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Abstract

This is the first of two papers where we address and partially confirm a conjecture
of Deser and Schwimmer, originally postulated in high energy physics. The objects
of study are scalar Riemannian quantities constructed out of the curvature and its
covariant derivatives, whose integrals over compact manifolds are invariant under
conformal changes of the underlying metric. Our main conclusion is that each
such quantity that locally depends only on the curvature tensor (without covariant
derivatives) can be written as a linear combination of the Chern-Gauss-Bonnet
integrand and a scalar conformal invariant.

1. Introduction

1.1. Outline of the problem. Consider any Riemannian manifold .M n; gn/.
The basic local objects that describe the geometry of the metric gn are the curvature
tensor Rijkl and the Levi-Civita connection rgn . We are interested in intrinsic
scalar quantities P.gn/. These scalar quantities, as defined by Weyl (see also [14]
and [4]), are polynomials in the components of the tensors Rijkl ; : : : ;rmr1:::rmRijkl ,
: : : and gij , with two basic features: The values of these polynomials must be
invariant under changes of the coordinate system (or isometries), and there must
also be a number K so that under the re-scaling gn �! t2gn (t 2 RC), we have
P.t2gn/D tKP.gn/. We then say that P.gn/ is a scalar Riemannian invariant of
weight K.

It is a classical result, implied in Weyl’s work [22], that any such Riemannian
invariant P.gn/ of weight K can be written as a linear combination

(1) P.gn/D
P
l2L

alC
l.gn/
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of complete contractions C l.gn/ in the form:

(2) contr.rm1r1:::rm1Ri1j1k1l1 ˝ � � �˝r
mr
t1:::tmr

Rirjrkr lr /;

for which C l.t2gn/D tKC l.gn/.
This notion of intrinsic extends to vector fields. We define an intrinsic vector

field T a.gn/ (a is the free index) of weightK to be a polynomial in the components
of the tensors Rijkl ; : : : ;rmr1:::rmRijkl ; : : : and gij , with the property that under
changes of coordinates (isometries) that map the coordinate functions x1; : : : ; xn to
the coordinate functions y1; : : : ; yn, Ta.gn/ must satisfy the transformation law:

T 0˛.gn/D T i .gn/
@y˛

@xi
;

here T 0˛ stands for the vector field expressed in the new coordinate system. More-
over, we say that T a.gn/ has weight K if T a.t2gn/D tK�1T a.gn/.’

By Weyl’s work, an intrinsic vector field of weight K must be a linear combi-
nation of partial contractions with one free index, each in the form:

(3) pcontr.rm1r1:::rm1Rijkl ˝ � � �˝r
mr
t1:::tmr

Rirjrkr lr /:

We recall that under general conformal re-scalings Ogn D e2�.x/gn the volume
form re-scales by the formula dV Ogn D en�.x/dVgn ; in particular for any constant
t we have dVt2gn D t

ndVgn . Thus, for any scalar Riemannian invariant P.gn/
of weight �n,

R
Mn P.g

n/dVgn is scale-invariant for all compact and orientable
manifolds M n.

The problem we address in this paper and in [2] is to find all the Riemannian
invariants P.gn/ of weight �n for which the integral:

(4)
Z
Mn

P.gn/dVgn

is invariant under conformal re-scalings of the metric gn on any M n compact
without boundary.

In other words, we are requiring that for every real-valued function �.x/ 2
C1.M n/ we must have that for Ogn.x/D e2�.x/gn:

(5)
Z
Mn

P. Ogn/dV Ogn D

Z
Mn

P.gn/dVgn :

This question was originally raised by Deser and Schwimmer in [11] (see
also [20] and [5]) in the context of understanding “conformal anomalies”. On the
other hand, an answer to this question would also shed light on the structure of
Q-curvature in high dimensions. The problem, as posed in [11], is the following:

Conjecture 1 (Deser-Schwimmer). Consider a Riemannian scalar P.gn/ of
weight �n, for some even n. Suppose that for any compact manifold .M n; gn/ the
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quantity

(6)
Z
Mn

P.gn/dVgn

is invariant under any conformal change of metric Ogn.x/ D e2�.x/gn.x/. Then
P.gn/ must be a linear combination of three“obvious candidates”, namely:

(7) P.gn/DW.gn/C diviTi .gn/C c �Pfaff.Rijkl/:

1. W.gn/ is a scalar conformal invariant of weight �n; in other words it satis-
fies W.e2�.x/gn/.x/D e�n�.x/W.gn/.x/ for every � 2 C1.M n/ and every
x 2M n.

2. T i .gn/ is a Riemannian vector field of weight �nC 1, since for any compact
M n we have

R
Mn diviTi .gn/dVgn D 0.

3. Pfaff.Rijkl/ stands for the Pfaffian of the curvature Rijkl , since for any com-
pact Riemannian .M n; gn/,Z

Mn

Pfaff.Rijkl/dVgn D
2n�

n
2 .n
2
� 1/Š

2.n� 1/Š
�.M n/:

In this paper and in [2] we show:

THEOREM 1. Conjecture 1 is true, in the following restricted version:
Suppose that (6) holds, and additionally that P.gn/ locally depends only on

the curvature tensor Rijkl and not its covariant derivatives rmRijkl (meaning
that P.gn/ is a linear combination of contractions in the form (2) with m1 D � � � D
mr D 0). Then, there exists a scalar conformal invariant W.gn/ of weight �n that
locally depends only on the Weyl tensor, and also a constant c so that:

(8) S.gn/DW.gn/C c �Pfaff.Rijkl/

where Pfaff.Rijkl/ stands for the Pfaffian of the curvature Rijkl .

1.2. Geometric applications of the Deser-Schwimmer conjecture: Q-curvature
and re-normalized volume. Q-curvature is a Riemannian scalar quantity introduced
by Branson for each even dimension n (see [6]). In dimension 2, Q2.g2/DR.g2/
(the scalar curvature), while in dimension 4 its structure is well-understood and has
been extensively studied. Its fundamental property is that Qn.gn/ has weight �n
in dimension n and that the integral

R
MnQ

n.gn/dVgn over compact manifolds
M n is invariant under conformal charges of the underlying metric gn. Thus, if
one proves Conjecture 1 in full strength, one would derive that Qn.gn/ can be
decomposed as in the right-hand side of (7), in fact with c ¤ 0.

This fact is all the more interesting due to the nice transformation law of Q-
curvature under conformal changes OgnDe2�.x/gn. One then has that en�.x/Qn. Ogn/
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DQn.gn/CP ngn.�/, where P ngn.�/ is a conformally invariant differential oper-
ator, originally constructed in [16]. Thus, prescribing the Q-curvature can be
informally interpreted as prescribing a modified version of the Chern-Gauss-Bonnet
integrand Pfaff.Rijkl/. This modified Pfaffian enjoys a nice transformation law
under conformal re-scalings, rather than the messy transformation that governs
Pfaff.Rijkl/.

This understanding of the structure of Q-curvature in any even dimension
raises the question whether the strong results of Chang, Yang, Gursky, Qing et al. in
dimension 4 (see for example [8], [9], [19]), have analogues in higher dimensions.
Moreover, a proof of Conjecture 1 in full strength will lead to a better understanding
of the notion of re-normalized volume for conformally compact Einstein manifolds.

Conformally compact Einstein manifolds have been the focus of much research
in recent years; see [9], [18], [21], [24], to name just a few. What follows is a very
brief discussion of the objects of study, largely reproduced from [18].

We consider manifolds with boundary, .XnC1; gnC1/, @XnC1 DM n, where
the boundaryM n carries a conformal structure Œhn�. We consider a defining function
x for @XnC1 in X :

xj
X̊
> 0; xj@X D 0; dxj@X ¤ 0:

We then say that gnC1 is a conformally compact metric on XnC1 with conformal
infinity Œhn�, if there exists a smooth metric gnC1 on X

nC1
so that in X̊nC1:

gnC1 D
gnC1

x2
; gnC1j@XnC1 2 Œh

n�:

A conformally compact metric is asymptotically hyperbolic, in the sense that its
sectional curvatures approach �1 as x approaches 0. We notice that since we can
pick different defining functions, the metric gnC1 in the interior X̊nC1 defines a
conformal class Œhn� on the boundary. In the rest of this discussion, we will be
considering conformally compact manifolds .XnC1; gnC1/ which in addition are
Einstein.

Conformally compact Einstein manifolds are studied as models for the Anti-
de-Sitter/Conformal Field Theory (AdS-CFT) correspondence in string theory. In
order to compute the partition function for the conformal field theory in the super-
gravity approximation, one must evaluate the gravitational action

R
XnC1 RdVgn

for the metric gnC1, which in the case at hand is proportional to the volume
of .XnC1; gnC1/. Since this volume is clearly infinite (gnC1 is asymptotically
hyperbolic) one regularizes it through re-normalization, thus introducing the re-
normalized volume. We briefly discuss this re-normalization procedure and its
relation to Q-curvature below. For a more detailed discussion we refer the reader
to [15], [17], [23] and the references therein.
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It is known that each choice of metric h 2 Œhn� on the boundary M n uniquely
determines a defining function x in a collar neighborhood of @XnC1 in XnC1, say
@XnC1 � Œ0; "�, so that gnC1 takes the form:

(9) gnC1 D x�2.dx2C hx/; h0 D h;

where hx is a 1-parameter family of metrics on @XnC1. We then consider the
volume of the region R" D fx > "g in .XnC1; gnC1/, expanded out in powers of ",
and let "! 0. Given that gnC1 is Einstein, it follows that if n is odd:

(10) volgnC1.fx > "g/D c0"
�n
C c2"

�nC2
C � � �C cn�1"

�1
CV C o.1/

whereas if n is even:

(11) volgnC1.fx>"g/Dc0"
�n
Cc2"

�nC2
C� � �Ccn�1"

�2
CLlog

�1
"

�
CVCo.1/:

Moreover, if n is odd and since gnC1 is Einstein, then (see [18]) V is indepen-
dent of the choice of metric hn in the conformal class Œhn�. (Recall that this choice
was used in order to write out gnC1 in the form (9), and hence also in defining the
region R"; therefore V depends apriori on the choice hn 2 Œhn�). For n odd, V is
called the re-normalized volume of .XnC1; gnC1/.

For n even, V is not independent of the choice of metric hn in the conformal
class Œhn�. In this case it is the quantity L that demonstrates this invariance. This
quantityL represents the failure of defining the re-normalized volume independently
of the defining function x. It is therefore called the “conformal anomaly” in
the physics literature. Moreover, Graham-Zworski have shown that L D cn �R
MnQ.h

n/dVhn , where hn is an arbitrary metric in the conformal class Œhn�.
Hence, a proof of Conjecture 1 would immediately imply that L can be written out
as:

(12) LD

Z
Mn

W.hn/dVhn C .Const/ ��.M n/

whereW.hn/ is a scalar conformal invariant of weight �n andM nD @XnC1, while
�.M n/ stands for the Euler characteristic of M n and .Const/¤ 0.

Another significant result has recently been obtained by Chang, Qing and
Yang, [10], relating the re-normalized volume V with the Q-curvature of gnC1

and hence with the Euler characteristic of the manifold XnC1. They show that if
Conjecture 1 is true, then for n odd one can express the re-normalized volume of
.XnC1; gnC1/ via the Q-curvature:

(13) R:V:Œ.XnC1; gnC1/�D

Z
XnC1

W.gnC1/dVgnC1 C .const/nC1 ��.XnC1/
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where .Const/nC1 is a nonzero dimensional constants and W.gnC1/ is a scalar
conformal invariant of weight �n� 1. Here the left-hand side stands for the re-
normalized volume of the manifold .XnC1; gnC1/. Hence, it follows that the
re-normalized volume explicitly depends on the topology of XnC1, via its Euler
characteristic. A result related to (13) has been independently established (by an
entirely different method) by Albin in [1].

This identity raises the question of whether one can adapt the powerful tech-
niques developed for the study of Q-curvature to the study of conformally compact
Einstein manifolds. Strong results have already been obtained in dimension 4;
see [9]. For higher dimensions one might try to extend the work of Brendle [7]
to this setting. Another question would be whether one can obtain expressions
analogous to (12) and (13) for the re-normalized areas and conformal anomalies of
submanifolds, defined by Graham and Witten in [17].

1.3. Outline of the paper. Our theorem is a structure result for P.gn/. We use
the “global” conformal invariance under integration of P.gn/ to derive information
on its algebraic expression.

In this paper we introduce the main tool that will show Theorem 1, the so-
called super divergence formula. For each P.gn/ that satisfies (5), we define an
operator Ign.�/ that measures the “non-conformally invariant part” of P.gn/ (see
(26) below). We then use the property (27) of Ign.�/ to derive an explicit local
formula which expresses Ign.�/ as a divergence of a vector field. This formula,
which in our opinion is also of independent interest, thus provides us with an
understanding of the algebraic structure of Ign.�/. In the sequel to this paper, [2],
we will use the super divergence formula to derive information on the algebraic
structure of P.gn/ and prove Theorem 1.

The super divergence formula is proven in a number of steps. A more primitive
version is the “simple divergence formula” in Section 5. This is then refined three
times in Section 6 and we obtain the super divergence formula in subsection 6.3.
The only background material needed for all this work is a slight extension of
Theorem B.4 in [3], which itself is a generalization of a classical theorem of Weyl
in [22]. This extension is discussed in Section 3. Roughly, Theorem B.4 in [3] and
our Theorem 2 below assert that a linear identity involving complete contractions
which holds for all values we can give to the tensors in those contractions, must
then also hold formally.

2. Background material

2.1. Definitions and identities. Whenever we refer to a manifold M n, we will
be assuming it to be compact and orientable. Moreover, n will be a fixed, even di-
mension throughout this paper. We begin by recalling a few definitions and formulas.
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Definition 1. In this paper, we will be dealing with complete contractions of
tensors and their linear combinations. Any complete contraction:

C D contr..A1/i1:::is ˝ � � �˝ .A
t /j1:::jq /

will be seen as a formal expression. Each factor .Al/i1:::is is an ordered set of slots.
Given the factors .A1/i1:::is ; : : : ; .A

t /j1:::jq , a complete contraction is then seen
as a set of pairs of slots .a1; b1/; : : : ; .aw ; bw/, with the following properties: if
k ¤ l , fal ; blg

T
fak; bkg D∅, ak ¤ bk ,

Sw
iD1fai ; big D fi1; : : : ; jqg. Each pair

corresponds to a particular contraction.
Two complete contractions

contr..A1/i1:::is ˝ � � �˝ .A
t /j1:::jw / and contr..B1/f1:::fq ˝ � � �˝ .B

t 0/v1:::vz /

will be identical if t D t 0, .Al/D .B l/ and if the �th index in Al contracts against
the �th index in Ar , then the �th index in B l contracts against the �th index in Br .
For any complete contraction, we define its length to stand for the number of its
factors.

We can also consider linear combinations of complete contractions:P
l2L

al.C1/
l and

P
r2R

br.C2/
r :

Two linear combinations as above are considered identical if RD L and al D bl
and .C1/l D .C2/l . A linear combination of complete contractions as above is
identically zero if for every l 2 L we have that al D 0.

For any complete contraction C , we will say a factor .A/r1:::rsl has an internal
contraction if two indices in .A/r1:::rsl are contracting between themselves.

All the above definitions extend to partial contractions and their linear combi-
nations.

We also introduce two language conventions: For any linear combination of
complete contractions

P
l2L alC

l , when we speak of a sublinear combination, we
will mean some linear combination

P
l2L0 alC

l where L0 �L. Also, when we say
that an identity between linear combinations of complete contractions:

(14)
P
r2R

arC
r
D
P
t2T

atC
t

holds modulo complete contractions of length � �, we will mean that we have an
identity:

(15)
P
r2R

arC
r
D
P
t2T

atC
t
C
P
u2U

auC
u

where each C u has at least � factors.
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Definition 2. Now, for each tensor Tab:::d and each subset fd; e; : : : f g �
fa; b; : : : ; dg, we define the symmetrization of the tensor Tab:::d over the slots
d; e; : : : ; f :

Let … stand for the set of permutations of the ordered set fd; e; : : : ; f g. For
each � 2…, we define �Tab:::f to stand for the tensor that arises from Tab:::f by
permuting the slots d; e; : : : ; f according to the permutation � . We then define the
symmetrization of the tensor Tab:::d over the slots d; e; : : : ; f to be:P

�2…

1

j…j
��Tab:::d :

If fd; e; : : : ;f gDfa; b; : : : ; dg;we will denote that symmetrization byT.ab:::d/.

We recall a few basic facts from Riemannian geometry. Consider any Rie-
mannian manifold .M n; gn/ and any x0 2M n. We pick any coordinate system
x1; : : : ; xn and denote by X i the coordinate vector fields, i.e. the vector fields @

@xi
.

We will write ri instead of rX i .
The curvature tensor Rijkl of gn is given by the formula:

(16) Œrirj �rjri �Xk DRijklX
l :

In a coordinate system, we can also express it in terms of the Christoffel
symbols:

(17) Rlijk D @j�
l
ik � @k�

l
ij C

P
m
.�mik�

l
mj ��

m
ik�

l
mk/:

Moreover, the Ricci tensor Ricik is then:

(18) Ricik DRijklg
jl :

We recall the two Bianchi identities:

RABCDCRCABDCRBCAD D 0;(19)

rARBCDE CrC :RABDE CrBRCADE D 0:(20)

We also recall how the basic geometric objects transform under the conformal
change Ogn.x/D e2�.x/gn.x/. These formulas come from [12].

R
Ogn

ijkl
D e2�.x/ŒR

gn

ijkl
Cril�gjkCrjk�gil �rik�gjl �rjl�gik(21)

Cri�rk�gjl Crj�rl�gik �ri�rl�gjk �rj�rk�gil

Cjr�j2gilgjk � jr�j
2gikglj �;

(22) Ric Og
n

˛ˇ
D Ricg

n

˛ˇ
C .2�n/r2˛ˇ����g

n
˛ˇ C .n�2/.r˛�rˇ��jr�j

2g˛ˇ /;
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while the transformation law for the Levi-Civita connection is:

(23) r
Ogn

k
�l Dr

gn

k
�l �rk��l �rl��kCr

s��sgkl :

We now focus on complete contractions C.gn/ in the form (2). We still
think of these objects both as formal expressions and also as functions of the
metric gn. Thus, for complete contractions in the form (2), contracting two lower
indices a; b will mean that we multiply by gab and then sum over a; b. We have
that under the rescaling Ogn D t2gn the tensors rmRijkl and .gn/ij transform by
rmr1:::rm

Rijkl.t
2gn/ D t2rmr1:::rmRijkl.g

n/, .gn/ij .t2gn/ D t�2.gn/ij .gn/. (We
will sometimes write rmRijkl instead of rmr1:::rmRijkl , for brevity.) Thus, for
each C.gn/ in the form (2), if we define K D�

Pr
iD1.mi C 2/, we will have that

C.t2gn/D tKC.gn/. We define K to be the weight of this complete contraction.
For future reference, we will consider more general complete contractions

defined on manifolds .M n; gn/ and define their weight.

Definition 3. We consider any complete contraction Cgn.V 1; : : : ; V x/ in the
form:

(24) contr.rm1Rijkl ˝ � � �˝r
mrRijkl ˝V

1
a1:::af1

˝ � � �˝V xb1:::bfx
/

defined for any x0 2 M n. Here the tensors V ya1:::afy are auxiliary tensors (all
of whose indices are lowered) that have a scaling property under re-scalings of
the metric: V ya1:::afy .t

2gn/D tCyV
y
a1:::afy

.gn/. (An example for a tensor V ya1:::afy
would be the yth iterated covariant derivative of a function  , in which case Cy D 0).
Moreover, all the tensors here are over TM njx0 . The particular contractions of any
two lower indices will be with respect to the quadratic form .gn/ij .x0/.

We then define the weight of such a complete contraction to be

W D�
rP
iD1

.mi C 2/�
xP
iD1

.fi �Cy/:

As for the previous case, we then have that:

Ct2gn.V
1; : : : ; V x/D tW Cgn.V

1; : : : ; V x/:

In this whole paper, when we write a complete contraction and include the
metric gn in the notation, we will imply that the contraction is defined on manifolds
(and possibly also depending on additional auxiliary objects, for example scalar
functions) and will have a weight, as defined above. Unless otherwise stated, all
complete contractions will have weight �n.

2.2. The operator Ign.�/ and its polarizations. For this paper and in [2], we
will consider P.gn/ as a linear combination in the form:

(25) P.gn/D
P
l2L

alC
l.gn/
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where each C l.gn/ is in the form (2) and has weight �n. We assume that P.gn/
satisfies (5).

