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Abstract

We consider the category of modules over the affine Kac-Moody algebrabg of
critical level with regular central character. In our previous paper we conjectured that
this category is equivalent to the category of Hecke eigen-D-modules on the affine
Grassmannian G..t//=GŒŒt ��. This conjecture was motivated by our proposal for a
local geometric Langlands correspondence. In this paper we prove this conjecture
for the corresponding I 0 equivariant categories, where I 0 is the radical of the
Iwahori subgroup of G..t//. Our result may be viewed as an affine analogue of the
equivalence of categories of g-modules and D-modules on the flag variety G=B ,
due to Beilinson-Bernstein and Brylinski-Kashiwara.

Introduction

0.1. Let G be a simple complex algebraic group and B its Borel subgroup.
Consider the category D.G=B/ -mod of left D-modules on the flag variety G=B .
The Lie algebra g of G, and hence its universal enveloping algebra U.g/, acts on the
space �.G=B;F/ of global sections of any D-module F. The center Z.g/ of U.g/
acts on �.G=B;F/ via the augmentation character �0 WZ.g/! C. Let g -mod�0
be the category of g-modules on which Z.g/ acts via the character �0. Thus, we
obtain a functor

� W D.G=B/ -mod! g -mod�0 :

In [BB81] A. Beilinson and J. Bernstein proved that this functor is an equivalence
of categories. Moreover, they generalized this equivalence to the case of twisted
D-modules, for twistings that correspond to dominant integral weights � 2 t�.

Let N be the unipotent radical of B . We can consider the N -equivariant
subcategories on both sides of the above equivalence. On the D-module side this
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is the category D.G=B/ -modN of N -equivariant D-modules on G=B , and on the
g-module side this is the block of the category O corresponding to the central
character �0. The resulting equivalence of categories, which follows from [BB81],
and which was proved independently by J.-L. Brylinski and M. Kashiwara [BK81],
is very important in applications to representation theory of g.

Now let yg be the affine Kac-Moody algebra, the universal central extension of
the formal loop agebra g..t//. Representations of yg have a parameter, an invariant
bilinear form on g, which is called the level. There is a unique inner product �can

which is normalized so that the square length of the maximal root of g is equal
to 2. Then any other inner product is equal to � D k � �can, where k 2 C, and so a
level corresponds to a complex number k. In particular, it makes sense to speak of
integral levels. Representations, corresponding to the bilinear form which is equal
to minus one half of the Killing form (for which k D�h_, minus the dual Coxeter
number of g) are called representations of critical level. This is really the “middle
point” amongst all levels, and not the zero level, as one might naively expect.

There are several analogues of the flag variety in the affine case. In this paper
(except in the Appendix) we will consider exclusively the affine Grassmannian

GrG DG..t//=GŒŒt ��:

Another possibility is to consider the affine flag scheme FlG DG..t//=I , where
I is the Iwahori subgroup of G..t//. Most of the results of this paper, that concern
the critical level, have conjectural counterparts for the affine flag variety, but they
are more difficult to formulate. In particular, one inevitably has to consider derived
categories, whereas for the affine Grassmannian abelian categories suffice. We refer
the reader to the Introduction of our previous paper [FG06] for more details.

There is a canonical line bundle Lcan on GrG such that the action of g..t// on
GrG lifts to an action of yg�can on Lcan. For each level � we can consider the category
D.GrG/� -mod of right D-modules on GrG twisted by L˝kcan , where � D k � �can.
(Recall that although the line bundle L˝kcan only makes sense when k is integral, the
corresponding category of twisted D-modules is well-defined for an arbitrary k.)
Since GrG is an ind-scheme, the definition of these categories requires some care
(see [BD] and [FG04]).

Let yg� -mod be the category of (discrete) representations of the affine Kac-
Moody algebra of level �. Using the fact that the action of g..t// on GrG lifts to an
action of yg�can on Lcan, we obtain that for each level � there is a naturally defined
functor of global sections:

(1) � W D.GrG/� -mod!yg� -mod :

The question that we address in this paper is if and when this functor is an
equivalence of categories, as in the finite-dimensional case.
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0.2. The first results in this direction were obtained in [BD], [FG04]. Namely,
in loc. cit. it was shown that if � is such that � D k � �can with kCh_ …Q>0, then
the functor � of (1) is exact and faithful. (In contrast, it is known that this functor
is not exact for kC h_ 2Q>0.) The condition kC h_ …Q>0 is analogous to the
dominance condition of [BB81].

Let us call � negative if kC h_ … Q�0. In this case one can show that the
functor of (1) is fully faithful. In fact, in this case it makes more sense to consider
T -monodromic twisted D-modules on the enhanced affine flag scheme

eFlG DG..t//=I 0;

rather than simply twisted D-modules on GrG , and the corresponding functor � to
yg� -mod. The above exactness and fully-faithfulness assertions are still valid in this
context. However, the above functor is not an equivalence of categories. Namely,
the RHS of (1) has “many more” objects than the LHS.

When � is integral, A. Beilinson has proposed a conjectural intrinsic description
of the image of the category D.eFlG/� -mod inside yg� -mod (see Remark (ii) in the
Introduction of [Bei06]). As far as we know, no such description was proposed
when � is not integral.

It is possible, however, to establish a partial result in this direction. Namely,
let I 0 � I be the unipotent radical of the Iwahori subgroup I . We can consider
the category D.eFlG/� -modI

0

of I 0-equivariant twisted D-modules on eFlG . The
corresponding functor � of global sections takes values in the affine version of
category O, i.e., in the subcategory yg� -modI

0

� yg� -mod, whose objects are yg�-
modules on which the action of the Lie algebra Lie.I 0/ � yg� integrates to an
algebraic action of the group I 0.

One can show that the functor � induces an equivalence between an appro-
priately defined subcategory of T -monodromic objects of D.eFlG/� -modI

0

and a
specific block of yg� -modI

0

. This result, which is well-known to specialists, is
unavailable in the published literature. For the sake of completeness, we sketch one
of the possible proofs in the Appendix.

0.3. In this paper we shall concentrate on the case of the critical level, when kD
�h_. We will see that this case is dramatically different from the cases considered
above. In [FG06] we made a precise conjecture describing the relationship between
the corresponding categories D.GrG/crit -mod and ygcrit -mod. We shall now review
the statement of this conjecture.

First, let us note that the image of the functor � lies in a certain subcategory
of ygcrit -mod, singled out by the condition on the action of the center.

Let Zg denote the center of the category ygcrit -mod (which is the same as the
center of the completed enveloping algebra of ygcrit). The fact that this center is



1342 EDWARD FRENKEL and DENNIS GAITSGORY

nontrivial is what distinguishes the critical level from all other levels. Let Z
reg
g

denote the quotient of Zg, through which it acts on the vacuum module

Vcrit WD Indygcrit
gŒŒt��

.C/:

Let ygcrit -modreg be the full subcategory of ygcrit -mod, whose objects are ygcrit-
modules on which the action of the center Zg factors through Z

reg
g . It is known (see

[FG04]) that for any F 2 D.GrG/crit -mod, the space of global sections �.GrG ;F/
is an object of ygcrit -modreg. (Here and below we write M 2 C if M is an object
of a category C.) Thus, ygcrit -modreg is the category that may be viewed as an
analogue of the category g -mod�0 appearing on the representation theory side of
the Beilinson-Bernstein equivalence. However, the functor of global sections

� W D.GrG/crit -mod!ygcrit -modreg

is not full, and therefore cannot possibly be an equivalence. The origin of the
nonfullness of � two-fold, with one ingredient rather elementary, and another
less so.

First, the category ygcrit -modreg has a large center, namely, the algebra Z
reg
g

itself, while the center of the category D.GrG/crit -mod is the group algebra of the
finite group �1.G/ (i.e., it has a basis enumerated by the connected components of
GrG).

Second, the category D.GrG/crit -mod carries an additional symmetry, namely,
an action of the tensor category Rep. {G/ of the Langlands dual group {G, and this
action trivializes under the functor � .

In more detail, let us recall that, according to [FF92], [Fre05], we have a
canonical isomorphism between Spec.Zreg

g / and the space OpLg.D/ of Lg-opers on the
formal disc D (we refer the reader to �1 of [FG06] for the definition and a detailed
review of opers). By construction, over the scheme OpLg.D/ there exists a canonical
principal {G-bundle, denoted P {G;Op. Let P {G;Z be the {G-bundle over Spec.Zreg

g /

corresponding to it under the above isomorphism. For an object V 2 Rep. {G/ let us
denote by VZ the associated vector bundle over Spec.Zreg

g /, i.e., VZ D P {G;Z �
{G

V .

Consider now the category D.GrG/crit -modGŒŒt��. By [MV07], this category
has a canonical tensor structure, and as such it is equivalent to the category Rep. {G/
of algebraic representations of {G; we shall denote by

V 7! FV W Rep. {G/! D.GrG/crit -modGŒŒt��

the corresponding functor. Moreover, we have a canonical action of D.GrG/crit-
modGŒŒt�� as a tensor category on D.GrG/crit -mod by convolution functors,

F 7! F?FV :
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A. Beilinson and V. Drinfeld [BD] have proved that there are functorial iso-
morphisms

�.GrG ;F?FV /' �.GrG ;F/ ˝
Z

reg
g

VZ; V 2 Rep. {G/;

compatible with the tensor structure. Thus, we see that there are nonisomorphic
objects of D.GrG/crit -mod that go under the functor � to isomorphic objects of
ygcrit -modreg.

0.4. In [FG06] we showed how to modify the category D.GrG/crit -mod, by
simultaneously “adding” to it Z

reg
g as a center, and “dividing” it by the above

Rep. {G/-action, in order to obtain a category that can be equivalent to ygcrit -modreg.
This procedure amounts to replacing D.GrG/crit -mod by the appropriate cate-

gory of Hecke eigen-objects, denoted D.GrG/HeckeZ
crit -mod. By definition, an object

of D.GrG/HeckeZ
crit -mod is an object F 2 D.GrG/crit -mod, equipped with an action

of the algebra Z
reg
g by endomorphisms and a system of isomorphisms

˛V W F?FV
�
�! VZ ˝

Z
reg
g

F; V 2 Rep. {G/;

compatible with the tensor structure.

We claim that the functor � W D.GrG/crit -mod!ygcrit -modreg naturally gives
rise to a functor �HeckeZ W D.GrG/HeckeZ

crit -mod!ygcrit -modreg.
This is in fact a general property. Suppose for simplicity that we have an

abelian category C which is acted upon by the tensor category Rep.H/, where H is
an algebraic group; we denote this functor by F 7!F?V; V 2 Rep.H/. Let CHecke

be the category whose objects are collections .F; f˛V gV 2Rep.H//, where F 2 C

and f˛V g is a compatible system of isomorphisms

˛V W F?V
�
�! V ˝

C
F; V 2 Rep.H/;

where V is the vector space underlying V . One may think of CHecke as the “de-
equivariantized” category C with respect to the action of H . It carries a natural
action of the group H : for h 2H , we have

h � .F; f˛V gV 2Rep.H//D .F; f.h˝ idF/ ı˛V gV 2Rep.H//:

The category C may be reconstructed as the category of H -equivariant objects of
CHecke with respect to this action, see [Gai].

Suppose that there is a right-exact functor G W C! C0, where C0 is another
abelian category, such that we have functorial isomorphisms

(2) G.F?V /' G.F/˝
C
V ; V 2 Rep.H/;

compatible with the tensor structure. Then, according to [AG03], there exists
a functor GHecke W CHecke ! C0 such that G ' GHecke ı Ind, where the functor
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Ind W C! CHecke sends F to F?OH , where OH is the regular representation of H .
The functor GHecke may be explicitly described as follows: the isomorphisms ˛V
and (2) give rise to an action of the algebra OH on G.F/, and GHecke.F/ is obtained
by taking the fiber of G.F/ at 1 2H .

We take C D D.GrG/crit -mod, C0 D ygcrit -modreg, H D {G and G D � . The
only difference is that now we are working over the base Z

reg
g , which we have taken

into account.

0.5. The conjecture suggested in [FG06] states that the resulting functor

(3) �HeckeZ W D.GrG/HeckeZ
crit -mod!ygcrit -modreg

is an equivalence. In loc. cit. we have shown that the functor �HeckeZ , when
extended to the derived category, is fully faithful.

