
ANNALS OF
MATHEMATICS

anmaah

SECOND SERIES, VOL. 171, NO. 1

January, 2010

Uniqueness for the signature of a path of
bounded variation and the reduced path

group
By Ben Hambly and Terry Lyons





Annals of Mathematics, 171 (2010), 109–167

Uniqueness for the signature of a path of
bounded variation and the reduced path group

By BEN HAMBLY and TERRY LYONS

Abstract

We introduce the notions of tree-like path and tree-like equivalence between
paths and prove that the latter is an equivalence relation for paths of finite length.
We show that the equivalence classes form a group with some similarity to a free
group, and that in each class there is a unique path that is tree reduced. The set of
these paths is the Reduced Path Group. It is a continuous analogue of the group of
reduced words. The signature of the path is a power series whose coefficients are
certain tensor valued definite iterated integrals of the path. We identify the paths
with trivial signature as the tree-like paths, and prove that two paths are in tree-like
equivalence if and only if they have the same signature. In this way, we extend
Chen’s theorems on the uniqueness of the sequence of iterated integrals associated
with a piecewise regular path to finite length paths and identify the appropriate ex-
tended meaning for parametrisation in the general setting. It is suggestive to think
of this result as a noncommutative analogue of the result that integrable functions
on the circle are determined, up to Lebesgue null sets, by their Fourier coefficients.
As a second theme we give quantitative versions of Chen’s theorem in the case of
lattice paths and paths with continuous derivative, and as a corollary derive results
on the triviality of exponential products in the tensor algebra.

1. Introduction

1.1. Paths with finite length. Paths, that is to say (right) continuous functions

 mapping a nonempty interval J � R into a topological space V , are fundamen-
tal objects in many areas of mathematics, and capture the concept of an ordered
evolution of events.

The authors gratefully acknowledge EPSRC support: GR/R29628/01, GR/S18526/01.

109
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If .V; dV / is a metric space, then one of 
 ’s most basic properties is its length
j
 jJ . This can be defined as

j
 jJ WD sup
D�J

X
ti2D
i¤0

dV
�

ti�1 ; 
ti

�
where the supremum is taken over all finite partitions DDft0 < t1 < � � �< trg of
the interval J . It is clear that j
 j is positive (although possibly infinite) and in-
dependent of the parametrisation for 
 . Any continuous path of finite length can
always be parametrised to have unit speed by letting � .t/ D j
 jŒ0;t� and setting
� .� .t//D 
 .t/.

Paths of finite length are often said to be those of bounded or finite variation.
We denote the set of paths of bounded variation by BV; BV -paths with values in
V by BV.V /; and those defined on J by BV .J; V /.

We first observe any path 
 2 BV.J; V / can be factored into two paths by
splitting 
 at a point in J . If V is a vector space, then we can go the other way, in
that for any 
 2BV .Œ0; t �; V / and � 2BV .Œ0; s�; V /we can form the concatenation

 � � 2 BV .Œ0; sC t � ; V /


 � � .u/D 
 .u/ ; u 2 Œ0; s� ;


 � � .u/D � .u� s/C 
 .s/� � .0/ ; u 2 Œs; sC t � :

The operation * is associative, and if V is a normed space, then j
 jC j� j D j
 � � j.

1.2. Differential Equations. One reason for looking at BV.V / is that one
can do calculus with these paths, while at the same time the set of paths with
j
 jJ � l is closed under the topology of pointwise convergence (uniform conver-
gence, . . . ). Differential equations allow one to express relationships between paths
in BV . If f i are Lipschitz vector fields on a spaceW and 
t D .
1 .t/ ; : : : ; 
d .t//
2 BV

�
Rd
�

, then the differential equation

(1.1)
dy

dt
D

X
i

f i
d
i

dt
D f .y/ �

d


dt
; y0 D a

has a unique solution for each 
 . BV is a natural class here, for unless the vector
fields commute, there is no meaningful way to make sense of this equation if the
path 
 is only assumed to be continuous.

If .y; 
/ solves the differential equation and . Qy; Q
/ are simultaneous repara-
metrisations, then they also solve the equation and so it is customary to drop the
dt and write

dy D
X
i

f i P
idt D
X
i

f id
i D f .y/ � d
:
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We can regard the location of ys as a variable and consider the diffeomorphism
�st defined by �st .ys/ WD yt . Then �st is a function of 
 jŒs;t�. One observes
that the map 
 jŒs;t�! �st is a homomorphism from .BV .V / ;�/ to the group of
diffeomorphisms of the space W .

1.3. Iterated integrals and the signature of a path. One could ask which are
the key features of 
 jŒs;t�, which, with ys , accurately predict the value yt in equa-
tion (1.1). The answer to this question can be found in a map from BV into the
free tensor algebra!

Definition 1.1. Let 
 be a path of bounded variation on ŒS; T � with values in
a vector space V . Then its signature is the sequence of definite iterated integrals

XS;T D
�
1CX1S;T C � � �CX

k
S;T C : : :

�
D

�
1C

Z
S<u<T

d
uC � � �C

Z
S<u1<���<uk<T

d
u1 ˝ � � �˝ d
uk C : : :

�
regarded as an element of an appropriate closure of the tensor algebra T .V / DL1
nD0 V

˝n.

The signature is the definite integral over the fixed interval where 
 is defined;
re-parametrising 
 does not change its signature. The first term X1

ŒS;T �
produces

the path 
 (up to an additive constant). For convenience of notation, when we have
many paths, we will sometimes use a symbol such as Yt (instead of 
t / for our
path, Y iS;T for the tensor coordinate of degree i of the signature of Yt , and YS;T
for the signature of the path. In some circumstances we will drop the time interval
and just write Y for the path and Y for its signature. We call this map the signature
map and sometimes denote it by S W Y ! S .Y / when this helps our presentation.

The signature of a path X is a natural object to study. The map X ! X is a
homomorphism (cf. Chen’s identity [8]) from the monoid of paths with concatena-
tion to (a group embedded in) the algebra T .V /. The signature X.D X0;T / can be
computed by solving the differential equation

dX0;u D X0;u˝ dXu; X0;0 D .1; 0; 0; : : : / ;

and, in particular, paths with different signatures will have different effects for
some choice of differential equation.

There is a converse, although this is a consequence of our main theorem. If
X controls a system through a differential equation

dYu D f .Yu/dXu; Y0 D a;

and f is Lipschitz, then the state YT of the system after the application of X jŒ0;T � is
completely determined by the signature X0;T and Y0. In other words the signature
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XS;T is a truly fundamental representation for the bounded variation path defined
on ŒS; T � that captures its effect on any nonlinear system.

This paper explores the relationship between a path and its signature. We
determine a precise geometric relation � on bounded variation paths. We prove
that two paths of finite length are �-equivalent if and only if they have the same
signature:

X jJ � Y jK() XJ D YK
and hence prove that � is an equivalence relation and identify the sense in which
the signature of a path determines the path.

The first detailed studies of the iterated integrals of paths are due to K. T.
Chen. In fact Chen [2] proves the following theorems which are clear precursors
to our own results:

CHEN THEOREM 1. Let d
1; : : : ; d
d be the canonical 1-forms on Rd . If
˛; ˇ 2 Œa; b�! Rd are irreducible piecewise regular continuous paths, then the
iterated integrals of the vector valued paths

R ˛.t/
˛.0/

d
 and
R ˇ.t/
ˇ.0/

d
 agree if and

only if there exists a translation T of Rd , and a continuous increasing change of
parameter � W Œa; b�! Œa; b� such that ˛ D Tˇ�.

CHEN THEOREM 2. Let G be a Lie group of dimension d , and let !1 � � �!d
be a basis for the left invariant 1-forms on G. If ˛; ˇ 2 Œa; b�!G are irreducible,
piecewise regular continuous paths, then the iterated integrals of the vector valued
paths

R ˛.t/
˛.0/

d! and
R ˇ.t/
ˇ.0/

d! agree if and only if there exist a translation T of
G, and a continuous increasing change of parameter � W Œa; b�! Œa; b� such that
˛ D Tˇ�.1

In particular, Chen characterised piecewise regular paths in terms of their
signatures.

1.4. The main results. There are two essentially independent goals in this pa-
per.

(1) To provide quantitative versions of some of Chen’s results. If 
 is continu-
ous, of bounded variation and parametrised at unit speed, then we will obtain
lower bounds on the coefficients in the signature in terms of the modulus of
continuity of 
 0 and the length of the path and show how one can recover the
length of a path 
 using the asymptotic magnitudes of these coefficients (cf.
Tauberian theorems in Fourier Analysis).

(2) To prove a uniqueness theorem characterising paths of bounded variation in
terms of their signatures (cf. the characterisation of integrable functions in

1We borrow these formulations from the Math Review of the paper [2] but include the precise
smoothness assumptions.
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terms of their Fourier series) extending Chen’s theorem to the bounded varia-
tion setting.

For our first goal we provide quantitative versions of Chen’s results in two
settings. In the discrete setting we can show the following result.

THEOREM 1. If the path in the two dimensional integer lattice corresponding
to a given word of length L has its first b2e log.1C

p
2/Lc GL.2;C/-iterated

integrals zero, then all its iterated integrals (in the tensor algebra) are zero and, in
its reduced form, the word is trivial.

A key tool is the development of paths into hyperbolic space. We also obtain
a continuous version of Theorem 1.

THEOREM 2. Let 
 be a path of length l parametrised at unit speed. Suppose
that the modulus of continuity ı for 
 0 is continuous. There is an integer N .l; ı/

such that at least one of the first N.l; ı/ terms in the signature must be nonzero.

These results represent a sort of rigidity; the first result concerns the complex-
ity of algebraic exponential products; the second result shows that any path with
bounded local curvature and with the first N terms in the signature zero must be
rather long or trivial. We can obtain explicit bounds depending only on curvature
estimates and N . However, our result is far from sharp: consider the figure of
eight; it is a path with curvature at most 4� and length one. It is clear that the first
two terms in its signature are zero. Our results indicate that it cannot have all of
the first 115 terms in the signature zero!

In the continuous setting, and under quite weak hypotheses, one can recover
the length of the path from the asymptotic behaviour of kXkk where X is the
signature. Even in the case where path is in Rd the termXk lies in a dk dimensional
space and the magnitude of kXkk depends on the choice of cross norm used on
the tensor product. Interestingly there is a phase transition. For the biggest (the
projective) norm, and for some others, we see the value of limk!1




l�kkŠXk


D 1
while for other cross norms such as the Hilbert Schmidt (or Hilbert space) norm
this limit still exists but is in general strictly less than one:

THEOREM 3. If 
 is a C 3 path of length l parametrised at unit speed with
signature X D

�
1;X1; : : : ;

�
, and if V ˝k is given the projective norm, then

lim
k!1




l�kkŠXk


D 1:
If V ˝k is given the Hilbert-Schmidt norm, then the limit

lim
k!1




l�kkŠXk


2 D E

�
exp

�Z
s2Œ0;1�

ˇ̌
W 0
s

ˇ̌2
h
 0.s/; 
 000.s/ids

��
� 1
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exists, where W 0
s is a Brownian bridge starting at zero and finishing at zero at

time 1.2 The inequality is strict if 
 is not a straight line.

In Theorem 9 of Section 3 we strengthen Theorem 3 by showing

lim
k!1




l�kkŠXk


D 1
for a wide class of tensor norms, including the projective norm and for paths 

satisfying a Hölder condition on their derivative. Under even weaker assumptions
on 
 we can still recover the length of the path by considering



l�kkŠXk

1=k .
For the second goal of the paper we need a notion of tree-like path. Our

definition codes R-trees by positive continuous functions on the line, as developed,
for instance, in [5].

Definition 1.2. Xt ; t 2 Œ0; T � is a tree-like path in V if there exists a positive
real-valued continuous function h defined on Œ0; T � such that h .0/ D h .T / D 0
and such that

kXt �XskV � h .s/C h .t/� 2 inf
u2Œs;t�

h .u/ :

The function h will be called a height function for X . We say X is a Lipschitz
tree-like path if h can be chosen to be of bounded variation.

Definition 1.3. Let X; Y 2 BV.V /. We say X � Y if the concatenation of X
and Y ‘run backwards’ is a Lipschitz tree-like path.

We now focus on Rd and state our main results.

THEOREM 4. Let X 2 BV.Rd /. The path X is tree-like if and only if the
signature of X is 0D .1; 0; 0; : : :/.

As the map X ! X is a homomorphism, and running a path backwards gives
the inverse for the signature in T .V /, an immediate consequence of Theorem 4 is

COROLLARY 1.4. If X; Y 2 BV.Rd /, then XD Y if and only if the concate-
nation of X and ‘Y run backwards’ is a Lipschitz tree-like path.

COROLLARY 1.5. For X; Y 2 BV.Rd / the relation X � Y is an equivalence
relation. Concatenation respects � and the equivalence classes † form a group
under this operation.

There is an analogy between the space of paths of finite length in Rd and
the space of words a˙1b˙1 : : : c˙1 where the letters a; b; : : : ; c are drawn from
a d -letter alphabet A. Every such word has a unique reduced form. This reduc-
tion respects the concatenation operation and projects the space of words onto the
free group. We extend this result from paths on the integer lattice (words) to the
bounded variation case.

2This result was suggested to us by the referee.
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COROLLARY 1.6. For any X 2BV.Rd / there exists a unique path of minimal
length, NX , called the reduced path, with the same signature XD NX.

Taking these results together we see that the reduced paths form a group. The
multiplication operation is to concatenate the paths and then reduce the result. One
should note that this reduction process is not unique (although we have proved that
the reduced word one ultimately gets is unique). This group is at the same time
rather natural and concrete (a collection of paths of finite length), but also very
different from the usual finite dimensional Lie groups. It admits more than one
natural topology, and multiplication is not continuous for the topology of bounded
variation.

We can restate these results in different language. The space BV with �, the
operation of concatenation, is a monoid. Let T be the set of tree-like paths in BV .
Then T is also closed under concatenation. If 
 2BV , and we use the notation 
�1

for 
 run backwards, it is clear from the definition that 
�1T
 �T for all 
 2BV:
As we have proved that tree-like equivalence is an equivalence relation, BV=T is
well defined, closed under multiplication, has inverses and is thus a group.

We have the following picture

0! T! BV
Û
! †! 0

where one can regard † as the �-equivalence classes of paths or as the subgroup
of the tensor algebra. The mapÛ takes the class to the reduced path which is an
element of BV . As T has no natural BV -normal sub-monoids, one should expect
that any continuous homomorphism of BV into a group will factor through † if it
is trivial on the tree-like elements. It is clear that the set

OTD f.
; h/ ; 
 2 T; h a height function for 
g

is contractible. An interesting question is whether T itself is contractible.
We prove in Lemma 6:3 that any 
 2T is the limit of weakly piecewise linear

tree-like paths and hence T is the smallest multiplicatively closed and topologically
closed set containing the trivial path. This universality suggests that † has similar-
ities to the free group. One characterising property of the free group is that every
function from the alphabet A into a group can be extended to a map from words
made from A into paths in the group. The equivalent map for bounded variation
paths is Cartan development. Let � be a linear map of Rd to the Lie algebra g of a
Lie group G and let Xt jt�T be a bounded variation path. Then Cartan development
provides a canonical projection of � .X/ to a path Y starting at the origin in G and
we can define Q� WX ! YT . This map Q� is a homomorphism from † to G.

It is an exercise to prove that this map Q� takes all tree-like paths to the identity
element in the group G: As a consequence, Q� is a map from paths of finite variation
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to G which is constant on each � equivalence class and so defines a map from †

to G.
Let Xt jt�T be a path of bounded variation in Rd and suppose that for every

linear map � into a Lie algebra g, Q� .X/ is trivial. As the computation of the first n
terms in the signature is itself a development (into the free n-step nilpotent group),
we conclude that X0;T D .1; 0; 0; : : : / and so from Theorem 4, X is tree-like.

COROLLARY 1.7. A path of bounded variation is tree-like if and only if its
development into every finite-dimensional Lie group is trivial.