We define a differential operator, which will depend both on the metric gn and
the auxiliary � 2 C1.M n/:

(26) Ign.�/.x/D e
n�.x/P.e2�.x/gn/.x/�P.gn/.x/:

We then have by (5) that:

(27)
Z
Mn

Ign.�/dVg
n
D 0

for every compact manifold .M n; gn/ and any function � 2 C1.M n/. Then,
using the transformation laws (21) and (23) we see that Ign.�/ is a differential
operator acting on the function �. In particular, we can pick any A > 0 functions
 1.x/; : : : ;  A.x/, and choose:

�.x/D
AP
lD1

 l.x/:

Hence, we have a differential operator Ign. 1; : : : ;  A/.x/, so that, by (27):Z
Mn

Ign. 1; : : : ;  A/dVgn D 0

for any .M n; gn/, M n compact and any functions  1.x/; : : : ;  A.x/2C1.M n/.
Now, for any given functions  1.x/; : : : ;  A.x/, we can consider re-scalings:

�1 1.x/; : : : ; �A A.x/:

Hence, as above we will have the equation:

(28)
Z
Mn

Ign.�1 1; : : : ; �A A/dVgn D 0:

We can then see
R
Mn Ign.�1 1; : : : ; �A A/dVgn as a polynomial in the factors

�1; : : : ; �A. Call this polynomial ….�1; : : : ; �A/.
But then relation (28) gives us that this polynomial … is identically zero.

Hence, each coefficient of each monomial in the variables �1; : : : ; �A must be zero.
We want to pick out a particular such monomial. Pick out any integer 1�Z � A.
Then in Ign.�1 1; : : : ; �A A/ (seen as a multi-variable polynomial in �1; : : : ; �A)
consider the coefficient of the monomial �1 � � � � � �Z . This will be a differential
operator in the functions  1; : : : ;  Z , which we will denote by IZgn. 1; : : : ;  Z/.
By elementary properties of polynomials and by the definition of Ign.�/ in (26)
we have:

(29) IZgn. 1; : : : ;  Z/

D @�1 : : : @�Z Œe
n.�1 1C���C�Z Z/P.e2.�1 1C���C�Z Z/gn/�j�1D0;:::;�ZD0:
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The precise form of IZgn. 1; : : : ;  Z/, given P.gn/, can be calculated using the
transformation laws in the previous section. We do this in [2]. For the time being,
just note that by (28) we have the equation:

LEMMA 1.

(30)
Z
Mn

IZgn. 1; : : : ;  Z/dVgn D 0

for every compact .M n; gn/ and any  1; : : : ;  Z 2 C1.M n/.

Proof. This is straightforward from relation (28) and the equation (29). �

From all the above, it is easy to see that IZgn. 1; : : : ;  Z/ is a linear combina-
tion of complete contractions of weight �n in the form:

(31) contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls

˝r
�1
�1:::��1

 1˝ � � �˝r
�Z
!1:::!�Z

 Z
�
:

For the rest of this paper, we will only be using the fact that IZgn. 1; : : : ;  Z/
satisfies (30) and that it is a linear combination of complete contractions in the form
(31).

3. The trans-dimensional isomorphisms

The aim of this section is to establish a natural isomorphism of linear combina-
tions of complete contractions in the form (31) of weight�n, between dimensionsN
and n, if N � n. In order to make this statement precise and to provide a proof,
we will recall some terminology and facts from the appendices in [3]. The main
“known fact” to be used is Theorem 2 in the next subsection. This theorem is a
slight generalization of Theorem B.4 in [3], and it can be proven using the same
ideas. The appendices in [3] generalize classical theorems that can be found in [22].

3.1. Known facts. The appendices of [3] deal with identities involving linear
combinations of complete contractions. The main assertion there is that under
certain hypotheses, when a linear identity involving complete contractions holds
“by substitution”, it must then also hold “formally”. We will be explaining these
notions in this subsection. For more details, we refer the reader to [3].

We introduce the “building blocks” of our complete contractions. Firstly, we
consider symmetric tensors. Let us consider a family of sets of symmetric tensors
fT ˛ D fT ˛0 ; T

˛
i ; : : : ; T

˛
i1:::is

; : : : gg˛2A (T ˛0 is just a scalar, i.e. a tensor of rank
zero), defined over the vector space Rn. Here each ˛ 2 A is not a free index of the
tensors T ˛i1:::is . It just is a label that serves to distinguish the tensors T ˛1i1:::is and
T
˛2
i1:::is

when ˛1 ¤ ˛2.
Our second building block will be a list of tensors that resemble the covariant

derivatives of the curvature tensor:
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Definition 4. A set of linearized curvature tensors is defined to be a list of
tensorsRDfRijkl ; : : : ; Rf1:::fs ;ijkl ; : : : g defined over Rn, so that eachRx1:::xs ;ijkl
satisfies the following identities:

1. Rx1:::xs ;ijkl is symmetric in x1; : : : ; xs ,

2. Rx1:::Œxs ;ij �kl D 0,

3. Rx1:::xs ;Œijk�l D 0,

4. Rx1:::xs ;ijkl D�Rx1:::xs ;j ikl , Rx1:::xs ;ijkl D�Rx1:::xs ;ijlk ,

where in general, Tr1:::rmŒi1i2i3�f1:::fd will stand for the sum over all the cyclic
permutations of the indices i1; i2; i3 (in the case where two of the indices i1; i2; i3
are antisymmetric).

Our third building block is the following set:

Definition 5. Consider a set of tensors „D f„k1i ; : : : „
ks
i1:::is

; : : : g, where the

free indices are i1; : : : ; is; ks . Assume that each tensor „ksi1:::is is symmetric in the
indices i1; : : : ; is . We call any such tensor a special tensor. Any such set „ will be
called a set of special tensors.

We can then form complete contractions of tensors that belong to the setsS
˛2AfT

˛g; R;„. They will be in the form:

(32) contr.ul1 ˝ � � �˝ulZ ˝Rr1 ˝ � � �˝Rrm ˝„z1 ˝ � � �˝„zx /

where each tensor uli belongs to the set
S
˛2AfT

˛g, each tensor Rrj belongs to the
set RD fRijkl ; : : : ; Rsf1:::fs ;ijkl ; : : : g and each tensor „z belongs to the set „D

f„ki ; : : : „
k
i1:::is

; : : : g. A particular contraction of two lower indices will be with
respect to the Kronecker ıij , while for an upper and lower index we will be using
the Einstein summation convention. We can consider linear combinations of such
complete contractions: ƒ.

S
˛2AfT

˛g; R;„/D
P
l2L alC

l.
S
˛2AfT

˛g; R;„/.
For each complete contraction C.

S
˛2AfT

˛g; R;„/ that contains a factor
t DRi1:::is ;ijkl , we will say that we apply the third identity in Definition 4 to the
indices i; j; k (or that we permute indices according to the third identity) if we
replace the complete contraction C.

S
˛2AfT

˛g; R;„/, by

�C1

� [
˛2A

fT ˛g; R;„

�
�C2

� [
˛2A

fT ˛g; R;„

�
;

where C1.
S
˛2AfT

˛g;R;„/ is obtained from C.
S
˛2AfT

˛g;R;„/ by replacing t
by Ri1:::is ;kijl and C2.

S
˛2AfT

˛g; R;„/ is obtained from C.
S
˛2AfT

˛g; R;„/

by replacing t byRi1:::is ;jkil . We similarly define what it means to apply the second
identity in Definition 4. It is clear what is meant by applying the first and fourth
identities (or by permuting indices according to the first and fourth identities).
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Definition 6. Such a linear combination of complete contractions vanishes
formally if we can can make the linear combination zero using the following list of
operations:

By permuting factors in the complete contractions, by permuting indices in
the factors in

S
˛2AfT

˛g, by using the identities of the factors in R, by permuting
the indices i1; : : : ; is in the factors „ksi1:::is and by applying the distributive rule

a �C l
� [
˛2A

fT ˛g; R;„

�
C b �C l

� [
˛2A

fT ˛g; R;„

�
D .aC b/ �C l

� [
˛2A

fT ˛g; R;„

�
:

Also, we will say that the linear combination ƒ.
S
˛2AfT

˛g; R;„/ vanishes
upon substitution if for each set of tensors

S
˛2AfT

˛g, R and„ that have the above
properties, the value of ƒ.

S
˛2AfT

˛g; R;„/ is zero.

The following theorem is then an extension of Theorem B.4 in [3] and it
follows by the same ideas.

THEOREM 2. Let us consider a linear combination of complete contractions
ƒ.
S
˛2AfT

˛g; R;„/D
P
l2L alC

l.
S
˛2AfT

˛g; R;„/ as above. For each com-
plete contraction C l , we denote by Z]

l
the number of symmetric tensors of rank

� 1. We also recall that ml is the number of linearized curvature tensors and xl the
number of special tensors. We assume that for each C l the sum Z

]

l
C 2ml C 2xl is

less than or equal to n.
We then have that if ƒ.

S
˛2AfT

˛g; R;„/ vanishes upon substitution in di-
mension n, it must also vanish formally.

We note that the theorem above also applies when there are no factors from
the set „ in our linear combination.

3.2. Corollaries of Theorem 2. We derive two corollaries of Theorem 2. We
will now be considering complete contractions on manifolds.

Consider an auxiliary list of symmetric tensors �D f�i1 ; : : : ; �i1:::is ; : : : g.
We impose the condition that these tensors must remain invariant under re-scalings
of the metric gn, i.e. �i1:::is .t

2gn/D�i1:::is .g
n/. We then focus our attention on

complete contractions C lgn. 1; : : : ;  Z ; �/ of the form:

(33) contr.rm1r1:::rm1Rijkl ˝ � � �˝r
ms
t1:::tms

Rijkl

˝r
p1
a1:::ap1

 1˝ � � �˝r
pZ
b1:::bpZ

 Z ˝�i1:::ih1 ˝ � � �˝�u1:::uhy /:

We assume that y � 0 (in other words, there may also be no factors �i1:::is ). If we
write C lgr . 1; : : : ;  Z ; �/ (replacing gn by gr ), we will be referring to a complete
contraction as above, but defined on an r-dimensional manifold. We will call this
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the re-writing of the complete contraction C lgn. 1; : : : ;  Z ; �/ in dimension r .
Also, when we speak of the value of C lgr . 1; : : : ;  Z ; �/.x0/, we will mean the
value of the above complete contraction at a point x0 on a manifold .M r ; gr/, for
functions  1; : : : ;  Z defined around x0 2M r and for symmetric tensors �i1:::is
defined at x0. This terminology extends to linear combinations.

Finally, a note about the weight of the complete contractions: By our definition
of weight, if C lgr . 1; : : : ;  Z ; �/ has weight �n, then in the notation of (33):

(34)
sP
iD1

.mi C 2/C
ZP
iD1

pi C
yP
iD1

hi D n:

Thus, if we have Z] factors rpi i with pi � 1, the above implies that:

(35) Z]C 2sCy � n:

Definition 7. A relation between complete contractions in the form (33):P
l2L

alC
l
gn. 1; : : : ;  Z ; �/D 0

will hold formally if we can make the above sum identically zero by performing
the following operations: We may permute factors in any complete contraction
C lgn. 1; : : : ;  Z/ and also permute indices within the factors �i1:::is . Furthermore,
for each factor rpr1:::rp h, with p D 2 we may permute r1; r2, while for p > 2, we
may apply the identity:

(36) ŒrArB �rBrA�XC DRABCDX
D

and for each factor rmRijkl , we may apply the identities:

1. rmr1:::rmRijkl D�r
m
r1:::rm

Rj ikl D�r
m
r1:::rm

Rijlk .

2. rm
r1:::Œrm

Rij �kl D 0.

3. rmr1:::rmRŒijk�l D 0.

4. The identity (36) above.

The application of the second and third identities above has been defined. To
apply the fourth identity to a factor rp h or rmRijkl means that for each com-
plete contraction Cgn. 1; : : : ;  Z ; �/ of the form (32), for each factor rpr1:::rp h
or rmr1:::rmRijkl in Cgn. 1; : : : ;  Z ; �/ and each pair of consecutive derivative
indices rs�1; rs we may write:

Cgn. 1; : : : ;  Z ; �/D C
0
gn. 1; : : : ;  Z ; �/C

P
h2H

ahC
h
gn. 1; : : : ;  Z ; �/

where C 0gn. 1; : : : ;  Z ; �/ is obtained from Cgn. 1; : : : ;  Z ; �/ by replacing
the factorrpr1:::rp h orrmr1:::rmRijkl byrpr1:::rsrs�1:::rp h orrmr1:::rsrs�1:::rmRijkl ,
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respectively, and
P
h2H ahC

h
gn. 1; : : : ;  Z ; �/ is obtained from Cgn. 1; : : : ;

 Z ; �/ by replacing the factor rpr1:::rp h r
m
r1:::rm

Rijkl by one of the summands
in the following expressions, respectively, and then summing again:P

fa1;:::axg;fb1;:::bs�2�xg�fr1;:::rs�2g;fa1;:::axg
T
fb1;:::bs�1�xgD∅(37)

.rxa1:::axRrs�1rsrsC1
d /.rs�1�xb1:::bs�1�x

r
m�s�1
drsC2:::rp

 h

C � � �C .rxa1:::axRrs�1rsrp
d /.rs�1�xb1:::bs�1�x

r
m�s�1
rsC1:::d

 h/IP
fa1;:::axg;fb1;:::bs�2�xg�fr1;:::rs�2g;fa1;:::axg

T
fb1;:::bs�2�xgD∅(38)

.rxa1:::axRrs�1rsrsC1
d /.rs�1�xb1:::bs�2�x

r
m�s�1
drsC2:::rm

Rijkl/

C � � �C .rxa1:::axRrs�1rsl
d /.rs�1�xb1:::bs�1�x

r
m�s�1
rsC1:::rm

Rijkd /:

Now, our first corollary of Theorem 2:

LEMMA 2. Consider complete contractions C lgn. 1; : : : ;  Z ; �/, each in the
form (33) and with weight �n, so that the identity:

(39) Fgn. 1; : : : ;  Z ; �/D
P
l2L

alC
l
gn. 1; : : : ;  Z ; �/D 0

holds at any point x0 for any metric gn and any functions  1; : : : ;  Z defined
around x0 and any symmetric tensors�i1:::is defined over TM njx0 . Then the above
identity must hold formally.

Proof. We consider the minimum length � , among all the complete con-
tractions in (39). Next, we index the complete contractions C lgn. 1; : : : ;  Z ; �/
of length � in the set L� � L. Suppose we can show that, applying the above
operations, we can make

P
l2L� alC

l
gn. 1; : : : ;  Z ; �/ formally equal to a lin-

ear combination
P
r2R arC

r
gn. 1; : : : ;  Z ; �/, where each complete contraction

C rgn. 1; : : : ;  Z ; �/ has length � � C 1.
If we can prove the above claim then using a finite number of iterations we

will have proven our lemma. This is true since there is obviously a number T , so
that all the complete contractions that arise by iteratively applying the identities of
Definition 7 to the complete contractions C lgn. 1; : : : ;  Z ; �/, l 2 L, must have
length � T . This follows just by the finiteness of the index set L. The rest of this
proof will focus on showing that claim.

In order to accomplish this, we begin with a definition. For any complete
contraction C lgn. 1; : : : ;  Z ; �/, let linC l.R;‰1; : : : ; ‰Z ; �/ stand for the com-
plete contraction between linearized curvature tensors and symmetric tensors that
is obtained from C lgn. 1; : : : ;  Z ; �/ by replacing each factor rmt1:::tmRijkl by a
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linearized curvature tensor Rt1:::tm;ijkl , and each factor rpr1:::rp h by a symmetric
p-tensor ‰hr1:::rp . We will prove a fact to be used many times in the future.

LEMMA 3. In the above notation, given (39), we have, formally,P
l2L�

al linC
l.R;‰1; : : : ; ‰Z ; �/D 0:

Proof. We recall the following fact, which follows from the proof of Theorem
2.6 in [14]: Given any set R of linearized curvature tensors Rt1:::tm;ijkl.x0/, there
is a Riemannian metric defined around x0 so that for any m:

(40) .rmt1:::tmRijkl/
gn.x0/DRt1:::tm;ijkl.x0/CC.R/t1:::tm;ijkl

where C.R/t1:::tm;ijkl stands for a polynomial in the components of the linearized
curvature tensors. This polynomial depends only on m and the indices t1; : : : ; tm,
i; j; k; l . Furthermore, each monomial in that polynomial will have degree at least 2.

For any set R of linearized curvature tensors, we call the metric gn for which
(40) holds the associated metric. Now, for any choice of symmetric tensors

fT 10 ; T
1
i ; : : : ; T

1
i1:::is

; : : : g; : : : ; fTZ0 ; T
Z
i ; : : : ; T

Z
i1:::is

; : : : g;

there are functions  1; : : : ;  Z defined around x0 so that: rsi1:::is l.x0/D T
l
i1:::is

(for some arbitrary ordering of the indices i1; : : : ; is on the left hand side), and also
for each permutation �.i1 : : : is/ of the indices i1; : : : ; is:

(41) r
p

�.i1:::is/
 h.x0/Dr

p
i1:::is

 h.x0/CC.R; h/i1:::is

where C.R; T h/i1:::is stands for a polynomial in the components of the linearized
curvature tensors and of one component of a tensor from the set T h (of rank � 1).
This polynomial depends only on p and the indices i1; : : : ; is . Furthermore, each
monomial in that polynomial will have degree at least 2.

For any choice of symmetric tensors T li1:::is , we define the functions  l to be
their associated functions.

Now, we pick any set R of linearized curvature tensors and any set T of
symmetric tensors and consider the value of Fgn. 1; : : : ;  Z ; �/ for the associated
metric gn and the associated functions  l . By virtue of our remarks, we see that
there is a fixed polynomial ….T;R;�/ in the vector space of components of the
sets T and R, so that for any given set R of linearized curvature tensors and any
set T of symmetric tensors at x0,

….T;R;�/D Fgn. 1; : : : ;  Z ; �/D 0:

Furthermore, we observe from (40) that each monomial in ….T;R;�/ has
degree at least � . Finally, if ….T;R;�/j� stands for the sublinear combination of
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monomials of degree � in ….T;R;�/, then

….T;R;�/j� D 0

for every set R of linearized curvature tensors and all sets T , � of symmetric
tensors. But given equations (40) and (41) we see that:

(42) ….T;R;�/j� D
P
l2L�

al linC
l.R; 1; : : : ;  Z ; �/D 0:

Hence, in view of Theorem 2, we have that (42) must hold formally. �

So, for each linC lgn. 1; : : : ;  Z ; �/ there is a sequence of permutations
for the factors ‰lt1:::ta , ; �i1:::is and of applications of the identities of a lin-
earized curvature tensor to the factors Rt1:::tm;ijkl.x0/ so that (42) will hold
by virtue of the identity a � C.

SZ
iD1fT

ig; R;�/ C b � C.
SZ
iD1fT

ig; R;�/ D

.aC b/ �C.
SZ
iD1fT

ig; R;�/.
We then repeat these operations to the sublinear combinationP

l2L�
alC

l
gn. 1; : : : ;  Z ; �/:

The only difference is that the indices t1; : : : ; tm in each factor rmt1:::tmRijkl.x0/
and the indices i1; : : : ; ip in each factor rsi1:::is h are not symmetric. Nonetheless,
we may permute the indices i1; : : : ; is in each factor rsi1:::is h and the indices
t1; : : : ; tm in each factor rmt1:::tmRijkl and introduce correction terms, which are
complete contractions in the form (43) of length � � C 1. Hence, repeating the
permutations which made (42) identically zero, we derive our claim. �

We now make a note about the notation we used: We have considered complete
contractions C lgn. 1; : : : ;  Z ; �/ in the general form (33), and we have explained
that there may also be no factors �i1:::is . We make the extra convention that if we
refer to a complete contraction C lgn. 1; : : : ;  Z/, we will imply that it is in the
form (33) and has no factors �i1:::is . Therefore, it will be in the form:
(43)
contr

�
r
m1
r1:::rm1

Rijkl ˝ � � �˝r
ms
t1:::tms

Rijkl ˝r
�1
a1:::a�1

 1˝ � � �˝r
�Z
b1:::b�Z

 Z
�
:

Our next lemma is another corollary of Theorem 2. We must again introduce
a definition.

