6.1, (5.30)~(5.32), and (6.70)

with p € [0, 1] is the solution of the linear problem for (6.13) with ¢ := ¥ and
boundary conditions (5.30)-(5.32) and (6.70). Thus, estimates (6.9) and (6.10)
with constant C depending only on the data follow directly from Lemma 6.4.

Step 2. Now, from Lemma 5.2(ii), (6.1) is linear in QT (¢p) N{co —r > 4¢}, ie.,
(6.1)is (6.13) in QT (@) N{ca—r > 4¢}, with coefficients a;; (£, n) = Al.lj (§,n)+06;;
for Al.lj defined by (5.35). Then, by Lemma 5.2(ii),

ajj € C*(QT(p) N{ca —r > 4e})

with the norm estimated in terms of the data. Also, I'shock(¢) and the coefficients
b; of (6.3) satisfy (5.24), (6.4), and (6.5). Then, repeating the proof of Lemma 6.5
with the use of the L°° estimates of 1 obtained in Step 1 of the present proof, we

(—1-a,{P2,P3}) :
conclude that ¥ € CZ’O[’Q ()N ier—r>66) with

(-1—a,{P>,P3})
(6.71) ||W||2’Q!Q+(¢)ﬂ{02—r>68} =Co

for C depending only on the data.

Step 3. Now we prove (6.11) for all s € (0,c2/2). If s > 6¢, then (6.11)
follows from (6.71). Thus, it suffices to consider the case s € (0, 6¢) and show that

(6.72) Il ”C2’°‘(Q+(¢)ﬂ{s/2<cz—r<68+s/4}) = C(s)o,

with C depending only on the data and s. Indeed, (6.71) and (6.72) imply (6.11).



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 1133

In order to prove (6.72), it suffices to prove the existence of C(s) depending
only on the data and s such that

(6.73) Wl c20B; 0y = CONY Lo (B, 52))

forall z:= (£, 1) € QT (¢p)N{s/2 < ca—r < 6e+s5/4} with dist(z, IQT (¢)) > 5/8
and such that

(6.74) 1Vl 20 B, smnat@y = COIV Lo, u@nat @)

forall z € (Fspock (@) UT wedge) N1 /2 < ca—r < 6e+s/4}. Note that all the domains
in (6.73) and (6.74) lie within Q1 (¢) N {s/4 < c; —r < 12g}. We can assume
that & < ¢3/24. Since (6.1) is uniformly elliptic in Q" (¢) N {s/4 < c; —r < 12¢}
by Lemma 5.2(i), and the boundary conditions (5.30) and (5.32) are linear and
oblique with C La_coefficients estimated in terms of the data, then (6.73) follows
from Theorem A.1 and (6.74) follows from Theorem A.4 (in Appendix A). Since
[Vl Loo(@+(p)) =< 1 by (6.9), the constants in the local estimates depend only on
the ellipticity, the constants in Lemma 5.2(iii), and, for the case of (6.74), also
on the C%®-norms of the boundary curves and the obliqueness and C 1"*-bounds
of the coefficients in the boundary conditions (which, for condition (5.30), follow
from (5.24) and (6.4) since our domain is away from the points P; and P5). All
these quantities depend only on the data and s. Thus, the constant C(s) in (6.73)
and (6.74) depends only on the data and s.

Step 4. In this step, the universal constant C depends only on the data and 4,
unless specified otherwise. We prove that ¥ € C2%*(B,(Ps) N Q21 (¢)) for suffi-
ciently small ¢ > 0, depending only on the data and §, and

(6.75) <C.

” W ”(/Q,oz(W) -

We follow the proof of Lemma 6.6. Since By (Ps) N Q27T (¢) C D' for small o,
we work in the (x, y)-coordinates. We use the notation B and B/, introduced
in Step 1 of Lemma 6.6, and consider the function

1
v(x,y) = EW(Qx,Qy)-
Then, by (6.10), v satisfies
(6.76) ol <202 <1
. Ulipoo(i+y = ;= b

where the last inequality holds if C in (5.16) is sufficiently large. Moreover, v is a
solution of

677)  AQvy +24Q0,, + AQv,, + 4AQv, + APy, =0 in B},
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(6.78) v=20 on BoN{x =0,y >0},
(6.79) vy =0y, =0 on B,N{y=0,x>0},

with (Al(f), AEQ)) = (AEJ?), AgQ))(Dv, X,y), where we use (6.2) to find that, for

(x,y)eBS T, peR%i, j=12,
(6.80) AP (p.x.y) = A11(p.ox.0y) + 6.
A9 (p,x,y) = 49(p,x,y) = Ai2(p, 0x, 0y),

(@) {
A ) 3 = A s k) VYR
2 (P, x,y) = Ax(p,ox,0y) + (2 —on)?

AP (p.x.y) =041 (p.ox.0y) + ,
Cy) —0X

AL (p, x, ) = 042(p, ox. 0y),

with A; ; and Aj; as in Lemma 5.3. Since 0=<1, ffl(;?) and ffl@ satisfy the assertions
of Lemma 5.3(1), (ii) with the unchanged constants. Moreover, /fggl), ffg%), and
A SQ) satisfy the property in Lemma 5.3(iii). The property in Lemma 5.3(iv) is now
improved to
(6.81)

(A9, AR AP)(x. y)| < Calx|.  |D(AY. AR, AP)(x. )| < Clox|2.

Combining the estimates in Theorems A.1, A.3, and A.4 with the argument
that has led to (6.34), we have

(6.82) [[vl , =G

Cz,oe(B;‘/'zi‘\Blt'zf‘
where C depends only on the data and § > 0 by (6.76), since ffl%?) and Al@ satisfy
(A.2) and (A.3) with the constants depending only on the data and §. In particular,
C in (6.82) is independent of o.

We now use the domain D+ introduced in Step 2 of the proof of Lemma
6.6. We prove that, for any g € C*(D+1) with ”g”Ca(W) <1, there exists a
unique solution w € C2%(D++) of the problem:

6.83) ARy + AQwyy + APuw=¢  in DT,

(6.84) w=0 on ADTTN{x=0,y>0},
(6.85) wy=wy =0 on DTt N{x>0y=0}
(6.86) w=v on dDTTN{x>0,y>0}
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ii

with (A(Q) AEQ))(Dw, X, y). Moreover, we show

[N
(6.87) lwll 2.0 vy = €

where C depends only on the data and is independent of . For that, similar to
Step 2 of the proof of Lemma 6.6, we consider the even reflection D™ of the set

DT, and the even reflection of (v, g, Ag%), Ag%), A(Q)) from B5" to B, without

change of notation, where the even reflection of (Ag‘i), Aggz), AEQ)), which depends

on (p, x, y), is defined by

AP (p.x,—y) = A9 (p.x.y). AP (p.x.—y) = AP (p.x.y)

for (x,y) € Bz++-

Also, denote by ¥ the restriction of (the extended) v to oD . It follows from
(6.78), (6.79), and (6.82) that § € C%*(dD ™) with

(6.88) ||IA)||C2.oz(3D+) <C,

dependmg only on the data and §. Furthermore, the extended g satisfies g €
C(DF) with I8l oy = 18y = 1. The extended A, 435, and 417
satisfy (A.2) and (A.3) in D7 with the same constants as the estimates satisfied by
Aj; and A; in Q1 (¢). We consider the Dirichlet problem

(6.89) A9u e+ 49wy, + APw, =¢  in DT,
(6.90) w=70 on DT,

with (A(Q) AEQ)) = (A(Q) AEQ))(Dw, X, y). By the Maximum Principle,

i > ii >
lwllzeo(p+) < 10l oo (p+)-

Thus, using (6.88), we obtain an estimate of ||w/| co(p+). Now, using Theorems
A.1 and A.3 and the estimates of ”g”Ca(DiJr) and [|9]| 2.« (9p+) discussed above,

we obtain the a priori estimate for the C2**-solution w of (6.89) and (6.90):
(691) lwlgowpr < C.

where C depends only on the data and §. Moreover, for every 1 € C ¢ (F),
the existence of a unique solution w € C %% (F) of the linear Dirichlet problem,
obtained by substituting W into the coefficients of (6.89), follows from [20, Th. 6.8].
Now, by a standard application of the Leray-Schauder Theorem, there exists a
unique solution w € C%* (F) of the Dirichlet problem (6.89) and (6.90) which
satisfies (6.91).
From the structure of (6.89), especially the fact that Ag"i), Ag%), and A(g)

independent of p, by Lemma 5.3 (iii), and from the symmetry of the domaln and



1136 GUI-QIANG CHEN and MIKHAIL FELDMAN

the coefficients and right-hand sides obtained by the even extension, it follows that
W, defined by w(x, y) = w(x,—y), is also a solution of (6.89) and (6.90). By
uniqueness for problem (6.89) and (6.90), we find w(x,y) = w(x,—y) in DT.
Thus, w restricted to DT is a solution of (6.83)—(6.86), where (6.84) follows
from (6.78) and (6.90). Moreover, (6.91) implies (6.87).

The uniqueness of a solution w € C ¢ (F) of (6.83)—(6.86) follows from
the Comparison Principle (Lemma 6.3).

Now we prove the existence of a solution w € C 2% (F) of the problem:

692)  AQu 424w, + AQwy, + APw, + AP, =0 in D,
w=0 on D T N{x=0,y>0,
wy =wy =0 on DT N{y =0,x >0},
w="v on DTt N{x >0,y >0},

A ()

@y ._ 40
ij ,Al‘g)-_ (Ag

ij ,AEQ) )(Dw, x, y). Moreover, we prove that w satisfies

where (

(6.93) ”w”Cz,a(Dﬁ) =<C

for C > 0 depending only on the data and §.
Let N be chosen below. Define

694)  FWN):={W eC* (D7) : |Wllcaugprr =N}

We obtain such w as a fixed point of the map K : ¥(N) — F(N) defined as
follows (if R is small and N is large, as specified below). For W € ¥(N), define

(6.95) g =249 (x, y) Wy, — A9 (x. y)W,.

By (6.81),
Igllcaprry =CNVe = 1.

if o < gg with g9 = # for C depending only on the data and §. Then, as we

have proved above, there exists a unique solution w € C 2, (F) of (6.83)—(6.86)
with g defined by (6.95). Moreover, w satisfies (6.87). Then, if we choose N to
be the constant C in (6.87), we get w € ¥(N). Thus, N is chosen depending
only on the data and §. Now our choice of g9 = # and o < gp (and the other
smallness conditions stated above) determines o in terms of the data and 6. We
define K[W]:= w and thus obtain K : (N) — F(N).

Now the existence of a fixed point of K follows from the Schauder Fixed
Point Theorem in the following setting: From its definition, ¥(N) is a compact
and convex subset in C2:%/2(D++). The map K : $(N) — $(N) is continu-
ous in C2:%/2(D++): Indeed, if Wy, € $(N) fork = 1,..., and Wy — W in

C22/2(D++), then it is easy to see that W € $(N). Define gz and g by (6.95)
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for Wy and W respectively. Then gz — g in C*2(D++) since (A12, A2) =
(A12, A2)(x, y) by Lemma 5.3(iv). Let wi = K[W;]. Then wy € $(N), and F(N)
is bounded in C2*(D*+). Thus, for any subsequence wg, , there exists a further

subsequence wy, ~converging in C 2.0/ Z(F). Then the limit w is a solution
of (6.83)—(6.86) with the limiting function g in the right-hand side of (6.83). By
uniqueness of solutions in ¥(N) to (6.83)—(6.86), we have w = K[W]. Then it fol-
lows that the whole sequence K[Wj] converges to K[W]. Thus K : ¥(N) — S(N)
is continuous in C2®/2(D++). Therefore, there exists w € $(N) which is a fixed
point of K. This function w is a solution of (6.92).

Since v satisfies (6.77)—(6.79), it follows from the uniqueness of solutions in
C(DTH)ynCcY(DH+\ {x =0}) N C2(D**) of problem (6.92) that w = v in
DT, Thus, v e C>¥(D*1) and satisfies (6.75).

Step 5. It remains to make the following estimate near the corner Pj:

~1-a{P
(6.96) 115 aaiie” <C.

where C depends only on the data, o, and §.

Since ¥ is a solution of the linear equation (6.13) for 1} = i and satisfies
the boundary conditions (5.30)—(5.33), it follows from Lemma 6.7 that i satisfies
(6.46) with constant C depending only on the data and 4.

Now we follow the argument of Lemma 6.7 (Step 4): We consider cases (i)—
(iii) and define the function v (X, Y') by (6.64). Then v is a solution of the nonlinear
equation (6.2). We apply the estimates in Appendix A. From Lemma 5.3 and the
properties of the Laplacian in polar coordinates, the coefficients of (6.2) satisfy
(A.2) and (A.3) with A depending only on the data and §. It is easy to see that v
defined by (6.64) satisfies an equation of the similar structure and properties (A.2)
and (A.3) with the same A, where we use that 0 < d < 1. Also, v satisfies the same
boundary conditions as in the proof of Lemma 6.7 (Step 4). Furthermore, since
satisfies (6.46), we obtain the L°°-estimates of v in terms of the data and §, e.g.,
v satisfies (6.65) in case (iii). Now we obtain the C2*-estimates of v by using
Theorem A.1 for case (i), Theorem A.3 for case (ii), and Theorem A.4 for case
(iii). Writing these estimates in terms of 1, we obtain (6.96), similar to the proof
of Lemma 6.7 (Step 4).

