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Abstract

Einstein’s vacuum equations can be viewed as an initial value problem, and
given initial data there is one part of spacetime, the so-called maximal globally
hyperbolic development (MGHD), which is uniquely determined up to isometry.
Unfortunately, it is sometimes possible to extend the spacetime beyond the MGHD
in inequivalent ways. Consequently, the initial data do not uniquely determine the
spacetime, and in this sense the theory is not deterministic. It is then natural to make
the strong cosmic censorship conjecture, which states that for generic initial data,
the MGHD is inextendible. Since it is unrealistic to hope to prove this conjecture in
all generality, it is natural to make the same conjecture within a class of spacetimes
satisfying some symmetry condition. Here, we prove strong cosmic censorship in
the class of T 3-Gowdy spacetimes. In a previous paper, we introduced a set Gi;c
of smooth initial data and proved that it is open in the C 1 � C 0-topology. The
solutions corresponding to initial data in Gi;c have the following properties. First,
the MGHD is C 2-inextendible. Second, following a causal geodesic in a given time
direction, it is either complete, or a curvature invariant, the Kretschmann scalar, is
unbounded along it (in fact the Kretschmann scalar is unbounded along any causal
curve that ends on the singularity). The purpose of the present paper is to prove that
Gi;c is dense in the C1-topology.

1. Introduction

1.1. Motivation and background. In [10], Yvonne Choquet-Bruhat showed
that it is possible to formulate the Einstein vacuum equations as an initial value
problem. Later, Choquet-Bruhat and Geroch [4] proved that, given vacuum initial
data, there is a maximal globally hyperbolic development (MGHD) of the data, and
that this development is unique up to isometry. There are however examples for
which it is possible to extend the MGHD in inequivalent ways [6]. Consequently, it
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is not possible to predict what spacetime one is in simply by looking at initial data.
This naturally leads to the strong cosmic censorship conjecture, stating that for
generic initial data, the MGHD is inextendible. The statement is rather vague, as it
does not specify exactly what is meant by generic, and since it does not give a precise
definition of inextendibility; a spacetime can be extendible in one differentiability
class but inextendible in another. In order to have a precise statement, one has
to give a clear definition of these concepts. To prove the conjecture in general is
not feasible at this time. For this reason it is tempting to consider the following
related problem. Consider a class of initial data satisfying a given set of symmetry
conditions. Is it possible to show that the MGHD is inextendible for initial data
that are generic in this class? Note that, strictly speaking, this problem is unrelated
to the original one, since a class of initial data satisfying symmetry conditions is a
nongeneric class in the full set of initial data. However, this is the problem that will
be addressed in this paper.

One way of proving that a spacetime is inextendible is to prove that, given a
causal geodesic, there are two possible outcomes in a given time direction; either
the geodesic is complete, or it is incomplete but the curvature is unbounded along it.
Note that the natural associated inextendibility concept is that of C 2-inextendibility.
Note also that it is of course conceivable that one could get away with proving less
and still getting inextendibility. In this paper, we are concerned with the T 3-Gowdy
spacetimes, and for these spacetimes it is known that in one time direction, the
causal geodesics are always complete, cf. [18], and in the other, they are always
incomplete. One is thus interested in proving that for generic initial data, the
curvature is unbounded in the incomplete direction of every causal geodesic. This
ties together the strong cosmic censorship conjecture with the problem of trying
to understand the structure of singularities in cosmological spacetimes. By the
singularity theorems, cosmological spacetimes typically have a singularity in the
sense of causal geodesic incompleteness. However, it is of interest to know that
one generically also has a singularity in the sense of curvature blow-up.

The fact that T 3-Gowdy spacetimes are future causally geodesically complete
ensures inextendibility to the future. By a recent result of Dafermos and Rendall
[9], this can also be achieved by another argument, which is shorter, but yields less
information concerning the asymptotics and does not prove future causal geodesic
completeness.

To our knowledge, the only result concerning strong cosmic censorship in an
inhomogeneous cosmological setting is contained in [7]. This paper is concerned
with polarized Gowdy spacetimes and contains a proof of the statement that there
is an open and dense set of initial data for which the MGHD is inextendible. Note
however that the authors do not restrict themselves to T 3 topology; all topologies
compatible with Gowdy symmetry are allowed. In our setting, polarized T 3-Gowdy
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corresponds to setting QD 0 in (2), (3); (see below) i.e. one gets a linear PDE for
one unknown function. To analyze the asymptotic behaviour of this linear equation
is of course easier, but the freedom one has when perturbing the initial data is
more restricted. In other words, not all aspects of the problem are simplified by
considering the polarized subcase.

Finally, let us note that a weaker form of strong cosmic censorship can be
obtained by combining the results of [8], [21] and [20]. The weaker statement is
that there is a dense Gı set of initial data (in other words a countable intersection
of open sets which is also dense) with respect to the C1-topology such that the
corresponding maximal globally hyperbolic developments are C 2-inextendible. On
the other hand, one obtains essentially no information concerning the asymptotic
behaviour of the corresponding solutions. In this paper we obtain a complete
characterization of the asymptotic behaviour of the solutions for a set of initial data
which is open with respect to the C 2 �C 1-topology and dense with respect to the
C1-topology.

1.2. Objects of study. The Gowdy spacetimes were first introduced in [11]
(see also [5]), and in [14] the fundamental questions concerning global existence
were answered. We shall take the Gowdy vacuum spacetimes on R � T 3 to be
metrics of the form (1), (see below), but let us briefly motivate this choice by giving
a geometric characterization. The reader interested in the details is referred to [11]
and [5]. The following conditions can be used to define a Gowdy spacetime:

� It is an orientable maximal globally hyperbolic vacuum spacetime.

� It has compact spatial Cauchy surfaces.

� There is a smooth effective group action of U.1/�U.1/ on the Cauchy surfaces
under which the metric is invariant.

� The twist constants vanish.

Let us explain the terminology. A group action of a Lie group G on a manifold
M is effective if gp D p for all p 2M implies g D e. Due to the existence of
the symmetries we get two Killing fields. Let us call them X and Y . The twist
constants are defined by

�X D "˛ˇ
ıX
˛Y ˇr
Xı and �Y D "˛ˇ
ıX

˛Y ˇr
Y ı :

The fact that these objects are constants is due to the field equations. By the
existence of the effective group action, one can draw the conclusion that the spatial
Cauchy surfaces have topology T 3, S3, S2 �S1 or a Lens space. In all the cases
except T 3, the twist constants have to vanish. However, in the case of T 3 this need
not be true, and the condition that they vanish is the most unnatural of the ones on
the list above. There is however a reason for separating the two cases. Considering
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the case of T 3 spatial Cauchy surfaces, numerical studies indicate that the Gowdy
case is convergent [1] and the general case is oscillatory [2]. Analytically analyzing
the case with nonzero twist constants can therefore reasonably be expected to
be significantly more difficult than the Gowdy case. We shall here consider the
T 3-Gowdy case. In this case the above conditions almost, but not quite, imply the
form (1); see [5, pp. 116–117]; we have set some constants to zero. However, the
discrepancy can be eliminated by a coordinate transformation which is local in
space. Combining this observation with domain-of-dependence arguments we hope
will convince the reader that nothing essential is lost by considering metrics of the
form (1). Let

(1) g D e.���/=2.�e�2�d�2C d�2/

C e�� ŒePd�2C 2ePQd�dıC .ePQ2C e�P /dı2�:

Here, � 2 R and .�; �; ı/ are coordinates on T 3. The functions P;Q and � only
depend on � and � . Consequently, translations in � and ı constitute isometries,
so that we have a T 2-group of isometries acting on the spacetime. The Einstein
vacuum equations become

P�� � e
�2�P�� � e

2P .Q2� � e
�2�Q2� /D 0;(2)

Q�� � e
�2�Q�� C 2.P�Q� � e

�2�P�Q� /D 0;(3)

and

�� D P
2
� C e

�2�P 2� C e
2P .Q2� C e

�2�Q2� /;(4)

�� D 2.P�P� C e
2PQ�Q� /:(5)

Obviously, (2), (3) do not depend on �, so the idea is to solve these equations and
then find � by integration. There is however one obstruction to this; the integral of
the right-hand side of (5) has to be zero. This is a restriction to be imposed on the
initial data for P and Q, which is then preserved by the equations. In the end, the
equations of interest are however the two nonlinear coupled wave equations (2), (3).
In the above parametrization, the singularity corresponds to �!1, and essentially
all the work in this paper concerns the asymptotic behavior of solutions to (2), (3)
in this time direction. Note that P D �; QD 0 and �D � is a solution to (2)–(5).
The Riemann curvature tensor of the corresponding metric is identically zero.

The equations (2), (3) constitute a wave map equation with hyperbolic space
as a target; cf. [21]. The representation of hyperbolic space naturally associated
with the equations is

(6) gR D dP
2
C e2PdQ2
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on R2. The map taking .Q;P / to .Q; e�P / defines an isometry from .R2; gR/ to
the upper half-plane model. By the wave map structure, isometries of hyperbolic
space map solutions to solutions. One particular isometry which we shall need in
order to state the results is the inversion, defined by

(7) Inv.Q;P /D
�

Q

Q2C e�2P
; P C ln.Q2C e�2P /

�
:

The reason for the name is that it corresponds to an inversion in the unit circle
with center at the origin in the upper half-plane model. Given a solution to (2),
(3), we shall speak of the associated kinetic and potential energy densities, given
respectively by

KD P 2� C e
2PQ2� ; PD e�2� .P 2� C e

2PQ2� /:

1.3. Previously obtained results. Let us state some results that were proved in
[21]. The main result of that paper is that the concept of an asymptotic velocity
makes sense. Given a solution to (2), (3), the limit lim�!1K.�; �/ exists for every
� . We define the asymptotic velocity to be the nonnegative square root of this limit,
and denote it by v1.�/. If we wish to refer to the specific solution xD .Q;P / with
respect to which it is defined, we shall use the notation v1Œx�. There is another
perspective on this quantity which is of interest. Let dR be the topological metric
induced by the Riemannian metric (6) and let .Q0; P0/ 2 R2 be some reference
point. Given a solution to (2), (3), we define

�.�; �/D dRfŒQ.�; �/; P.�; �/�; ŒQ0; P0�g:

Note that this is the hyperbolic distance from the reference point to the solution
at .�; �/. We are interested in the limit �.�; �/=� as � ! 1. Note that if this
limit exists, it is independent of the base point .Q0; P0/. Furthermore, if we apply
an isometry of the hyperbolic plane to the solution, the limit is the same for the
resulting solution.

THEOREM 1. Consider a solution to (2), (3) and let �0 2 S1. Then

lim
�!1

�.�; �0/

�
D v1.�0/:

Furthermore, v1 is upper semi continuous in the sense that given �0, there is for
every " > 0 a ı > 0 such that for all � 2 .�0� ı; �0C ı/

v1.�/� v1.�0/C ":

In [21], we showed that v1 has several important properties. For instance, if
0<v1.�0/< 1, then v1 is smooth in a neighborhood of �0. If v1.�0/> 1 and v1
is continuous at �0, then it is smooth in a neighborhood. Finally, if 1 < v1.�0/ < 2,
then .1� v1/2 is smooth in a neighborhood of �0. In this paper, we show that
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v21 is smooth in a neighborhood of a point at which it is zero, cf. the comments
following Lemma 7. As a consequence of the above theorem, one can prove that
for z D �RD ı .Q;P /, the limit

(8) v.�/D lim
�!1

�
z

jzj

�

�

�
.�; �/

always exists; cf. [21]. Note here that �RD , defined in (19), is an isometry from
the PQ-plane to the disc model and that �=jzj is a real analytic function from the
open unit disc to the real numbers if � is the hyperbolic distance from the origin of
the unit disc to the solution; cf. (21). It would perhaps be more natural to refer to
v as the asymptotic velocity, since it gives not only the rate at which the solution
tends to the boundary of hyperbolic space, but also the point of the boundary to
which it converges. From a geometric point of view, the most important property
of v1 is however that if v1.�0/¤ 1, then the Kretschmann scalar, R˛ˇ
ıR˛ˇ
ı ,
is unbounded along every causal curve ending on �0. Note that the special solution
P D � , Q D 0 has the property that v1 D 1. In other words, the curvature need
not blow-up if v1.�0/D 1.

The type of arguments used to prove the existence of the asymptotic velocity
can also be used to prove statements concerning the asymptotic behavior of the first
derivatives ofP andQ; cf. [21]. Let us use the notation D�0;� D Œ�0�e

�� ; �0Ce
�� �.

PROPOSITION 1. Consider a solution to (2), (3) and let �0 2 S1. Then

lim
�!1

kjP� .�; �/j�v1.�0/kC0.D�0;� ;R/
D 0; lim

�!1
k.ePQ� /.�; �/kC0.D�0;� ;R/

D 0

and

lim
�!1

kP.�; �/kC0.D�0;� ;R/
D 0:

In particular, P� .�; �0/ converges to v1.�0/ or to �v1.�0/. If P� .�; �0/ !
�v1.�0/, then .Q1; P1/D Inv.Q;P / has the property that P1� .�; �0/! v1.�0/.
Furthermore, if v1.�0/ > 0, then Q1.�; �0/ converges to 0.

One important property of the asymptotic velocity is that it can be used as a
criterion for the existence of expansions. The following proposition was essentially
proved in [17]; see [21] for the details.

PROPOSITION 2. Let .Q;P / be a solution to (2), (3) and assume 0 < v1.�0/
< 1. If P� .�; �0/ converges to v1.�0/, then there is an open interval I containing
�0, va; �; q; r 2 C1.I;R/, 0 < va < 1, polynomials „k and a T such that for all
� � T

(9) kP� .�; �/� vakCk.I;R/ �„ke
�˛� ;
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kP.�; �/�p.�; �/kCk.I;R/ �„ke
�˛� ;(10) 


e2p.�;�/Q� .�; �/� r




Ck.I;R/
�„ke

�˛� ;(11) 



e2p.�;�/ŒQ.�; �/� q�C r

2va






Ck.I;R/

�„ke
�˛� ;(12)

where p.�; �/ D va � � C � and ˛ > 0. If P� .�; �0/ converges to �v1.�0/, then
Inv.Q;P / has expansions of the above form in a neighborhood of �0.

In order to relate (9)–(12) to the form of the expansions given by earlier authors,
let Qw be the expression appearing inside the norm in (12). Then

QD qC e�2p
�
�
r

2va
C Qw

�
:

This clarifies the relation between (10), (12) and the standard way of writing the
expansions:

P.�; �/D va.�/� C�.�/Cu.�; �/(13)

Q.�; �/D q.�/C e�2va.�/� Œ .�/Cw.�; �/�;(14)

where w; u! 0 as �!1 and 0< va.�/ < 1. Note that (13), (14) strictly speaking
do not say anything about the first time derivatives of P and Q. This is the reason
for including the estimates (9) and (11). Given the equations, (9)–(12) are however
sufficient for computing the asymptotic behavior of higher order time derivatives.
The idea of finding expansions started with the paper [12] by Grubišić and Moncrief,
and the first analysis proving the existence of solutions with expansions of the form
(13), (14) is contained in [13] and [15]. In these articles, the authors proved that,
given va; �; q;  with 0 < va < 1 of a suitable degree of differentiability, there are
unique solutions to the equations with asymptotics of the form (13), (14). In [13],
the regularity requirement was that of real analyticity, a condition which was relaxed
to smoothness in [15]. Conditions on initial data yielding asymptotic expansions
were first given in [19]; see also [17] and [3].

In order to be able to extract the maximum amount of information from the
above results, we need to define the Gowdy to Ernst transformation; see [21] for
the basic facts needed in this paper. Consider a solution .Q;P / to (2), (3) with
� 2 R instead of S1. Then the conditions

(15) P1 D � �P; Q1� D�e
2.P��/Q� ; Q1� D�e

2PQ�

determine a solution to the equations on R2, up to a constant translation in Q. We
shall write .Q1; P1/DGEq0;�0;�0.Q;P /, where the role of the constants q0; �0; �0
is to specify that Q1.�0; �0/D q0. It is important to keep in mind that the Gowdy
to Ernst transformation does not preserve periodicity in general. However, we shall
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apply the transformation to solutions with � 2 S1. What we mean by this is that
we apply it to the naturally associated 2�-periodic solution and the outcome is a
solution with � 2 R, which is not necessarily periodic. Using Proposition 1 and 2
together with the Gowdy to Ernst transformation and inversions (7), we can reduce
the general situation to one in which v1 < 1. The reason is the following; cf. [21]
for more details. Assume v1.�0/ � 1. By performing an inversion, if necessary,
cf. Proposition 1, we can assume that P� .�; �0/ converges to v1.�0/. Performing
a Gowdy to Ernst transformation and then an inversion, one obtains a solution
x2 D .Q2; P2/ with v1Œx2�.�0/ D v1.�0/� 1; cf. (15) and Proposition 1. This
procedure can then be repeated until one obtains a solution x2k with v1Œx2k�.�0/
< 1. If v1Œx2k�.�0/ > 0, we are in a position to use Proposition 2 in order to
obtain expansions. One can then trace the solution backward in order to be able
to say something about the original solution, but it should be emphasized that it
is not in general trivial to do so. However, if v1.�0/ is an integer, one cannot
apply Proposition 2. On the other hand, the points at which v1 D 1 are the most
important ones, since the curvature need not necessarily become unbounded along
causal curves ending on them. Note that by the above procedure, we can transform
a solution x1 with the property v1Œx1�.�0/D 1 to a solution x2 with the property
that v1Œx2�.�0/D 0. In fact, all one needs to do is to first apply an inversion, if
necessary, and then the Gowdy to Ernst transformation (15). In this way one can
translate the problem of perturbing away from v1 D 1, which is of interest when
proving curvature blow-up for generic initial data, to the problem of perturbing
away from zero velocity. The main contribution of this paper is to prove that one
can perturb away from zero velocity; in fact most of the paper is devoted to proving
this fact.