The observation that any linear map of Rd to the Lie algebra g defines a map
from † to the Lie group is a universal property of a kind giving further evidence
that † is some sort of continuous analogue of the free group. However, † is not a
Lie group although it has a Lie algebra, and it is not characterised by this universal
property. (Chen’s piecewise regular paths provide another example since they are
paths of bounded variation and are dense in the unit speed paths of finite length.)

1.5. Questions and Remarks. How important to these results is the condition
that the paths have finite length? Does anything survive if one only insists that the
paths be continuous?

The space of continuous paths with the uniform topology is another natural
generalisation of words - certainly concatenation makes them a monoid. How-
ever, despite their popularity in homotopy theory, it seems possible that no natural
closed equivalence relation could be found on this space that transforms it into a
continuous ‘free group’ in the sense we mapped out above. The notion of tree-like
makes good sense (one simply drops the assumption that the height function h is
Lipschitz). With this relaxation, we ask

PROBLEM 1.8. Does � define an equivalence relation on continuous paths?

Homotopy is the correct deformation of paths if one wants to preserve the line
integral of a path against a closed one-form. On the other hand tree-like equivalence
is the correct deformation of paths if one wants to preserve the line integral of a
path against any one-form. As we mention elsewhere in this paper, integration of
continuous functions against general one-forms makes little sense. This is perhaps
evidence to suggest the answer to the problem is in the negative. The difficulty lies
in establishing the transitivity of the relation.

PROBLEM 1.9. Is there a unique tree reduced path associated to any continu-
ous path?

For smooth paths 
 D .
1; 
2/ in R2, Cartan development into the Heisenberg
group is the map .
1; 
2/!

�

1; 
2;

R

1d
2

�
: One knows [7, Prop. 1.29] that

there is no continuous bilinear map extending this definition to any Banach space
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of paths which carries the Wiener measure. We also know from Levy, that there are
many “almost sure” constructions for this integral made in similar ways to “Levy
area”. All are highly discontinuous and can give different answers for the same
Brownian path in R2. This wide choice for the case of Brownian paths (which
have finite p-variation for every p > 2) makes it clear there cannot be a canonical
development for all continuous paths.

The paper [8] sets out a close relationship between differential equations, the
signature, and the notion of a geometric rough path. These “paths” also form a
monoid under concatenation. Also, as any linear map from Rd into the .pC "/-
Lipschitz vector fields on a manifold M induces a canonical homomorphism of the
p-rough paths with concatenation into the group of diffeomorphisms of M , they
certainly have an analogy to the Cartan development property. Similarly, every
rough path has a signature, and the map is a homomorphism.

PROBLEM 1.10. Given a path 
 of finite p-variation for some p > 1, is the
triviality of the signature of 
 equivalent to the path being tree-like?

Our theorem establishes this in the context of p D 1 or bounded variation
paths but our proof uses the one-dimensionality of the image of the path in an
essential way. An extension to p-rough paths with p > 1 would require new ideas
to account for the fact that these rougher paths are of higher “dimension”.

There seem to be many other natural questions. By Corollary 1.6, among
paths of finite length with the same signature, there is a unique shortest one - the
reduced path. Successful resolution of the following question could have wide
ramifications in numerical analysis and beyond. The question is interesting even
for lattice paths.

PROBLEM 1.11. How does one effectively reconstruct the reduced path from
its signature?

A related question is:

PROBLEM 1.12. Identify those elements of the tensor algebra that are signa-
tures of paths and relate properties of the paths (for example their smoothness) to
the behaviour of the coefficients in the signature.

Some interesting progress in this direction can be found in [3]. We conclude
with some wider comments.

(1) There is an obvious link between these reduced paths and geometry since each
connection defines a closed subgroup of the group of reduced paths (the paths
whose developments are loops).

(2) It seems natural to ask about the extent to which the intrinsic structure of the
space of reduced paths (with finite length) in d � 2 dimensions changes as d
varies.
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1.6. Outline. We begin in Section 2 by discussing the lattice case. In this
setting we can obtain our first quantitative result on the signature, Theorem 1.
The case of words in d generators is also treated and if the first c.d/L terms
in the signature are zero, the word is reducible, where the constant c.d/ grows
logarithmically in d .

In Section 3 we extend these quantitative estimates to finite length paths. In
order to do this we need to discuss the development of a path into a suitable version
of hyperbolic space - a technique that has more recently proved useful in [9]. Using
this idea we obtain a quantitative estimate on the difference between the length
of the developed path and its chord in terms of the modulus of continuity of the
derivative of the path. This allows us to obtain, in the case where the derivative
is continuous, some estimates on the coefficients in the signature and also shows
how to recover the length of the path from the signature.

After this we return to the proof of our uniqueness result, the extension of
Chen’s theorem. Our proof relies on various analytic tools (the Lebesgue differ-
entiation theorem, the area theorem), and particularly we introduce a mollification
of paths that retain certain deeply nonlinear properties of these paths to reduce
the problem to the case where 
 is piecewise linear. Piecewise linear paths are
irreducible piecewise regular paths in the sense of Chen and thus the result follows
from Chen’s theorem. The quantitative estimates we obtained give an independent
proof for this piecewise linear result.

In Section 4 we establish the key properties for tree-like paths that we need.
In Section 5 we prove that any path Xt jt2Œ0;T � 2BV and with trivial signature can,
after re-parametrisation, be uniformly approximated by (weakly) piecewise linear
paths with trivial signature. This is an essentially nonlinear result as the constraint
of trivial signature corresponds to an infinite sequence of polynomial constraints
of increasing complexity. In Section 6 we show that, by our quantitative version
of Chen’s theorem, such piecewise linear paths must be reducible and so tree-like
in our language.

This certainly gives us enough to show, in Section 7, that any weakly piece-
wise linear path with trivial signature is tree-like. It is clear from the definitions that
uniform limits of tree-like paths with uniformly bounded length are themselves tree-
like. Thus, after application of the results of Section 5, the argument is complete.
Finally, in Section 8, we draw together the results to give the proofs of Theorem 4
and its corollaries.

2. Paths on the integer lattice
2.1. A discrete case of Chen’s theorem. Consider an alphabet A and new let-

ters A�1 D
˚
a�1; a 2 A

	
. Let � be the set of words in A [ A�1. Then � has

a natural multiplication (concatenation) and an equivalence relation that respects
this multiplication.
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Definition 2.1. A word w 2� is reducible to the empty word if, by applying
successive applications of the rule

a : : : bcc�1d : : : e! a : : : bd : : : e; a; b; c; d; e; � � � 2 A[A�1

one can reduce w to the empty word. We will say that .a : : : b/ is equivalent to
.e : : : f /

.a : : : b/ ˜ .e : : : f /

if
�
a : : : bf �1 : : : e�1

�
is reducible to the empty word.

An easy induction argument shows that ˜ is an equivalence relation. It is
well known that the free group FA can be identified as �=˜. There is an obvious
bijection between words in �, and lattice paths, that is to say the piecewise linear
paths xu which satisfy x0 D 0 and kxk � xkC1k D 1, are linear on each interval
u 2 Œk; kC 1�, and have xk 2 ZjAj for each k. The length of the path is an integer
equal to the number of letters in the word. The equivalence relation between words
can be re-articulated in the language of lattice paths: Consider two lattice paths x
and y, and let z be the concatenation of x with y traversed backwards. Clearly,
if x and y are equivalent then, keeping its endpoints fixed, z can be “retracted”
step by step to a point while keeping the deformations inside what remains of the
graph of z. The converse is also true: if U is the universal cover of the lattice,
and we identify based path segments in the lattice with points in U , then the words
equivalent to the empty word correspond with paths x, in the lattice, that lift to
loops in U . They are the paths that can be factored into the composition of a loop
in a tree with a projection of that tree into the lattice. A loop in a tree is a tree-
like path, as one can use the distance from the basepoint of the loop as a height
function.

Chen’s theorem tells us that any path that is not retractable to a point in
the sense of the previous paragraph has a nontrivial signature. Our quantitative
approach allows us to prove an algebraic version of this result.

Let 
w be the lattice path associated to the word w D a1 : : : aL, where ai 2
A[A�1; i D 1; : : : ; L. As the signature is a homomorphism, we have S .
w/D
S .
a1/ : : : S .
aL/. Since 
ai is a path that moves a unit in a straight line in the
ai direction, its signature is the exponential and S .
w/D ea1 ˝ � � �˝ eaL .

Our quantitative approach will show in Theorem 5 that for a word of length
L in a two letter alphabet, if

ea1 ˝ � � �˝ eaL D
�
1; 0; 0; : : : ; 0; XN.L/C1; XN.L/C2 : : :

�
;

where N .L/D
j
2e log

�
1C
p
2
�
L
k

, then there is an i for which ai D a�1iC1 and
by induction the reduced word is trivial.
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The proof is based on regarding Rd as the tangent space to a point in d -dimen-
sional hyperbolic space H, scaling the path 
 and developing it into hyperbolic
space. There are two ways to view this development of the path, one of which yields
analytic information out of the iterated integrals, the other geometric information.
Together they quickly give the result. We work in two dimensional hyperbolic
space and, at the end, show that the general case can be reduced to this one.

2.2. The universal cover as a subset of H. Let X be a lattice path in R2, � � 0,
and X� D �X be the re-scaled lattice path. The development Y � of X� into H, the
hyperbolic disk, is easily described. It moves along successive geodesic segments
of length � in H; each time X� turns a corner, so does Y � , and angles are preserved.

For a fixed choice of � we can trace out in H the four geodesic segments from
the origin, the three segments out from each of these, and the three from each of
these, and so on. It is clear that if the scale � is large enough, the negative curvature
forces the image to be a tree. This will happen exactly when the path that starts
by going along the real axis and then always turns anti-clockwise never hits its
reflection in the line x D y.

The successive moves can be expressed as iterations of a Möbius transform,

m.x/ WD
�ir C x

�i C rx
; xn Dm

n .0/ ;

and if r D 1=
p
2, then the trajectory eventually ends at .1C i/ =

p
2. Hyperbolic

convexity ensures that all these trajectories are (after the first linear step) always
in the region contained by the geodesic from .1C i/ =

p
2 to .1� i/ =

p
2: In par-

ticular they never intersect the trajectories whose first move is from zero to i; to
�i , or to �1. Now, there is nothing special about zero in this discussion, and using
conformal invariance it is easy to see that

LEMMA 2.2. If � is at least equal to the hyperbolic distance from 0 to 1=
p
2

in H, then the path Y �t takes its values in a tree. This value 1=
p
2 is sharp.

We have developed X� into a tree in H; we have already observed that a
loop in a tree is tree-like. If we can prove that Y �T D Y

�
0 , the Y � will be tree-like

and hence so will X�and X . To achieve this we must use the assumption that the
path has finite length and that all its iterated integrals are zero from a different
perspective.

2.3. Cartan development as a linear differential equation. If G is a finite-
dimensional Lie group represented as a closed subset of a matrix algebra, and
Xt jt�T is a path in its Lie algebra g, then the equation for the Cartan development
MT 2G of Xt jt�T 2 g is given by the differential equation

MtCıt �Mt exp .ıXt / or equivalently dMt DMtdXt :
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The development of a smooth path in the tangent space to 0 in

HD fz 2 Cj kzk< 1g ;

is also expressible as a differential equation. However, it is easier to express this
development in terms of Cartan development in the group of isometries regarded
as matrices in GL.2;C/ rather than on the points of H. We identify R2 with the
Lie subspace �

0 xC iy

x� iy 0

�
:

In this representation, the equation for Mt is linear and so we have an expansion
for MT :

MT DM0

�
I C

Z
0<u<T

dXuC

Z
0<u1<u2<T

dXu1dXu2 C : : :

�
DM0�

�
a b
Nb Na

�
;

where

aD 1C
X
k

Z
0<u1<u2<���<u2k<T

dXu1d
NXu2 : : : dXu2k�1d

NXu2k ;

b D
X
k

Z
0<u1<u2<���<u2k�1<T

dXu1d
NXu2 : : : dXu2k�1

and
R
0<u1<���<u2k<T

dXu1d
NXu2 : : : dXu2k�1d

NXu2k is now, with an abuse of no-
tation, a complex number. We have an a priori bound:

LEMMA 2.3. If X is a path of length exactly �L, thenˇ̌̌̌Z
0<u1<u2<���<u2k<T

dXu1d
NXu2 : : : dXu2k�1d

NXu2k

ˇ̌̌̌
�
.�L/2k

.2k/Š
:

To use this lemma we need to be able to estimate the tail of an exponential
series. The following lemma (based on Stirling’s formula) articulates a convenient
inequality.

LEMMA 2.4. Let x � 1=e and set �0 D limy!1
e�yy

1
2
Cy

yŠ
�
e�1=2p
2�

.

(1) x
m

mŠ
< �0
m1=2

holds for all m� ex.

(2) If for any k one has m� exC k, then

X
r�m

xr

rŠ
�

e
1
2

p
2�.e� 1/

e�kx�1=2 ' 0:38 e�kx�1=2:
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Proof. By Stirling’s formula limy!1
e�yy

1
2
Cy

yŠ
D

1p
2�

and is approached
monotonically from below. It is an upper bound and also a good global approxi-

mation to e�yy
1
2
Cy

yŠ
valid for all y � 1. Putting y D ex gives

e�ex .ex/
1
2
Cex

.ex/Š
<

1
p
2�
;

xex

.ex/Š
< e�

1
2x�

1
2

1
p
2�
:

Moreover the recurrence relation for the Š function implies, for every k 2 Z with
exC k > 0, that

xex

.ex/Š
� ek

xexCk

.exC k/Š

and so
xexCk

.exC k/Š
< e�k�

1
2x�

1
2

1
p
2�
;

establishing the first claim. Now summing this bound we haveX
k�0

xexCk

.exC k/Š
� e�

1
2x�

1
2

1
p
2�

X
k�0

e�k D
e
1
2

e� 1

1
p
2�
x�

1
2 :

Since for ex > 0 the function k! xexCk

.exCk/Š
is monotone decreasing on RC, we see

that X
m�ex

xm

mŠ
�

e
1
2

e� 1

1
p
2�
x�

1
2 ;

completing the proof of the lemma. Finally we note the approximate value of the
constant:

e
1
2

p
2�.e� 1/

' 0:38: �

2.4. The signature of a word of length L. We deduce the following totally
algebraic corollary for paths X that have traversed at most L vertices.

THEOREM 5. If a path of length L in the two dimensional integer lattice
(corresponding to a word with L letters drawn from a two letter alphabet and its
inverse), has the first b2e log.1C

p
2/Lc GL.2;C/-iterated integrals 3 zero, then

all iterated integrals (in the tensor algebra) are zero, the path is tree-like, and the
corresponding reduced word is trivial.