This conjecture has a number of interesting corollaries pertaining to the struc-
ture of the category of representations at the critical level:

Let us fix a point � 2 Spec.Zreg
g /, and let us choose a trivialization of the fiber

P {G;� of P {G;Z at �. Let ygcrit -mod� be the subcategory of ygcrit -mod, consisting of
objects, on which the center acts according to the character corresponding to �.

Let D.GrG/Hecke
crit -mod be the category, obtained from D.GrG/crit -mod, by the

procedure C 7! CHecke for H D {G, described above. Our conjecture implies that
we have an equivalence

(4) D.GrG/Hecke
crit -mod' ygcrit -mod� :

In particular, we obtain that for every two points �; �0 2 Spec.Zreg
g / and an isomor-

phism of {G-torsors P {G;� ' P {G;�0 there exists a canonical equivalence ygcrit -mod�
' ygcrit -mod�0 . This may be viewed as an analogue of the translation principle
that compares the subcategories g -mod� � g -mod for various central characters
� 2 Spec.Z.g// in the finite-dimensional case.

By taking �D �0, we obtain that the group {G, or, rather, its twist with respect
to P {G;�, acts on ygcrit -mod�.

As explained in the Introduction to [FG06], the conjectural equivalence of (4)
fits into the general picture of local geometric Langlands correspondence.

Namely, for a point � 2 Spec.Zreg
g / ' OpLg.D/ as above, both sides of the

equivalence (4) are natural candidates for the conjectural Langlands category asso-
ciated to the trivial {G-local system on the disc D. This category, equipped with an
action of the loop group G..t//, should be thought of as a “categorification” of an
irreducible unramified representation of the group G over a local non-archimedian
field. Proving this conjecture would therefore be the first test of the local geometric
Langlands correspondence proposed in [FG06].
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0.6. Unfortunately, at the moment we are unable to prove the equivalence (3)
in general. In this paper we will treat the following particular case:

Recall that I 0 denotes the unipotent radical of the Iwahori subgroup, and let
us consider the corresponding I 0-equivariant subcategories on both sides of (3).

On the D-module side, we obtain the category D.GrG/HeckeZ
crit -modI

0

, defined
in the same way as D.GrG/HeckeZ

crit -mod, but with the requirement that the underlying
D-module F be strongly I 0-equivariant.

On the representation side, we obtain the category ygcrit -modI
0

reg, corresponding
to the condition that the action of Lie.I 0/� ygcrit integrates to an algebraic action
of I 0.

We shall prove that the functor �HeckeZ defines an equivalence

(5) D.GrG/HeckeZ
crit -modI

0

!ygcrit -modI
0

reg :

This equivalence implies an equivalence

(6) D.GrG/Hecke
crit -modI

0

' ygcrit -modI
0

�

for any fixed character � 2 Spec.Zreg
g / and a trivialization of P {G;� as above. In

particular, we obtain the corollaries concerning the translation principle and the
action of {G on ygcrit -modI

0

� .
We remark that from the point of view of the local geometric Langlands

correspondence the categories appearing in the equivalence (6) should be viewed
as “categorifications” of the space of I -fixed vectors in an irreducible unramified
representation of the groupG over a local non-archimedian field (which is a principal
series representation of the corresponding affine Hecke algebra).

Let us briefly describe the strategy of the proof. Due to the fact [FG06] that the
functor in one direction in (5) is fully-faithful at the level of the derived categories,
the statement of the theorem is essentially equivalent to the fact that for every object
M 2 ygcrit -modI

0

reg there exists an object F 2 D.GrG/HeckeZ
crit -modI

0

and a nonzero
map �HeckeZ.GrG ;F/!M, to be explained in detail in Section 3.

We exhibit a collection of objects Mw;reg, numbered by elements w 2 W ,
where W is the Weyl group, which are quotients of Verma modules, such that for
every M 2 ygcrit -modI

0

reg, for at least one w, we have Hom.Mw;reg;M/¤ 0.
We then show (see Theorem 3.2) that each such Mw;reg is isomorphic to

�HeckeZ.GrG ;F
Z
w/ for some explicit object FZ

w 2 D.GrG/HeckeZ
crit -modI

0

, thereby
proving the equivalence (5).

0.7. It is instructive to put our results in the context of other closely related
equivalences of categories.

Using the (tautological) equivalence:

D.GrG/ -modI
0

' D.eFlG/ -modGŒŒt��
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(here and below we omit the subscript � when � D 0) and the equivalence of
Theorem 5.5, we obtain that for every negative integral level � D k � �can there
exists an equivalence between D.GrG/ -modI

0

and the regular block of the cate-
gory yg� -modGŒŒt��, studied in [KL93], [KL94]. The latter category is equivalent,
according to loc. cit., to the category of modules over the quantum group U res

q .g/,
where q D exp�i=.kC h_/.

Using these equivalences, it has been shown in [AG03] that the category
D.GrG/Hecke -modI

0

, defined as above, is equivalent to the regular block uq.g/ -mod0
of the category of modules over the small quantum group uq.g/. The tensor product
by the line bundle L�h

_

can defines an equivalence

D.GrG/Hecke -modI
0

! D.GrG/Hecke
crit -modI

0

(but this equivalence does not, of course, respect the functor of global sections).
Combining this with the equivalence of (6), we obtain the following diagram of
equivalent categories:

(7) ygcrit -modI
0

�

�
 D.GrG/Hecke

crit -modI
0 �
! uq.g/ -mod :

Recall that in [ABBC05] it was shown that the category D.GrG/Hecke -modI
0

is equivalent to an appropriately defined category D.Fl
1
2 /I

0

of I 0-equivariant
D-modules on the semi-infinite flag variety (it is defined in terms of the Drinfeld
compactification BunN ). Hence, we obtain another diagram of equivalent categories:

(8) ygcrit -modI
0

�

�
 D.GrG/Hecke

crit -modI
0 �
! D.Fl

1
2 /I

0

:

In particular, we obtain a functor

D.Fl
1
2 /I

0

!ygcrit -modI
0

� ;

which is, moreover, an equivalence. Its existence had been predicted by B. Feigin
and the first named author.

In fact, one would like to be able to define the category D.Fl
1
2 / without

imposing the I 0-equivariance condition, and extend the equivalence of [ABBC05]
to this more general context. Together with the equivalence of (3), this would imply
the existence of the diagram

ygcrit -mod�
�
 D.GrG/Hecke

crit -mod
�
! D.Fl

1
2 /;

but we are far from being able to achieve this goal at present.
Finally, let us mention one more closely related category, namely, the derived

category D
�
QCoh.. {G= {B/DG -mod/

�
of complexes of quasi-coherent sheaves over

the DG-scheme

. {G= {B/DG WD Spec
�
SymO {G= {B

.�1. {G= {B/Œ1�/
�
:
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This DG-scheme can be realized as the derived Cartesian producteLg�
Lg

pt;

where pt ! Lg corresponds to the point 0 2 Lg, and eLg D f.x; Lb/jx 2 Lb � Lgg is
Grothendieck’s alteration.

From the results of [ABG04] one can obtain an equivalence of the derived
categories

Db
�
QCoh.. {G= {B/DG -mod/

�
'Db

�
D.GrG/Hecke -mod

�I0
:

Hence we obtain an equivalence:

(9) Db
�
QCoh.. {G= {B/DG -mod/

�
'Db

�
ygcrit -mod�

�I0
:

The existence of such an equivalence follows from the Main Conjecture 6.11
of [FG06]. Note that, unlike the other equivalences mentioned above, it does not
preserve the t-structures, and so is inherently an equivalence of derived categories.

0.8. Contents. Let us briefly describe how this paper is organized:
In Section 1, after recalling some previous results, we state the main result of

this paper, Theorem 1.7. In Section 2 we review representation-theoretic corollaries
of Theorem 1.7. In Section 3 we show how to derive Theorem 1.7 from Theorem 3.2,
and in Section 4 we prove Theorem 3.2.

Finally, in the Appendix, we prove a partial localization result at the negative
level referred to in Section 0.2.

The notation in this paper follows that of [FG06].

1. The Hecke category

In this section we recall the main definitions and state our main result. We
will rely on the concepts introduced in our previous paper [FG06].

1.1. Recollections. Let g be a simple finite-dimensional Lie algebra, and G
the connected algebraic group of adjoint type with Lie algebra g. We shall fix a
Borel subgroup B �G. Let {G denote the Langlands dual group of G, and by Lg its
Lie algebra.

Let GrG D G..t//=GŒŒt �� be the affine Grassmannian associated to G. We
denote by

D.GrG/crit -mod

the category of critically twisted right D-modules on the affine Grassmannian and
by

D.GrG/crit -modGŒŒt��
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the corresponding GŒŒt ��-equivariant category. Recall that via the geometric Sa-
take equivalence (see [MV07]) the category D.GrG/crit -modGŒŒt�� has a natural
structure of tensor category under convolution, and as such it is equivalent to
Rep. {G/. We shall denote by V 7!FV the corresponding tensor functor Rep. {G/!
D.GrG/crit -modGŒŒt��.

We have the convolution product functors

F 2 D.GrG/crit -mod;FV 2 D.GrG/crit -modGŒŒt�� 7! F?FV 2 D.GrG/crit -mod :

These functors define an action of Rep. {G/, on the category D.GrG/crit -mod. Thus,
in the terminology of [Gai], D.GrG/crit -modGŒŒt�� has a structure of the category
over the stack pt = {G.

Now let ygcrit -mod denote the category of (discrete) representations of the
affine Kac-Moody algebra at the critical level (see [FG06]). Let Vcrit 2 ygcrit -mod
be the vacuum module Indygcrit

gŒŒt��˚C
.C/. Denote by Zg the topological commutative

algebra that is the center of ygcrit -mod. Let Z
reg
g denote its “regular” quotient, i.e.,

the quotient modulo the annihilator of Vcrit. We denote by ygcrit -modreg the full
subcategory of ygcrit -mod, consisting of objects, on which the action of the center
Zg factors through Z

reg
g .

Recall that via the Feigin-Frenkel isomorphism [FF92], [Fre05], the algebra
Z

reg
g identifies with the algebra of regular functions on the scheme OpLg.D/ of Lg-opers

on the formal disc D. In particular, Spec.Zreg
g / carries a canonical {G-torsor, denoted

P {G;Z, whose fiber P {G;� at � 2 Spec.Zreg
g /' OpLg.D/ is the fiber of the {G-torsor

underlying the oper � at the origin of the disc D. The {G-torsor P {G;Z gives rise to a
morphism Spec.Zreg

g /! pt = {G. We shall denote by

V 7! VZ

the resulting tensor functor from Rep. {G/ to the category of locally free Z
reg
g -

modules.
We define D.GrG/HeckeZ

crit -mod as the fiber product category

D.GrG/crit -mod �
pt = {G

Spec.Zreg
g /;

in the terminology of [Gai].
Explicitly, D.GrG/HeckeZ

crit -mod has as objects the data of .F; ˛V;8V2Rep. {G//,
where F is an object of D.GrG/crit -mod, endowed with an action of the algebra
Z

reg
g by endomorphisms, and ˛V are isomorphisms of D-modules

F?FV ' VZ ˝
Z

reg
g

F;

compatible with the action of Z
reg
g on both sides, and such that the following two

conditions are satisfied:
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� For V being the trivial representations C, the morphism ˛V is the identity
map.

� For V;W 2 Rep. {G/ and U WD V ˝W , the diagram

.F?FV / ?FW
�

����! F?FU

˛V ?idFW

??y ˛U

??y
.VZ ˝

Z
reg
g

F/ ?FW UZ ˝
Z

reg
g

F

�

??y �

??y
VZ ˝

Z
reg
g

.F?FW /
idVZ ˝˛W
�������! VZ ˝

Z
reg
g

WZ ˝
Z

reg
g

F

is commutative.

