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Abstract

This is the first of two papers where we address and partially confirm a conjecture
of Deser and Schwimmer, originally postulated in high energy physics. The objects
of study are scalar Riemannian quantities constructed out of the curvature and its
covariant derivatives, whose integrals over compact manifolds are invariant under
conformal changes of the underlying metric. Our main conclusion is that each
such quantity that locally depends only on the curvature tensor (without covariant
derivatives) can be written as a linear combination of the Chern-Gauss-Bonnet
integrand and a scalar conformal invariant.

1. Introduction

1.1. Outline of the problem. Consider any Riemannian manifold (M", g").
The basic local objects that describe the geometry of the metric g” are the curvature
tensor R;jx; and the Levi-Civita connection Vgn. We are interested in intrinsic
scalar quantities P(g™). These scalar quantities, as defined by Weyl (see also [14]
and [4]), are polynomials in the components of the tensors Rk, . .. ,V;’lln_rm Rijki,
. and g%, with two basic features: The values of these polynomials must be
invariant under changes of the coordinate system (or isometries), and there must
also be a number K so that under the re-scaling g — t2g” (t € R4), we have
P(t%2g") = tK P(g"). We then say that P(g") is a scalar Riemannian invariant of
weight K.
It is a classical result, implied in Weyl’s work [22], that any such Riemannian
invariant P(g") of weight K can be written as a linear combination

(1) P(g") = IZL a;Cl(gm
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1242 SPYROS ALEXAKIS

of complete contractions C*(g”) in the form:

2 Contr(vﬂ}..r Riyjikey1y ® - ® Vi Ri, jrkrt,)s

m t1.tmy
for which C!(r2g") = tKC!(g").

This notion of intrinsic extends to vector fields. We define an intrinsic vector
field T%(g") (a is the free index) of weight K to be a polynomial in the components
of the tensors R;jks, ..., Vy| . Rijki,... and g'/, with the property that under
changes of coordinates (isometries) that map the coordinate functions x . x™to
the coordinate functions y!, ..., y", T,(g") must satisfy the transformation law:

(g = Ti (")
ox?
here T'* stands for the vector field expressed in the new coordinate system. More-
over, we say that 7% (g") has weight K if T%(t2g") = tK=119(g")’
By Weyl’s work, an intrinsic vector field of weight K must be a linear combi-
nation of partial contractions with one free index, each in the form:

o

(3) peontr(V/\! . Rijk1 @+ ® VU by Rivjrkrl,)-

We recall that under general conformal re-scalings g = e2¢ ) g" the volume
form re-scales by the formula d Vn = e g Vgn; in particular for any constant
t we have dVy2gn = 1"dVgn. Thus, for any scalar Riemannian invariant P(g")
of weight —n, [,, P(g")d Vgn is scale-invariant for all compact and orientable
manifolds M".

The problem we address in this paper and in [2] is to find all the Riemannian
invariants P(g") of weight —n for which the integral:

“) / P(g")dVgn
Mn

is invariant under conformal re-scalings of the metric g” on any M” compact
without boundary.

In other words, we are requiring that for every real-valued function ¢ (x) €
C°°(M") we must have that for §" (x) = ¢2¢®) g

Mn Mn

This question was originally raised by Deser and Schwimmer in [11] (see
also [20] and [5]) in the context of understanding “conformal anomalies”. On the
other hand, an answer to this question would also shed light on the structure of
Q-curvature in high dimensions. The problem, as posed in [11], is the following:

Conjecture 1 (Deser-Schwimmer). Consider a Riemannian scalar P(g") of
weight —n, for some even n. Suppose that for any compact manifold (M", g") the
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quantity
(6) / P(gn)dVgn
M}’l

is invariant under any conformal change of metric §"(x) = ¢2¢)g" (x). Then
P(g") must be a linear combination of three“obvious candidates”, namely:

) P(g") = W(g") +div;T;(g") + c - Plaff(R; ).

1. W(g") is a scalar conformal invariant of weight —n; in other words it satis-
fies W(e22™ g)(x) = e "X W(g™)(x) for every ¢ € C®°(M™) and every
xeM”.

2. T'(g") is a Riemannian vector field of weight —n + 1, since for any compact
M" we have [y, div; T; (g")d Vgn = 0.

3. Pfaff(R;;x;) stands for the Pfaffian of the curvature R;;;, since for any com-
pact Riemannian (M", g"),

23 (2 —1)!

- KM

/ Pfaff(Rl'jkl)d Vgn =
Ml’l
In this paper and in [2] we show:

THEOREM 1. Conjecture 1 is true, in the following restricted version:

Suppose that (6) holds, and additionally that P(g") locally depends only on
the curvature tensor R;ji; and not its covariant derivatives V™ R; i) (meaning
that P(g") is a linear combination of contractions in the form (2) withmy = --- =
my, = 0). Then, there exists a scalar conformal invariant W(g") of weight —n that
locally depends only on the Weyl tensor, and also a constant ¢ so that:

8) S(g") = W(g") + c - Plaff(R; k)
where Pfaff(R; k) stands for the Pfaffian of the curvature R; ;.

1.2. Geometric applications of the Deser-Schwimmer conjecture: Q-curvature
and re-normalized volume. Q-curvature is a Riemannian scalar quantity introduced
by Branson for each even dimension 7 (see [6]). In dimension 2, 0?(g?) = R(g?)
(the scalar curvature), while in dimension 4 its structure is well-understood and has
been extensively studied. Its fundamental property is that 0" (g") has weight —n
in dimension 7 and that the integral || yn Q" (g")dVgn over compact manifolds
M™ is invariant under conformal charges of the underlying metric g”. Thus, if
one proves Conjecture 1 in full strength, one would derive that Q" (g") can be
decomposed as in the right-hand side of (7), in fact with ¢ # 0.

This fact is all the more interesting due to the nice transformation law of Q-
curvature under conformal changes §" = ¢2?(™)g” One then has that e"®®) Q" (3")
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=0"(g")+ Pg’fn (¢), where Pgn (p) is a conformally invariant differential oper-
ator, originally constructed in [16]. Thus, prescribing the Q-curvature can be
informally interpreted as prescribing a modified version of the Chern-Gauss-Bonnet
integrand Pfaff(R;;x;). This modified Pfaffian enjoys a nice transformation law
under conformal re-scalings, rather than the messy transformation that governs
Pfaff(Rijkl ) .

This understanding of the structure of Q-curvature in any even dimension
raises the question whether the strong results of Chang, Yang, Gursky, Qing et al. in
dimension 4 (see for example [8], [9], [19]), have analogues in higher dimensions.
Moreover, a proof of Conjecture 1 in full strength will lead to a better understanding
of the notion of re-normalized volume for conformally compact Einstein manifolds.

Conformally compact Einstein manifolds have been the focus of much research
in recent years; see [9], [18], [21], [24], to name just a few. What follows is a very
brief discussion of the objects of study, largely reproduced from [18].

We consider manifolds with boundary, (X ntl gntly gxn+l — M" where
the boundary M carries a conformal structure [4#"]. We consider a defining function
x for 0X*T1in X:

x|)2 >0, x|3X =0, dx|3X 750.

n+1 ;

We then say that g is a conformally compact metric on X" 1 with conformal

P . . . —n+1 .o
infinity [h"], if there exists a smooth metric "' on X "7 5o that in X" 1

sht+1
n+1 _ &
g =

= & laxnrr € [4")
A conformally compact metric is asymptotically hyperbolic, in the sense that its
sectional curvatures approach —1 as x approaches 0. We notice that since we can
pick different defining functions, the metric g” ! in the interior X"t1 defines a
conformal class [4"] on the boundary. In the rest of this discussion, we will be
considering conformally compact manifolds (X" 1, g”*1) which in addition are
Einstein.

Conformally compact Einstein manifolds are studied as models for the Anti-
de-Sitter/Conformal Field Theory (AdS-CFT) correspondence in string theory. In
order to compute the partition function for the conformal field theory in the super-
gravity approximation, one must evaluate the gravitational action [y, Rd Vgn
for the metric g"*!
of (X"*1,g"*T1). Since this volume is clearly infinite (g”*! is asymptotically
hyperbolic) one regularizes it through re-normalization, thus introducing the re-
normalized volume. We briefly discuss this re-normalization procedure and its
relation to Q-curvature below. For a more detailed discussion we refer the reader

o [15], [17], [23] and the references therein.

, which in the case at hand is proportional to the volume
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It is known that each choice of metric & € [h"] on the boundary M™ uniquely
determines a defining function x in a collar neighborhood of dX”+1! in X" *1, say
X" T1 %[0, €], so that g" ™! takes the form:

9) "t = x72(dx* + hy), ho=h,

where &, is a 1-parameter family of metrics on dX”+!. We then consider the
volume of the region Ry = {x > ¢} in (X", g"*1), expanded out in powers of ¢,
and let ¢ — 0. Given that g”*! is Einstein, it follows that if z is odd:

(10) volgnt1({x > &}) = coe™ " + g2 4t L+ V +0(1)

whereas if n is even:

(11) volgnt1({x>e})=coe™" a2 -+cn_18_2+Llog(§) +V+o(l).

Moreover, if n is odd and since g” ! is Einstein, then (see [18]) V is indepen-
dent of the choice of metric A" in the conformal class [h"]. (Recall that this choice
was used in order to write out g” ! in the form (9), and hence also in defining the
region R; therefore V' depends apriori on the choice 4" € [h"]). For n odd, V is
called the re-normalized volume of (X1, g"+1).

For n even, V is not independent of the choice of metric A" in the conformal
class [A"]. In this case it is the quantity L that demonstrates this invariance. This
quantity L represents the failure of defining the re-normalized volume independently
of the defining function x. It is therefore called the “conformal anomaly” in
the physics literature. Moreover, Graham-Zworski have shown that L = ¢, -
Sagn Q(h™)d Vyn, where h™ is an arbitrary metric in the conformal class [A"].
Hence, a proof of Conjecture 1 would immediately imply that L can be written out
as:

(12) L= / W(h")dVyn + (Const) - y(M™)
Mn

where W(h") is a scalar conformal invariant of weight —n and M" = dX" 1, while
x(M™) stands for the Euler characteristic of M”" and (Const) # 0.

Another significant result has recently been obtained by Chang, Qing and
Yang, [10], relating the re-normalized volume V with the Q-curvature of g"*!
and hence with the Euler characteristic of the manifold X”*1. They show that if
Conjecture 1 is true, then for n odd one can express the re-normalized volume of
(X1 gnt1) yia the Q-curvature:

(13) RV = [ WV + (om0
Xn
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where (Const), 11 is a nonzero dimensional constants and W(g"*!) is a scalar
conformal invariant of weight —n — 1. Here the left-hand side stands for the re-
normalized volume of the manifold (X”T1, g”T1). Hence, it follows that the
re-normalized volume explicitly depends on the topology of X”*!, via its Euler
characteristic. A result related to (13) has been independently established (by an
entirely different method) by Albin in [1].

This identity raises the question of whether one can adapt the powerful tech-
niques developed for the study of Q-curvature to the study of conformally compact
Einstein manifolds. Strong results have already been obtained in dimension 4;
see [9]. For higher dimensions one might try to extend the work of Brendle [7]
to this setting. Another question would be whether one can obtain expressions
analogous to (12) and (13) for the re-normalized areas and conformal anomalies of
submanifolds, defined by Graham and Witten in [17].

1.3. Outline of the paper. Our theorem is a structure result for P(g”). We use
the “global” conformal invariance under integration of P(g") to derive information
on its algebraic expression.

In this paper we introduce the main tool that will show Theorem 1, the so-
called super divergence formula. For each P(g") that satisfies (5), we define an
operator /gn (¢p) that measures the “non-conformally invariant part” of P(g") (see
(26) below). We then use the property (27) of Ign(¢) to derive an explicit local
formula which expresses g7 (¢) as a divergence of a vector field. This formula,
which in our opinion is also of independent interest, thus provides us with an
understanding of the algebraic structure of I¢n(¢). In the sequel to this paper, [2],
we will use the super divergence formula to derive information on the algebraic
structure of P(g") and prove Theorem 1.

The super divergence formula is proven in a number of steps. A more primitive
version is the “simple divergence formula” in Section 5. This is then refined three
times in Section 6 and we obtain the super divergence formula in subsection 6.3.
The only background material needed for all this work is a slight extension of
Theorem B.4 in [3], which itself is a generalization of a classical theorem of Weyl
in [22]. This extension is discussed in Section 3. Roughly, Theorem B.4 in [3] and
our Theorem 2 below assert that a linear identity involving complete contractions
which holds for all values we can give to the tensors in those contractions, must
then also hold formally.

2. Background material

2.1. Definitions and identities. Whenever we refer to a manifold M", we will
be assuming it to be compact and orientable. Moreover, n will be a fixed, even di-
mension throughout this paper. We begin by recalling a few definitions and formulas.
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Definition 1. In this paper, we will be dealing with complete contractions of
tensors and their linear combinations. Any complete contraction:

C = contr((A")i,..i; ® - ® (A}, ..j,)

will be seen as a formal expression. Each factor (Al )iy...iy 1s an ordered set of slots.
Given the factors (Al)il...is, R (At)jlqu, a complete contraction is then seen
as a set of pairs of slots (a1, b1), ..., (aw, by), with the following properties: if
k # 1 {ar by (Mag. b} = @, ax # be. U=y dai bi} = {i1....... jg}. Each pair
corresponds to a particular contraction.

Two complete contractions

contr((A")iy..i, ® -+ ® (4")},...;,) and contr((B')f; .7, ® -+ ® (B )yy...0.)

will be identical if t =, (A') = (B?) and if the u™ index in A’ contracts against
the v index in A", then the ™ index in B! contracts against the v index in B”.
For any complete contraction, we define its length to stand for the number of its
factors.

We can also consider linear combinations of complete contractions:

Y a;(C) and Y b (Co)'.
leL reR
Two linear combinations as above are considered identical if R = L and a; = b;
and (C1)! = (C2)!. A linear combination of complete contractions as above is
identically zero if for every [ € L we have that a; = 0.
For any complete contraction C, we will say a factor (4), ... rs,
contraction if two indices in (A4),, rg, ATE contracting between themselves.
All the above definitions extend to partial contractions and their linear combi-
nations.

has an internal

We also introduce two language conventions: For any linear combination of
complete contractions » ;.; a;C ! when we speak of a sublinear combination, we
will mean some linear combination ) ;.;,a;C !'where L’ C L. Also, when we say
that an identity between linear combinations of complete contractions:

(14) > a,C" =Y a,C!
reR teT

holds modulo complete contractions of length > A, we will mean that we have an

identity:

(15) > a,C" =Y a;C"+ Y a,C*
reR teT uelU

where each C¥ has at least A factors.
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Definition 2. Now, for each tensor T, 4 and each subset {d,e,... f} C

{a,b,...,d}, we define the symmetrization of the tensor T,y 4 over the slots
doe,..., [:

Let IT stand for the set of permutations of the ordered set {d, e, ..., f}. For
each 7 € I1, we define 7T, s to stand for the zensor that arises from T, ¢ by
permuting the slots d, e, ..., f according to the permutation 7r. We then define the
symmetrization of the tensor T,y g over the slots d, e, ..., f to be:

S T,
7 lab..d-
well |H|

If{d,e,....f}={a,b, ..., d}, we will denote that symmetrization by T(up...q).

We recall a few basic facts from Riemannian geometry. Consider any Rie-

mannian manifold (M", g") and any xo € M". We pick any coordinate system

x!,...,x" and denote by X' the coordinate vector fields, i.e. the vector fields %.

We will write V; instead of Vy;.
The curvature tensor R;;x; of g" is given by the formula:

(16) [ViV; = V;VilXy = Riji X"

In a coordinate system, we can also express it in terms of the Christoffel
symbols:

(17) Rfjk:ajrl.’k—akrl.lj+§(F§7€F,’nj—r;7€r,’nk).
Moreover, the Ricci tensor Ric;g is then:
(18) Ricik = Rijurg”’.

We recall the two Bianchi identities:

(19) Rapcp + RcaBp + Rpcap =0,
(20) VaRpcpE +Ve.RapE +VBRcape = 0.

We also recall how the basic geometric objects transform under the conformal
change §" (x) = 2¢™) g”(x). These formulas come from [12].

(21 Rfjkl = €2¢(x)[R;'gjk] + Viidgik + Vikdgit — Vik g1 — Vjidgik
+VioVidgi +VidVidgix —VidVidgixk — Vi dVidgin
+|Vo1Pgiigix — IVoI*gingi;].

(22) Ricsy =RicS; +(2—n)V250 — Adgly + (1 —2)(VapVpd — VI Cap).
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while the transformation law for the Levi-Civita connection is:

(23) VE i =VE m—Vidn —Vignk + Vo hnsgu-

We now focus on complete contractions C(g”) in the form (2). We still
think of these objects both as formal expressions and also as functions of the
metric g”. Thus, for complete contractions in the form (2), contracting two lower
indices 4, 5 will mean that we multiply by g%? and then sum over a, b. We have
that under the rescaling " = t2g" the tensors V" R; k1 and (g™)" transform by
VI Rt (g = 2V Ry (™). ("7 (Pg") = 172(g") (g"). (We
will sometimes write V™ R;jx; instead of V;"! . R;jx;, for brevity.) Thus, for
each C(g") in the form (2), if we define K = — ) /_, (m; + 2), we will have that
C(t2g") = tXC(g"). We define K to be the weight of this complete contraction.

For future reference, we will consider more general complete contractions
defined on manifolds (M", g") and define their weight.