Step 6. Finally, we prove the Comparison Principle, assertion (iv). The func-
tion ¥ = ¥; — 2 is a solution of a linear problem of form (6.13), (5.30), (5.32), and
(5.33) with right-hand sides N'g (Y1) —Ng(Y¥2) and B (V¥1)— Br (Y2) fork =1,2, 3,
respectively, and ¥ > 0 on ['yopic. Now the Comparison Principle follows from
Lemma 6.3. O
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Using Lemma 6.8 and the definition of map J in (6.12), and using Lemma 6.9
and the Leray-Schauder Theorem, we conclude the proof of Proposition 6.1. [

Using Proposition 6.1 and sending § — 0, we establish the existence of a
solution of problem (5.29)—(5.33).

PROPOSITION 6.2. Let 0, ¢, M1, and M3 be as in Proposition 6.1. Then there
exists a solution € C(QT(¢)) N CHQT(¢) \ Tsonic) N C2(RLF(p)) of problem
(5.29)—(5.33) so that the solution  satisfies (6.9)—(6.11).

Proof. Let § € (0, 8p). Let 5 be a solution of (6.1) and (5.30)—(5.33) obtained
in Proposition 6.1. Using (6.11), we can find a sequence §; for j = 1,... and
V¥ e CHQT(¢) \ Tsonic) N C2(21(¢)) such that, as j — oo, we have

(i) 8j —> 0;
(i) Y5, = ¢ in CH(Qf (¢)) for every s € (0, ¢2/2), where QF (@) =QT ()N
{ea—r>s};
(i) Y5, — ¥ in C*(K) for every compact K C Q7 (¢).
Then, since each Vfgj satisfies (6.1), (5.30), (5.32), and (5.33), it follows that { sat-
isfies (5.29), (5.30), (5.32), and (5.33). Also, since each w(gj satisfies (6.9)—(6.11),

Y also satisfies these estimates. From (6.10), we conclude that ¢ € C(Q1(¢)) and
satisfies (5.31). O

7. Existence of the iteration map and its fixed point

In this section we perform Steps 4-8 of the procedure described in Section
5.6. In the proofs of this section, the universal constant C depends only on the
data.

We assume that ¢p € K and the coefficients in problem (5.29)—(5.33) are deter-
mined by ¢. Then the existence of a solution

¥ € C(QT($) NCHRH (@) \ Tsonic) N CHQT(9))

of (5.29)—(5.33) follows from Proposition 6.2.
We first show that a comparison principle holds for (5.29)—(5.33). We use the
operators N and Jl introduced in (5.29) and (5.30). Also, for u > 0, we denote

Q@) =QT (@) N{ca—r <p}, Th (@) := ook (@) N{ca —r < pu},
erdge = Dyedge N{c2 —7 < .

LEMMA 7.1. Let 0,¢, M1, and M3 be as in Proposition 6.2, and u € (0, k),
where k is defined as in Section 5.1. Then the following comparison principle
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holds: If Y1, ¥z € C(QFH(¢p)) N CHQTH(¢) \ Tonic) N C2(QTH(9)) satisfy
that

N SN2 in QFH(g),
M) S M(WP2)  on Th o (8),
W1 < w2 on Tyogger
V1= Y2 on Tsonicand QT (¢) N{cr —r = pu}.

then
1,01 > 1,02 in Q+”U“.

Proof. Denote X, := QT (¢) N{ca—r = u}. If u € (0,«), then IQHH(p) =

shock (¢) U 1-‘wedge U Tsonic U EM'

From N(¥1) < N(¥»), the difference y; — v is a supersolution of a linear
equation of form (6.13) in QT#(¢) and, by Lemma 5.2 (i), this equation is uni-
formly elliptic in Q1+ (¢) N {cy —r > s} for any s € (0, ). Then the argument of
Steps (i) and (ii) in the proof of Lemma 6.3 implies that y; — 1, cannot achieve
a negative minimum in the interior of QT#(¢) N {c; —r > s} and in the relative
interiors of thock(qﬁ) N{cy —r > s} and Fwedge N{c, —r > s}. Sending s — 0+,
we conclude the proof. O

LEMMA 7.2. A solution ¥ € C(2T(¢)) N CH(2T(¢) \ Tsonic) N C2(LT(¢))
of (5.29)—(5.33) is unique.

Proof. If Y1 and ¥, are two solutions, then we repeat the proof of Lemma
7.1 to show that vy — ¥, cannot achieve a negative minimum in Q2 (¢) and in the
relative interiors of Igpock (¢) and T'yedge. Now (5.29) is linear, uniformly elliptic
near X (by Lemma 5.2), and the function ¥; — 5 is C! up to the boundary in a
neighborhood of ¥¢. Then the boundary condition (5.33) combined with Hopf’s
Lemma yields that yr; — ¥» cannot achieve a minimum in the relative interior of
¥o. By the argument of Step (iii) in the proof of Lemma 6.3, i1 — ¥, cannot
achieve a negative minimum at the points P» and P3. Thus, ¥; > ¥ in Q7 (¢)
and, by symmetry, the opposite is also true. O

LEMMA 7.3. There exists C > 0 depending only on the data such that, if
o0, e, M1, and M satisfy (5.16), the solution Y € C(Q*(¢))NC 1 (QF(¢) \ Tsonic) N
C2(QT(¢)) of (5.29)—(5.33) satisfies

3
(7.1) 0<y(x, y)_s( D" x> in Q'(¢):= QT (9).
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Proof. We first notice that ¥ > 0 in Q7 (¢) by Proposition 6.2. Now we make
estimate (7.1). Set
3 2
wx,y) = —x~°.
(x,¥) 50+ 1)
We first show that w is a supersolution of (5.29). Since (5.29) rewritten in the

(x, y)-coordinates in ’(¢) has form (5.42), we write it as

N1(¥) +Na(y) =0,

where
X

x 1
Nl(‘ﬁ) = (2)(—()/ + l)xé-l(w )) wxx + ZWyy _wx,

Na(y) = inWxx + Ogny + O?Wyy — Ofwx + O;ﬁlﬂy
Now we substitute w(x, y). By (5.37),

Wy 6 6
a0 =0l ) =50
thus
Ni(w) = —Lx.
25(y + 1)
Using (5.44), we have
N2 (w)| = m0;”(Dw,x,y)+Ti1)0:{"(Dw,x,y) <Cx¥2<Ce'/2x,

where the last inequality holds since x € (0, 2¢) in Q(¢). Thus, if ¢ is small, we
find
Nw) <0 in Q'(¢).

The required smallness of ¢ is achieved if (5.16) is satisfied with large C.
Also, w is a supersolution of (5.30): Indeed, since (5.30) rewritten in the
(x, y)-coordinates has form (6.6), estimates (6.8) hold, and x > 0, we find

R 6 R 3 _
M(w) = by (x,y)———x + b3(x, y)———x2 <0 on [ Nnyp'.
( ) 1( Y)S(y+1) 3( )’)S(V+1) shock(¢)
Moreover, on I'yegge, Wy = wy = 0 = v,,. Furthermore, w = 0 = v on Iopic
and, by (6.9), ¥ < w on {x = 2¢} if

Co < 82,

where C is a large constant depending only on the data, i.e., if (5.16) is satisfied

with large C. Thus, Y <w in Q'(¢) by Lemma 7.1. |
We now estimate the norm ||y ||;par)§/(¢) in the subdomain ' (@) :=QF(p)N
.,

{co—1 <&} of Q(¢):= QT (p)N{ca—r <26}
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LEMMA 7.4. There exist C,C > 0 depending only on the data such that, if
o, &, M1, and My satisfy (5.16), the solution Y € C(QT(¢))NC (L (¢)\ Tsonic) N
C2(QF(¢)) of (5.29)—(5.33) satisfies

(par)
(12) WP = €

Proof. We assume C in (5.16) is sufficiently large so that o, &, M7, and M,
satisfy the conditions of Lemma 7.3.

Step 1. We work in the (x, y)-coordinates and, in particular, we use (5.25)
and (5.26). We can assume ¢ < /20, which can be achieved by increasing C in
(5.16).

For z := (x, y) € Q/(¢) and p € (0, 1), define
(7.3)

Iéz,p = {(s,t) s—x| < gx, [t —y| < g\/)_c} . Ry = Iéz,p NnQt(9).

Since Q/(¢) = QT (¢) N {ca —r < 2¢}, then, for any z € Q'(¢) and p € (0, 1),
n 3 5 ,
(7.4) R;p CQT(P)N{(s,1) : Zx <s< Zx} C Q'(¢).
For any z € Q' (¢), we have at least one of the following three cases:

(i) Rz1/10 = Rz1/105

(i) z € sz,l/Z for zy = (x,0) € 1—‘wedge;
(iff) 2 € Ry, 12 for 25 = (x, f3(x)) € Tupock ()
Thus, it suffices to make the local estimates of Dy and D2 in the following
rectangles with zg := (X9, y0):

(1) Rzy,1/20 for zp € Q'(¢) and Rzy1/10 = Iézo,l/lo;

(i) Rz,,1/2 for zg € Iyedge N {x <e};

(iii) Rzo,1/2 for zg € 1—1shock(¢) N {X < 8}'

Step 2. We first consider case (i) in Step 1. Then

@T)
4

X0
Rzo,1/10 = (X0+:S,J’0+ (8. T)€ Qij10¢ »

where Q, := (—p, p)? for p > 0.
Rescale ¥ in R; 110 by defining

I JXo
(@5) YEO(S.T) = v (x0+ 7S yo+ Y2T)  for (S.T)€ Qo
X0
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Then, by (7.1) and (7.4),

(7.6) 19l ciarg < V@ +1).

Moreover, since y satisfies (5.42) and (5.43) in R 1/10, then w(z‘)) satisfies

(7.7)
((1 + 15) 22—+ D& W(ZO) ) +x O(¢ Zo)) I#(Zo) +x 0(¢ ZO)W(ZO)
4 1+S5/4

+(1 1 % 0<¢ZO)) yo) _ (1+x O(¢Zo)) PG | 20@a0 G0 _ g

in Q1/19, where

(7.8)

6,20) _ (+8/4? y+1 (z0) 2
0P *(p.5.1) == L (2145 /4201 (15 517) — 16106 F)
V=1 8xo (z0)|2

= P s o)

8

ca(c2 —xo(1 4 5/4))? (4 xo¢(zO) +cp—xo(1 + S/4))¢¥0)’

0 (p.5.T) ==

0§¢,Zo)(p’ S, T)
1
- ca(ca —xo(1 4+ 5/4))2
= 1) (7090 2501+ /NS /96 () + $1010§ )
B 8(y +1)
(c2—xo(14+S/4)
0?’20)([9, S, T)

1
B CQ—X()(1+S/4)

{ (14 8/4)(2c2 —xo(1 + S/4))

5 0|¢<ZO)|2}

—1
{ 1+8/4-1 (xo¢(Z°) + 8x0[p 02

i 8lxop 7|2 )}
1+S8/47 (c2—x0(1+S/4))? ’

(4x0 5 +205 — 2x0 (145 /4)) 5,

+(cz—xo(1 + S/4))(1 +S/4)§1(

8
ca(c2 —xo(1+ 5/4))?

where ¢(?0) is the rescaled ¢ as in (7.5). By (7.4) and ¢ € %, we have

||¢(ZO) ||C2.a(m) < CM;y,

0P (p.S.T) =
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and thus
(¢,20) 2 —
(7.9) 10 s gy = CATMD. k=15,
Now, since every term O,§¢’Z°) in (7.7) is multiplied by xg" with B > 1 and

xo € (0, €), condition (5.16) (possibly after increasing C) depending only on the
data implies that (7.7) satisfies conditions (A.2) and (A.3) in Q19 with A >0
depending only on c3, i.e., on the data by (4.31). Then, using Theorem A.1 and
(7.6), we find

(7.10) 1V c2aigrmny < €

Step 3. We then consider case (ii) in Step 1. Let zg € I'yeqge N {x < &}. Using
(5.25) and assuming that o and ¢ are sufficiently small depending only on the data,
we have Rz, 1 N 927 (¢) C Iyedge and thus, for any p € (0, 1],

X X
Ry, = (xo+T°S,yo+—V4°T) (S.T)e 0,N{T >0} .

The choice of parameters for that can be made as follows: First choose o small so
that |€ — £1| < |€]/10, where £ is defined by (3.3), which is possible since &, — &
as Oy, — /2, and then choose ¢ < (|€|/10)2.

Define ¥ (?0)(S, T)) by (7.5) for (S,T) € Q1 N{T > 0}. Then, by (7.1) and
(7.4),

(7.11) 1 carnir=on < 1/ + 1.

Moreover, similar to Step 2, ¥ (20) satisfies (7.7) in Q1 N{T > 0}, and the terms
(5]?’20 satisfy estimate (7.9) in Q1 N{T > 0}. Then, as in Step 2, we conclude
that (7.7) satisfies conditions (A.2) and (A.3) in Q1 N{T > 0} if (5.16) holds with
sufficiently large C. Moreover, since Y satisfies (5.32), it follows that

ary®) =0  on{T =0}N Q.
Then, from Theorem A.4,

(7.12) IIW(ZO)Ilcz.a(mn{Tzo}) =C.

Step 4. We now consider case (iii) in Step 1. Let zg € Tgpock (@) N {x < &}.
Using (5.25) and the fact that yo = f¢ (xo) for zg € Tshoek(¢) N {x < &}, and
assuming that o and ¢ are small as in Step 3, we have Rz, 1 N 92T (¢p) C Tshock ()
and thus, for any p € (0, 1],

U

X X
Rzgp = (x0+ 7S, y0+ Y22T) ¢ (8.T) € Qp T < 6'/4F((5))
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with
Then we use (5.27) and x¢ € (0, 2¢) to obtain
Fzo)(0) =0

| /g oo .26 %0 1
) /4
IFzoller (1721721 < e <C(1+ Me)e'/*,

F < “fq;/”LOO([O,Zs])x(% + [fq;/]a,(xo/Z,s)x(%_i_a
|| (zo)”C“([—l/Z,l/Z]) = 481/4«/%

< C(1+ M),
and thus, from (5.16),

(7.13) I Fieollc2a(o1/2,1/21 < €/C <1

if C is large. Define %0 (S, T) by (7.5) for (S, T) € Q1 N{T < &'/*F(,,)(S)}.
Then, by (7.1) and (7.4),

(7.14) 1V Negrnir<regsp < /@ +D.