Morphisms in this category between .F; ˛V / and .F0; ˛0V / are maps of D-mod-
ules � WF!F0 that are compatible with the actions of Z

reg
g on both sides, and such

that

.idVZ ˝�/ ı˛V D ˛
0
V ı .� ? idFV /:

1.2. Definition of the functor. Recall that according to [FG04], the functor of
global sections

F 7! �.GrG ;F/

defines an exact and faithful functor D.GrG/crit -mod!ygcrit -modreg. Let us recall,
following [FG06], the construction of the functor

�HeckeZ W D.GrG/HeckeZ
crit !ygcrit -modreg :

First, let us recall the following result of [BD] (combined with an observation
of [FG06, Lemma 8.4.3]):

THEOREM 1.3. (1) For F 2 D.GrG/crit -mod and V 2 Rep. {G/ there is a
functorial isomorphism

ˇV W �.GrG ;F?FV /' �.GrG ;F/ ˝
Z

reg
g

VZ:
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(2) For F; V as above and W 2 Rep. {G/, U WD V ˝W the diagram

�
�
GrG ; .F?FV / ?FW

� �
����! �

�
GrG ;F? .FV ?FW /

�
ˇW

??y �

??y
�
�
GrG ; .F?FV /

�
˝
Z

reg
g

WZ �.GrG ;F?FU /

ˇV

??y ˇU

??y
�.GrG ;F/ ˝

Z
reg
g

VZ ˝
Z

reg
g

WZ
�

����! �.GrG ;F/ ˝
Z

reg
g

UZ

is commutative.

Consider the scheme IsomZ W Spec.Zreg
g �

pt = {G
Z

reg
g /. Let 1IsomZ denote the unit

section Spec.Zreg
g /! IsomZ.

We denote by RZ the direct image of the structure sheaf under Spec.Zreg
g /!

pt = {G, viewed as an object of Rep. {G/. It carries an action of Z
reg
g by endomorphisms.

Let RZ be the associated (infinite-dimensional) vector bundle over Spec.Zreg
g /; by

definition, we have a canonical isomorphism

RZ ' Fun.IsomZ/:

We will think of the projection pr W IsomZ! Spec.Zreg
g / as corresponding to the

original Z
reg
g -action on RZ, and hence on RZ, by the transport of structure. We

will think of the other projection pl W IsomZ ! Spec.Zreg
g /, as corresponding to

the Z
reg
g -module structure on RZ coming from the fact that this is a vector bundle

associated to a {G-representation.
We claim that for every object F 2 D.GrG/HeckeZ

crit -mod, the ygcrit-module
�.GrG ;F/ carries a natural action of the algebra Fun.IsomZ/ by endomorphisms.

First, note that �.GrG ;F/ is a Z
reg
g -bimodule: we shall refer to the Z

reg
g -action,

coming from its action on any object of ygcrit -modreg, as “right”, and to the one,
coming from the Z

reg
g -action on F, as “left”.

On the one hand, we have:

�.GrG ;F?FRZ/
ˇRZ

' �.GrG ;F/ ˝
r;Z

reg
g ;l

Fun.IsomZ/;

and on the other hand,

�.GrG ;F?FRZ/
˛RZ

' Fun.IsomZ/ ˝
l;Z

reg
g ;l

�.GrG ;F/:
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By composing we obtain the desired action map

�.GrG ;F/ ˝
r;Z

reg
g ;l

Fun.IsomZ/
˛RZıˇ

�1
RZ

�! Fun.IsomZ/ ˝
l;Z

reg
g ;l

�.GrG ;F/
1�IsomZ
�!�.GrG ;F/:

The fact that it is associative follows from the second condition on ˛V and Theorem
1.3(2).

We define the functor �HeckeZ by

F 7! �.GrG ;F/ ˝
Fun.IsomZ/;1�IsomZ

Z
reg
g :

Since the functor � is exact, the functor �HeckeZ is evidently right-exact, and
we will denote by L�HeckeZ its left derived functor D�.D.GrG/HeckeZ

crit -mod/!
D�.ygcrit -modreg/

The following was established in [FG06, Th. 8.7.1]:

THEOREM 1.4. The functor L�HeckeZ , restricted to

Db.D.GrG/HeckeZ
crit -mod/;

is fully faithful.

In [FG06] we formulated the following:

CONJECTURE 1.5. The functor �HeckeZ is exact and defines an equivalence of
categories D.GrG/HeckeZ

crit -mod and ygcrit -modreg.

1.6. The statement of the main result. Recall that both categories ygcrit -modreg

and D.GrG/HeckeZ
crit -mod carry a natural action of the group G..t// (see [FG06, �22],

where this is discussed in detail). Let I �GŒŒt �� be the Iwahori subgroup, the pre-
image of the Borel subgroup B�G in GŒŒt �� under the evaluation map GŒŒt ��!G.
Let I 0 be the unipotent radical of I . Let us denote by D.GrG/HeckeZ

crit -modI
0

and
ygcrit -modI

0

reg the corresponding categories of I 0-equivariant objects. Since I 0 is
connected, these are full subcategories in D.GrG/HeckeZ

crit -mod and ygcrit -modreg,
respectively.

The functor �HeckeZ induces a functor D.GrG/HeckeZ
crit -modI

0

!ygcrit -modI
0

reg.
The goal of this paper is to prove the following special case of Conjecture 1.5:

THEOREM 1.7. (1) For any F 2 D.GrG/HeckeZ
crit -modI

0

we have

Li�HeckeZ.GrG ;F/D 0 for all i > 0:

(2) The functor

�HeckeZ W D.GrG/HeckeZ
crit -modI

0

!ygcrit -modI
0

reg

is an equivalence of categories.
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2. Corollaries of the main theorem

We shall now discuss some applications of Theorem 1.7. Note that both sides
of the equivalence stated in Theorem 1.7 are categories over the algebra Z

reg
g .

2.1. Specialization to a fixed central character. We fix a point � 2 Spec.Zreg
g /,

i.e., a character of Z
reg
g , and consider the subcategories on both sides of the equiv-

alence of Theorem 1.7(2), corresponding to objects on which the center acts ac-
cording to this character. Let us denote the resulting subcategory of ygcrit -modI

0

reg by
ygcrit -modI

0

� . The resulting subcategory of D.GrG/HeckeZ
crit -modI

0

can be described
as follows.

Let us denote by D.GrG/Hecke
crit -mod the category, whose objects are the data

of .F; ˛V /, where F 2 D.GrG/crit -mod and ˛V are isomorphisms of D-modules
defined for every V 2 Rep. {G/,

F?FV ' V ˝
C

F;

where V denotes the vector space underlying the representation V . These isomor-
phisms must be compatible with tensor products of objects of Rep. {G/ in the same
sense as in the definition of D.GrG/HeckeZ

crit -mod.
Note that D.GrG/Hecke

crit -mod carries a natural weak action of the algebraic
group {G:1 Given an S-point g of {G and an S-family of objects .F; ˛V / of
D.GrG/Hecke

crit -mod we obtain a new S -family by keeping F the same, but replacing
˛V by g �˛V , where g acts naturally on V ˝OS .

In addition, D.GrG/Hecke
crit -mod carries a commuting Harish-Chandra action of

the group G..t//; in particular, the subcategory D.GrG/Hecke
crit -modI

0

makes sense.
Let P {G;� be the fiber of the {G-torsor P {G;Z at �. Tautologically we have:

LEMMA 2.2. (1) For every trivialization 
 WP {G;�'P0
{G

there exists a canonical
equivalence respecting the action of G..t//;�

D.GrG/HeckeZ
crit -mod

�
�
' D.GrG/Hecke

crit -mod;

where the LHS denotes the fiber of D.GrG/HeckeZ
crit -mod at �.

(2) If 
 0D g �
 for g 2 {G, the above equivalence is modified by the self-functor
of D.GrG/Hecke

crit -mod, given by the action of g.

Hence, from Theorem 1.7 we obtain:

COROLLARY 2.3. For every trivialization 
 W P {G;� ' P0
{G

there exists a
canonical equivalence

ygcrit -modI
0

� ' D.GrG/Hecke
crit -modI

0

:

1We refer the reader to [FG06, §20.1], where this notion is introduced.
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From Corollary 2.3 we obtain:

COROLLARY 2.4. (1) For any two points �1; �2 2 Spec.Zreg
g / and an isomor-

phism of {G-torsors P {G;�1 ' P {G;�2 there exists a canonical equivalence

ygcrit -modI
0

�1
' ygcrit -modI

0

�2
:

(2) For every � 2 Spec.Zreg
g /, the group of automorphisms of the {G-torsor

P {G;� acts on the category ygcrit -modI
0

� .

More generally, let S be an affine scheme, and let �1;S and �2;S be two
S-points of Spec.Zreg

g /. Let ygcrit -modI
0

S;1 and ygcrit -modI
0

S;2 be the corresponding
base-changed categories.

By definition, the objects of ygcrit -modi;S are the objects of ygcrit -modreg, en-
dowed with an action of OS compatible with the initial action of Z

reg
g on M via the

homomorphism Z
reg
g ! OS , corresponding to �i;S . Morphisms in this category are

ygcrit-morphisms compatible with the action of OS .

COROLLARY 2.5. For every lift of the map

.�1;S ��2;S / W S ! Spec.Zreg
g /�Spec.Zreg

g /

to a map S ! IsomZ, there exists a canonical equivalence

ygcrit -modI
0

S;1 ' ygcrit -modI
0

S;2 :

2.6. Description of irreducibles. Corollary 2.3 allows us to describe explicitly
the set of irreducible objects in ygcrit -modI

0

reg. For that we will need to recall some
more notation related to the categories D.GrG/Hecke

crit -mod and D.GrG/HeckeZ
crit -mod.

Consider the forgetful functor D.GrG/Hecke
crit -mod!D.GrG/crit -mod. It admits

a left adjoint, denoted IndHecke, which can be described as follows.
Let R be the object of Rep. {G/ equal to O {G under the left regular action;

let FR denote the corresponding object of D.GrG/crit -modGŒŒt��. Then for F 2

D.GrG/crit-mod, the convolution F?FR is naturally an object of D.GrG/Hecke
crit -mod,

and it is easy to see that IndHecke.F/ WD F?FR is the desired left adjoint.
Similarly, the forgetful functor D.GrG/HeckeZ

crit -mod!D.GrG/crit -mod admits
a left adjoint functor IndHeckeZ given by F 7! F?FRZ . The next assertion follows
from the definitions:

LEMMA 2.7. (1) For F 2D.GrG/crit -mod there exist canonical isomorphisms:

�.GrG ; IndHeckeZ.F//' �.Gr;F/ ˝
Z

reg
g

Fun.IsomZ/;

where Fun.IsomZ/ is a module over Z
reg
g via either of the projections IsomZ !

Spec.Zreg
g /.
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(2) For F as above,

�HeckeZ
�
GrG ; IndHeckeZ.F/

�
' �.Gr;F/:

Let us now recall the description of irreducible objects of D.GrG/Hecke
crit -modI

0

,
established in [ABBC05, Cor. 1.3.10].

Recall that I -orbits on GrG are parametrized by the set Waff=W , where Waff

denotes the extended affine Weyl group. For an element zw 2Waff let us denote by
IC zw;GrG the corresponding irreducible object of D.GrG/crit -modI .

For an element w 2W , let L�w 2Waff denote the unique dominant coweight
satisfying:

h˛{ ; L�i D

�
0 if w.˛{/ is positive, and
1 if w.˛{/ is negative,

for { running over the set of vertices of the Dynkin diagram.
It was shown in loc. cit. that the objects IndHecke.ICw ��w / for w 2W are the

irreducibles of D.GrG/Hecke
crit -modI

0

.
Combining this with Lemma 2.7 and Corollary 2.3, we obtain:

THEOREM 2.8. Isomorphism classes of irreducible objects of ygcrit -modI
0

reg

are parametrized by pairs .� 2 Spec.Zreg
g /; w 2 W /. For each such pair the

corresponding irreducible object is given by

�.GrG ; ICw ��w / ˝
Z

reg
g

C�:

2.9. The algebroid action. Let isomZ be the Lie algebroid of the groupoid
IsomZ. According to [BD] (see also [FG06, �7.4] for a review), we have a canonical
action of isomZ on zU reg

crit .yg/ by outer derivations, where zU reg
crit .yg/ is the topological

associative algebra corresponding to the category ygcrit -modreg and its tautological
forgetful functor to vector spaces.

