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Abstract

We show that a finite number of commuting diffeomorphisms with simultane-
ously Diophantine rotation numbers are smoothly conjugated to rotations. This
solves a problem raised by Moser.

1. Introduction

In this paper, we show that if a finite number of commuting smooth circle
diffeomorphisms have simultaneously Diophantine rotation numbers (arithmetic
condition (1) below), then the diffeomorphisms are smoothly (and simultaneously)
conjugated to rotations (see Theorem 1 below).

The problem of smooth linearization of commuting circle diffeomorphisms
was raised by Moser in [11] in connection with the holonomy group of certain
foliations with codimension 1. Using the rapidly convergent Nash-Moser iteration
scheme he proved that if the rotation numbers of the diffeomorphisms satisfy a
simultaneous Diophantine condition and if the diffeomorphisms are in some C1

neighborhood of the corresponding rotations (the neighborhood being imposed by
the constants appearing in the arithmetic condition, as usual in perturbative KAM
theorems) then they are C1-linearizable, that is, C1-conjugated to rotations.

In terms of small divisors, the latter result presented a new and striking phenom-
enon: if d is the number of commuting diffeomorphisms, the rotation numbers of
some or of all the diffeomorphisms may well be non-Diophantine, but still, the full
Zd -action is smoothly linearizable due to the absence of simultaneous resonances.
Further, Moser showed in his paper that this new phenomenon is a genuine one in the
sense that the problem cannot be reduced to that of a single diffeomorphism with a
Diophantine frequency. Indeed, it is shown that there exist numbers �1; : : : ; �d that
are simultaneously Diophantine but such that for all linearly independent vectors
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a; b 2 ZdC1, the ratios

a0C a1�1C � � �C ad�d

b0C b1�1C � � �C bd�d

are Liouville numbers. In this case, the theory for individual circle maps does not
suffice to conclude smooth linearization..

According to Moser, the problem of linearizing commuting circle diffeomor-
phisms could be regarded as a model problem where KAM techniques can be
applied to an overdetermined system (due to the commutation relations). This
assertion could again be confirmed by the recent work [2] where local rigidity
of some higher rank abelian groups was established using a KAM scheme for an
overdetermined system.

At the time Moser was writing his paper, the global theory of linearization for
circle diffeomorphisms (Herman’s theory) was already known. A highlight result is
that a diffeomorphism with a Diophantine rotation number is smoothly linearizable
(without a local condition of closeness to a rotation). The proof of the first global
smooth linearization theorem given by Herman [5], as well as all subsequent proofs
and generalizations ([12], [13], [9], [10], [8], [7]), extensively used the Gauss
algorithm of continued fractions that yields the best rational approximations for a
real number.

As pointed out in Moser’s paper, one of the reasons why the related global
problem for a commuting family of diffeomorphisms with rotation numbers sat-
isfying a simultaneous Diophantine condition is difficult to tackle, is precisely the
absence of an analogue of the one dimensional continuous fractions algorithm in the
case of simultaneous approximations of several numbers (by rationals with the same
denominator). Although in a certain sense such algorithms were later developed
and even used in the KAM setting, our approach is based on different ideas.

Moser asked under which conditions on the rotation numbers of n smooth
commuting circle diffeomorphisms can one assert the existence of a smooth invariant
measure �? In particular is the simultaneous Diophantine condition sufficient?
Here, we answer this question positively (Theorem 1, the existence of a smooth
invariant measure being an equivalent statement to smooth conjugacy). On the other
hand, it is not hard to see that the same arithmetic condition is optimal (even for
the local problem) in the sense given by Remark 1.

Before we state our results and discuss the plan of the proof, we give a brief
summary of the linearization theory of single circle diffeomorphisms on which our
proof relies.

We denote the circle by T D R=Z and by DiffrC.T/, r 2 Œ0;C1�[ f!g, the
group of orientation-preserving diffeomorphisms of the circle of class C r or real
analytic. We represent the lifts of these diffeomorphisms as elements of Dr.T/, the
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group of C r -diffeomorphisms Qf of the real line such that f � IdR is Z-periodic.
Following Poincaré, one can define the rotation number of a circle homeomor-

phism f as the uniform limit

�f D lim
j!1

Qf j .x/� x

j
modŒ1�;

where Qf j (j 2 Z) denote the iterates of a lift of f . A rotation map of the circle
with angle � , denoted by R� W x 7! xC � , has clearly a rotation number equal to � .
Poincaré raised the problem of comparing the dynamics of a homeomorphism of
the circle with rotation number � to the simple rotation R� .

A classical result of Denjoy (1932) asserts that if �f D � is irrational (not in
Q) and if f is of class C 1 with the derivative Df of bounded variations then f is
topologically conjugated to R� , i.e., there exists a circle homeomorphism h such
that h ıf ı h�1 DR� .

Considering the linearized version of the conjugation equation H.xC �/�
H.x/DF.x/ whereH and F are real Z-periodic functions defined on R and where
F is assumed to have zero mean, one sees easily (with Fourier analysis, due to the
presence of the small divisors j1� ei2�n� j) that the existence of a smooth solution
H , is guaranteed for all functions F with zero mean if and only if � satisfies a
Diophantine condition, i.e., if there exist C > 0 and � > 0 such that for any k 2 Z,
kk�k�C jkj�� . Nonetheless, when F is in some finite class of differentiability and
the linearized equation has a solution, this solution in general is of lower regularity
than F . This is the so-called loss of regularity phenomenon.

