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Abstract

A polynomial parametrization for the group of integer two-by-two matrices
with determinant one is given, solving an old open problem of Skolem and Beurk-
ers. It follows that, for many Diophantine equations, the integer solutions and the
primitive solutions admit polynomial parametrizations.

Introduction

This paper was motivated by an open problem from [8, p. 390]:

CNTA 5.15 (Frits Beukers). Prove or disprove the following statement:
There exist four polynomials A;B;C;D with integer coefficients (in any
number of variables) such that AD�BC D 1 and all integer solutions
of ad � bc D 1 can be obtained from A;B;C;D by specialization of the
variables to integer values.

Actually, the problem goes back to Skolem [14, p. 23]. Zannier [22] showed
that three variables are not sufficient to parametrize the group SL2 Z, the set of all
integer solutions to the equation x1x2� x3x4 D 1.

Apparently Beukers posed the question because SL2 Z (more precisely, a con-
gruence subgroup of SL2 Z) is related with the solution set X of the equation
x21 C x

2
2 D x

2
3 C 3, and he (like Skolem) expected the negative answer to CNTA

5.15, as indicated by his remark [8, p. 389] on the set X :

I have begun to believe that it is not possible to cover all solutions
by a finite number of polynomials simply because I have never

The paper was conceived in July of 2004 while the author enjoyed the hospitality of Tata Institute for
Fundamental Research, India.
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980 LEONID VASERSTEIN

seen a polynomial parametrisation of all two-by-two determinant
one matrices with integer entries.

In this paper (Theorem 1 below) we obtain the affirmative answer to CNTA
5.15. As a consequence we prove, for many polynomial equations, that either
the set X of integer solutions is a polynomial family or (more generally) X is a
finite union of polynomial families. It is also possible to cover all solutions of
x21 C x

2
2 D x

2
3 C 3 by two polynomial triples; see Example 15 below.

Skolem [14, Bemerkung 1, p. 23] conjectured that SLn Z does not admit a
polynomial parametrization for any n. However the main result of Carter and
Keller [4] refutes this for n� 3, and our Theorem 1 refutes this for nD 2 and also
implies a similar result for n� 3; see Corollary 17(a).

A few words about our terminology. Let

.P1.y1; : : : ; yN /; : : : ; Pk.y1; : : : ; yN //

be a k-tuple of polynomials in N variables with integer coefficients. Plugging in
all N -tuples of integers, we obtain a family X of integer k-tuples, which we call a
polynomial family (defined over the integers Z ) with N parameters. We also say
that the set X admits a polynomial parametrization with N parameters. In other
words, a polynomial family X is the image (range) P.ZN / of a polynomial map
P W ZN ! Zk . We call this map P a polynomial parametrization of X .

Given a Diophantine equation or a system of Diophantine equations, we can
ask whether the solution set (over Z) is a polynomial family. In other words, we can
search for a general solution (i.e., a polynomial parametrization for the set). In the
case of a polynomial equation, the polynomials in any polynomial parametrization
form a polynomial solution.

If no polynomial parametrization is known or exists, we can ask whether the
solution set is a finite union of polynomial families. Loosely speaking, are the
solutions covered by a finite number of polynomials?

Also we can ask about polynomial parametrization of all primitive solutions.
Recall that a k-tuple of integers is called primitive (or unimodular) if its GCD
is 1. For any homogeneous equation, a polynomial parametrization of all primitive
solutions leads to a polynomial parametrization of all solutions with one additional
parameter.

The open problem CNTA 5.15 quoted above is the question whether the group
SL2 Z is a polynomial family, i.e., admits a polynomial parametrization. Our an-
swer is “yes”:

THEOREM 1. SL2 Z is a polynomial family with 46 parameters.

We will prove this theorem in Section 1. The proof refines computations in
[10], [2], [13], [18] and [4], especially, the last two papers.
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Now we consider some applications of the theorem and some examples. First
we deal with an arbitrary system of linear equations. Then we consider quadratic
equations. Finally, we consider Diophantine equations of higher degree. On the
way, we make a few general remarks on the polynomial families.

It is easy to see that the solution set for any system of linear equations (with
integer coefficients) either is empty or admits a polynomial parametrization of de-
gree � 1 with the number of parameters N less than or equal to the number of
variables k. In Section 2, using our Theorem 1, we obtain this:

COROLLARY 2. The set of all primitive solutions for any linear system of
equations with integer coefficients either consists of � 2 solutions or is a polyno-
mial family.

For example, the set Umn Z of all primitive (unimodular) n-tuples of integers
turns out to be a polynomial family provided that n� 2. The case n� 3 is much
easier, and this result can be easily extended to more general rings; see Section 2
below. When nD 1, the set Um1 ZD f˙1g consists of two elements. This set is
not a polynomial family but can be covered by two (constant) polynomials.

In general, a finite set with cardinality ¤ 1 is not a polynomial family but can
be covered by a finite number of (constant) polynomials (the number is zero in the
case of an empty set).

The set Umn Z is a projection of the set X of all integer solutions to the
quadratic equation x1x2C � � � C x2n�1x2n D 1. So if X is a polynomial family,
then obviously Umn Z is a polynomial family. Using Theorem 1, we will show X is
a polynomial family if n� 2. (When nD 1 the solution set Um1 ZDGL1 ZDf˙1g

to the equation x1x2 D 1 is not a polynomial family.)

COROLLARY 3. When n� 2, the set of all integer solutions of

x1x2C � � �C x2n�1x2n D 1

is a polynomial family.

In fact, Theorem 1 implies that for many other quadratic equations, the set
of all integer or all primitive solutions is a polynomial family or a finite union of
polynomial families. A useful concept here is that of a Q-unimodular vector x,
where Q.x/ is a quadratic form, i.e., a homogeneous, degree two polynomial with
integer coefficient. An integer vector x is called Q-unimodular if there is a vector
x0 such that Q.xC x0/�Q.x/�Q.x0/D 1. Our Corollary 3 is a particular case
of the following result, which we will prove in Section 3:

COROLLARY 4. Consider the set X of all Q-unimodular solutions to Q.x/D
Q0, where Q.x/ is a quadratic form in k variables and Q0 is a given number.
Assume that k � 4 and that Q.x/D x1x2C x3x4CQ0.x5; : : : ; xk/. Then X is a
polynomial family with 3kC 80 parameters.
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Under the additional condition that k � 6 and Q0.x5; : : : ; xk/ D x5x6 C

Q00.x7; : : : ; xk/, it is easy to get a better bound (with 3k � 6 instead of 3kC 80)
without using Theorem 1 (see Proposition 3.4 below).

Note that for nonsingular quadratic forms Q (when the corresponding sym-
metric bilinear form .x; x0/QDQ.xCx

0/�Q.x/�Q.x0/ has an invertible matrix),
“Q-unimodular” means “primitive.” In general, the orthogonal group acts on the
integer solutions Z and on the Q-unimodular solutions X , a fact we use to prove
Corollary 4.

Now we make several remarks about the integer solutions x toQ.x/DQ0 that
are not Q-unimodular. We observe that both GCD.x/ and the GCD of all .x; x0/Q
are invariants under the action. In the case when Q is nonsingular, Corollary 4
describes the set Z of all integer solutions z as follows: if Q0 D 0 (homogeneous
case), then zDxy0 with primitive x, soZ is a polynomial family with an additional
parameter; if Q0 ¤ 0, then Z is a finite union of polynomial families indexed
by the square divisors of Q0. We will show elsewhere that the set Z for Q in
Corollary 4 or, more generally, for any isotropic quadratic form Q, is a finite union
of polynomial families.

Example 5. The solution set for the Diophantine equation x1x2 D x23 admits
a polynomial parametrization with three parameters:

.x1; x2; x3/D y1.y
2
2 ; y

2
3 ; y2y3/:

Among these solutions, the primitive solutions are those with y1D˙1 and .y2; y3/
2 Um2 Z. So by Theorem 1 (or Corollary 3 with n D 2/, the set of all primitive
solutions is the union of two polynomial families. The set of primitive solutions is
not a polynomial family.

This follows easily from the fact that the polynomial ring ZŒy1; : : : ; yN � is a
unique factorization domain from any N , so within any polynomial family either
all x1 � 0 or all x1 � 0.

The number 2 here is related to the fact that the group SL2 Z acts on the two-
by-two symmetric matrices with two orbits on the determinant 0 primitive matrices.
The action is �

x1 x3
x3 x4

�
7! ˛T

�
x1 x3
x3 x4

�
˛ for ˛ 2 SL2 Z,

where ˛T is the transpose of ˛.
An alternative description of the action of SL2 Z is�

x3 �x1
x2 �x3

�
7! ˛�1

�
x3 �x1
x2 �x3

�
˛ for ˛ 2 SL2 Z.

The trace 0 and the determinant x1x2� x23 are preserved under this action.