In more detail, there exists a topological associative algebra, denoted by
U ren;reg.ygcrit/ and called the renormalized universal enveloping algebra at the critical
level. It is endowed with a natural filtration, with the 0-th term U ren;reg.ygcrit/0 being
U reg.ygcrit/, and

U ren;reg.ygcrit/1=U
ren;reg.ygcrit/0 ' U

reg.ygcrit/ b̋
Z

reg
g

isomZ:

The action of isomZ on zU reg
crit .yg/ is given by the adjoint action of isomZ, regarded

as a subset of U ren;reg.ygcrit/1=U
ren;reg.ygcrit/0.

Let S be an affine scheme, and let �S be an S-point of Spec.Zreg
g /. Let �S

be a section of isomZjS . Set S 0 WD S � Spec.CŒ"�="2/; then the image of �S in
T .Spec.Zreg

g //jS gives rise to an S 0-point, denoted, �0S , of Spec.Zreg
g /.
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Let ygcrit -modS (resp., ygcrit -modS 0) be the corresponding base-changed cate-
gory, where the latter identifies with the category of discrete modules over zU reg

crit .yg/

˝
Z

reg
g

OS (resp., zU reg
crit .yg/ ˝

Z
reg
g

OS 0). Then the above action of isomZ on ygcrit -modreg gives

rise to the following construction:
To every M 2 ygcrit -modS we can functorially attach an extension

(10) 0!M!M0!M! 0; M0 2 ygcrit -modS 0 :

The module M0 is defined as follows. The above action of isomZ by outer
derivations of zU reg

crit .yg/ allows us to lift �S to an isomorphism

A.�S / W zU
reg
crit .yg/ ˝

Z
reg
g ;�S0

OS 0 ! zU
reg
crit .yg/ ˝

Z
reg
g ;�S

OS Œ"�="
2:

We set M0 to be the zU reg
crit .yg/ ˝

Z
reg
g ;�S0

OS 0-module, corresponding via A.�S / to MŒ"�="2.

The isomorphism A.�S / is defined up to conjugation by an element of the
form 1C " �u, u 2 zU reg

crit .yg/ ˝
Z

reg
g ;�S

OS . Since this automorphism can be canonically

lifted onto MŒ"�="2, we obtain that M0 is well-defined.
By construction, the functor M 7! M0 respects the Harish-Chandra G..t//-

actions on the categories ygcrit -modS and ygcrit -modS 0 , respectively.
Let us note now that data .�S W S ! Spec.Zreg

g /; �S 2 isomZjS / as above can
be regarded as a map S 0! IsomZ, where first and second projections

S 0! IsomZ� Spec.Zreg
g /

are equal, respectively, to

S 0! S
�S
! Spec.Zreg

g / and S 0
�0S
! Spec.Zreg

g /:

Hence, Corollary 2.5 gives rise to an equivalence

ygcrit -modI
0

S ˝CŒ"�="2 ' ygcrit -modI
0

S 0 ;

and, in particular, to a functor

(11) ygcrit -modI
0

S !ygcrit -modI
0

S 0 :

PROPOSITION 2.10. The functor M 7!M0 W ygcrit -modS !ygcrit -modS 0 of (10),
restricted to ygcrit -modI

0

S , is canonically isomorphic to the functor (11).

Proof. The assertion follows from the fact that for F 2 D.GrG/crit -mod, the
ygcrit-action on �.GrG ;F/ lifts canonically to an action of U ren;reg.ygcrit/ (see [FG06,
�7.4]), so that for .S; �S ; �S / as above we have a canonical trivialization


F W �.GrG ;F/0 ' �.GrG ;F/Œ"�="2;
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in the notation of (10). Moreover, this functorial isomorphism is compatible with
that of Theorem 1.3 in the sense that for every V 2 Rep. {G/, the diagram

�.GrG ;F?FV /
0


F?FV
����! �.GrG ;F?FV /Œ"�="

2

ˇV

??y ˇV˝id

??y�
�.GrG ;F/ ˝

Z
reg
g

V
�0 
F˝�S
����!

�
�.GrG ;F/ ˝

Z
reg
g

V
�
Œ"�="2;

commutes, where the bottom arrow comprises the isomorphism 
F and the canonical
action of �S on VZ. The latter compatibility follows assertion (b) in Theorem 8.4.2
of [FG06]. �

2.11. Relation to semi-infinite cohomology. Let us consider the functor of
semi-infinite cohomology on the category ygcrit -modI

0

reg:

M 7!H
1
2
C�.n..t//; nŒŒt ��;M˝‰0/

(see [FG06, �18] for details concerning this functor).
For an S-point �S of Spec.Zreg

g / and M 2 ygcrit -modS , each H
1
2
Ci .n..t//,

nŒŒt ��, M˝‰0/ is naturally an OS -module.
Let now .�1;S ; �2;S / be a pair of S-points of Spec.Zreg

g /, equipped with a
lift S ! IsomZ, and let M1 2 ygcrit -modI

0

S;1 and M2 2 ygcrit -modI
0

S;2 be two objects
corresponding to each other under the equivalence of Corollary 2.5.

PROPOSITION 2.12. Under the above circumstances the OS -modules

H
1
2
Ci .n..t//; nŒŒt ��;M1˝‰0/ and H

1
2
Ci .n..t//; nŒŒt ��;M2˝‰0/

are canonically isomorphic.

Proof. The assertion of the proposition can be tautologically translated as
follows:

The functor

D.GrG/crit -mod
�
!ygcrit -modreg

H
1
2
Ci
.n..t//;nŒŒt��;‹˝‰0/
�! Z

reg
g -mod

factors through a functor

H
1
2
Ci

{G
W D.GrG/crit -mod! Rep. {G/;

followed by the pull-back functor, corresponding to the morphism Spec.Zreg
g /!

pt = {G. Moreover, for V 2 Rep. {G/ we have a functorial isomorphism

(12) H
1
2
Ci

{G
.F?FV /'H

1
2
Ci

{G
.F/˝V;

compatible with the isomorphism of Theorem 1.3(1).
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The sought-after functor H
1
2
Ci

{G
has been essentially constructed in [FG06,

�18.3]. Namely,

Hom {G
�
V
L�;H

1
2
Ci

{G
.F/

�
WDH i .N..t//;Fj

N..t//�t L�
˝‰0/;

in the notation of loc. cit. The isomorphisms (12) follow from the definitions. �

Finally, we would like to compare the isomorphisms of Proposition 2.12 and
Proposition 2.10. Let M be an object of ygcrit -modI

0

reg; let �S be an S-point of
Spec.Zreg

g / and �S a section of isomZjS .
On the one hand, in Proposition 18.3.2 of [FG06] we have shown that there

exists a canonical isomorphism:

aM WH
1
2
Ci .n..t//; nŒŒt ��;M0˝‰0/'H

1
2
Ci .n..t//; nŒŒt ��;M˝‰0/Œ"�="

2;

valid for any M 2 ygcrit -modreg.
On the other hand, combining Proposition 2.10 and Proposition 2.12 we obtain

another isomorphism

bM WH
1
2
Ci .n..t//; nŒŒt ��;M0˝‰0/'H

1
2
Ci .n..t//; nŒŒt ��;M˝‰0/Œ"�="

2:

Unraveling the two constructions, we obtain the following:

LEMMA 2.13. The isomorphisms aM and bM coincide.

3. Proof of the main theorem

In Section 1.6 we constructed a functor

�HeckeZ W D.GrG/HeckeZ
crit -modI

0

!ygcrit -modI
0

reg :

Now we wish to show that this functor is an equivalence of categories. This will
prove Theorem 1.7.

We start by considering in Section 3.1 certain objects FZ
w ; w 2 W , of the

category D.GrG/HeckeZ
crit -modI

0

such that �HeckeZ.FZ
w/'Mw;reg, the latter being

the“standard modules” of the category ygcrit -modI
0

reg. The main result of Section 3.1,
Theorem 3.2, which states the existence of FZ

w , will be proved in Section 4.
Next, in Section 3.4 we prove part (1) of Theorem 1.7 that the functor �HeckeZ

is exact. We then outline in Section 3.9 a general framework for proving that it is an
equivalence. Using this framework, we prove Theorem 1.7 modulo Theorem 3.2.

In Section 3.14 we explain what needs to be done in order to prove our stronger
Conjecture 1.5. Finally, in Sections 3.16–3.19 we give an alternative proof of part
(1) of Theorem 1.7.
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3.1. Standard modules. For an element w 2W , let

Mw D Indygcrit
gŒŒt��

.Mw.�/��/

be the Verma module over yg, where for a weight � we denote by M� the Verma
module over g with highest weight �. Let

Mw;reg DMw ˝
Zg

Z
reg
g

be the maximal quotient module that belongs to ygcrit -modreg. In fact, it was shown in
[FG06, Cor. 13.3.2], that as modules over Zg, all Mw are supported over a quotient
algebra Znilp

g , and are flat as Znilp
g -modules. The subscheme Spec.Zreg

g /� Spec.Zg/

is contained in Spec.Znilp
g /, so that the definition of Mw;reg does not neglect any

lower cohomology.
The main ingredient in the remaining steps of our proof of Theorem 1.7 is the

following:

THEOREM 3.2. For each w 2W there exists an object FZ
w 2 D.GrG/HeckeZ

crit -
modI

0

, such that �HeckeZ.GrG ;Fw/ is isomorphic to Mw;reg.

The proof of this theorem will consist of an explicit construction of the objects
FZ
w , which will be carried out in Section 4.

The proof of Theorem 1.7 will only use a part of the assertion of Theorem 3.2:
namely, that there exist objects FZ

w 2 D.GrG/HeckeZ
crit -modI

0

, endowed with a sur-
jection

(13) �HeckeZ.GrG ;FZ
w/�Mw;reg:

What we will actually use is the following corollary of this statement:

COROLLARY 3.3. For every M 2 ygcrit -modI
0

reg there exists an object F 2

D.GrG/HeckeZ
crit -modI

0

and a nonzero map �HeckeZ.GrG ;F/!M.

Proof. By [FG06, Lemma 7.8.1], for every object M 2 ygcrit -modI
0

reg there exist
w 2W and a nonzero map Mw;reg!M. �

3.4. Exactness. Let us recall from Section 2.6 the left adjoint functor IndHeckeZ

to the obvious forgetful functor D.GrG/HeckeZ
crit -mod! D.GrG/crit -mod.

It is clear that every object of D.GrG/HeckeZ
crit -mod can be covered by one of

the form IndHeckeZ.F/. From Lemma 2.7(1) we obtain that we can use bounded-
from-above complexes, whose terms consist of objects of the form IndHeckeZ.F/,
in order to compute L�HeckeZ . Thus, we obtain:

LEMMA 3.5. For F 2 D.GrG/HeckeZ
crit -mod,

Li �HeckeZ.GrG ;F/' TorFun.IsomZ/

i

�
�.GrG ;F/;Z

reg
g

�
:
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We shall call an object of D.GrG/HeckeZ
crit -mod finitely generated if it can be

obtained as a quotient of an object of the form IndHeckeZ.F/, where F is a finitely
generated object of D.GrG/crit -mod.

It is easy to see that an object F 2 D.GrG/HeckeZ
crit -mod is finitely generated if

and only if the functor HomD.GrG/HeckeZ
crit -mod.F; �/ commutes with direct sums.

We shall call an object of D.GrG/HeckeZ
crit -mod finitely presented, if it is iso-

morphic to coker
�
IndHeckeZ.F1/! IndHeckeZ.F2/

�
, where F1;F2 are both finitely

generated objects of D.GrG/crit -mod. The following lemma is straightforward.

LEMMA 3.6. (1) An object F 2 D.GrG/HeckeZ
crit -mod is finitely presented if and

only if the functor HomD.GrG/HeckeZ
crit -mod.F; �/ commutes with filtering direct limits.

(2) Every object of D.GrG/HeckeZ
crit -mod is isomorphic to a filtering direct limit

of finitely presented ones.

The proof of the following proposition will be given in Section 3.13.

PROPOSITION 3.7. For every finitely presented object of D.GrG/HeckeZ
crit -mod,

the corresponding object

L�HeckeZ.GrG ;F/ 2D�.ygcrit -modreg/

belongs to Db.ygcrit -modreg/.