1.4. Density of the generic solutions. In order to be able to define the generic
set of solutions, we need to define the concepts of true and false spikes. The reader
interested in a more detailed discussion of these concepts is referred to [16].

Definition 1. Let Sp denote the set of smooth solutions to (2), (3) on R�S1,
and let Sp;c denote the subset of Sp obeying

(16)
Z
S1
.P�P� C e

2PQ�Q� /d� D 0:

Remark. The left-hand side of (16) is independent of � due to the equations.

Definition 2. Let .Q;P / 2 Sp. Assume 0 < v1.�0/ < 1 for some �0 2 S1

and
lim
�!1

P� .�; �0/D�v1.�0/:

Let .Q1; P1/D Inv.Q;P /. By Proposition 2, .Q1; P1/ has smooth expansions in
a neighborhood I of �0. In particular, Q1 converges to a smooth function q1 in I ,
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and the convergence is exponential in any C k-norm. By Proposition 1, q1.�0/D 0.
If @�q1.�0/¤ 0, then �0 is called a nondegenerate false spike.

We refer the reader to [21] for an interpretation of false spikes in terms of
different representations of hyperbolic space. In the above setting, 0<v1.�/< 1 in
a neighborhood of �0, and in a punctured neighborhood of �0, lim�!1 P� .�; �/D
v1.�/; cf. [21]. The reason for calling �0 a spike is that the limit of P� makes a
jump there. The reason for calling it a false spike is that it disappears if one applies
an isometry of hyperbolic space. In other words, it is not geometric.

Let us make some observations in preparation for the definition of non-
degenerate true spikes. Assume that .Q;P / 2 Sp, 1 < v1.�0/ < 2 and that
P� .�; �0/ ! v1.�0/. Let .Q1; P1/ D GEq0;�0;�0.Q;P /. By (15), we see that
P1� .�; �0/! 1� v1.�0/. Since the limit is negative, we can apply an inversion
to change the sign; cf. Proposition 1. In other words, .Q2; P2/D Inv.Q1; P1/ has
the property that P2� .�; �0/! v1.�0/� 1 and Q2.�; �0/! 0. By Proposition 2,
we get the conclusion that .Q2; P2/ have smooth expansions in a neighborhood I
of �0. In particular, Q2 converges to a smooth function q2, and the convergence is
exponential in any C k-norm. By the above, q2.�0/D 0.

Definition 3. Let .Q;P / 2 Sp. Assume 1 < v1.�0/ < 2 for some �0 2 S1

and

lim
�!1

P� .�; �0/D v1.�0/:

Let .Q2; P2/ D Inv ı GEq0;�0;�0.Q;P /. By the observations made prior to the
definition, .Q2; P2/ has smooth expansions in a neighborhood I of �0. In particular
Q2 converges to a smooth function q2 in I and the convergence is exponential in
any C k-norm. If @�q2.�0/¤ 0, then �0 is called a nondegenerate true spike.

In the above setting, the choice of constants is of no importance, 0<v1.�/<1
in a punctured neighborhood of �0 and lim�!1 P� .�; �/D v1.�/ in a neighbor-
hood of �0; cf. [21]. Again, the reason for calling �0 a spike is that the limit of P�
makes a jump there. Since v1 makes a jump in this case, the discontinuity in the
limit of P� does however remain after having applied an isometry. This justifies
the name true spike.

Definition 4. Let Gl;m be the set of .Q;P / 2 Sp with l nondegenerate true
spikes �1; : : : ; �l and m nonegenerate false spikes � 01; : : : ; �

0
m such that

lim
�!1

P� .�; �/D v1.�/;
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for all � … f� 01; : : : ; �
0
mg and 0 < v1.�/ < 1 for all � … f�1; : : : ; �lg. Let Gl;m;c D

Gl;m\Sp;c . Finally

GD

1[
lD0

1[
mD0

Gl;m; Gc D

1[
lD0

1[
mD0

Gl;m;c :

Let x 2 G. By Proposition 2, we have smooth expansions of the form (9)–
(12) in a neighborhood of all points except for a finite number of nondegenerate
true and false spikes. In a neighborhood of the nondegenerate false spikes, Invx
does however have expansions of this form. Finally, Inv ıGEq0;�0;�0x has smooth
expansions of the form (9)–(12) in a neighborhood of the nondegenerate true spikes.
Consequently, the generic solutions are quite well understood. We refer the reader
to [16] for more details concerning the behavior of solutions in a neighborhood of
true and false spikes. In [21], we proved the following.

PROPOSITION 3. Gl;m is open in the C 2 �C 1-topology on initial data and
Gl;m;c , considered as a subset of Sp;c , is open with respect to the C 2�C 1-topology
on initial data.

PROPOSITION 4. Given x 2Gl;m, there is an open neighborhoodO of x in the
C 1�C 0-topology on initial data such that for each Ox2O , v1Œ Ox�.�/2 .0; 1/[.1; 2/
for all � 2 S1.

Remark. Note that the solutions in O have the property that the curvature
blows up everywhere on the singularity; cf. [21].

The purpose of the present paper is to prove that G and Gc are dense in Sp
and Sp;c respectively.

THEOREM 2. G and Gc are dense in Sp and Sp;c respectively with respect to
the C1-topology on initial data.

The proof is to be found at the end of the paper.

Definition 5. Let .M; g/ be a connected Lorentz manifold which is at least C 2.
Assume there is a connected C 2 Lorentz manifold . yM; Og/ of the same dimension as
M and an isometric embedding i WM! yM such that i.M/¤ yM . ThenM is said to
be C 2-extendible. If .M; g/ is not C 2-extendible, it is said to be C 2-inextendible.

Finally, we are able to give a precise statement of strong cosmic censorship in
the class of T 3-Gowdy spacetimes.

COROLLARY 1. Consider the set of smooth, periodic initial data Si;p;c of (2),
(3) satisfying (16). There is a subset Gi;c of Si;p;c with the following properties:

� Gi;c is open with respect to the C 1 �C 0-topology on Si;p;c ,

� Gi;c is dense with respect to the C1-topology on Si;p;c ,
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� every spacetime corresponding to initial data in Gi;c has the property that in
one time direction, it is causally geodesically complete, and in the opposite
time direction, the Kretschmann scalarR˛ˇ
ıR˛ˇ
ı is unbounded along every
inextendible causal curve,

� for every spacetime corresponding to initial data in Gi;c , the maximal globally
hyperbolic development is C 2-inextendible.

Remark. All T 3-Gowdy spacetimes have the property that every causal geo-
desic is complete to the future and incomplete to the past; cf. [18].

Proof. Let Gi;c be the union of the open neighborhoods constructed in Proposi-
tion 4 intersected with Si;p;c . The result then follows from Theorem 2 and [21]. �

1.5. Perturbing away from zero velocity. The contribution of the present paper
is Theorem 2. The main tool needed to obtain this result is the ability to perturb
away from zero velocity. As was pointed out at the end of Section 1.3, solutions
which have zero velocity at some point are of special importance. Let us consider
such a solution. By the continuity properties of the asymptotic velocity and domain-
of-dependence arguments, we can assume that the velocity is small everywhere and
zero at some points. The objective is then to prove that given such a solution x,
there is a sequence of solutions xk , converging to x in the C1-topology on initial
data, which is such that xk never has zero velocity. The sequence xk is obtained
by perturbing the initial data of x at a later and later time. One is left with two
problems. First, the velocity of the perturbed solution is supposed to be nonzero
everywhere and second, the initial data of xk at a fixed hypersurface, say � D 0,
have to converge to the initial data of x. Obviously, the two criteria are in conflict
with each other. We want the perturbation to be large in order to achieve nonzero
velocity, and we want it to be small in order for the initial data for the different
solutions to converge on a fixed Cauchy surface. Furthermore, at first sight it might
seem unpleasant to compare the initial data for xk and x at a fixed Cauchy surface,
since this involves comparing the solutions in an interval whose length tends to
infinity. There are however scaling reasons why the above argument should work.
Consider the polarized Gowdy equation, i.e. (2) with QD 0,

(17) P�� � e
�2�P�� D 0:

Define the energies

Ek D
1

2

Z
S1
Œ.@k�@�P /

2
C e�2� .@kC1

�
P /2�d�:

They are all monotonically decaying, so that @k
�
@�P are all bounded to the future by

Sobolev embedding. Integrating this bound, we obtain the conclusion that the @k
�
P

do not grow faster than linearly. Inserting this information into (17), we conclude
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that @k
�
@�P converges to its limit with an error of the form O.�e�2� /. Say that

P� converges to zero. Then the perturbation in P� necessary to achieve a nonzero
velocity is of the order of magnitude O.�e�2� /. Let us try to get a feeling for how
much we can perturb the initial data at late times in order to get convergence at
� D 0. Since E0

k
� �2Ek , we have

(18) Ek.0/� e
2�Ek.�/:

Making a perturbation of the order of magnitude O.�e�2� / in @k
�
@�P at � and

letting Ek denote the energy of the difference between the solution we started with
and the perturbed solution, we conclude that Ek.�/ is of the order of magnitude
O.�2e�4� /. We see that this yields convergence at � D 0 due to (18). Observe
that one cannot in general perturb away from zero velocity if one restricts one’s
attention to solutions of (17). The reason is associated with the problem of finding
suitable perturbations, a problem which is easier when one considers the full Gowdy
equations instead of only the polarized case. In the nonlinear setting, the situation is
of course much more complicated. First, we need estimates for how fast the kinetic
energy density converges to the square of the asymptotic velocity. In this step it
is very important to get more or less optimal estimates for different quantities; in
particular it is important to get polynomial growth estimates for certain quantities
instead of exponential growth with an arbitrarily small exponent. The reason is that
in the nonlinear setting these quantities will appear as factors, and when a large
number of factors multiply each other there is a big difference between the two
types of estimates. Second, we need to prove convergence to the solution we started
with with respect to the C1-topology on initial data. The last step may seem to
be unpleasant, but it is not so bad for the following reason. In the linear setting,
the energy of the difference between the actual solution and the perturbed solution,
Ek.�/, should obey e2�Ek.�/! 0 in order for the difference to converge at � D 0.
In the nonlinear setting we get basically the same result. The reason is that the
nonlinear terms are always of higher order and involve objects that can be bounded
by the velocity, which can be assumed to be arbitrarily small. The nonlinear terms
in other words do not really play an important role, if one has the estimates already
mentioned.

1.6. Outline of the paper. In the first part of the paper, we prove that it is
possible to perturb away from zero velocity proceeding as described above. The
first task is to get good bounds on how fast the kinetic energy density converges
to the square of the asymptotic velocity. This is the subject of Sections 3 and 4.
How to find a suitable perturbation is sorted out in Section 5. The convergence to
the solution one started with in the C1-topology on initial data is then proved in
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Sections 6–8. The remaining sections are concerned with using the tools developed
in order to prove the density result.

2. Notation and monotonic quantities

2.1. Equations in the disc model. As has already been discussed in [17], there
are problems associated with the PQ-plane as a model for hyperbolic space. In
solutions to (2), (3), false spikes typically appear asymptotically, and they require
special attention. In the disc model however, they do not appear. This is related to
the fact that if the solution has nonzero velocity at a spatial point, then it tends to the
boundary of hyperbolic space at that spatial point. In the disc model, the boundary
is a circle, and there is no distinguished boundary point. When going from the disc
model to the upper half-plane, one rips open the boundary circle into a line, and
in this way one obtains a distinguished point on the boundary, namely the point at
infinity. At a nondegenerate false spike, the solution tends to infinity, but at points
in a punctured neighborhood, it tends to the real line. We refer the reader to [17]
and [21] for a more technical discussion of this aspect. There is another problem
associated with the PQ-plane. The concept of velocity as we have defined it above
is one dimensional, and it may seem strange that we should be able to perturb away
from zero velocity. In the disc model, the asymptotic velocity however becomes
a two-dimensional object in a natural way, cf. (8), and so it becomes clearer why
it should be possible to perturb away from zero velocity. Finally, the problem of
false spikes is always present if one is close to zero velocity. For these reasons,
the arguments concerning perturbing away from zero velocity are made in the disc
model.

Let us discuss some different representations of hyperbolic space. Define

H D f.x; y/ 2 R2 W y > 0g; gH D
dx2C dy2

y2
; �RH .Q;P /D .Q; e

�P /:

Then .H; gH / is the upper half-plane model of hyperbolic space, and �RH is an
isometry between .R2; gR/ and .H; gH /. Define

D D fz 2 C W jzj< 1g; gD D
4.dx2C dy2/

.1� x2�y2/2
; �HD D

z� i

zC i
:

Then .D; gD/ is the disc model of hyperbolic space, and �HD is an isometry
between .H; gH / and .D; gD/. Finally, what we shall refer to as the canonical
map,

(19) �RD.Q;P /D
QC i.e�P � 1/

QC i.e�P C 1/
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defines an isometry between .R2; gR/ and .D; gD/. The inverse is given by

(20) .Q;P /D

�
�
2Imz
j1� zj2

;� ln.1� jzj2/C 2 ln j1� zj
�
:

Let us define

(21) �D ln
1Cjzj

1� jzj
;

i.e. � is the distance from the origin to z with respect to the hyperbolic metric.
Combining the last two equations, we get

(22) P D �� 2 ln.1Cjzj/C 2 ln j1� zj:

Let us derive the Gowdy equations in the disc model by considering the associated
action. In the disc model it takes the formZ

R

Z
S1

�
2jz� j

2

.1� jzj2/2
� e�2�

2jz� j
2

.1� jzj2/2

�
d�d�;

where z 2C1.R�S1;D/. The corresponding Euler-Lagrange equations are, after
some reformulation,

(23) @�

�
z�

1� jzj2

�
� e�2�@�

�
z�

1� jzj2

�
D

2

.1� jzj2/2
Q.z; @z/:

If we use the convention that for �; �2C, �� denotes ordinary complex multiplication
and � � � denotes the inner product of � and � viewed as vectors in R2, then

(24) Q.w; @z/D jz� j
2w� .w � z� /z� � e

�2� .jz� j
2w� .w � z� /z� /;

where we have used @z as a shorthand for .z� ; e��z� /. Note that for a fixed @z, �
and � , a.w/D QŒw; @z.�; �/� defines a linear function in w over the real numbers.
Observe that �RD defined in (19) constitutes a bijective map from solutions of
(2), (3) to solutions of (23). If, given a solution x of (2), (3), we suddenly speak
of a solution z of (23), we shall take it to be understood that z D �RD ı x, and
vice versa. In fact, we shall use the notation z 2 Sp , meaning that ��1RDz 2 Sp and
similarly for Sp;c . Note that the left-hand side of (16) equals c0Œz� as defined in
(92) if z D �RD.Q;P /.

2.2. Notation and monotonic quantities. Let us define the potential and kinetic
energy densities by

PD
4e�2� jz� j

2

.1� jzj2/2
(25)

KD
4jz� j

2

.1� jzj2/2
:(26)
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Note that these concepts make geometric sense, since they are defined using only
the metric of hyperbolic space, and that they coincide with the earlier definitions,
when z D �RD.Q;P /. If I D Œa; b� is a subinterval of R, let

DI D f.�; �/ 2 R2 W � 2 Œa� e�� ; bC e�� �g:

The definition if I is an open interval is similar. If I only consists of the point �0,
we shall also write D�0 . Let

DI;� D Œa� e
�� ; bC e�� �:

We shall often use the above notation in situations where � 2 S1. We shall then
take it to be understood that we mean the image of the above objects under the map
that identifies spatial points that are at a distance k2� , k 2 Z, apart. Let us define

(27) Ak;˙ D 2e
�

ˇ̌̌̌
@k�

�
z� ˙ e

��z�

1� jzj2

�ˇ̌̌̌2
;

and, for notational convenience,

(28) al D @
l
�

�
z�

1� jzj2

�
; bl D e

��@l�

�
z�

1� jzj2

�
:

For k D 0, we shall use the notation A˙ instead of A0;˙. In order to be able to
obtain estimates, we require the following definition,

FI;k D kAk;CkC0.DI;� ;R/CkAk;�kC0.DI;� ;R/:

If k D 0, we shall speak of FI , and if I D S1, we shall speak of Fk rather than of
FS1;k . Finally, F D F0. Compute

(29) .@� � e
��@� /Ak;˙ D 2e

�
fjakj

2
� jbkj

2
g

C 8e�@k�

�
Q.z; @z/˙ e��f.z � z� /z� � .z � z� /z�g

.1� jzj2/2

�
� Œak˙ bk�:

Note that

(30) .@� � e
��@� /A˙ D

1

2
e� .K�P/D

1

2
.ACCA�/� e

�P:

The most basic and important estimate which holds for solutions to (23) is the
following.