POLYNOMIAL PARAMETRIZATION 983

Example 6. The solution set for x1x2C x3x4 D 0 admits the following poly-
nomial parametrization with five parameters:

.x1; x2; x3; x4/D y5.y1y2; y3y4; y1y3; y2y4/:

Such a solution is primitive if and only if y5 D˙1 and .y1; y4/; .y2; y3/ 2Um2 Z.
So by Theorem 1, the set of all primitive solutions is a polynomial family with
92 parameters. By Theorem 2.2 below, the number of parameters can be reduced
to 90.

Example 7. Consider the equation x1x2 D x23 CD with a given D 2 Z. The
case D D 0 was considered in Example 5, so assume now that D ¤ 0. We can
identify solutions with integer symmetric two-by-two matrices of determinant D.
The group SL2 Z acts on the set X of all solutions as in Example 5. It is easy to
see and well known that every orbit contains either a matrix

�
a
b
b
d

�
with a¤ 0 and

.1� jaj/=2� b � jaj=2� jd j=2 or a matrix
�
0
b
b
0

�
with b2 D�D. In the first case,

jDj D jad �b2j � a2�a2=4D 3a2=4� 3b2=16, and d is determined by a and b;
hence the number of orbits is at most 8jDj=3. Therefore the total number of orbit
is bounded by 8jDj=3C 2. (Better bounds and connections with the class number
of the field QŒ

p
D� are known.)

By Theorem 1, every orbit is a polynomial family with 46 parameters, so the
set X can be covered by a finite set of polynomials, and the subset of primitive
solutions can be covered by a finite set of polynomials with 46 parameters each.
When D D˙1 or ˙2, the number of orbits and hence the number of polynomial
families is two. When D D˙3, the number of orbits is four.

When D is square-free, every integer solution is primitive.

Example 8. Consider the equation x1x2C x3x4 DD with a given integer D
(i.e., the equation in Corollary 4 with k D 4 and Q0 DD/. The case D D 0 was
considered in Example 6, so assume now that D ¤ 0. The group SL2 Z� SL2 Z

acts on the solutions
�
x1

�x4

x3

x2

�
by�

x1 x3
�x4 x2

�
7! ˛�1

�
x1 x3
�x4 x2

�
ˇ; where ˛; ˇ 2 SL2 Z.

It is well known that every orbit contains the matrix diag.d;D=d/, where
d D GCD.x1; x2; x3; x4/. So the number of orbits is the number of squares d2

dividing D. By Theorem 1, the set X of integers solutions is a finite union of
polynomial families, and the subset X 0 of primitive solutions is a polynomial family
with 92 parameters. When D is square-free, X 0 DX . When D D˙1, Theorem 1
gives a better number of parameters, namely 46 instead of 92.

Example 9. Let D � 2 be a square-free integer. It is convenient to write
solutions .x1; x2/D .a; b/ of Pell’s equation x21�Dx

2
2 D 1 as aCb

p
D 2ZŒ

p
D�.
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Then they form a group under multiplication. All solutions are primitive, and they
are parametrized by two integers, m and n, as

aC b
p
D D .a0C b0

p
D/m.a1C b1

p
D/n;

where a0C b0
p
D is a solution of infinite order and a1C b1

p
D is a solution of

finite order (this is not a polynomial parametrization!).
We claim that every polynomial solution to the equation is constant. Since

D is not a square, this is obvious. Here is a more sophisticated argument which
works for many “sparse” sequences:

It is clear that
P
jaj�" <1 for any " > 0, where the sum is taken over all

solutions aCb
p
D. On the other hand, if we have a nonconstant polynomial

solution, we have a nonconstant univariate solution f .y/C g.y/
p
D. If g.x/ is

not constant, then f .y/ is not constant. Let d � 1 be the degree of f .x/. ThenP
z2Zjf .z/j

�" D1 provided that 0 < " � 1=d . Since f .z/ takes every value at
most d times, we obtain a contradiction that proves d D 0.

Since the set X of all integer solutions is infinite, it cannot be covered by a
finite number of polynomials.

Remarks. (1) Let a1; a2; : : : be a sequence of integers satisfying a linear re-
currence equation an D c1an�1C� � �C ckan�k with some k � 1 and ci 2 Z for all
n� kC 1. Then the argument in Example 9 shows that the set X of all integers ai
either is finite or is not a finite union of polynomial families. Note that X is finite
if and only if any of the following conditions holds:

� the sequence is bounded,

� the sequence is periodic,

� the sequence satisfies a linear recurrence equation with all zeros of the char-
acteristic polynomial being roots of 1,

� the sequence satisfies a linear recurrence equation with all zeros of the char-
acteristic polynomial on the unit circle.

(2) The partition function p.n/ provides another set of integers that is not a
finite union of polynomial families (use the well-known asymptotic for p.n/ and
the argument in Example 9).

(3) By author’s request, S. Frisch [6] proved that every subset of Zk with a
finite complement is a polynomial family.

(4) The set of all positive composite numbers is parametrized by the polyno-
mial

.y21 Cy
2
2 Cy

2
3 Cy

2
4 C 2/.y

2
5 Cy

2
6 Cy

2
7 Cy

2
8 C 2/:

(5) It is known [9] that the union of the set of (positive) primes and a set of
negative integers is a polynomial family. In the terms of [9], the set of primes is
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both Diophantine and listable. On the other hand, it is an easy fact that the set of
primes is not a polynomial family; see Corollary 5.15 below and the remark after
its proof.

Corollaries 2–4 and Examples 5–9 above are about quadratic equations. The next
three examples are about higher degree polynomial equations.

Example 10. The Fermat equation yn1 C y
n
2 D y

n
3 with any given n � 3 has

three “trivial” polynomial families of solutions with one parameter each when n
is odd, and it has four polynomial families of solutions when n is even. Fermat’s
Last Theorem says that these polynomial families cover all integer solutions.

Example 11. It is unknown whether the solution set of

x31 C x
3
2 C x

3
3 C x

3
4 D 0

can be covered by a finite set of polynomials. A negative answer was conjectured
in [7].

Example 12. It is unknown whether the solution set of

x31 C x
3
2 C x

3
3 D 1

can be covered by a finite number of polynomials. It is known (see [11, Th. 2])
that the set cannot by covered by a finite number of univariant polynomials.

To deal with equations x21Cx
2
2 D x

2
3 and x21Cx

2
2 D x

2
3C3 (which are equiva-

lent over the rational numbers Q to the equations in Examples 5 and 7 with D D 3,
respectively) we need a polynomial parametrization of a congruence subgroup of
SL2 Z.

Recall that for any nonzero integer q, the principal congruence subgroup
SL2.qZ/ consists of ˛ 2 SL2 Z such that ˛ � 12 D

�
1
0
0
1

�
modulo q. A congruence

subgroup of SL2 Z is a subgroup containing a principal congruence subgroup.

THEOREM 13. Every principal congruence subgroup of SL2 Z admits a poly-
nomial parametrization with 94 parameters.

We will prove this theorem in Section 5 below. Theorem 13 implies that
every congruence subgroup is a finite union of polynomial families. There are
congruence subgroups that are not polynomial families; see Proposition 5.13 and
Corollary 5.14 below.

Example 14. Consider the equation x21 C x
2
2 D x

2
3 . Its integer solutions are

known as Pythagorean triples; sometimes the name is reserved for solutions that
are primitive and/or positive. Let X be the set of all integer solutions

The equation can be written as x21 D .x2C x3/.x3� x2/ so every element of
X gives a solution to the equation in Example 5.
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The set X is not a polynomial family but can be covered by two polynomial
families:

.x1; x2; x3/D y3.2y1y2; y
2
1 �y

2
2 ; y

2
1 Cy

2
2/ or y3.y21 �y

2
2 ; 2y1y2; y

2
1 Cy

2
2/:

The subset X 0 of all primitive solutions is the disjoint union of four families
described by the same polynomials but with y3 D˙1 and .y1; y2/ 2 Um2 Z with
odd y1Cy2.

To get a polynomial parametrization of these pairs .y1; y2/ and hence to cover
X 0 by four polynomials, we use Theorem 13. Let H be the subgroup of SL2 Z

generated by SL2.2Z/ and the matrix
�
0
�1

1
0

�
. The first rows of matrices in H are

exactly the .a; b/ 2 Um2 Z such that aC b is odd. It follows from Theorem 13
(see Example 5.12 below) that H is a polynomial family with 95 parameters. Thus,
the set X 0 of primitive solutions is the union of four polynomial families with 95
parameters each.

Example 15. Now we consider the equation x21 C x
2
2 D x23 C 3. Finding

its integer solutions was a famous open problem stated as a limerick a long time
ago; it is [8, CNTA 5.14]. Using the obvious connection with the equation in our
Example 7, Beukers [8] splits the set of solutions X into two families, each of them
parametrized by the group H above (Example 14).

So Theorem 13 implies that X is the union of two polynomial families, con-
trary to the belief of Beukers [8].

Example 16. A few results of the last millennium, [5] and [3], together with
our results, show that for arbitrary integers a; b; c and any integers ˛; ˇ;  � 1, the
set of primitive solutions to the equation ax˛1 C bx

ˇ
2 D cx


3 can be covered by a

finite (possibly, empty) set of polynomial families. Details will appear elsewhere.
The minimal cardinality of the set is not always known; in the case of ˛DˇD � 3,
the cardinality is 8 for even ˛ and 6 for odd ˛ (Fermat’s Last Theorem).