3GL.2;C/-iterated integrals: Since our path is in a vector subspace of the algebra GL.2;C/ we
may compute the iterated integrals in the algebra GL.2;C/ or in the tensor algebra over the vector
subspace. There is a natural algebra homomorphism of the tensor algebra onto GL.2;C/. The
GL.2;C/-iterated integrals are the images of those in the tensor algebra under this projection and
a priori contain less information.
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Proof. Any Möbius transformation preserving the disk can be expressed as

M D

�
z 0

0 Nz

� 1p
1�r2

rp
1�r2

rp
1�r2

1p
1�r2

!�
! 0

0 N!

�
;

where jzj D j!j D 1 and r is the Euclidean distance from 0 to M0: Now

Tr
�
AB

�
D

X
i

X
j

aij bj i D Tr
h
BA

t
i

and �
! 0

0 N!

��
! 0

0 N!

�T
D

�
1 0

0 1

�
:

Hence

Tr
h
MM

t
i
D Tr

24 1p
1�r2

rp
1�r2

rp
1�r2

1p
1�r2

!235D 2
�
1C r2

��
1� r2

� :
Letting r D 1=

p
2 we see that if

Tr
h
MM

t
i
< 6;

then the image of 0 under the Möbius transformation must lie in the circle of radius
1=
p
2. On the other hand

Tr
��

a b
Nb Na

��
Na b
Nb a

��
D 2

�
jaj2Cjbj2

�
and in our context, where the first N iterated integrals are zero, this gives the
inequality

(2.1)

ˇ̌̌̌
ˇ1CX

k>N

Z
0<u1<���<u2k<T

dXu1d
NXu2 : : : dXu2k�1d

NXu2k

ˇ̌̌̌
ˇ
2

C

ˇ̌̌̌
ˇX
k>N

Z
0<u1<���<u2k�1<T

dXu1d
NXu2 : : : dXu2k�1

ˇ̌̌̌
ˇ
2

< 3:

Using our a priori estimate from Lemma 2.3, the inequality will hold if 
1C

X
k>N

.�L/2k�1

.2k� 1/Š

!2
C

 X
k>N

.�L/2k

.2k/Š

!2
< 3:
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Now observe that, as we will choose N > �L, the terms in the sums are decreasing.
Hence, if we have X

k>N

.�L/2k�1

.2k� 1/Š
< s

then also X
k>N

.�L/2k

.2k/Š
< s:

We see that (2.1) will always be satisfied if we choose s such that

2
�
sC s2

�
< 2 and

X
k>N

.�L/2k�1

.2k� 1/Š
< s:

Hence, if X
k>N

.�L/2k�1

.2k� 1/Š
<

p
5� 1

2
;

then YT D 0. By Lemma 2.4 (2) with x D 2 log.1C
p
2/L, we have if N �

2e log.1C
p
2/L,

X
m�N

�
2 log.1C

p
2/L

�m
mŠ

�
e
1
2

p
2�.e� 1/

.2 log.1C
p
2/L/�1=2

<

p
5� 1

2

for all L� 1.
Observe that if � � 2 log

h
1C
p
2
i

then Yt D Mt0 lies in a tree, and the
development of Y is such that every vertex of the tree is at least a distance � from
the origin except the origin itself. By our hypotheses and the above argument
d ŒYT ; 0� < � and hence YT D 0. Therefore Y is tree-like and the reduced word is
trivial. �

Finally we note that the case of the free group with two generators is enough
to obtain a general result, as the free group on d generators can be embedded in it.

LEMMA 2.5. Suppose that �d is the free group on d letters ei and that �
is the free group on the letters a; b. Then we can identify fi 2 � so that the
homomorphism induced by ei ! fi from �d to � is an isomorphism and so that
the length of the reduced words fi are at most jfi j � 2

l
log3

d
2

m
C 3:

Proof. It is enough to show that we can embed �23l�1 into � so that each
fi has length 2l C 1. Consider the collection of all reduced words of length l
in � . There are 43l�1 of them if l > 0. Partition them into pairs, so that the
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left-most letter of each of the words in a pair is the same up to inverses. Order
them lexicographically. Now consider the space which is the ball in the Cayley
graph of � comprising reduced words with length at most l . It is obvious that
this is a contractible space. Now adjoin new edges connecting the ends of our
pairs. Associate with each of the new edges the alternate letter and orient the edge
to point from the lower to the higher word in the lexicographic order. Then this
new space � is contractible to 23l�1 loops and so has the free group �23l�1 as
its fundamental group. On the other hand, we can obviously lift any path in � to
the Cayley graph of �; the map from loops in � to � is a homomorphism. The
monodromy theorem tells us that this homomorphism induces a homomorphism of
the homotopy group of � to � . As � is a tree, any two lifts of paths with the same
endpoint in � are homotopic relative to those endpoints in graph � . Therefore we
can associate every point in the homotopy group of � with a unique element of �
and see that the homomorphism is injective. So we see that the image is a copy of
the free group �23l�1 . The generators of the classes in � clearly lift to paths of
length 2l C 1 in � and we take the end points of these paths to be the fi . �

Using this and Theorem 5 we have the following general result.

THEOREM 6. If X is a path of length L in the d -dimensional integer lattice
and the projections into GL.2;C/ of the first b.2

l
log3

d
2

m
C 3/2e log.1C

p
2/Lc

iterated integrals are zero, then the path is tree-like.

In this section, our arguments depended on the tree-like nature of the develop-
ment of the path in the lattice and little else. This is a property of the development
into any rank-one symmetric space but is still plausible, if less obvious for general
homogeneous spaces. Each space will give rise to a different class of iterated
integrals that are sufficient to determine the tree-like nature of a path in a ‘jungle
gym’. One should note that computing the iterated integrals is not the most efficient
way to determine if a word is reducible if the word, as opposed to its signature, is
presented.

3. Quantitative versions of Chen’s theorem

We now work with paths in Rd and aim to obtain a similar result to that in
Section 2. We will also discuss the recovery of information about the path from its
signature. An important tool is the development of the path into the hyperboloid
model for the d -dimensional hyperbolic space H (which embeds H into a d C 1-
dimensional Lorentz space) because the isometries of H extend to linear maps.

Consider the quadratic form on RdC1 defined by

Id .x; y/D

dX
1

xiyi � xdC1ydC1; 8x; y 2 RdC1
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and the surface
HDfxj Id .x; x/D�1g :

Then H is hyperbolic space with the metric obtained by restricting Id to the tangent
spaces to H. If x 2H, then fyjId .y; x/D 0g is the tangent space at x to H in RdC1,
and moreover Id is positive definite on fyjId .y; x/D 0g. Thus this inner product
is a Riemannian structure on H. In fact, (see [1, p. 83]) distances in H can be
calculated using Id :

(3.1) � cosh d .x; y/D Id .x; y/ :

If SO .Id / denotes the group of matrices with positive determinant preserving4

the quadratic form Id , then one can prove this is exactly the group of orientation
preserving isometries of H. The Lie algebra of SO .Id / is easily recognised as
the d C 1 dimensional matrices that are antisymmetric in the top left d � d block,
symmetric in the last column and bottom row and zero in the bottom right corner.
Then the development of a path 
 2 Rd to SO .Id / and H (chosen to commute
with the action of multiplication on the right in SO .Id // is given by solving the
following differential equation

(3.2) d�t D

0BBB@
0 � � � 0 d
1t
:::

: : :
:::

:::

0 � � � 0 d
dt
d
1t � � � d


d
t 0

1CCCA�t :
We define X to be the development of the path 
 to the path in H starting at
oD .0; : : : ; 0; 1/t and given by

Xt D �to:

Now we can write d�t D F.d
t /�t where

F W x!

0BBB@
0 � � � 0 x1
:::
: : :

:::
:::

0 � � � 0 xd
x1 � � � xd 0

1CCCA
is a map from Rd to Hom

�
RdC1;RdC1

�
, where for precision we choose the

Euclidean norm on Rd and RdC1 and the operator norm on Hom
�

RdC1;RdC1
�

.

LEMMA 3.1. In fact jjF jjHom.RdC1;RdC1/ D 1:

4Precisely, M 2 SO .In/ if Id
��
Myt

�t
;
�
Mxt

�t�
� Id .y; x/.
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Proof. Let e 2 Rd and f 2 R. Then for x 2 Rd

F .x/

�
e

f

�
D

�
f x

e:x

�
and computing norms, we haveˇ̌̌̌ˇ̌̌̌�

f x

e:x

�ˇ̌̌̌ˇ̌̌̌2
� f 2 jjxjj2Cjjejj2 jjxjj2 D

ˇ̌̌̌ˇ̌̌̌�
e

f

�ˇ̌̌̌ˇ̌̌̌2
jjxjj2

and hence kF kHom.RdC1;RdC1/ D 1. �

3.1. Paths close to a geodesic. We are interested in developing paths 
 of
fixed length l into paths � in SO .Id /, and in the function

% .
/ WD d .o; �o/

giving the length of the chord connecting the beginning and end of the development
of 
 into hyperbolic space. Amongst paths 
 of fixed length, straight lines max-
imise % as their developments are geodesics. The function % is a smooth function
on path space [6]. Therefore one would expect that for some constant K

% .
/� l �K"2

whenever 
 is in the "-neighbourhood (for the appropriate norm) of a straight line.
We will make this precise using Taylor’s theorem.

Suppose our straight line is in the direction of a unit vector v. If our path 

is parametrised at unit speed we can represent it by

d
t D‚tvdt;

where ‚t is a path in the linear isometries of Rd . In this discussion we assume that
‚t is continuous and has modulus of continuity ı. Of course, 
 is close to t ! tv

if ‚ is uniformly close to the identity. Consider the development �toD . Oxt ; xt /
of 
 into the hyperboloid model of H defined by

xt 2 R;

Oxt 2 Rd ;

dxt D Oxt �‚tvdt; x0 D 1;

d Oxt D xt‚tvdt; Ox0 D 0:

We know that k Oxtk2C 1D jxt j2 and that

cosh d .�to; o/D�Id

��
Oxt
xt

�
;

�
0

1

��
D xt I

in other words cosh %
�

 jŒ0;t�

�
D xt .
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PROPOSITION 3.2. Suppose that one can express ‚t in the form eAt where
At is a continuously varying anti-symmetric matrix and that kAk1 � � < 1. Then

jcoshT � xT j � 4T
kAk21
2

:

Proof. Suppose " 2 Œ�1; 1�. We introduce a family of paths 
"t with 
1t � 
t
and with 
0t the straight line tv. We set

d
"t D e
"Atvdt; 
"0 D 0:

We can then consider the real-valued function f on Œ�1; 1� comparing the length
of the development of 
" and the straight line

f ."/ WD cosh %
�

"t jt2Œ0;T �

�
� coshT:

Of course f .0/ D 0 and f � 0. Now [6, Th. 2.2] proves that development of
a path 
 is Fréchet differentiable as a map from paths to paths in all p-variation
norms with p 2 Œ1; 2/ :

It is elementary that

d
�

"t � 


"Ch
t

�
D e"At

�
1� ehAt

�
vdt

D hAte
"Atvdt C

1

2
Qh2tA

2
t e
"Atvdt

where Qht 2 Œ0; h�. Working towards the 1-variation derivative, we haveZ
t2Œ0;T �

ˇ̌̌
d
�

"t � 


"Ch
t

�
� hAte

"Atvdt
ˇ̌̌
�

Z
t2Œ0;T �

ˇ̌̌̌
1

2
Qh2tA

2
t e
"Atvdt

ˇ̌̌̌
�
h2

2

Z
t2Œ0;T �

ˇ̌
A2t
ˇ̌
dt:

Thus "! 
" is differentiable with derivative

d
 .1/;" WD Ate
"Atvdt;

providing
R
t2Œ0;T �

ˇ̌
A2t
ˇ̌
dt <1. A similar estimate shows that the derivative of


 .1/;" exists and is
d
 .2/;" WD A2t e

"Atvdt;

providing
R
t2Œ0;T �

ˇ̌
A3t
ˇ̌
dt <1. From [6, Th. 2.2] we know that the development

map is certainly twice differentiable in the 1-variation norm and applying the chain
rule it follows that f is a twice differentiable function on Œ�1; 1�. On the other hand
f .0/ D 0 and f ."/ � 0 for " 2 Œ�1; 1� so that f 0 .0/ D 0, and when we apply
Taylor’s theorem,

0� f .1/� inf
"2Œ0;1�

"2

2
f 00 ."/ :
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In fact the derivatives in " form a simple system of differential equations. If 
Ox"Cht

x"Cht

!
D

�
Ox"t
x"t

�
C h

�
Oy"t
y"t

�
C
h2

2

�
Oz"t
z"t

�
C o

�
h2
�
;

then 0@ d Ox"td Oy"t
d Oz"t

1AD
0@ e"Atvdt 0 0

Ate
"Atvdt e"Atvdt 0

A2t e
"Atvdt 2Ate

"Atvdt e"Atvdt

1A0@ x"ty"t
z"t

1A
0@ dx"tdy"t
dz"t

1AD
0@ e"Atvdt 0 0

Ate
"Atvdt e"Atvdt 0

A2t e
"Atvdt 2Ate

"Atvdt e"Atvdt

1A �
0@ Ox"tOy"t
Oz"t

1A
with the initial conditions

Ox"0 D 0; x
"
0 D 1;

Oy"0 D 0; y
"
0 D 0;

Oz"0 D 0; z
"
0 D 0:

The simple exponential bound on the solution of a linear equation shows that

jz"t j � 4
maxfT;

R
t2Œ0;T �jAt jdt;

R
t2Œ0;T �jA

2
t jdtg:

Applying Taylor’s theorem we have that

f ."/� �
"2

2
4maxfT;

R
t2Œ0;T �jAt jdt;

R
t2Œ0;T �jA

2
t jdtg:

If kAk1 � 1 then f ."/ > � "
2

2
4T , and as kAk1 � � < 1, we can replace A

by ��1A and evaluate f��1A at � to deduce that fA .1/ > �
�2

2
4T giving us the

uniform estimate we seek. �

3.2. Some estimates from hyperbolic geometry. We require some simple hy-
perbolic geometry. Fix a point A (in hyperbolic space), and consider two other
points B and C . Let �A, �B , and �C be the angles at A, B , and C respectively. Let
a, b, and c be the hyperbolic lengths of the opposite sides. Recall the hyperbolic
cosine rule

sinh.b/ sinh.c/ cos.�A/D cosh.b/ cosh.c/� cosh.a/

and note the following simple lemmas:

LEMMA 3.3. If the distance c from A to B is at least log
�

cosj�AjC1
1�cosj�Aj

�
, then

j�B j � j�Aj :

Proof. Fix c and the angle �A, the angle �B is zero if b D 0 and monotone
increasing as b!1. Suppose that j�B j> j�Aj. We may reduce b so that j�B j D
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j�Aj; now the triangle has two equal edges and applying the cosine rule to compute
the base length, we have

sinh.a/ sinh.c/ cos.�A/D cosh.a/ cosh.c/� cosh.a/;

c D log
�
�
.cos j�Aj/ e2aC e2a � cos j�AjC 1
�e2aC .cos j�Aj/ e2a � cos j�Aj � 1

�
< lim
a!1

log
�
�
.cos j�Aj/ e2aC e2a � cos j�AjC 1
�e2aC .cos j�Aj/ e2a � cos j�Aj � 1

�
D log

�
cos j�AjC 1
1� cos j�Aj

�
: �

LEMMA 3.4. We have a�bCc�log 2
1�cos �A

. Thus if max.b; c/� log 2
1�cos �A

,
then a >min.b; c/.

Proof. Consider triangles with fixed angle �A and with side lengths �b, �c
and resulting length a .�/ for the side opposite �A. Then

�bC�c � a .�/

is monotone increasing in � with a finite limit. Now

sinh.�b/ sinh.�c/ cos.�A/D cosh.�b/ cosh.�c/� cosh.a .�//;
cosh.�b/ cosh.�c/
sinh.�b/ sinh.�c/

� cos.�A/D
cosh.a .�//

sinh.�b/ sinh.�c/
;

lim
�!1

log
cosh.a .�//

sinh.�b/ sinh.�c/
D lim
�!1

.a .�/��b��b/C log 2;

�bC�c � a .�/ � lim
�!1

.�bC�c � a .�//

D log
2

1� cos �A
:

Thus

a � bC c � log
2

1� cos �A
:

Also, providing max .b; c/� log 2
1�cos �A

, one has a �min .b; c/. �

COROLLARY 3.5. If the distance c from A to B is at least log
�

2
1�cosj�Aj

�
,

then

j�B j � j�Aj ;

and a � b.
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The above lemma is useful in the case where the angles of interest are acute.
However we are also interested in the case where one angle is very obtuse, and
where the following lemma gives much better information.