Definition 3. We consider any complete contraction Cgn(V,... V) in the
form:

24)  contr(V™ Ryjiy ® -+ ® V™ Ryjjy ® V)

1---4 1

defined for any xo € M". Here the tensors Vay]...a_ s, are auxiliary tensors (all
of whose indices are lowered) that have a scaling property under re-scalings of
the metric: Vayl ey, (12g™) =1 Vayl ayy (g"). (An example for a tensor Vay1 ey,
would be the y™ iterated covariant derivative of a function ¥, in which case Cy, =0).
Moreover, all the tensors here are over TM" |x,. The particular contractions of any
two lower indices will be with respect to the quadratic form (g")¥ (xo).

We then define the weight of such a complete contraction to be

W= S i 42— 3 (i —Cy).

i=1 i=1
As for the previous case, we then have that:
Cpogn(VE . V)=tV Cen (V... V).

In this whole paper, when we write a complete contraction and include the
metric g” in the notation, we will imply that the contraction is defined on manifolds
(and possibly also depending on additional auxiliary objects, for example scalar
functions) and will have a weight, as defined above. Unless otherwise stated, all
complete contractions will have weight —n.

2.2. The operator Ign(¢p) and its polarizations. For this paper and in [2], we
will consider P(g™) as a linear combination in the form:

(25) P(g") = IZ a;Cl(gm
eL
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where each C!(g") is in the form (2) and has weight —n. We assume that P(g")
satisfies (5).

We define a differential operator, which will depend both on the metric g” and
the auxiliary ¢ € C*°(M"):
(26) Ign(@)(x) = " P2 g™ (x) — P(g") ().

We then have by (5) that:
227 [ Ion(9)dVg" =0
M}’l

for every compact manifold (M", g"*) and any function ¢ € C*°(M"). Then,
using the transformation laws (21) and (23) we see that Ign (¢) is a differential
operator acting on the function ¢. In particular, we can pick any A > 0 functions
Y1(x),...,¥4(x), and choose:

A
(x)= > Yi(x).
=1
Hence, we have a differential operator Ign (1, ..., ¥4)(x), so that, by (27):

/ Ig"(WL---sWA)dVgn =0
Mn

for any (M", g"), M" compact and any functions ¥1(x), ..., ¥4 (x)eC>®(M™").
Now, for any given functions ¥; (x), ..., ¥4(x), we can consider re-scalings:

Ay (x), ... Aapa(x).

Hence, as above we will have the equation:
(28) /M Ig”(k]Wl,...,kAlﬁA)dVgn :O

We can then see [y, Ign(A1Y1,...,Aq¥4)d Vgn as a polynomial in the factors
Al,...,A4. Call this polynomial TT(A1,...,44).

But then relation (28) gives us that this polynomial IT is identically zero.
Hence, each coefficient of each monomial in the variables A1, ..., A4 must be zero.
We want to pick out a particular such monomial. Pick out any integer 1 < Z < A.
Then in Ign(A1Y1,...,A4¥4) (seen as a multi-variable polynomial in A1, ..., A4)
consider the coefficient of the monomial Ay ----- Az. This will be a differential
operator in the functions vy, ..., ¥z, which we will denote by 15, W1,...,¥2).
By elementary properties of polynomials and by the definition of /¢n (¢) in (26)
we have:

29) 14&W,....¥z)

=0;,...0, [en(/lﬂﬁl+--'+leﬁz)P(e2()L1Wl+"-+/121/fz)g")]|M=O’W’AZ=O.
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The precise form of / 51 (Y1,...,¥z), given P(g™), can be calculated using the
transformation laws in the previous section. We do this in [2]. For the time being,
just note that by (28) we have the equation:

LEMMA 1.
(30) /Mn 12, (... Y 2)dVen =0

for every compact (M", g") and any Yy, ..., ¥z € C®¥(M").
Proof. This is straightforward from relation (28) and the equation (29). [

From all the above, it is easy to see that / 5, (¥1,...,¥z) is a linear combina-
tion of complete contractions of weight —r in the form:

(31) Contr(v;‘q;l.l..r Riljlklll ® U ® V;”:s v Rl’sjsksls

m <Umsg

®VY g V18 ®VE L, V7).

For the rest of this paper, we will only be using the fact that / an W1,...,¥z2)
satisfies (30) and that it is a linear combination of complete contractions in the form
@3D.

3. The trans-dimensional isomorphisms

The aim of this section is to establish a natural isomorphism of linear combina-
tions of complete contractions in the form (31) of weight —n, between dimensions N
and n, if N > n. In order to make this statement precise and to provide a proof,
we will recall some terminology and facts from the appendices in [3]. The main
“known fact” to be used is Theorem 2 in the next subsection. This theorem is a
slight generalization of Theorem B.4 in [3], and it can be proven using the same
ideas. The appendices in [3] generalize classical theorems that can be found in [22].

3.1. Known facts. The appendices of [3] deal with identities involving linear
combinations of complete contractions. The main assertion there is that under
certain hypotheses, when a linear identity involving complete contractions holds
“by substitution”, it must then also hold “formally”. We will be explaining these
notions in this subsection. For more details, we refer the reader to [3].

We introduce the “building blocks™ of our complete contractions. Firstly, we
consider symmetric tensors. Let us consider a family of sets of symmetric tensors
(T ={T5. T%, ..., Tl‘i‘ls .« Haea (T is just a scalar, i.e. a tensor of rank
zero), defined over the vector space R”. Here each « € A is not a free index of the
tensors Tl‘i‘A It just is a label that serves to distinguish the tensors Tl‘i“lA and

1

o
Ti]...i_v when a1 # as.

Our second building block will be a list of tensors that resemble the covariant
derivatives of the curvature tensor:
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Definition 4. A set of linearized curvature tensors is defined to be a list of
tensors R=1{R;jk;...., Ry, . f..ijki--- - defined over R", so thateach Ry, x ik
satisfies the following identities:

1. Rxl...xs,ijkl is symmetric in x1,..., Xg,

2. Ryy..[xy,ijlkl =0,

3. Rxl...xs,[ijk]l =0,

4. Rxl...xs,ijkl = _Rxl...xy,jikl’ Rxl...xs,ijkl = _Rxl...xs,ijlk’

where in general, Ty, ;,.[i1i2i3] f1... f, Will stand for the sum over all the cyclic
permutations of the indices i1, iz, i3 (in the case where two of the indices i1, ip, i3
are antisymmetric).

Our third building block is the following set:

Definition 5. Consider a set of tensors & = {Ef‘ e Eﬁs...iv’ ...}, where the

. . . —~k . ..

free indices are i1, ..., I, k5. Assume that each tensor E:° . is symmetric in the
i1...0¢

indices iy, ...,Is. We call any such tensor a special tensor. Any such set & will be

called a set of special tensors.

We can then form complete contractions of tensors that belong to the sets
UwealT*}, R, E. They will be in the form:

(32) conr@' ® - QU @R ® - QR QE ®---®@ E7Y)

where each tensor u’i belongs to the set Uaea{T*}, each tensor R, belongs to the
set R ={Rjjkl, ..., R}l Fodjkl } and each tensor EZ belongs to the set E =
.y

=k =k
i ML

respect to the Kronecker 8/, while for an upper and lower index we will be using
the Einstein summation convention. We can consider linear combinations of such
complete contractions: A(|,c4{T%}. R.E) =Y jcs @1C (UyeaiT*}. R, E).

For each complete contraction C(|J,ec417%}. R, E) that contains a factor
t = R;, . .i,ijki> we will say that we apply the third identity in Definition 4 to the
indices i, j, k (or that we permute indices according to the third identity) if we
replace the complete contraction C (| J,c4{T*}. R, E), by

—Cl( J{T%}. R, :) —C2( J{T*). R, :)

a€A a€A

,...}. A particular contraction of two lower indices will be with

where C1(Jyes{T%}.R.E) is obtained from C(|J,c4{T%}.R.E) by replacing ¢
by R, i kiji and C2((UgeqtT*}. R, E) is obtained from C (|, 4{7%}, R, B)
by replacing ¢ by R;, ;. jki1- We similarly define what it means to apply the second
identity in Definition 4. It is clear what is meant by applying the first and fourth
identities (or by permuting indices according to the first and fourth identities).
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Definition 6. Such a linear combination of complete contractions vanishes
formally if we can can make the linear combination zero using the following list of
operations:

By permuting factors in the complete contractions, by permuting indices in
the factors in | J,c 4{T*}, by using the identities of the factors in R, by permuting

the indices iy, ..., Iy in the factors E{.cl“”_iv and by applying the distributive rule
a-c’( | J{T*} R, :) +b-cl( \J{T*} R, :)
acAd acA

= (a+b)-C’( U{T“},R,E).

acA

Also, we will say that the linear combination A(|J,c4{T%}. R, E) vanishes
upon substitution if for each set of tensors | J,c 4{7*}, R and E that have the above
properties, the value of A(U,ec4{T%}. R, B) is zero.

The following theorem is then an extension of Theorem B.4 in [3] and it
follows by the same ideas.

THEOREM 2. Let us consider a linear combination of complete contractions
AUyedlT* R, E) =) L alCl(UaeA{T“}, R, E) as above. For each com-
plete contraction C', we denote by ZlFt the number of symmetric tensors of rank
> 1. We also recall that m; is the number of linearized curvature tensors and xj the
number of special tensors. We assume that for each C' the sum Z lﬁ +2my; 4+ 2x; is
less than or equal to n.

We then have that if A(Jyes{T%}. R, B) vanishes upon substitution in di-
mension n, it must also vanish formally.

We note that the theorem above also applies when there are no factors from
the set & in our linear combination.

3.2. Corollaries of Theorem 2. We derive two corollaries of Theorem 2. We
will now be considering complete contractions on manifolds.

Consider an auxiliary list of symmetric tensors 2 = {2, ..., Qi . ics.--}-
We impose the condition that these tensors must remain invariant under re-scalings
of the metric g", i.e. Q;,. i, (12g") = Qi,..i,(g"). We then focus our attention on
complete contractions C én W1,..., ¥z, Q) of the form:
(33) contr(Vy]! ,, Rijk1 ®:--® Vi i, Riji

&® vé’ll...apl wl ® - Q Vlll)lz...bpz WZ & S21’1-~ih] Q- ® Qul"'uhy).

We assume that y > 0 (in other words, there may also be no factors €2;, .. ;,). If we
write C é, (V1,...,¥z, Q) (replacing g" by g”), we will be referring to a complete
contraction as above, but defined on an r-dimensional manifold. We will call this
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the re-writing of the complete contraction C él,,, (¥1,...,¥z, Q) in dimension r.

Also, when we speak of the value of Cél,r W1, ..., ¥z, Q)(x0), we will mean the
value of the above complete contraction at a point x¢ on a manifold (M”", g"), for
functions V1, ..., ¥z defined around xo € M" and for symmetric tensors 2;, ..,
defined at x¢. This terminology extends to linear combinations.

Finally, a note about the weight of the complete contractions: By our definition
of weight, if C;,r (Y1, ...,¥z, Q) has weight —n, then in the notation of (33):

K Z y
(34) > (mi+2)+ > pi+ > hi=n.
i=1 i=1 i=1

Thus, if we have Z* factors V2i Y; with p; > 1, the above implies that:
(35) Z¥ 425 +y <n.
Definition 7. A relation between complete contractions in the form (33):
> aCli(n.... ¥z.Q) =0
leL

will hold formally if we can make the above sum identically zero by performing
the following operations: We may permute factors in any complete contraction
C &l,n (Y1, ..., ¥z) and also permute indices within the factors €2;, . ;. Furthermore,
for each factor Vr’jm, »Wh, With p =2 we may permute ry, r2, while for p > 2, we
may apply the identity:

(36) [VaVp —VgValXc = Rapcp X
and for each factor V" R; jx;, we may apply the identities:

LVE e Rijkt ==V o Riiki ==V ;. Rijik.

V:'11...[rm

v T Riijxu = 0.

ri.

The identity (36) above.

Rijik1 = 0.

bl

The application of the second and third identities above has been defined. To
apply the fourth identity to a factor VP, or V" R;;;; means that for each com-
plete contraction Cgn (Y1, ..., ¥z, 2) of the form (32), for each factor Vﬁ et ¥h
or VI . Rjjkr in Cgn (Y1, ..., ¥z, ) and each pair of consecutive derivative
indices rg_1, r¢ We may write:

an(wl,...,wz,sz):an(wl,...,wz,sz)+hZHahC;n(w1,...,wz,sz)

where Cé’,,1 (W1,...,¥z,R) is obtained from Cgn (Y1,..., ¥z, Q) by replacing
the factor V7 ., v or VI Rijki by VA rore yory VR OtV v 1 Rijkls
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respectively, and ),y ahCéf‘,, (Y1,...,¥z, Q) is obtained from Cgn (Y1, ...,
¥z, Q) by replacing the factor Vﬁ rp¥h V7., Rijki by one of the summands
in the following expressions, respectively, and then summing again:

BT X1t htbisbs—a I rs b1} (b1 by —1 -1 }=2
d 1
( .ax rv 1TsTs+1 )(VS byxl X drs+2 rpwh

+"'+(V aers 1r;rpd)(vs 1—x ym—s— 1/’/1);

bs 1—x Fs+1--
B8) D tar bbby }CAPL s 3@ 1 s} (VD1 g2} =

d s—1—x m—s—1
(v aers 1rsTs+1 )(V wbg_o_ xvdrv+2 T ijkl)

ot (V2 a Ry ir d)(Vs lb:C1 XV;'Z+1S 1 Rijka)-

Now, our first corollary of Theorem 2:

LEMMA 2. Consider complete contractions C gln W1,...,¥z,R), each in the
form (33) and with weight —n, so that the identity:
(39) Fon(Yi,... ¥z, Q) = 3 aiCon(Y1.....¥2.2) =0
leL
holds at any point xo for any metric g" and any functions VY1, ...,z defined

around xo and any symmetric tensors 2, ...i, defined over TM™|x,. Then the above
identity must hold formally.

Proof. We consider the minimum length r, among all the complete con-
tractions in (39). Next, we index the complete contractions C él,n Wi,...,¥z,Q)
of length 7 in the set L™ C L. Suppose we can show that, applying the above
operations, we can make ) ;7 « alCén W1,...,¥z, Q) formally equal to a lin-
ear combination ) ..pa,C ;n (Y1, ...,¥z,Q), where each complete contraction
Cgfn(wl, ..., ¥z,Q) has length > 7 + 1.

If we can prove the above claim then using a finite number of iterations we
will have proven our lemma. This is true since there is obviously a number 7', so
that all the complete contractions that arise by iteratively applying the identities of
Definition 7 to the complete contractions C én W1,...,¥z,Q),[ € L, must have
length < 7'. This follows just by the finiteness of the index set L. The rest of this
proof will focus on showing that claim.

In order to accomplish this, we begin with a definition. For any complete
contraction Cél,n W1,.... ¥z, ), letlinCH(R, Wy, ..., ¥z, Q) stand for the com-
plete contraction between linearized curvature tensors and symmetric tensors that
is obtained from Cén (Y1,..., ¥z, Q) by replacing each factor Vi!' , R;jx; by a
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linearized curvature tensor R, ;. iikl» and each factor Vﬁ_“, ,¥n by a symmetric

b,

p-tensor \Di’l + . We will prove a fact to be used many times in the future.
Tp
LEMMA 3. In the above notation, given (39), we have, formally,

Y alinCH(R. ;... Wz, Q) =0.
leL"
Proof. We recall the following fact, which follows from the proof of Theorem
2.6 in [14]: Given any set R of linearized curvature tensors Ry, ;. iiki(xo), there
is a Riemannian metric defined around x¢ so that for any m:

(40) (Vir o, Rijk)® (x0) = Ry, t,ijk1(X0) + C(R)4, ..tn.i k1
where C(R)y, .. 1,,.ijki stands for a polynomial in the components of the linearized
curvature tensors. This polynomial depends only on m and the indices t1, ..., t;,

i, J,k,l. Furthermore, each monomial in that polynomial will have degree at least 2.
For any set R of linearized curvature tensors, we call the metric g” for which
(40) holds the associated metric. Now, for any choice of symmetric tensors

(T T T o ATETE L TE
: . _ 7l
there are functions ¥y, ..., ¥z defined around x¢ so that: V;yl---is Yi(xo) = Til...is
(for some arbitrary ordering of the indices i1, ..., ig on the left hand side), and also
for each permutation 7 (ig ... is) of the indices iy, ..., s:
(41) V2 iy ¥n(0) = VI, Un(x0) + C(R. Ypiy i,

where C(R, Th) i1..iy stands for a polynomial in the components of the linearized
curvature tensors and of one component of a tensor from the set T" (of rank > 1).
This polynomial depends only on p and the indices i1, ..., is. Furthermore, each
monomial in that polynomial will have degree at least 2.

For any choice of symmetric tensors Tll1 we define the functions y; to be
their associated functions.

Now, we pick any set R of linearized curvature tensors and any set 7' of
symmetric tensors and consider the value of Fgn (Y1, ..., ¥z, ) for the associated
metric g” and the associated functions ;. By virtue of our remarks, we see that
there is a fixed polynomial I1(7, R, 2) in the vector space of components of the
sets T and R, so that for any given set R of linearized curvature tensors and any
set T of symmetric tensors at xg,

g’

TI(T, R, Q) = Fen(Y1.....%2.Q) =0.

Furthermore, we observe from (40) that each monomial in I1(7, R, 2) has
degree at least t. Finally, if I1(7, R, 2)|; stands for the sublinear combination of
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monomials of degree 7 in I1(7, R, 2), then
I(T,R, Q)| =0

for every set R of linearized curvature tensors and all sets 7', €2 of symmetric
tensors. But given equations (40) and (41) we see that:

42) (TRl = 3 allinC' (R Y1.....¥7.2) =0.
leL®
Hence, in view of Theorem 2, we have that (42) must hold formally. O
So, for each lin Cén (¥1,...,¥z, Q) there is a sequence of permutations

for the factors \Ilz{l...tcu ,€2j,..i;, and of applications of the identities of a lin-
earized curvature tensor to the factors Ry, ;. iiki(xo) so that (42) will hold
by virtue of the identity a - C(Uiz=1{Ti}, R,Q2)+b- C(UiZ=1{Ti}, R.Q) =
(a+b)-C(UZ T R, Q).