Similar to Steps 2 and 3, ¥ %0 satisfies (7.7) in Q1 N {T < 6‘1/4F(ZO)(S)} and
the terms 0~¢’z0 satisfy estimate (7.9) in Q1 N{T < 81/4F(ZO)(S)} Then, as
in Steps 2 and 3, we conclude that (7.7) satisfies conditions (A. 2) and (A.3) in
Q1 N{T < /4 F,y(S)} if (5.16) holds with sufficiently large C. Moreover, ¥
satisfies (5.30) on [gpock (¢9), which can be written in form (6.6) on Tgpock () N9,
This implies that v (?0) satisfies

D5y ) = &'/ (Badry @) + By ) on{T = /4 Fip) ()} N Qupa.

where
ob X A
By(S.T) = ﬁbz( X0+ 8. yo+ ¥ 2T),
xo b
B(S.T) =~ (o S o+ Vor)
From (6.8),

”(BL 33)”l,a,@ﬂ{Tse'/“F(zo)(S)} = C81/4M1 = C/6 <L

Now, if ¢ is sufficiently small, it follows from Theorem A.2 that
(7.15) 19l c2a@ranir=e 4 g s = C-

The required smallness of ¢ is achieved by choosing large C in (5.16).
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Step 5. Combining (7.10), (7.12), and (7.15) with an argument similar to the
proof of [20, Th. 4.8] (see also the proof of Lemma A.3 below), we obtain (7.2). [J

Now we define the extension of solution ¥ from the domain Q7 (¢) to the
domain 9.

LEMMA 7.5. There exist C, C1 > 0 depending only on the data such that, if
o,¢e, My, and M satisfy (5.16), there exists Cy(g) depending only on the data and
e and, for any ¢ € I, there exists an extension operator

Py CHAQT($) N C>*(QF($) \ Toonic U Zo) — C (@) N C>*(D)
satisfying the following two properties:

() If y € CH¥(QF () N CZ%(QT(¢) \ Tsonic U Xo) is a solution of problem
(5.29)~(5.33), then

(7.16) 126 15e < C1.
(7.17) 1PV IS 4 o™ < Cale)os

(ii) Let B€(0,®). If a sequence ¢ € K converges to ¢ in CVB (@), then ¢ € .
Furthermore, if Y € CY*(QF (¢x)) N CH*(Q2F () \ Tsonic U Zo) and ¥ €
CL¥(QT(¢)) N C2%(QH(P) \ Tsonic U Xo) are the solutions of problems
(5.29)(5.33) for ¢i. and ¢ respectively, then Py, Yy — Py in C LB (@).

Proof. Let k > 0 be the constant in (5.25) and ¢ < k/20. For any ¢ € ¥, we first
define the extension operator separately on the domains 1 := QT (¢p)N{cr—r <k}
and Q5 := Q1 (¢) N {ca —r > k/2} and then combine them to obtain the operator
Py globally.

In the argument below, we will state various smallness requirements on o
and ¢, which will depend only on the data, and can be achieved by choosing C
sufficiently large in (5.16). Also, the constant C in this proof depends only on
the data.

Step 1. First we discuss some properties on the domains Q7 (¢) and & to be
used below. Recall é < 0 defined by (3.3), and the coordinates (£1, 11) of the point
P defined by (4.6). We assume o small so that |£ —£;] < |£|/10, which is possible
since £ — § as 0y, — /2. Then & < 0. By (5.24) and P; € Tghock (@), it follows
that

(7.18) Tuhock($) C TN {E < &1 +6'/4).
Also, choosing ¢!/4 < |£|/10, we have

(7.19) g1+e/4<E/2<0.
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Furthermore, when o is sufficiently small,
(7.20) if (5, n) € DN{E <& +eV/4), (E,n) €D, and £ > &, then |£] < |&|.
Indeed, from the conditions in (7.20), we have

—cy <& <& + /4 <&/2<0.

Thus, |§] < |&]if & < 0. It remains to consider the case &’ > 0. Since % C B, (0) N
{& < ncot By}, it follows that |€'] < ¢, cos 6y, Thus |€'] < |€] if ¢5 cos Oy, < |E]/2.
Using (4.31) and (3.1), we see that the last inequality holds if o > 0 is small
depending only on the data. Then (7.20) is proved.

Now we define the extensions.

Step 2. First, on 21, we work in the (x, y)-coordinates. Then 21 ={0 < x <«,
0 <y < fe(x)} by (5.25). Denote Q4 := (0,«) X (a, b). Define the mapping
O Q(—oo,oo) g Q(—oo,oo) by

D(x,y) = (x, 1= y/ fp(x)).

The mapping @ is invertible with the inverse ®~!(x, y) = (x, f¢ (x)(1—-1y)). By
definition of ®,

(7.21) ®(R21) = Q0,1)» P(Fshock(¢) N{0 < x <«}) = (0,k) x {0},
P@N{0<x<k})C Or1,1)

Y ¢ f0.0(0)
where the last property can be seen as follows: First we note that fg(x) > =5~

> 0 for x € (0,x) by (5.8) and (5.26); then we use

QZ)ﬂ{O<x<K}={O<x<K,0<y<f0(x)}

and (5.27) to obtain fJZ >00nPN{0<x<k}and

»(x)
_ fo(x) <14+ 2 ;7
) xes&[’JK) <f¢(x)) < 700 I f6 — follc(o.0)

<14+ CMie+ Myo) <2,

sup =
(x,y)eanfo<x<c} \ fp(x)

if M1e and M0 are small, which can be achieved by choosing C in (5.16) suffi-
ciently large.
We first define the extension operator:

€y : Cl’ﬂ(Q(o,l)) N Cz’ﬂ(Q(o,l) \{x =0})
- CM QI y)NC* O\ {x =0}



GLOBAL SOLUTIONS OF SHOCK REFLECTION BY LARGE-ANGLE WEDGES 1147

forany B € (0,1]. Letv € CI’B(Q(O,I))ﬂCz’ﬂ(Q(o,l)\{x =0}). Define ¢,v =v
in Q(o,1)- For (x,y) € Q(1,0), define

3
— : _Y
(7.22) €rv(x,y) = Za,v (x, - ) ,
i=1
where a; = 6, ap = —32, and a3z = 27, which are determined by Z?=1 a; (—ll)m
=1form=0,1,2.
Now let ¥ € C14(Q1(¢)) N CZ*(QF(¢) \ Tsonic U Xo). Let

v="ylg0® "

Then veC 1""(Q(0,1))0C2’“(Q(0,1) \ {x=0}). By (7.21), we have 9 N {co—r <k}
c o1 (Q(~1,1))- Thus, we define an extension operator on €21 by

@éw=(%2v)oq) on DN{cr —r <k}

Then Py € C1*(@1) N C>* (@1 \ Tsonic) With D1 := DN {ez =1 < i}

Next we estimate @é separately on the domains @' = % N {c, —r < 2¢} and
@1 ﬂ{cz—r > 8/2}.

In order to estimate the Holder norms of Q’é on &', we note that ®(Q'(¢)) =
(0,2¢) x (0,1) and @' C ®~1((0,2¢) x (—1,1)) in the (x, y)-coordinates. We
first show the following estimates, in which the sets are defined in the (x, y)-
coordinates:

—1 jj (par) (par) (par)
(7.23) ¥ 0@ 50 0200x0.1) = CNV I3 00y Torany ¥ € €y, 4):
(par) (par) (par)
(724) flwo @y g = Clwlly o 02e)x(—1,1y forany we Cyo 6500011y
(7.25)
[€a0] P < C|v)| ™ for any v € C %)

2,0,(0,28)x(—1,1) — 2,0,(0,2¢)%(0,1) 2,0,(0,28)x(—1,1)"

To show (7.23), we denote v = ¥ o &1 and estimate every term in definition
(5.11) for v. Note that v(x, y) = ¥ (x, f(x)(1 —y)). In the calculations below,
we denote

(v, Dv, D?v) = (v, Dv, D?v)(x, y),
(¥, DY, D2y = (, Dy, D2Y)(x, fp(x)(1—y)),

and
o 3. ) = s f3. FiH(0).

We use that, for x € (0,2¢), 0 < M1x <2Mje < 2/6 by (5.16). Then, for any
(x,y) €(0,2¢) x (0, 1), we have
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o] = Y] < V1920 422
vxl = [ + (1= )Yy £
< WIS 0 (¥ + 2320+ M) = CIY IS )
Vx| = [Yax + 200 = Y)Wy f5 + (L= 30Uy, () + (L= )y /4]
IIWllzpfxr)Q 6 (1 +xY2(1+ Myx) + x(1 4+ My x)% + M1x3/2)

< CIY IS0 -
The estimates of the other terms in (5.11) for v follow from similar straightforward
(but lengthy) calculations. Thus, (7.23) is proved. The proof of (7.24) is similar
by using that f¢ (x) > fo 0(0)/2 > 0 for x € (0, k) from (5.8) and (5.26) and that
fo,o (0) depends only on the data. Finally, estimate (7.25) follows readily from
(7.22).

Now, let ¥ € CH*(Q1(¢)) N C>*(QF(¢) \ Tsonic U o) be a solution of
(5.29)—(5.33). Then

1250 155 = 1€ lo, 0 @) o @ Tar,,

< Cl82(¥la, 0 @ I 0 somin)

<Clvlq, Oq’_lngpf;)(o 26)x(0,1) = C”w”gpzr)ﬂ g = C

where the first inequality is obtained from (7.24), the second inequality from (7.25),
the third inequality from (7.23), and the last inequality from (7.2). Thus, (7.16)
holds for P .

Furthermore, using the second estimate in (5.27), noting that M0 < 1 by
(5.16), and using the definition of 9?;5 and the fact that the change of coordinates
(x,y) — (&, n) is smooth and invertible in @ N {e/2 < x <k}, we find that, in the
(&, n)-coordinates,

1
(71.26) 1124Vl c2a@nte/z<cr—r<ep) = CV e @Fgyne/2<cr—r<i):

Step 3. Now we define an extension operator in the (&, n)-coordinates. Let
€ C1([0, 1] x [~v2,71])) N C3([0, 1] x (—v2. m])
— CH([=1. 1] x [-v2, m]) N C*([=1, 1] x (—v2, m1])
be defined by
> X
€v(X,Y) = Zaiv(— =.Y) for (X,Y) € (—1,0) x (—va2,1n1),
i

i=1
where a1, a,, and a3 are the same as in (7.22).
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Let Q5 := Q7T (¢) N{—vy <15 < n1}. Define the mapping V¥ : Q,— (0,1) x
(—v2,11) by

o E—fe()
Y= (ncot Ow — fo (1)’ )

where f4(-) is the function from (5.21) and (5.22). Then the inverse of W is
UTHX,Y) = (fp(Y) + X(Y cotby, — fp(Y)).Y).
and thus, from (5.24),

(~1-, 2+ ($)N((n=—v2}U{n=n1}) —1 ) (~1-a,[0,1]x{~v2,71})
721 11, , o, HIV s 0,0, %00y =€

Moreover, by (5.24), for sufficiently small ¢ and o (which are achieved by choosing
large C in (5.16)), we have DN {—vy < <n1} C W 1([—1, 1] x[—v2, n1]). Define

97)5)1//:=C(§2(1ﬂ0\11_1)0\11 on B N{—vy <n<ni}.
Then @iw e C1*(@) N C%* (D \ Tsonic U o) since
D\ QF(P) CDN{—v2 <n<m}

Furthermore, using (7.27) and the definition of %2, we find that, for any s €
(_UZ, 771],

2 (=1—a,Zo) (—1-a,{P2,P3})
(728) ||Qp¢w”2’a’gbm{noss} = C(nl —S)||1P||2,a59+(¢§n{775s}’

where C(n1 — s) depends only on the data and n; —s > 0.

Choosing C large in (5.16), we have ¢ < k/100. Then (5.25) implies that
there exists a unique point P’ = Tgpock () N{ca —r = k/8}. Let P/ = (¢/,71') in
the (&, n)-coordinates. Then 7’ > 0. Using (7.18) and (7.20), we find

@\ QT (@) N{ca—r>«k/8 CBN{n <1},
Qf @) Ni{n=ntcQt (@) Nica—r>«/8}.

Also, k/C <n1—n < Ck by (5.22), (5.24), and (4.3). These facts and (7.28) with
s = n' imply

2 (-1-&,2 ) (_l_a7{P sP })
(7.29) ||9>¢1//”2,a,§bﬂ{cg—r>x/8} =C ”w||2,a,$2+(¢§ﬂ{i2—r>x/8}'
Step 4. Finally, we choose a cutoff function ¢ € C°°(R) satisfying
{=1on(—o0,k/4), ¢=0o0n 3k/4,00), ¢ <0 onR,

and define

PV :=C(ca—r)Py¥ + (1= L(ca—r)PG¥  inD.



1150 GUI-QIANG CHEN and MIKHAIL FELDMAN

Since @gw =1 on QT (¢) for k = 1,2, s0 is Py . Also, from the properties of
Pk above, Pgy € CL(@) N C24(D) if

¥ e CH¥(Q2F($) NCH*(QT () \ Tsonic U To).