LEMMA 3.6. Suppose that �A > �=2 and that the distance c from A to B is
at least log

�p
2C 1

�
then �B < .� � �A/ =2:

Proof. Fix �A > �=2. By our assumptions cosh .c/ �
p
2, and so applying

the second hyperbolic cosine rule

sin.�B/ sin.�A/ cosh.c/D cos.�C /C cos.�B/ cos.�A/

we have

cosh.c/D
cos.�C /C cos.�B/ cos.�A/

sin.�B/ sin.�A/
�
p
2:

Since the sum of interior angles in a hyperbolic triangle is less than � one can
conclude that �B D ˛ .� � �A/ where 0 < ˛ < 1 and that �B and �C are in Œ0; �=2/.
To prove this lemma we need to show further that ˛� 1

2
. It is enough to demonstrate

that, in the case �A > �=2; and 1
2
< ˛ < 1, we have

cos.�C /C cos.�B/ cos.�A/
sin.�B/ sin.�A/

<
p
2:

It is enough to prove that

1C cos.�B/ cos.�A/
sin.�B/ sin.�A/

<
p
2:

Replacing .� � �A/ by � and rewriting

f .˛; �/ WD
1� cos.˛�/ cos.�/

sin.˛�/ sin.�/

we see that it is enough to prove f .˛; �/ <
p
2 if � < �=2 and 1

2
< ˛ < 1. As

@f

@˛
.˛; �/D �

.cos .�/� cos .˛�//

sin .�/ sin .˛�/2
� 0;

f is strictly decreasing in ˛ in our domain. Hence, if ˛ > 1=2, then

f .˛; �/ < f

�
1

2
; �

�
:

As
@f

@�
.1=2; �/D

1

8

.1C 2 cos .�=2// tan .�=4/

cos .�=4/2 cos .�=2/2
� 0;

we have
f .˛; �/ < f

�
1

2
; �

�
< f

�
1

2
; �=2

�
D
p
2;

which completes the argument. �
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LEMMA 3.7. Let 0D T0 < � � �< Ti < : : : Tn D T be a partition of Œ0; T �. Let
.Xt /t2Œ0;T � be a continuous path, geodesic on the intervals ŒTi ; TiC1� jiD0;:::;n�1 in
hyperbolic space with n� 1 where, at each Ti , the angle between the two geodesic
segments: †Xi�1XTiXTiC1 is in Œ2�; ��. Suppose that each geodesic segment has

length at least K .�/D log
�

2
1�cosj� j

�
. Then

(1) d
�
X0; XTi

�
is increasing in i and for each i � n

(3.3) d
�
X0; XTi

�
� d

�
X0; XTi�1

�
C d

�
XTi�1 ; XTi

�
�K .�/�K .�/

and the angle between
��������!
XTi�1 ; XTi and

����!
X0XTi is at most � .

(2) We also have

0�

nX
iD1

d
�
XTi�1 ; XTi

�
� d

�
X0; XTn

�
� .n� 1/K.�/:

Proof. We proceed by induction. Suppose d
�
X0; XTi

�
�K .�/ and the angle

†XTi�1XTiXT0 is at most � . Now the angle †XTi�1XTiXTiC1 is at least 2� so
that the angle †XT0XTiXTiC1 is at least � . As d

�
X0; XTi

�
� K .�/ and our

supposition d
�
XTi ; XTiC1

�
�K .�/, Lemma 3.4 and Corollary 3.5 imply

d
�
X0; XTiC1

�
� d

�
X0; XTi

�
C d

�
XTi ; XTiC1

�
�K .�/ ;

and that †X0XTiC1XTi � � , this proves the main inequality. Using the induction
one also has the second part of the inequality

d.X0; XTiC1/�K.�/:

The second claim is obtained by iterating (3.3),

d
�
X0; XTiC1

�
� d

�
X0; XT1

�
C

iX
jD1

d
�
XTj ; XTjC1

�
� iK .�/ :

Now rearrange to get the result. �

3.3. The main quantitative estimate. Let 
 in Rd be a continuous path of
finite length l , parametrised at unit speed. With this parametrisation 
 0 can be
regarded as a path on the unit sphere in Rd . We consider the case where u! 
 0 .u/

is continuous with modulus of continuity ı
 . If ˛ 2 R, then the path 
˛ WD t !
˛
 .t=˛/ is also parametrised at unit speed, its length is ˛l and its derivative has
modulus of continuity ı
˛ .˛h/D ı
 .h/. Its development (defined in (3.2)) from
the identity matrix into SO .Id / is denoted by �˛.

The goal of this section is to provide a quantitative understanding for �a as
we let ˛!1. Our estimates will only depend on ı and the length of the path. We
let R0 D log.1C

p
2/.
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PROPOSITION 3.8. Let 
 in Rd be a continuous path of length l . For each
C < 1 and 1 � M 2 N, for any ˛ chosen large enough that ˛l � MR0 and

ı


�
MC1
M

R0
˛

�
<

r
2
�p

2�
p
1CC 2

�
4�

MC1
M

R0 , we have

jd .o; �˛o/�˛l j �

 
4
MC1
M

R0

2C
C
16 log 2
�2

!
˛l

R0
ı


�
M C 1

M

R0

˛

�2
:

In particular for paths of any length l �MR0, with modulus of continuity for the

derivative ı

�
MC1
M

R0

�
<

r
2
�p

2�
p
1CC 2

�
4�

MC1
M

R0 ,

jd .o; �o/� l j �

 
4
MC1
M

R0

2C
C
16 log 2
�2

!
l

R0
ı


�
M C 1

M
R0

�2
:

We set D1 .C;M/ D

�
4
MC1
M

R0

2C
C
16 log2
�2

�
l
R0

, and D2 .M/ D MC1
M

R0 so

that the inequality becomes

(3.4) jd .o; �˛o/� l˛j �D1ı
 .D2=˛/
2 ˛l:

We note thatR0� :881374, 4R0�3:34393�4.MC1/R0=M �42R0�11:5154
and 16 log2

�2
� 1:12369: Fixing M D 1; one immediately sees that the distance

d .o; �˛o/ grows linearly with the scaling and the chordal distance d .o; �˛o/
behaves like the length of the path 
 as ˛ ! 1. We also note that the shape
of this result is reminiscent of the elegant result of Fawcett [3, Lemma 68]: among
C 2�curves 
 with modulus of continuity ı
 .h/� �h one has sharp estimates on
the minimal value of d .o; �o/ given by

inf



cosh .d .o; �o//D
cosh

�
˛l
p
1� �2

�
� �2

1� �2
:

A natural question to ask is whether our estimate (which is noninfinitesimal and
only needs information about ı
 .2R0/) can be improved to this shape and even to
this sharp form.

Proof. The path 
˛ WD t ! ˛
 .t=˛/ is of length ˛l and parametrised at unit
speed; its derivative has modulus of continuity ı
˛ W t ! ı
 .t=˛/. Because ˛l �

MR0 we can fix RD ˛l=N , where R 2
h
R0;

MC1
M

R0

i
and N is a positive integer

depending on ˛. Let ti D iR where i 2 Œ0; N �. LetGi 2SO .Id / be the development
of the path segment 
˛jŒti�1;ti � into SO .Id / and let �˛;t be the development of the
path segment 
˛jŒ0;t�. We define X0 WD o 2 H and Xj WD GtjXj�1 2 H. The Xj
are the points �˛;tj o on the path �a;to:
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As the length of the path is greater than any chord

j˛l � d .o; �˛o/j D ˛l �

NX
iD1

d .Xi�1; Xi /(3.5)

C

NX
iD1

d .Xi�1; Xi /� d .X0; XN / ;

where

˛l �

NX
iD1

d .Xi�1; Xi /� 0 and
NX
iD1

d .Xi�1; Xi /� d .X0; XN /� 0:

We now estimate each of these terms from above.
For the first term we use our result on paths close to a geodesic. By Proposi-

tion 3.2 we have

cosh d .Xi�1; Xi /� coshR�
ı
˛ .R/

2

2
4R D coshR�

ı
 .
R
˛
/2

2
4R:

Thus, using the convexity of cosh and hyperbolic trig identities,

ı
 .
R
˛
/2

2
4R � coshR� cosh d .Xi�1; Xi /

� .R� d .Xi�1; Xi // sinh d .Xi�1; Xi /

D .R� d .Xi�1; Xi //

q
cosh d .Xi�1; Xi /2� 1

� .R� d .Xi�1; Xi //

vuut 
coshR�

ı
 .
R
˛
/2

2
4R

!2
� 1

� .R� d .Xi�1; Xi //

vuut 
p
2�

ı
 .
R
˛
/2

2
4R

!2
� 1:

Now, for C < 1, providing 
p
2�

ı
 .
R
˛
/2

2
4R

!2
� 1CC 2;

we have
ı
 .

R
˛
/2

2C
4R � .R� d .Xi�1; Xi // :

This will follow if we choose ˛ large enough such that our condition

ı
 .
M C 1

M

R0

˛
/2 � 2

�p
2�

p
1CC 2

�
4�

MC1
M

R0

holds.
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Hence, summing over all the pieces, we have�
˛l

R

�
ı
 .

R
˛
/2

2C
4R �

 
˛l �

NX
iD1

d .Xi�1; Xi /

!
:

We now use our bounds on R to obtain

(3.6)
�
˛l

R0

�
ı
 .

MC1
M

R0
˛
/2

2C
4
MC1
M

R0 �

 
˛l �

NX
iD1

d .Xi�1; Xi /

!
:

Applying Lemma 3.6 and Lemma 3.7 we see that as R �R0 D log.1C
p
2/,

then the angle X0XTnXTnC1 is at least � � 2ı

�
R
˛

�
for each 0 < n < N � 1.

Thus
NX
iD1

d .Xi�1; Xi /� d
�
X0; XTN

�
� .N � 1/K.� � 2ı
 .

R

˛
//

D

�
˛l

R
� 1

�
log

0@ 2

1� cos
�
� � 2ı


�
R
˛

��
1A :

Since
�
1
u2

log
�

2
1�cosj��uj

��
is increasing in u for u� � , we have

log

0@ 2

1� cos
ˇ̌̌
� � 2ı


�
R
˛

�ˇ̌̌
1A� 4ı
 �R

˛

�2 � 1

.�=2/2
log

�
2

1� cos j�=2j

��
:

As

ı


�
R

˛

�
�

r
2
�p

2�
p
1CC 2

�
4�

MC1
M

R0 � �=4

for all C and M , we have

log

0@ 2

1� cos
ˇ̌̌
� � 2ı


�
R
˛

�ˇ̌̌
1A� ı
 �R

˛

�2 16 log 2
�2

:

Observing that ı
 .R/ is increasing and that MC1
M

R0 � R gives the second
part of our estimate,

nX
iD1

d .Xi�1; Xi /� d
�
X0; XTn

�
�
16 log 2
�2

�
˛l

R
� 1

�
ı


�
R

˛

�2
(3.7)

�
16 log 2
�2

�
˛l

R0
� 1

�
ı


�
M C 1

M

R0

˛

�2
:(3.8)

Combining the estimates (3.6) and (3.8) completes the proof. �



136 BEN HAMBLY and TERRY LYONS

3.4. Recovering information about the path from its signature. Our main
quantitative result in this section proves that a smooth path imposes strong restric-
tions on even the first few terms of its signature. Before proving it, we explain how
relatively crude quantities such as the asymptotic magnitudes of the terms in the
signature X of a path 
 contain important and detailed information about 
 . We
show how information about the length l of the path can sometimes be recovered
by looking at the exponential behaviour of




Xk


 which in practice seems to be
independent of the choice of tensor norm.

We also give more refined results relating to the order of convergence; these
are quite sensitive to this choice of norm and to the continuity properties of the
derivative of 
 and interestingly exhibit a phase transition (We are grateful to the
referee for showing us the result we give here for the Hilbert-Schmidt norm.)

The iterated integral of a path in a vector space V is a tensor in V ˝k . Even
if there is a canonical norm on V , there are many natural cross norms on V ˝k

associated with the given norm on vectors [11]; the differences between these
norms become accentuated as k !1. This is true even in the case where the
underlying vector space is Rd . We begin by discussing the Hilbert-Schmidt tensor
norm.

LEMMA 3.9. Suppose that 
 2 V is parametrised at unit speed on Œ0; l�, and
that fu1 < � � �< ukg are the order statistics from k points chosen uniformly from
Œ0; 1�. Then

kŠXk D lkE

�
˝
k
iD1


0 .ui /
�
:

If , further, V is an inner product space, and V ˝k is given the Hilbert-Schmidt
norm then 


kŠXk


2 D l2kE

0@ kY
iD1

˝

 0 .ui / ; 


0 .vi /
˛1A

where fv1 < � � �< vkg is a second independently sampled set of order statistics.

Proof. The first claim in this lemma follows the observation that uniform mea-
sure on the simplex f0 < v1 < � � �< vk < lg, when normalised to be a probability
measure, is the distribution of the order statistics from k points chosen uniformly
from Œ0; l�.

The second claim is only slightly more subtle; if e� is an orthonormal basis
for V ˝k , then

E

�
˝
 0 .ui /

�

2 DX
e�

E
�˝
e�;˝


0 .ui /
˛�2
D

X
e�

E
�˝
e�;˝


0 .ui /
˛ ˝
e�;˝


0 .vi /
˛�

D

X
e�

E
�˝
e�;˝


0 .ui /
˛ ˝
e�;˝


0 .vi /
˛ ˝
e�; e�

˛�
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D

X
e�

X
e�0

E
�˝
e�;˝


0 .ui /
˛ ˝
e�0 ;˝


0 .vi /
˛ ˝
e�; e�0

˛�

D E

0@X
e�

X
e�0

˝
e�;˝


0 .ui /
˛ ˝
e�0 ;˝


0 .vi /
˛ ˝
e�; e�0

˛1A
D E

�˝
˝
 0 .ui / ;˝


0 .vi /
˛�

D E

0@ kY
iD1

˝

 0 .ui / ; 


0 .vi /
˛1A : �

In [12] it is shown that the quantile process, the linearly interpolated process
of the order statistics f0 < u1 < � � � < uk < 1g from a sample of k independent
uniform [0,1] random variables, converges to a Brownian bridge. Let Uk.t/D ui
for t D i=.kC 1/ and interpolate linearly for other values of t 2 Œ0; 1�.

LEMMA 3.10. The process OUk defined by

OUk.t/ WD
p
k.Uk.t/� t /;

converges weakly as k!1 to the Brownian bridge W 0 D fW 0
t W 0� t � 1g which

goes from 0 to 0 in time 1.

THEOREM 7. Suppose that V is an inner product space and that 
 is a con-
tinuously differentiable path in V of length 1 parametrised by arc-length, then

lim
k!1

b
1=k

k
D lim
k!1




kŠXk


1=k D 1
where V ˝k is given the Hilbert-Schmidt norm.

Proof. Let f0 < u1 < � � �< uk < 1g and f0 < v1 < � � �< vk < 1g be the order
statistics from two independent samples of k independent uniform [0,1] random
variables. For a path parametrised at unit speed, it is almost surely true that for
each i; h
 0 .ui / ; 
 0 .vi /i � 1.

By Lemma 3.10 we have

pk W D P

 
max
1�i�k

jui � vi j>

�
c

k log k

� 1
2

!

D P

 
max
1�i�k

1
p
k

ˇ̌̌̌
OUk.

i

kC 1
/� OVk.

i

kC 1
/

ˇ̌̌̌
>

�
c

k log k

� 1
2

!

D P

 
sup
t

ˇ̌̌
OUk.t/� OVk.t/

ˇ̌̌
>

�
c

log k

� 1
2

!
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converges to one as k !1. If ı is the modulus of continuity of 
 0 then, since
j
 0.u/j � 1; simple trigonometry leads to the estimate

j1� h
 0.ui /; 

0.vi /ij � ı.ui � vi /

and hence from Lemma 3.9,

E

0@ kY
iD1

h
 0.ui /; 

0.vi /i

1A 1
k

� E

 �
1�max

i
ı .ui � vi /

�k! 1
k

�

0@pk
 
1� ı

 �
2

k log k

� 1
2

!!k1A
1
k

� p
1
k

k

 
1� ı

 �
2

k log k

� 1
2

!!
! 1 as k!1: �

THEOREM 8. If 
 is a C 3 path of length l and signature X D
�
1;X1; : : : ;

�
,

and if V ˝k is given the Hilbert-Schmidt norm, then the limit

(3.9) lim
k!1




l�kkŠXk


2 D E

�
exp

�Z
s2Œ0;1�

ˇ̌
W 0
s

ˇ̌2
h
 0.s/; 
 000.s/ids

��
exists, where W 0

s is a Brownian bridge starting at zero and finishing at zero at
time 1. The limit is bounded above by 1 and, except for the case where 
 is a
straight line, the limit is strictly less than one.