We focus on complete contractions C lgn. 1; : : : ;  Z ; „/ of the form:

(44) contr
�
r
m1
r1:::rm1

Rijkl ˝ � � �˝r
ms
t1:::tms

Rijkl ˝r
p1
a1:::ap1

 1˝ : : :

� � � ˝r
pZ
b1:::bpZ

 Z ˝„
k1
i1:::is

˝ � � �˝„
kf
j1:::jt

�
:
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In the manifold context, we impose the re-scaling condition „k1i1:::is .t
2gn/D

„
k1
i1:::is

.gn/ on the special tensors. When we wish to apply the theorem to a
particular case of special tensors, we will easily see that this condition holds.

Definition 8. A relation between complete contractions in the form (44):P
l2L

alC
l
gn. 1; : : : ;  Z ; „/D 0

will hold formally if we can make the above sum identically zero by performing
the following operations: We may interchange factors in any complete contraction
C lgn. 1; : : : ;  Z/ and also permute the indices i1; : : : ; is among the factors„ki1:::is .
Furthermore, for each factor rmRijkl , we may apply the identities:

1. rmr1:::rmRijkl D�r
m
r1:::rm

Rj ikl D�r
m
r1:::rm

Rijlk .

2. rm
r1:::Œrm

Rij �kl D 0.

3. rmr1:::rmRŒijk�l D 0.

4. We may permute the indices r1; : : : ; rm by applying of the formula:

ŒrArB �rBrA�XC DRABCDX
D;

as defined in the previous definition;

and for any factorrpi1:::ip h we may permute the factors i1; i2 if pD2 and apply the
identity ŒrArB �rBrA�XC DRABCDXD , as defined in the previous definition
if p > 2.

We then have:

LEMMA 4. Consider complete contractions C lgn. 1; : : : ;  Z ; „/, each in the
form (44) and with weight �n, so that the identity:

(45)
P
l2L

alC
l
gn. 1; : : : ;  Z ; „/D 0

holds at any point x0, for any metric gn, any functions  1; : : : ;  Z defined around
x0 and any special tensors „ki1:::is .x0/ defined at x0. Assume also that each special
tensor in each C l has rank at least 4. Then the above identity must hold formally.

Proof. We prove this corollary by using Theorem 2, in the same way that we
proved Lemma 2 using Theorem 2.

We only need to observe that for each complete contraction in the form (44)
with weight �n, if ri stands for the rank of the i th special tensor then:

(46)
sP
iD1

.mi C 2/C
ZP
iD1

pi C
fP
iD1

.ri � 2/D n:
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For eachC lgn. 1; : : : ;  Z ; „/, we again denote byZ] the number of factorsrph h
for which ph ¤ 0. Thus, assuming that each special factor has rank at least 4, we
deduce that for each complete contraction C lgn. 1; : : : ;  Z ; „/:

(47) Z]C 2sC 2f � n:

Let � be the minimum length among all the contractions

C lgn. 1; : : : ;  Z ; „/; l 2 L:

We define the subset L� � L to be the index set of all complete contractions
C lgn. 1; : : : ;  Z ; „/ with length � . As before, we define the linear combination of
complete contractions involving linearized curvature tensors rather than “genuine”
covariant derivatives of the curvature tensor, and also symmetric tensors ‰h rather
than “genuine” factors rp h:P

l2L�
al linC

l.R;‰1; : : : ; ‰Z ; „/

and we show that P
l2L�

al linC
l.R;‰1; : : : ; ‰Z ; „/D 0

formally. We then deduce that an equation:

(48)
P
l2L�

alC
l
gn. 1; : : : ;  Z ; „/D

P
r2R

arC
r
gn. 1; : : : ;  Z ; „/

where each C rgn. 1; : : : ;  Z ; „/ has length � � C 1, will hold formally. By
inductive repetition of this argument, we have our lemma. �

These lemmas will prove useful in the future. For now, we note that there
are many definitions of an identity holding formally. However, there will be no
confusion, since in each of the above cases the complete contractions involve tensors
that belong to different categories. Furthermore, in spite of the equivalence that the
above theorems and their corollaries imply, whenever we mention an identity in
this paper, we will mean (unless we explicitly state otherwise) that it holds at any
point and for every metric and set of functions (and maybe special tensors „ or
symmetric tensors �).

3.3. The isomorphism. We now conclude that:

PROPOSITION 1. Suppose that fC r
gN
. 1; : : : ;  Z/gr2R are complete contrac-

tions in the form (43) of weight �n. Suppose N � n. ThenP
r2R

arC
r
gN
. 1; : : : ;  Z/.x0/D 0
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for every .M n; gn/, every x0 2M n and any functions  l defined around x0 if and
only if : P

r2R

arC
r
gn. 1; : : : ;  Z/.x0/D 0

for every .M n; gn/, every x0 2M n and any functions  l defined around x0.

Proof. The above follows by virtue of Lemma 4. �

4. The silly divergence formula

Our aim here is to obtain a formula that expresses IZgn. 1; : : : ;  Z/ as a
divergence of a Riemannian vector field. This first, rather easy, divergence formula
is not useful in itself. It will be used, however, in the derivation of the much more
subtle simple divergence formula in the next section. For now, we claim:

PROPOSITION 2. Consider any linear combination IZgn. 1; : : : ;  s/ of con-
tractions in the form (31) for which

R
Mn I

Z
gn. 1; : : : ;  s/dVgn D 0 for every

compact .M n; gn/ and any  1; : : : ;  s 2 C1.M n/. Note that IZgn. 1; : : : ;  s/
defined in (29) satisfies this property.

We then claim that IZgn. 1; : : : ;  Z/ is formally equal to the divergence of a
Riemannian vector-valued differential operator of weight �nC 1 in  1.x/; : : : ;
 Z.x/.

Proof. In view of Lemma 2 in the previous subsection, it suffices to show that
there is a vector field T ign. 1; : : : ;  Z/ of weight �nC 1 so that:

IZgn. 1; : : : ;  Z/.x0/D diviT ign. 1; : : : ;  Z/.x0/

for any metric gn and for any functions  1; : : : ;  Z around x0. In order to show
this we do the following:

Suppose that

IZgn. 1; : : : ;  Z/D
P
j2J

ajC
j
gn. 1; : : : ;  Z/

where each of the complete contractions C jgn. 1; : : : ;  Z/ is in the form (31). Let
us sort out the different values of �1 that can appear among the different complete
contractions C jgn. 1; : : : ;  Z/. Suppose the set of those different values is the set
LD f�1; : : : ; �Kg where 0� �1 < � � �< �K .

Let JK � J be the set of the complete contractions C jgn. 1; : : : ;  Z/ with
�1 D �K . We then consider the linear combination:

Fgn. 1; : : : ;  Z/D
P
j2JK

ajC
j
gn. 1; : : : ;  Z/
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where each complete contraction C jgn. 1; : : : ;  Z/ is in the form (31) with the
same number �K of derivatives on  1. Out of Fgn. 1; : : : ;  Z/, we construct the
following vector-valued differential operator:

F ign. 1; : : : ;  Z/D
P
j2JK

aj .C
j /ign. 1; : : : ;  Z/

where .C j /ign. 1; : : : ;  Z/ is made out of C jgn. 1; : : : ;  Z/ by erasing the index
�1 in (31) and making the index that contracted against it in (31) into a free index.

Let us then observe the following:

LEMMA 5. The differential operator

QFgn. 1; : : : ;  Z/D Fgn. 1; : : : ;  Z/� diviF ign. 1; : : : ;  Z/

will be formally equal to a linear combination of complete contractions in the form
(31) (of weight �n), each of which has �K � 1 derivatives on the function  1.

Proof. This is straightforward by the construction of the vector-valued op-
erators .C j /ign. 1; : : : ;  Z/: Let the derivative ri in the divergence of each
.C j /ign. 1; : : : ;  Z/ hit the factor r�K�1 1. That summand in the divergence

will cancel out the complete contraction C jgn. 1; : : : ;  Z/. Every other complete
contraction in diviF ign. 1; : : : ;  Z/ will have �K�1 derivatives on  1. This gives
our desired conclusion. �

But then repeated application of Lemma 5 gives the following:
We can subtract a divergence of a vector field Lign. 1; : : : ;  Z/ of weight

�nC 1 from IZgn. 1; : : : ;  Z/, so that

Rgn. 1; : : : ;  Z/D I
Z
gn. 1; : : : ;  Z/� diviLign. 1; : : : ;  Z/

is a linear combination of complete contractions in the form (31), each of which
has �1 D 0.

We then observe that:

LEMMA 6. In the above notation, Rgn. 1; : : : ;  Z/ must vanish formally.

Proof. First observe that for any Riemannian manifold .M n; gn/ we will have:Z
Mn

Rgn. 1; : : : ;  Z/dVgn D 0:

This is straightforward, because of Lemma 5 and the definition of Rgn. 1; : : :
: : : ;  Z/; it is obtained from IZgn. 1; : : : ;  Z/ by subtracting a divergence.

Now, write Rgn. 1; : : : ;  Z/ as follows:

Rgn. 1; : : : ;  Z/D
P
l2L

alC
l
gn. 2; : : : ;  Z/ � 1:
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Then the equation

(49)
Z
Mn

Rgn. 1; : : : ;  Z/dVgn D

Z
Mn

 1 � Œ
P
l2L

alC
l
gn. 2; : : : ;  Z/�dVgn

holds for any function  1, and also the sum
P
l2L alC

l
gn. 2; : : : ;  Z/ is inde-

pendent of the function  1. But this shows that Rgn. 1; : : : ;  Z/ must vanish by
substitution. Hence, by Theorem 2, it must vanish formally. �

5. The simple divergence formula

5.1. The transformation law for IZ
gN

and definitions. Let IZgn. 1; : : : ;  Z/
be as in Proposition 2. We then have that IZgn. 1; : : : ;  Z/ is a divergence of a
vector-valued differential operator in  1.x/; : : : ;  Z.x/. This is useful in itself, but
we cannot extract information directly from this fact about P.gn/. Nevertheless, it
is useful in that we have a relation:

(50) IZgn. 1; : : : ;  Z/D diviLign. 1; : : : ;  Z/

which holds formally. But then Proposition 1 tells us the following:

LEMMA 7. Relation (50) holds for any dimension N � n. That is, considering
the complete contractions and the Riemannian vector fields in (50) in any dimension
N � n, we have the formula:

(51) IZ
gN
. 1; : : : ;  Z/D diviLigN . 1; : : : ;  Z/:

Proof. This is straightforward from Propositions 1 and 2. �

Therefore, we will have that for any .MN ; gN / and any  1; : : : ;  Z 2 C1.MN /:

(52)
Z
MN

IZ
gN
. 1; : : : ;  Z/dVgN D 0:

Now, equation (52) is not scale-invariant. This can be used to our advantage
in the following way: Pick out any point x0 2MN . Pick out a small geodesic ball
around x0, of radius ". From now on, we will assume the functions  1; : : : ;  Z
to be compactly supported in B.x0; "/. Then we can pick any coordinate system
around x0 and write out IZ

gN
. 1; : : : ;  Z/ in that coordinate system

(53)
Z

RN
IZ
gN
. 1; : : : ;  Z/dVgn D 0:

Now, let our coordinate system around x0 be fx1; : : : ; xN g. For that coordinate
system, we will denote each point in B.x0; "/ by Ex. Let also E� be an arbitrary vector
in RN . We then consider the following conformal change of metric in B.x0; "/:

OgN .x/D e2
E�� ExgN .x/:
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We have that (53) must also hold for this metric. The volume form will re-scale as
follows:

dV OgN .x/D e
N E�� ExdVgn.x/:

Now, we have that IZ
gN
. 1; : : : ;  Z/.x/ is a linear combination of complete

contractions in the form (31). So, in order to find how any given complete contraction
in the form (31) transforms under the above conformal change, it suffices to find
how each of its factors will transform. In order to do that, we can employ the
identities of the first section.

The transformation law of Ricci curvature, for this special conformal transfor-
mation, is given by equation (22), replacing � by Ex � E�. Recall that ri .E� � Ex/D E�i ,
therefore:

Ric Og
N

˛ˇ
.x/D Ricg

N

˛ˇ
.x/C .2�N/r2˛ˇ .

E� � Ex/(54)

��gN .
E� � Ex/gN˛ˇ C .N � 2/.

E�˛ E�ˇ � E�
k E�kg

N
˛ˇ /:

The scalar curvature will transform as:

(55) R Og
N

.x/D e�2
E�� ExŒRg

N

C 2.1�N/�gN .
E� � Ex/� .N � 1/.N � 2/E�k E�k�;

and the full curvature tensor:

R
OgN

ijkl
.x/D e2

E�� Ex
n
R
g

ijkl
.x/C ŒE�i E�kg

N
jl �
E�i E�lg

N
jkC

E�j E�lg
N
ik �
E�j E�kg

N
il �(56)

�r
2
ik.
E� � Ex/gNjl �r

2
jl.
E� � Ex/gNikCr

2
jk.
E� � Ex/gNil

Cr
2
il.
E� � Ex/gNjkCj

E�j2gNil g
N
jk � j

E�j2gNikg
N
lj �
o
:

Hence, in order to find the transformation laws for the covariant derivatives of
the full curvature tensor, the Ricci curvature tensor and of the factors rp h, we
will need the transformation law for the Levi-Civita connection in the case at hand:

(57) .rk�l/
OgN .x/D .rk�l/

gN
� E�k�l � E�l�kC E�

s�sg
N
kl :

These relations show that in (53), under the re-scaling gN .x/ �! OgN .x/D
e2
E�� ExgN .x/, the integrand IZ

gN
. 1; : : : ;  Z/.x/ undergoes a transformation as

follows:

(58) IZ
OgN
. 1; : : : ;  Z/.x/

D e�n
E�� ExŒIZ

gN
. 1; : : : ;  Z/.x/CS

Z
gN
. 1; : : : ;  Z ; E�/.x/�;

where SZ
gN
. 1; : : : ;  Z ; E�/ is obtained by applying the transformation laws is a

linear combination of complete contractions, each of which described above to each
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factor in every complete contraction in IZ
gN
. 1; : : : ;  Z/. SZgN . 1; : : : ;  Z ;

E�/

depends on E� . Hence equation (53) will give, for the metric OgN :

(59)
Z

RN
e.N�n/

E�� ExŒIZ
gN
. 1; : : : ;  Z/CS

Z
gN
. 1; : : : ;  Z ; E�/�dVgn D 0:

Roughly speaking, our goal for this subsection will be to perform integrations
by parts for the complete contractions in SZ

gN
. 1; : : : ;  Z ; E�/.x/ in order to reduce

equation (53) to the form:Z
RN

e.N�n/
E�� ExŒIZ

gN
. 1; : : : ;  Z/CL

Z
gN
. 1; : : : ;  Z/�dVgn D 0

where LZ
gN
. 1; : : : ;  Z/.x/ is independent of E� . This will be done and explained

rigorously below. Keeping this vaguely outlined strategy in mind, we note the
identity:

(60) rs.e
.N�n/E�� Ex/D .N �n/E�s.e

.N�n/E�� Ex/:

More generally, we denote by @ms1:::sk the coordinate derivative with respect to our
coordinate system. Then, for k > 1,

(61) @ks1:::sk .
E� � Ex/D 0

for every x 2 B.x0; "/.
Let us consider the Christoffel symbols �kij with respect to our arbitrary

coordinate system. Let

Srms1:::sm
E�j stand for rm.s1:::sm

E�j / and Srpr1:::rp�
k
ij stand for rp

.r1:::rp
�kij /:

Write IZ
gN
. 1; : : : ;  Z/ as a linear combination of complete contractions in the

following form:

(62) contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls ˝r
p1
t1:::tp1

Ric˛1ˇ1

˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1˝ � � �˝r
�Z
!1:::!�Z

 Z
�

where each of the factors rm1r1:::rm1Ri1j1k1l1 ; : : : ;r
ms
v1:::vms

Risjsksls has no two of
the indices i; j; k; l contracting against each other in (62).

Now, in dimension N , we can apply the identities (56), (54),(55) and (57) to
write SZ

gN
. 1; : : : ;  Z ; E�/ as a linear combination of complete contractions in the

following two forms:
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contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls ˝r
p1
t1:::tp1

Ric˛1ˇ1(63)

˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1

˝ � � �˝r
�Z
!1:::!�Z

 Z ˝ E�˝ � � �˝ E�
�
;

contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls ˝r
p1
t1:::tp1

Ric˛1ˇ1(64)

˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1˝ � � �˝r
�Z
!1:::!�Z

 Z ˝ E�

˝ � � �˝ E�˝SŒrw1u1:::uw1
E��˝ � � �˝SŒrwlq1:::qwl

E��
�
;

where each wa � 1. We also let k stand for the number of factors E� and l for the
number of factors Srw E� .

We will call complete contractions in the above two forms E�-contractions. In
order to see that we can indeed write SZ

gN
. 1; : : : ;  Z/ as a linear combination of

complete contractions in the above form, we only need the equation:

raSr
m
r1:::rm

E�j D Sr
m
ar1:::rm

E�j CCm�1 �S
�
r
m�1
r1:::rm�1

Raijd E�
d(65)

C
P

u2Um
aupcontr.rm

0

RabcdSr
su E�/;

where S�rm�1r1:::rm�1
Raijd stands for the symmetrization of rm�1r1:::rm�1

Raijd over
the indices r1; : : : ; rm�1; i and the symbol

pcontr.rm
0

RabcdSr
su E�/

stands for a partial contraction of at least one factor rmRajkl (to one of which the
index a belongs) against a factor Srsu E� with su � 1.

Our next goal is to answer the following: Given a fixed linear combination
IZgn. 1; : : : ;  Z/ and its rewriting IZ

gN
. 1; : : : ;  Z/ in any dimensionN �n, how

does SZ
gN
. 1; : : : ;  Z ; E�/ depend upon the dimension N ?

In order to answer this question, we will introduce certain definitions. Let us
for this purpose treat the function E� � Ex as a function !.x/. Hence E�i D ri .E� � Ex/
and we can speak of the rewriting of a E�-contraction in dimension N . We will
consider the complete contraction C ign. 1; : : : ;  Z ; E�/ together with its rewriting
C i
gN
. 1; : : : ;  Z ; E�/ in every dimension N � n and call this sequence a dimension-

independent complete contraction.
On the other hand, we define:

Definition 9. Any factor of the form E� or of the form SrmE�, m� 1, will be
called a E�-factor.

Definition 10. Consider a sequence fC.g;N/. 1; : : : ;  Z ; E�/g of complete con-
tractions times coefficients in dimensions N D n; nC 1; : : : where the following
formula holds: There is a fixed complete contraction, say Cgn. 1; : : : ;  Z ; E�/ and
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a fixed rational function Q.N/ so that:

C.g;N/. 1; : : : ;  Z ; E�/DQ.N/ �CgN . 1; : : : ;  Z ;
E�/

where CgN . 1; : : : ; Z ; E�/ is the rewriting of Cgn. 1; : : : ; Z ; E�/ in dimension N .
In that case, we will say that we have a dimension-dependent E�-contraction. Fur-
thermore, we will say that the three defining numbers of C.g;N/. 1; : : : ;  Z ; E�/
are .d; k; l/ where d is the degree of the rational function Q.N/, k is the number
of factors E� and l is the number of factors Srmi1:::im

E�a, m� 1.
(Given a rational function Q.N/ D P.N/=L.N/, we define the degree of

Q.N/, degŒQ.N /�D degŒP.N /�� degŒL.N /�. We also define the leading order
coefficient of Q.N/ to be aP =aL, where aP is the leading order coefficient of
P.N/ and aL is the leading order coefficient of L.N/).

Given a fixed set of numbers faig; i 2 I , and a set of dimension-dependent
E�-contractions C i

.g;N/
. 1; : : : ;  Z ; E�/, we can form in each dimension N � n the

linear combination:

LgN . 1; : : : ;  Z ;
E�/D

P
i2I

aiC
i
.g;N/. 1; : : : ;  Z ;

E�/:

Hence we obtain in this way a sequence of linear combinations, where the index
set for the sequence is the set ND fn; nC 1; : : : g.

Definition 11. A sequence of linear combinations as above is dimension-
dependent and is suitable if for each of the E�-contractions C i

.g;N/
. 1; : : : ;  Z ; E�/

its three defining numbers satisfy: kC l � d .

We then have:

LEMMA 8. SZ
gN
. 1; : : : ;  Z ; E�/ is a suitable linear combination of E�-con-

tractions of the form (63) and (64), with kC l � d � 1.

Proof. We write

IZ
gN
. 1; : : : ;  Z/D

P
i2I

aiC
i
gN
. 1; : : : ;  Z/

where each C i
gN
. 1; : : : ;  Z/ is in the form (31) and has weight �n.