The first result asserting regularity of the conjugation of a circle diffeomorphism
to a rotation was obtained by Arnold [1] in the real analytic case: if the rotation
number of a real analytic diffeomorphism satisfies certain Diophantine conditions
and if the diffeomorphism is sufficiently close to a rotation, then the conjugation
is analytic. This result has been proven using the KAM approach. The general
idea, due to Kolmogorov, is to use a quadratic Newton approximation method to
show that if we start with a map sufficiently close to the rotation it is possible to
compose successive conjugations and get closer and closer to the rotation while
the successive conjugating maps tend rapidly to the identity. The Diophantine
condition is used to control the loss of differentiability in the linearized equation
which allows us to compensate this loss at each step of the algorithm due to its
quadratic convergence. Applying the same Newton scheme in the C1 setting is
essentially due to Moser.

At the same time, Arnold also gave examples of real analytic diffeomorphisms
with irrational rotation numbers for which the conjugating maps are not even
absolutely continuous, thus showing that the small divisors effect was inherent to
the regularity problem of the conjugation. Herman also showed that there exist
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“pathological” examples for any non-Diophantine irrational (Liouville) rotation
number (see [5, Chap. XI]; see also [4]).

A crucial conjecture was that, to the contrary, the hypothesis of closeness
to rotations should not be necessary for smooth linearization, that is, any smooth
diffeomorphism of the circle with a Diophantine rotation number must be smoothly
conjugated to a rotation. This global statement was finally proved by Herman in [5]
for almost every rotation number, and later on by Yoccoz in [12] for all Diophantine
numbers. In the end of the 80’s two different approaches to the Herman theory
were developed by Khanin, Sinai ([9], [10]) and Katznelson, Ornstein ([8], [7]).
These approaches give sharp results on the smoothness of the conjugacy in the case
of diffeomorphisms of finite and low smoothness. In principle all three approaches
can be used to study the case of commuting diffeomorphisms. In the present paper
we focus on the C1 and C! case and use the classical Herman-Yoccoz approach.

Herman and Yoccoz developed powerful machinery giving sharp estimates on
derivatives growth for the iterates of circle diffeomorphisms, the essential criterion
for the C r regularity of the conjugation of a C k diffeomorphism f , k � r � 1,
being the fact that the family of iterates .f n/ should be bounded in the C r topology.
The Herman-Yoccoz estimates on the growth of derivatives of the iterates of f will
be crucial for us in all the paper.

2. Results

For � 2 T and r 2 Œ1;C1�[ f!g, we denote by Dr
�

the subset of Diff1C .T/
of diffeomorphisms having rotation number � .

Let d 2N; d � 2, and assume that .�1; : : : ; �d / 2 Td are such that there exist
� > 0 and C > 0 such that for each k 2 Z�,

max.kk�1k; : : : ; kk�dk/� C jkj
�� :(1)

Finally, we say that a family of circle diffeomorphisms .f1; : : : ; fd / is commut-
ing if fi ıfj Dfj ıfi for all 1� i �j �d . Here we assume that fi 2Dr

�i
; 1� i �d .

Note that if h is a homeomorphism of the circle such that h ıf1 ıh�1 DR�1 , then
for every j � d we have that h ı fj ı h�1 commutes with R�1 , from which it
is easy to see that h ı fj ı h�1 D R�j . Hence, for r � 2, Denjoy theory gives a
homeomorphism that conjugates every fj to the corresponding rotation. Here, we
prove the following.

THEOREM 1. Assume that �1; : : : ; �d satisfy (1) and consider fi 2 D1
�i

, for
i D 1; : : : ; d . If the family .f1; : : : ; fd / is commuting, there exists h 2 Diff1C .T/,
such that h ıfi ı h�1 DR�i for each 1� i � d .

Remark 1. This sufficient arithmetic condition is also necessary to guarantee
some regularity on the conjugating homeomorphism h (essentially unique, up to
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translation). As in the case of individual maps (see for example [5, Chap. XI] and
[4]) there is indeed a sharp dichotomy in the statement of Theorem 1 in case the
arithmetic condition (1) is not satisfied: Assume that �1; : : : ; �d do not satisfy (1);
then there exist fi 2D1

�i
, i D 1; : : : ; d such that a family .f1; : : : ; fd / is commuting

and such that the conjugating homeomorphism of the maps fi to the rotations R�i
is not absolutely continuous. For the reader’s convenience, we briefly describe
how the construction of a single diffeomorphism with a non absolutely continuous
invariant measure can be applied to the construction of a commuting family. We first
recall the general scheme of the construction based on successive conjugations (for
more details, see for example [6]). Given a sequence of fast converging rationals
˛n D pn=qn, a diffeomorphism f is constructed as

f D limHn ıR˛nC1 ıH
�1
n ;

where
Hn D h1 ı � � � ıhn and hn ıR˛n DR˛n ı hn:

The convergence of the construction in the C1 category is guaranteed by the fact
that j˛nC1 � ˛nj is much smaller than 1=kHnkCn , while the fact that the limit
diffeomorphism does not preserve an absolutely continuous measure is guaranteed
by a specific increasingly strong distortion of the successive conjugations hn. The
“wildness” of hn translates into its C n-norms growing faster than any power of
qn, qn

2

n being sufficient for the purpose at hand. The consistency between the
above requirements is insured by the fast convergence of the sequence ˛n; for
example if kHnkCn is of the order of qn

2

n , it is sufficient for the convergence of
the scheme that j˛nC1 � ˛nj � q�n

3

n . Within this scheme, given any Liouville
number ˛, the sequence ˛n can be chosen and the construction can be made so
that the limit diffeomorphism has rotation number ˛. In fact, if Q̨n is an equally
fast converging sequence as ˛n, and has the same denominators qn, then the same
construction with the same conjugacies hn but with ˛n replaced by Q̨n would
converge to a diffeomorphism Qf with rotation number Q̨ D lim Q̨n. By construction
Qf commutes with the diffeomorphism f . Finally, the existence of the sequences
˛n and Q̨n is exactly equivalent to the condition that ˛ and Q̨ are not simultaneously
Diophantine. It is easy to see that the argument we have illustrated in the case of
two diffeomorphisms is valid for an arbitrary number of frequencies.