In a future paper, using a generalization of Theorem 1 to rings of algebraic
numbers, we will prove that many arithmetic groups are polynomial families. In
Section 5 of this paper, we will consider only Chevalley-Demazure groups of clas-
sical type, namely SLn Z, the symplectic groups Sp2n Z, the orthogonal groups
SOn Z, and the corresponding spinor groups Spinn Z.

Recall that

� Sp2n Z is a subgroup of SL2n Z preserving the bilinear form

x1y2�y1x2C � � �C x2n�1y2n�y2n�1x2n;

� SO2n Z is a subgroup of SL2n Z preserving the quadratic form

x1x2C � � �C x2n�1x2n;
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� SO2nC1 Z is a subgroup of SL2nC1 Z preserving the quadratic form

x1x2C � � �C x2n�1x2nC x
2
2nC1;

� there is a homomorphism (isogeny) Spinn Z! SOn Z whose kernel and cok-
ernel are both of order 2 (see [17]),

� Spin3 ZD SL2 ZD Sp2 Z (see Example 5),
� Spin4 ZD SL2 Z�SL2 Z (see Example 8),
� Spin5 ZD Sp4 Z and Spin6 ZD SL4 Z (see [21]).

From Theorem 1, we easily obtain (see Section 4)

COROLLARY 17. For any n� 2,

(a) the group SLn Z is a polynomial family with 39Cn.3nC 1/=2 parameters,

(b) the group Spin2nC1 Z is a polynomial family with 4n2C 41 parameters,

(c) the group Sp2n Z is a polynomial family with 3n2C 2nC 41 parameters,

(d) the group Spin2nC2 Z is a polynomial family with 4.nC 1/2 � .nC 1/C 36
parameters.

So SOnC1 Z is the union of two polynomial families.

The polynomial parametrization of SLn Z implies obviously that the group
GLn Z is a union of two polynomial families for all n� 1. (It is also obvious that
GLn Z is not a polynomial family.) Less obvious is the following consequence of
Corollary 17(a):

COROLLARY 18. For any integer n� 1, the set Mn of all integer n�n matri-
ces with nonzero determinant is a polynomial family in Zn

2

that has 2n2C6nC39
parameters.

Proof. When nD 1, M1 is the set of nonzero integers. It is parametrized by
the polynomial

f .y1; y2; y3; y4; y5/D .y
2
1 Cy

2
2 Cy

2
3 Cy

2
4 C 1/.2y5C 1/

with five parameters. (We used Lagrange’s theorem asserting that the polynomial
y21Cy

2
2Cy

2
3Cy

2
4 parametrizes all integers � 0, but we did not use Corollary 17.)

Assume now that n� 2. Every matrix ˛ 2Mn has the form ˛ D ˇ�, where
ˇ 2 SLn Z and � is an upper triangular matrix with nonzero diagonal entries. Using
39C 3n.nC 1/=2 parameters for ˛ (see Corollary 17(a)), five parameters for each
diagonal entry in � (see the case n D 1 above), and one parameter for each off-
diagonal entry in �, we obtain a polynomial parametrization for Mn whose number
of parameters is

39C 3n.nC 1/=2C 5nCn.n� 1/=2D 2n2C 6nC 39: �
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Remark 1. Similarly, every system of polynomial inequalities (with the in-
equality signs ¤, �, �, >, < instead of the equality sign in polynomial equations)
can be converted to a system of polynomial equations by introducing additional
variables. For example, the set Mn in Corollary 18 is a projection of the set of all
integer solutions to the .n2C5/-variable polynomial equation

det.xi;j /D .x2n2C1
C x2

n2C2
C x2

n2C3
C x2

n2C4
C 1/.2xn2C5C 1/:

The polynomial parametrization of SLn Z with n� 3 is related to a bounded
generation of this group. In [4], it is proved that every matrix in SLn Z with n� 3
is a product of 36C n.3n� 1/=2 elementary matrices (for nD 2, the number of
elementary matrices is unbounded). Since there are n2 � n types of elementary
matrices zi;j with i ¤ j , this gives a polynomial parametrization of SLn Z for
n� 3, with

.n2�n/.36Cn.3n� 1/=2/

parameters. Conversely, any polynomial matrix

˛.y1; : : : ; yN / 2 SLn.ZŒy1; : : : ; xN �/

is a product of elementary polynomial matrices [15] if n � 3. When ˛.ZN / D
SLn Z, this gives a representation of every matrix in SLn Z as a product of a
bounded number of elementary matrices.

We conclude the introduction with remarks on possible generalization of The-
orem 1 to commutative rings A with 1. If A is semi-local (which includes all fields
and local rings) or, more generally, A satisfies the first Bass stable range condition
sr.A/D 1 (which includes, e.g., the ring of all algebraic integers; see [19]), then
every matrix in SL2A has the form�

1 u1
0 1

��
1 0

u2 1

��
1 u3
0 1

��
1 0

u4 1

�
;

which gives a polynomial matrix

P.y1; y2; y3; y4/ 2 SL2.ZŒy1; y2; y3; y4�/

such that P.A4/D SL2A. For any commutative A with 1, any N , and any poly-
nomial matrix

P.y1; : : : ; yN / 2 SL2.ZŒy1; : : : ; yN �/;

all matrices ˛ 2 P.An/ have the same Whitehead determinant wh.˛/ 2 SK1A; see
[1]. There are rings A, e.g.; AD ZŒ

p
�D� for some D [2], such that wh.SL2A/D

SK1A¤ 0. For such rings A, there in no N and P such that P.AN /D SL2A.
Allowing coefficients in A does not help much. For any matrix

P.y1; : : : ; yN / 2 SL2.AŒy1; : : : ; yN �/;
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all matrices in P.AN / have the same image in SK1A=Nill1A, where Nill1A is
the subgroup of SK1A consisting of wh.˛/ with unipotent matrices ˛. There are
rings A such that wh.SL2A/D SK1A¤ Nill1A; see [2]. For such a ring A, there
in no N and P such that P.AN /D SL2A.

1. Proof of Theorem 1

We denote elementary matrices by

b1;2 D

�
1 b

0 1

�
and c2;1 D

�
1 0

c 1

�
:

It is clear that each of the subgroups Z1;2 and Z2;1 of SL2 Z is a polynomial family
with one parameter.

Note that the conjugates of all elementary matrices are covered by a polyno-
mial matrix

ˆ3.y1; y2; y3/ WD

�
1Cy1y3y2 y21y3
�y22y3 1�y1y3y2

�
in three variables. Namely, for ˛ D

�
a
c
b
d

�
2 SL2 Z,

˛e1;2˛�1 D

�
1� aec a2e

� c2e 1C aec

�
and ˛e2;1˛�1 D

�
1C bed � b2e

d2e 1� bed

�
:

Remark 2. Conversely, every value of ˆ3 is a conjugate of b1;2 in SL2 Z for
some b 2 Z.

Next we denote by X4 the set of matrices of the form

˛˛T D

�
a b

c d

��
a c

b d

�
D

�
˛;

�
0 1

�1 0

��
D ˛

�
0 1

�1 0

�
˛�1

�
0 �1

1 0

�
;

where ˛ 2 SL2 Z. Since�
0 1

�1 0

�
D

�
1 0

�1 1

��
1 1

0 1

��
1 0

�1 1

�
;

we have

˛˛T D

�
1� bd b2

� d2 1C bd

��
1� ac a2

� c2 1C ac

��
1� bd b2

� d2 1C bd

��
0 �1

1 0

�
DWˆ4.a; b; c; d/:

Hence the set X4 is covered by a polynomial matrix ˆ4.y1; y2; y3; y4/ in four
variables: X4 �ˆ4.Z4/.

Remark 3.
�
0
1
�1
0

�
Dˆ4.0; 0; 0; 0/2ˆ4.Z

4/, while reduction modulo 2 shows
that X4 does not contain

�
0
1
�1
0

�
.
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Note that ˆ4.˙1; 0; 0;˙1/ D diag.1; 1/. Therefore we can define the poly-
nomial matrix

ˆ5.y1; y2; y3; y4; y5/D

�
y5 0

0 1

�
ˆ4.1Cy1y5; y2y5; y3y5; 1Cy4y5/

�
y5 0

0 1

��1
2 SL2.ZŒy1; y2; y3; y4; y5�/:

By definition,�
e 0

0 1

��
1C ae be

ce 1C de

��
1C ae ce

be 1C de

��
e 0

0 1

��1
D

�
1C ae be2

c 1C de

��
1C ae ce2

b 1C de

�
2ˆ5.Z

5/

if a; b; c; d; e 2 Z, e ¤ 0, and the second matrix on the left side is in SL2 Z.
For a; b; c; d; e 2 Z, we denote by X5 � ˆ5.Z5/ the set of matrices of the

form�
1C ae be2

c 1C de

��
1C ae ce2

b 1C de

�
with

�
1C ae be2

c 1C de

�
2 SL2 Z:

The case e D 0 is included because ˆ5.0; b; c; 0; 0/D
�
1

bCc
0
1

�
.