We introduce some further terminology. We call the tensors

.rmr1:::rmRijkl/
gN ; .rpr1:::rp l/

gN ; .Srmr1:::rm
E�a/

gN ; E�i ; and gNij

the free tensors. We call partial contractions of those tensors the extended free
tensors. (Recall that a partial contraction means a tensor product with some pairs
of indices contracting against each other.)

We see that e�2E�� Ex.rmr1:::rmRijkl/
OgN , .rpr1:::rp l/

OgN can be written as linear
combinations of extended free tensors, after applying the identity (65), if necessary.
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Now, consider any complete contraction C i
gN
. 1; : : : ;  Z/ (in the form (31)) in

IZ
gN
. 1; : : : ;  Z/ and do the following: For each of its factors rmr1:::rmRijkl or

r
p
r1:::rp l , calculate:

e�2
E�� Ex.rmr1:::rmRijkl/

OgN
D

P
j2J 0

ajT
j

r1:::rmijkl

.rpr1:::rp l/
OgN
D
P
j2J

ajT
j
r1:::rp

where each T ri1:::is is an extended free tensor. We then replace each rmr1:::rmRijkl
by one e2E�� ExajT

j

r1:::rmijkl
and each rpr1:::rp l by one ajT

j
r1:::rp . After this, we

perform the same contractions of indices as in C i
gN
. 1; : : : ;  Z/, with respect to

the metric .gN /. We do this according to the following algorithm: Suppose we
are contracting two indices ˛; ˇ. If none of them belongs to a tensor gNij , we just
take that particular contraction. If ˛ but not ˇ belongs to a factor gN˛
 , we cross out
the index ˇ in the other factor and replace it by 
 , and then omit the gN˛
 . Finally,
if both the indices ˛; ˇ belong to the same factor gN

˛ˇ
, we cross out that factor

and bring out a factor of N . Adding over all those substitutions, we then obtain
en
E�� ExC i

OgN
. 1; : : : ;  Z/.

Thus, enE�� ExC i
OgN
. 1; : : : ;  Z/ is a dimension-dependent linear combination.

It follows from this that SZ
gN
. 1; : : : ;  Z ; E�/ is a dimension-dependent linear

combination, in the form:

SZ
gN
. 1; : : : ;  Z ; E�/D

P
l2L

N blC l
gN
. 1; : : : ;  Z ; E�/

where each complete contraction C l
gN
. 1; : : : ;  Z ; E�/ is in the form:

(66) contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls ˝r
�1
�1:::��1

 1

˝ � � �˝r
�Z
!1:::!�Z

 Z ˝ E�˝ � � �˝ E�˝Sr
w1
u1:::uw1

E�˝ � � �˝Srwlq1:::qwl
E�
�

where l � 0 and the factors rmRijkl are allowed to have internal contractions.
Therefore, what remains to be checked is that each dimension-dependent

E�-contraction N biC i
gN
. 1; : : : ;  Z ; E�/ in SZ

gN
. 1; : : : ;  Z ; E�/ with jE�j � 1 satis-

fies the identity kC l � d .
In order to see this, let us consider any summand T j

r1:::rmijkl
or T jr1:::rp and

denote by jgj the number of its factors gNij and by jE�j the number of its factors E�i
or Srmr1:::rm

E�a. It follows, from identities (56) and (57) that for each T j
r1:::rmijkl

or
T
j
r1:::rp we have jE�j � jgj.

By virtue of that inequality, the formula (65) (which shows us that if we
write a complete contraction in the form (66) as a linear combination of complete
contractions in the forms (63), (64), the number of E�-factors remains unaltered)
and the algorithm outlined above, we observe that for each dimension-dependent
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E�-contraction N biC i
gN
. 1; : : : ;  Z ; E�/, we will have that bi is less than or equal

to the number of factors E� or SrmE� in C i
gN
. 1; : : : ;  Z ; E�/. �

Definition 12. Consider any complete contraction CZ
gN
. 1; : : : ;  Z/, in the

form (62). Consider the quantity:

en
E�� ExCZ

e2E��ExgN
. 1; : : : ;  Z/.x/�C

Z
gN
. 1; : : : ;  Z/.x/

which can be computed by applying the identities (56), (54) (55), (57), (65) to each
factor in CZ

gN
. 1; : : : ;  Z/. We write:

en
E�� ExCZ

e2E��ExgN
. 1; : : : ;  Z/.x/�C

Z
gN
. 1; : : : ;  Z/.x/

D
P
t2T

atN
btC t

gN
. 1; : : : ;  Z ; E�/.x/

where each dimension-dependent E�-contraction N btC t
gN
. 1; : : : ;  Z ; E�/.x/ satis-

fies kC l � bt . Here C t
gN
. 1; : : : ;  Z ; E�/.x/ stands for the rewriting of C tgn. 1;

: : : ;  Z ; E�/.x/ in dimension N .
There are many expressions as above for

en
E�� ExCZ

e2E��ExgN
. 1; : : : ;  Z/.x/�C

Z
gN
. 1; : : : ;  Z/.x/

that are equal by substitution but not identical. Once we pick one such expression,
we will call each dimension-dependent E�-contraction N btC t

gN
. 1; : : : ;  Z ; E�/.x/

a descendant of CZ
gN
. 1; : : : ;  Z/.x/.

We are now near the point where we can integrate by parts in the relation (59).
At this stage, we will distinguish between descendants of the complete contractions
in IZ

gN
. 1; : : : ;  Z/.

Definition 13. For any complete contraction C i
gN
. 1; : : : ;  Z/ in IZ

gN
. 1;

: : : ;  Z/, we will call one of its descendants easy if d < l C k.
A descendant in the form (63) will be called good if d D k > 0 and l D 0.

A descendant in the form (64) will be called undecided if d D kC l and k; l > 0.
(That is, it contains at least one factor of the form Srp E�i with p � 1 and at least
one factor of the form E�).

Finally, a descendent in the form (64) with d D kC l will be called hard if
k D 0; l > 0 (that is, if all its E�-factors are of the form SrmE�j , with m� 1).

Thus, given (59) in any dimension N , we have SZ
gN
. 1; : : : ;  Z ; E�/ written

out as a linear combination of good, easy, undecided and hard complete contractions.

5.2. The integrations by parts for SZ
gN
. 1; : : : ;  Z ; E�/. We want to perform

integrations by parts in equation (59). We will treat the four cases above separately.
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Let us first treat the easy E�-contractions. Using (17), we write out each factor
of the form SrmE�s as a linear combination of partial contractions of the Christoffel
symbols and their derivatives (with respect to our arbitrarily chosen coordinate
system) and also of the vector E�. We also write out each of the tensors rmRijkl
as a linear combination of partial contractions of Christoffel symbols and their
derivatives. Hence, given an easy E�-contraction P.N/ �CZ

gN
. 1; : : : ;  Z ; E�/, we

express it in our coordinate system as:

(67) contr.@m1�kij ˝ � � �˝ @
ms�kij ˝r

p1 1˝ � � �˝r
pZ Z ˝ E�˝ � � �˝ E�/:

Hence we will have the following identity:

(68)
Z

RN
e.N�n/

E�� ExP.N/ �CZ
gN
. 1; : : : ;  Z ; E�/dVgn

D

Z
RN

e.N�n/
E�� ExP.N/ �

P
l2L

alContrl.@
m�; 1; : : : ;  Z ; E�/dVgn ;

where the degree of the polynomial P.N/ is strictly less than the number of
factors E� in the contraction Contrl.@m�; 1; : : : ;  Z ; E�/. Now, we use the identity
(60) in order to replace one factor E�i in the complete contraction by the factor
rie

.N�n/E�� Ex=.N � n/. We then integrate by parts with respect to the derivative
ri and note here that this integration by parts is with respect to the Riemannian
connection ri .

We get the following:

(69)
Z

RN
e.N�n/

E�� ExP.N/ �CZ
gN
. 1; : : : ;  Z ; E�/dVgn

D�

Z
RN

e.N�n/
E�� Ex P.N/

N �n

P
k2K

akContrk.@
m�; 1; : : : ;  Z ; E�/dVgn :

Each complete contraction Contrk.@m�; 1; : : : ;  Z E�/ is in the form (67).
Also, the number of factors E� in each contraction Contrk.@m�; 1; : : : ;  Z ; E�/ is by
one less than the number of such factors in the complete contraction CZ

gN
. 1; : : :

: : : ;  Z ; E�/. Hence, inductively repeating the above procedure we obtain:

(70)
Z

RN
e.N�n/

E�� ExP.N/ �CZ
gN
. 1; : : : ;  Z ; E�/dVgn

D

Z
RN

e.N�n/
E�� Ex P.N/

.N �n/w

P
k2K

akContrk.@
m�; 1; : : : ;  Z/dVgn ;

where we will have degŒP.N /�D d < w.

The good E�-contractions. Let us now deal with the good complete contractions
in SZ

gN
. 1; : : : ;  Z ; E�/. In this case it is useful not to write things out in terms of
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Christoffel symbols but to work intrinsically on the Riemannian manifold. We have
a good E�-contraction P.N/ �CZ

gN
. 1; : : : ;  Z ; E�/ in the form (63) and we want to

perform integration by parts in the integral:

(71)
Z

RN
e.N�n/

E�� ExP.N/ �CZ
gN
. 1; : : : ;  Z ; E�/dVgn :

We will again use the identity (60). Let us arbitrarily pick out one of the kD d
factors E� in CZ

gN
. 1; : : : ;  Z ; E�/. Now, use the identity (60) in order to replace the

factor E�i in the complete contraction by the factor

ri Œe
.N�n/E�� Ex�

N �n
:

We then integrate by parts with respect to the derivative ri . Let us again note that
this integration by parts is with respect to the Riemannian connection ri .

Now, if the E�-contraction CgN . 1; : : : ;  Z ; E�/ in the form (63) has L factors

(including the k factors E�), the integration by parts will produce a sum of L� 1
complete contractions. Explicitly, we will have:

(72)
Z

RN
e.N�n/

E�� ExP.N/ �CgN . 1; : : : ;  Z ;
E�/dVgn

D�

Z
RN

e.N�n/
E�� Ex P.N/

N �n
�

L�1P̨
D1

C ˛
gN
. 1; : : : ;  Z ; E�/dVgn :

We separate these E�-contractions C ˛
gN
. 1; : : : ;  Z ; E�/ into two categories: A

E�-contraction belongs to the first category if the derivative ri has hit one of the
factors rmRijkl , rpRic or rp k . Hence, we see that

P.N/

N �n
�C ˛
gN
. 1; : : : ;  Z ; E�/

is a linear combination of E�-contractions in the form (63) with k� 1 factors E�. If
k D 1, each will be in the form (62). Otherwise, each of them will be a good
E�-contraction.

On the other hand, a E�-contraction P.N/
N�n

�C ˛
gN
. 1; : : : ;  Z ; E�/ belongs to the

second category if the derivative ri hit one of the k� 1 factors E� . In that case, we
get a E�-contraction in the form (64) with k� 2 factors E� and one factor ri E� . It will
be an undecided or a hard E�-contraction.

Now, we can repeat the above intrinsic integration by parts for each of the
good E�-contractions P.N/

N�n
�C ˛
gN
. 1; : : : ;  Z ; E�/, each of the form (63) with k� 1

factors E�. Each of these integrations by parts will give a sum of E�-contractions,
L�kC1 of which are in the form (63) with k�2 factors E� and k�2 of them will
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be of the form (64) (either undecided or hard). Hence, we can form a procedure of
k steps, starting from CZ

gN
. 1; : : : ;  Z ; E�/ and integrating by parts one factor E� at

a time. At each stage we get a sum of good and of undecided or hard E�-contractions
out of this integration by parts. We then focus on the good E�-contractions that we
have obtained and we repeat the integration by parts. Thus, after this sequence of
integrations by parts we will have:

(73)
Z

RN
e.N�n/

E�� ExP.N/ �CZ
gN
. 1; : : : ;  Z ; E�/dVgn

D

Z
RN

e.N�n/
E�� ExŒ

P.N /

.N �n/k

P
j2J

ajC
j

gN
. 1; : : : ;  Z/

C
P
h2H

Ph.N /

.N �n/sh
C h
gN
. 1; : : : ;  Z ; E�/�dVgn

where the complete contractions C j
gN
. 1; : : : ;  Z/ are in the form (62) (they are

independent of the variable E�) and the E�-contractions C h
gN
. 1; : : : ;  Z ; E�/ are in

the form (64) and are undecided or hard. Each of the undecided E�-contractions
will have at most k�1 E�-factors. For each complete contraction C j

gN
. 1; : : : ;  Z/

we have that degŒP.N /�D k. For each complete contraction C h
gN
. 1; : : : ;  Z ; E�/,

with lh factors rE� and kh factors E� , we have khC lhC sh D degŒPh.N /�.

The undecided E�-contractions. We now proceed to integrate by parts the unde-
cided E�-contractions. Let CZ

gN
. 1; : : : ;  Z ; E�/ be an undecided E�-contraction in

the form (64). We will perform integrations by parts in the integral:Z
RN

e.N�n/
E�� Ex Ph.N /

.N �n/mh
CZ
gN
. 1; : : : ;  Z ; E�/.x/dVgn :

Let us suppose that the length of the E�-contraction (including the k factors E�
and the l factors SrmE�) is L. We will first integrate by parts the factors E�. We
pick one at random and integrate by parts as before, using the familiar formula (60).
We then get a sum of E�-contractions as follows:

(74)
Z
RN

e.N�n/
E�� Ex Ph.N /

.N �n/mh
�CZ
gN
. 1; : : : ;  Z ; E�/dVgn

D�

Z
RN

e.N�n/
E�� Ex Ph.N /

.N �n/mhC1
�

L�1P̨
D1

C
h;˛

gN
. 1; : : : ;  Z ; E�/dVgn :

We sort out the complete contractions according to what sort of factor was hit
by the derivative ri . If C h;˛

gN
. 1; : : : ;  Z ; E�/ arises when the covariant derivative

ri hits a factor of the form rmRijkl or rpRic or rp l , we get a E�-contraction
with k � 1 factors E� and l factors SrmE�, m � 1. If C h;˛

gN
. 1; : : : ;  Z ; E�/ arises
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when ri hits a factor E� , we get another E�-contraction with k�2 factors E� and lC1
factors SrmE� where m� 1.

Finally, if C h;˛
gN
. 1; : : : ;  Z ; E�/ arises when ri hits a factor SrmE�, we get

a factor riSrmE�. We then decompose that factor according to equation (65). In
either case, we have reduced by 1 the number of E�-factors.

The good E�-contractions we have already seen how to treat. Finally, if we get
an undecided E�-contraction, we have reduced the number of E�-factors.

The hard E�-contractions. Suppose that P.N/
.N�n/m

C
j
gn. 1; : : : ;  Z ;

E�/ is a hard
E�-contraction in the form (64) with k D 0. We pick out one of the l factors
Srmr1:::rm

E�j and write it as

Srm�1.r1:::rm�1
�krmj /

E�k :

We then integrate by parts the factor E�k and obtain a formula:

(75)
Z
RN
Œe.N�n/

E�� Ex P.N/

.N �n/m
C
j
gn. 1; : : :  Z ;

E�/�dVgn

D�

Z
RN
Œe.N�n/

E�� Ex P
h2Hj

P.N/

.N �n/mC1
C hgn. 1; : : :  Z ;

E�/�dVgn

where each complete contraction C hgn. 1; : : :  Z ; E�/ is either in the form (63) or
in the form (64) or in the form:

contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls(76)

˝r
p1
t1:::tp1

Ric˛1ˇ1 ˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1

˝ � � �˝r
�Z
!1:::!�Z

 Z ˝Sr
z1�kij ˝Sr

w1 E�˝ � � �˝Srwa E�˝ .E�/
�
,

where the symbol .E�/ means that there may or may not be a factor E� .
We see that each C hgn. 1; : : :  Z ; E�/ can be taken to be in the form (76), by the

following reasoning: If the covariant derivative rk hits a factor rmRijkl or rpRic
or r� l , then we will get a E�-contraction in the form (76). If it hits a factor SrmE�j ,
we apply the formula (65) and get a linear combination of E�-contractions in the
form (76). Finally, if it hits the factor Srm�kij , we will get a complete contraction
as in (76) with l � 1 factors SrmE�, and with an extra factor rkSrm�1�krmj . We
then apply the formula:

raSr
m
r1:::rm

�kij D Sr
mC1
ar1:::rm

�kij CCm �S
�
r
m
r1:::rm

Raij
k(77)

C
P

u2Um
aupcontr.rm

0

Rfghj ; Sr
xu�kbc/

where the symbol pcontr.rm
0

Rfghj ; Sr
xu�k

bc
/ (we call that sublinear combina-

tion the correction terms) stands for a partial contraction of at least one factor
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rm
0

Rfghj against a factor Srxu�k
bc

or a partial contraction of a � 2 factors
rm
00

Rf 0g 0h0j 0 . We recall that S�rmr1:::rmRaijk stands for the symmetrization of
the tensor rmr1:::rmRaijk over the indices r1; : : : ; rm; i; j .

Furthermore, we have that in each such partial contraction, the index a appears
in a factor rm

0

Rfghj .
In order to check that in each correction term there can be at most one factor

Srp�, we only have to observe that in order to symmetrize a tensor rkSrm�1�krmj ,
we only introduce correction terms by virtue of the formula Œrarb �rbra�Xc D
RabcdX

d , and the formula ra�kbc �rb�
k
ac DRabc

k . Hence, for each application
of the above formulas, we may decrease the number of factors rp� , but we cannot
increase it.

Thus we see that our E�-contraction will be a linear combination of E�-contrac-
tions in the form (76) or (64).

So, in general, we must integrate by parts expressions of the following form:Z
RN
Œe.N�n/

E�� Ex P.N/

.N �n/m
C
j
gn. 1; : : :  Z ;

E�/�dVgn

where the complete contraction C jgn. 1; : : :  Z ; E�/ is in the form:

contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls ˝r
p1
t1:::tp1

Ric˛1ˇ1(78)

˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1˝ � � �˝r
�Z
!1:::!�Z

 Z

˝Srz1�kij ˝ � � �˝Sr
zv�kij ˝Sr

u1 E�˝ � � �˝Srud E�˝ E�˝ � � �˝ E�
�
:

The integration by parts of such complete contractions can be done as before:
If there is a factor E� then we integrate by parts using it, and symmetrize and anti-
symmetrize as will be explained below. If there is no factor E�, we pick out one
factor Srmr1:::rm

E�j and write it as

Srm�1r1:::rm�1
�krmj

E�k :

We then integrate by parts with respect to the factor E�k , using the formula (60).
If the derivative rk hits a factor rmRijkl , or rp l , or rpRic, we leave them as
they are. If it hits a factor Srx�kij or a factor SrmE� , we apply the formulas, (65),
(77) respectively.

In the end, we will have the following formula for the integration by parts of a
hard E�-contraction CgN . 1; : : : ;  Z ; E�/:

(79)
Z
RN

e.N�n/
E�� Ex P.N/

.N �n/m
CgN . 1; : : : ;  Z ;

E�/dVgn

D

Z
RN

e.N�n/
E�� Ex P.N/

.N �n/m
0

P
s2S

asC
s
gN
. 1; : : : ;  Z/dVgn
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where the degree of the rational function P.N/

.N�n/m
0 is zero and the complete contrac-

tions C s
gN
. 1; : : : ;  Z/ are in the general form:

contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls(80)

˝r
p1
t1:::tp1

Ric˛1ˇ1 ˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq

˝r
�1
�1:::��1

 1˝ � � �˝r
�Z
!1:::!�Z

 Z ˝Sr
x1�

k1
ij ˝ � � �˝Sr

xu�
ku
ij

�
where u� 0. Therefore, by virtue of (77), we see that if Cgn. 1; : : : ;  Z/ is hard,
then the integrand on the right-hand side of (79) may apriori contain complete
contractions in the form (31). We accept this for the time being, although we
will later show, in Lemma 14 that, in fact, there will be cancellation among such
complete contractions.

5.3. The simple divergence formula. Therefore, after a series of integrations
by parts, the relation (59) can be brought into the form:

(81)
Z

RN
e.N�n/

E�� ExŒIZ
gN
. 1; : : : ;  Z/�

P
a2A

˛a
Pa.N /

.N �n/ra
C a
gN
. 1; : : : ;  Z/

�
P
b2B

ˇb
Pb.N /

.N �n/rb
C b
gN
. 1; : : : ;  Z/�dVgn D 0

where degŒPa.N /�D ra and degŒPb.N /� < rb . The complete contractions

Pa.N /

.N �n/ra
C
Z;a

gN
. 1; : : : ;  Z/.x/

have arisen from iterated integrations by parts of the good, the hard and the undecided
complete contractions. They are in the form (62) or (80). We may assume with
no loss of generality that the leading order coefficient of each of the polynomials
Pa.N / is 1, incorporating it in ˛a.