As a corollary of Theorem 1 and of the local theorem (on commuting dif-
feomorphisms) of Moser in the real analytic category [11] we have by the same
techniques as in [5, Chap. XI. 6]:

COROLLARY 1. Assume that �1; : : : ; �d satisfy (1) and consider fi 2D!
�i

, for
i D 1; : : : ; d . If .f1; : : : ; fd / is commuting, there exists h 2 Diff!C.T/, such that
h ıfi ı h

�1 DR�i for each 1� i � d .
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In the analytic setting the condition (1) is not optimal although it is necessary
to impose some arithmetic condition. It is possible to show that in the case when
the rotation numbers .�1; : : : ; �d / 2 Tp are such that there exist a 2 .0; 1/ and
infinitely many k 2 N satisfying

max.kk�1k; : : : ; kk�dk/� a
k

then it is possible to construct a commuting family .f1; : : : ; fd / 2D!
�1
� � � � �D!

�d
such that the conjugating homeomorphism of the maps fi to the rotations R�i is
not absolutely continuous.

It is a delicate problem however to find the optimal arithmetic condition under
which any commuting family of real analytic diffeomorphisms will be linearizable
in the real analytic category. For a single real analytic diffeomorphism, the optimal
condition was obtained by Yoccoz in [13].

3. Plan of the proof of Theorem 1

As in the global theory of circle diffeomorphisms, we will start by proving
the C 1 regularity of the conjugation and then we will derive from it, by Hadamard
convexity inequalities and bootstrap techniques, the C1 regularity. In each of these
two moments of the proof the commutativity of the diffeomorphisms in question
will be used differently.

The first step in the proof is a simple arithmetic observation for which we need
the following definition: given an angle � we say that a sequence of successive
denominators of � , ql ; qlC1; : : : ; qn, is a Diophantine string of exponent � > 1 if
for all s 2 Œl; n�1�, qsC1 � q�s . The observation is that if we consider a sufficiently
large number of angles �1; : : : ; �p such that each d -tuple satisfies (1) then we can
find Diophantine strings of the same exponent � (function of � and d ) for different
�j ’s, such that these strings overlap (with a margin that can be made arbitrarily
large when the number of angles considered is increasing). In other words, one
can follow successive denominators along a Diophantine string i until its end, say
at some qji ;ni , where it is possible to switch to the next string i C 1 starting from
a denominator qjiC1;liC1 that is much smaller than qji ;ni (qjiC1;liC1 � q

�
ji ;ni

, �
as small as desired if the number p increases). The next elementary but crucial
observation is that given f1; : : : ; fd with rotation numbers �1; : : : ; �d satisfying
(1), it is possible, by consideration of compositions of these diffeomorphisms, to
obtain as many diffeomorphisms as desired in such a way that any d -tuple formed
by their rotation numbers will satisfy (1). Sections 4 and 5 deal with these results
on the alternated configuration of Diophantine strings.

With this configuration in hand the proof of C 1-conjugacy goes as follows.
First, to simplify the notation we consider only the case d D 2 (the proof for d � 3
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is exactly the same) and assume that the Diophantine strings of � D �f1 and ˇD �f2
themselves form an alternated configuration (Conditions (4)–(6)). Using notation
mn andMn for the minimum and the maximum on the circle of jx�f qn.x/j (where
qn denotes the denominators of the convergents of � , and with similar notations
Qqn, Qmn, and QMn for ˇ and g), we see that a criterion for C 1-conjugacy of f to a
rotation is that the ratioMn=mn be bounded. It is known thatmn� �n�Mn where
�n D jqn� �pnj and the goal is to show that eventually both mn and Mn become
comparable to �n up to a multiplicative constant. In [12] a crucial recurrence relation
between these quantities at the steps n and nC 1 is exhibited that allows us to
show that the quantities mn and Mn end up having the same order, provided that a
Diophantine condition on � is satisfied. The latter recurrence relation is obtained as a
result of the analysis of the growth of the Schwartzian derivatives of the iterates of f .

Here we will rely on the same recurrence relation but use it only along the
Diophantine strings and try to propagate the improvement of estimates when we
switch strings using the commutation relation between f and g. Actually this will
work efficiently once Ms is not too big compare with �s , namely, if Ms for qs in
some Diophantine string for � is less than �1��s for some fixed � > 0 that depends
on � (it is possible to take � D 1=.2�2/). This can be interpreted as a ”local” result
that yields C 1 conjugation for diffeomorphisms that are close to rotations (see
Proposition 5).

The existence of very long Diophantine strings (which corresponds to one of
the angles being super-Liouville) presents the simplest case illustrating how the
local situation can indeed be reached using only one string (see �6.3).

In general however, before reaching the local situation, switching from one
string to a consecutive one may in fact lead to a loss of control in the estimates
(see the first equation in the proof of Lemma 3), so that a different strategy must
be adopted. Keeping in mind that the objective is to show that us! 1 where us
is defined by Ms D �

us
s (with QMs , Qus , and ˇs for ˇ and g), the idea is to use

each angle alone to study “the dynamics” of us: after we measure the gain in the
exponent u when we pass through a Diophantine string, we jump to the beginning
of the successive string of the same angle. In this operation we can readily bound
the loss in the exponent u as function of the size of the jump (which in turn is less
than the size of the overlapping Diophantine string of the other angle). Repeating
these two steps inductively, we get a dynamics on the exponent ui measured at the
exit of the i th Diophantine string (of the same angle, see Lemma 4). Doing so for
each angle we see that at least for one of them, namely the one with the overall
longest Diophantine strings (in the sense given by (18) or (19)), the sequence ui
(or Qui ) eventually becomes larger than 1� � .