We then repeat these operations to the sublinear combination

> aiCli(yr, ... ¥z, Q).
leL®
The only difference is that the indices 71, . .., in each factor V! , R;;x;(xo)
and the indices i1, ..., ip in each factor Vl.sl s Yy, are not symmetric. Nonetheless,
we may permute the indices iy, ..., Is in each factor Visl WAL and the indices
I1,...,tm in each factor V! , R;;x; and introduce correction terms, which are
complete contractions in the form (43) of length > v + 1. Hence, repeating the

permutations which made (42) identically zero, we derive our claim. O

We now make a note about the notation we used: We have considered complete
contractions C él,n (Y1, ..., ¥z, Q) in the general form (33), and we have explained
that there may also be no factors €2;,.. ;.. We make the extra convention that if we
refer to a complete contraction CL, (1, ..., ¥z), we will imply that it is in the
form (33) and has no factors €2;, . ;,. Therefore, it will be in the form:

(43)
contr(VyL y,, Rijkt ® -+ @ V(i y, Rijkt ® Vo)., V1@ @V, V7).

Our next lemma is another corollary of Theorem 2. We must again introduce
a definition.
We focus on complete contractions C én (W1,...,¥z, B) of the form:

(44) contr(V;’?.‘._rm1 Rijk1 ®---® V:?:Y'-tms Rijki ® Vfll V1®...

LR VPZ gki @ Ek
Vb, VZOE;  ® - ®F;] ;).

p,
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~

In the manifold context, we impose the re-scaling condition af}‘m iy (t2g") =
ki n . . ‘
CH (g") on the special tensors. When we wish to apply the theorem to a

particular case of special tensors, we will easily see that this condition holds.

Definition 8. A relation between complete contractions in the form (44):

S aCla(yy. ... ¥z, 8)=0

leL

will hold formally if we can make the above sum identically zero by performing
the following operations: We may interchange factors in any complete contraction
Cgl,n (Y1, ..., ¥z) and also permute the indices i1, . . ., iy among the factors Eﬁ g

Furthermore, for each factor V" R;;x;, we may apply the identities:

LVE e Rijkt ==V . Rjiki ==V Rijik.

2. Vit Riiyer = 0-
3. Vi Riijir = 0.
4. We may permute the indices rq, ..., Fy by applying of the formula:

[V4Vp —VBValXc = Rapcp X P,
as defined in the previous definition;
and for any factor Vl-’; iy Y, we may permute the factors i1, i if p =2 and apply the
identity [V4Vg —VaV4]Xc = Rapcp X P, as defined in the previous definition
if p>2.

We then have:

LEMMA 4. Consider complete contractions Cél,n (W1,.... ¥z, B), each in the
form (44) and with weight —n, so that the identity:
45) > aCli(yi,.... ¥z, 8)=0
leL
holds at any point xq, for any metric g", any functions V1, ..., ¥z defined around

Xxo and any special tensors Ef‘ (xo) defined at xo. Assume also that each special

1...ds
tensor in each C! has rank at least 4. Then the above identity must hold formally.

Proof. We prove this corollary by using Theorem 2, in the same way that we
proved Lemma 2 using Theorem 2.

We only need to observe that for each complete contraction in the form (44)
with weight —n, if r; stands for the rank of the i™ special tensor then:

N

Z S
(46) >mi+2)+ > pi+ > (ri—2)=n.

i=1 i=1 i=1
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For each Cél,n (¥1,..., ¥z, B), we again denote by Z* the number of factors V2% Yy
for which pj # 0. Thus, assuming that each special factor has rank at least 4, we
deduce that for each complete contraction C - W,..., ¥z, B):

(A7) Z¥ 425 4+2f <n.
Let t be the minimum length among all the contractions

Chh(yr.....yz.8), lelL.

We define the subset L* C L to be the index set of all complete contractions
C él,n (Y1, ...,¥z, B) with length t. As before, we define the linear combination of
complete contractions involving linearized curvature tensors rather than “genuine”
covariant derivatives of the curvature tensor, and also symmetric tensors Wh rather
than “genuine” factors V2 y,:

Y alinCH(R,¥y,..., Wz, E)
leL™

and we show that

Y @linCHR,Wy,..., Wz, E)=0
leL™

formally. We then deduce that an equation:

(48) > aClir.... vz.8)= ¥ a;CLa(y1..... ¥z, E)

leL™ rer
where each Céf,, (Y¥1,...,¥z, B) has length > 7 + 1, will hold formally. By
inductive repetition of this argument, we have our lemma. O

These lemmas will prove useful in the future. For now, we note that there
are many definitions of an identity holding formally. However, there will be no
confusion, since in each of the above cases the complete contractions involve tensors
that belong to different categories. Furthermore, in spite of the equivalence that the
above theorems and their corollaries imply, whenever we mention an identity in
this paper, we will mean (unless we explicitly state otherwise) that it holds at any
point and for every metric and set of functions (and maybe special tensors & or
symmetric tensors £2).

3.3. The isomorphism. We now conclude that:

PROPOSITION 1. Suppose that {C;N (V1,...,¥z)}rer are complete contrac-
tions in the form (43) of weight —n. Suppose N > n. Then

> angrN (Y1....,¥z)(x0) =0

reR
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for every (M", g"), every xo € M" and any functions v defined around x if and
only if
> arCan(Y1,....¥z)(x0) =0

reR
for every (M™, g"), every xo € M™ and any functions v defined around xy.

Proof. The above follows by virtue of Lemma 4. O

4. The silly divergence formula

Our aim here is to obtain a formula that expresses IgZ,, (Y1,...,¥z) as a
divergence of a Riemannian vector field. This first, rather easy, divergence formula
is not useful in itself. It will be used, however, in the derivation of the much more
subtle simple divergence formula in the next section. For now, we claim:

PROPOSITION 2. Consider any linear combination IgZ,, (Y1,...,¥s) of con-
tractions in the form (31) for which fM" Ié%, (Y1, ....¥s)dVgn = 0 for every
compact (M", g") and any V1, ..., ¥s € C®°(M™). Note that 151 W1,...,Ys)
defined in (29) satisfies this property.

We then claim that 151 (Y1,...,¥z) is formally equal to the divergence of a
Riemannian vector-valued differential operator of weight —n + 1 in ¥1(x), ...,

Vz(x).

Proof. In view of Lemma 2 in the previous subsection, it suffices to show that
there is a vector field Tén (¥1,...,¥z) of weight —n + 1 so that:

151, ¥z)(x0) = divi Tgn (V1. ... . ¥2)(x0)

for any metric g” and for any functions v, ..., ¥z around x¢. In order to show
this we do the following:
Suppose that

1L Vz) = z]a,-cgnwl,...,wz)
JE

where each of the complete contractions C é{n (¥1,...,¥z) is in the form (31). Let
us sort out the different values of v; that can appear among the different complete
contractions C é{n (Y1, ...,¥z). Suppose the set of those different values is the set
L={A1,....,Ag} where 0 <A <--- < Ag. .

Let Jx C J be the set of the complete contractions C é,, (Y1,...,¥z) with
V1 = Ag. We then consider the linear combination:

Fon(W,....¥2) = ¥ a;Ca¥n,....¥2)

J€JK
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where each complete contraction C gjn (¥1,...,¥z) is in the form (31) with the
same number Ak of derivatives on V1. Out of Fgn(¥1,...,v¥z), we construct the
following vector-valued differential operator:

é"(le"'vWZ): Z aJ(C])lg”(WI”WZ)

JE€JK

where (C/).,, (Y1, ...,¥z) is made out of Cé{n (¥1,...,¥z) by erasing the index
x1 in (31) and making the index that contracted against it in (31) into a free index.
Let us then observe the following:

LEMMA 5. The differential operator

Fon(Y1,....¥z) = Fen(Y1,....¥z) —divi Fpu (Y1, . ¥Z)

will be formally equal to a linear combination of complete contractions in the form
(31) (of weight —n), each of which has Ag — 1 derivatives on the function V1.

Proof. This is straightforward by the construction of the vector-valued op-
erators (C/ )lg” (Y¥1,...,¥z): Let the derivative V; in the divergence of each
(CHL, (Y1, ..., ¥z) hit the factor VA ~1y . That summand in the divergence
will cancel out the complete contraction C gjn (¥1,...,¥z). Every other complete
contraction in div; F’ ;,,1 (Y1, ..., ¥z) will have Ag — 1 derivatives on /1. This gives

our desired conclusion. O

But then repeated application of Lemma 5 gives the following:
We can subtract a divergence of a vector field Ly, (Y1, ..., ¥ z) of weight
—n + 1 from Ian(l/fl, ..., ¥z), so that

Rgn(1,....¥z) =151, ... ¥z) —diviLLa (Y1.... . ¥z)

is a linear combination of complete contractions in the form (31), each of which
has v; = 0.
We then observe that:

LEMMA 6. In the above notation, Rgn (Y1, ...,V z) must vanish formally.

Proof. First observe that for any Riemannian manifold (M”, g") we will have:

/ Rgn(Y1.....¥z)dVgn =0.
Mn

This is straightforward, because of Lemma 5 and the definition of Rgn (1, ...
..., ¥z); it is obtained from / an (¥1,...,¥z) by subtracting a divergence.
Now, write Rgn (Y1, ...,V z) as follows:

Rgn(Y1.....¥z) = ¥ ajChn (... ¥2) Y.

leL
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Then the equation

@) [ R 2V = [ 1T Gl Ve

holds for any function v, and also the sum ) ;.; alCél,n (Y2, ...,¥z) is inde-
pendent of the function 1. But this shows that Rgn (Y1, ..., ¥z) must vanish by
substitution. Hence, by Theorem 2, it must vanish formally. |

5. The simple divergence formula

5.1. The transformation law for IgZN and definitions. Let 151 W1,...,¥2)
be as in Proposition 2. We then have that / 51 (¥1,...,¥z) is a divergence of a
vector-valued differential operator in ¥; (x), ..., ¥z (x). This is useful in itself, but
we cannot extract information directly from this fact about P(g”). Nevertheless, it
is useful in that we have a relation:

(50) 1. .¥z)=diviLLa(Y1.... . ¥z)
which holds formally. But then Proposition 1 tells us the following:

LEMMA 7. Relation (50) holds for any dimension N > n. That is, considering
the complete contractions and the Riemannian vector fields in (50) in any dimension
N > n, we have the formula:

(51) 15 (1. ¥z) =divi Ly (Y1, ... ¥2).

Proof. This is straightforward from Propositions 1 and 2. O
Therefore, we will have that for any (M, g™) and any v/1,..., ¥z € C®(MN):
(52) / 15 (1. Y z)dVgn =0.

MmN 8

Now, equation (52) is not scale-invariant. This can be used to our advantage
in the following way: Pick out any point xo € MY . Pick out a small geodesic ball
around xg, of radius ¢. From now on, we will assume the functions ¥1,..., ¥z
to be compactly supported in B(xg, €). Then we can pick any coordinate system
around x¢ and write out / gZN (Y1, ...,¥z) in that coordinate system

(53) /RN IgZN (Y1, z)dVgn = 0.

Now, let our coordinate system around xq be {x, ..., xy }. For that coordinate
system, we will denote each point in B(xg, €) by X. Let also £ be an arbitrary vector
in RV. We then consider the following conformal change of metric in B(xo, ¢):

gV (x) = X% g (x),
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We have that (53) must also hold for this metric. The volume form will re-scale as
follows:

dVen (x) = eNEZ GV (x).

Now, we have that / gZN (Y1, ..., ¥z)(x) is a linear combination of complete
contractions in the form (31). So, in order to find how any given complete contraction
in the form (31) transforms under the above conformal change, it suffices to find
how each of its factors will transform. In order to do that, we can employ the
identities of the first section.

The transformation law of Ricci curvature, for this special conformal transfor-
mation, is given by equation (22), replacing ¢ by X - § . Recall that V; (§ -X) = é},
therefore:

(54) Ricss (x) = Rick, (1) + (2 — N)VZ5 (- %)
—Agn (E-X)gl; + (N —2)(Eap —EFErgll).
The scalar curvature will transform as:
(55) RE"(x) = e 2EHRE" +2(1- N)Agw E-7)— (N = (N ~2)E 5]
and the full curvature tensor:
(56) Rf-”;-z, (x) = ezé’-x{ngl(x) + & gkg,]-\l’ ~& gzgjl-\;]c +E &g —EEgl]
—V2(E -D)gh —VEE- gl + VA E-Del
+VEE Dl +1ERel gl ~ 1E e e ).

Hence, in order to find the transformation laws for the covariant derivatives of
the full curvature tensor, the Ricci curvature tensor and of the factors VP, we
will need the transformation law for the Levi-Civita connection in the case at hand:

AN N - - -
(57) (Vin)®™ (1) = (VenD)® ™ = §em — & + 8158y

_ These relations show that in (53), under the re-scaling g%V (x) — ¢V (x) =
e26XgN (), the integrand I gZN (Y¥1,...,¥z)(x) undergoes a transformation as
follows:

(58) & (Wi, ¥Z2)(x)
= e IZ 1 Y2 + SE W Y2 D),

where S gZN (Y1, ...,¥z, &) is obtained by applying the transformation laws is a
linear combination of complete contractions, each of which described above to each
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factor in every complete contraction in 12, (¥1,...,v¥z). SZ (U1,.... ¥z, é')
depends on &. Hence equation (53) will give, for the metric gﬁ

(59) /R CeNIERIZ (g )+ SE W 0z E)d Ve =0,

Roughly speaking, our goal for this subsection will be to perform integrations
by parts for the complete contractions in S gZN (Y1,...,¥z,&)(x) in order to reduce
equation (53) to the form:

/ eNTENIZ Wt V) L (e Y2)]d Vgn = 0
RN

where Lg ~ W1, ..., ¥z)(x) is independent of § . This will be done and explained
rigorously below. Keeping this vaguely outlined strategy in mind, we note the
identity:

(60) vs(e(zv—n)é'.;c) — (N —n)gs(e(N_")g';‘)_

More generally, we denote by 95, _, the coordinate derivative with respect to our
coordinate system. Then, for k > 1,

(61) aIscl...sk (g)_é) =0

for every x € B(xg, &).
Let us consider the Christoffel symbols I‘l-kj with respect to our arbitrary
coordinate system. Let
g £ k p k
SV ..s,€ stand for Vo &y and SVP . T stand for Vi, Tip):
Write [ gZN (¥1,...,¥z) as a linear combination of complete contractions in the
following form:

(62) contr(Vy}! . Riyjikeyty ® - ® Vi o Ri ok, ® Vi, Rica, g,
® e ® VZplq...qu RicalIﬂ(l ® V;l ~~-XU1 wl ® o ® V;})IZ"'C‘)"'Z wz)

1
where each of the factors V;?.l..rml Rii ikl Vo om,
the indices i, j, k, [ contracting against each other in (62).
Now, in dimension N, we can apply the identities (56), (54),(55) and (57) to
write S gZN W1,..., ¥z, §) as a linear combination of complete contractions in the
following two forms:

R; jk,1, has no two of
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(63) Contr(vzrll.l..r Riljlklll Q- ® V{)r;f..vm Rl'sj.vksls ® Vt’il...tp1 Ricalﬂl

mj s
® e ® Vflq...qu Ric()lqﬂq ® V;;...Xul '(//'1
® @Yot w0, V2 BE® - ®F).
(64) Contr(v:rll.l..r Ri1j1k111 Q- ® Vl’)nls v RiSjSkslS ® thil'"tl’l Ricalﬂl

- oy
® - ® VI o, Ricayp, ® VY, V1 ® - ®VEZ , Yz ®F

1. @y

®--@ERSIVYL ,, E1©-- @SV, ],

“Zpg

where each w, > 1. We also let k stand for the number of factors § and / for the
number of factors S ng .

We will call complete contractions in the above two forms § -contractions. In
order to see that we can indeed write S gZN (¥1,...,¥z) as a linear combination of
complete contractions in the above form, we only need the equation:

(65) VaSV,{'llmrmgszvm ..rm5j+cm—1'5*v7f_l Raijdéd

ari. cFm—1
+ > aypeontr(V™ Rypeq SV“E).
ueym

-1

where S*V7~1  Ry;jq stands for the symmetrization of 4

=1
the indices ryq, ..., rm—1,1 and the symbol

peontr(V"™ Rypeq SV §)

Rgija over

stands for a partial contraction of at least one factor V™ R4 k1 (to one of which the
index a belongs) against a factor SVS«§ with s, > 1.

Our next goal is to answer the following: Given a fixed linear combination
15, (Y1, ..., ¥z) and its rewriting 1%, (Y1, ...,¥z) in any dimension N > n, how
does SgZN (Y1, ...,¥z, &) depend upon the dimension N ?

In order to answer this question, we will introduce certain definitions. Let us
for this purpose treat the function § - X as a function w(x). Hence §,~ =V; (§ - X)
and we can speak of the rewriting of a § -contraction in dimension N. We will
consider the complete contraction C L, Uz, g? ) together with its rewriting
C ; ~W1, ..., ¥z, &) inevery dimension N > n and call this sequence a dimension-
independent complete contraction.

On the other hand, we define:

Definition 9. Any factor of the form g? or of the form § vmg? ,m>1, will be
called a &-factor.