The complete contractions C b
gN
. 1; : : : ;  Z/.x/ have arisen from the easy

complete contractions. All of the complete contractions in the formula (81) have
arisen according to the procedure we outlined in the previous subsection.

Now, relation (81) shows us that the quantity between brackets is zero for
every x 2 B. Qx0; "/. In particular,

IZ
gN
. 1; : : : ;  Z/. Qx0/�

P
a2A

˛a
Pa.N /

.N �n/ra
C a
gN
. 1; : : : ;  Z/. Qx0/(82)

�
P
b2B

ˇb
Pb.N /

.N �n/rb
C b
gN
. 1; : : : ;  Z/. Qx0/D 0

for every Riemannian manifold .MN ; gN /, any functions  1; : : : ;  Z around
Qx02M

N and any coordinate system around Qx02MN . Now pick any .M n; gn/, any
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x02M
n and any coordinate system around x0. We defineMN DM n�S1�� � ��S1

(S1 has the standard flat metric and gN is the product metric). We pick Qx0 D
.x0; 0; : : : ; 0/ and consider the induced coordinate system around Qx0. Hence

IZgn. 1; : : : ;  Z/.x0/�
P
a2A

˛a
Pa.N /

.N �n/ra
C agn. 1; : : : ;  Z/.x0/(83)

�
P
b2B

ˇb
Pb.N /

.N �n/rb
C bgn. 1; : : : ;  Z/.x0/D 0

for every Riemannian manifold .M n; gn/, any functions  1; : : : ;  Z around x0 2
M n and any coordinate system around x0 2M n.

In equation (83), N is just a free variable. Hence, we can take the limit as
N �!1 in (83) and obtain the simple divergence formula:

(84) IZgn. 1; : : : ;  Z/.x0/�
P
a2A

˛aC
a
gn. 1; : : : ;  Z/.x0/D 0:

So we have disposed of the integrations by parts of the easy complete contractions.

6. The three refinements of the simple divergence formula

6.1. The first refinement: Separating intrinsic from un-intrinsic complete
contractions. We recall from the previous section that some of the complete con-
tractions in (84) will be in the form (62). On the other hand, we have also found
that there will be complete contractions in the general form (80), with u � 1.
Accordingly, we introduce the following dichotomy:

Definition 14. Complete contractions in the form (31) or (62) will be called
intrinsic. Complete contractions in the general form (80) with u > 0 will be called
un-intrinsic.

We consider, in (84), the two sub-linear combinations of the intrinsic and of
the un-intrinsic complete contractions. Written that way, (84) will be:

(85) IZgn. 1; : : : ;  Z/�
P
l2L

˛lC
l
gn. 1; : : : ;  Z/�

P
r2R

˛rC
r
gn. 1; : : : ;  Z/D 0

where the complete contractions C lgn. 1; : : : ;  Z/.x/ are the intrinsic ones and
the complete contractions C rgn. 1; : : : ;  Z/.x/ are the un-intrinsic ones. We have,
of course, that L[RD A.

Our next goal is to show that:

(86) IZgn. 1; : : : ;  Z/.x/�
P
l2L

˛lC
l
gn. 1; : : : ;  Z/.x/D 0

which is equivalent to proving:

(87)
P
r2R

˛rC
r
gn. 1; : : : ;  Z/.x/D 0:
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So let us focus on showing (86). We treat the value of the left-hand side of
(84) as a function of the coordinate system wanting to show, roughly speaking, that
the tensors Srm�kij .x0/ are not independent of the coordinate system in which
they are expressed. In other words, they are not intrinsic tensors of the Riemannian
manifold .M n; gn/.

LEMMA 9. (86) holds.

Proof. We consider the tensors Srms1:::sm�
k
ij .x0/, �

k
ij .x0/, written out in any

coordinate system. We want to see what their values can be, given our metric gn

around x0.
We need to recall the following fact from [13]: Consider a coordinate trans-

formation around the point x0 2M n. Let us say we had coordinates fx1; : : : ; xng
and now we have coordinates fy1; : : : ; yng. Then the Christoffel symbols �kij will
transform as follows:

(88) Q����
@xl

@y�
.x0/D �

l
ij .x0/

@xi

@y�
@xj

@y�
C

@2xl

@y�@y�
.x0/

(where Q����.x0/ stands for the Christoffel symbols in the new coordinate system).
Now, the tensors rmRijkl are intrinsic tensors of the Riemannian manifold.

That means that they satisfy the intrinsic transformation law under coordinate
changes, as in [13].

We will need the following lemma:

LEMMA 10. Consider a point x0 2M n and a coordinate system fx1; : : : ; xng
around x0 for which gnij .x0/D ıij . Then, given any list of special tensors T kr1:::rpC2 ,
which are symmetric in the indices r1; : : : rpC2, there is a coordinate system fy1; : : :
: : : ; yng around x0 2M n so that the tensors Srpr1:::rp�

k
rpC1rpC2

have the values
of the arbitrarily chosen tensors T kr1:::rpC2 at x0 and furthermore we have that

Œ@y
@x
�.x0/D Idn�n and gnij D ıij (with respect to the new coordinate system).

Proof. We observe that by [13] when we change the coordinate system fx1; : : :
: : : ; xng into fy1; : : : ; yng, the tensors rpr1:::rp�

l
rpC1rpC2

will transform as follows:

(89) rp
r 01:::r

0
p

Q��
r 0
pC1

r 0
pC2

@xl

@y�
.x0/Dr

p
r1:::rp

� lrpC1rpC2
@xr1

@yr
0
1

: : :
@xrpC2

@yr
0
pC2

.x0/

C
@pC2xl

@yr
0
1 : : : @yr

0
pC2

.x0/C
P�

@f �;
@hx

@hy

�
.x0/

where Q� stands for the Christoffel symbols in the new coordinate system andP
.@f �; @hx=@hy/ stands for a linear combination of partial contractions of factors

against factors @hx=@hy with h < pC 2.
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Now, we can prescribe

@pC2xl

@yr
0
1 : : : @yr

0
pC2

.x0/

to have any symmetric value in the indices r1; : : : ; rpC2. Therefore, if we write out
the transformation law for Srpr1:::rp�

k
rpC1rpC2

.x0/ under coordinate changes, then
the linearized part of its transformation law will be precisely

@pC2yl

@xr1 : : : @xrpC2
.x0/:

Hence, by induction on p, we have our lemma. �

We call these arbitrary tensors T kr1:::rpC2 the un-intrinsic free variables. By
construction, they satisfy T kr1:::rpC2.t

2gn/D T kr1:::rpC2.g
n/. Thus, they are special

tensors.
But then it is straightforward to check Lemma 9. We can break equation (85)

into two summands: the left-hand side of (86) plus the left-hand side of (87). We
may then pick any � 2 R and a new coordinate system so that .Srp�kij /

0.x0/D

� � .Srp�kij /.x0/. (Here .Srp�kij /
0.x0/ stands for the value of Srp�kij .x0/ with

respect to the new coordinate system). We can then see the left-hand side of (85)
as a polynomial in �, ….�/. We have that the constant term of ….�/ must be zero.
Also, the constant term of ….�/ is precisely the left-hand side of (86). We have
shown our lemma. �

6.2. The second refinement: An intrinsic divergence formula. We begin this
subsection with one more convention. Given an equation of the form:

(90)
P
l2L

alC
l
gn. 1; : : : ;  Z ;

E�/D 0

where each C lgn. 1; : : : ;  Z ; E�/ is a complete contraction in the form (64), we will

be thinking of the factors Srmr1:::rm
E�j (m� 0) as symmetric .mC 1/-tensors in the

indices r1; : : : ; rm; j so that

Srmr1:::rm
E�j .t

2gn/D Srmr1:::rm
E�j .g

n/:

This condition trivially holds sincermr1:::rm
E�j Dr

mC1
r1:::rmj

.Ex �E�/. Moreover, we imply
that the above equation holds for every x0 2 .M n; gn/ (gn can be any Riemannian
metric), any functions  1; : : : ;  Z defined around x0, any vector E� 2 Rn and any
coordinate system defined around x0.

Now, we define C lgn. 1; : : : ;  Z ; �/ to stand for complete contraction that
arises from C lgn. 1; : : : ;  Z ;

E�/ by replacing each factor Srmr1:::rm
E�j by an auxil-

iary symmetric tensor �r1:::rmj . We claim:
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LEMMA 11. Assuming (90) (as explained above), we have that:

(91)
P
l2L

alC
l
gn. 1; : : : ;  Z ; �/D 0

will hold for every x0 2 .M n; gn/ (gn can be any Riemannian metric), any functions
 1; : : : ;  Z defined around x0 and any symmetric tensors �i1:::is .

Proof. First, we observe that for every sequence �i1 ; : : : ; �i1:::is ; : : : of
symmetric tensors for which �i1 ¤ 0, we have that there is vector E� 2 Rn and also
a coordinate system around x0 2M n so that:

E�i1 D�i1 ; : : : ; Sr
m
r1:::rm

E�j D�r1:::rmj ; : : : :

This is clear by virtue of the formula Srmr1:::rm
E�j D Sr

m�1
r1:::rm�1

�krmj
E�k and by

Lemma 10.
Now, for any sequence �i1 ; : : : ; �i1:::is ; : : : where �i1 D 0, we only have to

consider any vector E"i where jE"i j is small. We then have that there is a coordinate
system so that E�i D E"i and Srmr1:::rm

E�j D �r1:::rmj , for every m � 1. Letting
E"i �! 0, we obtain our lemma. �

Now, the aim of this subsection is to further refine Lemma 9. We will need
certain preliminary observations. Notice the following: Let us pick out one E�-
contraction Q.N/ �C l

gN
. 1; : : : ;  Z ; E�/ of the form (64) with kC l � jE�j. We have

then treated the integralsZ
RN

e.N�n/
E�� ExQ.N/ �C l

gN
. 1; : : : ;  Z ; E�/dVgn

and performed integrations by parts, obtaining a relation

(92)
Z
RN

e.N�n/
E�� ExQ.N/ �C l

gN
. 1; : : : ;  Z ; E�/dVgn

D

Z
RN

e.N�n/
E�� Ex P

s2S l
Qs.N /C

l;s

gN
. 1; : : : ;  Z/dVgn

where the degree of the rational function Qs.N / is zero. Adding up all the integra-
tions by parts, writing things in dimension n and taking the limit N �!1 gives
us the formula (84). We call this procedure by which we integrate by parts one
E�-factor at a time the iterative procedure of integrating by parts.

After all the integrations by parts for a E�-contraction as in (92), we will call
the quantity:

limN�!1
P
s2S

Qs.N /C
l;s
gn . 1; : : : ;  Z/

the final outcome of the iterative integration by parts. This is denoted by

F ŒQ.N/C lgn. 1; : : : ;  Z ;
E�/�:



ON THE DECOMPOSITION OF GLOBAL CONFORMAL INVARIANTS, I 1279

Recall that we are assuming the leading order coefficient of Qs.N / to be 1.
We make a further notational convention: When we write out the good or undecided
or hard E�-contractions and also when we integrate by parts, we will be omitting the
dimensional rational functionQi .N /. This is justified by the fact that we eventually
take a limit N �!1. So all the formulas that appear in this section will be true
after we take the limit N �! 1. We refer to this notational convention as the
N -cancelled notation.

As an example of this notational convention, we apply the third summand on
the right-hand side of the formula (57) to the pair .m;m/ in rmRmjkl and bring
out E�mRmjkl instead of saying that we bring out N E�mRmjkl . Also, we replace
a factor Ricij by �ri E�j or a factor R by �jE�j2 (instead of �Nri E�j or �N 2jE�j2

respectively).

Observation 1. The formal expression for F ŒC lgn. 1; : : : ;  Z ; E�/� depends on
the order in which we perform the integrations by parts. In general, whenever we
make reference to the integrations by parts, we assume that we arbitrarily pick an
order in which to perform integrations by parts, subject to the restrictions imposed
in the corresponding section or any extra restrictions we wish to impose.

We need some conventions to state and prove our Lemma for this subsection:

Definition 15. In N -cancelled notation: Consider any good or undecided
E�-contraction Cgn. 1; : : : ;  Z ; E�/, in the form (63) or (64), with E�-factors in
Cgn. 1; : : : ;  Z ; E�/ is kC l . We perform the iterative integrations by parts, subject
to the following restriction: In each step of the iterative integration by parts, suppose
we start off with X E�-factors. We integrate by parts with respect to a factor E�i and
obtain a linear combination of E�-contractions (each in the form (63) or (64)), each
withX�1 E�-factors. In that linear combination we cross out the hard E�-contractions.
We then pick out one of the E�-contractions remaining (it will either be good or
undecided) and again integrate by parts with respect to a factor E� . After kC l steps,
this procedure will terminate and there remains an expression:Z

RN
e.N�n/

E�� Ex P
h2H

ahQh.N /C
h
gN
. 1; : : : ;  Z/dVgN :

Each complete contraction C h
gN
. 1; : : : ;  Z/ is in the form (62) and the

rational function Qh.N / has degree 0 and leading order coefficient 1.
Define

P
h2H ahC

h
gn. 1; : : : ;  Z/ to be the outgrowth ofCgn. 1; : : : ;  Z ; E�/;

we denote it by OŒCgn. 1; : : : ;  Z ; E�/�.

We claim:



1280 SPYROS ALEXAKIS

PROPOSITION 3. Consider the sublinear combination QSZgn. 1; : : : ;  Z ; E�/ of
SZgn. 1; : : : ;  Z ;

E�/ which consists of the good and the undecided E�-contractions.
If in our N -cancelled notation

QSZgn. 1; : : : ;  Z ;
E�/D

P
l2L

alC
l
gn. 1; : : : ;  Z ;

E�/

then we claim:

(93) IZgn. 1; : : : ;  Z/C
P
l2L

alOŒC
l
gn. 1; : : : ;  Z ;

E�/�D 0:

Proof of Proposition 3. Suppose that the linear combination of the hard
E�-contractions encountered along the iterative integration by parts of C lgn. 1; : : :
: : : ;  Z ; E�/ is

P
b2Bl abC

b
gn. 1; : : : ;  Z ;

E�/. We can then write:

F ŒC lgn. 1; : : : ;  Z ;
E�/�DOŒC lgn. 1; : : : ;  Z ;

E�/�(94)

C
P
b2Bl

abF ŒC
b
gn. 1; : : : ;  Z ;

E�/�:

Now, let us note the following fact for the final outcome of the iterative
integration by parts of a hard E�-contraction C ugn.�; E�/, in the form (64) with k D 0,
l > 0.

LEMMA 12. Suppose that:

F ŒC ugn.�;
E�/�D

P
y2Y u

ayC
y
gn.�/:

Then, there will be one complete contraction ayC
y
gn.�/ (along with its coefficient)

which is obtained from C ugn.�;
E�/ by replacing each of the l factors Srmr1:::rm

E�j

by �Srm
dr1:::rm�1

�drmj . That complete contraction arises when each derivative
rd , in the integration by parts of Srmr1:::rm

E�j D Sr
m�1
r1:::rm�1

�drmj
E�d , hits the factor

Srm�1r1:::rm�1
�drmj , and then we symmetrize using (77). We denote this complete

contraction by DF ŒC lgn. 1; : : : ;  Z ; E�/�.
Furthermore, other complete contractions ayC

y
gn.�/ in F ŒC ugn.�; E�/� will

have strictly less than l un-intrinsic free variables Srmr1:::rm�
d
ij for which d con-

tracts against one of the indices r1; : : : ; rm; i; j in C ygn.�/.

Proof. This follows from the procedure by which we integrate by parts and
also from the formula (77). �

Next, we consider the sublinear combination of good, hard and undecided
E�-contractions in SZgn. 1; : : : ;  Z ; E�/:P

l2L

alC
l
gn. 1; : : : ;  Z ;

E�/:
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We break up the index set L as follows: l 2 L1 if and only if C lgn. 1; : : : ;  Z ; E�/
is good or undecided; l 2 L2 if and only if C lgn. 1; : : : ;  Z ; E�/ is hard.

For any hard E�-contraction Cgn.�; E�/, we break up the linear combination
F ŒCgn.�; E�/� into the sublinear combination F IntrŒCgn.�; E�/� of intrinsic complete
contractions and the sublinear combination F UnIntrŒCgn.�; E�/� of unintrinsic com-
plete contractions.

We can then rewrite (86) as:

IZgn. 1; : : : ;  Z/C
P
l2L1

alOŒC
l
gn. 1; : : : ;  Z ;

E�/�(95)

C
P
l2L1

al
P
b2Bl

abF
IntrŒC bgn. 1; : : : ;  Z ;

E�/�

C
P
l2L2

alF
IntrŒC lgn. 1; : : : ;  Z ;

E�/�D 0

and also (87) as:

(96)
P
l2L1

al
P
b2Bl

abF
UnIntrŒC bgn. 1; : : : ;  Z ;

E�/�

C
P
l2L2

alF
UnIntrŒC lgn. 1; : : : ;  Z ;

E�/�D 0:

We then claim:

LEMMA 13. We have that:P
l2L1

al
P
b2Bl

abF
IntrŒC bgn. 1; : : : ;  Z ;

E�/�

C
P
l2L2

alF
IntrŒC lgn. 1; : : : ;  Z ;

E�/�D 0

for every .M n; gn/, every  1; : : : ;  Z .

Proving this will also show Proposition 3. We will in fact prove a stronger
statement than Lemma 13:

LEMMA 14. We have

(97)
P
l2L1

al
P
b2Bl

abC
b
gn. 1; : : : ;  Z ;

E�/C
P
l2L2

alC
l
gn. 1; : : : ;  Z ;

E�/D 0

for any point x0, any metric gn around x0, any functions  1; : : : ;  Z and any
coordinate system.

Proof that Lemma 13 follows from Lemma 14. Consider the linear combinationP
l2L1

al
P
b2Bl

abN
pbQb.N /C

b
gN
. 1; : : : ;  Z ; E�/

C
P
l2L2

alN
plQl.N /C

l
gN
. 1; : : : ;  Z ; E�/
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of the hard E�-contractions put aside, without the N -cancelled notation. Here, the
rational functions Qb.N /;Ql.N / have degree zero and leading order coefficient 1.
Moreover, if we denote by jE�jb; jE�jl the number of E�-factors in C bgn. 1; : : : ;  Z ; E�/,
C lgn. 1; : : : ;  Z ;

E�/ respectively, we will have that pb D jE�jb and pl D jE�jl .
For the purposes of this proof, we will consider any hard or easy E�-contraction

N aQa.N /CgN . 1; : : : ;  Z ;
E�/, where Qa.N / has degree zero and leading order

coefficient one. We perform the iterative integrations by parts, as explained in the
previous subsection, and obtain a relation:

(98)
Z

R

e.N�n/
E�� ExN aQa.N /CgN . 1; : : : ;  Z ;

E�/dVgn

D

Z
R

e.N�n/
E�� ExŒ

P
u2U

au
N a

.N �n/pu
Qa.N /C

u
gN
. 1; : : : ;  Z/�dVgn

where either aDpu for every u2U or a <pu for every u2U , depending whether
CgN . 1; : : : ;  Z ;

E�/ is hard or easy, respectively. We then denote the expression
between brackets by EŒN aQa.N /CgN . 1; : : : ;  Z ;

E�/�.
As before, we break EŒN aQa.N /CgN . 1; : : : ;  Z ;

E�/� into two sublinear
combinations

EIntrŒN aQa.N /CgN . 1; : : : ;  Z ;
E�/�;

EUnintrŒN aQa.N /CgN . 1; : : : ;  Z ;
E�/�;

that consist of the intrinsic and un-intrinsic complete contractions, respectively.
Now, in view of Lemma 14, it follows that:

(99)
P
l2L1

al
P
b2Bl

abN
pbQb.N /C

b
gN
. 1; : : : ;  Z ; E�/

C
P
l2L2

alN
plQl.N /C

l
gN
. 1; : : : ;  Z ; E�/

D
P
w2W

awN
pwQw.N /C

w
gN
. 1; : : : ;  Z ; E�/

where each E�-contraction NpwQw.N /C
w
gN
. 1; : : : ;  Z ; E�/ is easy, and moreover

the rational function Qw.N / has degree zero and leading order coefficient one. We
deduce that:

(100)
P
l2L1

al
P
b2Bl

abEŒN
pbQb.N /C

b
gN
. 1; : : : ;  Z ; E�/�

C
P
l2L2

alEŒN
plQl.N /C

l
gN
. 1; : : : ;  Z ; E�/�

D
P
w2W

awEŒN
pwQw.N /C

w
gN
. 1; : : : ;  Z ; E�/�
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and therefore:

(101)
P
l2L1

al
P
b2Bl

abE
IntrŒNpbQb.N /C

b
gN
. 1; : : : ;  Z ; E�/�

C
P
l2L2

alE
IntrŒNplQl.N /C

l
gN
. 1; : : : ;  Z ; E�/�

D
P
w2W

awE
IntrŒNpwQw.N /C

w
gN
. 1; : : : ;  Z ; E�/�:

We then define a new operation Oplim that acts on linear combinationsP
h2H

ahEŒN
plQl.N /C

h
gN
. 1; : : : ;  Z ; E�/�

(where NplQl.N /C
h
gN
. 1; : : : ;  Z ; E�/ may be either hard or undecided), by re-

writing them in dimension n (thus the coefficients N are now independent of the
dimension n) and letting N �!1. We act on the linear combinations on the left
and right hand sides of the above by the operation Oplim and deduce:

(102)
P
l2L1

al
P
b2Bl

abF
IntrŒC b

gN
. 1;:::; Z ;E�/�C

P
l2L2

alF
IntrŒC l

gN
. 1;:::; Z ;E�/�

D
P
w2W

awOplimfEIntrŒNpwQw.N /C
w
gN
. 1;:::; Z ;E�/�g D 0:

Thus, we indeed have that Lemma 13 follows from Lemma 14. �

Proof of Lemma 14. We rewrite (97) in the form:P
l2L

al.C
l/gn. 1; : : : ;  Z ; E�/D 0:

Now, l 2L� if and only if C lgn. 1; : : : ;  Z ; E�/ has �> 0 factors SraE� . We prove
the following: Suppose that for some M > 0 and every � >M :P

l2L�

al.C
l/gn. 1; : : : ;  Z ; E�/D 0:

We will then show that:

(103)
P

l2LM

al.C
l/gn. 1; : : : ;  Z ; E�/D 0:

If we can show the above claim, our proof will follow by induction. Now, recall
that if for some linear combination of hard E�-contractions we have (in N -cancelled
notation) that

P
r2R arC

r
gn. 1; : : : ;  Z ;

E�/D 0, then, by the argument above, it
follows that: P

r2R

arF
UnIntrŒC rgn. 1; : : : ;  Z ;

E�/�D 0:

Therefore, in view of our induction hypothesis,

(104)
P
�>M

P
l2L�

alF
UnIntrŒ.C l/gn. 1; : : : ;  Z ; E�/�D 0:
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Therefore, for the proof of our inductive statement we may assume that the above
sublinear combination from (96) has been crossed out when we refer to (96).