If such v is a solution of (5.29)—(5.33), then we prove (7.16) and (7.17): Py =
@éw on %’ by the definition of ¢ and by ¢ < k/100. Thus, since (7.16) has been
proved in Step 2 for @;)w, we obtain (7.16) for Pyy. Also, ¥ satisfies (6.11) by
Proposition 6.2. Using (6.11) with s = ¢/2, (7.26), and (7.29), we obtain (7.17).
Assertion (i) is then proved.

Step 5. Finally we prove assertion (ii). Let ¢y € % converge to ¢ in C 1A (%).
Then obviously ¢ € ¥. By (5.20) and (5.22), it follows that

(7.30) fore = fo in CUP([—va,mi)),

where fy,, fo € Cz(;l(__av’i_n'ﬁ’m}) are the functions from (5.21) corresponding to

¢k, §, respectively. Let Y, ¥ € C (2T (¢r)) N C?* (27 (¢x) \ Tsonic U Xo) be
the solutions of problems (5.29)-(5.33) for ¢y, ¢. Let {3, } be any subsequence
of {yx}. By (7.16) and (7.17), it follows that there exist a further subsequence
{¢k,,, } and a function ¥ e CL%(@) N C%%(P) such that

Pty Vhmn = v in C2%/2 on compact subsets of @ and in C 1-%/2(%).

Then, using (7.30) and the convergence ¢ — ¢ in C 1.8 (@), we prove (by the
argument as in [10, p. 479]) that ¥ is a solution of problem (5.29)—(5.33) for ¢.
By uniqueness in Lemma 7.2, ¢ = v in QT (¢). Now, using (7.30) and the explicit
definitions of extensions 97’;5 and @i, it follows by the argument as in [10, pp. 477
and 478] that

P Viem = P Vi) in C'P @),
(=%, Vi, > (1=0P5jarg  nCP@).

Therefore, ¥ = Py in 9. Since a convergent subsequence {V,, } can be ex-
tracted from any subsequence {V, | of {¥} and the limit ¥ = Py is indepen-
dent of the choice of subsequences {yr,, } and {y,, }, it follows that the whole
sequence Py, Y converges to Py in C LB (%). This completes the proof. O

Now we denote by Co the constant in (5.16) sufficiently large to satisfy the
conditions of Proposition 6.2 and Lemma 7.5. Fix C > Cy. Choose M| =
max(2Cq, 1) for the constant C; in (7.16) and define ¢ by (5.63). This choice
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of ¢ fixes the constant C(¢) in (7.17). Define M» = max(C3(¢), 1). Finally, let

Cl—e—cl/M, 5
e
2 (M3 + &2 max(My, Ms))

oo =

Then og > 0, since ¢ is defined by (5.63). Moreover, o9, &, M1, and M, depend
only on the data and C. Furthermore, for any o € [0, ¢], the constants o, &, M1,
and M, satisfy (5.16) with C fixed above. Also, ¥ > 0 on Q1 (¢) by (6.9) and
thus

(7.31) Poy >0 on %

by the explicit definitions of 97’;5, @é, and Py. Now we define the iteration map J
by J(¢) = Pyy. By (7.16), (7.17), and (7.31) and the choice of o, &, M1, and M>,
we find that J : % — %. Now, J is a compact and convex subset of C 1:*/2(%).
The map J : ¥ — 9 is continuous in C 1*%/2(%) by Lemma 7.5(ii). Thus, by the
Schauder Fixed Point Theorem, there exists a fixed point ¢ € I of the map J. By
definition of J, such ¥ is a solution of (5.29)—(5.33) with ¢ = . Therefore, we
have

PROPOSITION 7.1. There exists 60 > 1 depending only on the data such that,
for any C > 60, there exist 0o, & > 0 and My, My > 1 satisfying (5.16) so that,
for any o € (0, 09|, there exists a solution € ¥(a, e, M1, M») of problem (5.29)—
(5.33) with ¢ = (i.e., ¥ is a “fixed point” solution). Moreover, \ satisfies (6.11)
forall s € (0, ca/2) with C(s) depending only on the data and. s.

8. Removal of the ellipticity cutoff

In this section we assume that Co > 1 is as in Proposition 7.1 which depends
only on the data, C > 60, and assume that g, € > 0 and My, M, > 1 are defined
by C as in Proposition 7.1 and o € (0, 0¢]. We fix a “fixed point” solution
of problem (5.29)—(5.33), that is, ¥ € H(o, &, M1, M>) satisfying (5.29)—(5.33)
with ¢ = . Its existence is established in Proposition 7.1. To simplify notation,
in this section we write T, Thock, and g for QT (¥), Tshoek (¥), and o (¥),
respectively, and the universal constant C depends only on the data.

We now prove that the “fixed point” solution  satisfies || < 4x/(3(y +1))
in QT N {c, —r < 4} for sufficiently large C. depending only on the data, so that
Y is a solution of the regular reflection problem; see Step 10 of Section 5.6.

We also note the higher regularity of ¥y away from the corners and the sonic
circle. Since (5.29) is uniformly elliptic in every compact subset of 2t (by Lemma
5.2) and the coefficients A;;(p, £, 7) of (5.29) are C1* functions of (p, &, 7) in
every compact subset of R? x QT (which follows from the explicit expressions of
Ajj(p, &, n) given by (5.35), (5.41), and (5.48)), then substituting p = Dy (&, n)
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with ¢ € K into A;; (p, &, n), rewriting (5.29) as a linear equation with coefficients
being C1'® in compact subsets of 2T, and using the interior regularity results for
linear, uniformly elliptic equations yield

(8.1) Y e C(QT).

First we bound v/, from above. We work in the (x, y)-coordinates in Q+ N
{ca —r < 4e}. By (5.25),

(8.2) QT (@) N{cr—r <4de} ={0 < x < 4e, 0<y<f¢(x)},
where f;; satisfies (5.26).

PROPOSITION 8.1. For sufficiently large C depending only on the data,

(8.3) in QT N{x <4el.

R

Proof. To simplify notation, we denote A = and

_4

3(y+1)
Qj‘:zQ"'ﬂ{xSs} for s > 0.

Define a function

(8.4) v(x,y):=Ax —¥x(x,y) on QL.

From ¢ € J{ and (8.1), it follows that

(8.5) vec™(Qf)ncl(Qf \{x=0})nC?(Q],).
Since ¥ € K, we have |, (x, y)| < Mix in QIE. Thus
(8.6) v=20 on 852;"8 N{x = 0}.

We now use the fact that ¢ satisfies (5.30), which can be written as (6.6) in the
(x, y)-coordinates, and (6.8) holds. Since ¥ € J{ implies that

[ (x.y)| < Myx?, Wy (x, y)| < Mix372,
it follows from (6.6) and (6.8) that
|Wx|§c(|1ﬂy|+|1/’|)§CM1x3/2 on Fpoek N {x < 2¢},
and hence, by (5.16), if Cis large depending only on the data, then
Vx| < Ax on [ghock N {0 < x < 2¢}.
Thus we have

(8.7) v>0 on Lgpock N {0 < x < 2¢}.
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Furthermore, condition (5.32) on I'yegge in the (x, y)-coordinates is
Yy =0 on {0 <x <2 y=0}

Since ¥ € K implies that ¢ is C 2 up to I'yedge, then differentiating the condition on
Iwedge With respect to x, i.e., in the tangential direction to yedge, yields ¥y, =0
on {0 < x < 2¢, y = 0}, which implies

(8.8) vy =0 on Iyedgge N {0 < x < 26}
Furthermore, since ¢ € %,
(8.9) Vx| < Mso <Ae  on QT N{e/2 <x <de},

where the second inequality holds by (5.16) if C is large, depending only on the
data. Thus, for such C,

(8.10) v>0  onQf N{x=2e.

Now we show that, for large C,visa supersolution of a linear homogeneous
elliptic equation on . Since ¥ satisfies (5.42) with (5.43) in Q,, we differ-
entiate the equation with respect to x and use the regularity of ¥ in (8.1) and the
definition v in (8.4) to obtain
(8.11)

a11Vxx +a12Vxy +a22Vyy
+(A=ve) (= 1+ @+ DA = )+ (A= DG —vw)) = E(x, p),

where

A ~ 1 A

(8.12) an=2x—(y+ 1)@‘1(%) + 01, ai2=03, axn= o + O3,

(8.13) E(x,y)= ‘/fxxaxél + nyaxOAZ + Wyyax0A3 - 1,l/xxOA4_Wxax0A4
‘H/fxyOAS‘FWyaxOAS,

with
8.14)  Ok(x,y) = O (DY(x,y),x,y)  for k=1,..5
for O;c/’ defined by (5.43) with ¢ = 1. From (5.37), we have
1(4) = A.
Thus we can rewrite (8.11) in the form

(8.15) a11Vxx + a12Vxy +az22vyy +bvx +cv=—A((y + DA—1) + E(x,y).
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with

816)  blry)=1-(+ D (a(A=2) +5(4-2) (S -ve-4)).

A 1
(8.17) c(x,y)=(y+1);(§i(A—§)—f0 éi(A—s%)ds),

where v and v, are evaluated at the point (x, y).
Since ¥ € K, and v is defined by (8.4), we have

aij,b,ce C(Q_j{s\{x = 0}).

Combining (8.12) with (5.16), (5.37), (5.45), and (8.14), we obtain that, for
sufficiently large C depending only on the data,

x1/2 on Q;.

1 1 1
arn > —x, azy > —, apz| <
11 = 6 22 262 | 12| 3\/6

Thus, 4a11a22 — (a12)? > %x on Q;, which implies that (8.15) is elliptic on

Q;‘ . and uniformly elliptic on every compact subset of Q_;;\ {x =0}.

Furthermore, using (5.39) and (8.17) and noting A > 0 and x > 0, we have
(8.18) c(x,y) <0 for every (x,y) € SZ;LS such that v(x, y) <0.

Now we estimate E(x, y). Using (8.14), (5.43), (4.50), and ¢ € ¥, we find
that, on Q;,

0:01] < C(x + Y| + DY | + X [Vx| + [¥xrax] + [Vy ¥uy| + DY [?) < CMEx,
05 02,5] < C(IDY|+ DY+ [Yy x| + (14 Y)Yy |) < CMix2(1 + My x),
90501 = CO+ 191+ |28 (55)] 4+ -+ IDYDID?Y + DY P)

< CM](I +M1X),

where we have used the fact that |s¢] (s)| < C on R. Combining these estimates
with (8.13), (8.14), (5.44), and i € ¥, we obtain from (8.13) that

|E(x,y)| < CMZx(1+ Mx)<C/C on Q7.

From this and (y + 1)A > 1, we conclude that the right-hand side of (8.15) is
strictly negative in Q;rs if C is sufficiently large, depending only on the data.

We fix C satisfying all the requirements above (thus depending only on the
data). Then we have

(8.19) A11Vxx +a12Vxy + a22Vyy +bvy +cv <0 on Q;’s;
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the equation is elliptic in Q . and uniformly elliptic on compact subsets of Q e\
{x = 0}, and (8.18) holds. Moreover v satisfies (8.5) and the boundary condltlons
(8.6)—(8.8) and (8.10). Then it follows that

v>0 onQ+.

Indeed, let zg := (x0, yo) € Q . be a minimum point of v over Q . and v(zo) < 0.
Then, by (8.6), (8.7), and (8. 10) either zg is an interior point of 928 or zg €
Cywedge N {0 < x < 2&}. If zg is an interior point of Qf 2+ then (8.19) is violated since
(8.19) is elliptic, v(zg) < 0, and c(z¢) < 0 by (8.18). Thus, the only possibility is
20 € Dywedge M0 <X <2¢}, i.e., zg = (xo, 0) with xg > 0. Then, by (8.2), there exists
p > 0 such that B,(z9) N Q;; = By(z0) N {y > 0}. (8.19) is uniformly elliptic in
B,/2(z0) N {y > 0}, with the coefficients a;;,b,c € C(B,/2(z9) N{y > 0}). Since
v(zo) < 0 and v satisfies (8.5), then, reducing p > 0 if necessary, we have v < 0 in
By(z0) N{y > 0}. Thus, ¢ <0 on By(zp) N{y > 0} by (8.18). Moreover, v(x, y)
is not a constant in By />(xo) N{y > 0} since its negative minimum is achieved
at (xo, 0) and cannot be achieved in any interior point, as we showed above. Thus,
dyv(zp) > 0 by Hopf’s Lemma, which contradicts (8.8). Therefore, v > 0 on Q;
so that (8.3) holds on Q;’e. Then, using (8.9), we obtain (8.3) on QL. O

Now bounding ¥, from below, we first prove the following lemma in the
(€, n)-coordinates.