LEMMA 1. Consider a solution to (23) and let I be a subinterval of S1. Then
for all � � �0,

e��FI .�/� e
��0FI .�0/:
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Proof. Let us estimate, for � � �0 and � 2 DI;� ,

A˙.�; �/DA˙.�0; � ˙ e
��0 � e�� /

C

Z �

�0

Œ.@� � e
�s@� /A˙�.s; � ˙ e

�s
� e�� /ds

� kA˙kC0.DI;�0 ;R/
C
1

2

Z �

�0

FI .s/ds:

Taking the supremum over � 2 DI;� and adding the two estimates, we get the
conclusion

FI .�/� FI .�0/C

Z �

�0

FI .s/ds:

The statement follows by Grönwall’s lemma. �

The following lemma was essentially proved in [17]. It is a starting point for
the estimates of the rate at which the kinetic energy density converges to the square
of the asymptotic velocity. Since we are interested in the behaviour of families of
solutions, it is very important to keep track of the dependence of different constants
on the initial data.

LEMMA 2. Consider a solution z to (23). Assume that �.�; �/� � � 2 for all
.�; �/ 2 ŒT;1/�S1. Then, there is a v 2 C 0.S1;R2/ such that for all � � T ,



1� z.�; �/jz.�; �/j

�.�; �/� v






C0.S1;R2/

C





 2z� .�; �/

1� jz.�; �/j2
� v






C0.S1;R2/

Ce��




 2z� .�; �/

1� jz.�; �/j2






C0.S1;R2/

� 6G1=2.T /
T

�
;

where G is as defined in (31).

Remark. Since � is nonnegative, it is implicitly assumed in the statement of
the above lemma that � � 2. We shall make this implicit assumption throughout in
what follows.

Proof. Consider the proof of Lemma 5 in [17]. Let

(31) G D
1

2

X
˙





 2z�

1� jzj2
�
�

�

z

jzj
˙
2e��z�

1� jzj2





2
C0.S1;R2/

:

In the above mentioned proof it is shown that, under the assumptions of the lemma,

G.�/�G.�0/
��0
�

�2
for all � � �0 � T . As argued in the proof, we have�

�� �
�

�

�2
C sinh2 �

ˇ̌̌̌
@�

�
z

jzj

�ˇ̌̌̌2
�G.�0/

��0
�

�2
;
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assuming jzj> 0. Define g by

g D
�

�

z

jzj
:

Note that �=jzj is a real analytic function from D to the real numbers if one defines
the value at the origin appropriately. We get, for jzj> 0,

j@�gj �
1

�

ˇ̌̌
�� �

�

�

ˇ̌̌
C
1

�

ˇ̌̌̌
@�

�
z

jzj

�ˇ̌̌̌
� � 2G1=2.�0/

�0

�2
;

since � � sinh �. By the arguments in the mentioned lemma, we get the same
estimate if z D 0. We conclude that

kg.�2; �/�g.�1; �/kC0.S1;R2/ � 2G
1=2.�0/

�0

�1
;

assuming �2 � �1 � �0. Thus there is a v 2 C 0.S1;R2/ such that

kg.�; �/� vkC0.S1;R2/ � 2G
1=2.�0/

�0

�
:

The lemma follows. �

In the following, C will denote any numerical constant, which may be indexed
by an integer, but which is independent of the particular solution. If the constant
depends on the particular solution, through objects such as G.�0/, we shall use the
notation K, and note what parameters it depends upon. Under the assumptions of
the above lemma, we conclude that

(32)




 2z�

1� jzj2
�
z

jzj
v1






C0.S1;R2/

� CG1=2.T /
T

�
:

In principle, there is of course a problem with this estimate if z D 0. However, if
we define z=jzj to be zero when z D 0, the estimate is still valid.

3. Estimates for the corrections

The purpose of this section and the next is to obtain estimates that tell us how
fast the kinetic energy density converges to its final value, given that the velocity is
smaller than one. It is very important to get more or less optimal estimates in order
to be able to perturb away from zero velocity. It should be possible to get growth
estimates of the form e"� for some small " for the norms of interest without any
greater effort. However, in the nonlinear setting, when we wish to prove that the
sequence of perturbed solutions converges to the original one in the C1-topology
on initial data, we have to deal with terms with an arbitrarily large number of such
factors, and then we loose control. If we have polynomial growth estimates instead,
we are in a better position. We shall also need to keep track of how the estimates
depend on the particular solution, since we want to have estimates for sequences
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of solutions converging to a fixed one. For this reason, the following analysis is
unfortunately rather technical.

This section is concerned with estimates for what we shall refer to as corrections.
For technical reasons, it is not enough to consider objects of the form Ak;˙ defined
in (27); one has to add certain corrections to them in order to get good estimates.
The reason is roughly as follows. Consider (17). Carrying out estimates similar
to the ones obtained in Lemma 1, and observing that any spatial derivatives of P
satisfy the same equation, one obtains the result that @k

�
@�P and e��@kC1

�
P are

bounded for any k. Consider (13). Clearly, the estimate obtained for @k
�
@�P is

optimal, but the estimate for e��@kC1
�

P is essentially worthless. One can obtain
linear growth for @k

�
P by simply integrating the bound for @k

�
@�P , and this estimate

is optimal, as can be seen from (13). However, integrating the bound for @k
�
@�P

involves the cost of one derivative, a price one can certainly pay in a linear setting
but not in a nonlinear one. When obtaining estimates for kC 1 derivatives, it is
essential to have better estimates for k spatial derivatives than one has from the
estimates for k derivatives. The solution is to add a term to Ak;˙ involving k spatial
derivatives and to obtain an improvement for the estimate of expressions involving
k spatial derivatives simultaneously with the estimates for kC 1 derivatives. The
question is then what factor we should choose in front of the term involving k
spatial derivatives. We have found the following correction to yield acceptable
results

Ck D 2�
�2e� .�4C 1/j@k�zj

2:

An assumption we shall typically be making in the following lemmas is that

(33) e��
lX

kD1

Œ sup
�2S1

Ak;CC sup
�2S1

Ak;�C sup
�2S1

Ck��Kl�
ml ;

for all � � T , where Kl and ml are some constants.

LEMMA 3. Consider a solution to (23), and assume that �.�; �/ � � � 2 for
all .�; �/ 2 ŒT;1/�S1. Then, for all � � T ,

(34) .@� ˙ e
��@� /C1 � C1CC Œ1CG

1=2.T /T ���1.A1;CCA1;�CC1/;

where C is a numerical constant. Furthermore, if (33) holds for all � � T and some
l � 1, then

(35) .@� ˙ e
��@� /ClC1 � ClC1

CC Œ1CG1=2.T /T ���1.AlC1;CCAlC1;�CClC1/C e
�…lC1.�/

for some polynomial …lC1 satisfying the estimate

(36) …lC1.�/� Cl.1CK
3
l /�

3mlC7:
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Remark. Note that the constant C in (35) does not depend on l .

Proof. Let us compute

.@� ˙ e
��@� /Ck D Ck � 2�

�1CkC 2�
�2e� Œ.@� ˙ e

��@� /�
4�j@k�zj

2

C4��2e� .1C �4/.@k�@�z˙ e
��@kC1

�
z/ � @k�z:

We consider .@� ˙ e��@� /�4. If �.�; �/ D 0, then this expression is zero at the
point .�; �/, so that we assume �¤ 0. Observe that under this assumption,

e�� j�� j �
2e�� jz� j

1� jzj2
and j�� j �

2jz� j

1� jzj2
;

since

(37) �2� C sinh2 �
ˇ̌̌̌
@�

�
z

jzj

�ˇ̌̌̌2
D

4jz� j
2

.1� jzj2/2

and similarly for the � derivative. Thus

j.@� ˙ e
��@� /�

4
j � 4�3

�
2jz� j

1� jzj2
C e��

2jz� j

1� jzj2

�
:

Note that
2jz� j

1� jzj2
C e��

2jz� j

1� jzj2
� C Œ1CG1=2.T /T ���1.1C �/;

by Lemma 2, so that

.1C �4/�1j.@� ˙ e
��@� /�

4
j � C Œ1CG1=2.T /T ���1:

Consider
��2e� .1C �4/.@k�@�z˙ e

��@kC1
�

z/ � @k�z:

Note that

(38) z�� D .1� jzj
2/@�

�
z�

1� jzj2

�
�
2.z � z� /z�

1� jzj2
:

Since 1� jzj D 2=.1C e�/, we have

.�4C 1/1=2.1� jzj2/�
4.�4C 1/1=2

e�C 1
� C:

Thus

��2e� .1C �4/.1� jzj2/@�

�
z�

1� jzj2

�
� z�

� C��1e� Œ��1.1C �4/1=2jz� j�

ˇ̌̌̌
@�

�
z�

1� jzj2

�ˇ̌̌̌
� C��1ŒA1;CCA1;�CC1�;
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where we have used the inequality ab � .a2C b2/=2 in the last step. Consider

���2e� .1C �4/
2.z � z� /.z� � z� /

1� jzj2

D���2e� .1C �4/.z � z� /

��
2z�

1� jzj2
�
z

jzj

�

�
C
z

jzj

�

�

�
� z�

�
� C Œ1CG1=2.T /T ���1C1:

Note that the sign is crucial in this inequality. Similarly to the above, we have

˙��2e� .1C �4/e��z�� � z� D˙�
�2e� .1C �4/.1� jzj2/@�

�
e��z�

1� jzj2

�
� z�

�2��2e� .1C �4/
e�� .z � z� /jz� j

2

1� jzj2
� C Œ1CG1=2.T /T ���1ŒA1;CCA1;�CC1�:

This proves the estimate for C1. Consider (38). Let us differentiate this equality l
times. Due to the assumptions, we get

@lC1
�

@�z D .1� jzj
2/@lC1

�

�
z�

1� jzj2

�
�
2.z � @lC1

�
z/z�

1� jzj2
CR1;lC1;

where R1;lC1 can be bounded by a polynomial. In fact, the estimate (33) and the
structure of (38) yield

(39) jR1;lC1j � Cl.1CK
3
l /
1=2�3ml=2C2;

where the C2 in the exponent is due to the factor ��2 contained in Ck . Similarly,

e��@lC2
�

z D .1� jzj2/e��@lC1
�

�
z�

1� jzj2

�
�
2.z � @lC1

�
z/e��z�

1� jzj2
CR2;lC1;

where R2;lC1 can be bounded by a polynomial, and we have an estimate similar to
(39). Note that

��2e� .1C�4/.1�jzj2/@lC1
�

�
z�

1�jzj2

�
�@lC1
�

z�C��1.AlC1;CCAlC1;�CClC1/;

as above. The other terms, except for Ri;lC1, i D 1; 2, can also be dealt with in the
same way we handled C1, which is why we get the same constant (independent
of l). Finally, consider

��2e� .1C �4/jRi;lC1 � @
lC1
�

zj � ��2e� .1C �4/
1

2
Œ��1j@lC1

�
zj2C �R2

i;lC1�

� C��1ClC1C e
�…00lC1.�/;
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for some polynomial …00
lC1

, since � � � . Using (39) and the similar estimate for
R2;lC1, we get the conclusion that we can choose

…00lC1.�/� Cl.1CK
3
l /�

3mlC7:

The lemma follows. �

4. Main estimates

Let us turn to the estimates for the derivative of Al;˙. By (29), the relevant
expression to consider is

4@l�

�
Q.z; @z/˙ e��f.z � z� /z� � .z � z� /z�g

.1� jzj2/2

�
� Œal ˙ bl �;

where we have used the terminology of (28). We define this expression to be the
sum of three terms, Di;l;˙, i D 1; 2; 3, where, cf. the definition (24),

D1;l;˙ D 4@
l
�

�
jz� j

2z� .z � z� /z�

.1� jzj2/2

�
� Œal ˙ bl �;

D2;l;˙ D 4@
l
�

�
�e�2�fjz� j

2z� .z � z� /z�g

.1� jzj2/2

�
� Œal ˙ bl �;

D3;l;˙ D˙4@
l
�

�
e�� .z � z� /z� � e

�� .z � z� /z�

.1� jzj2/2

�
� Œal ˙ bl �:

LEMMA 4. Consider a solution to (23) and assume that �.�; �/� � � 2 for all
� � T and � 2 S1. Then

(40) D2;1;˙ � C Œ1CG
1=2.T /T ���1e�� .A1;CCA1;�/:

Furthermore, if (33) holds for all � � T and some l � 1, then

(41) D2;lC1;˙ � C Œ1CG
1=2.T /T ���1e�� .AlC1;CCAlC1;�/C…lC1;

where C is a constant and

(42) …lC1 � ClC1.1CK
3
l /�

3mlC3:

Proof. Let us start by computing

(43)

4@�

�
�e�2�fjz� j

2z� .z � z� /z�g

.1� jzj2/2

�
D�4e�2�

�
2z

�
z�

1� jzj2
� @�

�
z�

1� jzj2

��
�

�
z � @�

�
z�

1� jzj2

��
z�

1� jzj2
�

z � z�

1� jzj2
@�

�
z�

1� jzj2

��
:
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Since
e�� jz� j

1� jzj2
� C Œ1CG1=2.T /T ���1;

we get (40). In the general case we differentiate (43) l times and get the estimateˇ̌̌̌
4@lC1
�

�
�e�2�fjz� j

2z� .z � z� /z�g

.1�jzj2/2

�ˇ̌̌̌
�Ce�2�

jz� j

1�jzj2

ˇ̌̌̌
@lC1
�

�
z�

1�jzj2

�ˇ̌̌̌
C…00lC1;

where C is independent of l and …00
lC1

satisfies the estimate

…00lC1 � Cl.1CK
3
l /
1=2�3ml=2C1:

When estimating D2;lC1;˙, the polynomial term can be dealt with in the same way
it was handled in the proof of the estimates for the correction term. We conclude
that (41) and (42) hold. �

LEMMA 5. Consider a solution to (23), and assume that �.�; �/ � � � 2 for
all � � T and � 2 S1. Then

D1;1;˙ � 2
v1

jzj
Œ.a1 � z/z� jzj

2a1� � .a1˙ b1/(44)

CC Œ1CG1=2.T /T �2��1e�� .A1;CCA1;�CC1/;

with the notation defined in (28). Furthermore, if (33) holds for all � � T and some
l � 1, then

D1;lC1;˙ � 2
v1

jzj
Œ.alC1 � z/z� jzj

2alC1� � .alC1˙ blC1/

CC Œ1CG1=2.T /T �2��1e�� .AlC1;CCAlC1;�CClC1/C…lC1;

where

…lC1 � ClC1.1CK
3
l /�

3mlC3:

Proof. We compute

2@lC1
�

�
jz� j

2z� .z � z� /z�

.1� jzj2/2

�
D 4

�
alC1 �

z�

1� jzj2

�
zC 2

jz� j
2

.1� jzj2/2
@lC1
�

z

�2
@lC1
�

z � z�

.1� jzj2/2
z� � 2.z � alC1/

z�

1� jzj2
� 2

z � z�

1� jzj2
alC1CR3;lC1;

where R3;1 D 0 and R3;lC1 satisfies an estimate

jR3;lC1j � ClC1.1CK
3
l /
1=2�3ml=2C1:
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Estimate ˇ̌̌̌
ˇ2 jz� j

2

.1� jzj2/2
@lC1
�

z� 2
@lC1
�

z � z�

.1� jzj2/2
z�

ˇ̌̌̌
ˇ

� C Œ1CG1=2.T /T �2��2.1C �4/1=2j@lC1
�

zj:

The resulting terms can be dealt with as in earlier lemmas. The polynomial term
is also not a problem. In the remaining terms, we can replace 2z�=.1� jzj2/ with
v1z=jzj, with an acceptable error term, since we have (32). Thus, we only need to
consider

v1

jzj
Œ2.alC1 � z/z� .z � alC1/z� jzj

2alC1�D
v1

jzj
Œ.alC1 � z/z� jzj

2alC1�:

The lemma follows. �

LEMMA 6. Consider a solution to (23), and assume that �.�; �/ � � � 2 for
all � � T and � 2 S1. Then

D3;1;˙ �˙2
v1

jzj
Œ�.b1 � z/zCjzj

2b1� � .a1˙ b1/(45)

CC Œ1CG1=2.T /T �2��1e�� .A1;CCA1;�CC1/:

Furthermore, if (33) holds for all � � T and some l � 1, then

D3;lC1;˙ �˙2
v1

jzj
Œ�.blC1 � z/zCjzj

2blC1� � .alC1˙ blC1/

CC Œ1CG1=2.T /T �2��1e�� .AlC1;CCAlC1;�CClC1/C…lC1;

where
…lC1 � ClC1.1CK

3
l /�

3mlC3:

Proof. We need to consider

2@lC1
�

�
e�� .z � z� /z� � e

�� .z � z� /z�

.1� jzj2/2

�
D 2

.@lC1
�

z � z� /e
��z�

.1� jzj2/2

C2.z � alC1/
e��z�

1� jzj2
C 2

z � z�

1� jzj2
blC1� 2e

��
.@lC1
�

z � z� /z�

.1� jzj2/2

�2.z � blC1/
z�

1� jzj2
� 2e��

z � z�

1� jzj2
alC1CR4;lC1;

where R4;lC1 satisfies the same sort of estimate as R3;lC1 in the previous lemma.
Furthermore, R4;1 D 0, a conclusion which does not depend on any assumptions.
Due to estimates of the formˇ̌̌̌

ˇ2.@lC1�
z � z� /e

��z�

.1� jzj2/2

ˇ̌̌̌
ˇ� C Œ1CG1=2.T /T �2��2.1C �4/1=2j@lC1�

zj
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and
e�� jz� j

1� jzj2
� C Œ1CG1=2.T /T ���1;

the only terms that cannot be dealt with by arguments already presented are the
ones that contain blC1. In the case of these terms, we replace 2z�=.1� jzj2/ with
v1z=jzj similarly to the proof of the previous lemma. The relevant terms are then

v1

jzj
Œjzj2blC1� .z � blC1/z�:

The lemma follows. �

COROLLARY 2. Consider a solution to (23), and assume that �.�; �/� � � 2
for all � � T and for all � 2 S1. Then

.@� � e
��@� /A1;˙ �

1

2
.A1;CCA1;�/(46)

CC Œ1CG1=2.T /T �2��1.A1;CCA1;�CC1/:

Furthermore, if (33) holds for all � � T and some l � 1, then

(47) .@� � e
��@� /AlC1;˙ �

1

2
.AlC1;CCAlC1;�/

CC Œ1CG1=2.T /T �2��1.AlC1;CCAlC1;�CClC1/C e
�…lC1.�/

where

(48) …lC1 � ClC1.1CK
3
l /�

3mlC3:

Proof. Consider (40), (44) and (45). We need to compute

Œ.a1 � z/z� jzj
2a1� .b1 � z/z˙jzj

2b1� � .a1˙ b1/

D .a1 � z/
2
� jzj2ja1j

2
� .z � b1/

2
Cjzj2jb1j

2
� jzj2jb1j

2:

We conclude that
3X
iD1

Di;1;˙ � 2v1jzjjb1j
2
CC Œ1CG1=2.T /T �2��1e�� .A1;CCA1;�CC1/

� 2jb1j
2
CC Œ1CG1=2.T /T �2��1e�� .A1;CCA1;�CC1/;

since v1 � 1 and jzj � 1. By (29), we get the first conclusion of the corollary. The
second statement follows by a similar argument. �

Before stating the next corollary, let us introduce

Ac
k;˙ DAk;˙CCk; F

c
k;˙.�/D kA

c
k;˙.�; �/kC0.S1;R/; F

c
k D F

c
k;CCF

c
k;�:
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Note that

e��
lX

kD1

Œ sup
�2S1

Ak;CC sup
�2S1

Ak;�C sup
�2S1

Ck�� C

lX
kD1

e��F ck :

COROLLARY 3. Consider a solution to (23), and assume that �.�; �/� � � 2
for all � � T and � 2 S1. Then, for all � � T ,

(49) e��F c1 .�/� e
�TF c1 .T /�

m1

where m1 D C Œ1CG1=2.T /T �2. In general,

(50) e��F clC1.�/�KlC1�
mlC1 ;

where KlC1 is a polynomial in e�TF cjC1.T /, j D 0; : : : ; l , and

mlC1 D ClC1Œ1CG
1=2.T /T �2:

Proof. Due to (34) and (46), we get

.@� � e
��@� /A

c
1;˙ �

1

2
.Ac
1;CCAc

1;�/C
1

2
m1�

�1.Ac
1;CCAc

1;�/:

where m1 D C Œ1CG1=2.T /T �2. Thus

Ac
1;˙.�; � ˙ e

�� /DAc
1;˙.�0; � ˙ e

��0/

C

Z �

�0

Œ.@� � e
�u@� /A

c
1;˙�.u; � ˙ e

�u/du

� F c1;˙.�0/C

Z �

�0

�
1

2
C
m1

2u

�
F c1 .u/du:

Taking the supremum over � and adding the two estimates, we get

F c1 .�/� F
c
1 .�0/C

Z �

�0

�
1C

m1

u

�
F c1 .u/du:

Grönwall’s lemma then yields

F c1 .�/� F
c
1 .�0/e

���0

�
�

�0

�m1
:

We get (49) if we insert �0 D T in the above estimate and observe that T � 2. This
result constitutes the zeroth step in an induction process. Let us assume that we
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have an estimate of the form (33) for some l � 1. Then

Ac
lC1;˙.�; � ˙ e

�� /DAc
lC1;˙.�0; � ˙ e

��0/

C

Z �

�0

Œ.@� � e
�u@� /A

c
lC1;˙�.u; � ˙ e

�u/du

� F clC1;˙.�0/C

Z �

�0

��
1

2
C
m

2u

�
F clC1.u/C e

u…lC1

�
du;

where m D C Œ1C G1=2.T /T �2, due to Lemma 3 and Corollary 2. Taking the
supremum in � and adding the two estimates, we get

(51) F clC1.�/� F
c
lC1.�0/C

Z �

�0

h�
1C

m

u

�
F clC1.u/C e

u…lC1

i
du:

Let us denote the right-hand side by h. Then

h0 �
�
1C

m

�

�
hC e�…lC1;

so that

(52) @� Œe
����mh�� ��m…lC1:

Note here that mD C Œ1CG1=2.T /T �2, where C is independent of l . Thus there
is no restriction in the assumption that m�m1 �m2 : : : . Since …lC1 satisfies an
estimate of the form (36), we conclude thatZ �

�0

u�m…lC1.u/du� Cl.1CK
3
l /�
�m�3mlC8:

Thus, (52), the definition of h and (51) yield

e��F clC1.�/� e
��0F clC1.�0/

�
�

�0

�m
CCl.1CK

3
l /�

3mlC8:

If we let �0 D T , an induction argument leads to the conclusion that

e��F clC1.�/�KlC1�
mlC1 ;

where KlC1 is a polynomial in e�TF cjC1.T /, j D 0; : : : ; l , and

mlC1 D ClC1Œ1CG
1=2.T /T �2:

The corollary follows. �
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It is in fact possible to improve these estimates slightly. In the formulation of
the next lemma, it will be convenient to use the notation

ck.�/D





@k� � z � z�

1� jzj2

�
.�; �/






C0.S1;R/

;(53)

dk.�/D





.1� jzj2/@k� � z�

1� jzj2

�
.�; �/






C0.S1;R/

:(54)

COROLLARY 4. Consider a solution to (23), and assume that �.�; �/� � � 2
for all � � T and � 2 S1. Then for each k � 0 and � � T ,

(55) dk.�/C ck.�/� Lk�
mk ;

where mk D CkŒ1CG
1=2.T /T �2 and Lk is a polynomial in e�TF cjC1.T / and

cj .T /, j D 0; : : : ; k.

Proof. Compute

@�@
k
�

�
z � z�

1� jzj2

�
D @k�

�
z� �

z�

1� jzj2
C z � @�

�
z�

1� jzj2

��
D

X
iCjDkC1

aij @
i
�z � @

j

�

�
z�

1� jzj2

�
:

By the previous corollary, we get the conclusion that

(56) ck.�/� ck.T /CKk�
mk ;

where mk D CkŒ1CG1=2.T /T �2, and Kk is a polynomial in e�TF cjC1.T /, j D
0; : : : ; k. Note that

@k�

�
z�

1� jzj2

�
D

X
ai;j1;:::;jm

@i
�
z

1� jzj2
@
j1
�

�
z � z�

1� jzj2

�
� � � @

jm
�

�
z � z�

1� jzj2

�
:

Multiplying this equation by 1� jzj2, we can bound the right-hand side as in the
statement of the lemma due to the previous corollary and (56). �

Let us try to say something concerning the optimality of the estimates. Note
that by [13] and [15], it is possible to construct solutions to the Gowdy equations
with the asymptotics (13), (14) as long as 0 < va < 1 and va; �; q;  2C1.S1;R/.
The functions u and w tend to zero as � !1. Note that if z D �RD ı .Q;P /,
where �RD is as defined in (19), then

4jz� j
2

.1� jzj2/2
D P 2� C e

2PQ2� :

Furthermore

1� jzj � 1� jzj2 � 2.1� jzj/; e�� � 1� jzj � 2e��
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so that e�� � 1�jzj2 � 4e��. Thus (49) implies e2PQ2
�
�…e2v1� , where … is a

polynomial, since �D v1�CO.1/. On the other hand, there is a point �0 at which
q� .�0/¤ 0. Then

e2P.�;�0/Q2� .�; �0/� c0e
2v1.�0/� ;

where c0 ¤ 0, since we have (13), (14) and P D v1� CO.1/. We see that the
only way the estimate kz�kC0.S1;R2/ �… can be improved lies in the degree of
the polynomial.

LEMMA 7. Consider a solution to (23) and assume that �.�; �/� � � 2 for all
� � T and � 2 S1. Assume furthermore that v1 � 1=4. Then there are constants
L1; L

0
1; m2 of the form

L01 D L1 expfC Œ1CG1=2.T /T �g; m2 D C Œ1CG
1=2.T /T �2;

where L1 is a polynomial in e�TF cjC1.T / and cj .T /, j D 0; 1, such that if � �m2
and � 2 S1, thenˇ̌̌̌

2jz� .�; �/j

1� jz.�; �/j2
� v1.�/

ˇ̌̌̌
� 2L01 expŒ�2� C 2v1.�/���m2 :

Proof. Let us take the scalar product of (23) with z�=.1� jzj2/. We getˇ̌̌̌
z�

1� jzj2
� @�

�
z�

1� jzj2

�ˇ̌̌̌
� e�2�

�ˇ̌̌̌
@�

�
z�

1� jzj2

�ˇ̌̌̌
C 4

jz� j
2

.1� jzj2/2

�
jz� j

1� jzj2
;

where we have used the fact that jzj � 1. Let us introduce the function

f D
jz� j

2

.1� jzj2/2
:

Due to the Corollaries 3 and 4, we get the conclusion that

j@�f j � L1e
�2� .1� jzj2/�2�m2f 1=2;

where L1 is a polynomial in e�TF cjC1.T / and cj .T /, j D 0; 1, and m2 is as in the
statement of the lemma. Note that

.1� jzj2/�2 � e2� � expŒ2v1� C 12G1=2.T /T �;

where we have used (21) and Lemma 2. Consequently

(57) j@�f j � L
0
1e
�2�C2v1��m2f 1=2;

where L01 is as in the statement of the lemma. Let us assume that v1 � 1=4. Since

@� .e
���m2/� 0

if � �m2, we then getZ 1
�

e�2sC2v1ssm2ds � e���m2
Z 1
�

e�sC2v1sds � 2e�2�C2v1��m2 :
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Using this estimate together with (57) and the fact that f 1=2 converges to v1=2,
we get the conclusion that

j2f 1=2.�; �/� v1.�/j � 2L
0
1 expŒ�2� C 2v1.�/���m2 ;

assuming � �m2. �

Note that by arguments similar to ones given in the proof of the lemma,

@�@
k
�

�
jz� j

2

.1� jzj2/2

�
converges to zero exponentially, when we assume v1 � 1� 
 for some 
 > 0, so
that v21 is smooth under these assumptions. Using this observation, domain-of-
dependence arguments and the fact that the velocity is continuous in a neighborhood
of every point where it is zero, we get the conclusion that v21 is smooth in a
neighborhood of every point where it is zero; cf. Lemma 14.

5. Perturbations of the initial data

Given a solution whose asymptotic velocity is not always positive, we wish to
perturb the initial data at some late time T1 in such a way that the perturbed solution
never has zero velocity at the singularity. Furthermore, we wish to prove that if
one lets T1 tend to infinity in this construction, the perturbed solution converges to
the solution one perturbed around, assuming the distance is measured in the C1

topology of initial data on some fixed Cauchy surface. The purpose of this section
is to produce a candidate perturbation, and in later sections we prove that it has the
properties we desire.

As a preparation for the construction, we make the following observation.

LEMMA 8. Consider � 2 C 1.Œa; b�;R2/. Let " > 0 and define

T"Œ��D
[

s2Œa;b�

B"Œ�.s/�;

where B".p/ denotes the open ball with center p and radius ". If � denotes the
Lebesgue measure on R2, then

(58) �fT"Œ��g � 4�"lŒ��C 8�"
2; where lŒ��D

Z b

a

j� 0.s/jds:

Remark. The estimate is hardly optimal, but it will do for our purposes.

Proof. Define a sequence s0 � s1 � � � � � sk by the conditions:

s0 D a;

Z siC1

si

j� 0.s/jds D "; i D 0; : : : ; k� 1;

Z b

sk

j� 0.s/jds � ":
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Note that k could equal zero. We shall also denote b by skC1. Define

S" D

kC1[
jD0

B2"Œ�.sj /�:

Note that T"Œ��� S". We get

�fT"Œ��g � �ŒS"�� .kC 2/4�"
2
� 4�"lŒ��C 8�"2;

since k"� l Œ��. The lemma follows. �

LEMMA 9. Consider a solution to (23) with �.�; �/ � � � 2 for .�; �/ 2
ŒT;1/�S1. Let ˛ D 19=10 and ˇ D 11=10. Then there is a T 0 � T such that for
any � � T 0, there is a point p0 2 R2 satisfying

jp0j � e
�ˇ� and inf

�2S1

ˇ̌̌̌
z� .�; �/

1� jz.�; �/j2
�p0

ˇ̌̌̌
� e�˛� :

In terms of data at T , it is sufficient if

T 0 D C lnKCC Œ1CG1=2.T /T �4;

where K is a polynomial in e�TF cjC1.T /, j D 0; 1.

Proof. For the sake of brevity, let us introduce the notation


 D
z�

1� jzj2
:

Due to the estimates (50), we have

(59) k
.�; �/kC2.S1;R2/ �K�
m;

for all � �T , wheremDC Œ1CG1=2.T /T �2 andK is a polynomial in e�TF cjC1.T /,
j D 0; 1. We wish to find a p0 2 R2 such that

(60) p0 2 Brˇ .0/ and Br˛ .p0/\f
.�; �/ W � 2 S
1
g D Ø;

where rˇ D e�ˇ� and r˛ D e�˛� . Let us introduce the notation

Aˇ .�/D f� 2 S
1
W 
.�; �/ 2 B2rˇ .0/g;

A˛;ˇ .�/D
[

�2Aˇ.�/

Br˛ Œ
.�; �/�:

We wish to prove that

(61) �ŒA˛;ˇ .�/� < �ŒBrˇ .0/�:

This would then immediately imply the existence of a p0 2Brˇ .0/�A˛;ˇ .�/. That
p0 has the first of the desired properties in (60) is clear. To prove that it has the
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second, let us assume the opposite. Then there is a � such that jp0� 
.�; �/j< r˛ .
Since r˛ < rˇ , we conclude that


.�; �/ 2 B2rˇ .0/;

which implies that � 2 Aˇ .�/, and thus that p0 2 A˛;ˇ .�/. We get a contradiction,
and thus p0 has the desired properties (60).