Proof. A path parametrised at unit speed has˝

 0 .u/ ; 
 0 .u/

˛
D 1;

˝

 0 .u/ ; 
 00 .u/

˛
D 0

so that, applying Taylor’s theorem to third order one has˝

 0 .u/ ; 
 0 .v/

˛
D 1C

˝

 0 .u/ ; 
 000 .u/

˛
.v�u/2 =2CO

�
.v�u/3

�
:

We make two observations: Firstly that h
 0 .u/ ; 
 0 .v/i � 1 for all v. Secondly, the
continuous function h
 0 .u/ ; 
 000 .u/i � 0 and only when 
 is a straight line, is it
identically equal to zero.

Using Lemma 3.9 we can write

l�2k



kŠXk


2DE

 Y
i

˝

 0 .ui / ; 


0 .vi /
˛!
DE

0@exp

0@ kX
iD1

log
˝

 0 .ui / ; 


0 .vi /
˛1A1A
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D E

0@exp

0@1
2

kX
iD1

˝

 0 .ui / ; 


000 .ui /
˛
.
p
k.vi �ui //

2 1

k
CO

�
.vi �ui /

3
�1A1A

D E

0@exp

0@1
2

kX
iD1

˝

 0.ui /; 


000.ui /
˛
. OVk.

i

kC 1
/� OUk.

i

kC 1
//2
1

k

CO

 �
OVk.

i

kC 1
/� OUk.

i

kC 1
/

�3 1
p
k

!!!
:

As ui D i=.kC1/C OUk.i=.kC1//=
p
k we can apply Lemma 3.10. The weak con-

vergence of the quantile process to the Brownian bridge ensures that expectations
of continuous bounded functions of the path converge and thus, by continuity of

 0; 
 000, we have that as k!1,

l�2k



kŠXk


2! E

�
exp

�
1

2

Z 1

0

˝

 0.s/; 
 000.s/

˛
.W 0

s �
zW 0
s /
2ds

��
;

where zW 0 is an independent Brownian bridge going from 0 to 0 in time 1. Now,
using the fact that the difference of the two Brownian bridges is a bridge with twice
the variance, we have the result. �

We now consider the same questions but with a different norm on V ˝k . From
the previous section we know that if ˛ is large enough then there are constants
D1;D2 such that

(3.10) jd .o; �˛o/� l˛j �D1ı
 .D2=˛/
2 ˛l

and in particular the left-hand side will go to zero as ˛!1 if ı
 ."/D o
�
"1=2

�
.

The lower bound on d .o; �˛o/ implicit in (3.10) leads to a lower bound on
the norm of �˛ as a matrix. We will compare it with the upper bound that comes
from expressing the matrix �˛ as a series whose coefficients are iterated integrals.
We have an upper bound for the norm of each coefficient in the series, and their
sum provides an upper bound for the matrix norm of �˛. We can prove that this
upper bound is so close to the lower bound on the norm of �˛ that it allows us to
conclude lower bounds, term by term, for the norms of the coefficients as tensors
over Rd and hence to relate the decay rate for the norms of the iterated integrals
directly to the length of 
 .

Although identifying
�

Rd
�˝k

with Rdk makes the Euclidean norm a plausi-

ble choice of cross norm for
�

Rd
�˝k

, in many ways the projective and injective
cross norms are more significant. The biggest cross norm is the projective tensor
norm.
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Definition 3.11. If V is a Banach space and x 2 V ˝k , then the projective
norm of x is

inf

(X
i

kv1;ik : : :


vk;i



ˇ̌̌̌
ˇ x DX

i

v1;i ˝ � � �˝ vk;i

)
:

Recall that if W is a Banach space, then Hom.W;W / with the usual operator
norm is a Banach algebra. The norm is obtained by considering multilinear maps
from V into Hom.W;W /.

Definition 3.12. If V is a Banach space, A is a Banach algebra and F1; : : : ; Fk
2 Hom.V; A/, then writing F1˝ � � �˝Fk for the canonical linear extension of the
multilinear map

.v1; v2 : : : ; vk/! F1.v1/F2.v2/ : : : Fk.vk/;

from V ˝k! A, we can define

kxk!A D sup
Fi2Hom.V;A/
kFikHom.V;A/D1

kF1˝F2 � � � ˝Fk.x/kA :

The case A D R yields the injective (the smallest) cross norm. In practise
we will consider the case where A is Hom

�
RdC1;RdC1

�
with the operator norm

where RdC1 is given the Euclidean norm; we will give our lower bounds in terms
of kxk!Hom.RdC1;RdC1/ and so they hold in the projective tensor norm as well. As
Theorem 8 shows, our lower bounds do not in general apply in the injective norm.

PROPOSITION 3.13. Let G 2 SO .Id / : Then kGkHom.RdC1;RdC1/ � e
d.o;Go/

where RdC1 has the Euclidean norm.

Proof. If

F� WD

0BBBBBBBBBBB@

1 0 � � � � � � 0 0 0

0 1
: : :

: : :
:::

:::
:::

:::
: : :

: : :
: : :

:::
:::

:::
:::
: : :

: : : 1 0
:::

:::

0 � � � � � � 0 1 0 0

0 � � � � � � � � � 0 cosh � sinh �
0 � � � � � � � � � 0 sinh � cosh �

1CCCCCCCCCCCA
;

then F�F� D F�C� and the set of such elements forms a (maximal) Abelian
subgroup of SO .Id /. Any element G of SO .Id / can be factored into a Cartan
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Decomposition KF� QK where K and QK are built out of rotations ‚ of Rd�
‚ 0
0t 1

�
and � 2 RC: As an operator on Euclidean space, G has norm kGk D



KF� QK

D

F�

 since K, QK are isometries. In addition, the matrix F� is symmetric and hence
has a basis comprising eigenfunctions; its norm is at least as large as its largest
eigenvalue. Computation shows that the eigenvalues of F� are fe�; e��; 1; : : : ; 1g
so that, given � > 0, one has

kGk � e�:

On the other hand

� cosh d .o;Go/D Id

0BBB@
0BBB@

x1
:::

xd
cosh �

1CCCA ;
0BBB@
0
:::

0

1

1CCCA
1CCCAD� cosh �

and so kGk � ed.o;Go/: �

If 
 is a path of finite length, then the development (3.2) into hyperbolic space
H is defined by

d�t D F .d
t / �t ;

where by Lemma 3.1 F W Rd !Hom
�

RdC1;RdC1
�

has norm one as a map from
Euclidean space to the operators on Euclidean space. As a result the development
of 
 is given by

GD IC

Z
0<u<T

F .d
u/C� � �C

Z
0<u1<���<uk<T

F .d
u1/˝� � �˝F
�
d
uk

�
C: : :

and, as in Lemma 2.3, we have an a priori bound which holds for all cross norms
and in particular for k�k!Hom.RdC1;RdC1/. If l is the length of the path 
 , then



Z

0<u1<���<uk<T

d
u1 ˝ � � �˝ d
uk






!Hom.RdC1;RdC1/

�
lk

kŠ
:

Applying this to ˛
 , we conclude that

ed.o;�˛o/ � k�˛kHom.RdC1;RdC1/

�

X
˛k




Z
0<u1<���<uk<1

F .d
u1/ : : : F
�
d
uk

�




Hom.RdC1;RdC1/

�

X
˛k kF kkHom.Rd ;Hom.RdC1;RdC1//
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�





Z
0<u1<���<uk<1

d
u1 ˝ � � �˝ d
uk






!Hom.RdC1;RdC1/

�

X
˛k




Z
0<u1<���<uk<1

d
u1 ˝ � � �˝ d
uk






!Hom.RdC1;RdC1/

� e˛l ;

where l is the length of 
 . Letting

bk D kŠ





Z
0<u1<���<uk<1

d
u1 ˝ � � �˝ d
uk






!Hom.RdC1;RdC1/

one has for all ˛ that

ed.o;�˛o/�˛l � e�˛l
1X
kD0

˛k

kŠ
bk � 1; 0� bk � l

k :

Thus the expectation of bn with respect to a Poisson measure with mean ˛l is close
to one, while at the same time the bn are all bounded above by one and positive.
In particular

1X
kD0

˛k

kŠ

ˇ̌̌
lk � bk

ˇ̌̌
� e˛l � ed.o;�˛o/ � e˛l

�
1� e�D1ı.D2=˛/

2˛l
�
:

and so ˇ̌̌
lk � bk

ˇ̌̌
� inf
˛>1

kŠ˛�ke˛l
�
1� e�D1ı.D2=˛/

2˛l
�
:

Now applying Stirling’s formula, that kŠD ek logk�kC 1
2

logkCCk , where Ck D o .1/,
and setting ˛ D k=l givesˇ̌̌

lk � bk

ˇ̌̌
� eCk lk

p
k
�
1� e�D1ı.D2l=k/

2k
�
� lk QCı .lD2=k/

2 k
p
k

where QC DD1eCk . Thus we see that, if ı
 .lD2=k/2 k3=2! 0 as k!1, then
bk=l

k! 1. We have shown the following result.

THEOREM 9. For any path of finite length with ı
 ."/D o
�
"3=4

�
,

l�kkŠ





Z
0<u1<���<uk<1

d
u1 ˝ � � �˝ d
uk






!Hom.RdC1;RdC1/

! 1;

as k!1,

This is of course quite a strong result obtained by making strong assumptions.
One could ask less and so we give a weaker but more widely applicable result.
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THEOREM 10. Let 
 be a path of finite length l , and suppose its derivative,
when parametrised at unit speed, is continuous. Then the Poisson averages C˛ of
the bk defined by

C˛ D e
�˛
1X
kD0

˛k

kŠ
bk

satisfy

lim
˛!1

1

˛
logC˛ D l � 1:

Note that the C˛ are averages of the bk against Poisson measures; it is standard
that these are close to Gaussian with mean ˛ and variance ˛.

Proof. Note that

ed.o;�˛o/�˛l � e�˛l
1X
kD0

˛k

kŠ
bk � 1;

and so

(3.11)
d .o; �˛o/

˛
� l �

1

˛
log

 
e�˛

1X
kD0

˛k

kŠ
bk

!
C 1� l � 0:

Using (3.10) we have ˇ̌̌̌
d .o; �˛o/

˛
� l

ˇ̌̌̌
�D1ı
 .D2=˛/

2 l

and hence the left-hand side in (3.11) goes to zero. �
In particular we see that the high order coefficients of the signature already

determine the length of the path, and in fact we can obtain quantitative estimates
in terms of the modulus of continuity for the derivative of 
 .

As a consequence of the results in this paper one can show that among the
paths of finite length with the same signature as 
 there is a unique shortest one,
Q
 , which we called the tree-reduced path associated to 
 . If Q
 has a continuous
derivative when parametrised at unit speed, then the asymptotic behaviour of the
signature of 
 gives the length of Q
 . In any case Q
 cannot “double back” on itself,
so it is at least reasonable to expect that the asymptotics of the signature of 
 always
give the length of Q
:

CONJECTURE 3.14. The length of Q
 can be recovered from the asymptotic
behaviour of averages of the bk .

It might be that lim˛!1 1C 1
˛

logC˛ gives the length of Q
 directly, although
the Poisson averages may have to be replaced in some way.

We conclude with an analogous result to that proved for the lattice case in
Theorem 5.
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THEOREM 11. Let 
 be a path of length l parametrised at unit speed, and let
ı
 be the modulus of continuity for 
 0. Fix C < 1 and 1 �M 2 N. Suppose that
ı
 .0/ <

1p
D1.C;M/

; then there is an integer N .l; ı/ such that at least one of the
first N.l; ı/ terms in the signature must be nonzero.

Proof. In the case where the first e˛l coefficients in the signature of the path

 are zero, by Lemma 2.4, we have some explicit constant C1 such that

(3.12) k�˛k � 1C
X
m>e˛l

.˛l/m

mŠ
� 1CC1.˛l/

�1=2:

By Proposition 3.13, and letting ˛ be sufficiently large so that we can apply (3.10),

(3.13) k�˛k � ed.o;�˛o/ � el˛�D1ı
 .D2=˛/
2˛l
� 1C l˛�D1ı
 .D2=˛/

2 ˛l:

The inequalities (3.12) and (3.13)) lead to a contradiction if, for large ˛, we have
l˛�D1ı
 .D2=˛/

2 ˛l > C1.˛l/
�1=2 or

˛3=2
�
1�D1ı
 .D2=˛/

2
�
> C1l

�3=2:

Thus providing 1 >D1ı
 .D2=˛/2 for some large ˛ (continuity of the derivative
is enough), the left-hand side goes to infinity as ˛ ! 1. This always gives a
contradiction and shows the existence of N.l; ı/. �

An explicit estimate is N.l; ı/D de˛le, where one chooses the smallest ˛ �
MR0
l

large enough so that

ı


�
M C 1

M

R0

˛

�
<

r
2
�p

2�
p
1CC 2

�
4�

MC1
M

R0 ;

and so that ˛3=2
�
1�D1ı
 .D2=˛/

2
�
>C1l

�3=2. To give an idea of the numerical
size of N , the number of iterated integrals required for this result, we note that if
the path has ı.h/ � h, then the optimal value of ˛ is around 15.2 at C D 0:8875
(with M D 1) and the number N is the integer greater than 41:38l (for large l).
With a more careful optimisation of the constants (varying M/ our estimate can be
reduced to the integer greater than 13:28l (for large l).

Remark 3.15. We note that this proof did not require that ı
 .0/D 0 or that

 0 be continuous.

Remark 3.16. An easy way to produce a path with each of the first N iterated
integrals zero is to take two paths with the same signature up to the level of the
N ’th iterated integral and to take the first path concatenated with the second with
time run backwards. Since these paths will, except at the point of joining, have
the same smoothness as they did before, all focus goes to the point where they
join. One could hope that a development of these ideas would prove that the two



UNIQUENESS FOR THE SIGNATURE 145

paths must be nearly tangential. If this were exactly true, then it would give a
reconstruction theorem.

We have obtained quantitative lower bounds on the signature of 
 when 
 is
parametrised at unit speed and 
 0 is close to continuously differentiable. In fact
one could obtain estimates whenever the 
 0 is piecewise continuous and the jumps
are less than � . However the main extra idea is already visible in the case where

 0 is piecewise constant. We give an explicit estimate in Theorem 13 in Section 6.

4. Tree-Like paths

We now turn to our proof of the extension of Chen’s theorem to the case of
finite length paths. In this section we suppose that Xt2Œ0;T � is a path in a Banach
or metric space E and we recall our Definition 1.2 of tree-like paths in this more
general setting.

THEOREM 12. If X is a tree-like path with height function h and, if X is
of bounded variation, then there exists a new height function Qh having bounded
variation and hence X is a Lipschitz tree-like path; moreover, the variation of Qh is
bounded by the variation of X .

Proof. The function h allows one to introduce a partial order and tree structure
on Œ0; T �. Let t 2 Œ0; T �. Define the continuous and monotone function gt .:/ by

gt .v/D inf
v�u�t

h .u/ ; v 2 Œ0; t � :

The intermediate value theorem ensures that gt maps Œ0; t � onto Œ0; h .t/�. Let �t
be a maximal inverse of h in that

(4.1) �t .x/D sup fu 2 Œ0; t � jgt .u/D xg ; x 2 Œ0; h.t/�:

As gt is monotone and continuous

(4.2) �t .x/D inf fu 2 Œ0; t � jgt .u/ > xg

for x < h .t/.
Now say s � t if and only if s is in the range of �t , that is to say, if there is an

x 2 Œ0; h .t/� so that sD �t .x/. Since �t .h .t//D sup fu 2 Œ0; t � jgt .u/D h .t/g, it
follows that �t .h .t//D t and so t � t . Since h .�t .x//D x for x 2 Œ0; h .t/� we
see there is an inequality-preserving bijection between the fsjs � tg and Œ0; h .t/�.