Definition 10. Consider a sequence {C(g N)(¥1,..., ¥z, § )} of complete con-
tractions times coefficients in dimensions N =n,n + 1,... where the following
formula holds: There is a fixed complete contraction, say Cgn (Y1, ..., ¥z, §) and
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a fixed rational function Q(N) so that:

CanyW1s- - Y2, 8) = O(N)-Con (Y1, V7, &)

where Con (V1. ... Yz, €) is the rewriting of Cgn (V1. ... ¥z, £) in dimension N .
In that case, we will say that we have a dimension-dependent &-contraction. Fur-
thermore, we will say that the three defining numbers of C(o n)(V1.....VZ, §)
are (d, k,l) where d is the degree of the rational function Q(N), k is the number
of factors § and [ is the number of factors SV? . 5,1, m>1.

(Given a rational function Q(N) = P(N)/L(N), we define the degree of
O(N), deg[Q(N)] = deg[P(N)] —deg[L(N)]. We also define the leading order
coefficient of Q(N) to be ap/ay,, where ap is the leading order coefficient of
P(N) and ay, is the leading order coefficient of L(N)).

Given a fixed set of numbers {a;},i € I, and a set of dimension-dependent
&-contractions C (’g N)(wl, ..., ¥z, &), we can form in each dimension N > n the
linear combination:

LgN(WI""’WZ’g) = .Zlaic(ig,N)(WI""’WZ’g)'

Hence we obtain in this way a sequence of linear combinations, where the index
set for the sequence is the set N={n,n+1,...}.

Definition 11. A sequence of linear combinations as above is dimension-
dependent and is suitable if for each of the &-contractions C (ig N)(wl’ e ¥z, )
its three defining numbers satisfy: k +1 > d.

We then have:

LEMMA 8. SgZN W1,..., ¥z, §) is a suitable linear combination of g-con-
tractions of the form (63) and (64), withk +1 >d > 1.

Proof. We write
120, ¥z)= ¥ aiCly (..., ¥z)
iel
where each C;;N (Y1, ...,¥z) is in the form (31) and has weight —n.
We introduce some further terminology. We call the tensors

N N g N g
(V;,:...rle'jkl)g ’ (qu...rPWI)g , (Svir“'ll...rmsa)g . & and g,]y

the free tensors. We call partial contractions of those tensors the extended free
tensors. (Recall that a partial contraction means a tensor product with some pairs
of indices contracting against each other.)
b 5N 5N . .
We see that e~ 26 Vi RijkD)® (VE .rp¥1)% " can be written as linear
combinations of extended free tensors, after applying the identity (65), if necessary.
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Now, consider any complete contraction C. , (Y1, ..., ¥z) (in the form (31)) in
1%, (Y1, ..., ¥z) and do the following: For each of its factors Vi, Rijki or
V,ﬁ_“, , V1, calculate:
_zﬂ." &
e Ex(v;’:---rm Rifkl)g - Z aJ r1 Irmijkl
jeJ’
AN .
fﬂ...rﬂﬂﬁg = Z ajTrjl...rp
jeJ

where each T} ; is an extended free tensor. We then replace each V! . R;jki
by one e2S xaj Tj rmijkl and each Vrlf r,¥1 by one a; Tr'{__.rp. After this, we
perform the same contractrons of indices as in CL (Y1, .., ¥z), with respect to
the metric (gV). We do this according to the fogllowmg algorithm: Suppose we
are contracting two indices «, 8. If none of them belongs to a tensor gl ', we just
take that particular contraction. If o but not 8 belongs to a factor gay, We cross out
the index f in the other factor and replace it by y, and then omit the gay Finally,
if both the indices «, 8 belong to the same factor gV wp> We cross out that factor
and bring out a factor of N. Adding over all those substitutions, we then obtain
ené'fcf N 2).

Thus e”E xClL N (¥1....,¥z) is a dimension-dependent linear combination.
It follows from th1s that S ZN W,...,. ¥z, E) is a dimension-dependent linear
combination, in the form:

S ¥z, 8= ¥ N CLy@n.... vz 8)

leL
where each complete contraction C é Ny W1, ..., ¥z, &) is in the form:

(66) Contr(V:?.l._rml Riyjikey, ® - ® Vzi),:s...vms R joksls ® vm Xy V1
® - ®Vyl 0, VZRER-QEQSV 4, E®--® SVt ) £)

where [ > 0 and the factors V" R; ;¢ are allowed to have internal contractions.

_ Therefore, what remains to be checked is that each dimension-dependent
g-contraction N2i C;N (WY1,..., ¥z, &) in SgZN (Y1, ...,¥z, &) with |£] > 1 satis-
fies the identity k + 1 > d.

In order to see this, let us consider any summand T rmijkl OF Tr , and
denote by |g| the number of its factors gl and by |§ | the number of its factors E,
or SV . Sa It follows, from identities (56) and (57) that for each T
T/, wehave || = [g].

By virtue of that inequality, the formula (65) (which shows us that if we
write a complete contraction in the form (66) as a linear combination of complete
contractions in the forms (63), (64), the number of ;? -factors remains unaltered)
and the algorithm outlined above, we observe that for each dimension-dependent

rmijkl or
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é contraction N2 C! vWi,.. Yz, S) we will have that b is less than or equal
to the number of factors S or SV"’§ in C’N W1,..., ¥z, é) |
Definition 12. Consider any complete contraction C ~v(W1,...,¥z),in the

form (62). Consider the quantity:

L, W V)0 — CH W Y2 )
e 4

which can be computed by applying the identities (56), (54) (55), (57), (65) to each
factor in CgZN (Y1,...,¥z). We write:

ML W VD)) = Ch W V) ()
= Y arNPCly (e Yz E)()
teT
where each dimension- dependenté contraction Nb C! N Wi,..., ¥z, §) (x) satis-
fies k +1 > b;. Here C’N (Y1, ..., ¥z, E)(x) stands for the rewriting of C’ (Y1,
LYz, E )(x) in d1mens10n N.
There are many expressions as above for

L W VD)0 = CA V2 )

that are equal by substitution but not identical Once we pick one such expression,
we will call each dimension- depena’enté contraction Nb’CtN W1,....¥z,8)(x)
a descendant of CZN W1, ..., ¥z)(x).

We are now near the point where we can integrate by parts in the relation (59).
At this stage, we will distinguish between descendants of the complete contractions

in IgZN(wl,...,wz)-

Definition 13. For any complete contraction CéN (Y1,...,¥z) in IgZN (Y1,
., ¥z), we will call one of its descendants easy if d <! + k.

A descendant in the form (63) will be called good if d =k > 0 and [ = 0.
A descendant in the form (64) will be called undecided if d =k +1 and k,[ > 0.
(That is, it contains at least one factor of the form SV? g?,- with p > 1 and at least
one factor of the form § ).

Finally, a descendent in the Sform (64) with d = k 4+ [ will be called hard if
k =0, > 0 (that is, if all its &-factors are of the form SV’"EJ, with m > 1).

Thus, given (59) in any dimension N, we have S v, ..., ¥z, E) written
out as a linear combination of good, easy, undecided and hard complete contractions.

5.2. The integrations by parts for S v, ..., ¥z, §). We want to perform
integrations by parts in equation (59). We will treat the four cases above separately.
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Let us first treat the easy § -contractions. Using (17), we write out each factor
of the form S Vm§ s as a linear combination of partial contractions of the Christoffel
symbols and their derivatives (with respect to our arbitrarily chosen coordinate
system) and also of the vector § We also write out each of the tensors V" R;
as a linear combination of partlal contractions of Christoffel symbols and their
derivatives. Hence, given an easy 5 contraction P(N) - C v W, ¥z, S ), we
express it in our coordinate system as:

(67) contr(amIFk ®- ®8va" ®VPIW1®"'®VPZWZ®§®'“®§)-

Hence we will have the following identity:

68) /R eWMEEp(N).CE (... Yz YAV

=/ eW-E p(ny. " a;Contr; (3" T, Y1..... Yz, E)d Ven,
RN leL

where the degree of the polynomial P(N) is strictly less than the number of
factors § in the contraction Contr; ("', ¥y, ..., ¥z, § ). Now, we use the identity
(60) in orfler to replace one factor é',- in the complete contraction by the factor
V;eN-mE3 /(N —n). We then integrate by parts with respect to the derivative
V; and note here that this integration by parts is with respect to the Riemannian
connection V;.

We get the following:

) [N PEP)CA vz Ve

£z P(N >
= —/N e(N_")S'x(—) > ayContry (0", Y1,.... ¥z, E)dVen.
R

N —n ek
Each complete contraction Contry ("I, ¥y, ..., wzg) is in the form (67).
Also, the number of factors £ in each contraction Contrg (0™ T, ¥1, ..., ¥z, £) is by

one less than the number of such factors in the complete contraction C gZN W, ...

., ¥z, £). Hence, inductively repeating the above procedure we obtain:

(70) /R eWMEEp(N).CZ (... Yz YAV

—mix PWN)
— (N—n)E-3 m
= e —_ apContry (0", Y1, ..., ¥z)d Ven,
& V- ‘
where we will have deg[P(N)] =d < w.

The good &-contractions. Let us now deal with the good complete contractions
in S gZN (¥1,...,¥z,&). In this case it is useful not to write things out in terms of
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Christoffel symbols but to work intrinsically on the Riemannian manifold. We have
a good 5 contraction P(N) - C v (W1, ..., ¥z, £) in the form (63) and we want to
perform integration by parts in the integral:

() / (N MERP(NY - CA (.. V2. BNV,
RN

We will again use the identity (60). Let us arbitrarily pick out one of the k = d
factors S in C v (W1, ..., ¥z, &). Now, use the identity (60) in order to replace the
factor S, in the complete contraction by the factor

Vi [eN —mEF]
N—-n
We then integrate by parts with respect to the derivative V;. Let us again note that
this integration by parts is with respect to the Riemannian connection V;.
Now, if the g-contraction Con(Y1,..., ¥z, §) in the form (63) has L factors

(including the k factors E ), the integration by parts will produce a sum of L — 1
complete contractions. Explicitly, we will have:

(72) [N e(N—")g'fP(N)-CgN(wl,...,wz,g)dvgn
R

iz POV) K .
=— (N—méx_ 77 c? dVgn.
[ MRS G bz, By

We separate these £-contractions Cg“N (Y1,..., ¥z, ) into two categories: A

&-contraction belongs to the first category if the derivative V; has hit one of the
factors V" R;jx;, VPRic or VP .. Hence, we see that

P(N)

E CgN(wl’-“’va’S)

is a linear combination of § -contractions in the form (63) with k — 1 factors E CIf
k =1, each will be in the form (62). Otherwise, each of them will be a good
5 -contraction.

On the other hand, a f;‘ contraction & (N ).C "‘N (Y1, .. ¢Z §) belongs to the
second category if the derivative V; hit one of the k — 1 factors é In that case, we
geta S contraction in the form (64) with k — 2 factors § and one factor V,E It will
be an undecided or a hard fg‘ -contraction.

Now we can repeat the above intrinsic mtegratlon by parts for each of the
good S contractlons I;(A;) C oW, .. Yz, 5 ), each of the form (63) with k — 1
factors E Each of these 1ntegrat10ns by parts will give a sum of E contractions,
L —k + 1 of which are in the form (63) with k — 2 factors E and k — 2 of them will
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be of the form (64) (either undecided or hard) Hence, we can form a procedure of
k steps, starting from C %, N W1,..., ¥z, é) and integrating by parts one factor S at
a time. At each stage we get a sum of good and of undecided or hard § contractions
out of this integration by parts. We then focus on the good fg‘ -contractions that we
have obtained and we repeat the integration by parts. Thus, after this sequence of
integrations by parts we will have:

@3 [N IEEPW)-Ch e vz BV
RN

£ P(N
:/I;N e(N—n)Sx[(N(_ ))k Z a]CjN(WL-..,lﬂ )

(N ) _ch z
oo s Wz, 8)]dVgn
+ T e Cav W vz £l Ve
where the complete contractrons c’ oy (wl, ..., ¥z) are in the form (62) (they are

independent of the variable E ) and the é contractions C” N W1,..., ¥z, 5 ) are in
the form (64) and are undecrded or hard. Each of the undecrded § contractions
will have at most k — 1 E factors. For each complete contraction C J oy W1,...,¥z2)
we have that deg[P(N )] = k. For each complete contraction C hN W1,..., ¥z, § ),
with [, factors VS and kj, factors 5 we have kj, + I, + s = deg[Ph (N)].

The undecided é contractions. We now proceed to integrate by parts the unde-
cided E contractions. Let C ZN Wr1,..., ¥z, E) be an undecided S contraction in
the form (64). We will perform integrations by parts in the integral:

—n)EF Pyr(N) P
| e Wy Cov W Y2 BV,

Let us suppose that the length of the g? -contraction (including the k factors é}
and the / factors S Vmg?) is L. We will first integrate by parts the factors g? . We
pick one at random and integrate by parts as before, using the familiar formula (60).
We then get a sum of § -contractions as follows:

£z Pp(N >
(74) \/I;N e(N_n)s'xﬁ'CgZN(Wl»---»WZ,E)dVg”

_nizx  Pn(N) L-1 -
:_/RN eV n)sx(]v_hnm 2 c N1, .. Yz, E)dVen.

We sort out the complete contractions according to what sort of factor was hit
by the derivative V;. If C hA‘,x W1,.... ¥z, §) arises when the covariant derivative
V; hits a factor of the form V™R, ik or VPRic or VP wl, we get a § contraction
with k — 1 factors S and [ factors SV'"S m>1.1If C W, Vz, é) arises
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when V; hits a factor 5 , we get another § -contraction with k — 2 factors § and [ 41
factors S Vm§ where m > 1.

Finally, if qg}',\f‘ W1,..., ¥z, §) arises when V; hits a factor SV’"%, we get
a factor V; SV™&. We then decompose that factor according to equation (65). In
either case, we have reduced by 1 the number of § factors.

The good S contractions we have already seen how to treat. Finally, if we get
an undecided S contraction, we have reduced the number of é factors.

The hard S contractions. Suppose that 0 ]5 (IZ ))m C én W,..., ¥z, E ) is a hard
S contraction in the form (64) with k = 0. We pick out one of the / factors

SV’”W,méj and write it as

Sv(rl 1 Ty J)Sk

We then integrate by parts the factor Sk and obtain a formula:

£z P(N ; >
(75) /RN [e(N—n)E'xﬁCén(wl,...Wz,é)]dVgn

P(N) >

— (N— )E h

_ _/ [V Y e TGz Dl Ve
heHJ

where each complete contraction C éf’n W1, ... ¥z, §) is either in the form (63) or

in the form (64) or in the form:

(76)  contr(V]'! Riy ik ®---® Vg

< Umyg Rixjsksls
®Vt1 Ip Ricvtlﬁl ®'“®V2plq “Zpg Ricaqﬂq ®Vv} lewl
®-- ®V;,f o, wz®sv21r ®valg® ®SV“’“$®(§))

where the symbol (E) means that there may or may not be a factor 5 .

We see that each Cy h ... Wz, §) can be taken to be in the form (76), by the
following reasoning: If the covariant derivative Vy hits a factor V" R; j;; or VPRic
or V¥, then we will get a § contraction in the form (76). If 1t hits a factor SV™ § s
we apply the formula (65) and get a linear combination of 5 contractions in the
form (76). Finally, if it hits the factor SV Fl]; , we will get a complete contraction
as in (76) with [ — 1 factors S V’"§ and with an extra factor V;, SV™~ 1F . We
then apply the formula:

k k
(77) VoSV, T =SVItl T+ Cp-S*V) | Raij
+ > aypcontr(V" nghj,SVx“F,fc)

ueym
where the symbol pcontr(Vm/R fahjs SV Fl’fc) (we call that sublinear combina-

tion the correction terms) stands for a partial contraction of at least one factor
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v™' R fghj against a factor SV*» Fl’fc or a partial contraction of a > 2 factors
v™' R rrgrn jo- We recall that S*VIT . R,k stands for the symmetrization of
the tensor V;! . Ry over the indices ry, ..., rm, i, j.

Furthermore, we have that in each such partial contraction, the index a appears
in a factor V’”/nghj.

In order to check that in each correction term there can be at most one factor
SVPT, we only have to observe that in order to symmetrize a tensor V.S Vm_ll"rkm I
we only introduce correction terms by virtue of the formula [V, V, — V, V] X, =
Rapeqa X2, and the formula V, Flljc -V ch = Rabck. Hence, for each application
of the above formulas, we may decrease the number of factors VP T, but we cannot
increase it.

Thus we see that our ;? -contraction will be a linear combination of § -contrac-
tions in the form (76) or (64).

So, in general, we must integrate by parts expressions of the following form:

[ [ew—n%-x% e Y2, DAV
where the complete contraction C éf,, W1,... ¥z, S) is in the form:

(78) contr(V;'ll}“,m] Riyjiky1y ® @ Vs o Rigjikoty ® Vfll...tpl Ricy, g,
®--® VL -, Ricy,p, ® Vy! o, W1® - ® V7. wUZWZ
®Sv21r,.’;.®---®Sv2vr{‘j®svuls® ®SVHERER - ®F).

The integration by parts of such complete contractions can be done as before:
If there is a factor § then we integrate by parts using it, and symmetrize and anti-
symmetrize as will be explained below. If there is no factor g? , we pick out one
factor SVyT . § 7 and write it as

svm-l Tk .

~m—1

We then integrate by parts with respect to the factor §k, using the formula (60).
If the derivative V. hits a factor V" R;;;, or V wl, or VPRic, we leave them as
they are. If it hits a factor S Vxl"k or a factor S V’”E we apply the formulas, (65),
(77) respectively.