LEMMA 8.1. Ifé in (5.16) is sufficiently large, depending only on the data,
then

(8.20) Yp <0  inQT.
Proof. We divide the proof into six steps.
Step 1. Set w = Y. From v € 3 and (8.1),

(8.21) we CO(QT)NCH(QF\ Toome UZo) NC2(QT),

In the next steps, we derive the equation and boundary conditions for w in
Q™. To achieve this, we use the following facts:
(1) If C in (5.16) is sufficiently large, then the coefficient A1; of (5.29) satisfies

52 .
(8.22) |41 (DY (E.n). 6, 1) | = 2= o in Q%

where ¢ and f;‘_ are defined as in Section 3.1. Indeed, since ¢, > H by (3.5) and
(c2,&)— (2, &) as Oy, — m/2 by Section 3.2, we have c%—éz > 9(5% —£2)/10>0
if o is small. Furthermore, for any &, n) € 9%, we have ¢, cos 0y, > £ > £ and thus,
assuming that ¢ is small so that |§] < 2|&| and ¢, < 2¢,, we obtain || < C. Now,
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since Y € ¥, it follows that, if C in (5.16) is sufficiently large, then A}l defined in

(5.35) with ¢ = v implies A}, > (¢2 —£2)/2 on @, and A2, in (5.41) with ¢ =

implies A2, > (¢2 —£2)/2 on @ N {cy —r < 4&}. Then (8.22) follows from (5.48).
(i) Since v satisfies (5.29) in QT with (8.22), we have

_214121#577 + 14221,”1777
A1

(8.23) Ve = inQ™,

where Aj; (§,n) = Aij (DY (£, 7). &,n) in QT

Step 2. We differentiate (5.29) with respect to  and substitute the right-hand
side of (8.23) for ¥¢¢ to obtain the following equation for w:

(8.24) z‘illw§;’: + 2141211)&-,7 + Azzwrm

< A - ~ A -
+2<8,,A12— ”A 11A12) w§+<3nA22— "AA 11A22) wy = 0.

11 11

B_yLemma 5.2, (8.22), and € K, the coefficients of (8.24) are continuous in
Q_+ \ Tsonic U X, and the equation is uniformly elliptic on compact subsets of
Q+ \ Fsonic~

Step 3. By (5.33), we have
(8.25) w=—vp on o= T N{n=—vy}.

Since ¥ € ¥, it follows that | Dy (£, )| < CM(co —r) forall (£,7) e QT N
{¢c2 —r < 2¢}. Thus,

(8.26) w=0 on I'sonic-

Step 4. We derive the boundary condition for ¥ on I'yedge. Then v satisfies
(5.32), which can be written as

(8.27) —sin Oy Vg +cos by ¥y =0 on TIyedge-

Since ¢ € K, we have ¢ € C 2(ﬁ\ Isonic U X0). Thus we can differentiate (8.27)
in the direction tangential to I'yeqge. i.€., apply 0 := cos 8y, dg +sin 6y, 95 to (8.27).
Differentiating and substituting the right-hand side of (8.23) for ¥¢¢, we have
(8.28)

A~ A

A 1 A
cos(26y) + Alz sin(26y) | wg + = sin(20y) | 1 + A22 wy =0 on Tyeqge.
A 2 A1l
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This condition is oblique if ¢ is small: Indeed, since the unit normal on Iyedge 1S
(—sin By, cos by,), we use (3.1) and (8.22) to find

~ ~

(cos(26y) + 212 sin(26y,), % sin(26y,) (1 + 222)) - (—sin By, cos By,)

11 11

>1—Co >

| =

Step 5. In this step, we derive the condition for w on I'gpeck. Since ¥ is a
solution of (5.29)—(5.33) for ¢ = ¥, the Rankine-Hugoniot conditions hold on
[shock: Indeed, the continuous matching of ¥ with ¢ — @5 across sk holds
by (5.21)—(5.23) since ¢ = 1. Then (4.28) holds and the gradient jump condition
(4.29) can be written in form (4.42). On the other hand, ¥ on ['gpock satisfies (5.30)
with ¢ = i, which is (4.42). Thus, i satisfies (4.29).

Since Y € K which implies ¢ € C 2(§+ \ Tsonic U o), we can differentiate
(4.29) in the direction tangential to I'shock. The unit normal vg on gk is given
by (4.30). Then the vector

(8.29) s =(15,75) =

is tangential to I'gpock. Note that 73 # O if C in (5.16) is sufficiently large, since
(8.30) |Dy|<C(o+e) in QF,  |uz|+|va| < Co,

and u; > 0 from y € ¥ and Section 3.2. Thus, we can apply the differential
operator dz, = T} g + 1205 to (4.29).

In the calculation below, we use the notation in Section 4.2. We showed that
condition (4.29) can be written in form (4.33), where F(p, z, u», v, €, 1) is defined
by (4.34)—(4.36) and satisfies (4.37). Also, we denote

N A1 ~ U2+ p2 1
83  A(puzva) = (L) (pauziva) = (22 P,
Uiy —us Uiy —us

where p = (p1, p2) € R? and z € R. Then 7 € C®(Bg«(0) x By, /50(0)). Now,
applying the differential operator d,, we obtain that y satisfies

(8.32) S(D>Y, DY, Y, uz,v2,.6,7) =0 on Dypock.
where
(8.33)
2 ) 2 )
O(R, p.z,uz,v2, €, )= Z T Fp, Rij+z T (F; pi + Fg,) for R=(Rij),~2,j=1-
i,j=1 i=1

In both (8.33) and the calculation below, D g, ¢,) F denotes D ) F, (ij, F;, Fg,)
denotes (Fp;, Fz, Fg;)(p.z,u2,v2,£, 1), (7,D) denotes (7,D)(p,uz,vz), and p
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denotes p(p, z, €, ), with 5(-) and D(-) defined by (4.35) and (4.36), respectively.
By explicit calculation, we apply (4.34)—(4.36) and (8.31) to obtain that, for every
(p.z,u2,v2,£.7),
2
(8.34) Yt (Fpi+ Fe) = (p1—p) -0 =0.
i=1

We note that (4.28) holds on I'hock. Using (8.32) and (8.34) and expressing

¢ from (4.28), we see that i satisfies

(8.35) O(D*Y, DY, ¥, u2,v2,1) =0 on Cyhock,
where
2 .
(8.36) (R, p,z,u2,v2,0) = Z T, (p.z,u2,v2, N R;j,
i,j=1

U is defined by (4.39) and satisfies ¥ € C*°(s{) with ¥l ¢ 7y depending only
on the data and k € N, and s = By« (0) x (8%, 8%) x By, /50(0) x (—=6¢2/5, 6¢2/5).
Now, from (4.34)—(4.36), (4.39), and (8.31), we find

7((0,0),0,0) = (0, 1),

D,W((0.0),0,0,0,7) = (ph(c2 —£2), (° zu_lp L phE)n).

Thus, by (8.36), we obtain that, on R2*2 x o,

5 £ P2 —pP1 2
(837)  ®(R, p,z,uz,v2,1) = ph(cs —E*)Ray + ( —0/25) nR2>
2
+ Z Eij(p.z,uz,v2,n)R;j,
=1

where Eij € C*®(sd) and
|Eij(p.z.u2,v2,m)| < C|p| + |z| + |ua| + |v2])  forany (p.z,u2,v2,7) € o,

with C depending only on ||D2\I!||Co@).

From now on, we fix (13, v2) to be equal to the velocity of state (2) obtained
in Section 3.2 and write Ej;(p, z,n) for Eij (p,z,uz,v2,1n). Then, from (8.35)
and (8.37), we conclude that v satisfies
(8.38)

Ph(3—E2) 0

2

—0hE )0t Y Eij (DY ¥, mDyj¥=0 on Typoek,
ij=1

P2 — p1
ui

and E;; = E;j(p.z,n),1, j = 1,2, are smooth on
B := By« (0) x (=6*,8*) x (—6¢2/5,6¢2/5)
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and satisfy (4.43) with C depending only on the data. Note that

(DW(E? 77)’ W(S’ 7’]), 7]) ER on 1—‘shock’

since ¥ € I and (5.16) holds with sufficiently large C. Expressing ¥¢¢ from (8.23)
and using (8.22), we can rewrite (8.38) in the form

(5(3 =82+ Ex (DY v, 1) ¥y

N ((qu—lpl — phE)n+ E2(Dy, v, n)) Y =0

on [ghock, Where the functions E; = E;(p,z,n),i = 1,2, are smooth on % and
satisfy (4.43). Thus, w satisfies
(8.39)

(0h(c2 = E)+E1 (DY v, n))ws+((p 2f

1 L phE)n+E2 (DY, ¥, n)) wy=0

on [gphock. Condition (8.39) is oblique if Cis sufficiently large in (5.16). Indeed,
we have ¢y > %52, which implies c% — |§?|2 > C—zcz+|€| > (0 by using (4.8). Now,
combining (4.30) and (4.43) with ¢ € K and (3.24), we find that, on [gck,

pzu—lpl — phEVn + E2(DY, ¥, 1)) - vs

i —C(Mye + M2o0) Zp/252€2;|5|

Also, the coefficients of (8.39) are continuous with respect to (£, 1) € I'spock-

(03(c3 —E2) + E1(Dy, . ), (

> phCa > 0.

Step 6. Both the regularity of w in (8.21) and the fact that w satisfies (8.24)
that is uniformly elliptic on compact subsets of ﬁ\m imply that the maximum
of w cannot be achieved in the interior of 1, unless w is constant on Q 7T, by
the Strong Maximum Principle. Since w satisfies the oblique derivative conditions
(8.28) and (8.39) on the straight segment I'yeqge and on the curve I'hock that is C 2,0
in its relative interior, and since (8.24) is uniformly elliptic in a neighborhood of
any point from the relative interiors of I'yeqge and spock, it follows from Hopf’s
Lemma that the maximum of w cannot be achieved in the relative interiors of
[wedge and [gpock, unless w is constant on Q7. Now conditions (8.25) and (8.26)
imply that w < 0 on Q. This completes the proof. O

Using Lemma 8.1 and working in the (x, y)-coordinates, we have

PROPOSITION 8.2. If C in (5.16) is sufficiently large, depending only on the
data, then

4

——x in QTN{x <4
3(y+1) v =dej

(8.40) Vx =
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Proof. By definition of the (x, y)-coordinates in (4.47), we have

cos 6

(8.41) Yy =—sin6 ¥y + Yy,

where (r, 6) are the polar coordinates in the (£, n)-plane.
From (7.20), it follows that, for sufficiently small o and ¢, depending only on
the data,

r

n>n* forall (£,n7) €D N{cy—r < 4de},

where (I(n*), n*) is the unique intersection point of the segment {(/(n),n) : n €
(0, n1]} with the circle dB.,—4,(0). Let 7* be the corresponding point for the case
of normal reflection, i.e., 7* = /(€2 —4&)2 —£2. By (3.5), * > /c2 —£2/2>0
if ¢ is sufficiently small. Also, from (4.3), (4.4), and (3.24), and using the conver-
gence (6s, c2, £)— (/2. 2, E) as Oy, — 1/2, we obtain n* > 7* /2 and ¢, < 2¢5 if
o and ¢ are sufficiently small. Thus, we conclude that, if C in (5.16) is sufficiently
large depending only on the data, then, for every (§,7n) € D N {cy —r < 4¢}, the
polar angle 6 satisfies

.
m_ <o, |cot9|:‘§<L<C.

2 2 - /| =
V& +n n /c% —£2
From (8.41), (8.42), and Lemma 8.1, we find that, on QT N {ca —r < 4e},

1 cotd cotd

Sinew"+ . Yy > ; Yy > —=Clyy|.

Note that ¢ € I implies |y, (x, y)| < M x3/2 for 311 (x,y) e QT N{cr—r <2e}.
Then, using (8.43) and (5.16) and choosing large C, we have

4
3+

(8.42) sinf =

(8.43) Yy =—

Yy > in Q1 N{x <2e}.
Also, ¥ € J implies

4
|¥x| < Mao < —(2¢) on QT N{2e <x <4e},

B 3(y+1D
where the second inequality holds by (5.16) if C is sufficiently large depending
only on the data. Thus, (8.40) holds on QIS. O

9. Proof of the Main Theorem

Let C be sufficiently large to satisfy the conditions in Propositions 7.1, 8.1,
and 8.2. Then, by Proposition 7.1, there exist 09, & > 0 and M, M > 1 such that,
for any o € (0, 0], there exists a solution ¥ € ¥ (o, &, M1, M>) of problem (5.29)—
(5.33) with ¢ = ¢. Fix 0 € (0, 0¢] and the corresponding “fixed point” solution v,
which, by Propositions 8.1 and 8.2, satisfies
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4 o
|¢x|_m in Q7 N{x <4de}.

Then, by Lemma 5.4, ¥ satisfies (4.19) in Q7 (). Moreover, ¥ satisfies properties
(i)—(v) in Step 10 of Section 5.6 by following the argument in Step 10 of Section
5.6. Then, extending the function ¢ = ¥ + ¢ from Q := Q¥ (¥) to the whole
domain A by using (1.20) to define ¢ in A \ 2, we obtain

9 € W (M) N (U, CH (A US)NCH(AY)
where the domains A;, i = 0, 1,2, are defined in Step 10 of Section 5.6. From
the argument in Step 10 of Section 5.6, it follows that ¢ is a weak solution of
Problem 2, provided that the reflected shock S} = PoPi P, NAisaC 2_curve.
Thus, it remains to show that S; = Py P; PN A is a C?-curve. By definition of
¢ and since ¥ € H (o, e, M1, M>), the reflected shock S1 = Py P1 P> N A is given by
Si={E= f5,(0) : np, <N <np } Where 1, =—va, np = |£| ST > 0, and

Sy () ifnemp,.np ).
I(n) it nemp . np,)-
where [(n) is defined by (4.3), Np, =M > 0 is defined by (4.6), and Mpy > p, if o
is sufficiently small, which follows from the explicit expression of 7 Po given above

and the fact that (6s, c5, é) — (772, &2, £) as 0y, — 7/2. The function Sy is defined
by (5.21) for ¢ = .

Thus we need to show that fg, € CZ([nPZ, nPO]). By (4.3) and (5.24), it
suffices to consider fg, near the points Np, and Np, -

First, we show fg, is twice differentiable at 7 P, We change the coordinates
to the (x, y)-coordinates in (4.47). Then, for sufficiently small &; > 0, the curve
&= fs,(n)N{ca—e1 <r <cz+¢e1} has the form {y = fsl (x): —e1<x<er},
where

O.D fsi(n) =

fux) ifxe(0,er),

9.2) fs,(x) = fo(x) if x € (—e1.0),

with fo and fy defined by (5.9) and (5.25) for ¢ = . In order to show that fs,
is twice differentiable at np,, it suffices to show that fsl is twice differentiable at
x=0and (f§ — f§)(0)=0.