The idea for proving higher regularity is to use convexity arguments as in [5],
[12] to bound the derivatives of the iterates of f and g. However, in our case we
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will only seek to bound these derivatives for iterates f u and gv at Diophantine times
u and v that are (respectively) linear combinations of multiples of denominators
qs and Qqs that belong to Diophantine strings (each qs is as usual multiplied by at
most qsC1=qs). Due to the overlapping of strings, this will be sufficient for proving
regularity of the conjugation (see �7.1).

Given a denominator qs in a Diophantine string, the fact that the ratio qsC1=qs
is bounded by a fixed power of qs is naturally crucial in the control of the derivatives
of the diffeomorphisms f aqs ; a� qsC1=qs . Although in the Herman-Yoccoz theory
for circle diffeomorphisms with Diophantine rotation number, the control of the
derivatives of f qs is obtained using the Diophantine condition on the diffeomor-
phism’s rotation number (see the computations in [12, �8]), one can show (see
�7.2 below), that the existence of a sufficiently long sequence of Diophantine
strings before and up to some denominator qs , combined with the existence of a
C 1-conjugacy to a rotation, allows us to prove a bound on the derivatives of f qs

which is enough for our purpose.
Thus, in addition to the alternation of Diophantine strings used forC 1 regularity

we must make sure that there is enough Diophantine “margin” before qli . This is
done (in Proposition 2) through the use of even greater number of angles �i , which
amounts to considering more diffeomorphisms of the form f i ıg. In a sense, we
use more and more relations in the commuting group of diffeomorphisms as we
want to improve the regularity of the conjugation.

The rest of the proof of higher regularity is inspired by the bootstrap calcula-
tions of [12].

Nowhere in our proof of Theorem 1, neither in the proof of the existence of
C 1-conjugation nor in that of its higher regularity, did we try to optimize our use of
derivatives of the diffeomorphism f , that is assumed to be of class C1. The case
of commuting families of finite and low smoothness will be considered elsewhere
([3]). The class of regularity on commuting diffeomorphisms that would guarantee
C 1-conjugation under a given simultaneous Diophantine condition is an interesting
problem that is not addressed in this paper.

4. Preliminary: Diophantine strings

We recall that for every irrational number � we can uniquely define an increas-
ing sequence of integers qn such that q1 D 1 and

kk�k> kqn�k for all k < qnC1; k ¤ qn:

This sequence is called the sequence of denominators of the best rational approxi-
mations, or convergents, of ˛.
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Let p 2N, and �1; : : : ; �p be irrational numbers. For 1� j � p, we denote by
.qj;n/ the sequence of denominators of the convergents of �j . For � > 0, we define

A� .�j /D fs 2 N = qj;sC1 � q
�
j;sg:

A Diophantine string (with exponent �) for a number �i is then a sequence l ,
l C 1; : : : ; n� 1 2A� .�i /:

We will prove in this section the main arithmetic result related to the simulta-
neous Diophantine property (1) to be used to prove Theorem 1. Given � > 0 we
introduce the sequence .�s/ given by �0 D � and �s D 2�s�1C 3, for s � 1.

PROPOSITION 1. Let � > 0, K > 0 and d 2 N, d � 2. There exists p 2 N

such that: if �1; : : : ; �p are numbers for which there exists C > 0 such that each
d�tuple (of disjoint numbers) .�i1 ; : : : ; �id / satisfies (1); if U > 0 is sufficiently
large and if U � V � UK , then there exists k 2 f1; : : : ; pg, with a Diophantine
string l; : : : ; n� 1 2A�d�1.�k/ with

qk;l � U � V � qk;n:

Definition 1. For � > 0, C > 0, d 2 N�, and an interval I � R we define

Dd;�;C .I /D f.�1; : : : ; �d / 2 Rd = sup
1�i�d

kk�ik � Ck
�� ; 8k 2 I \Ng:

For C D 1, we use the simplified notation Dd;� .I / WDDd;�;1.I /:

We will need the following elementary but crucial argument.

LEMMA 1. Let � > 0; C > 0; d 2 N; d � 2. Define � D 1=.2� C 2/. There
exists U0 such that if V � U � U0, and if �1; : : : ; �d are numbers such that

.�1; : : : ; �d / 2Dd;�;C .ŒU; V �/;

and if an integer s 2 ŒU; V 1=2� satisfies ks�dk � s�.2�C3/; then

.�1; : : : ; �d�1/ 2Dd�1;2�C3.Œs; e�/

with e Dmin.V 1=2; ks�dk
��/:

Proof. If k 2 Œs; e� satisfies

sup
i�d�1

kk�ik � k
�.2�C3/;

we claim that the number ks 2 ŒU; V � satisfies

sup
i�d

kks�ik � .ks/
�.�C 1

2
/;

which violates .�1; : : : ; �d / 2Dd;�;C .ŒU; V �/; if s is sufficiently large. To prove
the claim, observe that for i � d � 1,

kks�ik � sk
�.2�C3/

� k�2.�C1/ � .ks/�.�C
1
2
/;
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while, for i D d ,

kks�dk � k
�.�C 1

2
/k�C

3
2 ks�dk � k

�.�C 1
2
/
ks�dk

1��.�C 3
2
/

� k�.�C
1
2
/s�.�C

1
2
/: �

Because �D .2�C 3/=.2�C 2/ > 1, Lemma 1 has the following immediate
consequence.