Note that X�15 DX5. Set Y5 WDXT5 (the transpose of the set X5/.
Our next goal is to prove that every matrix in SL2 Z is a product of a small

number of elementary matrices and matrices from X5 and Y5.

LEMMA 1.1. Let a; c; e 2 Z, and let ˛ D
�
1Cae
�

ce
�

�
2 SL2 Z. Then there are

u; v 2 Z; " 2 f1;�1g, and ' 2X5 such that the matrix

˛.eu/1;2v2;1.�c1e/
1;2'.�"ev/1;2.�"u/2;1

has the form
�
� �

"c 1C ae

�
; where c1 WD cCu.1C ae/.

Proof. The case 1C ae D 0 is trivial (we can take u D v D 0 and " D �e/,
so we assume that 1C ae ¤ 0. By Dirichlet’s theorem on primes in arithmetic
progressions, we find u 2 Z such that either c1 WD c C u.1 C ae/ � 1 mod 4
and �c1 is a prime or c1 WD c C u.1C ae/ � 3 mod 4 and c1 is a prime. Then
GL1.Z=c1Z/ is a cyclic group, and the image of �1 in this group is not a square.
So a D ˙a21 mod c1 for some a1 2 Z. We write aC vc1 D "a21 with v 2 Z and
" 2 GL1 Z. Then, for some b1; d1 2 Z,

˛.ue/1;2v2;1.�c1e/
1;2
D

�
1C "a21e c1e

� �

�
.�c1e/

1;2
D

�
1C "a21e � "c1e

2a21
b1 d1

�
:
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Let ˇ be the rightmost matrix above, and note that

ˇ�1 D

�
d1 "c1a

2
1e
2

� b1 1C "a
2
1e

�
:

Since det.ˇ/D 1, we conclude that d1� 1 2 eZ.
We set

 WD

�
d1 � b1a

2
1e
2

"c1 1C "a21e

�
D

�
� �

"c1 1C .aC vc1/e

�
:

Then ' WD ˇ�1 2X5 and  D ˇ'.
Now

.�"ev/1;2.�"u/2;1 D

�
� �

"c1 1C ae

�
.�"u/2;1

D

�
� �

".cCu.1C ae// 1C ae

�
.�"u/2;1 D

�
� �

"c 1C ae

�
: �

LEMMA 1.2. Let ˛ D
�
a
�

b
�

�
2 SL2 Z, with m � 1 an integer. Then there are

zi 2 Z, ' 2X5, and  2 Y5 such that

˛mz
1;2
1 z

2;1
2 z

1;2
3 'z

1;2
4 z

2;1
5 z

1;2
6 z

2;1
7  z

2;1
8 z

1;2
9 z

2;1
10 D

�
am b

� �

�
:

Proof. By the Cayley-Hamilton theorem and mathematical induction on m,
we have

˛m D f 12Cg˛ D

�
f Cga gb

� �

�
with f; g 2 Z,

where 12 is the identity matrix. Since 1 = det(˛m/ � f 2 mod g, we can write
g D g1g2 with f � 1 mod g1 and f ��1 mod g2.

By Lemma 1.1, there are z1; z2; z3; z4; k1 2 Z and '1 2X5 such that

˛mz
1;2
1 z

2;1
2 z

1;2
3 '1z

1;2
4 k

2;1
1 DW ˇ D ˇ D

�
� �

˙g2b f Cga

�
:

Now we apply Lemma 1.1 to the matrix

� D�

�
0 1

�1 0

�
ˇ

�
0 1

�1 0

��1
D

�
�f �ga ˙g2b

� �

�
instead of ˛. So there are k2;�z6;�z7;�z8;�z9 2 Z and '0 2X5 such that

�k
1;2
2 .�z6/

2;1.�z7/
1;2'0.�z8/

1;2.�z9/
2;1
D

�
� �

˙b �f �ga

�
:
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Negating this and conjugating by
�
0 � 11

0

��1 we obtain that

ˇ.�k2/
2;1z

1;2
6 z

2;1
7  z

2;1
8 z

1;2
9 D �D

�
f Cga ˙b

� �

�
;

where  WD
�
0
�1

1
0

��1
'0
�
0
�1

1
0

�
2 Y5.

The matrix ˛ is lower triangular modulo b, so f C ga � am mod b. We
find z10 2 Z such that f C ga˙ z10b D am and set z5 D k1 � k2 to obtain our
conclusion. �

COROLLARY 1.3. Let ˛D
�
a
�

b
�

�
2SL2 Z, withm� 1 an integer, and "2 f˙1g.

Assume that am � " mod b. Then there are zi 2 Z and 'i 2X5 such that

˛mz
1;2
1 z

2;1
2 z

1;2
3 '1z

1;2
4 z

2;1
5 z

1;2
6 z

2;1
7 '2z

2;1
8 z

1;2
9 z

2;1
10 z

1;2
11 z

2;1
12 D "12:

Proof. By Lemma 1.2, we find t1; zi 2 Z with 1� i � 9, ' 2X5, and  2 Y5
such that the matrix

ˇ WD ˛mz
1;2
1 z

2;1
2 z

1;2
3 'z

1;2
4 z

2;1
5 z

1;2
6 z

2;1
7  z

2;1
8 z

1;2
9 t

2;1
1 D

�
am b

� �

�
:

Now we can find t2; z11; z12 2 Z such that ˇt2;12 z
1;2
11 z

2;1
12 D "12. The conclusion

follows from setting z10 D t1C t2. �

For any integer s � 1, we denote by the �s the following polynomial matrix
in s parameters:

�s.y1; : : : ; ys/D y
1;2
1 y

2;1
2 � � � ;

where the last factor is the elementary matrix y1;2s (resp., y2;1s / when s is odd (resp.,
even). We set

�s.y1; : : : ; ys/D

�
0 1

�1 0

�
�s.y1; : : : ; ys/

�
0 1

�1 0

��1
:

Note that

�s.y1; : : : ; ys/D�s.y1; : : : ; ys/
�1
D �s.y1; : : : ; ys/

T for even s,

�s.y1; : : : ; ys/D�s.y1; : : : ; ys/
�1
D �s.y1; : : : ; ys/

T for odd s,

where “T ” denotes transpose, and that �s.y1; : : : ; ys/D �sC1.0; y1; : : : ; ys/ for
any s.

COROLLARY 1.4. Let ˛D
�
a
c
b
d

�
2 SL2 Z and "2 f˙1g. Assume that for some

coprime integers m; n � 1, we have am �˙1 mod b and an �˙1 mod c. Then
there are " 2 f˙1g, ıi 2�i .Zi /, i 2 �i .Zi /, 'i 2X5, and  i 2 Y5 such that

˛ D "5'14 2ı7 1ı4'23:
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Proof. Replacing m and n by their positive multiples, we can assume that
nDm� 1. By Corollary 1.3,

˛m D˙5'14'2ı3

with '1; '2 2X5, ı3 2�3.Z3/, 4 2 �4.Z4/, and 5 2 �5.Z5/.
Applying Corollary 1.3 to ˛T instead of ˛, we get

.˛T /n D˙ 05'
0
1
0
4'
0
2ı
0
3

with '0i 2X5, ı03 2�3.Z
3/, and  0i 2 �i .Z

i /.
Conjugating by

�
0
�1

1
0

�
, we obtain that

˛�n D

�
0 1

�1 0

�
.˛T /n

�
0 1

�1 0

��1
D˙ı5 1ı4 23

with  i 2 Y5, 3 2 �3, and ıi 2�4.Zi /.
Therefore

˛ D ˛m˛�n D˙5'14'2ı7 1ı4 23; where ı7 WD ı3ı5 2�7.Z7/. �

PROPOSITION 1.5. Every matrix ˛ 2 SL2 Z can be represented as

˛ D 5'14'2ı7 1ı4 26

with ıi 2�i .Zi /, i 2 �i .Zi /, 'i 2X5, and  i 2 Y5.

Proof. Let ˛ D
�
a
c
b
d

�
. The case aD 0 is trivial, so let a¤ 0. As in the proof

of Lemma 1.1, can find an integer u such that jbC auj is a positive prime � 3
modulo 4. Then we find an integer v such that cC av is a positive prime such that

GCD.cC av� 1; jbC auj � 1/D 1 or 2.

Let now m D .jb C auj � 1/=2 and n D c C av � 1. Then GCD.m; n/ =1, i.e.,
m; n are coprime, i.e., .m; n/ 2 Um2 Z. Moreover am � ˙1 mod .b C au/ and
am � 1 mod .cC av/.