From (5.26), (5.27), and (5.9), it follows that fSl € C'((—&1,€1)). More-

over, from (5.3), (5.6), (5.22), and (5.27), we write @1, ¢2, and ¥ in the (x, y)-
coordinates to obtain that

_3x(<p1—§02—1ﬁ)(x f .
. s1(x)  ifx € (0.e1),
03 fhm={ pomemr

gygii Zﬁg(x fSl (x)) if x € (—¢1,0],
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and that fo’ (x) is given for x € (—¢&1, £1) by the second line of the right-hand side
of (9.3). Using (5.3) and i € I with (5.16) for sufficiently large C, we have

9.4) |f3’~1 (x) = fo ()| < C|D(x.p) ¥ (x, fypr (X)) for all x € (0, &1).
Since ¢ satisfies (5.30) with ¢ = v, it follows that, in the (x, y)-coordinates, ¥
satisfies (6.6) on {y = fy(x) : x € (0,&1)}, and (6.8) holds. Then it follows that

V(. fy () < CYy (e Sy N+ [ (x fy ()] < Cx¥/2,
where the last inequality follows from i € 3. Combining this with (9.2), (9.4),
and fs,, fo € C1((—e1, 1)) yields

|f_§l(x)—f()'(X)|§Cx3/2 for all x € (—e1, £1).

Then it follows that f¢ (x) — fg(x) is differentiable at x = 0. Since

fo € C®((—e1. 1)),
we conclude that fsl is twice differentiable at x = 0 and ( /. § — fo” )(0) = 0. Thus,
[s, is twice differentiable at n X A
Now we prove that f” is continuous at np,, or equivalently, that fé’l —
0” — 0 as x — 04. Differentiating (9.3), we see that it suffices to show that
| D2y (x, wa (x))] = 0 as x — 0+. To see this, we rewrite equation (8.38) in

the (x, y)-coordinates, by a calculation similar to deriving equation (4.56). Then
(8.38), near P; = (0, y1), has the form

bi1Yxx +b12V¥xy + b2y +b1Yx +boyy, =0 on Igpoek N {x < 26},

where (b;;, b;) = (bij.bi)(Dx ¥, ¥.x,y), and (b;;,b;)(p, z, x, y) are smooth
functions up to x = 0. Furthermore,

P2 — pP1
bi1 =———n + E(D(x,,)¥. V. x. y),
u102

where E(p,z,x,y) satisfies (4.57). Here 71, is the n-coordinate of P;, which
implies that 71 > 0. Then, using that | D, ,y¥| < Cx and choosing o, & > 0 small,
we obtain

b1y <6 on ghock N{x < &},

where § > 0. Also, since Dy )V is continuous up to x = 0, then (b;;, b;) are
bounded on [gpock N {x < 2e}. Thus we have

[Yxx| < C(|ny| + |Wyy| + |D(x,y)W|) = Cx1/2 on Cgpock N {x < €},
where the last inequality follows from i € ¥. Then

|D2y| < Cx'/? on Cgpock N {x < ).
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This implies the continuity of fg' — fy’ at x = 0, that is, the continuity of fg
atnp,.

In order to prove the C2-smoothness of Jfs, up ton p, = —V2, We extend
the solution ¢ and the free boundary function fg, into { < —v,} by the even
reflection about the line ¥ C {n = —v5} so that P, becomes an interior point of

the shock curve. Note that we continue to work in the shifted coordinates defined
in Section 4.1; that is, for (£, n) such that n < —v, and (§, —2v, — 1) € QT (¥), we

define (. @1)(§. 1) = (9. ¢1)(§. —2v2—n) and fs, (1) = —2v; —1n for ¢, given by
(4.15). Denote Q;"l (P2) := Bg, (P2) N{E > fs,(n)} for sufficiently small &1 > 0.

From ¢ € CL*(Q*(y¥)) N C>*(QT(¥)) and (4.13), we have

¢ € CH¥(QL (P2) N C>¥(Q, (P2).

Also, the extended function ¢ is in fact given by (4.15). Furthermore, from (5.20)
and (5.22), we can see that the same is true for the extended functions and hence

&> fs,(M} N Bey (P2) = {9 <91} N Be, (P2),
Js, € Cl’a((— vy — %, -V + %))

Furthermore, from (1.8), (1.9), and (4.13), it follows that the extended ¢ satisfies
(1.8) with (1.9) in Q;"] (P»), where we have used the form of equation, i.e., the
fact that there is no explicit dependence on (£, 1) in the coefficients and that the
dependence of D¢ is only through | D¢|. Finally, the boundary conditions (4.9)
and (4.10) are satisfied on I', (P2) :={§ = fs,(n)} N Bg, (P2). (1.8) is uniformly
elliptic in le (P3) for ¢, which follows from ¢ = ¢» + i and Lemmas 5.2 and
5.4. Condition (4.10) is uniformly oblique on I'g, (P2) for ¢, which follows from
Section 4.2.

Next, we rewrite (1.8) in Q;"l (P>) and the boundary conditions (4.9) and
(4.10) on I'g, (P3) in terms of u := @1 — . Substituting u + ¢; for ¢ into (1.8) and
(4.10), we obtain that u satisfies

F(Dzu, Du,u,&,n7) =0 in Q:‘l (P2), u=G(Du,u,& n) =0o0nTg (P2).

where the equation is quasilinear and uniformly elliptic, the second boundary con-
dition is oblique, and the functions F and G are smooth. Also, from (5.20) which
holds for the even extensions as well, we find that dgu > 0 on 'z, (P2). Then,
applying the hodograph transform of [28, §3], i.e., changing (§,7) — (X,Y) =
(u(&, 1), n), and denoting the inverse transform by (X, Y) — (¢,n) = (v(X,Y),Y),
we obtain

s € LB o) N ¥4 B (0,2
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where B;’((O, —v32)) := Bs((0,—v2)) N{X > 0} for small § > 0, v(X, Y) satisfies
a uniformly elliptic quasilinear equation

F(D?v,Dv,v,X.Y)=0  in B; ((0.—v2))
and the oblique derivative condition
G(Dv,v,Y)=0  ondB; ((0,—v2)) N{X =0},

and the functions F and G are smooth. Then, from the local estimates near the
boundary in the proof of [32, Th. 2], v € Cz""(B(;?z((O, —v3))). Since fs,(n) =
v(0, n), it follows that fs, is C>* near Np, = —V2.

It remains to prove the convergence of the solutions to the normal reflection
solution as 6y, — /2. Let 6. — 7/2 as i — oo. Denote by ¢’ and f the corre-
sponding solution and the free-boundary function respectively, i.e., Po P P, N A for
each i is givenby {E = fi(n) : ne (an’ r]PO)}. Denote by ¢ and f°(n)) = £ the
solution and the reflected shock for the normal reflection respectively. For each i,
we find that ¢ — <pé =1 in the subsonic domain Q;L, where ¥/ is the correspond-
ing “fixed point solution” from Proposition 7.1 and ¥ € H (/2 — 9{0 el M { Mé)
with (5.16). Moreover, f ! satisfies (5.24). We also use the convergence of state (2)
to the corresponding state of the normal reflection obtained in Section 3.2. Then we
conclude that, for a subsequence, f/ — £ in Cl(l)C and ¢’ — ¢ in C! on compact
subsets of {¢§ > £} and {§ < £}. Also, we obtain ||(Dg0i,goi)||Loo(K) < C(K) for
every compact set K C Ao 1= {£ <£,7>0}. Then ¢/ — @ in Wléc’l (Aso) by the
Dominated Convergence Theorem. Since such a converging subsequence can be
extracted from every sequence 9{0 — 1 /2, it follows that ¢y, — @0 as Oy — /2.

Appendix A. Estimates of solutions to elliptic equations

In this appendix, we make some careful estimates of solutions of boundary
value problems for elliptic equations in R?, which are applied in Sections 6 and 7.
Throughout the appendix, we denote by (x, y) or (X, Y) the coordinates in R?,
by R% :={y > 0}, and, for z = (x,0) and r > 0, denote B;' (z) := B,(z) NR%
and X, (z) := Br(z) N {y = 0}. We also denote B, := B,(0), B;} := B,7(0), and
3, 1= 32,(0).

We consider an elliptic equation of the form

(A.1) Alluxx+2A12uxy+A22uyy+A1ux+A2uy = /.

where A4;; = A;j(Du,x,y), A = A;(Du,x,y),and f = f(x,y). We study the
following three types of boundary conditions: (i) the Dirichlet condition, (ii) the
oblique derivative condition, (iii) the “almost tangential derivative” condition.
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One of the new ingredients in our estimates below is that we do not assume
that the equation satisfies the “natural structure conditions”, which are used in
the earlier related results; see, e.g., [20, Ch. 15] for the interior estimates for the
Dirichlet problem and [37] for the oblique derivative problem. For (A.1), the natu-
ral structure conditions include the requirement that | p|| D, A4;;| < C for all p € R2.
Note that equations (5.42) and (5.49) do not satisfy this condition because of the
term x¢ 1(%) in the coefficient of ¥,. Thus we have to derive the estimates
for the equations without the “natural structure conditions”. We consider only the
two-dimensional case here.

The main point at which the “natural structure conditions” are needed is the
gradient estimates. The interior gradient estimates and global gradient estimates
for the Dirichlet problem, without requiring the natural structure conditions, were
obtained in the earlier results in the two-dimensional case; see Trudinger [47] and
references therein. However, it is not clear how this approach can be extended
to the oblique and “almost tangential” derivative problems. We also note a related
result by Lieberman [34] for fully nonlinear equations and the boundary conditions
without obliqueness assumption in the two-dimensional case, in which the Holder
estimates for the gradient of a solution depend on both the bounds of the solution
and its gradient.

In this appendix, we present the C?**-estimates of the solution only in terms
of its C-norm. For simplicity, we restrict to the case of quasilinear (A.1) and linear
boundary conditions, which is the case for the applications in this paper. Below,
we first present the interior estimate in the form that is used in the other parts of
this paper. Then we give a proof of the C2?**-estimates for the “almost tangen-
tial” derivative problem. Since the proofs for the Dirichlet and oblique derivative
problems are similar to that for the “almost tangential” derivative problem, we just
sketch these proofs.

THEOREM A.1. Let u € C?(B5) be a solution of equation (A.1) in B,. Let
Aij(p.x,y), Ai(p,x.y), and f(x,y) satisfy that there exist constants A > 0 and
o € (0,1) such that

n

(A2) Aul*< Y Ajpip; <27Mul>  forall (x,y) € By, p,peR?,
ij=1
(A3) (A, ADceqergs + 1P (Airs ADll ez + 1/ lcags <47

Assume that ||u ”C(E) < M. Then there exists C > 0 depending only on (A, M)
such that

(A4) Il 2oz < Clulleasy + 1 leaiss):

Proof. We use the standard interior Holder seminorms and norms as defined
in [20, Egs. (4.17) and (6.10)]. By [20, Th. 12.4], there exists 8 € (0, 1) depending
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only on A such that
141} .5, = CO) (Il + 1| f = A1 Dy — A2 Dau)| )

2 2
< COM (141715, +1Dul )

Then, applying the interpolation inequality [20, (6.82)] with the argument similar
to that for the proof of [20, Th. 12.4], we obtain

lul 5,5, < COLM(T+1£115,)-

Now we consider (A.1) as a linear elliptic equation

n

Z aij(x)u.Xin + Zai(x)“xi = f(x) in B3/2

ij=1 i=1

with coefficients a;; (x) = A;;(Du(x),x) and a; = A; (Du(x), x) in CB(B3/2)
satisfying
l@ij.an)ll oz, < CO. M).

We can assume 8 < «. Then the local estimates for linear elliptic equations yield

sz = COLM) (Il e + 1/ les@im)-

With this estimate, we have ||(a; j,di)”ca(m) < C(A, M). Then the local esti-
mates for linear elliptic equations in Bs/4 yield (A.4). O

Now we make the estimates for the “almost tangential derivative” problem.
THEOREM A.2. Let A >0, « € (0, 1), and ¢ > 0. Let & € C**(R) satisfy
(A.5) 1Pl c2.emy < A7
and denote Q; = BrN{y > ed(x)} for R>0. Letu € CZ(B;) N Cl(E)
satisfy (A.1) in Q;‘ and
(A6) ux=2eb(x,y)uy+c(x,y)u on T'p:= By N{y =ed(x)}.

Let Ajj(p,x,y), Ai(p.x,y),b(x,y),c(x,y),and f(x,y) satisfy that there exists
a constant A > 0 such that

n
(A7) MulP= Y Ay <A7Hpl> o for(x.y) €QF. popueR?,
i j=1
(A.8)
oA AN — -
(A, A’)”Ca(gi"xlﬂ) + | Dp(Aij, Al)”C(Q;'XR2) =+ ”f”Ca(Q;') <A,

(A.9) 1. C)llcl,a(g) <AL
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Assume that ||u| < M. Then there exist eg(A, M,a) > 0and C(A, M,x) >0

c@)
such that, if € € (0, &9),

(A.10) Il 2.0 7 = c(uuuc@ + ||f||ca@).

To prove this theorem, we first flatten the boundary part I'g by defining
the variables (X,Y) = W(x,y) with (X,Y) = (x,y — e®P(x)). Then (x,y) =
U1(X,Y)=(X,Y +e®P(X)). From (A.5), we have
eA~ L.