COROLLARY 2. Let � > 0, K > 0 and d 2N, d � 2. There exists N 2N such
that: for each C > 0; there exists U0 > 0, such that if U � U0 and U � V � UK ,
and if p � N C d � 1 and �1; : : : ; �p are numbers such that for each d�tuple
(of disjoint indices) i1; : : : ; id , .�i1 ; : : : ; �id / 2 Dd;�;C .ŒU; V �/, then there exist
j1; : : : ; jN � p such that any .d � 1/-tuple (of disjoint indices), i1; : : : ; id�1 2
f1; : : : ; pg� fj1; : : : ; jN g, satisfies .�i1 ; : : : ; �id�1/ 2Dd�1;2�C3.ŒU; V

1=2�/.

Proof. We can in fact take N D ŒlnK= ln ��C 2. Let p �N C d � 1 and let
k12N, k1�U , be the smallest integer (if it exists) such that kk1�ik�k1�.2�C3/ for
some i 2 f1; : : : ; pg. Denote by �j1 the corresponding angle. Take � D 1=.2�C 2/,
as in Lemma 1. Then, define k2 � kk1�ik�� to be the smallest integer (if it exists)
such that kk2�ik � k1�.2�C3/ for some i 2 f1; : : : ; pg � fj1g and denote by �j2
the corresponding angle. We can thus construct sequences k1; : : : ; kN , j1; : : : ; jN ,
and �j1 ; : : : ; �jN such that

� kiC1 � kki�jik
��;

� kki�ik � ki
�.2�C3/;

� for every l 2 f1; : : : ; pg� fj1; : : : ; jN g, and for every

k 2 ŒU; k1/[ .kk1�j1k
��; k2/[ � � � [ .kkN�1�jN�1k

��; kN /;

we have kk�lk � k�.2�C3/.

On the other hand, Lemma 1 implies that for any s�N and for any .d�1/-tuple (of
disjoint indices) i1; : : : ; id�1 2 f1; : : : ; pg�fj1; : : : ; jN g, we have .�i1 ; : : : ; �id�1/
2 Dd�1;2�C3.Œks;min.kks�jsk

��; V 1=2/�/. Now, the crucial observation is that

kN � k
�N

1 > V 1=2, which implies

.�i1 ; : : : ; �id�1/ 2Dd�1;2�C3.ŒU; V
1=2�/: �

Proof of Proposition 1. We assume that p and U are sufficiently large and start
by replacing U and V with U 1=.2�d�1/ and V 2

d�1

. We then apply Corollary 2 d�1
times to get that there exists k 2f1; : : : ; pg such that �k 2D1;�d�1.ŒU

1=.2�d�1/; V �/.
We claim that �k satisfies the properties required in Proposition 1. Indeed, it is
sufficient to prove that �k must have a denominator qk;l 2 ŒU 1=.2�d�1/; U �. But
if this is not so, there is some qk;l � U 1=.2�d�1/ such that qk;lC1 � U , but then
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mD qk;lU
1=.2�d�1/ � U satisfies km�kk �m��d�1 , contradicting the condition

�k 2D1;�d�1.ŒU
1=.2�d�1/; V �/. �

5. Alternated configuration of denominators

Definition 2. We say that �1; : : : ; �p are in an alternated configuration if there
exist � > 1, and two increasing sequences of integers, li and ni such that for each i
there exists ji 2 f1; : : : ; pg with

li ; li C 1; li C 2; : : : ; ni � 1 2A� .�ji /;(2)

and

q�
2

ji ;li
� q

1

�2

ji ;ni
� qjiC1;liC1 � q

1
�

ji ;ni
:(3)

We shall call � > 1 the exponent of the alternated configuration. From Propo-
sition 1 it is straightforward to derive the following

PROPOSITION 2. Let � > 0, � > 0, and d 2 N, d � 2. Let � WD �d�1. There
exists p 2N such that if �1; : : : ; �p are numbers for which there exists C > 0 such
that each d�tuple (of disjoint numbers) .�i1 ; : : : ; �id / satisfies (1) then �1; : : : ; �p
are in an alternated configuration (with exponent � ) with in addition that for each i
there exists l 0i such that qji ;l 0i � q

�

ji ;li
and such that l 0i ; l

0
i C 1; : : : ; li � 1 2A� .�ji /.

In our proof of Theorem 1, we will show that if f1; : : : ; fp are smooth com-
muting diffeomorphisms with rotation numbers �1; : : : ; �p that are in an alternated
configuration, then the diffeomorphisms are C 1-conjugated to rotations. The ad-
ditional condition, i.e., the existence of long Diophantine strings before qli , is
then used to prove the higher regularity of the conjugacy; the higher the regularity
required, the longer these Diophantine strings should be (�! 0).

To adapt Proposition 2 to a family of d commuting diffeomorphisms, we
use the following somehow artificial trick:1 consider �1; : : : ; �d satisfying (1) and
define for s 2 N,

Q�s D �1C s�2C � � �C s
d�1�d :

Observe that for any p � d , there exists C > 0 such that for any disjoint indices
i1; : : : ; id � p, we have that . Q�i1 ; : : : ; Q�id / satisfies (1). Proposition 2 can now be
applied to Q�1; : : : ; Q�p. On the other hand, given f1; : : : ; fd as in Theorem 1, the
diffeomorphism Qfs D f1 ıf

s
2 ıf

s2

3 ı � � � ıf
sd�1

d
has rotation number Q�s .

Since it does not alter the proof but only simplifies the notations we will
assume for the sequel that d D 2 and that � and ˇ are already in an alternated

1We may attribute, as we did in the introduction, the usefulness of this trick to the fact that it
exploits the relations in the group, isomorphic to Zd , of commuting diffeomorphisms.
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configuration; that is, there exist � > 1, and two increasing sequences of integers,
li and ni , such that

l2i ; : : : ; n2i � 1 2A� .�/;(4)

l2iC1; : : : ; n2iC1� 1 2A� .ˇ/;(5)

and

q�
2

l2i
� q1=�

2

n2i
� Qql2iC1 � q

1=�
n2i
; Qq�

2

l2iC1
� Qq1=�

2

n2iC1
� ql2iC2 � Qq

1=�
n2iC1

;(6)

where .qn/ and . Qqn/ denote respectively the sequences of denominators of the
convergents of � and ˇ.