The crucial step in the proof of part (1) of Theorem 1.7 is the following:

PROPOSITION 3.8. If F2D.GrG/HeckeZ
crit -modI

0

is such that L�HeckeZ.GrG ;F/
belongs to Db.ygcrit -modreg/

I0 , then

Li �HeckeZ.GrG ;F/
�
D 0; i > 0:

Proof. Let M be the lowest cohomology of L�HeckeZ.GrG ;F/, which lives,
for example, in degree �k. By Corollary 3.3 there exist another object F1 2

D.GrG/HeckeZ
crit -modI

0

and a nonzero map �HeckeZ.GrG ;F1/ ! M. Hence, we
obtain a nonzero map in D�.ygcrit -modreg/

L�HeckeZ.GrG ;F1/Œk�! L�HeckeZ.GrG ;F/:

But by Theorem 1.4, such a map comes from a map F1Œk�! F, which is
impossible if k > 0. �

Proof of part (1) of Theorem 1.7. Combining Proposition 3.7 and Propo-
sition 3.8, we obtain that Li �HeckeZ.GrG ;F/ D 0 for any i > 0 and any F 2

D.GrG/HeckeZ
crit -modI

0

, which is finitely presented.
However, by Lemma 3.5, the functors

F 7! Li �HeckeZ.GrG ;F/

commute with direct limits, and our assertion follows from Lemma 3.6(2). �
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3.9. Proof of the equivalence. Consider the following general categorical
framework. Let G W C1 ! C2 be an exact functor between abelian categories.
Assume that for X; Y 2 C1 the maps

HomC1.X; Y /! HomC2.G.X/;G.Y //

and
Ext1C1.X; Y /! Ext1C2.G.X/;G.Y //

are isomorphisms.

LEMMA 3.10. If G admits a right adjoint functor F which is conservative, then
G is an equivalence.2

Proof. The fully faithfulness assumption on G implies that the adjunction map
induces an isomorphism between the composition F ıG and the identity functor on
C1. We have to show that the second adjunction map is also an isomorphism.

For X 0 2 C2 let Y 0 and Z0 be the kernel and cokernel, respectively, of the
adjunction map

G ı F.X 0/!X 0:

Being a right adjoint functor, F is left-exact, hence we obtain an exact sequence

0! F.Y 0/! F ıG ı F.X 0/! F.X 0/:

But since F.X 0/! F ı G.F.X 0// is an isomorphism, we obtain that F.Y 0/ D 0.
Since F is conservative, this implies that Y 0 D 0.

Suppose that Z0 ¤ 0. Since F.Z0/¤ 0, there exists an object Z 2 C1 with a
nonzero map G.Z/!Z0. Consider the induced extension

0! G ı F.X 0/!W 0! G.Z/! 0:

Since G induces a bijection on Ext1, this extension can be obtained from an extension

0! F.X 0/!W !Z! 0

in C1. In other words, we obtain a map G.W /!X 0, which does not factor through
G ı F.X 0/�X 0, which contradicts the .G; F/ adjunction. �

Thus, in order to prove part (2) of Theorem 1.7 it remains to show that the
functor �HeckeZ WD.GrG/HeckeZ

crit -modI
0

!ygcrit -modI
0

reg admits a right adjoint. (The
fact that it is conservative will then follow immediately from Corollary 3.3.)

Recall from [FG06, �20.7], that the tautological functor

D.GrG/HeckeZ
crit -modI

0

,! D.GrG/HeckeZ
crit -mod

admits a right adjoint, given by AvI0 . Hence, it suffices to prove the following:

2Recall that a functor F is called conservative if for any X ¤ 0 we have F.X/¤ 0.
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PROPOSITION 3.11. The functor

�HeckeZ W D.GrG/HeckeZ
crit -mod!ygcrit -modreg

admits a right adjoint.

Proof. First, we will show the following:

LEMMA 3.12. The functor � W D.GrG/crit -mod!ygcrit -modreg admits a right
adjoint.

Proof. We will prove that for any level k the functor � W D.GrG/k -mod!
ygcrit -modk admits a right adjoint (see the Introduction for the definition of these
categories). That is, we have to prove the representability of the functor

(14) F 7! Homygk -mod
�
�.GrG ;F/;M

�
for every given M 2 ygk -mod.

Consider the following general set-up. Let C be an abelian category, and let
C0 be a full (but not necessarily abelian) subcategory, such that the following holds:

� C0 is equivalent to a small category.

� The cokernel of any surjection X 00�X 0 with X 0; X 00 2 C0, also belongs to
C0.

� C is closed under filtering direct limits.

� For X 2 C0, the functor HomC.X; �/ commutes with filtering direct limits.

� Every object of C is isomorphic to a filtering direct limit of objects of C0.

Then we claim that any contravariant left-exact functor F!Vect, which maps
direct sums to direct products (and, hence, direct limits to inverse limits, by the
previous assumption), is representable.

Indeed, given such F, consider the category of pairs .X; f /, where X 2 C0

and f 2 F.X/. Morphisms between .X; f / and .X 0; f 0/ are maps � W X ! X 0,
such that ��.f 0/D f . By the first assumption on C0, this category is small. By
the second assumption on C0 and the left-exactness of F, this category is filtering.
It is easy to see that the object

lim
�!
.X;f /

X

represents the functor F.
We apply this lemma to CDD.GrG/k -mod with C0 being the subcategory of

finitely-generated D-modules. We set F to be the functor (14), and the representabil-
ity assertion follows. Note that we could have applied the above general principle to
CDD.GrG/HeckeZ

crit -mod, where C0 is the subcategory of finitely presented objects,
and obtain the assertion of Proposition 3.11 right away. �
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Thus, for M, let F be the object of D.GrG/crit -mod that represents the functor

F1 7! Homygcrit -modreg

�
�.GrG ;F1/;M

�
for a given M2ygcrit -modreg. We claim that F is naturally an object of D.GrG/HeckeZ

crit
-mod and that it represents the functor

(15) F1 7! Homygcrit -modreg

�
�HeckeZ.GrG ;F1/;M

�
:

First, since the algebra Z
reg
g acts on M by endomorphisms, the object F carries

an action of Z
reg
g by functoriality. Let us now construct the morphisms ˛V . Evidently,

it is sufficient to do so for V finite-dimensional. Let V � denote its dual.
For a test object F1 2 D.GrG/crit -mod we have:

HomD.GrG/crit -mod.F1;F?FV /' HomD.GrG/crit -mod.F1 ?FV � ;F/

' Homygcrit -modreg

�
�.GrG ;F1 ?FV �/;M

�
' Homygcrit -modreg

�
�.GrG ;F1/ ˝

Z
reg
g

V�
Z

reg
g
;M
�

' Homygcrit -modreg

�
�.GrG ;F1/;VZ ˝

Z
reg
g

M
�
;

where the last isomorphism takes place since VZ is locally free. For the same
reason,

HomD.GrG/crit -mod.F1;VZ ˝
Z

reg
g

F/' Homygcrit -modreg

�
�.GrG ;F1/;VZ ˝

Z
reg
g

M
�
;

which implies that there exists a canonical isomorphism ˛V

F?FV ' VZ ˝
Z

reg
g

F;

as required. That these isomorphisms are compatible with tensor products of objects
of Rep. {G/ follows from Theorem 1.3(2).

Finally, the fact that .F; ˛V /, thus defined, represents the functor (15), follows
from the construction. This completes the proof of Proposition 3.11. �

Thus, we obtain that the functor �HeckeZ admits a right adjoint functor. More-
over, this right adjoint functor is conservative by Corollary 3.3. Therefore part (2)
of Theorem 1.7 now follows from part (1), proved in Section 3.4, and Lemma 3.10,
modulo Proposition 3.7 and Theorem 3.2. It remains to prove those two statements.

Proposition 3.7 will be proved in the next subsection and Theorem 3.2 will be
proved in Section 4.

3.13. Proof of Proposition 3.7. Recall the category D.GrG/Hecke
crit -mod, in-

troduced in Section 2.6. Recall also that the {G-torsor P {G;Z on Spec.Zreg
g / is

noncanonically trivial, and let us fix such a trivialization. This choice identifies the



LOCALIZATION OF g-MODULES ON THE AFFINE GRASSMANNIAN 1363

category D.GrG/HeckeZ
crit -mod with D.GrG/Hecke

crit -mod˝Z
reg
g , i.e., with the category

of objects of D.GrG/Hecke
crit -mod endowed with an action of Z

reg
g by endomorphisms.

Under this equivalence, the functor F 7! IndHeckeZ.F/ goes over to

F 7! IndHecke.F/˝Z
reg
g :

Note also that the trivialization of P {G;Z identifies IsomZ with Spec.Zreg
g / � {G �

Spec.Zreg
g /, so that the map 1IsomZ corresponds to �Spec.Zreg

g /
� 1 {G . For F as above,

we have an identification

�
�
GrG ; IndHeckeZ.F/

�
' �.GrG ;F/˝O {G ˝Zreg:

Let F be a finitely presented object of D.GrG/HeckeZ
crit -mod equal to the cokernel

of a map
� W IndHecke.F1/˝Z

reg
g ! IndHecke.F2/˝Z

reg
g :

Recall that Z
reg
g is isomorphic to a polynomial algebra CŒx1; : : : ; xn; : : : �.

Since F1 was assumed finitely generated, a map as above has the form �m ˝

idCŒxmC1;xmC2;::: �, where �m is a map

IndHecke.F1/˝CŒx1; : : : ; xm�! IndHecke.F2/˝CŒx1; : : : ; xm�

defined for some m.
Hence, as a module over Fun.IsomZ/' Z

reg
g ˝O {G ˝Z

reg
g ,

(16) �.GrG ;F/' L˝CŒxmC1; xmC2; : : : �;

where L is some module over Z
reg
g ˝O {G ˝CŒx1; : : : ; xm�.

We can compute

�.GrG ;F/
L
˝

Fun.IsomZ/
Z

reg
g

in two steps, by first restricting to the preimage of the diagonal under

Spec.Zreg
g /� {G �Spec.Zreg

g /

� Spec.CŒxmC1; xmC2; : : : �/�Spec.CŒxmC1; xmC2; : : : �/;

and then by further restriction to

Spec.CŒx1; : : : ; xm�/�Spec.CŒxmC1; xmC2; : : : �/

sitting inside

Spec.CŒx1; : : : ; xm�/� {G �Spec.CŒx1; : : : ; xm�/�Spec.CŒxmC1; xmC2; : : : �/:

When we apply the first step to the module appearing in (16), it is acyclic of
cohomological degree 0. The second step has a cohomological amplitude bounded
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by mC dim. {G/. Hence,

TorFun.IsomZ/

i

�
�.GrG ;F/;Z

reg
g

�
D 0

for i > mC dim. {G/, which is what we had to show.
This completes the proof of Proposition 3.7. Therefore the proof of Theorem 1.7

is now complete modulo Theorem 3.2.

3.14. A remark on the general case. We note that the proof of Theorem 1.7,
presented above, would enable us to prove the general Conjecture 1.5 if we could
show that the functor

Loc W ygcrit -modreg! D.GrG/crit -mod;

right adjoint to the functor � W D.GrG/crit -mod! ygcrit -modreg, is conservative.
In other words, in order to prove Conjecture 1.5, we need to know that for every
M2ygcrit -modreg there exists a critically twisted D-module F on GrG with a nonzero
map �.GrG ;F/!M. This, in turn, can be reformulated as follows:

Let Diff.GrG/crit be the *-sheaf of critically twisted differential operators on
GrG . This is a pro-object of D.GrG/crit -mod, defined by the property that

Hom.Diff.GrG/crit;F/' �.GrG ;F/

functorially in F 2 D.GrG/crit -mod.
Explicitly, let us write GrG as ” lim ”

�!

Y

Y, where Y � GrG are closed sub-

schemes. For each such Y, let Dist.Y/crit 2 D.GrG/crit -mod be the twisted D-
module of distributions on Y, i.e., the object IndD.GrG/crit -mod

QCoh.GrG/
.OY/, which means by

definition that

HomD.GrG/crit -mod

�
IndD.GrG/crit -mod

QCoh.GrG/
.OY/;F

�
D HomQCoh.GrG/

�
OY ;F

�
:

Then Diff.GrG/crit WD ” lim ”
 �

Y

Dist.Y/crit 2 Pro.D.GrG/crit -mod/:

Let �.GrG ;Diff.GrG/crit/ be the corresponding object of Pro.ygcrit -modreg/.
We obtain:

COROLLARY 3.15. The following assertions are equivalent:

(1) Conjecture 1.5 holds.

(2) The object �.GrG ;Diff.GrG/crit/ is a pro-projective generator of ygcrit -modreg.