Suppose t1 � t0 and that they are distinct; then h .t1/ < h .t0/. We may choose
x1 2 Œ0; h .t0// so that t1 D �t0 .x1/, and it follows that

t1 D �t0 .x1/D inf fu 2 Œ0; t0� jgt0 .u/ > x1g ;

and that
h .t1/D x1 < h .u/ ; u 2 .t1; t0� :
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Of course
gt0 .t1/D inf

t1�u�t0
h .u/D h .t1/D gt1 .t1/ ;

and hence gt0 .u/ D gt1 .u/ for all u 2 Œ0; t1�. Hence, �t0 .x/ D �t1 .x/ for any
x <gt1 .t1/D h .t1/D x1; we have already seen that �t1 .h .t1//D t1D �t0 .x1/. It
follows that the range �t1 .Œ0; h .t1/�/ is contained in the range of �t0 . In particular,
we deduce that if t2 � t1 and t1 � t0 then t2 � t0.

We have shown that � is a partial order, and that ft jt � t0g is totally ordered
under �, and in one-to-one correspondence with Œ0; h .t0/�.

Now, consider two generic times s < t . Let x0 D infs�u�t h .u/ and I D
fv 2 Œs; t � jh .v/D x0g. Since h is continuous and Œs; t � is compact the set I is
nonempty and compact. By the construction of the function gt it is obvious that
gt � gs on Œ0; s� and that if gt .u/ D gs .u/, then gt .v/ D gs .v/ for v 2 Œ0; u�.
Thus, there will be a unique r 2 Œ0; s� so that gs D gt on Œ0; r� and gt < gs on
.r; s�. Observe that gt .r/D x0 and that �t .x0/D sup I and, essentially as above,
�s D �t on Œ0; h .r//. Observe also that if Qt 2 Œs; t � then gs D gQt on Œ0; r� so that
�s D �Qt on Œ0; h .r//.

Having understood h and � to the necessary level of detail, we return to the
path X . For x, y 2 Œ0; h .t/� one has, for x < y,

X�t .x/�X�t .y/

� h .�t .x//C h .�t .y//� 2 inf

u2Œ�.x/;�.y/�
h .u/

� xCy � 2 inf
z2Œx;y�

h .�t .z//D y � x;

so we see that X�t .:/ is continuous and of bounded variation.
The intuition is that X�t .:/ is the branch of a tree corresponding to the time t .

Consider two generic times s < t ; then X�s.:/ and X�t .:/ agree on the initial seg-
ment Œ0; h .r// but thereafter �s .:/ 2 Œr; s� while �t .:/ 2 Œsup I; t �. The restric-
tion of X�t .:/ to the initial segment Œ0; h .r// is the path X�supI .:/. As h .r/ D
inf Œh .uju 2 Œs; t �/� they have independent trajectories after h .r/.

Let Qh .t/ be the total 1-variation of the path X�t .:/. The claim is that Qh has
total 1-variation bounded by that of X and is also a height function for X .

As the paths X�s.:/ and X�t .:/ share the common segment X�r .:/ we have

kXs �Xtk D


X�s.s/�X�t .t/

� Qh .t/� Qh .r/C Qh .s/� Qh .r/ ;

and in particular
kXs �Xtk � Qh .s/C Qh .t/� 2 Qh .r/ :

On the other hand Qh .r/D Qh .sup I /D infs�u�t
�
Qh .u/

�
and so

kX .s/�X .t/k � Qh .s/C Qh .t/� 2 inf
s�u�t

�
Qh .u/

�
;

and Qh is a height function for X .
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Finally we control the total variation of Qh by !X , the total variation of the
path. In fact,ˇ̌̌

Qh .s/� Qh .t/
ˇ̌̌
� Qh .s/C Qh .t/� 2 inf

s�u�t

�
Qh .u/

�
� !X .s; t/ ;

where !X .s; t/D supD2D

P
D



XtiC1 �Xti

, with D denoting the set of all par-
titions of Œs; t � and for D 2 D, then D D fs � � � � < ti < tiC1 < � � � � tg. The
first of these inequalities is trivial, but the second needs explanation. As before,
notice that the paths X�s.:/ and X�t .:/ share the common segment X�r .:/, and that

infs�u�t
�
Qh .u/

�
D Qh .r/. So Qh .s/C Qh .t/�2 infs�u�t

�
Qh .u/

�
is the total length of

the two segments X�s.:/jŒh.r/;h.s/� and X�t .:/jŒh.r/;h.t/�. Now the total variation of
X�t .:/jŒh.r/;h.t/� is obviously bounded by !X .sup I; t/, as the path X�t .:/jŒh.r/;h.t/�
is a time change of X jŒsup I;t�.

It is enough to show that the total length of X�s.:/jŒh.r/;h.s/� is controlled by
!X .s; inf I / to conclude that

Qh .s/C Qh .t/� 2 inf
s�u�t

�
Qh .u/

�
� !X .s; t/ :

In order to do this we work backwards in time. Let

fs .u/D inf
s�v�u

h .v/ ; �t .x/D inf fu 2 Œs; T � jfs .u/D xg I

then, because X is tree-like,

X�s.:/jŒ0;h.s/� DX�s.:/jŒ0;h.s/�;

and in particular, the path segment X�s.:/jŒh.r/;h.s/� is a time change (but back-
wards) of X jŒs;inf I �. �

The property of being tree-like is re-parametrisation invariant. We see infor-
mally that a tree-like path X is the composition of a contraction on the R-tree
defined by h and the based loop in this tree obtained by taking t 2 Œ0; T � to its
equivalence class under the metric induced by h (for definitions and a proof see [4]).

Any path that can be factored through a based loop of finite length in an
R-tree and a contraction of that tree to the space E is a Lipschitz tree-like path.
If 0 is the root of the tree and � is the based loop defined on Œ0; T �, then define
h .t/ D d .0; � .t//. This makes � a tree-like path. Any Lipschitz image of a
tree-like path is obviously a Lipschitz tree-like path.

We have the following trivial lemma.

LEMMA 4.1. A Lipschitz tree-like path X always has bounded variation less
than that of any height function h for X .

Proof. Let DD ft0 < � � �< tng be a partition of Œ0; T �. Choose ui 2 Œti�1; ti �
maximising h .ti /Ch .ti�1/�2h .ui / and let QDDft0 � u1 � � � � tn�1 � un � tng :



148 BEN HAMBLY and TERRY LYONS

Relabel the points of QDD fv0 � v1 � � � � vmg. Then

(4.3)
X

D



Xti �Xti�1

�X
QD

jh .vi /� h .vi�1/j :

This concludes the proof. �
We now prove a compactness result.

LEMMA 4.2. Suppose that fhng is a sequence of height functions on Œ0; T � for
a sequence of tree-like paths fXng. Suppose further that the hn are parametrised
at speeds of at most one and that the Xn take their values in a common compact set
within E. Then we may find a subsequence

�
Xn.k/; hn.k/

�
converging uniformly to

a Lipschitz tree-like path .Y; h/. The speed of traversing h is at most one.

Proof. The hn are equi-continuous, and in view of (4.3) the Xn are as well.
Our hypotheses are sufficient for us to apply the Arzelà-Ascoli theorem to obtain
a subsequence

�
Xn.k/; hn.k/

�
converging uniformly to some .Y; h/. In view of the

fact that the Lip norm is lower semi-continuous in the uniform topology, we see
that h is a bounded variation function parametrised at speed at most one and that
Y is of bounded variation; of course h takes the value 0 at both ends of the interval
Œ0; T �.

Now hn.k/ converge uniformly to h and hence

inf
u2Œs;t�

hn.k/ .u/! inf
u2Œs;t�

h .u/ I

meanwhile the hn are height functions for the tree-like paths Xn and hence we can
take limits through the definition to show that h is a height function for Y . �

COROLLARY 4.3. Every Lipschitz tree-like path X has a height function h of
minimal total variation, and its total variation measure is absolutely continuous
with respect to the total variation measure of any other height function.

Proof. This is an immediate corollary of Theorem 12 and Lemmas 4.1 and 4.2.
�

Each associated Radon Nikodym derivative is a bounded function. There can
be more than one minimiser h for a given X .

5. Approximation of the path
5.1. Representing the path as a line integral against a rank one 1-form. Let


 be a path of finite variation in a finite-dimensional Euclidean space V with total
length T and parametrised at unit speed. Its parameter set is Œ0; T �. We note that
the signature of 
 is unaffected by this choice of parametrisation.

Definition 5.1. Let 
 .Œ0; T �/ denote the range of 
 in V and let the occupation
measure � on .V; B.V // be denoted

� .A/D jfs < T j
 .s/ 2 Agj ; A� V:
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Let n .x/ be the number of points on Œ0; T � corresponding under 
 to x 2 V .
By the area formulae [10, pp. 125, 126], one has the total variation, or length, of
the path 
 , is given by

(5.1) Var .
/D
Z
n .x/ƒ1 .dx/ ;

where ƒ1 is one dimensional Hausdorff measure. Moreover, for any continuous
function f Z

f .
 .t// dt D

Z
f .x/ n .x/ƒ1 .dx/ :

Note that �D n .x/ƒ1 and that n is integrable.

LEMMA 5.2. The image under 
 of a Lebesgue null set is null for �. That is
to say, �.
.N //D

ˇ̌

�1
 .N /

ˇ̌
D 0 if jN j D 0.

Definition 5.3. We will say that N � Œ0; T � is 
 -stable if 
�1
 .N /DN .

As a result of Lemma 5.2 we see that any null set can always be enlarged to
a 
 -stable null set.

The Lebesgue differentiation theorem tells us that 
 is differentiable at almost
every u in the classical sense, and with this parametrisation the derivative will be
absolutely continuous and of modulus one.

COROLLARY 5.4. There is a set G of full � measure in V so that 
 is differ-
entiable with j
 0 .t/j D 1 whenever 
 .t/ 2G. We set M D 
�1G; M is 
 -stable.

Now it may well happen that the path visits the same point x 2 G more
than once. A priori, there is no reason why the directions of the derivative on
ft 2M j
 .t/Dmg should not vary. However this can only occur at a countable
number of points.

LEMMA 5.5. The set of pairs .s; t/ of distinct times in M �M for which


 .s/D 
 .t/ ; 
 0 .s/¤˙
 0 .t/

is countable.

Proof. If 
.s�/D 
.t�/ but 
 0.s�/¤˙
 0.t�/ then, by a routine transversality
argument, there is an open neighbourhood of .s�; t�/ in which there are no solutions
of 
.s/D 
.t/ except s D s�, t D t�. �

Up to sign and with countably many exceptions, the derivative of 
 does not
depend on the occasion of the visit to a point, only the location. Sometimes we
will only be concerned with the unsigned or projective direction of 
 and identify
v 2 S with �v.

Definition 5.6. For clarity we introduce ˜˙ as the equivalence relation that
identifies v and �v and let Œ
 0�˜˙ 2 S=˜˙ denote the unsigned direction of 
 .
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By Lemma 5.5 Œ
 0�˜˙ is defined on the full measure subset of Œ0; T � where 
 0

is defined and in S .

COROLLARY 5.7. There is a function � defined on G with values in the pro-
jective sphere S=˜˙ so that � .
 .t//D Œ
 0 .t/�˜˙ .

As a result we may define a useful vector-valued 1-form �-almost everywhere
on G. If � is a vector in S , then h�; ui � is the linear projection of u onto the
subspace spanned by �. As h�; ui � D h��; ui .��/ it defines a function from
S=˜˙ to Hom.V; V /.

Definition 5.8. Given a path 
 there are a setG and a � as defined by Corollary
5.7. Let � be a unit strength vector field on G with Œ��˜˙ D �. Then we define the
tangential projection 1-form ! for a path 
 by

! .g; u/D h� .g/ ; ui � .g/ ; 8g 2G;8u 2 V:

This is a vector 1-form on G which depends on �, but is otherwise independent of
the choice of �.

The tangential projection 1-form !.g; u/ is the projection of u 2 V onto the
line determined by � .g/. By construction and the fundamental theorem of calculus
for Lipschitz functions, and bounded measurable !, we have the following.

PROPOSITION 5.9. The tangential projection 1-form !, defined � a.e. on G,
is a linear map from V ! V with rank one. For almost every t one has


 0 .t/D !
�

 .t/ ; 
 0 .t/

�
;

and as a result


 .t/D

Z
0<u<t

d
uC 
 .0/D

Z
0<u<t

!.d
u/C 
 .0/ ;

for every t � T .

By approximating ! by other rank one 1-forms we will be able to approximate

 by (weakly) piecewise linear paths that also have trivial signature. It will be easy
to see that such paths are tree-like. The set of tree-like paths is closed. This will
complete the argument.

5.2. Iterated integrals of iterated integrals. We now prove that if 
 has a
trivial signature .1; 0; 0; : : : /, then it can always be approximated arbitrarily well
by weakly piecewise linear paths with shorter length and trivial signature. Our ap-
proximations will all be line integrals of 1-forms against our basic path 
 . Two key
points we will need are that the integrals are continuous against varying the 1-form,
and that a line integral of a path with trivial signature also has trivial signature.
The Stone-Weierstrass theorem will allow us to reduce this second problem to one
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concerning line integrals against polynomial 1-forms, and in turn this will reduce
to the study of certain iterated integrals. The application of the Stone-Weierstrass
theorem requires a commutative algebra structure and this is provided by the coor-
dinate iterated integrals and the shuffle product. For completeness we set this out
below.

Suppose that we define

Zu WD

Z
� � �

Z
0<u1<���<ur<u

d
u1 : : : d
ur 2 V
˝r

and

QZu WD

Z
� � �

Z
0<u1<���<uQr<u

d
u1 : : : d
uQr 2 V
˝Qr :

Then it is interesting as a general point, and necessary here, to consider iterated
integrals of Z and QZ Z

� � �

Z
0<u1<u2<T

d QZu1dZu2 2 V
˝Qr
˝V ˝r :

It will be technically important to us to observe that such integrals can also be
expressed as linear combinations of iterated integrals of 
 so we do this with some
care. Some of the results stated below follow from the well known shuffle product
and its relationship with multiplication of coordinate iterated integrals.

Definition 5.10. The truncated or n-signature X.n/s;t D
�
1;X1s;t ; X

2
s;t ; : : : ; X

n
s;t

�
is the projection of the signature Xs;t to the (quotient) algebra

T .n/ .V / WD

nM
rD0

V ˝r

of tensors with degree at most n.

Definition 5.11. If e is an element of the dual space V � to V , then 
euDhe; 
ui
is a scalar path and d
eu D he; d
ui. If eD .e1; : : : ; er/ is a list of elements of the
dual space to V , then we define the coordinate iterated integral

X e
s;t WD

Z
� � �

Z
s<u1<���<ur<t

d
e1u1 : : : d

er
ur
D
˝
e; Xrs;t

˛
:

LEMMA 5.12. The map e!X e
s;t defined above extends uniquely as a linear

map from T .n/ .V �/ to the space of real-valued functions on paths of bounded
variation.
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Proof. Let e 2 T .n/ .V �/. Since T .n/ .V �/ is dual to T .n/ .V / the pairing
e!

D
e;X.n/s;t

E
defines a real number for each path 
 . If eD .e1; : : : ; er/ then this

coincides with X e
s;t ; since such vectors span T .n/ .V �/ the result is immediate. �

We therefore extend Definition 5.11.

Definition 5.13. For any n; e 2 T .n/ .V �/ we call X e
s;t the e-coordinate iter-

ated integral of 
 over the interval Œs; t �.

These functions on path space are important because they form an algebra
under pointwise multiplication and because they are like polynomials and so it is
easy to define a differentiation operator on this space. Given two tensors e, f there
is a natural product e f, called the shuffle product, derived from the above. For
basic tensors

eD e1˝ � � �˝ er 2 V ˝r ; fD f1˝ � � �˝fs 2 V ˝s

and a shuffle .�1; �2/ (a pair of increasing injective functions from .1; : : : ; r/,
.1; : : : ; s/ to .1; : : : ; r C s/ with disjoint range) one can define a tensor of degree
r C s:

!.�1;�2/ D !1˝ � � �˝!rCs;

where !�1.j / D ej for j D 1; : : : r and !�2.j / D fj for j D 1; : : : s. Since the
ranges of �1 and �2 are disjoint a counting argument shows that the union of the
ranges is 1; : : : ; rC s; and that !k is well defined for all k in 1; : : : rC s and hence
!.�1;�2/ is defined. By summing over all shuffles

e fD
X

.�1;�2/

!.�1;�2/;

one defines a multilinear map of V ˝r�V ˝s!V ˝.rCs/.