(A.11) | @ —1d| + v —1d

— — <
Cc2o(QF) c2e(Bf) —

Then, for sufficiently small ¢ depending only on A, the transformed domain @; =
\II(Q;F) satisfies

(A.12)
By 5,5 CDF C By D3 CRE:={Y >0}, 095 N{Y =0} = W(T);

the function
v(X,Y)=u(x,y):=u(0 (X, Y))

satisfies an equation of form (A.1) in 223; with (A.7), (A.8), and the corresponding
ellipticity constant A /2; and the boundary condition for v by an explicit calculation
is
(A.13)

vy = e(b(W1(X,0)) + ' (X))vy +c(¥(X,0))v  on BF N{Y =0};

ie., it is of form (A.6) with (A.9) satisfied on @ with ellipticity constant /4.
Moreover, by (A.11) and (A.12), it suffices for this theorem to show the following
estimate for v(X,Y):

A ol g <COMa (vl g 1l py, )

2—2¢e/A

That is, we can consider the equation in Bz+—23 /2 and condition (A.13) on X5_5,/)

or, by rescaling, we can simply consider our equation in B;L and condition (A.13)
on ¥j := B, N{Y = 0}. In other words, without loss of generality, we can assume
® = 0 in the original problem.

For simplicity, we use the original notation (x, y, u(x, y)) to replace the no-
tation (X, Y, v(X,Y)). Then we assume that ® = 0. Thus, (A.1) is satisfied in the
domain 32Jr , the boundary condition (A.6) is prescribed on X, = B, N{y = 0},
and conditions (A.7)—(A.9) hold in BZJr . Also, we use the partially interior norms
[20, Eq. 4.29] in the domain B;’ U X, with the related distance function d, =
dist(z, E)BzJr \ ¥3). The universal constant C in the argument below depends only
on A and M, unless otherwise specified.
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As in [20, §13.2], we introduce the functions w; = D;u fori = 1,2. Then we
conclude from (A.1) that w; and w, are weak solutions of the following equations
of divergence form:

(A.15)
A1 2412 f Aq Az
Di| —Diwi+ Drwy | + Dypowi=D1| ———D1u——Dsu |,
(Azz Adr ) (Azz A2 Ao
(A.16)
A A A
D11w2+D2< 12D1 2 —D2w2)=D2(L——1D1 ——2D2M)
11 1 A1 An 11
From (A.6), we have
(A.17) w1 =g on X,
where
(A.18) g:=¢bhws+cu  for B,

We first obtain the following Holder estimates of Dqu.

LEMMA A.l1. There exist B € (0, ] and C > 0 depending only on A such that,
forany zg € B2Jr U X,,
(A.19)
B
dZO[wl]O,B,BdZO/m(Zo)ﬂB;_

B
< C(IDU. Noop,, st +el8los s, pens):

Proof. We first prove that, for z; € X, and B2+R (z1) C B,

(A20) RP[wily g 5oy < C(IDW RO o oy + RPLlo g 5 o) )

We rescale u, wy, and f in B;’R(zl) by defining

1 A
(A21) a(Z2)= ﬁu(zl 4+2RZ), f(Z)=2Rf(z1+2RZ) for Z € Bi",
and W; = Dz u. Then w; satisfies an equation of form (A.15) in BlJr with u
replaced by © whose coefficients ff,-j and /f,- satisfy (A.7) and (A.8) with un-
changed constants (this holds for (A.8) since R < 1). Then, by the elliptic version
of [36, Th. 6.33] stated in the parabolic setting (it can also be obtained by using
[36, Lemma 4.6] instead of [20, Lemma 8.23] in the proofs of [%0, Ths. 8.27 and
8.29] to achieve o = g in [20, Th. 8.29]), we find constants S(A) € (0, 1) and
C(A) such that

(115, = C (1D Dl g +Linop,5060=01)
for g = min(ﬁ , ). Rescaling back and using (A.17), we have (A.20).
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Ifz; € BZJr and Byr(z1) C BZJr , then an argument similar to the proof of
(A.20) by using the interior estimates [20, Th. 8.24] yields

(A.22) RP[w110.8.Br(zy) < ClI (DU, RF)0.0.Byx(21)-

Now let zg = (x9, yo) € 32Jr U X2. When yg < d,,/8, then, denoting z;, =
(x0,0) and noting that d,» > d,,, we easily see that
0

B, y16(z0) N B C Bj;zo/s(zg) C B, B;ZO/S(Z{)) C By, /2(20) N By .

Then applying (A.20) with z; =z and R = d;,/8 < 1 and using the inclusions
stated above yield (A.19). When yo > d,/8, Bg,, /8(20) C B;‘ . Then application
of (A.22), with z; = zg and R = d;,/16 < 1, yields (A.19). O

Next, we make the Holder estimates for Du. We first note that, by (A.9) and
(A.18), g satisfies

(A.23) |Dg| < C(e]| D?u| + | Du| + |u|) in By,
(A.24)

[£1o,8,8,. ,»nBF =€ (S[Du]o,ﬂ,de/z(z)ﬂB;' + ||”||1,O,de/2(z)mBz+) :

LEMMA A.2. Let B be as in Lemma A.1. Then there exist gg(A) > 0 and
C(A) > O such that, if 0 < ¢ < g9,

B
(A.25) dzo [DM]O,,B,BdZO/?,Z(ZO)nB;_

=C (||u I 1,0,Bd20/2(zo)ﬂB2+

B
+8d20[DM]O,ﬁ,BdZO/z(Zo)ﬂB; + ”f”OsO:deo/z(Zo)ﬂB;)

forany zg € 32+ U 3s.

Proof. The Holder norm of Dju has been estimated in Lemma A.1. It remains
to estimate Dou. We follow the proof of [20, Th. 13.1].

Fix zg € BZ’L U X». In order to prove (A.25), it suffices to show that, for every
£ € By, /32(20) N B and every R > 0 such that Bg(2) C Ba., /16(20), we have

L2
(A.26) / |D2M|2d2 = TﬂRzﬁ,
Br()NBS dzo
where L is the right-hand side of (A.25) (cf. [20, Th. 7.19] and [36, Lemma 4.11]).
In order to prove (A.26), we consider separately case (i) Bog(Z) N X # &
and case (il) Bor(Z) N Xy = @.
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We first consider case (i). Let Bor(2) N X, # @. Since Br(Z) C deo/32(zo),
then Bogr(2) C deo /16(20) so that

(A.27) 2R < dy,.

Let n € Cg (Bar(2)) and ¢ = n?(wy — g). Note that ¢ € W, *(Bar(2) N BS}) by
(A.17). We use ( as a test function in the weak form of (A.15):
(A.28)

AijDiw1D;tdz = A;D Ditd
/B"‘AZZZ iy DiwiDjedz /B+A22( Z ,u—i—f) s

and apply (A.7), (A.8), and (A.23) to obtain
(A.29)

Dw, |*n%dz
/Bz+| 1"
5C/+ (((5+8)|Dw1|2+8|D2u|2) n2
BZ

+(5+1) (1 1y = g7+ (DUl + P+ f2>n2))dz

where C depends only on A, and the sufficiently small constant § > 0 will be chosen
below. Since

(A.30) |Dwq|? = (D11u)? + (D12u)?,

it remains to estimate | D,,u|?. Using the ellipticity property (A.7), we can express
D7>u from (A.1) to obtain

[, 1DsauPiaz =Gy [ D1l +Diau +1DuP + f2Pdz.
BZ B2

Combining this with (A.29) and (A.30) yield
(A31)

/+ |D?u|*n?dz

BZ
<C/
= o

2

((8+5)|D2M|2772

(5 1) (D1 + 721 — ) + (DUl + el + fr?) )dz
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Choose g9 = § = (4C)~!. Then, when ¢ € (0, &),
(A.32)
[ 10%uPipaz=C [ (D= g +(Dul+ul + £) dz.
2 2

Now we make a more specific choice of 7: In addition to n € CO1 (B2r(2)),
we assume that n = 1 on Bg(£), 0 < n <1 on R?, and |Dn| < 10/R. Also,
since BaR(2)NX, # &, then, for any fixed z* € Bog(2) N X5, we have |z—z%|
< 2R for any z € Byg(Z). Moreover, (w; — g)(z*) = 0 by (A.17). Then, since
Byr(2) C deo/16(20)» we find from (A.19), (A.24), and (A.27) that, for any z €
Bor(2)N B,

[(w1 —g)(2)]
= [(w1 —g)(2) — (w —g)(z*)| < |w1(2)—w1(z*)| + |g(z)—g(z*)|
C
= d_(”(Duv f)”(),(),BdZO/z(ZO)ﬂB;’_ +dZﬁO[g]O’ﬂ’deo/2(Z())ﬂB;_)|Z _Z*|ﬂ

Z0

* B
+[g]0,l‘3,deO/2(Zo)ﬂB;— |z =27

1

=C (d_zﬂo I(Du, f)”O,O,BdZO/z(Zo)ﬁBzJr + E[Du]O,ﬂ,deo/z(zo)m?;r

B
il eonss )R-

Using this estimate and our choice of 7, we obtain from (A.32) that

/ |D?u|?dz
Br(:)NBS

1 , o y
<C (@“(DM, f)||0,0,BdZO/2(ZO)ﬁBz+ +é [Du]O,ﬂ,BdZO/z(zo)ﬂB;) R

2 2 28 2
S (I o [V e o}

which implies (A.26) for case (i).

Now we consider case (ii): Z € 32Jr and R > 0 satisfy Br(Z) C Bd20/32(20)
and Byg(2) N 22 = . Then Byr(2) C By, /16(20) N B, Let n € C}(Bar(2))
and ¢ = n?(w; — w1 (%)). Note that ¢ € WOI’Z(B;F) since BoRr(2) C B;’. Thus we
can use ¢ as a test function in (A.28). Performing the estimates similar to those

that have been done to obtain (A.32), we have
(A.33)

[ p2uirtaz =) [ | (DnP )i wa )P (Dul+ £ )
B B

2
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Choose n € CO1 (Byr(2))sothatn=1o0n Br(2),0<n<1onR? and|Dn|<10/R.
Note that, for any z € Byg(2),

1
_ 2 _ B
lwi(z) —wi ()| < C (dﬂ |(Du, f)”O’O’deO/Z(ZO)nB; + S[Du]O,ﬂ,BdZO/z(Zo)ﬂB;')R

Z0

by (A.19) since BR(Z) C Bd20/16(20) N Bz+- Now we obtain (A.26) from (A.33)
similar to that for case (i). Then Lemma A.2 is proved. O

LEMMA A.3. Let B and ey be as in Lemma A.2. Then, for ¢ € (0, &p), there
exists C (L) such that

*k *k *
(A3 B, g, <€ (llulll,o,g;uzz Felul? s, T ||f||0,o,32+) ,

where [|* and || - |* denote the standard partially interior seminorms and norms
[20, Eq. 4.29].

Proof. Estimate (A.34) follows directly from Lemma A.2 and an argument
similar to the proof of [20, Th. 4.8]. Let z1, z2 € B, with d;, < d_, (thus d;, », =
dz,) and let |z1 —z2| < d;, /64. Then z5 € deo/32(zo) N Bz+ and, by Lemma A.2
applied to zg = z1, we find

14 1DuE) = Du(z)

21,22

21 —z2|P

1+8
= C(dz' ”u”I,O,del/z(zl)ﬁl?;r T gdzl [Du](),ﬂ,del/2(21)03;r
1 o050, peonss)

* *
< C(Il% g prom, + 2005 4 gt om, 1 00,88 )
where the last inequality holds since 2d; > d;, for all z € del s2(z1) N B;’ CIf
21,22 € By with d;, <d;, and |z1 — 22| > d, /64, then

14 |DUCED=Du(z2)|

Z1,22

<64(dz, | D) +dza| DU =64 Jull} ) e

|

|z1 — 22|

Now we can complete the proof of Theorem A.2. For sufficiently small g9 > 0
depending only on A, when ¢ € (0, g9), we use Lemma A.3 to obtain

(A.35) [u]T,ﬂ,Bjuzz =C) (||u||io’32+u22 + ”f“o,o,B;r) :
We use the interpolation inequality [20, Eq. (6.89)] to estimate
141} o Uz, = CB-Dlully g3 +8l] 4 o5,
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for § > 0. Since § = B(A), we choose sufficiently small §(1) > 0 to find

%
(A36) ] 5 proms = €O (el 0,55 11/ lo.0,55)

from (A.35). In particular, we obtain a global estimate in a smaller half-ball:

(A37) Il g5 < €O (Iullg gt +1/ o 0,55 ) -

We can assume 8 < «a. Now we consider (A.15) as a linear elliptic equation

2
(A.38) Z Di(ajj(x,y)Djwi)=D1F  in B9+/5’

ij=1
where a;;(x,y)=(A4ij/A22)(Du(x,y),x,y)fori+j <4,ap=1,and F(x,y)=
(A1D1u + Ay Dou + f)/Azz with (Aij, A,‘) = (Al'j, Al-)(Du(x, y),x, y). Then
(A.36), combined with (A.8), implies

(A.39) laislg g, < Q. M).

From now on, d; denotes the distance related to the partially interior norms in
B9+/5 U Xg/s, i.e., for z € Bg+/5, dy = dist(z, 839’75 \ Xg/5). Now, similar to the
proof of Lemma A.1, we rescale (A.38) and the Dirichlet condition (A.17) from
the balls B (z}) C B;/S and Br(z1) C B9+/5 with R <1to B = B} or B = By,
respectively, by defining

(b1,8.4i;)(Z) = (w1, g.ai;)(z1+RZ), F(Z)=RF(z1+RZ)  for Z€B.