(3) The functor on ygcrit -modreg

M 7! Homygcrit -modreg

�
� .GrG ;Diff.GrG/crit/ ;M

�
is conservative.
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3.16. Another proof of exactness. In this subsection we present an alternative
proof of part (1) of Theorem 1.7.

According to Lemma 3.5, proving the exactness property stated in part (1) of
Theorem 1.7 is equivalent to proving that

(17) TorFun.IsomZ/

i

�
�.GrG ;F/;Z

reg
g

�
D 0

for all i > 0 and F 2D.GrG/HeckeZ
crit -modI

0

. We will derive this from the following
weaker statement:

PROPOSITION 3.17. For every F 2 D.GrG/crit -modI
0

, the space of sections
�.GrG ;F/ is flat as a Z

reg
g -module.

Note that our general conjecture 1.5 predicts that both (17) and the assertion of
Proposition 3.17 should hold without the I 0-equivariance assumption. However, at
the moment we can neither prove the corresponding generalization of Proposition
3.17 nor derive (17) from it.

Let us first show how Proposition 3.17 implies (17) on the I 0-equivariant
category.

PROPOSITION 3.18. Every finitely generated object of the category
D.GrG/HeckeZ

crit -modI
0

admits a finite filtration, whose subquotients are of the form

(18) IndHeckeZ.F/ ˝
Z

reg
g

L;

where L is a Z
reg
g -module.

Let us deduce (17) from this proposition.

Proof. It is enough to show that (17) holds for finitely presented objects of the
category D.GrG/HeckeZ

crit -modI
0

. By Proposition 3.18, we conclude that it is enough
to consider objects of D.GrG/HeckeZ

crit -modI
0

of the form given by (18). Now, we
have:

�
�
GrG ; IndHeckeZ.F/ ˝

Z
reg
g

L
� L
˝

Fun.IsomZ/
Z

reg
g ' �

�
GrG ;F/

L
˝
Z

reg
g

L;

and the assertion (17) follows from Proposition 3.17. �

Let us now prove Proposition 3.18.

Proof. Choosing a trivialization of P {G;Z as in the previous subsection, we can
identify D.GrG/HeckeZ

crit -modI
0

with D.GrG/Hecke
crit -modI

0

˝Z
reg
g . Similarly to the

case of D.GrG/HeckeZ
crit -mod, we shall call an object of D.GrG/Hecke

crit -mod finitely
generated if it is isomorphic to a quotient of some IndHecke.F/ for a finitely generated
F 2 D.GrG/crit -mod.
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Let us recall from [ABBC05, Cor. 1.3.10(1)], that every finitely generated
object in D.GrG/Hecke

crit -modI
0

has a finite length. Therefore, every finitely generated
object of D.GrG/Hecke

crit -modI
0

˝Z
reg
g admits a finite filtration, whose subquotients

are quotients of modules of the form F ˝ Z
reg
g with F 2 D.GrG/Hecke

crit -modI
0

being irreducible. However, every such quotient has the form F˝L for some
Z

reg
g -module L.

Moreover, as was mentioned in Section 2.6, by [ABBC05, Cor. 1.3.10(2)],
every irreducible in D.GrG/Hecke

crit -modI
0

is of the form IndHecke.F/ for some F 2

D.GrG/crit -modI
0

. This implies the assertion of the proposition. �

3.19. Proof of Proposition 3.17. We can assume that our object F2D.GrG/crit-
modI

0

is finitely generated, which automatically implies that it has a finite length.
This reduces us to the case when F is irreducible.

It is easy to see that any irreducible object of D.GrG/crit -modI
0

is equivariant
also with respect to Gm, which acts on G..t//, and hence on GrG , by rescalings
t 7! at . Moreover, the grading arising on its space of sections is bounded from
above. (Our conventions are such that Vcrit is negatively graded.)

Recall now that the action of zU reg
crit .yg/ on a module of the form �.GrG ;F/ for

an object F 2D.GrG/crit -mod canonically extends to an action of the renormalized
algebra U ren;reg.ygcrit/. Recall also that U ren;reg.ygcrit/ contains a Z

reg
g sub-bimodule

and a Lie subalgebra zU reg
crit .yg/

], which is an extension

0! zU
reg
crit .yg/!

zU
reg
crit .yg/

]
! isomZ! 0:

(The resulting action of isomZ by outer derivations on zU reg
crit .yg/ is the one discussed

in �2.9.)
We will prove the following general assertion, which implies Proposition 3.17:

LEMMA 3.20. Let M be an object of ygcrit -modreg, such that the action of
zU

reg
crit .yg/ on it extends to an action of U ren;reg.ygcrit/. Assume also that M is endowed

with a grading, compatible with the one onU ren;reg.ygcrit/, given by rescalings t 7!at .
Finally, assume that the grading on M is bounded from above. Then M is flat as a
Z

reg
g -module.

The proof is a variation of the argument used in [BD, �6.2.2]:

Proof. We can identify Z
reg
g with a polynomial algebra CŒx1; : : : ; xn; : : : �.

Moreover, we can do so in a grading-preserving fashion, in which case each
generator xi will be homogeneous of a negative degree.

It is enough to show that M is flat over each subalgebra CŒx1; : : : ; xm�� Z
reg
g .

We will prove the following assertion:

For every vector v 2 Am WD Spec.CŒx1; : : : ; xm�/, the CŒx1; : : : ; xm�-
module M is (noncanonically) isomorphic to its translate by means of v.
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Clearly, a countably generated module over CŒx1; : : : ; xm� having this property
is flat. To prove the above claim we proceed as follows. Choose a section � of
isomZ, which projects onto v under isomZ! T .Spec.Zreg

g //, where we think of v
as a constant vector field on Z

reg
g ' Spec.CŒx1; : : : ; xn; : : : �/. Let us further lift �

to an element � 0 of zU reg
crit .yg/

].
Since the grading on the xi ’s is positive, we can choose � 0 to belong to the

(completion of the) sum of strictly positive graded components of zU reg
crit .yg/

].
Then the assumption that the grading on M is bounded from above, implies that

exp.� 0/ is a well-defined automorphism of M as a vector space. This automorphism
covers the automorphism exp.v/ of CŒx1; : : : ; xm�, and the latter is the same as the
translation by v. �

4. Proof of Theorem 3.2

In this section we construct the objects FZ
w of the category D.GrG/HeckeZ

crit -
modI

0

whose existence is stated in Theorem 3.2.

4.1. We start by describring the analogues of these objects in the category
D.GrG/Hecke

crit -modI
0

. These objects, which we will denote by Fw , were studied in
[ABBC05] under the name “baby co-Verma modules”.

First, we consider the case w D w0. Recall that the Langlands dual group
comes equipped with a standard Borel subgroup {B � {G; we shall denote by {T the
Cartan quotient of {B .

Let {B� � {G be a Borel subgroup in the generic relative position with respect
to {B . The latter means that {B \ {B� is a Cartan subgroup; we shall identify it with
{T by means of the projection

{B \ {B� ,! {B� {T :

For L� 2 LƒC let ` L� be the line of coinvariants .V L�/ {N� , where V L� denotes the
standard irreducible {G-representation of highest weight L� with respect to {B .

The assignment L� 7! `
L� is a {T -torsor, and we obtain a collection of maps

(19) V
L� �
L�

� `
L�;

satisfying the Plücker relations; i.e., for any two dominant coweights L� and L�, the
diagram

(20)

V
L�˝V L�

�
L�˝� L�

�����! `
L�˝ ` L�??y �

??y
V
L�C L� �

L�C L�

����! `
L�C L�

commutes.
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Let FlG DG..t//=I be the affine flag variety. We have the category D.FlG/crit-
mod of right critically twisted D-modules on FlG and the corresponding Iwa-
hori equivariant category D.FlG/crit -modI . Given F 2 D.GrG/� -modI and M 2

D.FlG/crit -modI , we can form their convolution, denoted by M?
I

F, which is an
object of Db.D.FlG/crit -mod/I (see [FG06] for details).

For a dominant map L� let j L�;� denote the �-extension of the critically twisted
D-module corresponding to the constant sheaf on the Iwahori orbit of the point
t
L� 2 FlG . Let j L�;GrG ;�

2D.GrG/crit -modI be j L�;�?I
ı1;GrG ; in other words it is the

�-extension of the constant D-module on the Iwahori orbit of the point t L� 2 GrG .
Note that for L� 2 LƒC we have a canonical map

j L�;GrG ;�
?FV L� ! j L�C L�;GrG ;�

;

obtained by identifying FV L� with ICGr L� .
Consider the object of D.GrG/Hecke

crit -mod equal to the direct sum

eFw0 WD L
L�2 LƒC

IndHecke�j L�;GrG ;�

�
˝ `�

L�:

For a dominant coweight L� we have an evident map

(21) j L�;� ?
I
eFw0 ! ` L�˝eFw0 :

We obtain two maps eFw0 ?FV L� � eFw0 ˝ ` L� that correspond to the two
circuits of the following noncommutative diagram:eFw0 ?FV L�

˛V
����! V L�˝eFw0??y � L�

??y
j L�;� ?

I
eFw0 ����! ` L�˝eFw0 ;

where the left vertical arrow comes from the following map, defined for each L�:

j L�;GrG ;�
?FR ?FV L� ' j L�;GrG ;�

?FV L� ?FR! j L�C L�;GrG ;�
?FR:

Here we are using the object FR of D.GrG/crit -modGŒŒt�� introduced in Section 2.6,
so that IndHecke.F/' F?FR.

We set Fw0 to be the maximal quotient ofeFw0 , which co-equalizes the resulting
two maps

`� L�˝eFw0 ?FV L��eFw0
for every L� 2 LƒC. Note that the map (21) gives rise to a map

(22) j L�;� ?
I

Fw0 ! ` L�˝Fw0 :

By construction, Fw0 has the following universal property:
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Let F be an object of D.GrG/crit -modI , endowed with a system of morphisms

(23) j L�;� ?
I

F! ` L�˝F;

compatible with the isomorphisms

(24) j L�;� ?
I
j L�0;� ' j L�C L�0;�

and ` L�˝ ` L�
0

' ` L�C L�
0

.
Let � WFR!F be a map, such that for every L� 2 Lƒ the following diagram is

commutative:

FR ?FV L�
˛V
����! V L�˝FR

id
V
L�
˝�

�����! V L�˝F
� L�

����! ` L�˝F

�

??y x??
FV L� ?FR ����! j L�;GrG ;� ?FR

�
����! j L�;� ?

I
FR

idj L�;� ?�
������! j L�;� ?

I
F:

LEMMA 4.2. Under the above circumstances, there exists a unique map

Fw0 ! F

extending �, and which intertwines the maps (21) and (23).

4.3. We shall now establish the equivalence between the present definition of
Fw0 and the objects defined in [ABBC05].

For a weight L�2 Lƒ consider the inductive system of objects of D.GrG/crit -mod,
parametrized by pairs of elements L�; L� 2 LƒC j L�� L�D L�, whose terms are given by

j L�;GrG ;�
?F.V L�/� ˝ `

�L�C L�:

The maps in this inductive system are defined whenever two pairs . L�0; L�0/ and
. L�; L�/ are such that L�0� L�D L�0� L�DW L� 2 LƒC, and the corresponding map equals
the composition

j L�;GrG ;�
?F.V L�/� ˝ `

�L�C L�
! j L�;GrG ;�

?FV L� ?F.V L�/� ?F.V L�/� ˝ `
�L�C L�

! j L�CL�;GrG ;�
?F.V L�CL�/� ˝ `

�L��L�C. L�CL�/:

Let F0w0. L�/ 2 D.GrG/crit -mod be the direct limit of the above system. We
endow F0w0 WD

L
L�2 Lƒ

F0w0. L�/ with the structure of an object of D.GrG/Hecke
crit -mod as

in Section 3.2.1 of [ABBC05].

PROPOSITION 4.4. There exists a natural isomorphism

F0w0 ' Fw0 :
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Proof. The map Fw0 !F0w0 is constructed using Lemma 4.2, and the corre-
sponding property of F0w0 established in [ABBC05, Cor. 3.2.3]. To show that this
map is an isomorphism, we construct a map in the opposite direction F0w0 ! Fw0
(as mere objects of D.GrG/crit -mod) as follows:

For each L�; L�2 LƒC, we let j L�;GrG ;�
?F.V L�/�˝`

�L�C L� embed into j L�;GrG ;�
?