By Corollary 1.4, we have

v2;1˛u1;2 D˙ 05'14'2ı7 1ı4 23

with ıi 2�i .Zi /, i ; 
0
i 2 �i .Z

i /, 'i 2X5, and  i 2 Y5.
Set 5 D .�v/2;1 05 2 �5.Z

5/ and  04 D 3.�u/
1;2 2 �4.Z

4/. It remains to
observe that ˙12 2�4.Z4/\�4.Z4/; hence ˙�i .Zi /� �iC2.ZiC2/ for all i � 1.
In particular, both  04 and � 04 belong to �6.Z6/. �

Note that Theorem 1 follows from Proposition 1.5. The polynomial para-
metrization of SL2 Z in Proposition 1.5 is explicit enough to see that the number
of parameters is 46 and the total degree is at most 78. This is because the degrees
of �s and �s are both s and the degree of ˆ5 is 13.
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2. Primitive vectors and systems of linear equations

First, Proposition 1.5 yields a lemma:

LEMMA 2.1. For any .a; b/ 2 Um2 Z there are ıi ; ı
0
i 2 �i .Z

i /, 'i 2 X5,
4; 6 2 �i .Z

4/, and  i 2 Y5 such that

.a; b/D .1; 0/ı04'14 2ı7 1ı4'26:

Proof. Let ˛ be a matrix in SL2 Z with the first row .a; b/. We write ˛ as in
Proposition 1.5. Multiplying by the row .1; 0/ on the left, we obtain

.a; b/D .1; 0/˛ D .1; 0/5'14 2ı7 1ı4'26:

Since

.1; 0/�s.y1; : : : ; ys/D .1; 0/�s�1.y2; : : : ; ys/;

we can replace 5 by ı04 2�4.Z
4/. �

The lemma implies the following result:

THEOREM 2.2. The set Um2 Z of coprime pairs of integers admits a polyno-
mial parametrization with 45 parameters.

For n� 3, it is easy to show that Umn Z admits a polynomial parametrization
with 2n parameters. This is because the ring Z satisfies the second Bass stable
range condition. Now we introduce this condition.

A row .a1; : : : ; an/ 2 A
n over an associative ring A with 1 is said to be

unimodular if a1AC � � � C anAD A, i.e., there are bi 2 A such that
P
aibi D 1.

Let UmnA denote the set of all unimodular rows in An.
We write sr.A/ � n if for any .a1; : : : ; anC1/ 2 UmnC1A there are ci 2 A

such that .a1C anC1c1; : : : ; anC anC1cn/ 2 UmnA.
For example, it is easy to see that sr.A/� 1 for any semi-local ring A and that

sr(Z/� 2.
It is shown in [16] that for any m the condition sr.A/ � m implies that

sr.A/� n for every n �m. Moreover, if sr.A/ �m and n �mC 1, then for any
aD .a1; : : : ; an/2UmnA there are c1; : : : ; cm 2A such that a0D .a0i /2Umn�1A,
where a0i D ai C anci for i D 1; : : : ; m and a0i D ai for i DmC 1; : : : ; n� 1.

Using now bi 2 A such that
P
a0ibi D 1, we obtain that

a

mY
iD1

c
n;i
i

n�1Y
iD1

.bi .1� an//
i;n

n�1Y
iD1

.�a0i /
n;i
D .0; : : : ; 0; 1/:

Here xi;j denotes an elementary matrix with x at position .i; j /. We denote
by EnA the subgroup of GLnA generated by these elementary matrices.
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Thus, there is a polynomial matrix ˛ 2En.Zhy1; : : : ; y2nCm�2i/ (with non-
commuting yi ) that is a product of 2nCm � 2 elementary matrices, such that
UmnA is the set of last rows of all matrices in ˛.Z2nCm�2/.

In particular, taking AD Z and mD 2, we obtain this:

PROPOSITION 2.3. For any n� 3, the set Umn Z is a polynomial family with
2n parameters.

Now we are ready to prove Corollary 2. Consider now an arbitrary system
x D b of l linear equations for k variables x with integer coefficients. We write x
and solutions as rows. Reducing the coefficient matrix  to a diagonal form ˛ˇ

(where ˛ 2 SLk Z, ˇ 2 SLl Z, and the diagonal entries are the Smith invariants) by
row and column addition operations with integer coefficient, we write our answer,
describing all integer solutions, in one of these three forms:

(1) 0D 1 (there are no solutions);

(2) x D c˛, where c 2 Zk (so c˛ is only solution);

(3) x D y˛, where y is the row of k parameters (i.e., x is arbitrary);

(4) x D .a; y/˛ with a row y of N parameters (1�N � k� 1) and a 2 Zk�N .

Thus, the set X of all solutions, when it is not empty, is a polynomial family
with N parameters (0�N � k) and the degree of parametrization is at most 1.

Now we are interested in the set Y primitive solutions. In case (1), Y is empty.
In case (2), Y either is empty or consists of a single solution.

In case (3), N D k and Y D UmN Z, which is a polynomial family by
Theorem 2.2 and Proposition 2.3 provided that N � 2. When N D 1, we have
˛ D˙1, and the set Y D Um1 ZD f˙1g is not a polynomial family, but consists
of two constant polynomial families.

In case (4) with a D 0 (the homogeneous case), we have N < k and the set
Y is also parametrized by UmN Z.

Now we have to deal with case (4) with a ¤ 0. Let d D GCD.a/. Then
Y is parametrized by the set fZ D fb 2 ZN W GCD.d , GCD.b//D 1g. We find a
polynomial f .t/ 2 ZŒt � whose range reduced modulo d is GL1.Z=dZ/. (Find f .t/
modulo every prime p dividing d and then use the Chinese Remainder Theorem;
the degree of f .t/ is at most the largest p� 1.)

Then the range of the polynomial f2.t1; t2/ WD f .t1/C dt2 consists of all
integers z such that GCD.d; z/D 1. Therefore the set Z consists of f2.z1; z2/u
with z1; z2 2 Z and u 2 UmN Z. Thus, any polynomial parametrization of UmN Z

yields a polynomial parametrization of Z (and hence Y ) with two additional pa-
rameters. By Theorem 2.2 and Proposition 2.3, the number of parameters is at
most 41C 2k (at most 2k when N � 3/.
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3. Quadratic equations

In this section we prove Corollary 4, which includes Corollary 3 as a particular
case with Q0 D 1, k D 2n, and

Q0.x5; : : : ; xk/D x5x6C � � �C x2n�1x2n

.Q0 D 0 when nD 2/. We write the k-tuples in Zk as rows. Let e1; : : : ; ek be the
standard basis in Zk .

We denote by SO.Q;Z/ the subgroup of SLn Z consisting of matrices a 2
SLn Z such that Q.x˛/DQ.x/. In the end of this section, we prove that, under the
conditions of Corollary 4, the group SO.Q;Z/ consists of two disjoint polynomial
families.

We define a bilinear form . � ; � /Q on Zk by .a; b/QDQ.aCb/�Q.a/�Q.b/.
Following [20], we introduce elementary transformations

�.e; u/ 2 SO.Q;Z/;

where e D e1 or e2 and .e; u/Q D 0, by setting

v�.e; u/D vC .e; v/Qu� .u; v/Qe�Q.u/.e; v/Qe

(this works because Q.e/D 0/.

LEMMA 3.1. Let Q be as in Corollary 4. Then for any Q-unimodular row
v 2 Zk , there are u; u0 2 U D

Pk
iD5 Zei � Zk such that the first four entries of the

row v�.e1; u/�.e2; u0/ form a primitive row.

Proof. We write v D .v1; v2; : : : ; vk/. First we want to find a u 2 U such that
Zv01CZv3CZv4¤0, where v0D .v0i /Dv�.e1; u/ (note that v0i Dvi for iD2; 3; 4/.
If Zv1CZv3CZv4 ¤ 0, we can take uD 0.

Otherwise, since v is Q-unimodular, Zv2CZ.v; w/Q ¤ 0 for some w 2 U .
For v0 D .v0i /D v�.e1; cw/ with c 2 Z, we have v01 D v1� .v; w/Qc�Q.w/v2c

2

is a nonconstant polynomial in c (with v1 D 0/, so it takes a nonzero value for
some c. Therefore we can set uD cw with this c.

Now we want to find u0 2 U such that

.v001 ; v
00
2 ; v
00
3 ; v
00
4/D .v

0
1; v
00
2 ; v3; v

0
4/ 2 Um4 Z;

where
w00 D .v00i /D v

0�.e2; u
0/D v�.e1; u/�.e2; u

0/:

Since v0 is Q-unimodular, there is a w0 2 U such that

.v01; v2; v3; v4; .v
0; w0/Q/ 2 Um5 Z:

Since Zv01CZv3CZv4 ¤ 0, there is a c0 2 Z such that

.v01; v2� c
0.v0; w0/Q; v3; v4/ 2 Um4 Z:
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We set u0 D c0w0. Then v0�.e2; u0/D .v00i / with

.v001 ; v
00
2 ; v
00
3 ; v
00
4/D .v

0
1; v2� c

0.v0; w0/Q � c
02Q.w0/v01; v3; v4/ 2 Um4 Z: �

LEMMA 3.2. Let k � 4, Q0 2 Z, Q0 any quadratic form in k� 4 variables,
andQ.x1; : : : ; xk/D x1x2Cx3x4CQ0.x5; : : : ; xk/. Then the setX 0 of integer so-
lutions for the equation Q.x/DQ0 with .x1; x2; x3; x4/ 2 Um4 Z is a polynomial
family with kC 88 parameters.