Then Zijzl D;(G;j(x,y)Djwy) = D1 F in B, the ellipticity of this rescaled
equation is the same as that for (A.38), and ||@;;llo,3,p < C for C = C(A, M)
in (A.39), where we have used R < 1. This allows us to apply the local C!-A
interior and boundary estimates for the Dirichlet problem [20, Th. 8.32, Cor. 8.36]
to the rescaled problems in the balls B;;izo /8(26) and deo /8(20) as in Lemma
A.1. Then, scaling back and multiplying by d,, applying the covering argument
as in Lemma A.1, and recalling the definition of F', we obtain that, for any zg €
Bg—i}s U Z9/5a

248 2
(A40)  dz [wl]l,B,deo/ls(Zo)ﬂB;/s+dZO[wI]LO,BdZO/m(Zo)ﬂBg}s

1+8
=C (dzo ||Du||0,0,3d20/2(20)f'\3$5 +dz [u]l,ﬂ,deo/z(Zo)ﬂB;/S

248
+ ||f||0,,3,3d20/2(zo)03j/5 + dZo [g]l,ﬂ,deo/z(Zo)ﬂB‘j/s

k+1
+ Z dZO [g]k,O,BdZO/z(Zo)ﬂB;;S)’
k=0,1
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where we have used d, < 2. Recall that Dwy = (Djy1u, D12u). Expressing
Djou from (A.1) by using (A.7), (A.8), and (A.36) to estimate the Holder norms
of Du, in terms of the norms of Dyyu, Dyu, and Du, and by using (A.18) and
(A.9) to estimate the terms involving g in (A.40), we obtain from (A.40) that, for
every zg € B;r/s U X,

2481 N2 2112
dzy "D u]oaﬂ,deO/ls(Zo)ﬁBS}S +dz[D u]O,O,BdZO/ls(Zo)ﬂB;}S

< 1+
= C(dZO”Du”C(BdZO/z(ZO)ﬂB;}S) + dzo [u]l,ﬂ,deo/z(ZO)ﬂB;}s
+dz°||u||1,0,3d20/2(20)03+ T ”fHO,ﬂ,BdZO/z(Zo)ﬂB;_/S

9/5
248112 2 112
+8(d20 [D u]O,ﬂ,BdZO/z(Zo)ﬂB;_/S +d20 [D u]O,O,BdZO/z(Zo)ﬂB;;S))'

From this estimate, the argument of Lemma A.3 implies
(A41)

<C * * .
2,8,B,5US05 — (||”||1,,3,39+/5u29/5 + 8”“”2,,3,3;5@9/5 + ”fllo,ﬂ,B;;S)
Thus, reducing &g if necessary and using (A.37), we conclude

*
A9l e e = COM il g + 1 o g )
Estimate (A.42) implies a global estimate in a smaller ball and, in particular,
Il g g < COLMI Il gy +1f .-

Now we can repeat the argument, which leads from (A.37) to (A.42) with S re-

placed by «, in B;} 5 (and, in particular, further reducing &o depending only on

(A, M, @)) to obtain

*
13 4 5 sy,e < CO-M.@) (Iullg g +1F g g3 )

8/5

which implies (A.14) and hence (A.10) for the original problem. Theorem A.2 is
proved. O

Now we show that the estimates also hold for the Dirichlet problem.

THEOREM A.3. Let A >0and o € (0,1). Let ® € Cz’“(i)satisfy (A.5) and
Q; = BrN{y > d(x)} for R>0. Letu € CZ(Q;) N C(Q;) satisfy (A.1) in
Q;‘ and

(A43) u=g on T'e:= B, N{y = d(x)},
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where Ajj = A;jj(Du,x,y) and A; = A;(Du,x,y),i,j =1,2,and f = f(x,y)
satisfy (A.7) and (A.8), and g = g(x, y) satisfies

(A.44) <A h

I8¢ ) <

with (A, &) as defined above. Assume that ||u ”C(Q*) <M. Then
2

849 1l s gy = €O (Il iz, + 17 o gy 1l o)

Proof. By replacing u with u — g, we can assume without loss of generality
that g = 0. Also, by flattening the boundary as in the proof of Theorem A.2, we
can assume ® = 0. That is, we have reduced to the case when (A.1) holds in
B2Jr and ¥ = 0 on X»,. Thus, u, = 0 on X,. Then estimate (A.45) follows from
Theorem A.2. O

We now derive the estimates for the oblique derivative problem.

THEOREM A.4. Let A >0and o € (0,1). Let ® € Cz’“@ satisfy (A.5) and
QF :=BrN{y>®(x)} for R>0. Letu € C2(QF) N CY(QT) satisfy
(A.46) Aqtuxy +2A12uxy + Aoty + Aqux + Aouy =0 in QF,
(A.47) biux +bouy +cu=0 on I'p := By N{y = P(x)},
where Ajj = Ajj(Du,x,y)and A; = A;(Du,x,y),i,j = 1,2, satisfy (A.7) and

(A.8),and b; = b;(x,y),i =1,2,and c = c(x, y) satisfy the following obliqueness
condition and C V>*-bounds:

(A.48) ba(x,y)= A for (x,y) € 'y,

(A.49) ||(b1,b2,0)||clva(g) <AL

Assume that ||u ”C(Qj) < M. Then there exists C = C(A, M, ) > 0 such that
2

(A.50) < C|lu|

Il ooy = €l ey

Proof. Step 1. First, we flatten the boundary ' by the change of coordinates
(X,Y)=W(x,y) = (x,y —D(x)). Then (x,y) = V" 1(X,Y) = (X.Y + O(X)).
From (A.5), [[¥lc2a(oty + w1 le2a@y) = CA). where DY = W(QF) sat-
isfies QZJ;' C Ri :={Y >0} and [y := 892);' N{Y =0} = ¥(I'p). By a standard
calculation, v(X,Y) = u(x, y) := u(¥~1(X,Y)) satisfies the equation of form
(A.46) in @; and the oblique derivative condition of form (A.47) on I'g, where
(A.7), (A.8), (A.48), and (A.49) are satisfied with modified constant A>0 depend-
ing only on A. Also, ||v||C(@;r) < M. Thus, (A.50) follows from

(A.51) =CA M a)|vllg g+

%
”vnz,a,@juro -
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Next we note that, in order to prove (A.51), it suffices to prove that there exist
K and C depending only on (A, M, &) such that, if v satisfies (A.46) and (A.47)
in Bl+ and X, := By N{y = 0} respectively, (A.7), (A.8), (A.48), and (A.49) hold
in B1+, and |[v| <M in B, then

(A52) V) sy = Ml
Indeed, if (A.52) is proved, then, using also the interior estimates (A.4) in Theorem
A.1 and applying the scaling argument similar to the proof of Lemma A.1, we
obtain that, for any zg € QZ);' U X,

2+ <
4z ”v”Cz""(BdZO/(mk)(Zo)ﬂ@;) =¢ ”v”C(deO/z(ZO)ﬂ@;)'

From this, we use the argument of the proof of Lemma A.3 to obtain (A.51).
Thus it remains to show (A.52). First we make a linear change of variables to
normalize the problem so that

(A.53) b1(0)=0, by(0)=1

for the modified problem. Let

- 1
(X,Y)=V¥(x,y):= m(bz(())x —b1(0)y, y).

Then
(x,y) =X, Y) = (X +51(0)Y,52(0)Y),  |DY|+ DU <C(h),

where the estimate follows from (A.48) and (A.49). Then the function w(X,Y) :=
v(x,y)=v(X+b1(0)Y,b2(0)Y) is a solution of the equation of form (A.46) in the
domain liJ(BlJr ) and the boundary condition of form (A.47) on the boundary part
\11(21) such that (A.7), (A.8), (A.48), and (A.49) are satisfied with constant 1>0
depending only on A, and (A.53) holds, which can be verified by a straightforward
calculation. Also, ||w||C(\i/(Bl+)) <M.

Note that ¥(B;f) c R2 :={Y > 0} and ¥(Z;) = 9¥(B;) N{Y = 0}
Moreover, since | DW| + | DU~ < C(1), there exists K; = K (1) > 0 such that,
forany r >0, B, /g, C U(B,) C Bk, r. Thus it suffices to prove

_— <
10leaaiy = CI0leqst

for some r € (0, 1/K1). This estimate implies (A.52) with K =2K;/r.

Step 2. As a result of the reduction performed in Step 1, it suffices to prove
the following: There exist ¢ € (0, 1) and C depending only on (A, «, M) such that,
if u satisfies (A.46) and (A.47) in B;; and on Xj, respectively, if (A.7), (A.8),
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(A.48), and (A.49) hold in B;;, and if (A.53) holds and |lu|, g+ < M, then
»F2e
[l g gt = Cllely g

We now prove this claim. For ¢ > 0 to be chosen later, we rescale from B;;
into B, by defining

1

(A.54) v(x,y) = —(u(ex, ey) —u(0,0)) for (x,y) € B.
£

Then v satisfies

(ASS) Al]vxx + 21{12ny + Azzvyy + Alvx + A2Uy - 0 in B;_,
(A.56) vy = 51vx + Ezvy + ¢v + cu(0,0) on X,

where

Aij(p.x.y) = Aij(p.ex.ey), Ai(p.x,y)=eAi(p,ex,ey),
Bl(xv Y) = _bl(SX,SY)’ EZ(X’ Y) = _b2(8x78y) + 1’ 5(X,Y) = _gc(gxa5Y)-

Then A;; and A; satisfy (A.7) and (A.8) in B, and, using (A.49), (A.53), and
e <1, we have

(A.57) ||(l;1,52, 5)||1,a,32+ <Ce for some C = C(A).

Now we follow the proof of Theorem A.2. We use the partially interior norms
[20, Equation 4.29] in the domain 32+ U X, whose distance function is d, =
dist(z, BB;' \ ¥»). We introduce the functions w; = D;v, i = 1,2, to conclude
from (A.55) that w; and w, are weak solutions of the equations:
A1 2412 A As
(A.58) D, (A—Dlwl +—= Dzwl) +Drwi=—D; (~—D1 U+N—D2v) R

22 Ao 22 Ao

241, Az A A,
(A.59) Dijwa+Do —Diwas+—=—"Drwr | =—Dr| —Div+—=——D>v
A11 A11 All All
in B;L , respectively. From (A.56), we have
(A.60) wy =g on X7,

where g := brvy +Ezvy 4+ ¢v + cu(0,0) in Bz+.
Using (A.59) and the Dirichlet boundary condition (A.60) for w, and fol-
lowing the proof of Lemma A.1, we can show the existence of 8 € (0, «] and C
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depending only on A such that, for any zg € 32Jr U X,,

B
(A.61) 0120[wz]O,B,deo/lf,(zo)mB;r

ﬂ ~
= c (” Dv ”O,BdZO/z(Zo)ﬂB;r + dZO [g]O,ﬂ,BdZO/z(Z())ﬂB;_)'

Next we obtain the Holder estimates of Dv if ¢ is sufficiently small. We first
note that, by (A.57), g satisfies

(A.62) D3| §C8(|D2v|+|Dv|+|v|+ ||u||0,Bz+) in By
(A.63) [810,8,84. /52y = C¢ (”””L&depw)mgzj) + ”””o,B;)

for C=C(A). The term e|u||, p+ in (A.62) and (A.63) comes from the term cu (0, 0)
> 2e

in the definition of g. We follow the proof of Lemma A.2, but we now use the
integral form of (A.59) with test functions ¢ = n?(w2 — &) and ¢ = n? (w2 — w2 (%))
to get an integral estimate of | Dws| and thus of |D;;v| for i + j > 2, and then
use (A.55) to estimate the remaining derivative D1;v. In these estimates, we use
(A.61)—(A.63). We obtain that, for sufficiently small & depending only on A,

(A.64)
B
dZO [Dv]Oaﬂ,deomz(Zo)ﬁB;_
B B
< C(Iler (s, peones) +edlPVog a,. aonas +odb Il g )

for any zg € B2Jr U X5, with C = C(A). Using (A.64), we follow the proof of
Lemma A.3 to obtain

* * *
(A65) 117, pen SO gt om, +e00T] 5 g p, + el g3 ).
Now we choose sufficiently small ¢ > 0 depending only on A to have

* < *
017 g s, < CO) (“vlll,o,B;uzz n ||u||0,3;;) |

Then we use the interpolation inequality, similar to the proof of (A.36), to have

*
(A.66) 10117 5 pus, <CA) (IIvIIO,B; + IIMIIO,B;;) :
By (A.54) with ¢ = &(A) as chosen above, (A.66) implies
*
(A.67) Hu”l,ﬁ,B;‘SUBSE = CMllullg g -

Then problem (A.46) and (A.47) can be regarded as a linear oblique derivative

problem in B74;/4 whose coefficients a;; (x, y) := A;; (Du(x, y),x,y) and a; (x, y)

:= A; (Du(x, y), x, ) have the estimate in C%# (B7";/4) by a constant depending
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only on (A, M) from (A.67) and (A.8). Moreover, we can assume 8 < « so that
(A.49) implies the estimates of (b;,c) in clp (B;;M) with ¢ = g(4). Then the
standard estimates for linear oblique derivative problems [20, Lemma 6.29] imply

(A.68) ||u||2’ﬂ’3;s/2SC(A,M)H”HO,B;;M'

In particular, the C %% (B;; /2)-norms of the coefficients (a;;,a;) of the linear equa-
tion (A.46) are bounded by a constant depending only on (A, M), which implies

1], < CCO Ml g

by again applying [20, Lemma 6.29]. This implies the assertion of Step 2, thus
Theorem A 4. U
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