Note that in the estimate (58), there is a “boundary” term 8�"2, which is
a nuisance. The reason is the following. Say that Aˇ .�/ can be written as the
union of intervals I1,. . . ,Ik , and say that we apply (58) to each of the intervals
Ij . Then the first term in the estimate, 4�"lŒ��, is insensitive to the number k
since it has nice additive properties, but the boundary term certainly is sensitive to
how many times we enter B2rˇ .0/. There is a technical way around this. Consider
only subintervals I of Œ0; 2�� such that the solution has to travel from @B3rˇ .0/

to @B2rˇ .0/ in the interval, and apply (58) to I . This leads to the conclusion
that l Œ
.�; �/jI � � rˇ , and since we wish to use (58) with "D r˛, we see that the
boundary term in this case is insignificant in comparison with the first term. Let us
be more precise. Fix � . Given a � such that j
.�; �/j � 2rˇ , let I� be the maximal
interval such that j
.�; � 0/j � 3rˇ for all � 0 2 I� . By continuity, j
.�; � 0/j D 3rˇ
on the boundary of I� , or I� D S1. The set Nˇ of points where j
.�; �/j � 2rˇ is
compact, and the interiors of the I� constitute an open covering. Let the interiors
of Ii D I�i i D 1; : : : ; k constitute a finite subcovering. Note that by maximality, if
two intervals intersect each other, they have to coincide; otherwise the union would
be the maximum interval. In other words, we can assume that the Ii have empty
intersection. Note that if Nˇ is empty, A˛;ˇ .�/ is empty, which is an unproblematic
special case. Let us therefore assume that k � 1. The set

A0˛;ˇ .�/D

k[
jD1

Tr˛ Œ
.�; �/jIj �

contains A˛;ˇ .�/, and we shall estimate its measure. Note that if 
.�; �/ never
leaves B3rˇ .0/, then k D 1 and I1 D S1. If it does leave, we have the estimate

l Œ
.�; �/jIj �� rˇ

for all j . Since r˛ � rˇ , we thus get

�fTr˛ Œ
.�; �/jIj �g � 12�r˛l Œ
.�; �/jIj �:

Consequently

(62) �ŒA˛;ˇ .�/�� �ŒA
0
˛;ˇ .�/�� 12�r˛

kX
jD1

l Œ
.�; �/jIj �:
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What remains to be estimated isZ
S.�/

j.@�
/.�; �/jd�; where S.�/D

k[
jD1

Ij :

Let ı D ˇ=3 and define

Sı;1.�/Df� 2S.�/ W j.@�
/.�; �/j� rıg; Sı;2.�/Df� 2S.�/ W j.@�
/.�; �/j� rıg

where rı D e�ı� . Since

(63)
Z
Sı;1.�/

j.@�
/.�; �/jd� � 2�rı ;

we shall only be concerned with the set Sı;2.�/. Consider S1 to be the interval
Œ0; 2�� with the endpoints identified, and let J D Œ�1; �2�� Sı;2.�/ be maximal;
i.e. any larger interval will contain a point in the complement of Sı;2.�/. Let

�3 D �1C
rı

4K�m
;

where K and m are the constants that appear in (59), and define v1 D @�
.�; �1/.
By assumption, jv1j � rı , and by the bound on the second derivative of 
 , (59), we
get the conclusion that for � 2 Œ�1; �3�,

(64) j.@�
/.�; �/� v1j �
1

4
jv1j:

Let us estimate the distance the curve 
 has carried out in the direction Ov1D v1=jv1j
during an interval Œ�1; ��� Œ�1; �3�. Using (64), we get the conclusion that

Œ
.�; �/� 
.�; �1/� � Ov1 �
3

4
.� ��1/jv1j:

Note that if .� ��1/jv1j � 9rˇ , then � … Sı;2.�/. This inequality holds if � � �4,
where �4 D �1C 9e�2ı� . We assume that � is great enough that

(65) 9e�2ı� �
e�ı�

4K�m
:

Note that J � Œ�1; �4� and that Œ�4; �3�\Sı;2.�/D Ø. In particular,

j�2��1j

j�3��1j
� CK�me�ı� :

For every maximal interval J in Sı;2.�/, except for possibly the last one, there
is thus an interval J � OJ , whose left boundary point coincides with that of J , such
that if �1 is the Lebesgue measure on R,

�1Œ OJ \Sı;2.�/�

�1Œ OJ �
� CK�me�ı� :
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Due to this estimate and the fact that one maximal interval does not add more than
e�2ı� to the measure, we have

�1ŒSı;2.�/�� CK�
me�ı� :

Using the estimate (59) again, we haveZ
S.�/

j.@�
/.�; �/jd� �

Z
Sı;1.�/

j.@�
/.�; �/jd� C

Z
Sı;2.�/

j.@�
/.�; �/jd�

� 2�rı CCK
2�2me�ı� � CK2�2me�ı� :

By (62), we conclude that

�ŒA˛;ˇ .�/�� CK
2�2me�.˛Cı/� :

In order to obtain (61), we require

(66) CK2�2me�.˛Cı/� < �e�2ˇ� :

This inequality is satisfied for � large enough if ˛Cı > 2ˇ, i.e. if ˛ > 5ı. However,
˛ � 5ı D 1=15. Both (65) and (66) follow from � � C lnK C Cm ln � , which
follows from � � C lnK and � � Cm ln � . The last of these inequalities follows
from �1=2 � Cm and the fact that �1=2 � ln � . Also, the last of these inequalities
holds if � � 4. The lemma follows. �

6. Perturbations, basic identities

Let z and Qz be two solutions to (23), and let Oz D z� Qz. Define

Oak D @
k
�

�
Oz�

1� jzj2

�
; Obk D e

��@k�

�
Oz�

1� jzj2

�
; yAk;˙ D 2e

�
j Oak˙ Obkj

2:

Let us compute

.@� � e
��@� /yAk;˙ D 2e

�
n
j Oakj

2
� j Obkj

2
C 2@k�

h
@� Oa0� e

��@� Ob0

˙e��@�

�
Oz�

1� jzj2

�
� e��@�

�
Oz�

1� jzj2

��
� . Oak˙ Obk/

�
:

Furthermore,

@� Oa0� e
��@� Ob0 D I1C I2;

where, by the definition (24),

I1 D
2Q.z; @z/

.1� jzj2/2
�

2Q. Qz; @Qz/

.1� jzj2/.1� jQzj2/
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and

I2 D�
Qz�

1� jQzj2

�
�2
Qz � Qz�

1� jzj2
C 2.z � z� /

1� jQzj2

.1� jzj2/2

�
Ce�2�

Qz�

1� jQzj2

�
�2
Qz � Qz�

1� jzj2
C 2.z � z� /

1� jQzj2

.1� jzj2/2

�
:

Finally, let

I3 D e
��@�

�
Oz�

1� jzj2

�
� e��@�

�
Oz�

1� jzj2

�
D

e�� Oz�

1� jzj2
2z � z�

1� jzj2
�

Oz�

1� jzj2
2e��z � z�

1� jzj2
:

With this notation,

(67) .@��e��@� /yAk;˙D 2e
�
n
j Oakj

2
� j Obkj

2
C 2@k� .I1C I2˙ I3/ � . Oak˙

Obk/
o
:

Consider, for some " > 0,

yCk D
1

2
"2e� j Ockj

2; where Ock D @
k
�

�
Oz

1� jzj2

�
:

Now,

.@� ˙ e
��@� /yCk D yCkC "

2e�@k�

�
Oz� ˙ e

�� Oz�

1� jzj2

�
� Ock(68)

C"2e�@k�

�
Oz

1� jzj2
2z � .z� ˙ e

��z� /

1� jzj2

�
� Ock :

7. Perturbations, convergence

We consider a solution to (23), and assume that

(69)




 z� .�; �/

1� jz.�; �/j2






C0.S1;R2/

C





 e��z� .�; �/1� jz.�; �/j2






C0.S1;R2/

� ";

and �.�; �/ � � � 2 for � � T , where " > 0. We are interested in modifying the
initial data at T1 � T , by letting

(70)
�
Oz�

1� jzj2

�
.T1; �/D cT1 ; Qz.T1; �/D z.T1; �/;

where cT1 is a constant satisfying

(71) jcT1 j � e
�ˇT1 ;

for some ˇ > 1. In fact we shall take cT1 to be the point p0 whose existence is
guaranteed by Lemma 9, and so, in particular, we can take ˇ D 11=10. Note that
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(70) and (71) lead to the conclusion that yCk.T1; �/D 0 for all k, that yAk;˙.T1; �/D 0

for all k � 1, and that

(72) j yA0;˙.T1; �/j � 2e
.1�2ˇ/T1 :

Note that we shall keep ˇ fixed and let T1 tend to infinity. Let us fix k and make
the following bootstrap assumptions: 



 Oz.�; �/

1� jz.�; �/j2






C0.S1;R2/

� ";(73) 



 e�� Oz� .�; �/1� jz.�; �/j2






C0.S1;R2/

C





 Oz� .�; �/

1� jz.�; �/j2






C0.S1;R2/

� ";(74) 



 e�� Oz� .�; �/1� jz.�; �/j2






Ck.S1;R2/

C





 Oz� .�; �/

1� jz.�; �/j2






Ck.S1;R2/

� 1;(75) 



 Oz.�; �/

1� jz.�; �/j2






Ck.S1;R2/

� 1:(76)

Note that for T1 great enough, the bootstrap assumptions are satisfied in a neigh-
borhood of � D T1. We shall assume that the above inequalities are satisfied in the
interval ŒT2; T1� for some T2 2 ŒT; T1�. We shall then use the assumptions to prove
that for a fixed ˇ, " small enough and T1 large enough, we obtain an improvement
of the estimates as a conclusion. This then implies the validity of the bootstrap
assumptions on the entire interval ŒT; T1�. It is perhaps of some interest to point
out that in the end, " is only required to be smaller than a numerical constant
independent of the solution. Let us introduce some notation.

Definition 6. Let z be a solution to (23) with the property that (69) holds
for some 0 < " � 1=4 and all � � T , and �.�; �/ � � � 2 for all � � T and all
� 2 S1. Then z is said to be an "; T -solution. Given an "; T -solution z, let Qz be a
solution to (23) defined by (70), where cT1 is some constant satisfying (71), where
ˇD 11=10 and T1�T . Then Qz is said to be a T1; z-solution. Given an "; T -solution
z, a constant Kk which is a polynomial in e�TF cj Œz�.T /, j D 1; : : : ; k is called a
KkŒz�-constant, a constant mk of the form CkŒ1CG

1=2Œz�.T /T �2 is referred to
as an mkŒz�-constant and a constant Lk which is a polynomial in e�TF cjC1Œz�.T /
and cj Œz�.T / for j D 0; : : : ; k� 1 is called an LkŒz�-constant.

Let us write down some consequences of the bootstrap assumptions. We shall
always assume "� 1=4, so that (73) implies

(77)
1

2
�
1� jQzj2

1� jzj2
�
3

2
:
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Combining (69) with (74), we conclude that

(78)




 e�� Qz� .�; �/1� jz.�; �/j2






C0.S1;R2/

C





 Qz� .�; �/

1� jz.�; �/j2






C0.S1;R2/

� 2":

Combining (75) with (50), we conclude that

(79)




 e�� Qz� .�; �/1� jz.�; �/j2






Ck.S1;R2/

C





 Qz� .�; �/

1� jz.�; �/j2






Ck.S1;R2/

�Kk�
mk ;

where Kk is a KkŒz�-constant and mk is an mkŒz�-constant. Note that z is a fixed
solution. Compute

@
j

�
Qz D�@

j

�
OzC @

j

�
z D�

jX
lD0

�
j

l

�
@l�

�
Oz

1� jzj2

�
@
j�l

�
.1� jzj2/C @

j

�
z:

Using (50) and (76), we conclude that

(80) kQzkCk.S1;R/ �Kk�
mk ;

where Kk and mk have the same structure as above. Consider

Oz�

1� jzj2
D @�

�
Oz

1� jzj2

�
� 2

z � z�

1� jzj2
Oz

1� jzj2
:

Using this identity together with (76) and (55), we conclude that

(81)




 Oz�

1� jzj2






Ck�1.S1;R2/

� Lk�
mk ;

where Lk is an LkŒz�-constant. Since

z � z� � Qz � Qz�

1� jzj2
D
Oz � z� C Qz � Oz�

1� jzj2
;

we conclude that

(82)




 Qz � Qz�1� jzj2






Ck�1.S1;R/

� Lk�
mk ;

where Lk and mk are of the same form as above. Finally,

@�

�
1� jzj2

1� jQzj2

�
D�

2z � z�

1� jzj2
1� jzj2

1� jQzj2
C
.1� jzj2/2

.1� jQzj2/2
2 Qz � Qz�

1� jzj2
:

Using this identity and the above inequalities, we inductively conclude that

(83)




1� jzj21� jQzj2






Ck.S1;R/

� Lk�
mk :
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7.1. Notation. Let us introduce the notation

yAc
k;˙ D

yAk;˙C
yCk; yF ck;˙.�/D sup

�2S1

yAc
k;˙.�; �/;

yF ck D
yF ck;CC

yF ck;�:

Note that

2e� Œj Oakj
2
Cj Obkj

2�C yCk �
1

2
ŒyAc
k;CC

yAc
k;���

1

2
yF ck :

7.2. The zeroth order. We consider the consequences of the bootstrap assump-
tions in the case k D 0.

LEMMA 10. Let z be an "; T -solution and Qz a T1; z-solution. Assume further-
more that z and Qz satisfy the bootstrap assumptions (73), (74) in an interval ŒT2; T1�.
Then, for � 2 ŒT2; T1�,

(84) yF c0 .�/�
yF c0 .T1/C

Z T1

�

.1CC"/ yF c0 .s/ds:

Proof. Let us estimate jIi j, i D 1; 2; 3. Consider I1. We exchange one factor
.1�jzj2/�1 in the first term with .1�jQzj2/�1. To this end, we use (77) to estimateˇ̌̌̌

1

1� jzj2
�

1

1� jQzj2

ˇ̌̌̌
�

2j Ozj

.1� jzj2/.1� jQzj2/
�

4j Ozj

.1� jzj2/2
:

Using (69), (78) and this sort of estimate, we conclude that

jIi j � C"
2
j Oc0jCC".j Oa0jC j Ob0j/

if i D 1. In fact, the same type of estimate holds if i D 2; 3. Using (67), we conclude
thatˇ̌̌
.@� � e

��@� /yA0;˙

ˇ̌̌
� 2e�

n
j Oa0j

2
Cj Ob0j

2
CC".j Oa0j

2
Cj Ob0j

2/CC"3j Oc0j
2
o
:

Using (68), we getˇ̌̌
.@� ˙ e

��@� /yC0

ˇ̌̌
� yC0CC"e

�
h
j Oa0j

2
Cj Ob0j

2
C "2j Oc0j

2
i
:

Let � 2 ŒT2; T1� and estimate

yAc
0;˙.�; � ˙ e

�� /D yAc
0;˙.T1; � ˙ e

�T1/

�

Z T1

�

h
.@� � e

��@� /yA
c
0;˙

i
.s; � ˙ e�s/ds

� yF c0;˙.T1/C

Z T1

�

�
1

2
CC"

�
yF c0 .s/ds:

Taking the supremum over � and adding the two estimates, we get (84). �
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7.3. Higher orders. To be able to deal with the higher orders, we shall in the
end have to carry out an induction argument. In preparation for this, we prove the
following lemma.

LEMMA 11. Let z be an "; T -solution and Qz a T1; z-solution. Assume fur-
thermore that z and Qz satisfy the bootstrap assumptions (73)–(76) in an interval
ŒT2; T1�. Then, for � 2 ŒT2; T1� and j D 1; : : : ; k,

(85) yF cj .�/�

Z T1

�

Œ.1CC"/ yF cj .s/C e
s=2Rj .s/. yF

c
j /
1=2.s/�ds;

where C is a numerical constant independent of j and Rj satisfies the estimate

(86) Rj .�/� "
�1Lj �

mj e��=2
j�1X
iD0

. yF ci /
1=2.�/

for all � 2 ŒT2; T1�. Here Lj is an Lj Œz�-constant and mj is an mj Œz�-constant.

Proof. Let us consider @j
�
Ii for i D 1; 2; 3. Let us divide I1 into a sum of I11

and I12, where

I11 D
2

.1� jzj2/2
ŒQ.z; @z/�Q. Qz; @Qz/� ; I12 D

2.jzj2� jQzj2/

.1� jzj2/2.1� jQzj2/
Q. Qz; @Qz/:

It is convenient to divide I11 into the sum of I111 and I112, where

I111 D
2

.1� jzj2/2
ŒQ.z; @z/�Q.z; @Qz/� ; I112 D

2

.1� jzj2/2
Q. Oz; @Qz/:

Most of the terms that appear when computing the derivative can be estimated by

(87) Lj �
mj

j�1X
iD0

.j Oai jC j Obi jC j Oci j/� "
�1Lj �

mj e��=2
j�1X
iD0

. yF ci /
1=2.�/:

We shall denote terms that can be estimated in this fashion by R, possibly with
some suitable index. Let us consider the j th derivative of a representative term in
I111, namely

@
j

�

�
2.jz� j

2� jQz� j
2/z

.1� jzj2/2

�
D @

j

�

�
2.z� � Oz� C Qz� � Oz� /z

.1� jzj2/2

�
D 2

�
@
j

�

�
Oz�

1� jzj2

�
�

z�

1� jzj2

C@
j

�

�
Oz�

1� jzj2

�
�
Qz�

1� jzj2

�
zCR:

In order to arrive at this conclusion, we of course have to use the bootstrap assump-
tions (73)–(76) and their consequences (77)–(83). We shall use these inequalities
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without further comment in the following. For the remaining terms in I111, we
have similar expressions, and we obtain the estimate

j@
j

�
I111j � C".j Oaj jC j Obj j/CjR111;j j:

Note that C does not depend on j . Let us consider I112. Due to the definition
of the energy and of the corrections, it is convenient to pair together z� , e��z�
and Oz with factors .1� jzj2/�1. This leaves one factor 1� jzj2. Considering a
representative term in I112, we get

(88) @
j

�

�
2j Qz� j

2 Oz

.1� jzj2/2

�
D

2j Qz� j
2

1� jzj2
@
j

�

�
Oz

1� jzj2

�
CR:

The arguments for the other terms are similar, and we conclude that

j@
j

�
I11j � C".j Oaj jC j Obj jC "j Ocj j/CjR11;j j:

Consider I12. Note that we can write it as

I12 D
2.z � OzC Qz � Oz/

1� jzj2
1� jzj2

1� jQzj2
Q. Qz; @Qz/

.1� jzj2/2
:

When differentiating, we pair Oz with .1� jzj2/�1 in the first factor, and in the third
factor, we pair together each derivative with a factor .1� jzj2/�1. The important
terms that result after differentiation are the ones in which all the derivatives hit
Oz=.1� jzj2/. We have

j@
j

�
I12j � C"

2
j Ocj jC jR12;j j:

Let us consider I2. It is convenient to write it as the sum of two terms, I21 and I22,
where

I21 D�
Qz�

1� jQzj2

�
�2
Qz � Qz�

1� jzj2
C 2.z � z� /

1� jQzj2

.1� jzj2/2

�
D�

Qz�

1� jzj2
1� jzj2

1� jQzj2

�
2
Oz � z� C Qz � Oz�

1� jzj2
C 2

z � z�

1� jzj2
Oz � zC Qz � Oz

1� jzj2

�
:

When differentiating, a derivative should always be paired together with a factor of
.1� jzj2/�1, and similarly for Oz. Finally, the quotient .1� jzj2/=.1� jQzj2/ should
be viewed as one unit. In particular, before differentiating, we write

Oz � z�

1� jzj2
D .1� jzj2/

Oz

1� jzj2
�

z�

1� jzj2
:

Again, the only terms that cannot be estimated as in (87) arise when all the derivatives
hit the terms involving Oz or Oz� . The argument concerning I22 is practically identical,
and we get

j@
j

�
I2j � C".j Oaj jC j Obj jC "j Ocj j/CjR2;j j:
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Finally, we can treat I3 similarly to the above expressions, and we obtain

j@
j

�
I3j � C".j Oaj jC j Obj j/CjR3;j j:

Adding up, we get

4e� j@
j

�
.I1C I2˙ I3/ � . Oaj ˙ Obj /j

� C"e� .j Oaj j
2
Cj Obj j

2
C "2j Ocj j

2/C e� jRj j.j Oaj jC j Obj j/:

Combining this with (67) and (68), we conclude that

j.@� � e
��@� /yA

c
j;˙j �

�
1

2
CC"

�
.yAc
j;CC

yAc
j;�/C e

�=2
jRj j.yA

c
j;CC

yAc
j;�/

1=2:

We can argue as in the case j D 0 in order to obtain

yF cj .�/ �
yF cj .T1/C

Z T1

�

Œ.1CC"/ yF cj .s/C e
s=2
kRj .s; �/kC0.S1;R/. yF

c
j /
1=2.s/�ds

D

Z T1

�

Œ.1CC"/ yF cj .s/C e
s=2
kRj .s; �/kC0.S1;R/. yF

c
j /
1=2.s/�ds;

since yF cj .T1/D 0 by definition. The lemma follows. �

7.4. Induction argument. We are now in a position to put together the previous
two lemmas in order to control the size of Oz and Oz� at � D T .

LEMMA 12. There is an 0 < "0 � 1=200 such that the following holds. Let z
be an "0; T -solution and Qz a T1; z-solution. Fix k. Then there is a T1;k , depending
continuously on e�TF cjC1Œz�.T /, cj Œz�.T / for j D 0; : : : ; k� 1 and G1=2Œz�.T /T ,
such that if T1 � T1;k , j D 0; : : : ; k and � 2 ŒT; T1�, then

(89) e�� yF cj .�/� "
�2j
0 LjT

mj
1 expŒ�.ˇ� 1/T1� .2C �0"0/��;

where �0 is a positive numerical constant, Lj is an Lj Œz�-constant and mj is an
mj Œz�-constant.

Remark. The condition that "0 � 1=200 will be needed in the proof of
Theorem 3. We take it to be understood that " D "0 in the definition of Cj , and
thus in the definition of yF cj .

Proof. Before proceeding to the proof, let us make some preliminary observa-
tions. Note that the constant C appearing in (85) is independent of j so that we can
assume it coincides with the constant C appearing in (84). We denote the common
constant by �0. Let us define "0 by

"0 Dmin
�
"0;1;

1

200

�
; where .�0C 1/"0;1 D ˇ� 1D

1

10
:
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Let us assume that the bootstrap assumptions (73)–(76) are satisfied in ŒT2; T1�.
As long as T1 is large enough, depending only on ˇ and "0 (i.e. on numerical
constants), the bootstrap assumptions are fulfilled in a neighborhood of T1. Thus
we know that ŒT2; T1� is nonempty. What remains to be shown is that, assuming T1
to be large enough, depending on the objects mentioned in the lemma, T2 can be
taken to equal T . This will follow if we can prove that the bootstrap assumptions
imply an improvement of themselves.

Let us first prove (89) for j D 0. By (84) and a Grönwall’s lemma type
argument, we get

yF c0 .�/�
yF c0 .T1/ exp f.1C �0"0/.T1� �/g :

Due to the comments made in connection with (72) and the definition of yF c0 , we
conclude that

e�� yF c0 .�/� C expŒ.2C �0"0� 2ˇ/T1� .2C �0"0/��

� C expŒ�.ˇ� 1/T1� .2C �0"0/��;

since �0"0 � ˇ � 1. In other words, (89) holds for j D 0 with L0 a numerical
constant andm0D 0. For T1 large enough, we get the conclusion that the right-hand
side is less than "40=16. This reproduces (73) and (74) with a margin.

Assume inductively that (89) is true for j � 1, where j � 1. Due to (86) and
the inductive assumption, we get

(90) Rj .�/� "
�j
0 LjT

mj
1 exp

�
�
1

2
.ˇ� 1/T1�

�
1C

1

2
�0"0

�
�

�
;

where we used the fact that � � T1. Let us denote the right-hand side of (85) by h,
and define g D h expŒ.1C �0"0/��. Estimate, using (85) and (90),

g0 � �"
�j
0 LjT

mj
1 exp

�
�
1

2
.ˇ� 1/T1

�
g1=2:

Integrating this inequality yields, since T � 0,

. yF cj /
1=2.�/� "

�j
0 LjT

mjC1

1 exp
�
�
1

2
.ˇ� 1/T1�

1

2
.1C �0"0/�

�
;

which implies the induction hypothesis with j � 1 replaced with j . Again, for
T1 great enough, we have no problem producing improvements of the bootstrap
assumptions. The lemma follows. �

8. Perturbing away from zero velocity

Finally, we are in a position to prove that we can perturb away from zero
velocity.
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THEOREM 3. Consider a solution z to (23) and assume that �.�; �/� � � 3
and (69) hold for all � � T � 4 and � 2 S1, with " in (69) replaced by "0, which "0
is the constant appearing in the statement of Lemma 12. Then there is a sequence
of solutions zl to (23) such that the zl converge to z in the C1 topology on initial
data for � D T , and v1Œzl � > 0.

Proof. Consider Lemma 12, for a fixed k, and Lemma 7. Choose a sequence
Tl � T1;k; T

0, where T1;k is the constant mentioned in the statement of Lemma
12 and T 0 is the constant mentioned in Lemma 9, such that Tl !1. For each Tl ,
choose a p0;l as in the statement of Lemma 9, and define zl to be the solution to
(23) defined by specifying initial data at Tl by (70), where cT1 should be replaced
with p0;l , T1 should be replaced by Tl and Qz by zl . Then zl is a Tl ; z-solution.
Note that Lemma 12 is applicable to the solutions zl and that (89) holds for zl with
T1 replaced with Tl . Consequently, the distance between z and zl converges to
zero when measured in the C kC1�C k-norm on initial data at � D T . Let us prove
that the asymptotic velocity of zl is nonzero for l great enough. In order to do this
we need to prove that Lemma 7 is applicable to zl for l large enough. Combining
(69) and (74), we conclude that e�TF Œzl �.T / is bounded by 16"20. Consequently,
by Lemma 1,

(91)




 2zl;� .�; �/

1� jzl.�; �/j
2






C0.S1;R/

� 4"0 �
1

50

for all � � T . In particular v1Œzl � � 1=50. Furthermore �l.T; �/ � T � 2 for l
large enough, where �l is � defined with respect to zl . Since �l;� is dominated
by the left-hand side of (91), we conclude that �l.�; �/� � � 2 for all � � T and
� 2 S1. Assuming k is at least 2, we conclude that for l large enough, we can use
the same constants as in the statement of Lemma 7 if we increase the numerical
constants involved. By construction and Lemma 7,ˇ̌̌̌

2zl;� .Tl ; �/

1� jzl.Tl ; �/j
2

ˇ̌̌̌
� e�˛Tl ;ˇ̌̌̌

2jzl;� .Tl ; �/j

1� jzl.Tl ; �/j
2
� v1Œzl �.�/

ˇ̌̌̌
� 2L01 expf�2Tl C 2v1Œzl �.�/TlgT

m2
l
;

where ˛ D 19=10 and the constants L01 and m2 are independent of l . We conclude
that for Tl large enough v1Œzl � is never zero, since �2C 2v1Œzl �� �49=25. To
conclude, what we have proved is that for any k and any � > 0, there is a solution
Qz to (23) such that the asymptotic velocity corresponding to Qz is never zero, and
the distance between z and Qz, when measured in the C kC1 �C k-norm of initial
data for � D T is less than �. The theorem follows. �
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9. Velocity identically equal to zero

Consider a periodic solution z to (23). In order to get an actual solution to
Einstein’s equations, we need an integral condition to be satisfied, namely c0Œz�D 0,
where

(92) c0Œz�D

Z
S1

4z� � z�

.1� jzj2/2
d�:

Note that c0Œz� is independent of � due to (23). Furthermore, c0Œz� coincides with
the integral appearing on the left-hand side of (16). Let us consider a solution for
which the asymptotic velocity is identically zero, and try to perturb away from that,
preserving c0Œz� D 0. Note that by Lemma 7 and Lemma 1, if v1 is identically
zero, then c0Œz�D 0.

THEOREM 4. Consider a solution z to (23) and assume that v1Œz�� 0. Then
there is a sequence of solutions zl to (23), with v1Œzl � > 0 and c0Œzl �D 0 such that
zl converges to z in the C1-topology on initial data.

Proof. Using Lemma 7 and the fact that the velocity is identically zero, we
conclude that 



 z� .�; �/

1� jz.�; �/j2






C0.S1;R/

� L01�
m2e�2� :

Thus, we do not need Lemma 9 in order to prove the existence of p0 satisfying
the conditions of the statement of Lemma 9. In fact, at a late enough time, any
p0 satisfying jp0j D e�ˇ� will do. The argument to prove that there is a sequence
of solutions zl converging to zl with v1Œzl � > 0 is as in the proof of Theorem 3.
What remains is to prove that we can choose p0 such that c0Œzl �D 0. We perturb
as in (70), with cT1 D p0 and Oz D z� Qz. Since c0Œz�D 0, we haveZ

S1

�
4 Qz� � Qz�

.1� jQzj2/2

�
.T1; �/d� D�p0 �

Z
S1

�
4z�

1� jzj2

�
.T1; �/d�:

By letting p0 be orthogonal toZ
S1

�
z�

1� jzj2

�
.T1; �/d�;

we conclude that c0Œ Qz�D 0 (if the integral is zero, we are of course free to choose
p0 arbitrarily). �

10. Density of generic solutions

10.1. Perturbation and localization tools. Due to how the domain-of-depen-
dence looks, two different spatial points are outside each other’s domain of influence
at a late enough time, when looking in the direction toward the singularity. This
allows us to focus our attention on limited regions of the singularity. On a formal
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level, the most convenient way to do this is to modify the initial data outside the
region one wishes to study so that the behaviour outside is simple in some sense.
One lemma that will be needed in the process is the following, it was proved in
[21].

LEMMA 13. Consider a solution z to (23), where � 2 R, and let zl ! z in the
C 1 �C 0-topology on initial data. Assume v1Œz�.�/ < 1 for all � 2 I D Œ�1; �2�.
Then vŒz� is continuous in I , as well as vŒzl � for l large enough, and

lim
l!1

kvŒz�� vŒzl �kC0.I;R/ D 0:

Remark. We defined v in (8) and the C 1 �C 0-topology on initial data for
solutions with � 2 R was defined in [21].

We shall also need the following results from [21].

PROPOSITION 5. Let .Q;P / be a solution to (2), (3) and assume v1 D 0 in
a compact interval K with nonempty interior. Then there are q; � 2 C1.K;R/,
polynomials „k and a T such that for all � � T

kP� .�; �/kCk.K;R/CkP.�; �/��kCk.K;R/ �„ke
�2� ;(93)

kQ� .�; �/kCk.K;R/CkQ.�; �/� qkCk.K;R/ �„ke
�2� :(94)

PROPOSITION 6. Let .Q;P / solve (2), (3). Then there is a subset E of S1

which is open and dense, and for each �0 2 E, there is an open neighborhood of
�0 such that either .Q;P / or Inv.Q;P / has expansions of the form (93), (94) or
(9)–(12). If v1.�0/� 1, then the q appearing in the expansions is a constant and ˛
can be taken equal to 2.

Remark. A result of this form was already obtained in [3].

The following lemma gives one way of modifying the initial data in order to
achieve the objective alluded to above.

LEMMA 14. Consider a solution z to (23) where � 2 R. Let I D Œ�1; �2� and
assume that v1Œz�.�/� ˛ for all � 2 I and some ˛ 2 R. For every "; � > 0, there
is a solution Qz to (23) and a T , both depending on "; � and z, such that

� Qz coincides with z in ŒT;1/� I ,

� Qz.�; �/D 0 for � � T outside of ŒT;1/� Œ�1� �; �2C ��,

� v1Œ Qz�.�/� ˛C " for all � 2 R.

Remark. We shall refer to Qz as an "; �-cutoff of z around I , and we shall call
T the cutoff time.
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Proof. Let " > 0. For each i D 1; 2, there is a closed interval Ii containing �i
in its interior and a Ti such that

(95) e��FIi Œz�.�/�

�
˛C

1

2
"

�2
for all � � Ti . This follows from continuity and monotonicity. Let � > 0 be small
enough that Œ�1��; �1�� I1 and Œ�2; �2C��� I2. Due to Proposition 6, there are
closed intervals I 0i , i D 1; 2, with nonempty interiors, such that I 01 � .�1� �; �1/
and I 02 � .�2; �2 C �/ with the property that we have asymptotic expansions of
the form (9)–(12) or of the form (93), (94) in I 0i , after applying an inversion, if
necessary. If v1Œz�.�0/� 1 for some �0 2 I 0i , we get expansions with q equal to
a constant, say q0, and ˛ D 2. Since the arguments are essentially the same for
the two I 0i , we consider only I 01. Let �1 D jI 01j and let � 01 be the center of I 01. Let
T � T1; T2 be large enough that e�T � �1=4.

Let �i 2 C1.R; Œ0; 1�/, i D 1; 2 have the properties that �1 equals 1 in Œ� 01C
�1=4;1/ and 0 in .�1; � 01�, and �2 equals 1 in Œ� 01;1/ and 0 in .�1; � 01��1=4�.
After having applied ��1RD , plus possibly an inversion, we obtain a solution .Q;P /
to (2), (3) with expansions. In particular Q converges to q in I 01. Modify the initial
data at T according to

zP D �1P; zQD �2Œ�1QC .1��1/q�; zP� D �1P� ; zQ� D �1Q� :

Note that �2.1��1/ has support in I 01, so that �2.1��1/q is well defined. Since
the isometry maps the origin of the PQ-plane to the origin of the disc model, the
first statement and half of the second statement of the lemma follow. Note that

e�� zP� D e
�� Œ�1�P C�1P� �

can be assumed to be arbitrarily small in I 01 by demanding that � be great enough,
since P and P� do not grow faster than linearly due to the existence of the expan-
sions, and since �1� has a bound only depending on �1. Note that �2� ¤ 0 implies
�1 D 0 and that �1�2 D �1. Compute

e
zP�� zQ� D e

zP��
f�2� Œ�1QC .1��1/q�C�2Œ�1� .Q� q/C�1Q� C .1��1/q� �g

D e���2�qC e
zP���1� .Q� q/C�1e

zP��Q� C e
zP���2.1��1/q� :

If v1 D 0 in I 01, it is clear that this expression converges to zero there. In the
remaining cases, v1 > 0 in I 01 and we can assume that T is great enough that
P is positive in I 01. Consequently, zP � P . The first term can be assumed to be
arbitrarily small by assuming � to be great enough, since �2� has a bound only
depending on �1. The two middle terms can be assumed to be arbitrarily small due
to the existence of the expansions. For the last term there are two cases. If v1 < 1,
it converges to zero. Otherwise, q had to be a constant to start with, so that the
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term does not exist in that case. We conclude that

e�2� Œ zP 2� C e
2 zP zQ2� �

can be assumed to be arbitrarily small in I 01 for � great enough, due to the existence
of the expansions. Since

zP 2� C e
2 zP zQ2� � P

2
� C e

2PQ2�

in I 01, we can assume that e��FI1.�/� .˛C"/
2 for � large enough, yielding half of

the third statement. In order to arrive at this conclusion, we just noted that to the left
of I 01, zP ; zQ; zP� ; zQ� are zero and to the right, they coincide with the corresponding
objects for P and Q. �

LEMMA 15. Consider a solution z to (23), where � 2 R and let I D .�1; �2/.
Assume there are a T and a sequence zl of solutions to (23), where � 2 R, such that
Œzl.�; �/; zl;� .�; �/� converge to Œz.�; �/; z� .�; �/� in the C1 topology on I for every
� � T . Then for any 0 < ı < jI j=2, there are a sequence Qzl of solutions to (23),
where � 2 R, and a T 0 such that

� Qzl converges to z in the C1 topology on initial data,

� Qzl coincides with z for � � T 0 outside of ŒT 0;1/� I ,

� Qzl coincides with zl in ŒT 0;1/� Œ�1C ı; �2� ı�.