In the end, we will have the following formula for the integration by parts of a
hard g—contraction Con(Y1,..., Y2z, §):

P(N -
(79) /RNeU"—")“(N( ))m Con (V1..... ¥z, E)dVgn

i POV)
= W-mfx_ L) C’ dVgn
Jure (N =y g G (Ve V2V
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where the degree of the rational function c ; _(nN)an, is zero and the complete contrac-
tions C;N (Y1, ..., ¥z) are in the general form:

(80) contr(V;’?.‘"rm1 Riyjiisty ® - ® V™ L Riojikel,
. D .
®Vgl...tp1 Rlcalﬁl ®"'®vzlq...z Rlcaqﬂq
RV g V1® - @VST ) Yz ®SVITH @ @ SVHT)

where u > 0. Therefore, by virtue of (77), we see that if Cgn (Y1, ..., ¥ z) is hard,
then the integrand on the right-hand side of (79) may apriori contain complete
contractions in the form (31). We accept this for the time being, although we
will later show, in Lemma 14 that, in fact, there will be cancellation among such
complete contractions.

5.3. The simple divergence formula. Therefore, after a series of integrations
by parts, the relation (59) can be brought into the form:

- a N
(81) /%N e(N_n)E.x[IgZN(wl,---,WZ)— 21:4 = ( ))r

Py(N
- Z IB b( )rb ﬁN(Wl"H’WZ)]dVgn =0
beB —n)

gN(w19~~~9wZ)

where deg[P,(N)] = rq and deg[ Py (N )] < rp. The complete contractions

Pa(N) Z.,a
(N —nyra &N W1, ¥ z)(x)

have arisen from iterated integrations by parts of the good, the hard and the undecided
complete contractions. They are in the form (62) or (80). We may assume with
no loss of generality that the leading order coefficient of each of the polynomials
P,(N) is 1, incorporating it in a.

The complete contractions C é]f v (U1,...,¥z)(x) have arisen from the easy
complete contractions. All of the complete contractions in the formula (81) have
arisen according to the procedure we outlined in the previous subsection.

Now, relation (81) shows us that the quantity between brackets is zero for
every x € B(Xg, ¢). In particular,

(82 12, (1. VD) (o)~ Y gt

= WC;N (WIv"'vWZ)(jZO)

Py(N) -
= % By oy Con W ¥2) (o) =0
beB )
for every Riemannian manifold (MY, gN ), any functions ¥q,..., ¥z around

%o € MY and any coordinate system around %o € M. Now pick any (M", g"), any
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xo € M™ and any coordinate system around xo. We define MY = M"xS1x...xS!
(S! has the standard flat metric and g? is the product metric). We pick %o =

(x0,0,...,0) and consider the induced coordinate system around Xo. Hence
Py(N)
®3) IGHW1 .. ¥2)(x0) = X ta = Con(Y1,. . Y2)(X0)
a€cA (N_ )
Py (N
=T By Ch W V) (00) O
beB ) b

for every Riemannian manifold (M", g”), any functions VY1, ..., ¥z around xg €
M™ and any coordinate system around xo € M".

In equation (83), N is just a free variable. Hence, we can take the limit as
N — oo in (83) and obtain the simple divergence formula:

(84) 14 (... Wz)(x0) — X aaCn (... ¥z) (x0) =0.

So we have disposed of the integrations by parts of the easy complete contractions.

6. The three refinements of the simple divergence formula

6.1. The first refinement. Separating intrinsic from un-intrinsic complete
contractions. We recall from the previous section that some of the complete con-
tractions in (84) will be in the form (62). On the other hand, we have also found
that there will be complete contractions in the general form (80), with u > 1.
Accordingly, we introduce the following dichotomy:

Definition 14. Complete contractions in the form (31) or (62) will be called
intrinsic. Complete contractions in the general form (80) with u > 0 will be called
un-intrinsic.

We consider, in (84), the two sub-linear combinations of the intrinsic and of
the un-intrinsic complete contractions. Written that way, (84) will be:

®5) IZ(W.....¥2)= X aiCon(Y1..... Yz)— L arCon (... ¥z) =0

leL
where the complete contractions C én (Y1, ...,¥z)(x) are the intrinsic ones and
the complete contractions C ;n (¥1,...,¥z)(x) are the un-intrinsic ones. We have,

of course, that L U R = A.
Our next goal is to show that:

(86) I 2@ = & 1 Cyn (1. ¥Z)(x) =0
eL

which is equivalent to proving:

(87) > ay grn W1,...,¥z)(x) =0.

reR
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So let us focus on showing (86). We treat the value of the left-hand side of
(84) as a function of the coordinate system wanting to show, roughly speaking, that
the tensors S Vka (x0) are not independent of the coordinate system in which
they are expressed. In other words, they are not intrinsic tensors of the Riemannian
manifold (M", g™).

LEMMA 9. (86) holds.

Proof. We consider the tensors SV{! ¢ T y k (x0), F (xo) written out in any
coordinate system. We want to see what thelr values can be given our metric g"

around xg.
We need to recall the following fact from [13]: Consider a coordinate trans-

formation around the point xo € M". Let us say we had coordinates {x!,..., x"}
and now we have coordinates {y!, ..., y"}. Then the Christoffel symbols l"l.kj will
transform as follows:
dx! ax’ ox/ 32x!
88 I, Il (x x
(88) A( xo) = I ( O)ayuayv+ayuayv( 0)

(where f‘ﬁv(xo) stands for the Christoffel symbols in the new coordinate system).
Now, the tensors V" R;x; are intrinsic tensors of the Riemannian manifold.
That means that they satisfy the intrinsic transformation law under coordinate
changes, as in [13].
We will need the following lemma:

LEMMA 10. Consider a point xo € M"™ and a coordinate system {x', ..., x}

around xg for which g;’j (x0) = 8ij. Then, given any list of special tensors Trkl Tp2?

which are symmetric in the indices ry, . .. rp+2, there is a coordinate system {y, . ..

n n p k
.., Y} around xo € M" so that the tensors SVy, ., Iy . . have the values

of the arbitrarily chosen tensors Trk at xo and furthermore we have that

1---Tp42
[ 3y 1(x0) = 1d™*"* and g = J;; (with respect to the new coordinate system).

Proof. We observe that by [13] when we change the coordinate system {x!,

x™}into {yl,..., y™}, the tensors V Ty F£p+1r ., Will transform as follows:

ox’! IxX"t OxTr+2
®) V2 Fh o, (x)=VE_, T S

1Tp Thtl p+2 8y «Fp~ Tp+1Tp+2 8yr{ e

— (o)
dy'r+2
8p+2 l
,—(x0)+2(8 L, —)(xo)

dyTi ... 0y’ p+2

where T' stands for the Christoffel symbols in the new coordinate system and
(8T, 9"x /8" y) stands for a linear combination of partial contractions of factors
against factors 3" x /9" y with h < p + 2.
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Now, we can prescribe

to have any symmetric value in the indices r1, ..., rp42. Therefore, if we write out
the transformation law for S Vﬂ T Ffp S iTpta (x0) under coordinate changes, then
the linearized part of its transformation law will be precisely

ap+2yl (x )
ax’ .. oxTrt2 O

Hence, by induction on p, we have our lemma. O

We call these arbitrary tensors Trkl the un-intrinsic free variables. By

e Ip42
construction, they satisfy Tr’j oty (t2g") = Tr]i s (g"). Thus, they are special

tensors.

But then it is straightforward to check Lemma 9. We can break equation (85)
into two summands: the left-hand side of (86) plus the left-hand side of (87). We
may then pick any A € R and a new coordinate system so that (SV? Fl.kj)’ (x0) =
A-(SV?P Fl.kj)(xo). (Here (SV? Fl.kj)/ (xo) stands for the value of SV? Fl-kj (xo) with
respect to the new coordinate system). We can then see the left-hand side of (85)
as a polynomial in A, TT(1). We have that the constant term of IT(A) must be zero.
Also, the constant term of T1(A) is precisely the left-hand side of (86). We have
shown our lemma. O

6.2. The second refinement: An intrinsic divergence formula. We begin this
subsection with one more convention. Given an equation of the form:

(90) Y aCliyr.....vz.8) =0
leL
where each C én W1,..., ¥z, §) is a complete contraction in the form (64), we will

be thinking of the factors SV . § 7 (m > 0) as symmetric (m + 1)-tensors in the
indices ry, ..., m, j so that

SV™ . E(t2g") =SV, Ei(g").

ri...rm ri...rm

This condition trivially holds since V! . § = V;'ll +}m j (555) Moreover, we imply
that the above equation holds for every xo € (M", g") (g" can be any Riemannian
metric), any functions ¥1, ..., ¥z defined around xg, any vector § € R” and any
coordinate system defined around xop.

Now, we define C él,n (Y1 e Yz, Q) to stand for complete cclntraction that
arises from Cg{,, (Y1, ...,¥z,§) by replacing each factor SV . &; by an auxil-

iary symmetric tensor Q. r,, ;. We claim:
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LEMMA 11. Assuming (90) (as explained above), we have that:

1) Zalcln(wl,...,l/fz,ﬁ)=0
leL
will hold for every xg € (M", g") (g" can be any Riemannian metric), any functions
Y1,..., ¥z defined around xo and any symmetric tensors 2, . i..
Proof. First, we observe that for every sequence 2;,,..., 82, . i;.... of

symmetric tensors for which €2;, # 0, we have that there is vector £ € R” and also
a coordinate system around xo € M" so that:

& = Qip-“sSV:}?...rméj = Qo -
This is clear by virtue of the formula SV} . § =SVl Ffm j;?k and by
Lemma 10.
Now, for any sequence 2;,, ..., ;. ,.... where Q; =0, we only have to

consider any vector & where |&;| is small. We then have that there is a coordinate
system so that §,- = & and SV}”I’."rmgj = Qr,..r,yj» for every m > 1. Letting
g; —> 0, we obtain our lemma. O

Now, the aim of this subsection is to further refine Lemma 9. We will need
certain preliminary observations. Notice the following: Let us pick out one § -
contraction Q(N)-CéN W1, ..., ¥z, g?) of the form (64) with k +/ < |§|. We have
then treated the integrals

/ e(zv—n)s-?cQ(N) . CglN(wl, Yz, g)dVg”
RN

and performed integrations by parts, obtaining a relation
0 [ NIl vz DV

= [ VT 0 vV
RN ses!

where the degree of the rational function Qs(N) is zero. Adding up all the integra-
tions by parts, writing things in dimension n and taking the limit N — oo gives
us the formula (84). We call this procedure by which we integrate by parts one
§ -factor at a time the iterative procedure of integrating by parts.

After all the integrations by parts for a § -contraction as in (92), we will call
the quantity:

limy oo Y Qs(N)CLE (W1 ¥z)

seS
the final outcome of the iterative integration by parts. This is denoted by

FIQIN)CL.(Y1,..., V2, 6)].
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Recall that we are assuming the leading order coefficient of Qs(N) to be 1.
We make a further notational convention: When we write out the good or undecided
or hard g? -contractions and also when we integrate by parts, we will be omitting the
dimensional rational function Q; (N). This is justified by the fact that we eventually
take a limit N — oo. So all the formulas that appear in this section will be true
after we take the limit N — oco. We refer to this notational convention as the
N -cancelled notation.

As an example of this notational convention, we apply the third summand on
the right-hand side of the formula (57) to the pair (", ;) in V" R,,;x; and bring
out Em R, k1 instead of saying that we bring out N §m Ryjk1- Also, we replace
a factor Ric;; by —V,Ej or a factor R by —|§|2 (instead of —NV,EJ or —N2|§|2
respectively).

Observation 1. The formal expression for F[C én W1,..., ¥z, 5)] depends on
the order in which we perform the integrations by parts. In general, whenever we
make reference to the integrations by parts, we assume that we arbitrarily pick an
order in which to perform integrations by parts, subject to the restrictions imposed
in the corresponding section or any extra restrictions we wish to impose.

We need some conventions to state and prove our Lemma for this subsection:

Definition 15. In N- cancelled notation: Consider any good or undecided
E contraction Cgn (wl, oYz, é) in the form (63) or (64), with E factors in
Cen(Y1,....V2z, é )isk +l We perform the iterative integrations by parts, subject
to the followmg restnctlon In each step of the iterative integration by parts, suppose
we start off with X S factors. We integrate by parts with respect to a factor S, and
obtain a hnear combination of S contractions (each in the form (63) or (64)), each
with X —1 S factors. In that hnear combination we cross out the hard E contractions.
We then pick out one of the S -contractions remaining (it will either be good or
undecided) and again integrate by parts with respect to a factor § . After k + [ steps,
this procedure will terminate and there remains an expression:

/RN (N-mEF 3 anQn(N)Cly (Y1, ... Yz)dVyn

heH

Each complete contraction C ghN (¥1,...,¥z) is in the form (62) and the
rational function Qp(N) has degree 0 and leading order coefficient 1.

Define)"j,c iy anCla(V1. . ... ¥z) tobe the outgrowth of Can(y1. ... Yz, £):
we denote it by O[Cgn (Y1, ..., ¥z, g)]-

We claim:
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PROPOSITION 3. Consider the sublinear combination SZ WY1,.... ¥z, §) of
(wl, Yz, E) which consists of the good and the undeczded E contractions.
If in our N - cancelled notation

SgZ"l(wly"'yw27§) - Z alcén(wlv""w27§)
leL
then we claim:

(93) 1Z(1.....¥z) +IZLaZO[C;n(w1,...,wz,§)l =0

Proof of Proposition 3. Suppose that the linear combination of the hard
- contractions encountered along the iterative integration by parts of C! P W, ..

LYz, S) iS ) pep! angn(wl,.. Uz, E) We can then write:

©4)  FICL.(W1.....v72.5)] = O[CL.(y1..... ¥z2.B)] )
+ Y abF[Cbn(wl’---va’S)]'

beB!
Now, let us note the following fact for the final outcome of the iterative
integration by parts of a hard S contraction Cy Y (¢, S) in the form (64) with k = 0,
[ >0.

LEMMA 12. Suppose that:

FICH($.6)]= X ayCl.(@).

yeyu

Then, there will be one complete contraction ayC n (@) (along with its coeﬁ‘iczent)
g” (o, S) by replacing each of the | factors SV} . S i

which is obtained from C
by =SV ré That complete contraction arises when each derivative
FieTm—1" Tml’

V4, in the integration by parts of SVIT 1. E/ =SVl 1 Ed, hits the factor

rml

SV lrm 1Ff IL and then we symmetrize using (77). We denote this complete

contraction by DF[an W1..... ¥z, g)]
Furthermore, other complete contractions ay, C;n (@) in F[C&',‘n (¢,8)] will
Fg- for which d con-

have strictly less than | un-intrinsic free variables SV} .

tracts against one of the indices r1, ..., m,i, j in ngn (9).

Proof. This follows from the procedure by which we integrate by parts and
also from the formula (77). O

Next, we consider the sublinear combination of good, hard and undecided
S contractions in S (U1, .., ¥z, S)

Y aChi(¥.... . ¥z.9).

leL
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We break up the index set L as follows: [ € L! if and only if Cl W1,..., ¥z, §)
is good or undecided; / € L? if and only if Cln W1,..., ¥z, S) is hard.

For any hard E contraction Cgn (¢, E ), we break up the linear combination
F[Cgn (¢, E)] into the sublinear combination FI"[Cgn (¢, E )] of intrinsic complete
contractions and the sublinear combination U™ [Cygn (¢, E )] of unintrinsic com-
plete contractions.

We can then rewrite (86) as:

©5)  IZW1... Y2+ Y @O[CL. (1, ... vz, )

lell

+ Y a Y apF™[CL (... vz.E)]
lell peB!

+ Y @ F™[CL.(yr.... ¥z, )] =0
lel?

and also (87) as:

96 Y a ¥ apF"™(CL(r.... vz E)]

leL! beB! -
+ Z al FUnImr[Céﬂ (Wl’ ) WZ, S)] = O
leL?

We then claim:

LEMMA 13. We have that:

Y oa Y apF™[CL (... ¥z.8)]

leL! bpeB! >
+ Y @ F™[CLi(yr.....yz.6)]=0
leL?

for every (M™, g"), every Y1, ....Yz.

Proving this will also show Proposition 3. We will in fact prove a stronger
statement than Lemma 13:

LEMMA 14. We have

OD Y a Y apChiyr.... vz H+ X aiCliyr.... yz.8) =0

leLl peB! leL?

for any point xg, any metric g" around xg, any functions 1, ..., ¥z and any
coordinate system.