FR˝ `
�L� by means of

F.V L�/� ˝ `
L� ,! F.V L�/� ˝V

L� ,! FR;

where the second arrow is given by

` L� ' .V L�/
{N ,! V L�:

It is straightforward to check that this gives rise to a well-defined map from the
inductive system corresponding to F0w0. L�/, and that the above two maps Fw0�F0w0
are mutually inverse. �

COROLLARY 4.5. The maps (22) j L�;� ?
I

Fw0 ! ` L�˝Fw0 are isomorphisms.

Proof. The assertion follows from the fact that the maps

j L�;� ?
I

F0w0. L�/! ` L�˝F0w0. L�C L�/

are easily seen to be isomorphisms. �
Let us now define the objects Fw for other elements w 2W . We set

Fw WD jw �w0;Š?I
Fw0 :

In other words, if w0 D w0 �w, then

Fw0 ' jw 0;�?
I

Fw :

From Proposition 4.4 it follows that Fw are D-modules, i.e., that no higher coho-
mologies appear.

4.6. We define the sought-after objects FZ
w of the category D.GrG/HeckeZ

crit -mod.
Consider the {G-torsor P {G;Z over Spec.Zreg

g /. Recall from Section 1.1 that
we have a canonical isomorphism Spec.Zreg

g /' OpLg.D/, under which P {G;Z goes
over the canonical {G-torsor P {G;Op on the space of opers (see [FG06, �8.3], for
details). Thus, we obtain a canonical reduction of P {G;Z to {B denoted by P {B;Z.
This {B-reduction defines a {B�-reduction on P {G;Z, as follows:

In order to define a {B�-reduction, we need to specify for each L� 2 Lƒ a
line bundle, which we will denote by L

L�
w0

, and for each L� 2 LƒC a surjective
homomorphism

�
L�;Z
W V
L�
Z! L

L�
w0
:

These line bundles should be equipped with isomorphisms L
L�C L�
w0 ' L

L�
w0
˝L

L�
w0 ,

and hence give rise to a {T -torsor on Spec.Zreg
g /, which we will denote by P {T ;w0 .
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In addition, the maps � L�;Z should satisfy the Plücker relations, as in (20). Now
observe that our {B-reduction P {B;Z gives rise to a collection of compatible line
subbundles L

L� of V
L�
Z .

We define L
L�
w0

as the dual of the line bundle L�w0.
L�/ ,! V

�w0. L�/
Z ' .V

L�
Z/
�.

It follows from the definition of opers (see [FG06, �1]) that the line bundle
L
L�
w0

over Spec.Zreg
g / is canonically isomorphic to the trivial line bundle tensored

with the one-dimensional vector space !h�;w0.
L�/i

x , where !x is the fiber of !D at
the closed point x 2 D.

We define the object eFZ
w0 2 D.GrG/HeckeZ

crit -mod as a direct sumL
L�2 LƒC

IndHeckeZ
�
j L�;GrG ;�

�
˝
Z

reg
g

L�
L�

w0
:

We define FZ
w0 to be the quotient of eFZ

w0 by the same relations as those defining
Fw0 as a quotient of eFw0 .

If we choose a trivialization of the {G-torsor P {G;Z in such a way that L
L�
w0
'

Z
reg
g ˝ `

L� (such a trivialization exists), then under the equivalence

D.GrG/HeckeZ
crit -mod' D.GrG/Hecke

crit -mod˝Z
reg
g ;

the object FZ
w0 corresponds to Fw0 .

By construction, we have a system of maps

(25) j L�;� ?
I

FZ
w0
' L L�w0 ˝

Z
reg
g

FZ
w0
;

which by Corollary 4.5 are in fact isomorphisms.
For other elements w 2W we define

FZ
w WD jw �w0;Š ?I

FZ
w0
:

4.7. Our present goal is to define the maps

(26) �w W �
HeckeZ.GrG ;FZ

w/!Mw;reg˝!
h2�; L�i
x :

Since Mw;reg ' jw �w0;Š ?I
Mw0;reg, it is enough to define �w for w Dw0. Let M be

an object of ygcrit -modreg. Assume that M is endowed with a system of maps

(27) j L�;� ?
I

M! L L�w0 ˝
Z

reg
g

M;

defined for every L�2 LƒC, compatible with the isomorphisms (24) and L
L�
w0 ˝

Z
reg
g

L
L�0

w0'

L
L�C L�0

w0 .
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Let � be a map Vcrit!M, such that for any L� 2 LƒC the diagram

(28)

�.GrG ;FV L�/
ˇ
V L�

����! V
L�
Z ˝

Z
reg
g

Vcrit

id
V
L�
Z

˝�

�����! V
L�
Z ˝

Z
reg
g

M
� L�;Z

����! L
L�
w0 ˝

Z
reg
g

M??y x??
�.GrG ; j L�;GrG ;�/

�
����! j L�;GrG ;� ?Vcrit

�
����! j L�;� ?

I
Vcrit

idj L�;� ?�
������! j L�;� ?

I
M

is commutative.
By the construction of FZ

w0 , we have:

LEMMA 4.8. Under the above circumstances there exists a unique map

�HeckeZ.GrG ;FZ
w0
/!M;

which intertwines the maps (25) and (27).

Thus, to construct the map as in (26) for w D w0 we need to verify that the
module M WDMw0;reg˝!

h2�; L�i
x possesses the required structures.

First, the map
Vcrit!Mw0;reg˝!

h2�; L�i
x

was constructed in [FG06, �7.2].

4.9. To construct the data of (27) we need to recall some material from [FG06,
�13.4]. According to loc. cit. there exist some {T -torsor fL� 7! L0

L�
w0
g on Spec.Zreg

g /

and a system of isomorphisms

j L�;� ?
I

Mw0;reg ' L0
L�
w0
˝
Z

reg
g

Mw0;reg:

Thus, to construct the map �w0 , we need to prove the following assertion:

LEMMA 4.10. There exists an isomorphism of {T -torsors

L L�w0 ' L0 L�w0

which makes the diagram (28) commutative for M WDMw0;reg˝!
h2�; L�i
x .

Below we will prove this assertion by a rather explicit calculation. In a future
publication, we will discuss a more conceptual approach. The crucial step is the
following statement:

LEMMA 4.11. The composition

�.GrG ;FV L�/! j L�;� ?
I

Vcrit

idj L�;� ?�
! j L�;� ?

I
Mw0;reg˝!

h2�; L�i
x

is nonzero.
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This proposition will be proved in Section 4.12. Let us assume it and construct
the required isomorphism L

L�
w0 ' L0

L�
w0 .

Proof of Lemma 4.10. Recall from [FG06, Cor. 13.4.2], that there exists an
isomorphism, defined up to a scalar, L

L�
w0 ' L0

L�
w0 , compatible with the action of

Aut.D/.3 We will show that any choice of such an isomorphism makes the diagram
(28) commutative, up to a nonzero scalar.

Thus, we are dealing with two nonzero maps

V
L�
Z ˝

Z
reg
g

Vcrit�Mw0;reg˝!
h�;w0. L�/C2 L�i
x :

Recall from [FG06, �17.2], that there exists an isomorphism

Z
reg
g ' Homygcrit.Vcrit;Mw0;reg˝!

h�;2 L�i
x /;

compatible with the above Gm-action. Thus, we are reduced to showing that the
space of grading-preserving maps of Z

reg
g -modules

V
L�
Z ! !h�;w0. L�/ix ˝Z

reg
g

is 1-dimensional.
However, V

L�
Z admits a canonical filtration, whose subquotients are isomorphic

to !h�; L�
0i

x ˝Z
reg
g , where L�0 runs through the set weights of V L� with multiplicities.

For all L�0 ¤ w0. L�/, we have h�; L�0i > h�;w0. L�/i. Since the algebra Z
reg
g is non-

positively graded, the above inequality implies that the space of grading-preserving
maps

!h�; L�
0i

x ˝Z
reg
g ! !h�;w0. L�/ix ˝Z

reg
g

is zero for L�0 ¤ w0. L�/, and 1-dimensional for L�0 D w0. L�/. �

4.12. Proof of Lemma 4.11. It is clear that if L�D L�1C L�2, with L�1; L�2 2 LƒC,
and the assertion of the proposition holds for L�, then it also holds for L�1. Hence it
is sufficient to consider the cases of L� that are regular.

To prove the proposition we will use the semi-infinite cohomology functor,
denoted by H

1
2 .n..t//; nŒŒt ��; ‹˝‰0/, as in [FG06, �18]. We will show that the

composition

H
1
2

�
n..t//; nŒŒt ��; �.GrG ;FV L�/˝‰0

�
!H

1
2

�
n..t//; nŒŒt ��; �.GrG ; j L�;GrG ;�/˝‰0

�
!H

1
2

�
n..t//; nŒŒt ��;Mw0;reg˝!

h2�; L�i
x ˝‰0

�
is nonzero (and is, in fact, a surjection).

3Choosing a coordinate t on D, we obtain a subgroup Gm � Aut.D/ of rescalings t 7! at .
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First, note that by [FG06, �18.3], the first arrow, i.e.,

H
1
2

�
n..t//; nŒŒt ��; �.GrG ;FV L�/˝‰0

�
!H

1
2

�
n..t//; nŒŒt ��; �.GrG ; j L�;GrG ;�/˝‰0

�
is an isomorphism. Hence, it remains to analyze the second arrow. By [FG06,
Prop. 18.1.1], this is equivalent to analyzing the arrow

H
1
2

�
n�..t//; tn�ŒŒt ��; jw0� L�;� ?I

�.GrG ; j L�;GrG ;�/˝‰� L�
�
!

H
1
2

�
n�..t//; tn�ŒŒt ��; jw0� L�;� ?I

Mw0;reg˝!
h2�; L�i
x ˝‰� L�

�
:

We claim that the corresponding map

(29) jw0� L�;� ?
I

�.GrG ; j L�;GrG ;�/

' jw0� L�;� ?
I

j L�;� ?
I

Vcrit! jw0� L�;� ?
I

j L�;� ?
I

Mw0;reg˝!
h2�; L�i
x

is surjective for L� regular. This would imply our claim, since the semi-infinite
cohomology functor H

1
2

�
n�..t//; tn�ŒŒt ��; ‹˝‰� L�

�
is exact by Theorem 18.3.1 of

[FG06].
Note that jw0� L�;� ?I

j L�;� ' jw0. L�/;� ?I
jw0� L�;�. Recall from [FG06, �17.2], that

we have a commutative diagram

jw0� L�;� ?I
Vcrit

idjw0� L�;�
?�

��������! jw0� L�;� ?I
Mw0;reg˝!

h2�; L�i
x

�

??y �

??y
�.GrG ; jw0� L�;� ?I

ı1;grG / ����! M1;reg˝!
h�; L�i
x ;

where the bottom arrow has the property that its cokernel, which we denote by N,
is partially integrable, i.e., it is admits a filtration with every subquotient integrable
with respect to a sub-minimal parahoric Lie subalgebra corresponding to some
vertex { of the Dynkin diagram.

Thus, the map in (29) can be written as

jw0. L�/;� ?I
.jw0� L�;� ?I

Vcrit/! jw0. L�/;� ?I
.M1;reg˝!

h�; L�i
x /;

and since the functor jw0. L�/;�?I
‹ is right-exact, it suffices to show that jw0. L�/;� ?I

N

is supported in strictly negative cohomological degrees. In fact, we claim that this
is true for any partially integrable I -integrable ygcrit-module and regular dominant
coweight L�.

Indeed, by devissage we may assume that N is integrable with respect to a
sub-minimal parahoric corresponding to some vertex { of the Dynkin diagram.
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Then js{ ;� ?
I

N lives in the cohomological degree �1. But since L� is regular,

jw0. L�/;� ?I
js{ ;Š ' jw0. L�/�s{ ;�, and hence,

jw0. L�/;� ?I
N' jw0. L�/�s{ ;� ?I

.js{ ;� ?
I

N/;

and our assertion follows from the fact that the functor of convolution with jw0. L�/�s{ ;
is right-exact. �

4.13. Proof of Corollary 3.3 and completion of the proof of Theorem 1.7. Thus,
we have proved Lemma 4.11 and therefore Lemma 4.10. By Lemma 4.8, this
implies that we have a canonical map

�w0 W �
HeckeZ.GrG ;FZ

w0
/!Mw;reg˝!

h2�; L�i
x :

According to the remark after formula (26), we then obtain maps

�w W �
HeckeZ.GrG ;FZ

w/!Mw;reg˝!
h2�; L�i
x

for all w 2W (as in formula (26)).