In order to show (103), we will initially show:

(105)
P

l2LM

alDF Œ.C
l/gn. 1; : : : ;  Z ; E�/�D 0:

First, for any complete contraction in the form (79), we call a factor Sr�r1:::r��
k
ij

where the index k contracts against one of the indices r1; : : : ; j a useful factor. Any
complete contraction in (96) which does not belong to the sublinear combination
(103) will have strictly less than M useful factors. This follows from our definition
of the index set LM and Lemma 12.

Now, denote by Special.
P
l2LM

/ the sublinear combination in (105) that
consists of complete contractions all of whose factors in the form Srp�kij satisfy
p � 1. It follows that:

(106) Special.
P

l2LM

/D 0

by substitution. But then, in view of Lemma 4 we have that (106) holds formally.
Then notice that under all the permutation identities in Definition 8, the number
of factors Srp

f1:::fp
�kij where the index k contracts against one of the indices

f1; : : : ; j remains invariant. Hence, since the left-hand side of (105) is the sublinear
combination in (96) with the maximum number of useful factors, (105) follows.

But then (105) holds formally (again by Lemma 4). Hence, we imitate the
permutations of factors in (105) to make it formally zero for the E�-contractions in
(103). We only have to observe that if we can permute the indices of two tensors
SrmC1

dr1:::rm
�dij .x0/, Sr

mC1
dr 01:::r

0
m
�di 0j 0.x0/ to make them formally identical, we can

then also permute the indices of the tensors

Srmr1:::rm�
k
ij .x0/

E�k; Sr
m
r 01:::r

0
m
�ki 0j 0.x0/

E�k

to make them formally identical. This shows Lemma 13 and thus Proposition 3. �

6.3. The third refinement: The super divergence formula. We begin this sub-
section with a few definitions.

Definition 16. A E�-contraction Cgn. 1; : : : ;  Z ; E�/ will be called stigmatized
if it is in the form (64) and each of its factors E� contracts against another factor E�.
We note that Cgn. 1; : : : ;  Z ; E�/ is allowed to contain factors SrmE� , m� 1.

Now, consider any good or undecided E�-contraction Cgn. 1; : : : ;  Z ; E�/ and
consider its iterative integration by parts.

Definition 17. We define the pure outgrowth of Cgn. 1; : : : ;  Z/ to be the
sublinear combination of the outgrowth by discarding additionnal terms and impos-
ing additionnal restrictions on the integration by parts:First, whenever we encounter
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a hard E�-contraction we discard it. Second, whenever we encounter a stigmatized
E�-contraction we also discard it. Lastly, if we have a E�-contraction which is neither
hard nor stigmatized, we will choose to integrate by parts with respect to a factor E�
that does not contract against another factor E�.

In the end, we will be left with a linear combination:Z
RN

e.N�n/
E�� Ex P

h2H

Qh.N / � ahC
h
gN
. 1; : : : ;  Z/dVgN :

Each complete contraction C h
gN
. 1; : : : ;  Z/ is in the form (62) and the rational

function Qh.N / has degree 0 and leading order coefficient 1.
We define: POŒCgn. 1; : : : ;  Z/�D

P
h2H ahC

h
gn. 1; : : : ;  Z/.

Our goal for this subsection will be to show:

PROPOSITION 4. If the sublinear combination of good and undecided E�-con-
tractions in SZgn. 1; : : : ;  Z ; E�/ is

P
l2L alC

l
gn. 1; : : : ;  Z ;

E�/, then:

(107) IZgn. 1; : : : ;  Z/C
P
l2L

alPOŒC
l
gn. 1; : : : ;  Z ;

E�/�D 0:

Before proving this proposition, we will need some preliminary lemmas.

LEMMA 15.Consider a good or undecided E�-contraction Cgn. 1; : : : ;  Z;E�/,
in the form (63) or (64). Suppose that Cgn. 1; : : : ;  Z ; E�/ has ˛ factors jE�j2 and
ˇ factors R (scalar curvature). Consider the iterative integration by parts (as in the
previous subsection) of Cgn. 1; : : : ;  Z ; E�/. Then, at each step along the iterative
integration by parts of Cgn. 1; : : : ;  Z ; E�/, the number of factors jE�j2 and the
number of factors R does not increase.

Proof. The proof is by induction, following the iterative integration by parts. �

We also define:

Definition 18. Given any E�-contraction Cgn. 1; : : : ;  Z ; E�/ in the general
form (64), let A be the number of its factors rmRijkl , rpRic, Z be the number of
factors rp l , C the number of its factors SrmE� (with m� 1), D the number of
its factors jE�j2 and E the number of its factors E� that do not contract against another
factor E�. We then define the E�-length of Cgn. 1; : : : ;  Z/ to be ACZCC CD.
For any partial contraction in the form (63) or (64), or any E�-contraction with factors
ruE� (non-symmetrized), we define its E�-length in the same way.

We now seek to understand how any given complete contraction Cgn. 1; : : :
: : : ;  Z/ in the form (62) can give rise to good, undecided or hard E�-contractions
under the re-scaling

OgN D e2
E�� ExgN :
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Definition 19. Let us consider any dimension-dependent complete contraction
Q.N/ �CgN . 1; : : : ;  Z ;

E�/, where CgN . 1; : : : ;  Z ; E�/ is in the form (64), with
factors rmE� instead of SrmE�. We will call such a E�-contraction de-symmetrized.
Recall that jE�j stands for the number of E�-factors. We will call such a dimension-de-
pendent E�-contraction acceptable if degŒQ.N/�DjE�j and unacceptable if degŒQ.N/�
< jE�j.

Now, consider any Cgn. 1; : : : ;  Z/, which is in the form (62). We want
to understand how the sublinear combination of acceptable complete contractions
arises in enE�� ExC

e2E��Exg
N . 1; : : : ;  Z/. We need one small convention before making

our definition: Whenever we have a factor rmr1:::rmRicij withm� 1, we will assume
that i; j are not contracting between themselves. This can be done with no loss
of generality by virtue of the formula raR D 2rbRicab . Thus, we think of our
complete contraction as being in the form:

(108) contr
�
r
m1
r1:::rm1

Rijkl ˝ � � �˝r
ms
t1:::tms

Rijkl ˝r
p1
r1:::rp1

Ricij
˝ � � �˝r

pq
t1:::tpq

Ricij ˝R˛˝rp1a1:::ap1 1˝ � � �˝r
pZ
b1:::bpZ

 Z
�

where the factors rmRijkl do not have internal contractions between the indices
i; j; k; l , the factors rpRicij do not have internal contractions between the indices
i; j . We are now ready for our definition.

Definition 20. We consider internally contracted tensors in one of the following
forms: rpr1:::rp l , r

p
r1:::rpRicij , rpr1:::rp E�j or rpr1:::rpRijkl . The indices that are

not internally contracted are considered to be free.
We will call a pair of internally contracting indices, at least one of which is

a derivative index, an internal derivative contraction. We now want to define the
good substitutions of each tensor above.

For the tensor rpr1:::rp l , we denote the pairs of internal contractions by
.ra1 ; rb1/; : : : .ral ; rbl /. The ordering of the indices ra; rb in .ra; rb/ is arbitrarily
chosen. We define the set of good substitutions of the tensor rpr1:::rp l as follows:
For any subset fw1; : : : ; wj g � f1; : : : ; lg (including the empty set) the tensor

E�
rbw1 : : : E�

rbwj r
p�j

r1::: Oraw1
:::rp

 l

is a good substitution of rpr1:::rp l . We similarly define the set of good substitutions
of any tensor rpr1:::rpRicrpC1rpC2 ; r

p
r1:::rp

E�rpC1 or rpr1:::rpRrpC1rpC2rpC3rpC4 (this
last is allowed to have internal contractions, but not among the set rpC1; : : : ; rpC4):
For any tensor above, let the set of pairs of internal derivative contractions be
.ra1 ; rb1/; : : : ; .ral ; rbl /. The order of ra; rb in .ra; rb/ is arbitrarily chosen, but ra
must be a derivative index. Also, for the factor rpr1:::rpRicrpC1rpC2 , if p � 1, we
assume that the indices rpC1; rpC2 do not contract against each other.
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Then, we define the set of good substitutions of any tensor as above as follows:
For any subset fw1; : : : ; wj g � f1; : : : ; lg (including the empty set), the tensor

E�
rbw1 : : : E�

rbwj r
p�j

r1::: Oraw1
:::rp

RicrpC1rpC2 or

E�
rbw1 : : : E�

rbwj r
p�j

r1::: Oraw1
:::rp
E�rpC1 or

e�2
E��
ExE�bw1 : : : E�

bwj r
p�j

r1::: Oraw1
:::rp

RrpC1rpC2rpC3rpC4 ;

respectively, is a good substitution.
We define any partial contraction C i1:::isgn . 1; : : : ;  Z ; E�/ in the form (63) or

(64) to be nice if in no factor E�i is the index i free and no factor E� contracts against
another factor E� in C i1:::isgn . 1; : : : ;  Z ; E�/.

We are now ready for the lemma on acceptable descendants. We want to
study the transformation law of any Cgn. 1; : : : ;  Z/ in the form (62) under
the re-scaling gN �! OgN D e2

E�� ExgN . We do this in steps: Pick out any fac-
tor T sa1:::aj in Cgn. 1; : : : ;  Z/ and make the indices ai that contract against
any other factor in Cgn. 1; : : : ;  Z/ into free indices. Thus we obtain a factor
.T sa1:::aj /ah1 :::ahl , which we will call the liberated form of the factor T sa1:::aj . We
view Cgn. 1; : : : ;  Z/ as a complete contraction among those tensors T sah1 :::ahl
and then consider each tensor

.T sah1 :::ahl
/ Og
N

:

It will be a tensor of rank l . It follows that if we replace each .T sah1 :::ahl /
gN by

.T sah1 :::ahl
/ Og
N

and take the same contractions of indices as for Cgn. 1; : : : ;  Z/,
with respect to the metric .gN /, we will obtain enE�� ExC

e2E��ExgN
. 1; : : : ;  Z/.

LEMMA 16 (The acceptable descendants). Given a complete contraction
Cgn. 1; : : : ;  Z/ in the form (108), the sublinear combination of the acceptable
E�-contractions in enE�� ExC

e2E��ExgN
. 1; : : : ;  Z/ can be described as folows, in N -

cancelled notation:
Each of its liberated factors .T sa1:::aj /

gN

ah1 :::ahl
can be replaced according to

the pattern:

1. Any factor of the formrmr1:::rmRijkl (where the indices i;j;k; l do not contract
between themselves) can be replaced by a good substitution of rmr1:::rmRijkl
or by a nice partial contraction of E�-length � 2.

2. Any factor rp l can be replaced by a good substitution of rp l or by a nice
partial contraction of E�-length � 2.

3. Any factor rpr1:::rpRicij ¤R can be substituted either by a good substitution
of rpr1:::rpRicij or a good substitution of �rpC1r1:::rpi

E�j or by a nice partial
contraction of E�-length � 2.
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4. Any factor R can be left unaltered or be substituted by �2ri E�i or by �jE�j2.

The sublinear combination of acceptable E�-contractions in

en
E�� ExC

e2E��ExgN
. 1; : : : ;  Z/

arises by substituting each liberated factor .Ta1:::aj /
gN

ah1 :::ahl
in Cgn. 1; : : : ;  Z/

as explained above and then performing the same particular contractions among
the liberated factors as in Cgn. 1; : : : ;  Z/, with respect to the metric gN .

Proof. The proof of this lemma is a matter of applying formulas (57), (55),
(54) and (56) as well as (65).

Consider any sequence of tensors times coefficients: a.N / �.Ti1:::ij /
gN , where

N D n; nC 1; : : : and the tensors .Ti1:::ij /
gn are partial contractions of the form:

(109) contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls

˝r
�1
�1:::��1

 l ˝r
m
u1:::um

E�z˝ � � �˝r
m
u1:::um

E�z˝g
N
ij ˝ � � �˝g

N
ij

�
where there is at least one factor r� l or rmRijkl or rmE�, but not necessarily
one of each kind; a.N / is a rational function in N and .Ti1:::ij /

gN is the rewriting
of .Ti1:::ij /

gn in dimension N .
For any such partial contraction let jgj stand for the number of factors gNij ,

jE�j stand for the number of factors rmE� and degŒa.N /� stand for the degree of the
rational function a.N /.

We also consider linear combinations:

(110)
P
t2T

at .N /.T
t
i1:::is

/g
N

where each sequence at .N /.T ti1:::is /
gN is as above. From now on we will just

speak of the partial contraction at .N /.T ti1:::is /
gN , rather than the sequence of

partial contractions times coefficients.
We say that such a partial contraction is useful if jgjD 0, jE�jD degŒat .N /� and

the index k in each factor E�k is not free and there are no factors jE�j2. We will call a
partial contraction useless if degŒat .N /�C jgj < jE�j or if degŒat .N /�C jgj D jE�j
and jgj> 0. Note that “useless” is not the negation of “useful”.

Consider any tensor .rmr1:::rmRijkl/
gN or .rp l/

gN or .rpt1:::tpRicij /g
N

with
internal contractions. Suppose that the free indices are i1; : : : is . We will write
those tensors out as .rmr1:::rmRijkl/

gN

i1;:::is
, .rp l/

gN

i1;:::is
, .rpt1:::tpRicij /

gN

i1:::is
.

We claim that any tensor

e�2
E�� Ex.rmr1:::rmRijkl/

OgN

i1:::is
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or .rp l/i1:::is
OgN or .rpt1:::tpRicij /i1 : : : is Og

N

(where i; j; k; l in the first case and
i; j in the second do not contract against each other) is a linear combination of
useful and useless tensors, as in (110). Furthermore, we claim that each useful
partial contraction of E�-length 1 in the expression for

.rmr1:::rmRijkl/
OgN

i1:::is
or .rp l/

OgN

i1:::is
or .r

p
t1:::tp

Ricij /
OgN

i1:::is

will be one of the good substitutions described in Definition 20. We refer to this as
claim A.

We will check this by induction on m or p, respectively. For mD 0 or p D 1,
the fact is straightforward from (54) and (55). So, assume we know that fact for
p DK or mDK and let us show it for p DKC 1 or mDKC 1. Consider first
the case of a tensor .rKC1r1:::rKC1

 l/
OgN

i1:::is
. We inquire whether the index r1 is free.

If so, we then use our inductive hypothesis for p D K knowing that the tensor
.rKr2:::rKC1 l/

OgN

i2:::is
satisfies the induction hypothesis. We now use this to find the

tensor .rKC1r1:::rKC1
 l/
OgN

i1:::is
, writing

(111) .rKr2:::rKC1 l/
OgN

i2:::is

D
P
t2T1

at .N /T
t
gN
. l ; E�/i2:::is C

P
t2T2

at .N /T
t
gN
. l ; E�/i2:::is

where the first sublinear combination stands for the useful tensors and the second
stands for the useless tensors.

We only have to apply the transformation law (57) to each pair .r1; i2/; : : :
: : : ; .r1; is/. We easily observe that if any summand in the expression of

.rKr2:::rKC1 l/
OgN

i2:::is

is useless, then any application of the identity (57) to any pair of indices .r1; i2/; : : :
: : : ; .r1; is/will give rise to a useless partial contraction. On the other hand, consider
any factor T t

gN
. l ; E�/i2:::is in .rKr2:::rKC1 l/

OgN

i2:::is
which is useful. Then observe

that when we apply any of the last three summands in (57) to any pair of indices
.r1; i2/; : : : ; .r1; is/ and bring out a factor E� , we obtain a useless partial contraction.
Finally, substituting .rr1Xil /

OgN by .rr1Xil /
.gN / (the first summand on the right

hand side of (23)), we get a linear combination of useful E�-contractions, by applying
the rule

ri ŒAk1:::ks ˝Bu1:::uh �DriAk1:::ks ˝Bu1:::uh CAk1:::ks ˝riBu1:::uh :

Furthermore, if a partial contraction at .N /T tgN . l ;
E�/ in .rKr2:::rKC1 l/

OgN

i2:::is
con-

tains no factors E�k where the index k is free, nor factors jE�j2, then we will have no
such factors in rr1at .N /T

t
gN
. l ; E�/ either.
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Finally, any partial contraction in rr1at .N /T
t
gN
. l ; E�/ of E�-length 1 will arise

if T t has E�-length 1 and provided the derivative does not hit any factor E�k . So, by
our inductive hypothesis, any useful partial contraction in .rKC1r1:::rKC1

 l/i1:::is
OgN

of E�-length 1 is a good substitution.
Next, we consider the case where the index r1 in .rKC1r1:::rKC1

 l/
OgN

i1:::is
is not a

free index, supposing that r1 contracts against rj . We consider the tensor

.rKr2:::rKC1 l/
OgN

i2:::rj :::is

obtained from .rKC1r1:::rKC1
 l/i1:::is

OgN

by erasing the derivative rr1 and making the
index rj into a free index. We consider the transformation law for

.rKr2:::rKC1 l/
OgN

i1:::rj :::is
:

Our inductive hypothesis applies. So, in order to determine .rKC1r1:::rKC1
 l/
OgN

i1:::is
,

we have to apply (57) to each pair

.r1; i2/; : : : ; .r1; is/; .r1; rj /

and then contract r1 and rj . If we consider any useless partial contraction in

.rKr2:::rKC1 l/
OgN

i1:::rj :::is
;

then any application of the law (57) to any pair above will give us a useless partial
contraction.