Proof that Lemma 13 follows from Lemma 14. Consider the linear combination
> ar Y apNP Qp(N)CLy (... ¥z, €)

leL! beB! N
+ Zzale’Qz(N)C v, ... ¥z, 8)
leL
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of the hard § contractions put aside, without the N -cancelled notation. Here, the
rational functions Qp(N), Oy (N ) have degree zero and leadmg order coefficient 1.
Moreover if we denote by |§ s |§ |; the number of § factors in C w1, ¥z, E)

(wl, oYz, E) respectively, we will have that pp = |é}|;J and L= |§|l

For the purposes of this proof, we will consider any hard or easy E contraction
NeQa(N)Cqon (Y1,...,¥z,§), where Q4(N) has degree zero and leading order
coefficient one. We perform the iterative integrations by parts, as explained in the
previous subsection, and obtain a relation:

(98) /R (W IEENEQ L (NYCon (1, Yz, EVA Vg

—n)E-¥ N“ u
- /Re(N " [uEZU N =y (N —n)Pu Q“(N)Cg’v(wl’ e Yz)ld Ve

where either a = py, for every u € U or a < py for every u € U, depending whether
Cen(Y1,....Y¥z,§) is hard or easy, respectively. We then denote the expression
between brackets by E[N?Qua(N)Con (Y1,....¥2,8)]. _

As before, we break E[N?Q4(N)Con (V1,..., ¥z, )] into two sublinear
combinations

EIntr[NaQa(N)CgN(lﬂl,. .. ,wz,g)],
EUnintr[NaQa(N)CgN(lﬂl, ce, WZ’g)]»

that consist of the intrinsic and un-intrinsic complete contractions, respectively.
Now, in view of Lemma 14, it follows that:

99) ¥ ar ¥ apN? Qp(N)Chy (... ¥z2.8)

leL! peB! » ] -
+ Y NP QNCly (... 2. E)
leL? -
= % awNP Qu(N)CH (... . ¥2.E)
wew
where each é contraction N?» Q,(N)C¥*, (Y1,..., ¥z, §) is easy, and moreover

the rational function Q4 (N) has degree zero and leading order coefficient one. We
deduce that:

(100) X a ¥ apEINPPQp(N)CEy (... ¥z, E)]
leL! beB! R
+ ¥ @ EINPIQuN)CLy (... vz.8)]

leL? P
Y = Y GEINP QuNCE . 2. B
wew
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and therefore:

(10D ¥ @ ¥ apE™ NP Qp(N)Cly (Y1, ¥z, )]
leLl beB! N
+ 2 wE™NPQi(N)Coy (... ¥z, §)]

lelL? N
= X awEM™NP"Qu(N)Ciy (Y1..... ¥z §)].
wew

We then define a new operation Oplim that acts on linear combinations

> apEIN? Qi(N)CLy (... ¥z, €)]

heH

(where NP1 Q,; (N)C;‘N W1,..., ¥z, 5) may be either hard or undecided), by re-
writing them in dimension 7 (thus the coefficients N are now independent of the
dimension n) and letting N — oco. We act on the linear combinations on the left
and right hand sides of the above by the operation Oplim and deduce:

(102) ¥ a ¥ apF™[Cly (Y1, ¥z, )+ X ar F™(CLy (91, 92, 6)]

leL! bpeB! leL? .
= X awOplim{EM™[N?» Qy(N)Cly (Y1,....¥Z.§)]} = 0.
wew
Thus, we indeed have that Lemma 13 follows from Lemma 14. O

Proof of Lemma 14. We rewrite (97) in the form:

Y ai(Chgn (... .¥z.§) =0.

leL
Now, [ € L, if and only if Cél,n W,..., ¥z, §) has p > 0 factors SV“g. We prove
the following: Suppose that for some M > 0 and every p > M:

> ai(Cgnn.....¥z.§) =0.

leL,

We will then show that:
(103) > ai(Chgn(n.....¥z.6) =0,

leLy
If we can show the above claim, our proof will follow by induction. Now, recall
that if for some linear combination of hard_g -contractions we have (in N -cancelled
notation) that ) .. arCéfn Y1,..., ¥z, &) =0, then, by the argument above, it
follows that:

Y ap FUMN[CT, (... ¥ 7. £)] = 0.

r€R
Therefore, in view of our induction hypothesis,
(104) > Y aFUChen (. Yz, 6] =0.

u>MleL,
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Therefore, for the proof of our inductive statement we may assume that the above
sublinear combination from (96) has been crossed out when we refer to (96).

In order to show (103), we will initially show:
(105) > @ DF[(Chgn(¥1.....¥z.5)] =0.

leLy

First, for any complete contraction in the form (79), we call a factor SV; . szj
where the index k contracts against one of the indices r1, ..., j a useful factor. Any
complete contraction in (96) which does not belong to the sublinear combination
(103) will have strictly less than M useful factors. This follows from our definition
of the index set Ljs and Lemma 12.

Now, denote by Special(}_;c;,,) the sublinear combination in (105) that
consists of complete contractions all of whose factors in the form SV? Fl.kj satisfy
p > 1. It follows that:

(106) Special( Y~ ) =0

leLy
by substitution. But then, in view of Lemma 4 we have that (106) holds formally.
Then notice that under all the permutation identities in Definition 8, the number
of factors S ijl fo Fl.kj where the index k contracts against one of the indices
f1,...,J remains invariant. Hence, since the left-hand side of (105) is the sublinear
combination in (96) with the maximum number of useful factors, (105) follows.

But then (105) holds formally (again by Lemma 4). Hence, we imitate the
permutations of factors in (105) to make it formally zero for the £-contractions in
(103). We only have to observe that if we can permute the indices of two tensors
S V:?:irm Fg. (x0), S V;?jirr,n Fi‘f j#(x0) to make them formally identical, we can
then also permute the indices of the tensors

Svr"’:...rm szj (XO)ék, SV:Z-""/n Fik’j’(x())gk
to make them formally identical. This shows Lemma 13 and thus Proposition 3. O

6.3. The third refinement: The super divergence formula. We begin this sub-
section with a few definitions.

Definition 16. A § -contraction Cgn (Y1,..., ¥z, § ) will be called stigmatized
if it is in the form (64) and each of its factors & contracts against another factor £.
We note that Cgn (Y1, ..., ¥z, &) is allowed to contain factors SV™&, m > 1.

Now, consider any good or undecided g? -contraction Cgn (Y1, ...,V¥z, 5 ) and
consider its iterative integration by parts.

Definition 17. We define the pure outgrowth of Cgn (Y1, ..., ¥ z) to be the

sublinear combination of the outgrowth by discarding additionnal terms and impos-
ing additionnal restrictions on the integration by parts:First, whenever we encounter
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a hard 5 contraction we discard it. Second, whenever we encounter a stigmatized
5 contraction we also discard it. Lastly, if we have a E contraction which is neither
hard nor stigmatized, we will choose to integrate by parts with respect to a factor §
that does not contract against another factor £.

In the end, we will be left with a linear combination:

[ ¥ S 00 anCl . V)V
RN heH

Each complete contraction C h v (W1, ..., ¥z) is in the form (62) and the rational
function Qp(N) has degree 0 and leading order coefficient 1.

We define: PO[Cgn(Y1.....¥2)] =Y pem anCh.(v1.....v2).

Our goal for this subsection will be to show:

PROPOSITION 4. [f the sublmear combination of good and undecided S -con-
tractions in Sgn Wi,..., ¥z, S) S Y jeL ang,, W1,..., ¥z, E) then:

(107) g”(Wl"“’WZ)_{— Z alPO[Cén(Wl»---»WZ,g)] :0

lelL

Before proving this proposition, we will need some preliminary lemmas.

LEMMA 15. Consider a good or undeczdedS contraction Cgn (Y1, .. WZ,S)
in the form (63) or (64). Suppose that Cgn (Y1, ..., ¥z, S) has o factors |§|2 and
B factors R (scalar curvature). Consider the iterative integration by parts (as in the
previous subsection) of Cgn (Y1, ..., Yz, ég‘) Then, at each step along the iterative
integration by parts of Cegn (Y1, ..., ¥z, 5) the number of factors |§|2 and the
number of factors R does not increase.

Proof. The proof is by induction, following the iterative integration by parts. [
We also define:

Definition 18. Given any g—contraction Cen(Y1,...,¥z, §) in the general
form (64), let A be the number of its factors V™ R; ijkl V?Ric, Z be the number of
factors VP, C the number of its factors S V’”E (with m > 1), D the number of
its factors |E |2 and E the number of its factors E that do not contract against another
factor é We then define the S length of Cgn (Y1, ..., Yyz)tobe A+ Z+C + D.
Forqany partial contraction in the form (6ﬁ3) or (64), or any &£-contraction with factors
VHE (non-symmetrized), we define its &-length in the same way.

We now seek to understand how any given complete contraction Cgn (Y1, . ..
., ¥z) in the form (62) can give rise to good, undecided or hard &-contractions
under the re-scaling

é;N — er-ng
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Definition 19. Let us consider any dimension-dependent complete contraction
ON) - Con(Y1,....¥z.§), where Cgn (Y1, ..., Yz, §) is in the form (64), with
factors V"¢ instead of SV™§. We will call such a §-contraction de-symmetrized.
Recall that |§ | stands for the number of S factors. We will call such a dimension-de-
pendent E contraction acceptable if deg[Q(N)]= |§| and unacceptable if deg[Q(N)]

<[£]

Now, consider any Cgn (Y1, ...,V z), which is in the form (62). We want
to understand how the sublinear combination of acceptable complete contractions
arises in €€ C oexen (Y1, ..., ¥z). We need one small convention before making
our definition: Whenever we have a factor V7! . Ric;j withm > 1, we will assume
that i, j are not contracting between themselves. This can be done with no loss
of generality by virtue of the formula V, R = 2V?Ric,p. Thus, we think of our
complete contraction as being in the form:

(108) contr(Vyl! . Riji ® @ Vi’ Riju @V ,, Ric
p .
R-® th‘.’"tpq Ric;; ® R*® Vfll...apl V1®--® vflz---bpz WZ)

where the factors V" R;;x; do not have internal contractions between the indices
i, J, k.1, the factors VPRic;; do not have internal contractions between the indices
i, j. We are now ready for our definition.

Definition 20. We consider internally contracted tensors in one of the following
forms: V¥, ., v1, V. Ricij, VH ,pE] or V/ »,Rijki. The indices that are
not internally contracted are considered to be free.

We will call a pair of internally contracting indices, at least one of which is
a derivative index, an internal derivative contraction. We now want to define the
good substitutions of each tensor above.

For the tensor Vﬁ...rp Yy, we denote the pairs of internal contractions by
(ray»7b,)+ - - (ra;.7p,). The ordering of the indices 74, rp in (74, 1) is arbitrarily
chosen. We define the set of good substitutions of the tensor Vﬁ ..rp, Y1 as follows:
For any subset {wy,...,w;} C{l,...,[} (including the empty set) the tensor

(]

is a good substitution of Vﬁ ...rp, V1. We similarly define the set of good substitutions

P . P P :
of any tensor Vrl...r,,Rlcrp+1r,,+2a Vrl...r,,gr,;.;.l or vr1...r,,7 Ry, irpiorpiarpys (this
last is allowed to have internal contractions, but not among the set rp4+1,...,7p+4):

N

.. raw1 wIp

For any tensor above, let the set of pairs of internal derivative contractions be
(ray-7py)s- -+ (ra;, rp,). The order of rq, 1y, in (rq, rp) is arbitrarily chosen, but r4
must be a derivative index. Also, for the factor VﬁmrpRicrp firpgas iE p =1, we
assume that the indices 7,41, rp+2 do not contract against each other.
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Then, we define the set of good substitutions of any tensor as above as follows:

For any subset {w1,...,w;} C{l,...,[} (including the empty set), the tensor
J
"rbw £Tbw; gP— J :
Ew . & Vrl raw1 v rpRlcrp+l"p+2 or
£Th £Tbw; g P—J Py
é: wy ., é-' J Vrl---;a wy mrpgr,,_,_l or
—2E.=2h £buw; p J
€ Xf R g / V raw1 ...rpRrp+lrp+2"p+3rp+4’

respectively, is a good substitution. o

We define any partial coiltraction C é',‘n""s W1,..., ¥z, § ) i£1 the form (63) or
(64) to be nice if in no factor & is the index i free and no factor & contracts against
another factor E in Cg,, W, Yz, E).

We are now ready for the lemma on acceptable descendants. We want to
study the transformation law of any Cgn(Yq,...,¥z) in the form (62) under
the re-scaling gV — gV = ezs’igN. We do this in steps: Pick out any fac-
tor Tasl...a_,- in Cgn(Y1,...,¥z) and make the indices a; that contract against
any other factor in Cgn (Y1, ..., ¥z) into free indices. Thus we obtain a factor
(T4, ...a; )an, ...ap,» which we will call the liberated form of the factor T, .. We
view Cgn (Y1, ...,¥z) as a complete contraction among those tensors 7,

hy ...a;,l
and then consider each tensor
DE
It will be a tensor of rank /. It follows that if we replace each (T, . )g by
Tash1 an, )g and take the same contractions of indices as for Cgn (wl, e ¥z),
with respect to the metric (g?V), we will obtain e”g *C 2ETgN W, ..., ¥2).
LEMMA 16 (The acceptable descendants). Given a complete contraction
Cen (Y1, ...,¥z) in_the form (108), the sublinear combination of the acceptable
S contractions in e”f xCezé SgN (Y1, ...,¥z) can be described as folows, in N -
cancelled notation: N
Each of its liberated factors (T;lmai)ghl ap, can be replaced according to
the pattern: '

L. Any factor of the form V}! . R;jx (where the indices i, j,k,I do not contract
between themselves) can be replaced by a good substitution of V} . Rijki
or by a nice partial contraction of £-length > 2.

2. Any factor VPyr; can be replaced by a good substitution of VP yr; or by a nice
partial contraction of §-length > 2.

3. Any factor Vrpl ,Ric;j # R can be substituted either r by a good substitution
of VE - ,Rici; or a good substitution of — Vp 1 E 7 or by a nice partial
contmctzon of S length > 2.
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4. Any factor R can be left unaltered or be substituted by —2Vi§,~ or by —|§|2.

The sublinear combination of acceptable &-contractions in

€n§'.xC62§.)?gN (1[/1, ey wz)

N
arises by substituting each liberated factor (Ty, ..., )§h1 wan, inCgn(Y1,...,¥z)
as explained above and then performing the same particular contractions among
the liberated factors as in Cgn (Y1, ...,V z), with respect to the metric gV.

Proof. The proof of this lemma is a matter of applying formulas (57), (55),
(54) and (56) as well as (65).

Consider any sequence of tensors times coefficients: a(N)-(T;,..i;)® Y , where
N =n,n+1,... and the tensors (7;,...; 5 )& " are partial contractions of the form:

(109) contr(V;’:}nrml Rijikyy, ® - @V

«Umg Rl‘s js kx ls

1

®v;]...xvlwl ®V1Tluméz ®"'®v1;nl...umgz ®gz!}] ®"'®gl‘1}')

where there is at least one factor VVvy; or V" R;jx; or vmg , but not necessarily
one of each kind; a(N) is a rational function in N and (7}, ..;;)® M is the rewriting
of (Tl-l_“l-j)g" in dimension N.

For any such partial contraction let |g| stand for the number of factors gl?}] ,
|§ | stand for the number of factors v'"§ and deg[a(N)] stand for the degree of the
rational function a(N).

We also consider linear combinations:

(110) Y ad(N)(T )%

teT

N . . .
where each sequence a;(N )(Tl.’1 ...is)g is as above. From now on we will just

speak of the partial contraction a;(N )(Tlt1 ...is)g N, rather than the sequence of
partial contractions times coefficients.

We say that such a partial contraction is useful if |g| =0, |§ | =deg[a;(N)] and
the index k in each factor §k is not free and there are no factors |§ |2. We will call a
partial contraction useless if deg[a;(N)] + |g| < |§| or if degla;(N)] + |g| = |§|
and |g| > 0. Note that “useless” is not the negation of “useful”.

Consider any tensor (V] . Rijkl)gN or (V? wl)gN or (Vfi mlpRic,-j)gN with
internal contractions. Suppose that ]tvhe free indice}@ are i1,...ls. We vyvill write
those tensors out as (V] . Rijkl)‘igl,...iy (Vplm)fl’_“is, (thi...t,,RiCij)}g,,,.is-

We claim that any tensor

—2§~5E m N
e (Vi RijkD)i, i,
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or (Vl’lﬂl)il_“,-séN or (thi Rlc,])zl g (where i, j, k, [ in the first case and
i, j in the second do not contract agalnst each other) is a linear combination of
useful and useless tensors, as in (110). Furthermore, we claim that each useful
partial contraction of £-length 1 in the expression for

5N 5N 5N
m g g D . \E
(Vo Rijk)7, i, or (prl)il iy or (Vi g Ricij)7

will be one of the good substitutions described in Definition 20. We refer to this as
claim A.

We will check this by induction on m or p, respectively. Form =0 or p =1,
the fact is straightforward from (54) and (55). So, assume we know that fact for
p = K orm = K and let us show it for p=K-+1orm= K+ 1. Consider first
the case of a tensor (VK +r1 K1 wl) . We inquire whether the index rq is free.
If so, we then use our inductive hypothes1s for p = K knowing that the tensor
(V,2 4T U8 iy satlsﬁes the induction hypothesis. We now use this to find the

K+1
tensor (VAT v, . writing

(111) (Vrz rK+]1)”l)12 lS
= > at(N)TéN(Wl E)lz ds T+ > at(N)T;;N V1, )i...iy
teT, teT»
where the first sublinear combination stands for the useful tensors and the second
stands for the useless tensors.
We only have to apply the transformation law (57) to each pair (rq,i2),...
., (r1,is). We easily observe that if any summand in the expression of

(Vrz rK+11//l)12 s

is useless, then any application of the identity (57) to any pair of indices (r1, i2), .