Definition 5.14. The unique extension of to a map from T .V /�T .V /!

T .V / is called the shuffle product.

The following is standard.

LEMMA 5.15. The class of coordinate iterated integrals is closed under point-
wise multiplication. For each 
 the point-wise product of the e-coordinate iterated
integral and the f-coordinate iterated integral is the .e f/-coordinate iterated
integral:

X e
s;tX

f
s;t DX

e f
s;t :

COROLLARY 5.16. Any polynomial in coordinate iterated integrals is a coor-
dinate iterated integral.
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Remark 5.17. It is at first sight surprising that any polynomial in the linear
functionals on T.V / coincides with a unique linear functional on T .V / when re-
stricted to signatures of paths and reflects the fact that the signature of a path is far
from being a generic element of the tensor algebra.

A slightly more demanding remark relates to iterated integrals of coordinate
iterated integrals.

PROPOSITION 5.18. The iterated integral

(5.2)
Z
� � �

Z
s<u1<���<ur<t

dX e1
s;u1

: : : dX er
s;ur

is itself a coordinate iterated integral.

Proof. A simple induction ensures that it suffices to consider the caseZ Z
s<u1<ur<t

dX e
s;u1

dX f
s;u2

;

where

eD e1˝ � � �˝ er 2 .V �/˝r ; fD f1˝ � � �˝fs 2 .V �/˝s

and in this caseZ Z
s<u1<u2<t

dX e
s;u1

dX f
s;u2
D

Z
� � �

Z
s < v1 < � � �< vr < t

s < w1 < � � �<ws < t

vr <ws

d
e1v1 : : : d

er
vr
d
f1w1 : : : d


fs
ws
:

Expressing the integral as a sum of integrals over the regions where the relative
orderings of the vi and wj are preserved (i.e. all shuffles for which the last card
comes from the right hand pack) we haveZ Z

s<u1<u2<t

dX e
s;u1

dX f
s;u2
DX

.e Qf/˝fs
s;t ; QfDf1˝ � � �˝fs�1: �

From this it is, of course, clear that

LEMMA 5.19. If a path has trivial signature, then all nontrivial iterated inte-
grals of its iterated integrals are zero.

5.3. Bounded, measurable, and integrable forms. Recall that 
 is a path of
finite length in V , and that it is parametrised at unit speed. The occupation measure
is � and has total mass equal to the length T of the path 
 . Let .W; kk/ be a normed
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space with a countable base (usually V itself). If ! is a �-integrable 1-form with
values in W then we write

k!kL1.V;B.V // D

Z
V

k! .y/kHom.V;W / � .dy/D

Z T

0

k! .
t /kHom.V;W / dt:

PROPOSITION 5.20. Let ! 2 L1 .V;B .V / ; �/ be a �-integrable 1-form with
values in W . Then the indefinite line integral yt WD

R t
0 ! .d
t / is well defined,

linear in !; and a path in W with 1-variation at most k!kL1.V;B.V /;�/.

Proof. Since ! is a 1-form defined �-almost surely, ! .
t / 2 Hom .V;W /

(where Hom .V;W / is equipped with the operator norm k�k) is defined dt almost
everywhere. Since ! is integrable, it is measurable, and hence ! .
t / is measur-
able on Œ0; T �. Since 
 has finite variation and is parametrised at unit speed, it is
differentiable almost everywhere and its derivative is measurable with unit length
dt almost surely. Hence ! .
t /

�

 0t
�

is measurable and dominated by k! .
t /k,
which is an integrable function, and hence ! .
t /

�

 0t
�

is integrable. Thus the line
integral can be defined to be

yt D

Z t

0

! .
u/
�

 0u
�
du;

kyt �ysk �

Z t

s

k! .
u/kHom.V;W /




 0u

 du
D

Z t

s

k! .
u/kHom.V;W / du

and so has 1-variation bounded by k!kL1.V;B.V //. �

PROPOSITION 5.21. Let !n 2 L1 .V;B .V / ; �/ be a uniformly bounded se-
quence of integrable 1-forms with values in a vector space W . Suppose that
they converge in L1 .V;B .V / ; �/ to !; then the signatures of the line integralsR
!n .d
t / converge to the signature of

R
! .d
t /.

Proof. The r’th term in the iterated integral of the line integral
R
!n .d
t /

can be expressed asZ
� � �

Z
0<u1<���<ur<T

!n .
u1/˝ � � �˝!n .
ur /
�

 0u1

�
: : :
�

 0ur

�
du1 : : : dur

and since the !n converge in L1 .V;B .V / ; �/, it follows from the definition of
� that the !n .
u/ converge to ! .
u/ in L1 .Œ0; T � ;B .R/ ; du/ almost everywhere.
Thus !n .
u1/ ˝ � � � ˝ !n .
ur / converges in L1

�
Œ0; T �r ;B .R/ ; du1 : : : dur

�
.

Since k
 0uk D 1 for almost every u, Fubini’s theorem implies that

!n .
u1/˝ � � �˝!n .
ur /
�

 0u1

�
: : :
�

 0ur

�
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converges in L1
�
Œ0; T �r ;B .R/ ; du1 : : : dur

�
to

! .
u1/˝ � � �˝! .
ur /
�

 0u1

�
: : :
�

 0ur

�
:

Thus, by integration over 0 < u1 < � � �< ur < T , the proposition follows. �

COROLLARY 5.22. Let ! 2 L1 .V;B .V / ; �/. If 
 has trivial signature, then
so does

R
! .d
t /. That is to say, for each r ,Z

� � �

Z
0<u1;:::;ur<T

! .d
u1/ : : : ! .d
ur /D 0 2W
˝r :

Proof. It is a consequence of Proposition 5.21 that the set of L1 .V;B .V / ; �/

forms producing line integrals having trivial signature is closed. By Lusin’s the-
orem, one may approximate, in the L1 .V;B .V / ; �/ norm, any integrable form
by bounded continuous forms. If the initial form is uniformly bounded then the
approximations can be chosen to satisfy the same uniform bound.

The support of � is compact, so by the Stone Weierstrass theorem, we can
uniformly approximate these continuous forms by polynomial forms ! D

P
i piei ,

where the pi are polynomials and ei are a basis for V �. Using the fact that

.

e1
T /

r

rŠ
D

Z
� � �

Z
0<u1;:::;ur<T

d
e1u1 : : : d

e1
ur
;

with Corollary 5.16 and Proposition 5.18, we have that the line integrals against
these polynomial forms and their iterated integrals can be expressed as linear com-
binations of coordinate iterated integrals. If 
 has trivial signature over Œ0; T �, then
by Lemma 5.19, these integrals will also be zero. From the L1 .V;B .V / ; �/ con-
tinuity of the truncated signature, it follows that the signature of the path formed
by taking the line integral against a form ! in L1 .V;B .V / ; �/ will always be
trivial. �

5.4. Approximating rank one 1-forms.

Definition 5.23. A vector valued 1-form ! is (at each point of V ) a linear
map between vector spaces. We say the 1-form ! is of rank k 2N on the support
of � if dim .! .V //� k at �-almost every point in V .

A linear multiple of a form has the same rank as the original form, but in
general the sum of two forms has any rank less than or equal to the sum of the
ranks of the individual components. However, we will now explain how one can
approximate any rank-one 1-form by piecewise constant rank-one 1-forms !. Addi-
tionally we will choose the approximations so that, for some "> 0; if ! .x/¤! .y/
and jx�yj � ", then either ! .x/ or ! .y/ is zero.
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In other words ! is rank-one and constant on patches which are separated by
thin barrier regions on which it is zero. The patches can be chosen to be compact
and such that the �-measure of the complement is arbitrarily small.

We will use the following easy consequence of Lusin’s theorem for 1-forms
defined on a �-measurable set K. :

LEMMA 5.24. Let ! be a measurable 1-form in L1 .V;B .V / ; �/. For each
" > 0 there is a compact subset L of 
 Œ0; T � so that ! restricted to L is continuous,
while

R
KnL k!kHom.V;W / � .dx/ < ".

LEMMA 5.25. If ! is a measurable 1-form in L1 .V;B .V / ; �/, then for each
" > 0 there are finitely many disjoint compact subsets Ki of K and a 1-form Q!, that
is zero off [iKi and constant on each Ki , such thatZ

K

k! � Q!kHom.V;W / � .dx/ < 4"

and with the property that Q! is rank-one if ! is.

Proof. Let L be the compact subset introduced in Lemma 5.24. Now ! .L/

is compact. Fix " > 0 and choose l1; : : : ; ln so that

! .L/�[niD1B

�
! .li / ;

"

� .L/

�
and put

Fj D !
�1

�
[
j
iD1B

�
! .li / ;

"

� .L/

��
:

Now choose a compact set Kj � Fj nFj�1 so thatZ
.Fj nFj�1/nKj

j!j�.dx/� "2�j :

Then the Kj are disjoint and !.Kj /� B.!.lj /; "
�.L/

/.
For each non-empty Kj choose kj 2Kj . Define Q! as follows:

Q! .k/D !
�
kj
�
; k 2Kj

Q! .k/D 0; k 2Kn[niD1Kj :

Then Z
Ln[n

iD1
Kj

k! � Q!kHom.V;W / � .dx/�

nX
jD1

"2�j < "

Z
[n
jD1

Kj

k! � Q!kHom.V;W / � .dx/�
2"

� .L/
� .L/ ;
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and using Lemma 5.24 one hasZ
KnL

k! � Q!kHom.V;W / � .dx/ < ":

Finally we have Z
L

k! � Q!kHom.V;W / � .dx/ < 4":

If ! had rank-one at almost every point of K, then it will have rank-one
everywhere on L since ! is continuous. As either Q! .k/D !

�
kj
�

for some kj in
L or is zero, the form Q! has rank-one also. �

The following is an easy consequence.

PROPOSITION 5.26. Consider the set P of 1-forms on a set K with the prop-
erty that there exist finitely many disjoint compact subsets Ki of K so that the
1-form is zero off the Ki and constant on each Ki . The set of rank-one 1-forms in
P is a dense subset in the L1 .V;B .V / ; �/ topology of the set of rank-one 1-forms
in L1 .V;B .V / ; �/.

6. Piecewise linear paths with no repeated edges

We call a path 
 piecewise linear if it is continuous, and if there is a finite
partition

0D t0 < t1 < t2 < � � �< tr D T

such that 
 is linear (or more generally, geodesic) on each segment Œti ; tiC1� :

Definition 6.1. We say the path is nondegenerate if we can choose the parti-
tion so that

�

ti�1 ; 
ti

�
and

�

ti ; 
tiC1

�
are not collinear for any 0 < i < r and if

the
�

ti�1 ; 
ti

�
are nonzero for every 0 < i � r .

The positive length condition is automatic if the path is parametrised at unit
speed and 0 < T . If �i is the angle ]
ti�1
ti
tiC1 , then 
 is nondegenerate if we
can find a partition so that for each 0 < i < r one has

j�i j ¤ 0mod�:

This partition is unique, and we refer to the
�

ti�1 ; 
ti

�
as the i-th linear segment

in 
 . We see, from the quantitative estimate in Lemma 3.7 (1), that if we choose
� D 1

2
min j�i j and scale it so that the length of the minimal segment is at least

K .�/D log
�

2
1�cosj� j

�
, then its development into hyperbolic space is nontrivial and

so its signature is not zero. That is to say, Lemma 3.7 contains all the information
needed to give a quantitative form of Chen’s uniqueness result in the context of
piecewise linear paths:
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THEOREM 13. If 
 is a nondegenerate piecewise linear path, 2� is the small-
est angle between adjacent edges, and D > 0 is the length of the shortest edge,
then there is at least one n for which

�
2

1� cos j� j

�.1� 1D /
� nŠ









Z
� � �

Z
0<u1<���<un<T

d
u1 : : : d
uQr









and in particular 
 has nontrivial signature.

Proof. Choose ˛ D K .�/ =D. Isometrically embed V into SO .Id / and let
�˛ be the development of ˛
 . Then �˛;to is a piecewise geodesic path in hyper-
bolic space satisfying the hypotheses in Lemma 3.7. Thus we can deduce that the
distance d .o; �˛o/ is at least K .�/ > 0: As in the discussion before Theorem 9 in
Section 3.4 we have

eK.�/ � k�˛k �

1X
nD0

˛n









Z
� � �

Z
0<u1<���<un<T

d
u1 : : : d
uQr









D

1X
nD0

1

nŠ

�
K .�/

D

�n
nŠ









Z
� � �

Z
0<u1<���<un<T

d
u1 : : : d
uQr








 :
Now multiplying both side by e�

K.�/
D we have

e�
K.�/
D eK.�/ � e�

K.�/
D

1X
nD0

1

nŠ

�
K .�/

D

�n
nŠ









Z
� � �

Z
0<u1<���<un<T

d
u1 : : : d
uQr








 :
Since any integrable function has at least one point where its value equals or ex-
ceeds its average, and since

1D e�
K.�/
D

1X
nD0

1

nŠ

�
K .�/

D

�n
;

we can conclude an absolute lower bound on the L1 norm of the signature, against
the Poisson measure. Thus there is an n for which

eK.�/.1�
1
D / � nŠ









Z
� � �

Z
0<u1<���<un<T

d
u1 : : : d
uQr








 :
Recalling the form of K .�/ we have the result. �
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COROLLARY 6.2. Any piecewise linear path 
 that has trivial signature is
tree-like with a height function h having the same total variation as 
 .

Proof. We will proceed by induction on the number r of edges in the minimal
partition

0D t0 < t1 < t2 < � � �< tr D T

of 
 . We assume that 
 is linear on each segment Œti ; tiC1� and that 
 is always
parametrised at unit speed.

We assume that 
 has trivial signature. Our goal is to find a continuous real-
valued function h with h� 0; h .0/D h .T /D 0, and so that for every s, t 2 Œ0; T �
one has

jh .s/� h .t/j � jt � sj ;

j
s � 
t j � h .s/C h .t/� 2 inf
u2Œs;t�

h .u/ :

If r D 0 the result is obvious; in this case T D 0 and the function hD 0 does
the job.

Now suppose that the minimal partition into linear pieces has r > 0 pieces.
By Theorem 13, it must be a degenerate partition. In other words one of the �i D
]
ti�1
ti
tiC1 must have

j�i j D 0mod�:

If �i D � , the point ti could be dropped from the partition and the path would still
be linear. As we have chosen the partition to be minimal this case cannot occur
and we conclude that �i D 0 and that the path retraces its trajectory for an interval
of length

s Dmin .jti � ti�1j ; jtiC1� ti j/ > 0:

Now 
 .ti �u/D 
 .ti Cu/ for u 2 Œ0; s� and either ti � s D ti�1 or ti C s D tiC1.
Suppose that the former holds. Consider the path segments obtained by restricting
the path to the disjoint intervals


� D 
 jŒ0;ti�1�; 
C D 
 jŒtiCs;T �; � D 
 jŒti�s;tiCs�;

then 
 D 
� � � � 
C where � denotes concatenation.
As the signature map 
 ! S .
/ is a homomorphism, the product of the

signatures associated to the segments is the signature of the concatenation of the
paths and hence is trivial,

S .
�/˝S .�/˝S .
C/D S .
/D 1˚ 0˚ 0˚ � � � 2 T .V / :

On the other hand the path � is a linear trajectory followed by its reverse and as
reversal produces the inverse signature,

S .�/D 1˚ 0˚ 0˚ � � � 2 T .V / :
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Thus
S .
�/˝S .
C/D 1˚ 0˚ 0˚ � � � 2 T .V /

and so the concatenation of 
� and 
C (
 with � excised) also has a trivial signature.
As it is piecewise linear with at least one fewer edge we may apply the induction
hypothesis to conclude that this reduced path is tree-like. Let Qh be the height
function for the reduced path. Then define

h .u/D Qh .u/ ; u 2 Œ0; ti�1� ;

h .u/D Qh .u� 2s/ ; u 2 Œti C s; T � ;

h .u/D s� jti �ujC Qh .ti�1/ ; u 2 Œti � s; ti C s� :

It is easy to check that h is a height function for 
 with the required properties. �

The reader should note that the main result of the paper, Theorem 4, linking
the signature to tree-like equivalence, relies on Chen’s result only through the above
corollary and hence only requires a version for piecewise linear paths with no
repeated edges. Our quantitative Theorem 13 provides an independent proof of
this result but, in this context, is stronger than is necessary; Chen’s nonquantitative
result could equally well have been used.