Now, let us consider any useful partial contraction at .N / �T ti1:::rj :::is in

.rKr2:::rKC1 l/
OgN

i1:::rj :::is
:

If we apply the identity (57) to any pair of indices .r1; i2/; : : : ; .r1; is/; .r1; rj /
without bringing out a factor E� (meaning that we apply the first summand on the
right-hand side of (57)), then by the same reasoning as before we have our claim. On
the other hand, if we apply the identity (57) to any pair of indices .r1; i1/; : : : ; .r1; is/
and bring out a factor E� , then after contracting r1; rj we will obtain a useless partial
contraction. Also, if we apply the transformation law (57) to the pair .r1; rj / and
bring out a factor E� but not a factor gij , then after contracting r1; rj we will again
obtain a useless partial contraction. Finally, if we apply the transformation law (57)
to .rr1Xrj /

OgN and bring out gNr1rj
E�sXs , then after contracting r1; rj we bring out

a factor N . We thus obtain another useful E�-contraction.
Finally, notice that if at .N / �T ti1:::rj :::is had E�-length 1, then by our inductive

hypothesis it was a good substitution of .rp l/i1:::rj :::is . Hence, for each such
good substitution, we now have the option of either substituting rr1Xrj by N E�sXs
or leaving it unaltered. Therefore, the set of useful E�-contractions of E�-length 1 in
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.rKC1r1:::rKC1
 l/
OgN

i1:::is
is indeed contained in the set of good substitutions of

.rKC1r1:::rKC1
 l/i1:::is :

Moreover, since no useful tensor at .N /T ti1:::rj :::is . l ;
E�/ in .rKr2:::rKC1 l/

OgN

i1:::rj :::is

has factors E� or jE�j2, there will be no such factors in either at .N /rrj T ti1:::rj :::is . l ;
E�/

or at .N /E�rjT ti1:::rj :::is . l ;
E�/. Hence, we have completely shown our inductive step.

The case of the tensors .rmr1:::rmRijkl/
OgN

i1:::is
and .rpr1:::rpRij /

OgN

i1:::is
is proven

by the same argument: The cases mD 0; p D 0 follow by equations (56), (54) and
then the inductive argument still applies, since it is only an iterative application of
the formula (57). We have proven claim A.

Now, in order to complete the proof of Lemma 16, we only have to observe
that if we substitute any liberated factor T ¤R from Cgn. 1; : : : ;  Z/ by a useless
partial contraction, and then proceed to replace the other factors by either useful
or useless partial contractions and then perform the same contractions for those
replacements as for CgN . 1; : : : ;  Z/, we will obtain an unacceptable complete
contraction in enE�� ExC

e2E��ExgN
. 1; : : : ;  Z/. This follows by the same reasoning as

for Lemma 8. Regarding the substitutions of scalar curvature, we can replace it by
either a factor �.2�N/raE�a (in which case degŒ�.2�N/�D 1 and jE�j D 1) or by
�.N�1/.N�2/jE�j2 (in which case degŒ�.N�1/.N�2/�D 2 and jE�j D 2). �

Let us now state a corollary of Lemma 16 regarding the linear combination of
good, hard and undecided descendants of a complete contraction Cgn. 1; : : : ;  Z/,
in the form (62).

We consider any complete contraction Cgn. 1; : : : ;  Z/, in the form (62),
and write it in the form (108). We then consider the sublinear combination of its
acceptable descendants, in the form:

(112)
contr

�
r
m1
r1:::rm1

Rijkl ˝ � � �˝r
ms
t1:::tms

Rijkl ˝r
p1
r1:::rp1

Ricij ˝ � � �˝r
pq
t1:::tpq

Ricij

˝R˛˝rp1a1:::ap1
 1˝ � � �˝r

pZ
b1:::bpZ

 Z ˝r
b1 E�˝ � � �˝rbv E�

�
:

Then, by repeated application of formula (65), we write each such de-symmetrized
descendant as a linear combination of good, hard and undecided E�-contractions of
the form (63) or (64).

We then claim the following:

LEMMA 17. Given any complete contraction Cgn. 1; : : : ;  Z/ in the form
(62), of lengthL, then each of its good or hard or undecided descendants constructed
above will have E�-length � L.
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Furthermore, if the complete contraction Cgn. 1; : : : ;  Z/ has no factors
R, then none of its descendants will contain a factor �jE�j2. On the other hand,
if Cgn. 1; : : : ;  Z/ contains A > 0 factors R, then we can write the sublinear
combination of its good, undecided and hard descendants as follows:

(113)
P
l2L

al ŒC
l
gn. 1; : : : ;  Z ;

E�/C
P
r2Rl

C rgn. 1; : : : ;  Z ;
E�/�

where each E�-contraction C lgn. 1; : : : ;  Z ; E�/ arises from
P
Cgn. 1; : : : ;  Z/ by

doing all the substitutions explained in Lemma 16 but leaving all the factors R
unaltered, while

P
r2Rl C

r
gn. 1; : : : ;  Z ;

E�/ arises from
P
C lgn. 1; : : : ;  Z ;

E�/

by substituting a nonzero number of factors R by either �2ri E�i or �jE�j2 and then
summing over all those different substitutions.

Proof. This lemma follows straightforwardly from Lemma 16: We only have
to make note that E�-length is additive and that the correction terms that we introduce
in the symmetrization of factors rp E� (using (65)) may increase the E�-length but
not decrease it. So, since we are substituting each factor in Cgn. 1; : : : ;  Z/ by a
tensor of E�-length � 1, the first claim of our lemma will follow.

Our second claim will follow from the transformation law (55), provided
we can show that no factors jE�j2 arise when we symmetrize and anti-symmetrize
the factors rp E� and then repeat the same particular contractions as for Cgn. 1; : : :
: : : ;  s/. In order to see this, we only have to observe that for each factor of the
form rp E�j , p � 1, none of the correction terms in its symmetrization involve a
factorE�a with the index a being free.

This follows because in order to symmetrize the factor rp E�j we only use the
identities Œrarb �rbra�E�j DRabjd E�d and, if k � 1:

r
u
fŒrarb �rbra�r

k E�g D
P
.rtRry E�/

where
P
.rtRry E�/ stands for a linear combination of partial contractions of the

form r˛Rijklry E� , where 1� y < kCuC 2. �

Proof of Proposition 4. (This lasts through page 1302.) Recall that we have
defined a stigmatized E�-contraction to be in the form:

contr
�
r
m1
r1:::rm1

Ri1j1k1l1 ˝ � � �˝r
ms
v1:::vms

Risjsksls(114)

˝r
p1
t1:::tp1

Ric˛1ˇ1 ˝ � � �˝r
pq
z1:::zpq

Ric˛qˇq ˝r
�1
�1:::��1

 1˝ : : :

˝r
�Z
!1:::!�Z

 Z ˝Sr
�1 E�j1 ˝ � � �˝Sr

�r E�js ˝j
E�j2˝ � � �˝ jE�j2

�
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where each �i � 1 and there are r factors Sr� E� and s > 0 factors jE�j2. If r D 0,
we will call the the above E�-contraction stigmatized of type 1 and if r > 0, we will
call it stigmatized of type 2.

Let us, for each good or undecided E�-contraction C lgn.�; E�/ (with X E�-factors)
break up its outgrowth OŒC lgn.�; E�/� as follows: After each integration by parts
of a factor E�, we discard any hard E�-contractions that arise, but moreover, when
we encounter any stigmatized complete contractions of type 1 or type 2 we put
them aside. We denote by

P
k2Kl1

akC
k
gn. 1; : : : ;  Z ;

E�/ the sublinear combi-
nation of E�-contractions that we are left with after X � 1 integrations by parts,
after we have discarded all the hard E�-contractions we encounter and after we
have put aside all the stigmatized E�-contractions we encounter. We also denote
by

P
k2Kl2

akC
k
gn. 1; : : : ;  Z ;

E�/,
P
k2Kl3

akC
k
gn. 1; : : : ;  Z ;

E�/ the sublinear
combinations of stigmatized E�-contractions of types 1 and 2, respectively, that we
have put aside along our iterative integrations by parts.

We will then have:

OŒC lgn.�;
E�/�D

P
k2Kl1

akOŒC
k
gn. 1; : : : ;  Z ;

E�/�

C
P
k2Kl2

akOŒC
k
gn. 1; : : : ;  Z ;

E�/�C
P
k2Kl3

akOŒC
k
gn. 1; : : : ;  Z ;

E�/�:

We observe that the E�-contractions C kgn. 1; : : : ;  Z/, k 2K
l
1 are good, in the

form (63) with one factor E�. Hence, we can rewrite (93) as follows:

(115) IZgn.�/C
P
l2L

al

n P
k2K1

l

akOŒC
k.�; E�/�

C
P
k2K2

l

akOŒC
k.�; E�/�C

P
k2K3

l

akOŒC
k.�; E�/�

o
D 0:

Our Proposition 4 will follow from the following equation:

(116)
P
l2L

al

n P
k2Kl2

akOŒC
k
gn. 1; : : : ;  Z ;

E�/�

C
P
k2Kl3

akOŒC
k
gn. 1; : : : ;  Z ;

E�/�
o
D 0:

In fact, we will show that:

(117)
P
l2L

al

n P
k2Kl2

akC
k
gn. 1; : : : ;  Z ;

E�/
o
D 0

and

(118)
P
l2L

al

n P
k2Kl3

akC
k
gn. 1; : : : ;  Z ;

E�/
o
D 0:
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We see that (116) follows from the above two equations by the same reasoning
by which Lemma 13 follows from Lemma 14. We first show (118); to do this we
define a procedure called the sieving integration by parts.

Definition 21. Consider any good or undecided E�-contraction Cgn. 1; : : :
: : : ;  Z ; E�/ and its iterative integrations by parts. We impose the following rules:
Whenever along the iterative integration by parts we encounter a hard E�-contraction,
we erase it and put it in the linear combination HŒCgn. 1; : : : ;  Z ; E�/�. Whenever
we encounter a E�-contraction which is stigmatized of type 2, we erase it and put it in
the linear combination Stig2ŒCgn. 1;: : :; Z ; E�/�. Also, whenever encountering a
stigmatized E�-contraction of type 1, we erase it and put it in the linear combination
Stig1ŒCgn. 1; : : : ;  Z ; E�/�.

Furthermore, having any complete contraction Cgn. 1; : : : ;  Z/ which is in
the form (62), we consider the linear combination of its good or undecided or hard
descendants, say

P
d2D adC

d
gn. 1; : : : ;  Z ;

E�/. We define

HŒCgn. 1; : : : ;  Z/�D
P
d2D

adHŒC
d
gn. 1; : : : ;  Z ;

E�/�;

POŒCgn. 1; : : : ;  Z/�D
P
d2D

adPOŒC
d
gn. 1; : : : ;  Z ;

E�/�;

Stig2ŒCgn. 1; : : : ;  Z/�D
P
d2D

adStig2ŒC dgn. 1; : : : ;  Z ; E�/�;

Stig1ŒCgn. 1; : : : ;  Z/�D
P
d2D

adStig1ŒC dgn. 1; : : : ;  Z ; E�/�:

LEMMA 18. With any complete contraction Cgn. 1; : : : ;  Z/ in the form (62)
of weight �n, there is a way to perform our sieving integration by parts, so that we
can express the four quantities just defined as follows:

(119) Cgn. 1;:::; Z/CPOŒCgn. 1;:::; Z/�D
P
v2V

avC
v
gn. 1;:::; Z/R

˛v

where each C vgn. 1; : : : ;  Z/ is of weight �nC 2˛v, in the form (62), with no
factors R (they are pulled out on the right);

HŒCgn. 1;:::; Z/�D
P
v2V

avC
v
gn. 1;:::; Z/�G.R;˛v;�2r

i E�i /(120)

C
P
f 2F

af C
f
gn. 1;:::; Z ;

E�/�R f̨

C
P
f 2F

af C
f
gn. 1;:::; Z ;

E�/�G.R; f̨ ;�2r
i E�i /

where each C fgn. 1; : : : ;  Z ; E�/ is of weight �nC2 f̨ , in the form (64) with kD 0
and with no factors R (they are pulled out on the right), and where G.R; �;B/
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stands for the sum over all the possible substitutions of � factors R by a factor B ,
so that we make at least one such substitution; and finally

Stig1ŒCgn. 1;:::; Z/�D
P
v2V

avC
v
gn. 1;:::; Z/�G.R;˛v;�j

E�j2/I(121)

Stig2ŒCgn. 1;:::; Z/�D(122) P
v2V

avC
v
gn. 1;:::; Z/�T

�.˛v;R;�2r
i E�i ;�jE�j

2/

C
P
f 2F

af C
f
gn. 1;:::; Z ;

E�/�T . f̨ ;R;�2r
i E�i ;�jE�j

2/

where T .j;R;�2ri E�i ;�jE�j2/ stands for the sum over all the possible ways to
substitute a nonzero number of factors in Rj by either �2ri E�i or �jE�j2, so that
at least one factor is substituted by �jE�j2 and T �.j; R;�2ri E�i ;�jE�j2/ stands for
the same thing, with the additional restriction that at least one factor R must be
substituted by �2ri E�i .

Proof. We consider the linear combination of Cgn. 1; : : : ;  Z/, together with
its good, undecided and hard descendants in eN E�� ExC

e2E��Exgn
. 1; : : : ;  Z/, grouped

as in (113). Given any l 2L, we pick any C rgn. 1; : : : ;  Z ; E�/, r 2R
l , and identify

any factor T in C rgn. 1; : : : ;  Z ; E�/ distinct from �2ri E�i and �jE�j2 with a factor
in C lgn. 1; : : : ;  Z ; E�/. We say that such a factor in C rgn. 1; : : : ;  Z ; E�/, r 2R

l ,
corresponds to a factor in C lgn. 1; : : : ;  Z ; E�/.

We will now perform integrations by parts among the sublinear combinations
of good, hard and undecided descendants inZ

RN
e.N�n/

E�� ExC a
e2E��ExgN

. 1; : : : ;  Z/dVgN ;

so that after any number of integrations by parts we will be left with an integrand
of E�-contractions as in (113):

For any C lgn. 1; : : : ;  Z ; E�/, we pick out a factor E�i (which does not contract
against another E�) and perform an integration by parts. We will obtain a formula:

(123)
Z

RN
e.N�n/

E�� ExQ.N/C l
gN
. 1; : : : ;  Z ; E�/dVgN

D

Z
RN

e.N�n/
E�� ExQ.N/

N �n
Œ
LP̨
D1

C
l;˛

gN
. 1; : : : ;  Z ; E�/�dVgN :

Consider any E�-contraction C l;˛
gN
. 1; : : : ;  Z ; E�/ which arises when ri hits

a factor T in C lgn. 1; : : : ;  Z ; E�/ with T ¤ R. Then consider any E�-contraction
C rgn. 1; : : : ;  Z ;

E�/, r 2 Rl , and integrate by parts the corresponding factor E�i .
Consider the E�-contraction C r;˛gn . 1; : : : ;  Z ; E�/ which arises when ri hits the
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corresponding factor T as before. It is then clear that each linear combination

C
l;˛
gn . 1; : : : ;  Z ;

E�/C
P
r2Rl

C
r;˛
gn . 1; : : : ;  Z ;

E�/

is of the form of equation (113). Notice that by Observation 1 we are free to
impose this restriction on the order of integrations by parts of the factors E� inP
r2Rl C

r;˛
gn . 1; : : : ;  Z ;

E�/. We note that the order in which we integrate by
parts is consistent with our rules on dropping E�-contractions into the sublinear
combinations POŒ: : : �;H Œ: : : �;Stig1Œ: : : �, Stig2Œ: : : �: This will follow from the
arguments below.

Now we consider any E�-contraction that arises in the integration by parts of
C lgn. 1; : : : ;  Z ;

E�/ when ri hits a factor T DR. We restrict our attention to the
E�-contractions C rgn. 1; : : : ;  Z ; E�/, r 2R

l , which arise from C lgn. 1; : : : ;  Z ;
E�/

when we leave the factor T .DR) unaltered. Suppose their index set is Rl˛;C. We
then observe that the linear combination

C
l;˛
gn . 1; : : : ;  Z ;

E�/C
P

r2Rl
˛;C

C
r;˛
gn . 1; : : : ;  Z ;

E�/

is of the form (113).
Finally, consider the E�-contractions C r1gn. 1; : : : ;  Z ; E�/, C

r2
gn. 1; : : : ;  Z ;

E�/

which arise from C lgn. 1; : : : ;  Z ;
E�/ by substitution of the factor T .D R) by

�2ri E�i and �jE�j2 respectively. Also, define Rl1; R
l
2 �R

l to be the index sets of
all the E�-contractions C rgn. 1; : : : ;  Z ; E�/ which arise from C lgn. 1; : : : ;  Z ;

E�/

by substitution of the factor T .D R) by �2ri E�i and �jE�j2, respectively, and by
substitution of at least one more factor R. We then consider the E�-contractions
C
r1;˛
gn . 1; : : : ;  Z ; E�/ and C r2;˛gn . 1; : : : ;  Z ; E�/ which arise from integration by

parts of C r1gn. 1; : : : ;  Z ; E�/ and C r2gn. 1; : : : ;  Z ; E�/, respectively, when ri hits
the factors �2ri E�i , �jE�j2, respectively. We also consider the E�-contractions

C
r;˛
gn . 1; : : : ;  Z ;

E�/ and C
r;˛
gn . 1; : : : ;  Z ;

E�/

in the integration by parts of each C rgn. 1; : : : ;  Z ; E�/, r 2 R
l
1 or r 2 Rl2 when

ri hits the factors �2ri E�i �jE�j2, respectively, which correspond to the factors
�2ri E�i or �jE�j2 in C r1gn. 1; : : : ;  Z ; E�/ and C r2gn. 1; : : : ;  Z ; E�/. It follows by
construction that the sublinear combinations

C
r1;˛
gn . 1; : : : ;  Z ; E�/C

P
r2Rl1

C
r;˛
gn . 1; : : : ;  Z ;

E�/ and

C
r2;˛
gn . 1; : : : ;  Z ; E�/C

P
r2Rl2

C
r;˛
gn . 1; : : : ;  Z ;

E�/

are in the form of equation (113).
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Hence, if we start with a linear combination of E�-contractions in the form (113),
then for each integration by parts in any C lgn. 1; : : : ;  Z ; E�/, we can consider the
corresponding integrations by parts of each C rgn. 1; : : : ;  Z ; E�/, r 2R

l , and at the
next step we will be left with a linear combination of E�-contractions in the form
(113).

If at any stage C l;˛gn . 1; : : : ;  Z ; E�/ is a complete contraction in the form (62),
we put it into POŒCgn. 1; : : : ;  Z/�. Also, the E�-contraction inP

r2Rl
C
r;˛
gn . 1; : : : ;  Z ;

E�/

which arises from C
l;˛
gn . 1; : : : ;  Z ;

E�/ by substituting factors R only by �jE�j2 is
stigmatized of type 1, and it is put into Stig1ŒCgn. 1; : : : ;  Z ; E�/�. The E�-con-
traction in

P
r2Rl C

r;˛
gn . 1; : : : ;  Z ;

E�/ which arises from C
l;˛
gn . 1; : : : ;  Z ;

E�/ by
substituting factors R only by �2ri E�i is a hard E�-contraction and we put it into
HŒCgn. 1; : : : ;  Z ; E�/�. Finally, any E�-contraction in

P
r2Rl C

r;˛
gn . 1; : : : ;  Z ;

E�/

which arises from C
l;˛
gn . 1; : : : ;  Z ;

E�/ by substituting at least one factor R by
�jE�j2 and at least another factor R by �2ri E�i is stigmatized of type 2 and we put
it into Stig2ŒCgn. 1; : : : ;  Z/�.

Let us also note that the E�-contraction C r1;˛gn . 1; : : : ; Z; E�/ will always be un-
decided (it contains a factor ri E�k E�k). For the E�-contraction C r2;˛gn . 1; : : : ;  Z ; E�/

(and also for its followers), we decompose the factor rik E�k into Srik E�k and
Ricik E�k . We notice that substituting the factor rik E�k by Ricik E�k will give either a
good or an undecided E�-contraction.