Proof. When k D 4, see Examples 6 and 8. Assume now that k � 5. Let
v D .vi / 2X

0. Set D D v1v2C v3v4 2 Z. We can write�
v1 v3
�v4 v2

�
D ˛�1

�
1 0

0 D

�
ˇ

with ˛; ˇ 2 SL2 Z. Then we can write

.1;D; 0; 0; v5; : : : ; vk/D .1;Q0; 0; : : : ; 0/�.e2;
Pk
iD5 viei /:

Therefore X is parametrized by k� 5 parameters v5; : : : ; vk and two matrices in
SL2 Z. By Theorem 1; X is a polynomial family with k � 4C 2 � 46 D k C 88
parameters. �

Combining Lemmas 3.1 and 3.2, we obtain Corollary 4.

LEMMA 3.3. Under the conditions of Lemma 3.2, assume that k � 6 and that
Q0.x5; : : : ; xk/D x5x6CQ

00.x7; : : : ; xk/. Then the set X 0 is a polynomial family
with kC 2 parameters.

Proof. Let .vi / 2 X 0. There is an orthogonal transformation ˛ 2 SO4 Z

(coming from Spin4 ZD SL2 Z�SL2 Z; see Example 8) such that

.v1; v2; v3; v4/˛ D .1; v1v2C v3v4; 0; 0/:

We set .w1; w2; w3; w4/D .0; 1; 0; 0/˛�1 and

w D e1w1C e2w2C e3w3C e4w4 2 Zk :

Then Q.w/D 0D .w; v/Q.
Consider the row v0 D .v0i /D v�.v5; .1� v5/w/. For i D 1; 2; 3; 4, we have

v0i D vi C .1� v5/wi . Also v05 D 1, and v0i D vi for i � 6.
So v0�.e6;�

P
i¤5;6 v

0
i /D e5; henceX 0 is parametrized by 4C.k�2/DkC2

parameters. �
Combining Lemmas 3.1 and 3.3, we obtain:

PROPOSITION 3.4. Let k�6, Q0 2Z, Q00 a quadratic form in k�6 variables,
and Q.x1; : : : ; xk/D x1x2C x3x4C x5x6CQ00.x7; : : : ; xk/. Then the set of all
Q-unimodular solutions for the equation Q.x/DQ0 is a polynomial family with
3k� 6 parameters.
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4. Chevalley-Demazure groups

We prove here Corollary 17. Let n � 2, and take e1; : : : ; en as the standard
basis of Zn.

First we prove by induction on n that SLn Z admits a polynomial factorization
with 39Cn.3nC 1/=2 parameters. The case nD 2 is covered by Theorem 1. Let
n� 3.

We consider the orbit en SL.n;Z/.
The orbit admits a parametrization by 2n parameters by Proposition 2.3. More-

over, there is a polynomial matrix ˛ 2En.ZŒy1; : : : ; y2n�/ that is a product of 2n
elementary matrices, such that Umn ZD en˛.Z

2n/.
The stationary group of en consists of all matrices of the form�

ˇ v

0 1

�
; where vT 2 Zn�1.

By the induction hypothesis, the stationary group can be parametrized by 39C
.n� 1/.3n� 2/=2C n� 1 parameters. Thus SLn Z can be parametrized by 39C
.n� 1/.3n� 2/=2Cn� 1C 2nD 39Cn.3nC 1/=2 parameters.

Now we consider the symplectic groups Sp2n Z. We prove Corollary 17(c)
by induction on n. When nD 1, Sp2 ZD SL2 Z. Assume now that n� 2.

As in [2], using that sr.Z/D 2, we have a matrix

˛ 2 Sp2n.ZŒy1; : : : ; y4n�/ such that e2n˛ D Um2n Z.

The stationary group consists of all matrices of the form0@ ˇ 0 v

vT 1 c

0 0 1

1A ; where vT 2 Z2n�2 and c 2 Z,

so by the induction hypothesis it is parametrized by

2.n� 1/2C 2.n� 1/C 41C 2n� 1

parameters. Therefore Sp2n Z is parametrized by

2.n� 1/2C 2.n� 1/C 39C 2n� 1C 4nD 3n2C 2nC 41

parameters.
Now we discuss polynomial parametrizations of the spinor groups

Spin2n ZD Spin.Q2n;Z/ for n� 3:

We prove Corollary 17(d) by induction on n. When n D 3, Spin2n Z D SL4 Z.
Namely SL4 Z acts on alternating 4� 4 integer matrices preserving the pfaffian,
which is a quadratic form of type x1x2C x3x4C x5x6; see e.g. [21].
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Assume now that n � 4. The group Spin2n Z acts on Z2n via SO2n Z. The
orbit e2n SO2n Z of e2n is the set of all unimodular (DQ2n-unimodular) solutions
for the equation Q2n D 0. By Proposition 3.4, the orbit is parametrized by 6n� 6
parameters. Also, the matrices �.�;�/ come from Spin2n Z, so there is a polyno-
mial matrix in Spin2n Z with 6n� 6 parameters that parametrizes the orbit. The
stationary subgroup in SO2n Z consists of the matrices of the form0@ˇ 0 v

vt 1 c

0 0 1

1A ; where vT 2 Z2n�2, c DQ2n�2.vT / 2 Z, ˇ 2 SO2n�2 Z:

By the induction hypothesis, the stationary subgroup of e1 in Spin2n Z is para-
metrized by

4.n� 1/2� .n� 1/C 34C 2n� 2

parameters. So Spin2n Z is a polynomial family with

4.n� 1/2� .n� 1/C 36C 2n� 2C 6n� 3D 4n2�nC 36

parameters.
Finally, we prove Corollary 17(b) by induction on n. When nD 2, Spin5 ZD

Sp4 Z (the group Sp4 Z� SL4 Z acts on the alternating matrices as above, fixing a
vector of length 1) and the formula works.

Let now n � 3. The orbit e1 SO2nC1 Z of e1 is the set of all unimodular
(D Q2n-unimodular) solutions of the equation Q2nC1 D 0. By Proposition 3.4,
the orbit is parametrized by 3.2nC 1/� 6 D 6n� 3 parameters. Moreover, the
matrices �.�;�/ come from Spin2n Z, so there is a polynomial matrix in Spin2n Z

with 6n� 3 parameters that parametrizes the orbit. The stationary subgroup of e1
in SO2nC1 Z consists of the matrices of the form0@ 1 0 0

c 1 v

vT 0 ˇ

1A ; where v 2 Z2n�1, c DQ2n�1.v/ 2 Z, ˇ 2 SO2n�1 Z:

By the induction hypothesis, the stationary subgroup of e1 in Spin2n�1 Z is para-
metrized by 4.n� 1/2 C 41C 2n� 1 parameters. So Spin2n Z is a polynomial
family with

4.n� 1/2C 41C 2n� 1C 6n� 3D 4n2C 41

parameters.

Remark 4. As in Corollary 18, for any square-free integer D or D D 0, we
obtain a polynomial parametrization of the set of all integer n by n matrices with
determinant D. If D is not square-free, the set of matrices is a finite union of
polynomial families.
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5. Congruence subgroups

In this section we fix an integer q � 2. Denote by G.q/ the subgroup of SL2 Z

consisting of matrices
�
a
c
b
d

�
such that b; c 2 qZ and a�1; d �12 q2Z. This group

is denoted by G.qZ; qZ/ in [18]. Note that SL2.q2Z/�G.q/DG.�q/� SL2 qZ.
We parametrize G.q/ by the solutions of x1C x4C q2x1x4� x2x3 D 0 as

x1; x2; x3; x4 7!

�
1C q2x1 qx2
qx3 1C q2x4

�
.

We use the polynomial matricesˆ4.y1; y2; y3; y4/ andˆ5.y1; y2; y3; y4; y5/
defined in Section 1. We denote by X4.q/�ˆ4.1Cq2Z; qZ; qZ; 1Cq2Z/�G.q/

the set of matrices of the form ˛˛T with ˛ 2 G.q/. Notice that X4.q/T D
X4.q/

�1 DX4.q/.
We denote by X5.q/�ˆ5.q2Z; qZ; qZ; q2Z;Z/�G.q/ the set of matrices

of the form �
1C aq2e bqe2

cq 1C dq2e

��
1C aq2e cq2e2

bq 1C dq2e

�
with

a; b; c; d; e 2 Z and
�
1C aq2e bqe2

cq 1C dq2e

�
2 SL2 Z:

Set

Y5.q/D .X5.q/
�1/T D

�
0 1

�1 0

��1
X5.q/

�
0 1

�1 0

�
:

Notice that X5.q/T D Y5.q/�1 D Y5.q/ and Y5.q/T DX5.q/�1 DX5.q/
We also use the polynomial matrices �i ; �i defined in Section 1. Notice that

�i .qZi /; �i .qZi /�G.q/

and that

�2i .qZ2i /T D�2i .qZ2i /; �2i .qZ2i /�1 D �2i .qZ2i /;

�2i�1.qZ2i�1/T D �2i�1.qZ2i�1/; �2i�1.qZ2i�1/�1 D�2i�1.qZ2i�1/

for all integers i � 1.