Remark. We shall refer to Qzl as a ı-interpolation of z and zl in I .

Proof. Let  2 C10 .R; Œ0; 1�/ satisfy  D 1 in Œ�1 C 3ı=4; �2 � 3ı=4� and
 D 0 outside .�1C ı=4; �2� ı=4/. Assume also that exp.�T 0/� ı=4. Define

Qzl.T
0; �/D zl.T

0; �/C.1� /z.T 0; �/; Qzl;� .T
0; �/D zl;� .T

0; �/C.1� /z� .T
0; �/:

All the desired properties follow. �
Consider a solution z to (23), where � 2 R. Say that the asymptotic velocity

is small in some interval I D Œ�1; �2�, but it is nonzero on the boundary of I . It
will be convenient to know that it is possible to find a sequence zl of solutions
converging to z with the properties that for some T , zl coincides with z for � � T
outside of a set of the form ŒT;1/� I , and zl has nonzero asymptotic velocity
in I .

LEMMA 16. Consider a solution z to (23) where � 2 R. Let I D Œ�1; �2� be
such that jI j< 2� ,

v1.�i /D " > 0 and v1.�/� "

for all � 2 I , where "� "0 and "0 is as in the statement of Lemma 12. Then there
are a T and a sequence of solutions zl to (23), where � 2 R, such that

� zl converges to z in the C1 topology of initial data,
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� zl coincides with z for � � T outside ŒT;1/� I ,

� v1Œzl �.�/ > 0 for all � 2 I .

Proof. Let � < .2� � jI j/=2 and perform an "0=2; �-cutoff of z around
I . The resulting solution Qz has the properties stated in Lemma 14. In particular,
v1Œ Qz��3"0=2 and we can view it as a solution to (23) with � 2S1. For a late enough
time, Qz will thus satisfy the conditions of Theorem 3 due to Lemma 2. Consequently,
there is a sequence Qzl of periodic solutions to (23) converging to Qz such that
v1Œ Qzl �>0. Let 0<ı< jI j=2 be such that v1Œz�>0 in SıD Œ�1; �1Cı�[Œ�2�ı; �2�
and let zl be a ı-interpolation of z and Qzl in intI . Let us prove the third statement.
In Œ�1 C ı; �2 � ı�, v1Œzl � D v1Œ Qzl � > 0, and in Sı we can use Lemma 13 to
conclude that for l large enough, v1Œzl � > 0 there. The remaining statements
follow by construction. �

When carrying out perturbations, the condition c0Œz�D 0 is not always pre-
served. The point is then to perturb the perturbed solution so that one achieves
c0Œz�D 0.

LEMMA 17. Consider a smooth periodic solution z to (23), satisfying c0Œz�
D 0, where c0 is as defined in (92). Assume the following:

� zl are periodic solutions to (23) converging to z in the C1 topology on initial
data,

� S � S1 is compact, J D Œ�3; �4� has nonempty interior and J \S DØ,

� there is a T such that zl coincides with z for � � T outside of ŒT;1/�S .

Then there are a T 0 and a sequence of periodic solutions z0
k

to (23) such that

� z0
k

converges to z in the C1 topology on initial data,

� c0Œz
0
k
�D 0,

� z0
k
D zk for � � T 0 outside of ŒT 0;1/�J ,

� if 0 < v1Œz� < 1 in J , the same is true of z0
k

.

Remark. We shall say that z0
k

is an S; J -correction to zl .

Proof. Let T1� T be large enough that J 0D Œ� 03; �
0
4�D Œ�3Ce

�T1 ; �4�e
�T1 �,

considered as a subinterval of S1, has nonempty interior. We have the following
two cases.

Case 1. Assume there is a �0 2 .� 03; �
0
4/ such that z� .T1; �0/ ¤ 0. Let � 2

C1.S1;R/ have the properties that the support of � is contained in the interior of
J 0, �.�0/D 1 and 0� � � 1. Define, for � D T1,

z0l D zl ; and z0l;� D zl;� C "l�z� ;
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where "l has been chosen so that

(96) 0D

Z
S1

4z0
l;�
� z0
l;�

.1� jz0
l
j2/2

d� D

Z
S1

4zl;� � zl;�

.1� jzl j
2/2

d� C "l

Z
S1

4�jz� j
2

.1� jzj2/2
d�:

Note that the integral that "l multiplies is a fixed positive number, so that there is
an "l fulfilling (96). Furthermore, the first integral on the right-hand side of (96)
converges to zero, so that the sequence "l converges to zero. We conclude that
the sequence of solutions z0

l
has the property that c0Œz0l � D 0, z0

l
converges to z

in the C1 topology on initial data and z0
l

coincides with zl for � � T1 outside
ŒT1;1/�J . The last statement of the lemma follows from Lemma 13.

Case 2. Assume z� D 0 in J 0. In this case, it will be convenient to consider
the problem in the PQ-variables instead of in the disc model. Then P is constant
in J 0, and we shall denote this constant p0. Let

�m D
� 04C �

0
3

2
; hD

� 04� �
0
3

2
; J1 D Œ�

0
3; �m�; J2 D Œ�m; �

0
4�:

Let � 2 C1.S1;R/ have support in the interior of J1 and assume that it is not
identically zero. Let

�1.�/D �.�/; �2.�/D �.� � h/:

Then �2 has support in the interior of J2. There are two subcases to consider.

Subcase 1. Let us first assume that for � D T1,

(97)
Z
S1
P� .�1��2/d� ¤ 0:

Define, for � 2 J 0,

p".�/D p0C "

Z �

� 03

Œ�1.s/��2.s/�ds:

Define, in T1,

P 0l .T1; �/D Pl.T1; �/ 8 � … J
0; P 0l .T1; �/D p"l .�/ 8 � 2 J

0;

Q0l DQl ; P 0l;� D Pl;� ; Q0l;� DQl;� ;

where "l has been chosen so that

0D

Z
S1
.P 0l;�P

0
l;� C e

2P 0
lQ0l;�Q

0
l;� /d�

D

Z
S1
.Pl;�Pl;� C e

2PlQl;�Ql;� /d� C "l

Z
S1
P� .�1��2/d�:

Note that .Pl;� ;Ql;� /D 0 in J 0 for all l . The argument can now be finished as in
the first case.
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Subcase 2. Assume that the left-hand side of (97) is zero. Define, for � D T1,

P 0l .T1; �/D Pl.T1; �/; P
0
l;� .T1; �/D Pl;� .T1; �/ 8 � … J

0;

Q0l DQl ; Q
0
l;� DQl;�

P 0l .T1; �/D p"l .�/; P
0
l;� .T1; �/D Pl;� .T1; �/Cj"l j�1.�/ 8 � 2 J

0;

where "l has been chosen so that

0D

Z
S1
.P 0l;�P

0
l;� C e

2P 0
lQ0l;�Q

0
l;� /d�

D

Z
S1
.Pl;�Pl;� C e

2PlQl;�Ql;� /d� C "l j"l j

Z
S1
�21d�:

We can complete the argument as before. �

COROLLARY 5. Consider z 2 Sp with v1Œz� < 1. Then there is a sequence
of zl 2 Sp such that zl converges to z in the C1 topology on initial data and
0 < v1Œzl � < 1. If c0Œz�D 0, then c0Œzl �D 0.

Proof. If the velocity is identically zero, we can apply Theorem 4 and Lemma
13; so let us assume that this is not the case. Let �0 2 S1 be such that 2ı WD
v1.�0/ > 0 and let N be the set of points where v1 D 0. If N is empty we are
done, and so we assume it is not. Let 0 < " � ı; "0, where "0 is the constant
appearing in the statement of Lemma 12. For �1 2N , let I�1 be the largest interval
containing �1 such that v1.�/� " for � 2 I�1 . Note that I�1 is a compact proper
subinterval of S1, since v1.�0/ � 2". Let �i 2 N , i D 1; 2. Either the I�i are
disjoint or coincide. The reason is the following. Assume I�1 \ I�2 is nonempty.
Then the union is an interval I , and v1 � " in I . By maximality I�i D I for
i D 1; 2. Since v1 is continuous in the present setting, v1 D " on the boundary of
I�1 and the boundary points of I�1 are accumulation points of the set where v1>".
Since v1 2 C 0.S1;R/, N is a compact set. For each � 2N , intI� is an open set
containing �. Since the corresponding open covering has a finite subcovering, there
is a finite number of points �i 2 S1, i D 1; : : : ; k, such that intI�i is a covering
of N . By the above argument, we can assume that the I�i are disjoint. For each
i D 1; : : : ; k, we can apply Lemma 16 in order to get a Ti and a zi;l with properties
as stated there. Letting T DmaxfT1; : : : ; Tkg, we can define the initial data of zl
to coincide with those of zi;l in I�i and with those of z elsewhere. Let S D[I�i
and let J be a compact interval with nonempty interior in the complement of S . If
c0Œz�D 0, let z0

k
be an S; J -correction of zl . Otherwise, let z0

k
D zk . Then z0

k
has

the desired properties. �

Consider, for k 2 N, k � 1, the set

Uk D fz 2 C
2.R�S1;D/ W z is a solution to (23); v1Œz�.�/ < k 8 � 2 S1g:
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LEMMA 18. The set Uk is open in the C 1 �C 0-topology of initial data.

Remark. The topology mentioned was defined in [21].

Proof. Let z 2 Uk and � 2 S1. Then there are a T� 2 R, an "� > 0 and
an interval I� , containing � in its interior, such that for � D T� , e��FI� Œz�.�/ �
k2 � "� . The reason is that the same can be assumed to hold with I� replaced
by f�g and "� replaced by 2"� . The statement then follows by continuity. Since
e��FI� Œz� is monotonically decaying, we conclude that the same holds for all
� � T� . Since the interiors of the I� form an open covering, there is a finite
number of points �1; : : : ; �m such that the interiors of the Ii D I�i cover S1. Let
T DmaxfT�1 ; : : : ; T�mg, "Dminf"�1 ; : : : ; "�mg. We have e��FIi Œz�.�/�k

2�" for
all i D 1; : : : ; m, and � � T . There is an open neighborhood O of z in the C 1�C 0-
topology of initial data at � D T such that if Qz 2O , then e��FIi Œ Qz�.�/� k

2� "=2

for all i D 1; : : : ; m and � D T . By the monotonicity of the left-hand side for each
i , and the fact that the interiors of the Ii cover S1, we draw the conclusion that
O �Uk . �

We shall need the following result from [21].

THEOREM 5. Let .Q;P / solve (2), (3) and assume that k � v1.�/ < kC 2
for all � 2 K, where K is a compact interval with nonempty interior and k 2 N,
k � 1. Then either .Q;P / has expansions in K of the form (9)–(12) or Inv.Q;P /
has such expansions. Furthermore, the q appearing in the expansions is a constant
and ˛ D 2.

LEMMA 19. Consider z 2UkC1, k 2 N, k � 1. Let

Vz D f� 2 S
1
W v1Œz�.�/� kg:

Then Vz is compact. Furthermore, if I � Vz is a compact interval with nonempty
interior, then v1Œz� restricted to I is continuous, and after applying ��1RD , plus
possibly an inversion, the solution has smooth expansions in I of the form (9)–(12)
with q constant and ˛ D 2.

Proof. Since S1 is compact, all we need to prove is that Vz is closed. Let
�k! � 0, with �k 2 Vz . Assume v1Œz�.� 0/ < k. Then this must also be true of
v1Œz�.�k/ for k large enough, due to the upper semicontinuity of v1; cf. Theorem 1.
The remaining part follows from Theorem 5. �

10.2. Characterizations of true and false spikes. It will be useful to have a
more flexible characterization of the concepts true and false spikes. The following
result proves the existence of an object to be used for that purpose.

LEMMA 20. Consider a solution z to (23) and assume that 0 < v1.�/ < 1 for
all � 2K, where K is a compact subinterval of S1 with nonempty interior. Then



STRONG COSMIC CENSORSHIP IN T 3-GOWDY SPACETIMES 1231

there is a ' 2 C1.K;R2/ such that j'.�/j D 1 for all � 2K and

kz.�; �/�'kCk.K;R2/ �…k.�/e
�2˛� ;

where ˛ D inf�2K v1.�/ and …k is a polynomial in � .

Remark. It is allowed to take K D S1.

Proof. Due to the section on uniform convergence in [21], we conclude that
�=� converges uniformly to v1 in K. Using (37), we conclude that z.�; �/=jz.�; �/j
converges uniformly. Finally jz.�; �/j converges uniformly to 1. Consequently,
z.�; �/ converges uniformly to a continuous function '. Let � 2K. After having
performed an inversion if necessary, we can assume that z.�; �/ does not converge
to 1; cf. (98). Looking at the solution in the PQ-plane, keeping (22) in mind,
we conclude that P.�; �/=� must converge to v1.�/. Due to Proposition 2, we
conclude that there must be smooth expansions in a neighborhood I of � . Applying
�RD to the solution we see that z.�; �/ has to converge exponentially in every C k

norm on I to a smooth function. Using the compactness of K, we get the global
statement of the lemma. �

Note that an inversion in the PQ-plane corresponds to the isometry �Nz in the
disc model; i.e.

(98) �RD ı Inv ı��1RD.z/D�Nz:

LEMMA 21. Let .Q;P /2Sp and zD�RD ı.Q;P /. Assume 0<v1.�0/< 1.
Note that then there are an open neighborhood I0 of �0 and a ' 2 C1.I0;C/ such
that j'j D 1 and z.�; �/ converges to ' in any C k norm on I0. The following two
statements are equivalent:

� �0 2 S
1 is a nondegenerate false spike of .Q;P /,

� '.�0/D 1 and '� .�0/¤ 0.

Proof. Let .Q1; P1/D Inv.Q;P / and z1 D�Nz. Regardless of whether �0 is
a nondegenerate false spike or '.�0/D 1, we get the conclusion that .Q1; P1/ has
smooth expansions of the form (9)–(12) in a neighborhood I0 of �0; cf. Proposition
2. Say that Q1 converges to q1. Then

z1 D
Q1C i.e

�P1 � 1/

Q1C i.e�P1 C 1/
D
q1� i

q1C i
C � � � ;

where � � � represents terms that converge to zero exponentially in the C 1 norm on
I0. We conclude that

(99) ' D�
q1C i

q1� i
:
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From this it is clear that the conditions q1.�0/D 0 and q1� .�0/¤ 0 are equivalent
to the conditions '.�0/D 1 and '� .�0/¤ 0. Note that the fact that q1.�0/D 0 and
the fact that we have expansions of the form

Q1 D q1C e
�2v1� Œ CO.e�"� /�; P1 D v1� C�CO.e

�"� /

imply that
lim
�!1

P� .�; �0/D�v1.�0/:

�

It will be convenient to have a different characterization of the concept of a
nondegenerate true spike.

LEMMA 22. Let .Q;P / 2 Sp and assume that

(100) 1 < lim
�!1

P� .�; �0/ < 2

for some �0 2 S1. Then Q converges to a smooth function q in a neighborhood of
�0, and the convergence is exponential in any C k-norm. Furthermore, q� .�0/D 0
and the following two statements are equivalent:

� �0 is a nondegenerate true spike,

� q�� .�0/¤ 0.

Proof. Let
.Q2; P2/D Inv ıGEq0;�0;�0.Q;P /

for some q0; �0; �0. Then

lim
�!1

P2� .�; �0/D v1.�0/� 1:

By Proposition 2, there are asymptotic expansions of the form (9)–(12) in a neigh-
borhood of �0. Since

.Q1; P1/D Inv.Q2; P2/) .Q;P /D GEQ.�0;�0/;�0;�0.Q1; P1/;

we can compute

Q� D�e
2P1Q1� D e

2P2Q22Q2� �Q2� � 2P2�Q2:

By the existence of the expansions, Q2 converges to q2, e2P2Q2� to r2 and P2�
converges to v2. The convergence is exponential in any C k-norm in a neighborhood
of �0. Note that q2.�0/D 0. We conclude that Q� converges to

q� D r2q
2
2 � 2v2q2

exponentially in any C k-norm, so that q� .�0/D 0. Note that Q.�; �0/ converges
due to the fact that P� .�; �0/ converges to a positive number and the fact that ePQ�
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is bounded. Thus we are allowed to conclude thatQ converges to a smooth function
q in a neighborhood of �0 and that the convergence is exponential in any C k-norm.