6. Proof of C 1-conjugation

Given � and ˇ satisfying (4)–(6) and two commuting diffeomorphisms f 2D� ,
g 2Dˇ we will show in this section that f and g are C 1-conjugated to the rotations
R� and Rˇ .

6.1. Let

�n Djqn� �pnj; ˇn D j Qqnˇ� Qpnj;

Mn D sup d.f qn.x/; x/; QMn D sup d.g Qqn.x/; x/;

mn D inf d.f qn.x/; x/; Qmn D inf d.g Qqn.x/; x/;

Un D
Mn

mn
; QUn D

QMn

Qmn
:

Recall that

(7) 1=.qnC1C qn/� �n � 1=qnC1; 1=. QqnC1C Qqn/� ˇn � 1= QqnC1:

Recall also that since
R

T
jf qn� idjd�D �n; (where � is the unique probability

measure invariant by f ) then

mn � �n �Mn:

Herman proved that a diffeomorphism is C r conjugated to a rotation if and
only if its iterates form a bounded sequence in the C r -topology (see [5, Chap. IV]).
Based on the latter observation, the following criterion for C 1 conjugacy was used
in [5] and in [12, �7.6]:

PROPOSITION 3. If there exists C > 0 such that lim supUn � C , then f is
C 1-conjugated to R� (actually lim infUn � C is enough).

Our proof of C 1-conjugacy in Theorem 1 relies on the following central
estimate of [12].



SMOOTH LINEARIZATION OF COMMUTING CIRCLE DIFFEOMORPHISMS 973

PROPOSITION 4. For any f 2 D� , for any K 2 N, there exists C D C.f;K/
such that

Mn �Mn�1

.�n=�n�1/CCM
K
n�1

1�CM
1=2
n�1

;(8)

mn �mn�1
.�n=�n�1/�CM

K
n�1

1CCM
1=2
n�1

:(9)

6.2. The goal of this section is to prove the following “local” result:

PROPOSITION 5. Let � D 1=.2�2/. There exists i0 2N such that if for some
even (odd) integer i � i0, we have

Mni�1 �
1

q1��ni

(with QMni�1 and Qqni instead of Mni�1 and qni if i is odd) then Un and QUn are
bounded.

Remark 2. This can be viewed as a local result on C 1-conjugation, since it
states that if Mni�1 for i sufficiently large is not too far from what it should be if f
were C 1-conjugated to the rotations, then f and g must indeed be C 1-conjugated
to the rotations.

Proof of Proposition 5. We will assume that i is even, the other case being
similar. Due to the commutation of f and g we have:

LEMMA 2. For any even integer i , let Li D ŒˇliC1�1=�ni�1�; now

QMliC1�1 � .1CLi /Mni�1;(10)

QmliC1�1 � Limni�1;(11)

QUliC1�1 � .1C
1

Li
/Uni�1:(12)

Proof. Notice that for any x 2 T,

(13)
Li�1[
kD0

R
kqni�1

�
.Œx; R

qni�1

�
.x/�/� Œx; R

QqliC1�1

ˇ
.x/�

�

Li[
kD0

R
kqni�1

�
.Œx; R

qni�1

�
.x/�/:

Since f and g commute there exists a continuous homeomorphism h that conjugates
f to R� and g to Rˇ , and (10)–(12) follow immediately from (13). �

Proposition 5 clearly follows from the next statement:
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LEMMA 3. Let � D 1=.2�2/. There exists i0 2 N, such that if i � i0 and
Mni�1 � 1=q

1��
ni

, then

QMniC1�1 �
1

Qq1��niC1

;(14)

and

QUniC1�1 � aiUni�1(15)

with ai � 1, and …i�i0ai <1.

Proof of Lemma 3. From (10) we have

QMliC1�1 �

�
1C

ˇliC1�1

�ni�1

�
Mni�1 �

�
1C 2

qni
QqliC1

�
1

qni
1��
I

hence (6) implies, for i sufficiently large,

QMliC1�1 �
3

Qq
1=2

liC1

:(16)

Now if we let K D 2Œ��C2 in Proposition 4, then if i � i0, with i0 sufficiently
large, we obtain from (8), (7) and (5) that

QMliC1 �
QMliC1�1

ˇliC1

ˇliC1�1
.1C Qq

�1=5

liC1
/

and by induction

QMniC1�1 � bi
QMliC1�1

ˇniC1�1

ˇliC1�1
(17)

with bi � 1 and …i�i0bi <1. Thus, (14) follows from (6).
By the same token, from (9) in Proposition 4 and (16) we get for i � i0, with

i0 sufficiently large

QmniC1�1 � ci QmliC1�1
ˇniC1�1

ˇliC1�1

with ci � 1 and …i�i0ci > 0. Together with (17) this implies that

QUniC1�1 � di
QUliC1�1

with di � 1 and …di <1. This, with (12) and (6), implies (15). �

6.3. Moving towards the “local” situation. Proof of C 1-conjugation. The
main ingredient in improving the bound of Mi towards the “local” condition of
Proposition 5 is the following.
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Let Ai � �4 and Bi � �4 be such that

qn2i D q
Ai
l2i
; ; Qqn2iC1 D Qq

Bi
l2iC1

:

LEMMA 4. For any b 2N, there exists i0 such that if i � i0 and ui > 0 is such
that Ml2i�1 D 1=q

ui
l2i

, then
Mn2i�1 � 1=q

�i
n2i

with �i Dmin.1� �;Abi ui /.