LEMMA 5.1. Let

a; c; e 2 Z; e ¤ 0; ˛ D

�
1C aq2e cqe

� �

�
2G.q/:

Then there are ıi 2�i .qZi /, " 2 f1;�1g, and ' 2X5.q/ such that

˛ı3'ı2 D

�
� �

"cq 1C aq2e

�
:
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Proof. As in the proof of Lemma 1.1 above, we find u; v 2 Z such that
jcCu.1C aq2e/j is a prime � 3 modulo 4 and aC vq2c1 D "a21, where

c1 WD cCu.1C aq
2e/; a1 2 Z; " 2 GL1 Z:

Set ı3 D .uqe/1;2.vq/2;1.�c1eq/1;2 2�3.qZ3/. Then, for some b1; d1 2 Z,

˛ı3 D

�
1C "a21q

2e c1qe

� �

�
.�c1eq/

1;2
D

�
1C "a21q

2e �"c1e
2q3a21

b1 d1

�
DW ˇ 2G.q/:

Note that

ˇ�1 D

�
d1 "c1a

2
1q
3e2

�b1 1C "a
2
1q
2e

�
:

Set

� WD

�
d1 �b1a

2
1e
2q2

"c1q 1C "a21q
2e

�
D

�
� �

"c1q 1C .aC vc1/q
2e

�
:

Then ' WD ˇ�1� 2X5.q/ and � D ˇ'.
Now

�.�"evq/1;2.�"uq/2;1 D

�
� �

"c1q 1C aq2e

�
.�"uq/2;1

D

�
� �

".cCu.1C aeq2//q 1C ae

�
.�"u/2;1 D

�
� �

"cq 1C aq2e

�
;

so we can take ı2 WD .�"evq/1;2.�"uq/2;1 2X2.q/. �

LEMMA 5.2 (reciprocity). Let a; b 2 Z and

˛ D

�
1C aq2 .1C bq2/q

� �

�
2G.q/:

Then there are '; '0 2X5.q/ such that

q1;2˛.�q/1;2'.�q/1;2'0.�q/1;2 D

�
1C bq2 �.1C aq2/q

� �

�
:

Proof. We have

˛0 D ˛.�q/1;2 D

�
1C aq2 .b� a/q3

c d

�
2G.q/:

Set ' WD ˛0�1
�
1C aq2 cq2

.b� a/q d

��1
2X5.q/I

hence ˛00 D ˛0' D

�
1C aq2 cq2

.b� a/q d

��1
D

�
d �cq2

�.b� a/q 1C aq2

�
:



1002 LEONID VASERSTEIN

Now q1;2˛00.�q/1;2 D

�
d 0 c0q2

�.b� a/q 1C bq2

�
:

Set '0 WD

�
d 0 c0q2

�.b� a/q 1C bq2

��1 �
d 0 �.b� a/q3

c0 1C bq2

��1
2X5.q/I

hence

ˇ WD q1;2˛00.�q/1;2'0 D

�
d 0 �.b� a/q3

c0 1C bq2

��1
D

�
1C bq2 .b� a/q3

�c0 d 0

�
:

Finally, ˇ.�q/1;2 D

�
1C bq2 �.1C aq2/q

� �

�
: �

LEMMA 5.3. Let ˛ D
�
a
c
b
d

�
2G.q/ . Then there are

� 2X4.q/; ıi 2�i .qZi /; 1 2 �1qZ; �; �0 2 Y5.q/; "D˙1

such that

.�q/2;1˛2 ı3'ı2q
2;1 q2;1�01 D

�
� �

"b2 a

�
:

Proof. Set � D .˛T ˛/�1 2X4.q/. Then

˛2� D ˛.˛�1/T D

�
1C b.c � b/ a.b� c/

d.c � b/ 1� c.b� c/

�
:

By Lemma 5.1 with e D .b� c/=q, there are ıi 2�i .qZi /, " 2 f1;�1g, and
' 2X5.q/ such that

˛ ı3'ı2 D

�
� �

"aq 1C b.c � b/

�
DW ˇ:

Now we apply Lemma 5.2 to the matrix

.ˇ�1/T D

�
1C b.c � b/ �"aq

� �

�
and find �;�0 2 Y5.q/ such that

�D .�q/2;1ˇq2;1�q2;1�0q2;1 D

�
� �

�".1C b.c � b//q a

�
:

Since 1C b.c � b/D ad � b2, we have

�."dq/2;1 D �1 D

�
� �

"b2 a

�
: �

LEMMA 5.4. Let

a; c; e 2 Z; e ¤ 0; ˛ D

�
1C aq2e cqe

� �

�
2G.q/; "0 2 f˙1g:



POLYNOMIAL PARAMETRIZATION 1003

Then there are ıi 2�i .qZi / and ' 2X5.q/ such that

˛ı5'ı2 D

�
� �

"0cq 1C aq2e

�
:

Proof. We find u; v as in the proof of Lemma 5.1. Now we find w 2 Z such
that jc2j is a prime � 1 mod 4, where c2 WD c1C .1C "a21q

2e/w. Then there are
z; a2 2 Z such that "a21C zc2D "

0a22. We set

ı5 WD .uqe/
1;2.vq/2;1.wqe/1;2.zq/2;1.�c2eq/

1;2
2�5.qZ3/:

Then

˛ı5D

�
1C "0a22q

2e c2qe

� �

�
.�c3eq/

1;2
D

�
1C "0a22q

2e �"0c2e
2q3a21

b1 d1

�
2G.q/:

The rest of our proof is the same as that of Lemma 5.1. �

LEMMA 5.5. Let ˛D
�
a
c
b
d

�
2G.q/. Then there are ıi2�i .qZi /, 32�3.qZ3/,

' 2X5.q/, � 2X4.q/, and  2 Y5.q/ such that

ı1�˛
2ı5'ı4 3 D

�
a2 ˙b

� �

�
:

Proof. By Lemma 5.4 with e D "D 1, we find

�D ı5'ı2 2�5.qZ5/X5.q/�2.qZ2/

such that

˛�D

�
� �

b a

�
D

�
d 0 c0

b a

�
:

Set � D .˛�1/T ˛�1 2X4.q/. Then

�˛ D .˛�1/T D

�
d �c

�b a

�
:

Set

ı1 D

�
d 0 c0

�b a

��
d �c

�b a

��1
2�1.qZ/:

Then

ı1�˛
2�D

�
d 0 �c0

�b a

��
d 0 c0

b a

�
D

�
� �

b.a� d 0/ a2� bc0

�
D

�
d 00 c00

b.a� d 0/ 1C a.a� d 0/

�
DW ˇ 2G.q/

because ad 0� bc0 D 1.
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By Lemma 5.1,

.ˇ�1/T ı3'
0ı02 D

�
� �

˙b 1C a.a� d 0/

�
with ıi ; ı0i 2�i .qZi / and '0 2X5.q/; hence

ˇ 03 2 D

�
1C a.a� d 0/ ˙b

� �

��
a2� bc0 ˙b

� �

�
with i ;  0i 2 �i .qZi / and  2 Y5.q/.

Finally, we set ı4 D ı2
0
3 2 �4.qZ4/ and 3 D 2.˙c

0/2;1 2 �3.qZ3/ to
obtain the conclusion. �

LEMMA 5.6. Let ˛D
�
a
c
b
d

�
2G.q/. Then there are ıi2�i .qZi /, 12�1.qZ/,

'; '02X5.q/, � 2X4.q/, and  2 Y5.q/ such that

.�q/1;2˛2�ı3'ı2 q
1;2'01 D

�
� �

˙b2q a

�
:

Proof. Set � D ˛�1.˛�1/T 2X4.q/, so

˛� D .˛�1/T D

�
d �c

�b a

�
; ˛2� D ˛

�
d �c

�b a

�
D

�
1� b.b� c/ a.b� c/

� �

�
:

By Lemma 5.1 with e D .b � c/=q, there are ıi 2 �i .qZi / and '0 2 X5.q/
such that

˛2�ı3'ı2 D

�
� �

˙.1� b.b� c//q a

�
DW ˇ:

Now we apply Lemma 5.2 to the matrix .ˇT /�1 D
�
1�b.b�c/
�

˙aq
�

�
instead

of ˛. So

q1;2.ˇT /�1'.�q/1;2'0.�q/1;2 D

�
a ˙.1� b.b� c//q

� �

�
; with '; '0 2X5.q/;

hence

.�q/2;1ˇq1;2 q2;1 0q2;1D

�
� �

˙.1� b.b� c//q a

�
DWˇ0; with  ; 0 2 Y5.q/.

Since .1� b.b� c//D ad � b2, we have

ˇ0 01 D

�
� �

˙b2q a

�
for  01 D .�dq/

2;1 2 �1.qZ/.