., (r1,is) will give rise to a useless partial contractlon On the other hand, con51der
any factor T’N(tpl é),2 Jy In (V,2 - wl)l2 i, Which is useful. Then observe
that when we apply any of the last three summands in (57) to any pair of indices
(r1,i2),...,(r1,is) and bring out a factor ;? , we obtain a useless partial contraction.
Finally, substituting (V,, X il)é N by (V- X, il)(g M (the first summand on the right
hand side of (23)), we get a linear combination of useful g? -contractions, by applying
the rule

Vl' [Akl...ks ® Bul...uh] = Vl'Akl...kS ® Bul...uh + Akl...ks ® Vi Bul...uh-

Furthermore, if a partial contraction a;(N )Tg’ ~ (W, E) in (Vr2 o wl)l2 i, con-
tains no factors ék where the index k is free, nor factors |§ |2, then we will have no
such factors in V. a;(N )T; ~ Wy, S ) either.
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Fmally, any partial contraction in V,, a;(N )T (¥, S ) of 5 -length 1 will arise
if T? has S -length 1 and provided the derivative does not hit any factor &. So, Ab}y
g
our inductive hypothesis, any useful partial contraction in (VK +}K " V1)iy..ig
of é length 1 is a good substitution. N
Next, we consider the case where the index rp in (VK+r1K+1 wl)lgl i, isnota
free index, supposing that 1 contracts against r;. We consider the tensor

(Vrz TKA41 WI)Q T

obtained from (VK +}K " Vi, .,,,-Sg by erasing the derivative V,, and making the

index r; into a free index. We consider the transformation law for

§N
(vrz r1<+1lm)i1 rj

Our inductive hypothesis applies. So, in order to determine (VK +1 K1 WI)?I
we have to apply (57) to each pair

(r17i2)7"'7(r17is)’(rlsrj)

and then contract 1 and r;. If we consider any useless partial contraction in

g,N
(vrz TK+1 WI)l'l rj

then any application of the law (57) to any pair above will give us a useless partial
contraction.
Now, let us consider any useful partial contraction a,(N) - T} . in

i1.lj.dg
§N
(vrz FK41 WI)I'] r;

If we apply the identity (57) to any pair of indices (r1,i2), ..., (r1,is), (r1,7})
without bringing out a factor § (meaning that we apply the first summand on the
right-hand side of (57)), then by the same reasoning as before we have our claim. On
the other hand, if we apply the identity (57) to any pair of indices (r1,i1), ..., (r1,is)
and bring out a factor § , then after contracting rq, r; we will obtain a useless partial
contraction. Also, if we apply the transformation law (57) to the pair (r1,r;) and
bring out a factor é} but not a factor g;;, then after contracting r1, r; we will again
obtain a useless partial contraction. Finally, if we apply the transformation law (57)
to (Vp, Xy, )& M and bring out gr] r; S ¥ X, then after contracting r, r; we bring out
a factor N. We thus obtain another useful E contractlon

Finally, notice that if a;(N) - T, s
hypothesis it was a good subst1tut10n of (VPY)iy..r . Hence, for each such

had f;‘ -length 1, then by our inductive

good substitution, we now have the option of either subst1tut1ng Vi X, by N S 5 X
or leaving it unaltered. Therefore, the set of useful S contractions of E -length 1 in
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(vK—I—l

5N
g . . . . . .
K41 wl)l.1 iy 18 indeed contained in the set of good substitutions of

K+1
(Vrl...rK_H WI)il g

Moreover, since no useful tensor a; (N )T/ it (Wl E) in (V,2 R4 K/fl)

has factors E or |E|2 there Wlll be no such factors 1n eithera;(N)V7"/ Tl’1 7 (Wl E)

or a; (N)Erf o i
The case of the tensors QY4 ljkl)zl...is and (V LeTp ,J)ll___l.s is proven

by the same argument: The cases m = 0, p = 0 follow by equations (56), (54) and

(wl E) Hence, we have }Sompletely shown our 1nduct1ve step.

then the inductive argument still applies, since it is only an iterative application of
the formula (57). We have proven claim A.

Now, in order to complete the proof of Lemma 16, we only have to observe
that if we substitute any liberated factor 7 # R from Cgn (Y1, ..., ¥'z) by a useless
partial contraction, and then proceed to replace the other factors by either useful
or useless partial contractions and then perform the same contractions for those
replacements as for Con (Y1, ..., ¥z), we will obtain an unacceptable complete
contraction in "5 Cezg,;g ~ (W1, ..., ¥z). This follows by the same reasoning as
for Lemma 8. Regarding the substitutions of scalar curvature, we can replace it by
either a factor —(2 N)Ve Sa (in which case deg[—(2—N)] = 1 and |E| =1) or by
—(N—=1)(N=2)|£|? (in which case deg|—(N—1)(N—2)] =2 and || =2). O

Let us now state a corollary of Lemma 16 regarding the linear combination of

good, hard and undecided descendants of a complete contraction Cgn (Y1, ..., ¥z),
in the form (62).
We consider any complete contraction Cgn (Y1, ...,V z), in the form (62),

and write it in the form (108). We then consider the sublinear combination of its
acceptable descendants, in the form:

(112)

contr(V,7! o, Rijkl - @V s Rijkt ® VL  Ricjj @ ®Vt1 1, RiCij

®R*@VE! 4, 1®-- @V, Yz78VIER--®VE).

Then, by repeated application of formula (65), we write each such de-symmetrized

descendant as a linear combination of good, hard and undecided § -contractions of
the form (63) or (64).
We then claim the following:

LEMMA 17. Given any complete contraction Cgn (Y1, ...,V z) in the form
(62), of length L, then each of its good or hard or undecided descendants constructed
above will have &-length > L.
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Furthermore, if the complete contraction Cgn (Y1, ...,V z) has no factors
R, then none of its descendants will contain a factor —|§ |2. On the other hand,
if Cen(Y1....,¥z) contains A > 0 factors R, then we can write the sublinear
combination of its good, undecided and hard descendants as follows:

(113) Y alClar, ... Yz, 5+ X ChaWr,... . ¥z,8)]

leL reR!

where each g-contraction C&l,n W1,..., ¥z, §) arises from ) Cgn(Y1,...,Yz) by
doing all the substitutions explained in Lemma 16 but leaving all the factors R
unaltered, while 3 .cpi Con (Y1, ..., ¥z, §) arises from gl”(wl’_" .Yz, §)
by substituting a nonzero number of factors R by either —2V'&; or —|&|? and then
summing over all those different substitutions.

Proof. This lemma follows straightforwardly from Lemma 16: We only have
to make note that § -length is additive and that the correction terms that we introduce
in the symmetrization of factors V”g (using (65)) may increase the § -length but
not decrease it. So, since we are substituting each factor in Cgn (Y1, ...,¥z) by a
tensor of g? -length > 1, the first claim of our lemma will follow.

Our second claim will follow from the transformation law (55), provided
we can show that no factors |§ |? arise when we symmetrize and anti-symmetrize
the factors V2 5 and then repeat the same particular contractions as for Cgn (Y11, ...
..., ¥s). In order to see this, we only have to observe that for each factor of the
form V? § 7, p = 1, none of the correction terms in its symmetrization involve a
factorga with the index a being free.

This follows because in order to symmetrize the factor Vpg 7 we only use the
identities [V, Vp — VbVa]gj = Rabjdgd and, if k > 1:

VH{[VaVp — VpVa]VKE} = (VI RVVE)

where > (V! RVY §) stands for a linear combination of partial contractions of the
form V¥R, ;. V7§, where 1 <y <k +u+2. |

Proof of Proposition 4. (This lasts through page 1302.) Recall that we have
defined a stigmatized £-contraction to be in the form:
(114) contr(Vf?.‘nrm1 Ri vk, ® -+ ® V:ﬁ‘i.vms Ri, ikl
. D .
®Vf11___tp] Ricg, g ® @ Vz/'.z,, Rica,p, @ Vil 4, V1®...

Vel w,, VZ ®SVHE, @@ SV E @52 ®- - ® [E)
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where each y; > 1 and there are r factors S V"g and s > 0 factors |§ |2. If r =0,
we will call the the above § -contraction stigmatized of type 1 and if r > 0, we will
call it stigmatized of type 2.

Let us, for each good or undecided § ~contraction CZ,, (¢, E ) (with X E -factors)
break up its outgrowth O[C én (¢.£)] as follows: After each integration by parts
of a factor &, we discard any hard £-contractions that arise, but moreover, when
we encounter any stigmatized complete contractions of type 1 or type 2 we put
them aside. We denote by Dok K! 9k C é]fn W1,..., ¥z, §) the sublinear combi-
nation of &-contractions that we are left with after X — 1 integrations by parts,
after we have discarded all the hard § -contractions we encounter and after we
have put aside all the stigmatized § -contractions we encounter. We also denote
by ZkeKé akCé’fn W1, ... ¥z.8), ZkeKé akcgn (V¥1,...,¥z,&) the sublinear
combinations of stigmatized £-contractions of types 1 and 2, respectively, that we
have put aside along our iterative integrations by parts.

We will then have:

0ICL/(¢. 5] = ¥ arOlCk.(y1,....v7.©)]

kek!
+ ¥ akOlCH ... ¥z. O+ ¥ axO[Ce (... ¥z.H)l.
kek) kek}
We observe that the § -contractions C é]f,, W1,...,.¥z), ke K { are good, in the

form (63) with one factor £. Hence, we can rewrite (93) as follows:

115) 1Z@+ Y a| ¥ a0[ck .8

leL keK}

+ Y 40[Che. O+ ¥ akO[ck(¢,§)]}=o.

kek? kek;

Our Proposition 4 will follow from the following equation:

116 Y i ¥ ax0[CEHWn.....yz.5)

leL keKé f R
+ ¥ a0ICh (... vz B} =0.
keK!
In fact, we will show that:
(117) S al ¥ aChin.. vz B =0
leL kek}
and
(118) S al ¥ acClin. vz B =0,

lel keKé



1294 SPYROS ALEXAKIS

We see that (116) follows from the above two equations by the same reasoning
by which Lemma 13 follows from Lemma 14. We first show (118); to do this we
define a procedure called the sieving integration by parts.

Definition 21. Consider any good or undecided g—contraction Cen(Y1,...
oYz, § ) and its iterative integrations by parts. We impose the following rules:
Whenever along the iterative integration by parts we encounter a hard g? -contraction,
we erase it and put it in the linear combination H [Cgn (Y1, ..., ¥z, § )]. Whenever
we encounter a § -contraction which is stigmatized of type 2, we erase it and put it in
the linear combination Stig?[C (V1. ¥z, §)]. Also, whenever encountering a
stigmatized 5 —contractiorl of type 1, we erase it and put it in the linear combination
Stig[Cen (Y1, ..., ¥z, 6)].

Furthermore, having any complete contraction Cgn (Y1, ..., ¥ z) which is in
the form (62), we consider the linear combination of its good or undecided or hard
descendants, say Y ;cp dq an W1,..., ¥z, g?). We define

H[Con(Y1.....¥2)| = Y. agH[CE (1. ... vz.E)].

deD
POCe (.. ¥2)] = 3 ag PO[CE (Y1..... ¥z . E)].
Stig?[Cen (V1. ¥z2)] = Py agSig[Ce (... .Yz )],
Stig! [Cor (V1. ¥2)) = T aqStig [Con (V... ¥z,
LEMMA 18. With any complete contraction Cgn (Y1, ..., V¥ z) in the form (62)

of weight —n, there is a way to perform our sieving integration by parts, so that we
can express the four quantities just defined as follows:

(119) Cg”(Wl,---,WZ)‘i‘PO[Cg”(Wlw-,WZ)]: Zav gv”(WIVH’WZ)Rav

vevV

where each Cg,’n (Y1,...,¥z) is of weight —n + 20y, in the form (62), with no
factors R (they are pulled out on the right);

(120) H[Cg”(WLW’WZ)]: ZVaU gvn(WI"-'7wZ)'G(Rvav’_2vigi)

+ Y arCl(ro Yz E)-RY
feF

P> arCl(Un,...¥z2.6)-G(R.ap,—2V'E)
eF

where each Cg]; W1,..., ¥z, §) is of weight —n + 2az, in the form (64) with k = 0
and with no factors R (they are pulled out on the right), and where G(R, A, B)
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stands for the sum over all the possible substitutions of A factors R by a factor B,
so that we make at least one such substitution; and finally

(121) Stigl[cg”(Wb---,WZ)] = ZVaUCgvn(WI"“vWZ)'G(R’aU’_|§|2);

(122) SUg*[Cgn(Y1,....¥2)] =
Z aUCv” (wl’---’WZ)'T*(O{U’Ri_zvigl"_|§|2)

veV
+ X arClin.....¥z.6) T(ay . R.-2V & ~[E)
f€eF
where T(j, R, —2Vi§i, —|§|2) stands for the sum over all the possible ways to
substitute a nonzero number of factors in R’ by either —2Vi§i or —|§|2, so that
at least one factor is substituted by —|§|2 and T*(J, R, —ZV’E,-, —|§|2) stands for
the same thing, with the additional restriction that at least one factor R must be
substituted by —2Vi§,~.

Proof. We consider the linear combination of Cgn (Y11, ..., ¥z), together with
its good, undecided and hard descendants in eV £x ’CCe25 Fon (wl, ..., ¥z), grouped
asin (113). Givenany / € L, we plck any Cgn (Y1, .. WZ S) re Rl and identify
any factor 7 in Cg, (1//1, Yz, E) dlstlnct from 2V’E and —|$|2 with a factor
in Cl (Y, .. 1//2 S) We say that such a factor in C’n(wl, oWz, S) reR,
corresponds to a factor in Cél,n W1,.... ¥z, §)

We will now perform integrations by parts among the sublinear combinations
of good, hard and undecided descendants in

/RN (N— n)che2Ex W YZ)d VN

so that after any number of integrations by parts we will be left with an integrand
of 5 -contractions as in (113):

For any CL, (y1,..., ¥z, 5 ), we pick out a factor §,~ (which does not contract
against another 5 ) and perform an integration by parts. We will obtain a formula:

123) [ VR QL vz Ve
-/, (Wi QW) ol gy BV

N—n a=1
Consider any S contractlon C La T W1... . Yz, §) which arises when Vi hits
afactor T in C, ! (1#1, ¥z, E) W1th T # R Then consider any E contraction
Cr g (Y1, .. WZ S) re Rl and integrate by parts the corresponding factor E,.
Consider the f;‘ contraction C YY1, Yz, 5) which arises when V; hits the
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corresponding factor 7" as before. It is then clear that each linear combination
Cof(n.... ¥z.H)+ X Cht(n.....vz.6)
rer!

is of the form of equation (113). Notice that by Observation 1 we are free to
impose this restriction on the order of integrations by parts of the factors § in
Y eR! Cg W,..., ¥z, 5) We note that the order in which we integrate by
parts is consistent w1th our rules on dropping S contractions into the sublinear
combinations PO[...], H[...],Stig![...], Stig?[...]. This will follow from the
arguments below.

Now we consider any § -contraction that arises in the integration by parts of
g én W1,..., ¥z, §) when V; hit§ a factor 7 = R. We restrict our attention to tlle
&-contractions C;n W1,...,¥z,8), re Rl, which arise from Cél,n W,...,¥z,8)
when we leave the factor 7 (= R) unaltered. Suppose their index set is Rllx, 4 We
then observe that the linear combination

Cot@Wn....vz.H)+ ¥ ChlWn.....¥z.6)
reRé! +
is of the form (113).

Finally, consider theé contractlons C v Wi, Yz, g?) C'?, W1,.... ¥z, g?)
Wthh arise from an W1,..., ¥z, S) by substrtutlon of the factor T(— R) by
—2Vi S, and —|$ |2 respectrvely Also, define R, Rl C R’ to be the index sets of
all the 5 contractions CZ, (Y1, ..., ¥z, 5) Wthh arise from an W1,..., ¥z, E)
by substitution of the factor 7'(= R) by —2V! é, and —|$ 12, respectlvely, and by
substitution of at least one more factor R. We then consider the E contractions

r‘ YW, .. Yz, f) and Cr2 “Wi,... Y7, §) which arise from integration by
parts of an (1/f1, . WZ E) and C a1, Yz, §), respectively, when V; hits
the factors —2V* E, , —|§ 12, respectlvely. We also consider the £-contractions

Chi(Wn.....Vz.8) and Co¥ (... Vz.E)

in the integration by parts of each C.,(V1,..., ¥z, g?) re Rl orr e Rl when
Vi h1ts the factors —2V’§ —|§|2 respectlvely, which correspond to the factors

—2V’§, or —|§|2 in an(wl, cees wz,é) and an(wl, e, wz,f). It follows by
construction that the sublinear combinations

Cgh’a(WI»---»WZ,g)‘i‘ Z Cgr,na(l/fls---’wng) and

reRl

Ch* W V2.5 + X Cor(n.....vz.8)
reRl
are in the form of equation (113).
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Hence, if we start with a linear combination of § -contractions in the form (113),
then for each integration by parts in any C él,n W1,..., ¥z, g),_’we can consider the
corresponding integrations by parts of each C%,, (Y1, ..., ¥z, £), r € R}, and at the
next step we will be left with a linear combination of § -contractions in the form
(113).

If at any stage C g{’,f‘ W1,..., ¥z, g? )isa com_Plete contraction in the form (62),
we put it into PO[Cgn (Y1, ..., ¥z)]. Also, the &-contraction in

Z C;”a(wl""’Wng)

reR!

which arises from C é’,f‘ W1,..., ¥z, é) by substltutmg factors R only by —|$ |2
stigmatized of type 1, and it is put 1nt0 Stig! [Cen(Y1,.... ¥z, é)] The é -con-
traction in ) . pr an W1,..., ¥z, S) which arises from an W,..., ¥z, §) by
substituting factors R only by —2V! é, is a hard fg‘ contraction and we put it 1nt0
H[Cgn(Y1,...,VzZ, é)] Finally, anyg‘ contractionin ), pi C YY1, .. Yz, E)
which arises from C f(Y1, .. Y7, S) by substltutlng at least one factor R by
—|E |2 and at least another factor R by —2V! Sl is stigmatized of type 2 and we put
it into Stig? [Con(Y1,...,¥2)].

Let us also note that the g? contraction Cr,l,’ W1,..., ¥z, §) will always be un-
decided (it contains a factor V; éké gk ). For the E contraction C YW, Yz, §)
(and also for its followers), we decompose the factor V; ké into S V, kék and
RlC,k%' . We notice that substituting the factor V; kék by Ric; kék will give either a
good or an undecided § -contraction.

Now, we suppose that the § contraction Cy Sl (/7P S ) (after the > sym-
metrization —2(V; VK Sk) —=2(S V,kék ))is hard We then observe that the S -con-
traction in )_, eR! Con' (W1, Vz, E) which arises from C”’O’(wl, Yz, )
by performing an 1ntegrat10n by parts of E, and hitting —2VkE &, and symmetrlzlng by
—2(V; Vkék) — — 2(SV,k§k) and then by substituting factors R only by —2V! fz is
also hard. Furthermore, any E contraction which arises from C; p (Y, T ,Vz, é)
or from Cgi* (Y1,.... ¥z, £), by substitution of factors R only by —|€|2, is stig-
matized of type 2.