We end this section with two straightforward results which will establish half
of our main theorem.

LEMMA 6.3. If 
 is a Lipschitz tree-like path with height function h, then one
can find piecewise linear Lipschitz tree-like paths converging in total variation to
a re-parametrisation of 
 .

Proof. Without loss of generality we may re-parametrise time to be the arc
length of h. Since h is of bounded variation, so is 
 and using the area formula
(5.1), for a sequence �n # 0 we can find a nested sequence of finite partitions
un D funi g

Nn
iD1, un � unC1, which are increasing in Œ0; T �, with uniC1 � u

n
i < �n,

and so that h takes the value h
�
uni
�

only finitely many times and only at the times
uni . Consider the path 
n that is linear on the intervals

�
uni ; u

n
iC1

�
and agrees

with 
 at the times uni . Define hn similarly. Then by construction hn is a height
function for 
n and hence 
n is a tree. The paths 
n converge to 
 uniformly, and
in p-variation for all p > 1. However, as we have parametrised h by arc length,
it follows that the total variation of 
 is absolutely continuous with respect to arc
length. As the time partitions un are nested it is clear that 
n is a martingale
with respect to the filtration determined by the successive time partitions. Thus,
applying the martingale convergence theorem, we see that 
n converges to 
 in
L1. �

COROLLARY 6.4. Any Lipschitz tree-like path has all iterated integrals equal
to zero.
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Proof. For piecewise linear tree-like paths it is obvious by induction on the
number of segments that all the iterated integrals are 0. Since the process of taking
iterated integrals is continuous in p-variation norm for p < 2, and Lemma 6.3
proves that any Lipschitz tree-like path can be approximated by piecewise linear
tree-like paths in 1-variation, the result follows. �

In the next section we introduce the concept of a weakly piecewise linear
path. After reading the definition, the readers should satisfy themselves that the
arguments of this section apply equally to weakly piecewise linear paths.

7. Weakly piecewise linear paths

Paths that lie in lines are special.

Definition 7.1. A continuous path 
t is weakly linear (geodesic) on Œ0; T � if
there is a line l (or geodesic l) so that 
t 2 l for all t 2 Œ0; T �.

Suppose that 
 is smooth enough that one can form its iterated integrals.

LEMMA 7.2. If 
 is weakly linear, then the n-signature of the path 
 .t/t2Œ0;T �
is

1X
nD0

.
T � 
0/
˝n

nŠ
:

In particular the signature of a weakly linear path is trivial if and only if the path
has 
T D 
0 or, equivalently, that it is a loop.

LEMMA 7.3. A weakly geodesic path, and in particular a weakly linear path
with 
0 D 
T is always tree-like.

Proof. By definition, 
 lies in a single geodesic. Define h .t/ D d .
0; 
t / :
Clearly

h .0/D h .T /D 0; h� 0:

If h .u/D 0 at some point u 2 .s; t/ then

d .
s; 
t /� d .
0; 
s/C d .
0; 
t /D h .s/C h .t/� 2 inf
u2Œs;t�

h .u/

while if h .u/ > 0 at all points u 2 .s; t/ then 
s and 
t are both on the same side
of 
0 in the geodesic. Assume that d .
0; 
s/� d .
0; 
t /, then

d .
s; 
t /D d .
0; 
s/�d .
0; 
t /D h .s/�h .t/� h .s/Ch .t/� 2 inf
u2Œs;t�

h .u/ :

as required. �
There are two key operations, splicing and excising, which preserve the trivi-

ality of the signature and (because we will prove it is the same thing) the tree-like
property. However, the fact that excision of tree-like pieces preserves the tree-like
property will be a consequence of our work.
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Definition 7.4. If 
 2 V is a path taking Œ0; T � to the vector space V , t 2 Œ0; T �
and � is a second path in V , then the insertion of � into 
 at the time point t is the
concatenation of paths


 jŒ0;t� � � � 
 jŒt;T �:

Definition 7.5. If 
 2 V is a path on Œ0; T � ; with values in a vector space V ,
and Œs; t �� Œ0; T �, then 
 with the segment Œs; t � excised is


 jŒ0;s� � 
 jŒt;T �:

Remark 7.6. Note that these definitions make sense for paths in manifolds as
well as in the linear case, but in this case concatenation requires the first path to
finish where the second starts. We will use these operations for paths on manifolds,
but it will always be a requirement for insertion that � be a loop based at 
t , while
for excision we require that 
 jŒs;t� be a loop.

We have the following two easy lemmas:

LEMMA 7.7. Suppose that 
 2M is a tree-like path in a manifoldM , and that
� is a tree-like path in M that starts at 
t ; then the insertion of � into 
 at the point
t is also tree-like. Moreover, the insertion at the time point t of any height function
for � into any height function coding 
 is a height function for 
 jŒ0;t� � � � 
 jŒt;T �.

Proof. Assume 
 2M is a tree-like path on a domain Œ0; T �, then by definition
there is a positive and continuous function h so that for every s, Qs in the domain
Œ0; T �

d .
s; 
Qs/ � h .s/C h .Qs/� 2 inf
u2Œs;Qs�

h .u/ ;

h .0/D h .T /D 0:

In a similar way, let the domain of � be Œ0; R� and let g be the height function for �

d .�s; �Qs/ � g .s/Cg .Qs/� 2 inf
u2Œs;Qs�

g .u/ ;

g .0/D g .R/D 0:

Now insert g in h at t and � in 
 at t . Let Qh, Q
 be the resulting functions defined
on Œ0; T CR�. Then

Q
 .s/D 
 .s/ ; 0� s � t;

Q
 .s/D � .s� t / ; t � s � t CR;

Q
 .s/D 
 .s�R/ ; t CR � s � T CR;
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and

Qh .s/D h .s/ ; 0� s � t;

Qh .s/D g .s� t / ; t � s � t CR;

Qh .s/D h .s�R/ ; t CR � s � T CR;

where the definition of these functions for s 2 Œt CR; T CR� uses the fact that �
and g are both loops.

Now it is quite obvious that if s; Qs 2 Œ0; T CR� n Œt; t CR�, then

d . Q
s; Q
Qs/ � Qh .s/C Qh .Qs/� 2 inf
u2Œs;Qs�nŒt;tCR�

Qh .u/

� Qh .s/C Qh .Qs/� 2 inf
u2Œs;Qs�

Qh .u/ ;

Qh .0/D Qh .T CR/D 0;

and that for s; Qs 2 Œt; t CR�,

d . Q
s; Q
Qs/D d .�s�t ; �Qs�t /� g .s� t /Cg .Qs� t /� 2 inf
u2Œs�t;Qs�t�

g .u/

D Qh .s/C Qh .Qs/� 2 inf
u2Œs;Qs�

Qh .u/ :

To finish the proof we must consider the case where 0� s � t � Qs � t CR and the
case where 0� t � s � t CR � Qs � T CR. As both cases are essentially identical
we only deal with the first. In this case

d . Q
s; Q
Qs/D d .
s; �Qs�t /

� d .
s; 
t /C d .�0; �Qs�t /

� h .s/C h .t/� 2 inf
u2Œs;t�

h .u/Cg .Qs� t /�g .0/

D Qh .s/C Qh .Qs/� 2 inf
u2Œs;t�

Qh .u/

� Qh .s/C Qh .Qs/� 2 inf
u2Œs;Qs�

Qh .u/ : �

Remark 7.8. The argument above is straightforward and could have been left
to the reader. However, we draw attention to the converse result, which also seems
very reasonable: that a tree-like path with a tree-like piece excised is still tree-like.
This result seems very much more difficult to prove as the height function one has
initially, as a consequence of 
 being tree-like, may well not certify that � is tree-
like even though there is a second height function defined on Œs; t � that certifies that
it is. A direct proof that there is a new height function simultaneously attesting to
the tree-like nature of 
 and � seems difficult. Using the full power of the results
in the paper, we can do this for paths of bounded variation.
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LEMMA 7.9. Let 
 be a path defined on Œ0; T � with values in V and suppose
that 
 jŒs;t� has trivial signature where Œs; t �� Œ0; T �. Then 
 has trivial signature
if and only if 
 with the segment Œs; t � excised has trivial signature.

Proof. This is also easy. Since the signature map is a homomorphism we
see that


 D 
 jŒ0;s� � 
 jŒs;t� � 
 jŒt;T �;

S .
/D S
�

 jŒ0;s�

�
˝S

�

 jŒs;t�

�
˝S

�

 jŒt;T �

�
and by hypothesis S

�

 jŒs;t�

�
is the identity in the tensor algebra. Therefore

S .
/D S
�

 jŒ0;s�

�
˝S

�

 jŒt;T �

�
D S

�

 jŒ0;s� � 
 jŒt;T �

�
: �

Definition 7.10. A continuous path 
; defined on Œ0; T � is weakly piecewise
linear (or more generally, weakly geodesic) if there are finitely many times

0D t0 < t1 < t2 < � � �< tr D T

such that for each 0< i � r , the path segment 
Œti�1;ti � is weakly linear (geodesic).5

Our goal in this section is to prove, through an induction, that a weakly linear
path with trivial signature is tree-like and to construct its height function. As before,
every such path admits a unique partition.

LEMMA 7.11. If 
 is a weakly piecewise linear path, then there exists a
unique partition 0 D t0 < t1 < t2 < � � � < tr D T so that the lines defined by
the path segments f
u W u 2 Œti�1; ti �g and f
u W u 2 Œti ; tiC1�g are not collinear for
any 0 < i < r .

We will henceforth only use this partition and refer to r as the number of
segments in 
 .

LEMMA 7.12. If 
 is a weakly linear path with trivial signature and at least
one segment, then there exists 0 < i � r so that 
ti�1 D 
ti .

Proof. The arguments in the previous section on piecewise linear paths apply
equally to weakly piecewise linear and weakly piecewise geodesic paths. In par-
ticular Lemma 3.7 only refers to the location of 
 at the times ti at which the path
changes direction (by an angle different from �). �

PROPOSITION 7.13. Any weakly piecewise linear path 
 with trivial signature
is tree-like with a height function whose total variation is the same as that of 
 .

5The geodesic will always be unique since the path has unit speed and ti < tiC1 thus contains at
least two distinct points.
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Proof. The argument is a simple induction using the lemmas above. If it has
no segments we are clearly finished with h� 0. We now assume that any weakly
piecewise linear path 
 .r�1/, consisting of at most r � 1 segments, with trivial
signature is tree-like with a height function whose total variation is the same as
that of 
 .r�1/. Suppose that 
 .r/ is chosen so that it is a weakly piecewise linear
path of r segments with trivial signature but there is no height function coding it as a
tree-like path with total variation controlled by that of 
 .r/. Then, by Lemma 7.12,
in the standard partition there must be 0 < i � r so that 
 .r/ti�1 D 


.r/
ti

, and by
assumption ti�1 < ti . In other words, the segment 
 .r/jŒti�1;ti � is a weakly linear
segment and a loop. It therefore has trivial signature, is tree-like and the height
function we constructed for it in the proof of Lemma 7.3 was indeed controlled by
the variation of the loop.

Let O
 be the result of excising the segment 
 jŒti�1;ti � from 
 .r/. As 
 .r/jŒti�1;ti �
has trivial signature, by Lemma 7.9, O
 also has trivial signature. On the other hand,
O
 is weakly piecewise linear with fewer edges than 
 (it is possible that 
 restricted
to Œti�2; ti�1� and Œti ; tiC1� is collinear and so the number of edges drops by more
than one in the canonical partition - but it will always drop!). So by induction,
O
 is tree-like and is controlled by some height function Oh that has total variation
controlled by the variation of O
 .

Now insert the tree-like path 
 .r/jŒti�1;ti � into O
 . By Lemma 7.7 this will be
tree-like and the height function is simply the insertion of the height function for

 .r/jŒti�1;ti � into that for O
 and by construction is indeed controlled by the variation
of 
 .r/ as required. Thus we have completed our induction. �

8. Proof of the main theorem

We can now combine the results of the last sections to conclude the proof of
our main theorem and its corollaries.

Proof of Theorem 4. Corollary 6.4 establishes that tree-like paths have trivial
signature. Thus we only need to establish that if the path of bounded variation has
trivial signature, then it is tree-like. By Proposition 5.9 we can write the path as
an integral against a rank-one 1-form. By Proposition 5.26 we can approximate
any rank-one 1-form by a sequence of rank-one 1-forms with the property that
each 1-form is piecewise constant on finitely many disjoint compact sets and 0
elsewhere. By integrating 
 against the sequence of 1-forms we can construct a se-
quence of weakly piecewise linear paths approximating 
 in bounded variation. By
Corollary 5.22, these approximations have trivial signature. By Proposition 7.13
this means that these weakly piecewise linear paths must be tree-like. Hence we
have a sequence of tree-like paths which approximate 
 . By re-parametrising the
paths at unit speed and using Lemma 4.2 
 must be tree-like, completing the proof.

�
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Proof of Corollary 1.5. Recall that we defined X � Y , by the relation that X
then Y run backward is tree-like. The transitivity is the part that is not obvious.
However, we can now say X � Y if and only if the signature of XY�1 is trivial.
As multiplication in the tensor algebra is associative, it is now simple to check the
conditions for an equivalence relation. Denoting the signature of X by X etc. one
sees that

1. The path run backward has signature YX�1 D�XY�1 D 0.

2. XX�1 D 0 by definition.

3. If X � Y and Y �Z, then XY�1 D 0 and YZ�1 D 0. Thus

0D
�
XY�1

� �
YZ�1

�
D X

�
Y�1Y

�
Z�1 D X .0/Z�1 D XZ�1

and hence X �Z as required.

It is straightforward to see that the equivalence classes form a group. �

Proof of Corollary 1.6. In order to deduce the existence and uniqueness of
minimisers for the length within each equivalence class we observe that;

1. We can re-parametrise the paths to have unit speed and thereafter to be
constant. The equivalence classes of paths with the same signature and uniformly
bounded length is compact. By the extension theorem of [7] and the continuity of
the iterated integrals in the path we see that the signatures of a convergent sequence
of paths will converge in p-variation for all p > 1. Thus any sequence of paths
will have a subsequential uniform limit with the same signature. As length is
lower-semicontinuous in the uniform topology, the limit of a sequence of paths
with length decreasing to the minimum will have length less than or equal to the
minimum. We have seen, through a subsubsequence where the height functions
also converge, that it will also be in the same equivalence class as far as the signa-
ture is concerned, and so it is a minimiser.

2. Within the class of paths with given signature and finite length there
will always be at least one minimal element. Let X and Y be two minimisers
parametrised at unit speed, and let h be a height function for XY �1. Let the time
interval on which h is defined be Œ0; T � and let � denote the time at which the
switch from X to Y occurs. The function h is monotone on Œ0; �� and on Œ�; T �
for otherwise there would be an interval Œs; t � � Œ0; �� with h .s/ D h .t/. Then
the function u! h .u/�h .s/ is a height function confirming that the restriction
of X to Œs; t � is tree-like. Now we know from the associativity of the product in
the tensor algebra that the signature is not changed by excision of a tree-like piece.
Therefore, X with the interval Œs; t � excised is in the same equivalence class as X
but has strictly shorter length. Thus X could not have been a minimiser; as it is, we
deduce the function h is strictly monotone. A similar argument works on Œ�; T � :
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Let � W Œ0; ��! Œ�; T � be the unique function with h .t/D h .� .t//. Then �
is continuous decreasing and � .0/D T and � .�/D � . Moreover, Xu D YT��.u/
and so we see that .up to reparametrisations), the two paths are the same.

Hence we have a unique minimal element! �
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