Although not useful to the sequel we can already observe that C 1 conjugacy
can be achieved in the a priori delicate situation of very Liouville frequencies.

Remark 3. An immediate consequence of Proposition 5 and Lemma 4 is the
C 1-conjugacy in the particular case of very long Diophantine strings, namely if
there exist � > 0 and a strictly increasing subsequence of the even integers .ij /fj2Ng

,
such that

qnij
� q

.lnqlij
/�

lij
:

Proof of Lemma 4. We denote l D l2i and nD n2i . Let r � 1 be an integer
such that

Ai

�4
� �4r � Ai :

Let QK WD .Œ� �C 1/8b , so that QKr � Abi . In Proposition 4 take K WD Œ4� QK�.
Notice that q�

4r

l
� q

Ai
l
� qn: Hence, we can introduce a sequence of integers

ps , s D 0; : : : ; r; such that p0 D l , and for each 1� s � r

q�
3

ps�1
� qps � q

�4

ps�1
:

Using the first estimate of Proposition 4, and following the idea of [12, �7.4]
we easily construct, for j 2 Œl; n�, positive sequences uj and aj � 2 such that
ul D 1= ln ql , al D 1. Also, for j 2 Œl � 1; n� 1�, we have Mj � ajC1=q

ujC1
jC1 ,

where for each j 2 Œl; n� 1� one of the two following alternatives holds:
(i) If �j =�j�1 � CM

K=2
j�1 then ajC1 D aj and ujC1 D QKuj ;

(ii) If �j =�j�1 > CM
K=2
j�1 then ajC1 D bjaj and ujC1 D uj , with …bj � 2. In

this case, we actually have Mj � bjMj�1�j =�j�1.
Now, if there exists s 2 Œ0; r � 1� such that for every j 2 Œps; psC1 � 1�,

alternative (ii) holds, then (assuming without loss of generality that � � 2) we have

MpsC1�1 � 2Mps�1
�psC1�1

�ps�1
�

qps
qpsC1

�
1

q1��psC1

after which, and as in the proof of Lemma 3, only alternative (ii) can happen for all
j 2 ŒpsC1� 1; n� 1�, so that, arguing again as in Lemma 3, we get Mn�1 �

1

q1��n

and we are done.
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Otherwise, we have for every s 2 Œ0; r � 1�, at least one j 2 Œps; psC1� 1� for
which alternative (i) holds; hence upsC1� QKups . Subsequently, upr � QK

rul �A
b
i ul .

The lemma is thus proved. �

Recall that Ai � �4 and Bi � �4 are such that

qn2i D q
Ai
l2i
; ; Qqn2iC1 D Qq

Bi
l2iC1

:

Then, clearly at least one of the following two limits holds:

lim sup
…ijD1A

2
j

…ijD1Bj
DC1;(18)

lim sup
…ijD1B

2
j

…ijD1Aj
DC1:(19)

We will assume that (18) holds, the other case being similar. We will show how
Lemma 4 applied with bD 2, implies that eventually the condition of Proposition 5
will be satisfied, thus yielding C 1-conjugacy.

Notice first that ql2.iC1/ � q
Bi
n2i . Furthermore, Ml2.iC1/�1 � Mn2i�1 since

ql2.iC1/ � qn2i .

Now, if i0 is some sufficiently large integer, and if at step i0 we do not have
Mn2i0�1

� 1=q1��n2i0
, we observe as above that

Ml2.i0C1/�1
�Mn2i0�1

� 1=q
ui0A

2
i0
=Bi0

l2.i0C1/
:

A continued application of the lemma hence shows that either at some i � i0C 1
the condition of Proposition 5 will be satisfied, or for every i � i0 we have

Ml2i�1 � 1=q
ui0…

i�1
jDi0

A2
j
=Bj

l2i
;

which, with our assumption that (18) holds, contradicts the fact that for every i ,
Ml2i�1 � 1=.2ql2i /.

Remark 4. In the general situation, the alternated configuration of denomina-
tors may require the use of more than two angles, that is more than two diffeomor-
phisms. Our proof remains quite the same. Indeed, let �1; : : : ; �p be in an alternated
configuration as in Definition 2. Define Ai such that qji ;ni D q

Ai
ji ;li

. Then there
exists k 2 Œ1; p� such that

lim sup
I2N

…jiDk;i�IA
pC1
i

…ji¤k;i�IAi
DC1

and the proof of C 1-conjugation follows the same lines as above, the only difference
being that we would take b D pC 1 in application of Lemma 4. As before we take
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QK D 2Œ�4bC1�) and then K WD Œ4� QK� in Proposition 4 which is possible since the
diffeomorphisms considered are of class C1. We see here the dramatic increase in
our need of differentiability to prove C 1-conjugation as the number d of commuting
diffeomorphisms in Theorem 1 increases.

7. Higher regularity

We fix r � 2. Knowing that the diffeomorphisms f and g are C 1-conjugated
to the rotations, we will now prove that the conjugacy is in fact of class C r .

In all the sequel, we fix k D Œ.r C 2/.2C �/�C 2. And we take � D 1=k in
Proposition 2.

As in the proof of C 1-conjugation, we will continue to assume for simplicity
that we are given � and ˇ satisfying (4)–(6) with in addition that there exists for
each i , l 0i such that if i is even, then

ql 0
i
� q

1=k

li
; and l 0i ; : : : ; li � 1 2A� .�/;(20)

with a similar property involving ˇ if i is odd.
Given two commuting diffeomorphisms f 2 D� , g 2 Dˇ such that f and g

are C 1-conjugated, we will show that the conjugacy is actually of class C r .