PROPOSITION 4.14. The map

�1 W �
HeckeZ.GrG ;F

Z
1/!M1;reg˝!

h2�; L�i
x

is surjective.

Since the functors jw;� are right-exact, this proposition implies that the same
surjectivity assertion holds for allw2W . Hence, Proposition 4.14 implies Corollary
3.3 and Theorem 1.7.

Proof of Proposition 4.14. For L�, such that L�� L� is dominant and regular, let
us consider the map

j
w0� L�;�

?
I

FRZ ˝
Z

reg
g

L�
L�

w0
'jw0;Š?I

j L�;�?I
FRZ ˝

Z
reg
g

L�
L�

w0
!jw0;Š?I

eFZ
w0
!jw0;Š?I

FZ
w0
'FZ

1;

and the resulting map

j
w0� L�;�

?
I

Vcrit ˝
Z

reg
g

L�
L�

w0
! �HeckeZ.GrG ;F

Z
1/

�1
!M1;reg˝!

h2�; L�i
x :

By construction, this map is obtained by applying the functor j
w0� L�;�

?
I
‹ to the

map

Vcrit!Mw0;reg˝!
h2�; L�i
x ;

and it coincides with the map from (29) for L�D L�� L�. Hence, it is surjective by
Section 4.12. �
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4.15. Completion of the proof of Theorem 3.2. Thus, the proof of Theorem 1.7
is complete. Let us now finish the proof of the fact that the morphisms �w are
actually isomorphisms and hence complete our proof of Theorem 3.2. Clearly, it is
enough to do so for just one element of W . We shall give two proofs.

Proof 1. This argument will rely on Theorem 1.7. We will analyze the
map �w0 . By [ABBC05, Prop. 3.2.5], the canonical map FR ! Fw0 identifies
IndHecke.ı1;GrG / with the co-socle of Fw0 . Hence �HeckeZ.GrG ;F

Z
w0/ does not

have sub-objects whose intersection with Vcrit D �
HeckeZ.GrG ; RZ/ is zero.

Therefore, to prove the injectivity of the map �w0 , it is enough to show that
the composition

Vcrit ' �
HeckeZ.GrG ; RZ/! �HeckeZ.GrG ;FZ

w0
/
�w0
! Mw0;reg˝!

h2�; L�i
x

is injective. However, the latter map is, by construction, the map Vcrit!Mw0;reg˝

!
h2�; L�i
x of [FG06, �17.2], which was injective by definition.

Proof 2. This argument will be independent of Theorem 1.7(2). We will
analyze the map �1. There is a canonical map

ICw0� L�;Gr ?FRZ ˝
Z

reg
g

L� L�w0 ! jw0� L�;� ?I
FRZ ˝

Z
reg
g

L� L�w0 ! FZ
1;

and by [ABBC05, Props. 3.2.6 and 3.2.10], its cokernel is partially integrable.
The composition

�.GrG ; ICw0� L�;Gr/ ˝
Z

reg
g

L� L�w0 ' �
HeckeZ

�
GrG ; ICw0� L�;Gr ?FRZ ˝

Z
reg
g

L� L�w0
�

' �HeckeZ
�
GrG ;F

Z
1/

�1
!M1;reg ˝

Z
reg
g

!h2�; L�ix

comes from the map

�.GrG ; ICw0� L�;Gr/!M1;reg ˝
Z

reg
g

!h�; L�ix ;

of [FG06, �17.3], which is injective by loc.cit.
Hence, the kernel of the map �1 is partially integrable. But we claim that

�HeckeZ
�
GrG ;F

Z
1/ admits no partially integrable submodules.

Indeed, suppose that N is a submodule of �HeckeZ
�
GrG ;F

Z
1/, integrable with

respect to a sub-minimal parahoric, corresponding to a vertex { of the Dynkin
diagram. Since the functor js{ ;�?

I
is invertible on the derived category, we would

obtain a nonzero map:

js{ ;� ?
I

N! L�HeckeZ
�
GrG ; js{ ;� ?

I
FZ
1/:
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But the LHS is supported in the cohomological degrees < 0, and the RHS
is acyclic away from cohomological degree 0.4 This is a contradiction, which
completes the proof of Theorem 3.2.

5. Appendix: an equivalence at the negative level

5.1. Let � be a negative level, i.e., � D k � �can with kC h_ …Q�0. Let eFlG
be the enhanced affine flag scheme, i.e, G..t//=I 0, and let D.eFlG/� -mod be the
corresponding category of twisted D-modules.

Note that eFlG is acted on by the group I=I 0 ' T by right multiplication. We
denote by D.eFlG/� -modT;w the corresponding category of weakly T -equivariant
objects of D.eFlG/� -mod (see [FG06, �20.2]).

For an object F 2 D.eFlG/� -modT;w , consider �.eFlG ;F/ 2 yg� -mod. The
weak T -equivariant structure on F endows �.eFlG ;F/ with a commuting action of
T . We let

�T W D.eFlG/� -modT;w !yg� -mod

be the composition of �.eFlG ; �/, followed by the functor of T -invariants.
Recall from [FG06, �20.4], that every object of D.eFlG/� -modT;w carries a

canonical action of Sym.t/ by endomorphisms, denoted a].
For � 2 t� let

D.eFlG/� -modT;� � D.eFlG/� -modT;w;�

be the full subcategories of D.eFlG/� -modT;w , corresponding to the condition that
a].t/D�.t/ for t2 t in the former case, and that a].t/��.t/ acts locally nilpotently
in the latter. Since the group T is connected, both of these categories are full
subcategories in D.eFlG/� -mod.

We let D.D.eFlG/� -mod/T;w;� �D.D.eFlG/� -mod/ be the full subcategory
consisting of complexes, whose cohomologies belong to D.eFlG/� -modT;w;�. It
is easy to see that the functor �T , restricted to D.eFlG/� -modT;w;�, extends to a
functor

R�T WDC.D.eFlG/� -mod/T;w;�!DC.yg� -mod/:

Assume now that � satisfies the following conditions:(
h�C �; L̨ i … Z�0 for ˛ 2�C

˙h�C �; L̨ i C 2n kCh_

�can.˛;˛/
… Z�0 for ˛ 2�C and n 2 Z>0:

Following [BD, �7.15], we will prove:

THEOREM 5.2. (1) For F 2 D.eFlG/� -modT;w;�; the higher cohomologies
Ri �T .eFlG ;F/, i > 0, vanish.

4Here we are relying on part (1) of Theorem 1.7, which was proved independently.
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(2) The resulting functor R�T WDb.D.eFlG/� -mod/T;w;�!Db.yg� -mod/ is
fully-faithful.

5.3. Let D.eFlG/� -modI
0;T;w;�

� D.eFlG/� -mod/T;w;� be the full subcate-
gory, consisting of twisted D-modules, equivariant with respect to the I 0-action on
the left. Our present goal is to describe its image under the above functor � .

Consider the category Oaff WD yg� -modI
0

. This is a version of the category O

for the affine Lie algebra yg� . Its standard (resp., co-standard, irreducible) objects
are numbered by weights � 2 t�, and will be denoted by M�;� (resp., M_�;�, L�;�).
Since � was assumed to be negative, every finitely generated object of Oaff has finite
length.

The extended affine Weyl group Waff WDW Ëƒ acts on t�, with w 2W �Waff

acting as
w ��D w.�C �/� �;

and L� 2 Lƒ�Waff by the translation by means of .� � �crit/. L�; �/ 2 t�.
For a Waff-orbit � in t� let .Oaff/� be the full-subcategory of Oaff, consisting

of objects that admit a filtration, such that all subquotients are isomorphic to L�;�
with � 2 � .

The following assertion is known as the linkage principle (see [DGK82]):

PROPOSITION 5.4. The category Oaff is the direct sum over the orbits � of the
subcategories .Oaff/� .

For � as in Theorem 5.2 let �.�/ be the Waff-orbit of �. (Note that by assump-
tion, the stabilizer of � in Waff is trivial.) We will prove the following:5

THEOREM 5.5. The functor �T defines an equivalence

D.eFlG/� -mod/I
0;T;w;�

! .Oaff/�.�/:

5.6. Proofs. To prove point (1) of Theorem 5.2, it suffices to show that
Ri �T .eFlG ;F/ D 0 for F 2 D.eFlG/� -modT;� and i > 0. However, this follows
immediately from [BD, Th. 15.7.6].

To prove point (2) of Theorem 5.2 and Theorem 5.5 we shall rely on the
following explicit computation, performed in [KT95]:

For an element zw 2 Waff let j zw;�;� 2 D.eFlG/� -modI
0;T;� (resp., j zw;Š;�) be

the *-extension (resp, !-extension) of the unique I 0-equivariant irreducible twisted
D-module on the preimage of the corresponding I 0-orbit in FlG . We have:

THEOREM 5.7. We have:

�.FlG ; j zw;�;�/'M
_
�; zw �0 and �.FlG ; j zw;Š;�/'M�; zw �0:

5This theorem is not due to the authors of the present paper. The proof that we present is a
combination of arguments from [BD, §7.15], and [KT95].
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Let us now proceed with the proof of Theorem 5.2(2). Clearly, it is enough to
show that for two finitely generated objects F;F1 2 D.eFlG/� -modT;� the map

R HomD.D.eFlG/� -mod/T;�.F;F1/! R HomD.ygcrit -mod/.�
T .eFlG ;F/; �T .eFlG ;F1//

is an isomorphism.
By adjunction (see [FG06, �22.1]), the latter is equivalent to the map

R HomD.D.eFlG/� -mod/I;�.j1;Š;�;F
op ?F1/

! R HomD.ygcrit -mod/I;�.�
T .eFlG ; j1;Š;�/;R�

T .FlG ;Fop ?F1//;

an isomorphism, where Fop 2 D.G..t//=K/ -modI;� is the dual D-module, where
K is a sufficiently small open-compact subgroup of GŒŒt ��.

Using the stratification of eFlG by I -orbits, we can replace Fop ?F1 by its
Cousin complex. In other words, it is sufficient to show that

R HomD.D.eFlG/� -mod/I;�.j1;Š;�; j zw;�;�/

! R HomD.ygcrit -mod/I;�.�
T .eFlG ; j1;Š;�/; �

T .eFlG ; j zw;�;�//

is an isomorphism, for all zw such that j zw;�;� is .I; �/-equivariant.
Note that the LHS is 0 unless zw D 0, and is isomorphic to C in the latter case.

Hence, taking into account Theorem 5.7, we now prove the following:

LEMMA 5.8. (1) R HomD.ygcrit -mod/I;�.M�;�;M
_
�;�/ D 0 for � ¤ � 2 t� but

such that M_�;� 2 ygcrit -modI;� is .I; �/-equivariant.

(2) The map C! R HomD.ygcrit -mod/I;�.M�;�;M
_
�;�
/ is an isomorphism.

Proof. For any M 2 ygcrit -modI;�,

R HomD.ygcrit -mod/I;�.M�;�;M/' R HomI -mod.C;M˝C��/:

Since M_�;� is co-free with respect to I 0, we obtain

R HomI -mod.C;M
_
�;�˝C��/' R HomT -mod.C;C

�
˝C��/;

implying the first assertion of the lemma.
Similarly,

R HomD.ygcrit -mod/I .M�;�;M
_
�;�/' R HomI -mod.C;M

_
�;�/

' R HomT -mod.C;C/' C;

implying the second assertion. �

Finally, we prove Theorem 5.5. Taking into account Theorem 5.2, and using
Lemmas 3.10 and 3.12, we now show that for every M 2 .Oaff/�.�/ there exists an
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object F 2 D.eFlG/ -modI
0;T;w;� with nonzero map

�T .eFlG ;F/!M:

It is clear that for every M 2 .Oaff/�.�/ there exists a Verma module M�;� 2

.Oaff/�.�/ with a nonzero map M�;�!M. Hence, the required property follows
from Theorem 5.7.
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