So we notice that for each § -contraction that are putin PO[Cgn (Y1, ..., ¥ 7)]
or H[Cgn(Y1,...,V¥z)], the g—contractions put into Stigl[an (WY1,...,¥z)] or
Stig? [Cen (Y1, ...,¥z)] will be of the form described in (121) and (122). Lemma
18 is proven. O

We now want to apply the above lemma in order to prove equations (117) and
(118) making a notational convention: Given any contraction CZ2,(Y¥q,...,¥z) in
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the form (62), let us write it as szgn (Y1,...,¥z)- RY, where CZ;,n W1, ..., ¥2)
does not contain factors R. We then define:

(124) Z rn(%’---,wz,é)
reR?
=C%n(Y1.....¥2) - [G(R,a,—2V'&) + T(R, o, —2V' &, —[E]?)].
Here each summand on the right-hand side arises from one of the substitutions
described in the definitions of G(R, «, —2Vi é,) and T'(R, o, —2Vi é,,—|§‘|2) Also,
glven any hard é contraction Cy h(Y1,.... ¥z, 5 ) in the form (64), we write it as
gn W1,...,. ¥z, S) R¢, where Chgn W,..., ¥z, S) is in the form (64) and
does not contain factors R. We then define:

(125) Y CEW1,....¥z2.8)

wewh
/ .o N N
=Clen (1. V2) [G(R. 0, —2V'E) + T(R. 0. =2V'§; . ~[§]7)].
Here each summand on the right-hand side arises from one of the substitutions
described in the definition of

G(R.a,—2V'€;) and T(R, a, =2V &, —|E[?).

We now prove equations (117) and (118) through an inductive argument. We
first recall the terminology and notation used in Lemma 18. Consider

1Zh.... . ¥z) = L baCin(hn.....V2).

For any complete contraction C g,, (¥1,...,¥z) consider the sublinear combination
of its good, hard or undecided descendants, say ) . cya cxC g,‘n, W1,....¥z,8).
We perform integrations by parts in the expression

/RNe(N‘”)g'f‘( Y ba|Cr 1 ¥2) + X e gn<w1,...,w2,§>})dvgw

acA xeXa
=0

as explained in Lemma 18. Whenever we encounter hard or stigmatized &-contrac-
tions, we stop (and do not discard). In the end, we are left with a linear combination
of sums of complete contractions:

(126) fR W "’“(Z 0 (N)azClx(Y1.....¥7)

zeZ

+ ¥ Q" (N)anCly (... vz, )

heH

+ ¥ 0°(N)az X Cin(n.....¥z.§)

zeZ reRZ

+ Z[ (Nay ) C;]N(wl’---’Wng)])dVgN:O-

heH wewh
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Here each rational function has degree zero and leading order coefficient equal
to 1. Moreover, ) __., 0% (N)azCZN (Y1, ..., V¥z) is the sublinear combination
that is dropped into PO]...], Whlle Y heH Q (N)ahChN (W1,..., ¥z, &) is the
sublinear combination that arises by summlng over all the subhnear combinations
of hard S contractions in the form ZfeF ar an W,..., ¥z, E) on the right-hand
side of (120). Then

> QFMNCIy WYz, 8 and Y QMNCH W Yz, E)

reRZ wewh

are the sublinear combinations of hard and stigmatized (of both types) f contrac-

tions that arise from >, ., a,C N (Y1..¥z)and ) peqy ahC VW Uz, E)
respectively, when we perform the substitutions for the factors R that are explained

in (124), (125).
Our inductive assumption is the following: For any T', We define Z7 C Z to be

the index set of complete contractions C?,, (Y1, ..., ¥z) with T factors R. Further-
more, we define Z!7 to be the index set of complete contractions C gz Ny, .. ¥Z)
with more than T factors R and also define H” C Z to be the index set of complete
contractions C ; ~v(W1,....¥z) with T factors R. Also, H IT < H is the index
set of S contractions Cg Ny W1, Yz, S) with more than T factors R. We now
inductively assume that for some T:
(127) Y a:Ciy(n.....¥z) =0
zeZIT

and
(128) > anCly(Wi,.... ¥z, =0.

heHIT

We furthermore assume that:

(129) Y @l X Clv@i... ¥z, 8)]=0

zeZIT reRz

and also that:

(130) Y oal ¥ Ch WYz D) =

heH|T wew:z

Our goal will be to prove:

(131) > a:Ciy(r.....¥z) =0,
zeZT
(132) > anClyn, . vz, 8) =0

heHT
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and furthermore:

(133) > ez ¥ Civn vz D] =0,
zeZT reR-
(134) Y e X vt vz )] =o.

heHT reRrh
We first state and prove a lemma that will be useful for this purpose:

LEMMA 19. Suppose there is a set of hard &-contractions

{Cén (WI’ cee W)Z’ S)}ZEL’
each in the form (64) with k = 0 (meaning no factors § ) and of weight —n. Now,
suppose that:

(135) Y aiCla(yn.....¥2.8) =0

lelL

forevery (M", g"), for every Y1, ..., ¥z € C®(M™") and every coordinate system.
We define the subsets L™ C L as follows: 1 € L™ if and only ifCL,(y1,...
..., ¥z, &) has m factors R. For each L™ for which L™ # &

(136) > aClayi.....vz.8) =0.
leL™m
The same result is true if there are complete contractions C él,,, W1,...,¥z) instead

of hard &-contractions CL, (Y1, ..., ¥z, ).

Proof. We will think of the g? -contractions CL, (Y1, .... ¥z, §) as being in the
form (44). Any §-contraction in the form (64) with m factors R will give rise to
&-contractions in the form (44) with m factors R.

For some M > 0 and for each u > M:

Z alcé"(WI""’WSvg) =0.

leLr
Notice that if we can prove that:

(137) > aiCli(y.... . ¥z.8) =0

leLM
then the whole lemma will follow by induction. In view of our induction hypothesis,
we erase the sublinear combination } o5 > jepu alCél,n (W1,..., Y5, &) from
(135).

Recall that (135) holds for any Riemannian metric, any functions ¥1, ... ¥z,
any coordinate system and any § . Hence, equation (135) must hold formally.

If we can prove that the number of factors R in a complete contraction of the
form (44) remains invariant under the permutations of Definition 7, we will have
our lemma.
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For any complete contraction C él,n W1,..., ¥z, § ) of the form (64), we will
call one of its factors VII . R;jk; connected if one of the indices ry, . .., [ contracts
against another factor in Cg, (Y1, ..., ¥z, §). From the identities in Definition 7,
we see that any permutation of 1nd1ces in any connected factor Vi Rijki in
an W1,..., ¥z, E) will grve rise to a complete contraction C n (wl, ¥z, 8),
which is obtarned from C p W1,..., ¥z, é ) by substituting its factor Vi v Rijki
by a number of factors VP R;;x, each connected in Cl W1.....¥z,8).

For any complete contraction of the form C (1//1, oWz, ), we will call
one of its factors V! . R;;r; m-self-contained 1f all the indices rq, ...,/ con-
tract against another index in V! . R;ir;. Any application of the identities
of Deﬁnrtron Ttoa factor V;" R, ket will grve rise to a complete contraction

(wl, Yz, E) which is obtalned from C! p W1,..., ¥z, 5) by substitution
of its factor Vo . Rijki by a number of factors \24 'Rijjk1, each of which is either
m- self—contarned or connected in C! p (wl, oYz, é)

Hence we have shown our lemma. O

We now prove (131) observrng that if a complete contractlon C W1, .. U7)
has y factors R, then each 5 contraction C ; vy, ..., ¥z, é) Wlth r e RZ has
strictly less than y factors R. Furthermore, if C hN (wl, oYz, S) has ¢ factors
R then each C wN (W1,....¥z)., w e W has strrctly less than ¢ factors R. Finally,
we notice that along the iterative integrations by parts the number of factors R
either decreases or remains the same; it cannot increase. Now, we apply Lemma
14 and (97) to the case at hand. For any S contraction Cgn (Y1, ..., ¥z, é) we
have defined O[Cgn (wl, oYz, S)] to stand for its outgrowth. We also define
H[Cen(Y1,.... ¥z, E)] to stand for the sublinear combination of the hard E
contractions that arise along its iterative integration by parts. We then re-express

the equation in Proposition 3 as follows:
T

139 ¥ (X a:Chtn..¥z.H+ ¥ 0lCh ... ¥z2.D))

m=0 *zeZm reRz

T
+ X (T o T OCHW.y2)) =0

=0 “heH™ weWwh

Let us consider the sublinear combination of complete contractions in (138)
with T factors R. It follows from our reasoning above and from Lemma 15 that it is
precisely the left-hand side of (131). Hence, invoking Lemma 19, we derive (131).
Therefore, by the construction of },c gz Cgn (V1. ..., ¥z, §), we obtain (133).

Furthermore, we re-express (97) as follows:
T

139 Y (¥ aChti...y2)+ ¥ HICHW....vz.0))

m=0"heH"™ wewh

T N
+ Z( > oaz Y H[Cg’n(wl,...,wz,g)]):

m=0 "zezZm reRz
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Now, we consider the sublinear combination of § -contractions in the above
equation with 7" factors R. From our reasoning above, from Lemma 15 and also
from equation (131), we have that this sublinear combination is precisely the left-
hand side (132). Hence, invoking Lemma 19, we have (132). Finally, (134) follows
from (132) and from its definition. Hence, in view of (131) and Lemma 18, we
obtain (117), (118). This completes the proof of our Proposition 4. O

We now state a fact that illustrates its usefulness.

LEMMA 20. Consider a good or undecided or hard § -contraction Cgn (Y1, . . .
LYz, 5), ofg-length L. Then PO[Cgn(Y1,..., ¥z, 5)] will consist of complete
contractions of length greater than or equal to L, or PO[Cgn (Y1, ...,V z, 5)] =0.
Consider the hard or the stigmatized § -contractions that arise along the itera-

tive integrations by parts. Any such § -contraction has § -length > L.

Proof. The proof is by induction. Initially, to make things easier, consider the

case where there are no factors |‘§|2 inCen(Yr1,.... ¥z, §). Think of Cgn (Y1, ...

LYz, § ) as being in the form (64) with g? -length M and with E factors § and C
factors S va . We will perform induction on C + E.

Initially suppose C + E = 1. Thenif C =1, E =0, our g—contraction is hard,
so that PO[Cgn (Y1, ..., ¥z, §)] =0.If E =1,C =0, the proof is the same as
for the inductive step:

Suppose we know the claim is true for £ 4+ C = p and we want to prove it for
E 4+ C = p + 1. Pick out a factor 51- and do an integration by parts with respect to
it. If V; hits a factor V" R; . or VpRlc,j or VP, we get a 5;‘ contraction in the
form (63) or (64) with E + C = p and S -length M. If V; hlts a factor E we get a
E contraction in the form (63) or (64) with £ + C = p and S -length M + 1. If it
hits a factor S V’"E (m > 1), then after applying identity (65), we obtain a linear
combination of complete contractions in the form (63) or (64) with C + E = p
and 5 length > M.

Now, suppose we do allow factors |§|2 in an W,..., ¥z, §) We again pro-
ceed by induction on the number C + E. If all the S factors in Cgn (Yr1,..., vz, §)
are in the form |§ |2 or S V”’S we already have a stigmatize S -con- traction. Hence,
PO[Cgn(Y1,.... ¥z, S)] 0 in that case. Otherwise, there is at least one factor E,
that does not contract against another factor S . We integrate by parts with respect to
it. If V; hits a factor V" R; jx; or V¥Ric;; or § or |§ |2, we fall under our induction
hypothesis with § -length M or M + 1. If it hits a factor S vm§ , we apply (65)
and obtain a a linear combination of § -contractions that fall under our induction
hypothesis, by the same reasoning as above. This completes the proof. |
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6.4. Conclusion: The algorithm for the super divergence formula. We ap-
ply Proposition 4 to see how it can provide us with a divergence formula for
151 (¥1,...,¥z). Here is the algorithm:

Write
1EWh....¥2) =Y arCla(¥1.....V2),
r€R
where each complete contraction C ;n (Y1, ...,¥z) is in the form (62).
For each complete contraction C ;n (Y1, ..., ¥z) we consider the set of its

good or undecided descendants, along with their coefficients (see Definition 12),
say apCpy (V1.....¥z.§).b € B". So each C[i(Y1.....¥z.) is in the form

(63) or (64) and has Sp § -factors (see Definition 9).

We then integrate by parts each g-contraction C r:b W1,..., ¥z, 5), and in-
troduce the following convention: Whenever along thlS iterative integration by
parts we obtain a hard or a stlgmatlzed E contraction (see Deﬁmtlon 16), we
discard it. For eaChE contraction C/; p (wl, oYz, E) consider thef contractions

crb o (W, Yz, £),x € X, that we are left with after S, — 1 integrations by

parts (along with their coefficients). They are in the form (63) with one factor § .
We then construct a vector field (Cg DXy, ..., z) out of any given

rb (W, Yz, S) by crossing out the factor §j and making the index that
contracted against j into a free index. By virtue of Proposition 4, we have:

(140) 1Z(Y1.....¥z)= Y ar X ap X divjax(CL™ ) (Y1.....¥2).
réeR  beB"  xeXb

We will refer to this equation as the super divergence formula and denote it by
supdlv[l . (V1,...,¥z)] = 0. We note that there are many such formulas, since
at each stage we pick a factor § to integrate by parts (subject to the restrictions that
we have imposed because of Observation 1).

Now, we establish a notational convention and make two observations: First,
for any complete contraction C ;,, (Y1, ...,¥z), define:

(141)  Tail[Cfn (V1.....¥2)]
=Co(n....¥2)+ ¥ ayPO[CL (Y1.....¥z.E)].

beB,
Then, notice that if the complete contraction C ;n (Y1, ..., ¥z) has length L, then
each complete contraction in its tail will have length > L. This follows from
Lemmas 20 and 16.
Furthermore, the super divergence formula holds for any / an W,...,¥z) =
> rerarC éfn (Y1, ...¥z) where each complete contraction is in the form (62)

with weight —n, for which [, 151 (W1.....,¥z)dVen = 0 for every compact
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Riemannian (M", g") and any V1, ..., ¥z € C°°(M™"). In other words, the super
divergence formula does not depend on the fact that / an (¥1,...,¥z) arises from
a polarization of the transformation law of P(g").

6.5. The shadow formula. We will draw another conclusion from Lemma 14
and Proposition 4.

As before, write IgZ,, Y1, ¥Z) =D ,er arC&fn (¥1,...,¥z), where each
complete contraction C ;n (¥1,...,¥z) is in the form (62).

For each complete contraction C ;n (Y1, ..., ¥z) we consider the set of its good
or undecided or hard descendants, along with their coefficients (see Definition 12),
say angzb(wl, cee, wz,j),b € B". So each C;;b(wl, Yz, §) is in the form
(63) or (64) and has S}, £-factors.

We then begin to integrate by parts each § -contraction C ;,nb W1,..., ¥z, §),
in the order explained in Definition 17 making the following convention:

Whenever we encounter a hard or a stigmatized § -contraction, we put it aside.
Whenever we encounter a good § -contraction with k = 1 (and [ = 0), we discard it.

We then consider the set of the hard or stigmatized &-contractions, along with
their coefficients, that are left after this procedure. Suppose that set is

{a:CLa(¥1.... Yz, E)}er.

We then have the shadow formula for 1 an W1,...,¥z2):

(142) Y aCla(¥r, ..., Yz, E) =0
teT
for every (M", g"), every y1,..., ¥z € C°°(M"), any coordinate system and

any £ € R". We will denote this equation by Shad[légz W1,..., ¥z, é?)] =0. It
follows, as for the super divergence formula, that the shadow equation holds for

any 151 (Y1, ..., ¥z) that integrates to zero on any (M", g"), for any ¥1,..., ¥z
and for any coordinate system and any & € R". It does not depend on the fact that
1 51 (Y1, ..., ¥z) is the polarized transformation law for some P(g”).

Recalling the notation of Definition 21, we additionally define:

(143) Tail™[CL. (Y1.....¥z)] = p3 ap{H[CL (y1.... . ¥2.6)]
€BT"

+8tg! [Cl (Y1 .. ¥z O] + SU[CE (1. ... vz, B

We may then re-express the shadow formula as:

(144) Y. ayTail™™[Cyn(y1..... ¥z)] =0.
reR
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The above equation follows straightforwardly from Lemma 14 and also from
equation (118). Moreover, for future reference we define:

(145 OS™[Clu(y,....v2.8)] = HICL.(y1.....¥2.8)]
+Stig [Co (1. ... Wz, E)] + SUg2[CLy (Y1, . .., ¥z, E)].

We furthermore show the following: For any m > 0, let T™ stand for the
sublinear combination in (142) with m factors |£|2. Also,

(146) Y aiCla(yr.....¥7.6) =0
teTm

for every (M", g"), every V1, ..., ¥z € C°°(M™"), any coordinate system and any
§ e R,

This follows since (142) must hold formally and the number of factors 5 that
contract against another factor § is invariant under the permutations of Definition 7.

Furthermore it follows, from Lemma 16 and also from Lemma 20, that if
a complete contraction Cén (Y¥1,...,¥z) of length L in Ian (WY1,...,¥z) gives

rise to a hard or stigmatized g—contraction C gl,’,f W1,..., ¥z, g?) in (142), by the
procedure outlined above, then C gl,’nz(wl, Yz, § ) will have 5 -length > L.
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