7.1. The control of the derivatives at alternating “Diophantine times” is suffi-
cient. We define two sets of integers, the “Diophantine times”, as

AD
˚
m 2 N = mD

P
asqs; as � qsC1=qs; with s 2 Œl2i ; n2i � 1�; i 2 N

	
;

QAD
˚
m 2 N = mD

P
Qas Qqs; Qas � QqsC1= Qqs; with s 2 Œl2iC1; n2iC1� 1�; i 2 N

	
:

We also define two sets of diffeomorphisms

ZD ff n = n 2 Ng;

CD ff u ıgv = u 2A; v 2 QAg:

The following is an elementary lemma due to (6)

LEMMA 5. If we set

OD fu� C vˇmodŒ1� = u 2A; v 2 QAg

then OD T. As a consequence, C is dense in Z in the C 0-topology.

Sketch of the proof. Fix i0 and consider the set Ui0 D fm�; m� qn2i0 g: It is
known that the set Ui0 is 2=qn2i0 dense in the circle. Also, the set˚P

bl Qqlˇ; bl � QqlC1= Qql ; l 2 Œl2i0C1; n2i0C1� 1�
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is 2= Qqn2i0C1 dense in an interval of size larger than 1=.2 Qq2l2i0C1/ with extremity 0.
Since by (6) 2=qn2i � 1=.2 Qql2iC1/, we conclude that the set

Vi0 D
˚
m� C

P
bl Qqlˇ; bl � QqlC1= Qql ; l 2 Œl2i0C1; n2i0C1� 1�; m� qn2i0

	
is 2= Qqn2i0C1 dense in the circle. Using (6) again, we get that the set

Ui0C1 D
˚
m� C

P
asqs� C

P
bl Qqlˇ; bl � QqlC1= Qql ; l 2 Œl2i0C1; n2i0C1� 1�;

as � qsC1=qs; s 2 Œl2i0C2; n2i0C2� 1�; m� qn2i0

	
is 2=q2n0C2 dense in the circle. We thus prove inductively the first assertion of the
lemma. The conclusion that C is dense in Z then follows from the simultaneous
C 0 conjugacy of f and g to R� and Rˇ respectively. �

From the above lemma, it is enough to control the derivatives of the f u and
gv at the Diophantine times u 2A and v 2 QA:

COROLLARY 3. If C is bounded in the C rC1-topology, then the conjugating
diffeomorphism h of f to R� is of class C r .

Proof. We know that 1
n

Pn�1
iD0 f

i converges in the C 0-topology to h (see [5,
Chap. IV]). From Lemma 5, this implies that there exist sequences .un/ and .vn/
of numbers in A and QA such that the sequence 1

n

Pn�1
iD0 f

ui ıgvi converges in the
C 0 topology to h. By our C rC1-boundness assumption, we can extract from the
latter sequence a sequence that converges in the C r -topology, so that necessarily
h 2 DiffrC.T/. �

7.2. It follows from standard computations (see [12, �8.10]) that the assump-
tion of Corollary 3 holds true if we prove

LEMMA 6. There exists � > 0 such that, for i (even) sufficiently large, we
have for any s 2 Œli ; ni � 1� and for any 0� a � qsC1=qs

k lnDf aqskrC1 � q
��
s

(with g and Qqs instead of f and qs if i is odd).

Proof. We only work with f since the arguments for g are the same. The
proof is based on the estimates of [12, �8] and we start by recalling some facts that
were proven there:

For k 2N�, define for s 2N, �.k/s D kDk�1 lnDf qsk0C�s . Then it follows
from the C 1-conjugation of f to R� (see [12, Lemme 5]) that

�.k/s � q
.k�1/=2
s :

We will use this fact with k D Œ.r C 2/.2C �/�C 2 and use the notation �s for
�
.k/
s .
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Observe that for s 2 Œl 0i ; ni � 1�, we have (if i is sufficiently large)

.�sqsC1/
1=kq�1s � q

�1=4
s :(21)

Hence it follows from [12, Lemme 14 in �8.8] that for any s 2 Œl 0i ; ni �1�, and
for any 0� a � qsC1=qs ,

k lnDf aqskrC1 � Cq
�1
s .�sqsC1/

�(22)

where �D .r C 2/=k and C is some constant.
If we denote

�0s D Supfj.Dk�1 lnDf qt ıf m/.Df m/k�1j0; 0� t � s;m� 0g;

then �s �C�0s for some constant C provided that f is not a rotation. Observe that
since kDf mk0 is bounded, �0s � Cq

.k�1/=2
s for some constant C . If we denote

Vs DMaxf�0t=qt ; 0 � t � sg, then due to (21) we have from [12, �8.9] that for
s 2 Œl 0i ; ni � 1�,

VsC1 � Vs.1CCq
�1=4
s /

for some constant C . Hence, for s 2 Œl 0i ; ni � 1�, we have Vs � 2Vl 0
i
� Cq

.k�3/=2

l 0
i

.
If s � li this gives

�0s � Cqsq
.k�3/=2

l 0
i

� Cq2s

because we assumed that ql 0
i
� q

2=k

li
.

Finally, if s 2 Œli ; ni�1� we have that .�sqsC1/��Cq
.2C�/.rC2/=k
s � q

1�1=k
s

and we conclude using (22) that the statement of Lemma 6 holds which ends the
proof of higher regularity. �
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rian, Alexey Teplinsky and Jean-Christophe Yoccoz for insightful conversations
and many useful suggestions. We are also indebted to the referee for his comments
and suggestions.

References

[1] V. I. ARNOLD, Small denominators. I. On the mapping of a circle into itself, Izv. Akad. Nauk
SSSR Ser. Mat. 25 (1961), 21–86. MR 25 #4113
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