Now, we suppose that the E�-contraction C r1;˛gn . 1; : : : ;  Z ; E�/ (after the sym-
metrization �2.rirk E�k/!�2.Srik E�k/) is hard. We then observe that the E�-con-
traction in

P
r2Rl1

C
r;˛
gn . 1; : : : ;  Z ;

E�/ which arises from C
r1;˛
gn . 1; : : : ;  Z ; E�/

by performing an integration by parts of E�i and hitting�2rk E�k and symmetrizing by
�2.rir

k E�k/!�2.Srik E�
k/ and then by substituting factors R only by �2ri E�i is

also hard. Furthermore, any E�-contraction which arises from C
l;˛
gn . 1; : : : ;  Z ;

E�/

or from C
r1;˛
gn . 1; : : : ;  Z ; E�/, by substitution of factors R only by �jE�j2, is stig-

matized of type 2.
So we notice that for each E�-contraction that are put in POŒCgn. 1; : : : ;  Z/�

or HŒCgn. 1; : : : ;  Z/�, the E�-contractions put into Stig1ŒCgn. 1; : : : ;  Z/� or
Stig2ŒCgn. 1; : : : ;  Z/� will be of the form described in (121) and (122). Lemma
18 is proven. �

We now want to apply the above lemma in order to prove equations (117) and
(118) making a notational convention: Given any contraction C zgn. 1; : : : ;  Z/ in
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the form (62), let us write it as C z 0gn. 1; : : : ;  Z/ �R
˛ , where C z 0gn. 1; : : : ;  Z/

does not contain factors R. We then define:

(124)
P
r2Rz

C rgn. 1; : : : ;  Z ;
E�/

D C z
0
gn. 1; : : : ;  Z/ � ŒG.R; ˛;�2r

i E�i /CT .R; ˛;�2r
i E�i ;�jE�j

2/�:

Here each summand on the right-hand side arises from one of the substitutions
described in the definitions of G.R; ˛;�2ri E�i / and T .R; ˛;�2ri E�i ;�jE�j2/. Also,
given any hard E�-contraction C hgn. 1; : : : ;  Z ; E�/ in the form (64), we write it as
C h
0

gn. 1; : : : ;  Z ;
E�/ �R˛, where C h

0

gn. 1; : : : ;  Z ;
E�/ is in the form (64) and

does not contain factors R. We then define:

(125)
P

w2W h

Cwgn. 1; : : : ;  Z ;
E�/

D C h
0

gn. 1; : : : ;  Z/ � ŒG.R; ˛;�2r
i E�i /CT .R; ˛;�2r

i E�i ;�jE�j
2/�:

Here each summand on the right-hand side arises from one of the substitutions
described in the definition of

G.R; ˛;�2ri E�i / and T .R; ˛;�2ri E�i ;�jE�j2/:

We now prove equations (117) and (118) through an inductive argument. We
first recall the terminology and notation used in Lemma 18. Consider

IZgn. 1; : : : ;  Z/D
P
a2A

baC
a
gn. 1; : : : ;  Z/:

For any complete contraction C agn. 1; : : : ;  Z/ consider the sublinear combination
of its good, hard or undecided descendants, say

P
x2Xa cxC

x
gn. 1; : : : ;  Z ;

E�/.
We perform integrations by parts in the expressionZ

RN
e.N�n/

E�� Ex

� P
a2A

ba

h
C agn. 1; : : : ;  Z/C

P
x2Xa

cxC
x
gn. 1; : : : ;  Z ;

E�/
i�
dVgN

D 0

as explained in Lemma 18. Whenever we encounter hard or stigmatized E�-contrac-
tions, we stop (and do not discard). In the end, we are left with a linear combination
of sums of complete contractions:

(126)
Z

RN
e.N�n/

E�� Ex

� P
z2Z

Qz.N /azC
z
gN
. 1; : : : ;  Z/

C
P
h2H

Qh.N /ahC
h
gN
. 1; : : : ;  Z ; E�/

C
P
z2Z

Qz.N /az
P
r2RZ

C r
gN
. 1; : : : ;  Z ; E�/

C
P
h2H

h
Qh.N /ah

P
w2W h

Cw
gN
. 1; : : : ;  Z ; E�/

i�
dVgN D 0:
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Here each rational function has degree zero and leading order coefficient equal
to 1. Moreover,

P
z2ZQ

z.N /azC
z
gN
. 1; : : : ;  Z/ is the sublinear combination

that is dropped into POŒ: : : �, while
P
h2H Q

h.N /ahC
h
gN
. 1; : : : ;  Z ; E�/ is the

sublinear combination that arises by summing over all the sublinear combinations
of hard E�-contractions in the form

P
f 2F af C

f
gn. 1; : : : ;  Z ;

E�/ on the right-hand
side of (120). ThenP
r2RZ

Qz.N /C r
gN
. 1; : : : ;  Z ; E�/ and

P
w2W h

Qh.N /Cw
gN
. 1; : : : ;  Z ; E�/

are the sublinear combinations of hard and stigmatized (of both types) E�-contrac-
tions that arise from

P
z2Z azC

z
gN
. 1; ;  Z/ and

P
h2H ahC

h
gN
. 1; : : : ;  Z ; E�/

respectively, when we perform the substitutions for the factors R that are explained
in (124), (125).

Our inductive assumption is the following: For any T , We defineZT �Z to be
the index set of complete contractions C z

gN
. 1; : : : ;  Z/ with T factorsR. Further-

more, we defineZjT to be the index set of complete contractions C z
gN
. 1; : : : ;  Z/

with more than T factors R and also defineHT �Z to be the index set of complete
contractions C z

gN
. 1; : : : ;  Z/ with T factors R. Also, H jT � H is the index

set of E�-contractions C h
gN
. 1; : : : ;  Z ; E�/ with more than T factors R. We now

inductively assume that for some T :

(127)
P

z2ZjT
azC

z
gN
. 1; : : : ;  Z/D 0

and

(128)
P

h2H jT
ahC

h
gN
. 1; : : : ;  Z ; E�/D 0:

We furthermore assume that:

(129)
P

z2ZjT
azŒ

P
r2Rz

C r
gN
. 1; : : : ;  Z ; E�/�D 0

and also that:

(130)
P

h2H jT
ahŒ

P
w2W z

Cw
gN
. 1; : : : ;  Z ; E�/�D 0:

Our goal will be to prove:P
z2ZT

azC
z
gN
. 1; : : : ;  Z/D 0;(131)

P
h2HT

ahC
h
gN
. 1; : : : ;  Z ; E�/D 0(132)
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and furthermore: P
z2ZT

h
az

P
r2Rz

C r
gN
. 1; : : : ;  Z ; E�/

i
D 0;(133)

P
h2HT

h
az

P
r2Rh

C r
gN
. 1; : : : ;  Z ; E�/

i
D 0:(134)

We first state and prove a lemma that will be useful for this purpose:

LEMMA 19. Suppose there is a set of hard E�-contractions

fC lgn. 1; : : : ;  /Z ;
E�/gl2L;

each in the form (64) with k D 0 (meaning no factors E�) and of weight �n. Now,
suppose that:

(135)
P
l2L

alC
l
gn. 1; : : : ;  Z ;

E�/D 0

for every .M n; gn/, for every  1; : : : ;  Z 2C1.M n/ and every coordinate system.
We define the subsets Lm � L as follows: l 2 Lm if and only if C lgn. 1; : : :

: : : ;  Z ; E�/ has m factors R. For each Lm for which Lm ¤∅:

(136)
P
l2Lm

alC
l
gn. 1; : : : ;  Z ;

E�/D 0:

The same result is true if there are complete contractions C lgn. 1; : : : ;  Z/ instead
of hard E�-contractions C lgn. 1; : : : ;  Z ; E�/.

Proof. We will think of the E�-contractions C lgn. 1; : : : ;  Z ; E�/ as being in the
form (44). Any E�-contraction in the form (64) with m factors R will give rise to
E�-contractions in the form (44) with m factors R.

For some M > 0 and for each � >M :P
l2L�

alC
l
gn. 1; : : : ;  s;

E�/D 0:

Notice that if we can prove that:

(137)
P

l2LM
alC

l
gn. 1; : : : ;  Z ;

E�/D 0

then the whole lemma will follow by induction. In view of our induction hypothesis,
we erase the sublinear combination

P
�>M

P
l2L� alC

l
gn. 1; : : : ;  s;

E�/ from
(135).

Recall that (135) holds for any Riemannian metric, any functions  1; : : :  Z ,
any coordinate system and any E� . Hence, equation (135) must hold formally.

If we can prove that the number of factors R in a complete contraction of the
form (44) remains invariant under the permutations of Definition 7, we will have
our lemma.
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For any complete contraction C lgn. 1; : : : ;  Z ; E�/ of the form (64), we will
call one of its factorsrmr1:::rmRijkl connected if one of the indices r1; : : : ; l contracts
against another factor in C lgn. 1; : : : ;  Z ; E�/. From the identities in Definition 7,
we see that any permutation of indices in any connected factor rmr1:::rmRijkl in
C lgn. 1; : : : ;  Z ;

E�/ will give rise to a complete contraction C l
0

gn. 1; : : : ;  Z ;
E�/,

which is obtained from C lgn. 1; : : : ;  Z ;
E�/ by substituting its factor rmr1:::rmRijkl

by a number of factors rpRijkl , each connected in C l
0

gn. 1; : : : ;  Z ;
E�/.

For any complete contraction of the form C lgn. 1; : : : ;  Z ;
E�/, we will call

one of its factors rmr1:::rmRijkl m-self-contained if all the indices r1; : : : ; l con-
tract against another index in rmr1:::rmRijkl . Any application of the identities
of Definition 7 to a factor rmr1:::rmRijkl will give rise to a complete contraction
C l
0

gn. 1; : : : ;  Z ;
E�/, which is obtained from C lgn. 1; : : : ;  Z ;

E�/ by substitution
of its factor rmr1:::rmRijkl by a number of factors rpRijkl , each of which is either
m-self-contained or connected in C l

0

gn. 1; : : : ;  Z ;
E�/.

Hence we have shown our lemma. �
We now prove (131) observing that if a complete contraction C z

gN
. 1; : : : ; Z/

has 
 factors R, then each E�-contraction C r
gN
. 1; : : : ;  Z ; E�/ with r 2 Rz , has

strictly less than 
 factors R. Furthermore, if C h
gN
. 1; : : : ;  Z ; E�/, has " factors

R then each Cw
gN
. 1; : : : ;  Z/; w 2W

h has strictly less than " factors R. Finally,
we notice that along the iterative integrations by parts the number of factors R
either decreases or remains the same; it cannot increase. Now, we apply Lemma
14 and (97) to the case at hand. For any E�-contraction Cgn. 1; : : : ;  Z ; E�/, we
have defined OŒCgn. 1; : : : ;  Z ; E�/� to stand for its outgrowth. We also define
HŒCgn. 1; : : : ;  Z ; E�/� to stand for the sublinear combination of the hard E�-
contractions that arise along its iterative integration by parts. We then re-express
the equation in Proposition 3 as follows:

(138)
TP
mD0

� P
z2Zm

azC
z
gn. 1; : : : ;  Z ;

E�/C
P
r2Rz

OŒC rgn. 1; : : : ;  Z ;
E�/�
�

C

TP
mD0

� P
h2Hm

ah
P

w2W h

OŒCwgn. 1; : : : ;  Z/�
�
D 0:

Let us consider the sublinear combination of complete contractions in (138)
with T factors R. It follows from our reasoning above and from Lemma 15 that it is
precisely the left-hand side of (131). Hence, invoking Lemma 19, we derive (131).
Therefore, by the construction of

P
r2Rz C

r
gn. 1; : : : ;  Z ;

E�/, we obtain (133).
Furthermore, we re-express (97) as follows:

(139)
TP
mD0

� P
h2Hm

ahC
h
gn. 1; : : : ;  Z/C

P
w2W h

HŒCwgn. 1; : : : ;  Z ;
E�/�
�

C

TP
mD0

� P
z2Zm

az
P
r2Rz

HŒC rgn. 1; : : : ;  Z ;
E�/�
�
D 0:
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Now, we consider the sublinear combination of E�-contractions in the above
equation with T factors R. From our reasoning above, from Lemma 15 and also
from equation (131), we have that this sublinear combination is precisely the left-
hand side (132). Hence, invoking Lemma 19, we have (132). Finally, (134) follows
from (132) and from its definition. Hence, in view of (131) and Lemma 18, we
obtain (117), (118). This completes the proof of our Proposition 4. �

We now state a fact that illustrates its usefulness.

LEMMA 20. Consider a good or undecided or hard E�-contraction Cgn. 1; : : :
: : : ;  Z ; E�/, of E�-length L. Then POŒCgn. 1; : : : ;  Z ; E�/� will consist of complete
contractions of length greater than or equal to L, or POŒCgn. 1; : : : ;  Z ; E�/�D 0.

Consider the hard or the stigmatized E�-contractions that arise along the itera-
tive integrations by parts. Any such E�-contraction has E�-length � L.

Proof. The proof is by induction. Initially, to make things easier, consider the
case where there are no factors jE�j2 in Cgn. 1; : : : ;  Z ; E�/. Think of Cgn. 1; : : :
: : : ;  Z ; E�/ as being in the form (64) with E�-length M and with E factors E� and C
factors SrmE�. We will perform induction on C CE.

Initially suppose C CE D 1. Then if C D 1;E D 0, our E�-contraction is hard,
so that POŒCgn. 1; : : : ;  Z ; E�/�D 0. If E D 1; C D 0, the proof is the same as
for the inductive step:

Suppose we know the claim is true for ECC D p and we want to prove it for
ECC D pC 1. Pick out a factor E�i and do an integration by parts with respect to
it. If ri hits a factor rmRijkl or rpRicij or rp k , we get a E�-contraction in the
form (63) or (64) with ECC D p and E�-length M . If ri hits a factor E� , we get a
E�-contraction in the form (63) or (64) with ECC D p and E�-length M C 1. If it
hits a factor SrmE� (m � 1), then after applying identity (65), we obtain a linear
combination of complete contractions in the form (63) or (64) with C CE D p
and E� length �M .

Now, suppose we do allow factors jE�j2 in Cgn. 1; : : : ;  Z ; E�/. We again pro-
ceed by induction on the number C CE. If all the E�-factors in Cgn. 1; : : : ;  Z ; E�/
are in the form jE�j2 or SrmE� , we already have a stigmatize E�-con- traction. Hence,
POŒCgn. 1; : : : ;  Z ; E�/�D 0 in that case. Otherwise, there is at least one factor E�i
that does not contract against another factor E� . We integrate by parts with respect to
it. If ri hits a factor rmRijkl or raRicij or E� or jE�j2, we fall under our induction
hypothesis with E�-length M or M C 1. If it hits a factor SrmE�, we apply (65)
and obtain a a linear combination of E�-contractions that fall under our induction
hypothesis, by the same reasoning as above. This completes the proof. �
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6.4. Conclusion: The algorithm for the super divergence formula. We ap-
ply Proposition 4 to see how it can provide us with a divergence formula for
IZgn. 1; : : : ;  Z/. Here is the algorithm:

Write
IZgn. 1; : : : ;  Z/D

P
r2R

arC
r
gn. 1; : : : ;  Z/;

where each complete contraction C rgn. 1; : : : ;  Z/ is in the form (62).
For each complete contraction C rgn. 1; : : : ;  Z/ we consider the set of its

good or undecided descendants, along with their coefficients (see Definition 12),
say abC

r;b
gn . 1; : : : ;  Z ;

E�/; b 2 Br . So each C r;bgn . 1; : : : ;  Z ; E�/ is in the form

(63) or (64) and has Sb E�-factors (see Definition 9).
We then integrate by parts each E�-contraction C r;bgn . 1; : : : ;  Z ; E�/, and in-

troduce the following convention: Whenever along this iterative integration by
parts we obtain a hard or a stigmatized E�-contraction (see Definition 16), we
discard it. For each E�-contraction C r;bgn . 1; : : : ;  Z ; E�/, consider the E�-contractions

axC
r;b;x
gn . 1; : : : ;  Z ; E�/; x 2X

b , that we are left with after Sb�1 integrations by

parts (along with their coefficients). They are in the form (63) with one factor E� .
We then construct a vector field .C r;b;xgn /j . 1; : : : ;  Z/ out of any given

C
r;b;x
gn . 1; : : : ;  Z ; E�/ by crossing out the factor E�j and making the index that

contracted against j into a free index. By virtue of Proposition 4, we have:

(140) IZgn. 1; : : : ;  Z/D
P
r2R

ar
P
b2Br

ab
P
x2Xb

divjax.C
r;b;x
gn /j . 1; : : : ;  Z/:

We will refer to this equation as the super divergence formula and denote it by
supdivŒIZgn. 1; : : : ;  Z/�D 0. We note that there are many such formulas, since
at each stage we pick a factor E� to integrate by parts (subject to the restrictions that
we have imposed because of Observation 1).

Now, we establish a notational convention and make two observations: First,
for any complete contraction C rgn. 1; : : : ;  Z/, define:

(141) TailŒC rgn. 1; : : : ;  Z/�

D C rgn. 1; : : : ;  Z/C
P
b2Br

abPOŒC
r;b
gn . 1; : : : ;  Z ;

E�/�:

Then, notice that if the complete contraction C rgn. 1; : : : ;  Z/ has length L, then
each complete contraction in its tail will have length � L. This follows from
Lemmas 20 and 16.

Furthermore, the super divergence formula holds for any IZgn. 1; : : : ;  Z/DP
r2R arC

r
gn. 1; : : :  Z/ where each complete contraction is in the form (62)

with weight �n, for which
R
Mn I

Z
gn. 1; : : : ;  Z/dVgn D 0 for every compact



1304 SPYROS ALEXAKIS

Riemannian .M n; gn/ and any  1; : : : ;  Z 2 C1.M n/. In other words, the super
divergence formula does not depend on the fact that IZgn. 1; : : : ;  Z/ arises from
a polarization of the transformation law of P.gn/.

6.5. The shadow formula. We will draw another conclusion from Lemma 14
and Proposition 4.

As before, write IZgn. 1; : : : ;  Z/D
P
r2R arC

r
gn. 1; : : : ;  Z/, where each

complete contraction C rgn. 1; : : : ;  Z/ is in the form (62).
For each complete contractionC rgn. 1; : : : ;  Z/we consider the set of its good

or undecided or hard descendants, along with their coefficients (see Definition 12),
say abC

r;b
gn . 1; : : : ;  Z ;

E�/; b 2 Br . So each C r;bgn . 1; : : : ;  Z ; E�/ is in the form
(63) or (64) and has Sb E�-factors.

We then begin to integrate by parts each E�-contraction C r;bgn . 1; : : : ;  Z ; E�/,
in the order explained in Definition 17 making the following convention:

Whenever we encounter a hard or a stigmatized E�-contraction, we put it aside.
Whenever we encounter a good E�-contraction with k D 1 (and l D 0), we discard it.

We then consider the set of the hard or stigmatized E�-contractions, along with
their coefficients, that are left after this procedure. Suppose that set is

fatC
t
gn. 1; : : : ;  Z ;

E�/gt2T :

We then have the shadow formula for IZgn. 1; : : : ;  Z/:

(142)
P
t2T

atC
t
gn. 1; : : : ;  Z ;

E�/D 0

for every .M n; gn/, every  1; : : : ;  Z 2 C1.M n/, any coordinate system and
any E� 2 Rn. We will denote this equation by ShadŒIZgn. 1; : : : ;  Z ; E�/� D 0. It
follows, as for the super divergence formula, that the shadow equation holds for
any IZgn. 1; : : : ;  Z/ that integrates to zero on any .M n; gn/, for any  1; : : : ;  Z
and for any coordinate system and any E� 2 Rn. It does not depend on the fact that
IZgn. 1; : : : ;  Z/ is the polarized transformation law for some P.gn/.

Recalling the notation of Definition 21, we additionally define:

(143) TailShadŒC rgn. 1; : : : ;  Z/�D
P
b2Br

ab
˚
HŒC bgn. 1; : : : ;  Z ;

E�/�

CStig1ŒC bgn. 1; : : : ;  Z ; E�/�CStig2ŒC bgn. 1; : : : ;  Z ; E�/�
	
:

We may then re-express the shadow formula as:

(144)
P
r2R

arTailShadŒC rgn. 1; : : : ;  Z/�D 0:
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The above equation follows straightforwardly from Lemma 14 and also from
equation (118). Moreover, for future reference we define:

(145) OShadŒC bgn. 1; : : : ;  Z ;
E�/�DHŒC bgn. 1; : : : ;  Z ;

E�/�

CStig1ŒC bgn. 1; : : : ;  Z ; E�/�CStig2ŒC bgn. 1; : : : ;  Z ; E�/�:

We furthermore show the following: For any m � 0, let Tm stand for the
sublinear combination in (142) with m factors jE�j2. Also,

(146)
P
t2Tm

atC
t
gn. 1; : : : ;  Z ;

E�/D 0

for every .M n; gn/, every  1; : : : ;  Z 2C1.M n/, any coordinate system and any
E� 2 Rn.

This follows since (142) must hold formally and the number of factors E� that
contract against another factor E� is invariant under the permutations of Definition 7.

Furthermore it follows, from Lemma 16 and also from Lemma 20, that if
a complete contraction C lgn. 1; : : : ;  Z/ of length L in IZgn. 1; : : : ;  Z/ gives

rise to a hard or stigmatized E�-contraction C l;zgn . 1; : : : ;  Z ; E�/ in (142), by the

procedure outlined above, then C l;zgn . 1; : : : ;  Z ; E�/ will have E�-length � L.
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