If �0 is a nondegenerate true spike, then q2.�0/D0, q2� .�0/¤0 and v2.�0/¤0.
We conclude that the second characterization holds. Assuming q�� .�0/¤ 0, we
get the first characterization, since q2.�0/D 0 by construction. �

COROLLARY 6. Let .Q;P / 2Sp and assume that �0 2 S1 is a nondegenerate
true spike. If Q.�; �0/ converges to a nonzero value, then �0 is a nondegenerate
true spike of .Q1; P1/D Inv.Q;P /.

Proof. By the second characterization of a true spike given in Lemma 22, we
know thatQ converges to a function q such that q� .�0/D 0, but q�� .�0/¤ 0. Since
q.�0/ ¤ 0, we know that P1� .�; �0/ converges to v1.�0/ so that by Lemma 22,
Q1 has to converge to a smooth function q1 exponentially in any C k-norm in a
neighborhood around �0. Since

Q1 D
Q

Q2C e�2P
;

we conclude that q1 D 1=q. Due to the properties of q, we have that �0 is a
nondegenerate true spike of .Q1; P1/. �

LEMMA 23. Let .Q;P / 2 Sp and z D �RD.Q;P /. Assume that for all
� 2 S1, 0 < Œ1� v1.�/�2 < 1. Then z.�; �/ converges to a smooth function ' such
that j'j D 1, and the convergence is exponential in any C k-norm. Furthermore,
assuming 1 < v1.�0/ < 2, '� .�0/ D 0 and the following two statements are
equivalent:

� �0 is a nondegenerate true spike,

� '.�0/¤ 1 and '�� ¤ 0.

Proof. Using arguments as in the proof of Lemma 20, one sees that in a
neighborhood of a point � where 0 < v1.�/ < 1, z.�; �/ converges exponentially
in any C k-norm to a function '. If 1 < v1.�/ < 2 we can apply an inversion, if
necessary, in order to obtain the conclusion that z.�; �/ converges to something
different from 1. Viewing the solution in the PQ-variables, we have

lim
�!1

P� .�; �/D v1.�/:

Let
.Q2; P2/D Inv ıGEq0;�0;�0.Q;P /:

Just as in the proof of Lemma 22, we get smooth expansions and the conclusion that
Q converges to a smooth function q. Furthermore, the convergence is exponential
in any C k-norm. Using the notation of the proof of Lemma 22, we have

e�P D eP1�� D eP2�� .Q22C e
�2P2/:
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Since the asymptotic velocity associated with .Q2; P2/ is strictly less than one, we
conclude that e�P converges to zero exponentially in any C k-norm. Since

z D
QC i.e�P � 1/

QC i.e�P C 1/
;

we conclude that z.�; �/ converges to .q � i/=.q C i/ exponentially in any C k-
norm. Note that since q� .�/D 0 by Lemma 22, we obtain '� .�/D 0. Inverting the
solution, if necessary, we conclude that there is a neighborhood of � such that z.�; �/
converges to a function ', exponentially in any C k norm. Since S1 is compact,
there is a ' 2 C1.S1;C/ such that j'j D 1 and z.�; �/ converges exponentially to
' in any C k-norm.

Assume that �0 is a nondegenerate true spike. Then, as argued above, Q
converges to q and e�P converges to zero, and the convergence is exponential
in any C k-norm in a neighborhood of �0. Consequently ' D .q � i/=.q C i/

in a neighborhood of �0. Since q.�0/ 2 R, q� .�0/ D 0 and q�� .�0/ ¤ 0, the
second characterization holds. Assuming that the second characterization holds,
we conclude that P� .�; �0/ tends to v1.�0/, so that Q converges to q, e�P to zero
and ' D .q� i/=.qC i/. We conclude that �0 is a nondegenerate true spike using
the second characterization of Lemma 22. �

10.3. Density of the generic solutions. We prove that the generic solutions are
dense in the full set of solutions by an induction argument. The following lemma
constitutes the zeroth step.

LEMMA 24. Let z 2U1\Sp. Then there is a sequence of zl 2 Sp such that

� zl converges to z in the C1 topology on initial data,

� if c0Œz�D 0 then c0Œzl �D 0,

� 0 < v1Œzl �.�/ < 1 for all � 2 S1,

� zl.�; �/ converges to 'l 2C1.S1;C/ such that j'l j D 1 and if 'l.�/D 1, then
'l� .�/¤ 0.

Remark. Note that in particular, the number of � for which zl converges to 1
is finite.

Proof. Let the sequence zl be as in the statement of Corollary 5 and 'l denote
the limit of zl.�; �/. By Lemma 20, 'l 2 C1.S1;C/, with j'l j D 1. Let Ml

denote the image under 'l of the set of points where 'l� D 0. By Sard’s theorem,
the measure of Ml is zero, and consequently the union of the Ml , say M, has
measure zero. We conclude that there is a sequence 
k 2 R, 
k ! 0 such that if
'l.�/D e

i
k , then 'l� .�/¤ 0. Given l , let us choose a kl such that d.z0
l
; zl/� 1=l ,

where z0
l
D e�i
kl zl and d is a metric reproducing the C1-topology on initial data.



STRONG COSMIC CENSORSHIP IN T 3-GOWDY SPACETIMES 1235

Note that the sequence z0
l

has the same properties as the sequence zl . Furthermore,
if z0

l
.�; �/! 1, then 'l.�/D e

i
kl so that 'l� .�/¤ 0. The set of points for which
z0
l

converges to 1 is thus discrete so that it is finite. �

COROLLARY 7. G is dense in U1\Sp and Gc is dense in U1\Sp;c

Proof. The conclusion follows by combination of Lemmas 21 and 24. �

LEMMA 25. Assume G is dense in Uk\Sp for some k 2N, k � 1. Consider a
solution .Q;P / to (2), (3) with � 2R and an interval I D Œ�1; �2� with 0< jI j<2�
such that

�.k� 1/C 2"� lim
�!1

P� .�; �/� kC 1� 2"

for all � 2 I and some 0 < " < 1=2. Then, given 0 < ı < jI j=2, there are a T and a
sequence .Ql ; Pl/ of solutions to (2), (3) such that

� .Ql ; Pl/ converges to .Q;P / in the C1 topology on initial data,

� .Ql ; Pl/ coincides with .Q;P / for � � T outside of ŒT;1/� I ,

� in Œ�1Cı; �2�ı�, Pl;� .�; �/ converges to a number in the interval .0; 1/ except
for a finite number of points in which the limit belongs to the set .�1; 2/,

� if k D 1, then Pl;� .�; �/ converges to a number in the interval .0; 1/ in Œ�1C
ı; �2 � ı� except for a finite number of nondegenerate true spikes, where
Ql.�; �/ converges to a nonzero number.

Proof. In the present proof, we shall speak of several different solutions; z; z2
etc. If we then speak of .Q;P /, .Q2; P2/ etc., we shall take it to be understood that
z D �RD.Q;P /, z2 D �RD.Q2; P2/ etc. and vice versa. Furthermore, the proof
consists of several simple steps. Since there are many of them, we shall however
state the simple conclusions of the steps clearly.

Step 1, definition of z2. Let

.Q2; P2/D Inv ıGEq1;�1;�1.Q;P /;

for some choice of q1; �1; �1. We get

�kC 2"� lim
�!1

P2� .�; �/� k� 2"

for all � 2 I .

Step 2, definition of z0. Let � < .2� � jI j/=2 and z0 be an "; �-cutoff of z2
around I with cutoff time T . Note that we can view z0 as a 2�-periodic solution to
(23), and that z0 2Uk \Sp.

Step 3, definition of Qz. Let us consider z0 to be a function from R2 to D. Let
. zQ; zP /D S.Q0; P 0/, where

(101) S D GEQ.T;�1/;T;�1 ı Inv:
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Then Qz D z in ŒT;1/� I . The reason is that if one takes the square of the Gowdy
to Ernst transformation, the resulting P , Q� and Q� are the same as the ones we
started with. The only freedom is a constant, which we have set to be the right one
in the definition of S .

Step 4, definition of z0
l
. By assumption, there is a sequence z0

l
2 G converging

to z0. By Sard’s theorem we can shift each solution an arbitrarily small distance in
the Q-direction in order to obtain the following conclusion: if

(102) P 0l;� .�; �/! v1Œz
0
l �.�/ and Q0l.�; �/! 0;

then v1Œz0l �.�/ < 1 and Q0
l;�
.�; �/ converges to a nonzero number. The reason

is the following. By assumption, z0
l

only has a finite number of true spikes. For
each true spike P 0

l;�
converges to the corresponding v1Œz0l �, so that Q0

l
converges

to some value. Let us denote the set of limit values of Q0
l

for nondegenerate true
spikes by Al . Note that Al is finite. Any translation outside of �Al will ensure that
the limit ofQ for the resulting solution is nonzero for each nondegenerate true spike.
We can thus assume without loss of generality that (102) implies v1Œz0l �.�/ < 1.
Since Al is finite this statement is stable under small perturbations. The rest follows
by Sard’s theorem.

Step 5, definition of Qzl . Let . zQl ; zPl/D S.Q0l ; P
0
l
/, where we view z0

l
and Qzl

to be functions from R2 to D. Since S is a continuous map with respect to the
C1-topology on initial data, we conclude that Qzl converges to Qz with respect to
this topology. Since Qz D z in ŒT;1/� I , we conclude that Qzl converges to z with
respect to the C1-topology on initial data on the interval f�g � I for all � � T .

Note that in I , zPl;� converges to a number in the interval .0; 1/ except for a
finite set of points in which it converges to an element in .�1; 2/. If k D 1, and if
zPl;� .�; �/ does not converge to a number in .0; 1/, then � has to be a nondegenerate

true spike by construction. By shifting an arbitrarily small distance in the Q-
direction, we can assume that if � is a nondegenerate true spike, then zQl.�; �/
converges to a nonzero number. Letting zl be a ı-interpolation between z and Qzl in
I yields the conclusions of the lemma. �

Let us denote by UkC1;g the set of solutions z 2UkC1 for which there is a
� 2 R such that v1Œz�.�/ < k.

LEMMA 26. Assume that G is dense in Uk \ Sp for some k � 1. Then
UkC1;g \Sp is dense in UkC1\Sp and UkC1;g \Sp;c is dense in UkC1\Sp;c .

Proof. Let z 2UkC1\Sp but z …UkC1;g\Sp . Then v1Œz��k for all � 2S1.
By performing an inversion on z, if necessary, and viewing it in the PQ-variables,
we have

lim
�!1

P� .�; �/D v1.�/
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for all � 2 S1; cf. Theorem 5. Let I be an interval with 0< jI j<2� , 0< ı < jI j=2
and let .Ql ; Pl/ be a solution as constructed in Lemma 25. Denote the corresponding
solution in the disc model by zl . By construction, zl has points in I such that
v1Œzl � < 1. Let J be a compact subinterval in the complement of I with nonempty
interior. If c0Œz�D 0, let Ozl be an I; J correction to zl . Otherwise, let Ozl D zl . Then
Ozl has the desired properties, since UkC1 is open by Lemma 18. �

LEMMA 27. G is dense in U2\Sp and Gc is dense in U2\Sp;c .

Proof. Let z 2 U2 \Sp. If v1Œz� < 1, we can apply Corollary 7, so let us
assume that this is not the case. Due to Corollary 7 and Lemma 26, we can assume
that there is a �0 2 S1 such that 0 < v1Œz�.�0/ < 1. The lower bound is due to the
fact that .1� v1Œz�/2 is continuous under the conditions of the present lemma; cf.
[21], and the fact that v1Œz�� 2� " for some " > 0 due to the semicontinuity of
v1; cf. Theorem 1. Let I0 be a closed interval containing �0 in its interior such
that 0 < v1Œz� < 1 in I0. Let � 2 S1 be such that v1Œz�.�/� 1 and let I�;1 be the
maximal interval containing � such that v1Œz�� 1 in I�;1. Considering Inv.Q;P /
instead of .Q;P /, if necessary, we can assume that

lim
�!1

P� .�; �
0/D v1Œz�.�

0/

in I�;1; cf. Theorem 5. Then there is a closed interval I� containing I�;1 in its
interior, an "� > 0 and a T� such that

(103)
1

2

X
˙

k.P� � 1˙ e
��P� /

2
C e2P .Q� ˙ e

��Q� /
2
kC0.DI� ;� ;R/

� 1� 2"�

for all � � T� . Note that the left-hand side is monotonic by [21]. We can assume
that I0 and I� are disjoint and that 0 < v1Œz� < 1 on the boundary of I� . Since Vz
defined in Lemma 19 with k D 1 is compact (due to Lemma 19 ) and the interiors
of the I� form an open covering of Vz , we can find �1; : : : ; �k 2 S1 such that the
interiors of Ii D I�i cover Vz . We can assume that no Ii is contained in the union
of the Ij for j ¤ i . As a consequence, no point in S1 is contained in the intersection
of three different Ii , since the Ii are intervals. For the sake of argument, let us
assume that I1 intersects one of the other intervals. Let � 2 I1 be such that it does
not belong to any other of the intervals. Moving to the right inside I1, let � 0 be the
first point belonging to, say, I1\ Ii . If there is no such point we are done. Then
� 0 2 @Ii so that 0 < v1Œz�.� 0/ < 1. We can then redefine I1 by letting the right
most boundary point be a point � 01 somewhat to the left of � 0. We can assume that
0 < v1Œz�.�

0
1/ < 1. We can repeat the argument going to the left. The redefined

I�1 has the same properties as I�1 , and additionally, it does not intersect any of the
other Ii . We can repeat the procedure with all the Ii , and can consequently assume
that no two Ii intersect each other.
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Let T DmaxfT�1 ; : : : ; T�kg and "Dminf"�1 ; : : : ; "�kg. Consider I1D Œ�a; �b�.
After applying an inversion if necessary, we have (103). We are thus in a position
to use Lemma 25, since we have Corollary 7. Let ı > 0 be small enough that
0 < v1Œz� < 1 in Iı;a D Œ�a� ı; �aC ı�, and similarly in Iı;b , defined analogously.
Apply Lemma 25 to I1, ı, with ı as above. We then get a T1 and a sequence of
solutions .Ql ; Pl/ with the properties stated in that lemma. By the definition of ı,
we know that v1Œzl � belongs to .0; 1/ in Iı;a and Iı;b for l large enough due to
Lemma 13. By Corollary 6, the only exception to 0 < v1 < 1 in Œ�aC ı; �b � ı�
is a finite number of nondegenerate true spikes. We may of course have some
false spikes. We can repeat the procedure in I2; : : : ; Ik . If there are points with
v1Œz�D 0, we can deal with them as in the proof of Corollary 5. Furthermore, we
can do the necessary operations while still keeping away from I0; : : : ; Ik . Finally,
we can arrange c0Œzl � to be zero by doing a suitable correction, only modifying the
solution inside I0. What remains is then the problem that there can be infinitely
many false spikes. Due to Lemma 23, we conclude that zl.�; �/ converges to a
smooth function 'l . By Sard’s theorem, the measure of the image of the set of points
at which 'l� D 0 is zero. We can thus rotate the solution by an arbitrarily small
angle in order to obtain a solution with the property that every time 'l� D 0, 'l ¤ 1.
Note that the rotation will map nondegenerate true spikes to nondegenerate true
spikes, and that the rotated solution will only have a finite number of nondegenerate
false spikes. Finally, beyond the finite number of nondegenerate true and false
spikes, P� converges to a number in the interval .0; 1/. �

Proof of Theorem 2. We proceed by induction. Let us assume that G is dense in
Sp\Uk . Note that this is true for kD 2 due to Lemma 27. Let z 2UkC1\Sp . By
Lemma 26, we can assume that z 2UkC1;g\Sp . Let I0 be a compact interval with
nonempty interior such that v1Œz� < k in I0. By an argument which is basically
identical to the beginning of the proof of Lemma 27, we get intervals I1; : : : ; Il
with the property that Vz , defined in Lemma 19, is contained in the union of the
interiors of the Ii . Furthermore, the Ii are disjoint, and there are an " > 0 and a T
such that after applying an inversion if necessary,

�.k� 1/C 2"� lim
�!1

P� .�; �/� kC 1� 2";

for � 2 Ii . Finally, v1Œz� < k on the boundary of Ii . We use the notation
Ii D Œ�i1; �i2�, and Iij;ı D Œ�ij � ı; �ij C ı�. Since v1Œz�.�ij / < k, there are,
assuming ı to be small enough, a � > 0 and a T 0 such that

e��FIij;ı Œz�.�/� .k� 2�/
2

for all � � T 0. We can now apply Lemma 25 to each of the intervals Ii using
ı as above. We thus get a sequence of solutions .Qm; Pm/ converging to the
original solution and coinciding with the original solution for � � T 00 outside of
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ŒT 00;1/�[liD1Ii , for some T 00. For m large enough, we have

e��FIij;ı Œzm�.�/� .k� �/
2

for all i; j and � � T 000 for some T 000. By construction we have v1Œzm� < k on S1

since k � 2. If we had c0Œz�D 0 to start with, we can use I0 to correct zm so that
we have c0Œzm�D 0. In doing so, we do not violate the condition v1Œzm� < k, for
m large enough, due to an argument similar to the proof of Lemma 18 with S1

replaced by I0. The theorem follows by induction since z 2 Sp implies z 2Uk for
some k 2 N, k � 1. �
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