Finally, we set 1 WD q2;1 01 2 �.Z/; ı2 D ı
0
2q
2;1. �
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COROLLARY 5.7. Let ˇ 2G.q/. Then there are

ıi 2�i .qZi /; '; '0 2X5.q/;  2 Y5.q/;

i 2 �i .qZi /; � 2X4.q/; ˛ D
�
a
cq
bq
d

�
2G.q/

such that ı2ˇı02 .�q/
1;2'2'

0ı3 D ˛
2, where jbj and jcj are positive odd primes

not dividing q, and GCD.jbj � 1; jcj � 1/D 2.

Proof. Let ˇ D
�
a0

c0q
b0q
d 0

�
. The case c0 D 0 is trivial, so we assume that c0 ¤ 0.

We find u; v; b 2Z such that a WD d 0Cc0uq2 is an odd prime and˙b2q2D c0Cav.
Replacing, if necessary, b by bCwa, we can assume that b is a positive odd prime
not dividing q.

Then

ˇ0 WD ˇ.uq/1;2.vq/2;1 D ˇı02 D

�
� �

˙b2q3 a

�
:

Now we find c; d 2Z such that ˛ WD
�
a
cq
bq
d

�
2G.q/, c is a positive odd prime

not dividing q, and GCD.b� 1; c � 1/D 2.
By Lemma 5.6, we know there are ıi 2�i .qZi /,  01 2 �1.qZ/, '0 2X5.q/,

� 0 2X4.q/, and  0 2 Y5.q/ such that

˛0 WD .�q/1;2˛2�ı3'ı2 q
1;2'0 01 D

�
� �

˙b2q3 a

�
:

Conjugating, if necessary, this equality by the matrix diag.�1; 1/, which leaves
invariant the sets �i .qZi /, �i .qZi /, X5.q/, X4.q/, and Y5.q/, we can assume that
the matrices ˛0 and ˇ0 have the same last row. Then  001 D ˛0ˇ0�1 belongs to
�1.qZ/, and  001ˇ

0 D ˛0; hence

 001ˇı2 D ı
0
1˛
2� 0ı03'

0ı02
0
3 
0 003 D

�
� �

˙b2q a

�
:

Now we set ı2 WD q1;2 001 , ı02 D ı
00
2
0�1
1 ,  D  0�1, etc. �

LEMMA 5.8. Let ˛ D
�
a
�

b
�

�
2 G.q/ with m � 1 an integer. Then there are

ıi 2�i .qZi /, 6 2 �6.qZ6/; � 2X4.q/, '; '0 2X5.q/, and  2 Y5.q/ such that

ı1�˛
2mı5'ı4 6'

0ı3 D

�
� �

˙b a2m

�
:

Proof. As in the proof of Lemma 1.2,

ˇ WD ˛m D f 12Cg˛ D

�
f Cga gb

� �

�
and f 2� 1 2 gZ:

By Lemma 5.5, there are ıi 2�i .qZi /, 3 2 �3.qZ3/, and ' 2X5.q/ such
that

ı1�ˇ
2ı5'ı4 3 DW ˇ

0
D

�
.f Cga/2 ˙gb

� �

�
:
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Now by Lemma 5.1 with e D g, there are ıi ; ı
0
i 2 �i .qZi / and '0 2 X5.q/

such that

ˇ0ı03'
0ı2 DW ˇ

00
D

�
� �

˙b .f Cga/2

�
:

Since .f Cga/2 � a2m mod b, we have

ˇ00ı01 D

�
� �

˙b a2m

�
with ı01 2�1.qbf Z/.

Now we set 6 WD 3ı03 and ı3 WD ı2ı01 to finish our proof. �

PROPOSITION 5.9.

G.q/D C6X5D4Y5C6X5C6X4C5Y5C4X5D6Y5D6X4C3X5D2X5q
1;2Y5C2;

where Di D�i .qZi /, Ci D �i .qZi /, X5 DX5.q/, Y5 D Y5.q/, X4 DX4.q/.

Proof. Let ˇ 2G.q/. By Corollary 5.7,

˛2 2D2ˇD2Y5.�q/
1;2X5C2X5C3

or (using that D�12i D C2i and D�12i�1 DD2i�1/

ˇ 2 C2˛
2C3X5D2X5q

1;2Y5C2; with ˛ D
�
a bq

cq d

�
,

primes jbj; jcj not dividing q, and GCD.jbj � 1; jcj � 1/ D 2. We pick positive
m 2 .jbj � 1/Z and n 2 .jcj � 1/Z such that n�m D 1. Then a2m � 1 mod bq,
and a2n � 1 mod cq and n�mD 1.

By Lemma 5.8,

�1 D

�
� �

˙b a2m

�
2D1X4˛

2mD5X5D4Y5C6X5D3:

Since a2m � 1 mod b, we obtain easily that �1 2D3. So

˛2m 2X4D1D3D3X5D6Y5C4X5D5 DX4D6X5D6Y5C4X5D5:

Hence ˛�2m 2D5X5D4Y5C6X5C6X4:

Similarly .˛T /2n 2DX4D6X5D6Y5C4X5D5:

Hence ˛2n 2D C5Y5C4X5D6Y5D6X4:

Therefore

ˇ 2 C2.˛
�2m˛2n/C3X5D2X5q

1;2Y5C2

� C2.D5X5D4Y5C6X5C6X4/.C5Y5C4X5D6Y5D6X4/C3X5D2X5q
1;2Y5C2

D C6X5D4Y5C6X5C6X4C5Y5C4X5D6Y5D6X4C3X5D2X5q
1;2Y5C2:

We used that C2D5 D C6. �
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Counting parameters yields the following result:

COROLLARY 5.10. G.q/ is a polynomial family with 93 parameters. Also,
there are polynomials fi 2 ZŒy1; : : : ; y93� such that

˛ WD

�
1C q2f1 qf2
qf3 1C q2f4

�
2 SL2.ZŒy1; : : : ; y93�/ and ˛.Z93/DG.q/:

Now to prove Theorem 13. Consider an arbitrary principal congruence sub-
group SL2.qZ/. The factor group SL2.qZ/=SL2.q2Z/ is commutative, so it is
easy to see that it is generated by the images of G.q/ and 12;1�1.qZ/.�1/2;1.
Using Corollary 5.11, we conclude that SL2.qZ/ is a polynomial family with 94
parameters. More precisely:

COROLLARY 5.11. SL2.qZ/ is a polynomial family which has 94 parameters.
Moreover, there are polynomial fi 2 ZŒy1; : : : ; y94� such that

˛ WD

�
1C qf1 qf2
qf3 1C qf4

�
2 SL2.ZŒy1; : : : ; y94�/ and ˛.Z94/D SL2.qZ/:

Example 5.12. Let H be the subgroup of SL2 Z in Example 14. The group
G.2/ is a normal subgroup of index 4 in H . The group H is generated by G.2/
together with the subgroup .�1/2;1�1.Z/12;1. So H is a polynomial family with
94 parameters.

PROPOSITION 5.13. Every polynomial family H � Zk has the “strong ap-
proximation” property that if t 2 Z with t � 2, ps.1/

1 ; : : : ; ps.t/
t are powers of

distinct primes pi , and hi 2H for i D 1; : : : ; t , then there is an h 2H such that
h� hi mod ps.i/

i for i D 1; : : : ; t .

Proof. Suppose H D ˛.ZN / with ˛ 2 ZŒy1; : : : ; yN �.
Let t 2 Z with t � 2, let ps.1/

1 ; : : : ; ps.t/
t be powers of distinct primes pi , and

let hi 2H for i D 1; : : : ; t .
We have hi D ˛.u.i// for i D 1; : : : ; t with u.i/ 2 ZN . By the Chinese Re-

mainder Theorem, there is a u 2 ZN such that u� u.i/ mod ps.i/
i for i D 1; : : : ; t .

Set hD ˛.u/. Then h� hi mod ps.i/
i for i D 1; : : : ; t . �

COROLLARY 5.14. Let H be a subgroup of SL2 Z generated by SL2.6Z/ and
the matrix

�
0
�1

1
0

�
. Then H is not a polynomial family.

Proof. We do not have the strong approximation property for H . Namely,
take t D 2, p1 D 2, p2 D 3, and s.1/D s.2/D 1. The image of H in SL2.Z=2Z/

is a cyclic group of order 2, and the image of H in SL2.Z=3Z/ is a cyclic group of
order 4. The strong approximation for H (see Proposition 5.13) would imply that
the order of the image of H in SL2.Z=6Z/ is at least 8, while the image is in fact
a cyclic group of order 4. �
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COROLLARY 5.15. Let X � Z be an infinite set of positive primes. Then X is
not a polynomial family.

Proof. Suppose X is a polynomial family. Let p1 and p2 be distinct primes
in X . By Proposition 5.13, there is a z 2 X such that z � p1 mod p1 and z �
p2 mod p2. Then z is divisible by both p1 and p2 and hence is not prime. This
contradiction shows that X is not a polynomial family. �

Remark 5. By [12, Part VIII, Prob. 97], no nonconstant integer-valued poly-
nomial with rational coefficients takes only prime values. This fact implies easily
Corollary 5.15. Two easy solutions to the problem are given, and the result is
attributed by Euler to Goldbach.
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