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Abstract

We prove the B. and M. Shapiro conjecture that if the Wronskian of a set of
polynomials has real roots only, then the complex span of this set of polynomials
has a basis consisting of polynomials with real coefficients. This, in particular,
implies the following result:

If all ramification points of a parametrized rational curve � W CP1 ! CPr lie
on a circle in the Riemann sphere CP1, then � maps this circle into a suitable real
subspace RPr � CPr .

The proof is based on the Bethe ansatz method in the Gaudin model. The
key observation is that a symmetric linear operator on a Euclidean space has real
spectrum.

In Appendix A, we discuss properties of differential operators associated with
Bethe vectors in the Gaudin model. In particular, we prove a statement, which may
be useful in complex algebraic geometry; it claims that certain Schubert cycles in a
Grassmannian intersect transversally if the spectrum of the corresponding Gaudin
Hamiltonians is simple.

In Appendix B, we formulate a conjecture on reality of orbits of critical points of
master functions and prove this conjecture for master functions associated with Lie
algebras of types Ar , Br and Cr .

1. The B. and M. Shapiro conjecture

1.1. Statement of the result. Fix a natural number r > 1. Let V � CŒx� be a
vector subspace of dimension r C 1. The space V is called real if it has a basis
consisting of polynomials in RŒx�.
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For a given V , there exists a unique linear differential operator

D D
d rC1

dxrC1
C�1.x/

d r

dxr
C � � �C�r.x/

d

dx
C�rC1.x/;

whose kernel is V . This operator is called the fundamental differential operator of
V . The coefficients of the operator are rational functions in x. The space V is real
if and only if all coefficients of the fundamental operator are real rational functions.

The Wronskian of functions f1; : : : ; fi in x is the determinant

Wr.f1; : : : ; fi /D det

0BBB@
f1 f

.1/

1 � � � � � � f .i�1/

1

f2 f
.1/

2 � � � � � � f .i�1/

2
:::

::: � � � � � �
:::

fi f
.1/

i � � � � � � f .i�1/

i

1CCCA :
Let f1; : : : ; frC1 be a basis of V . The Wronskian of the basis does not depend

on the choice of the basis up to multiplication by a number. The monic representative
is called the Wronskian of V and denoted by WrV .

THEOREM 1.1. If all roots of the polynomial WrV are real, then the space V
is real.

This statement is the B. and M. Shapiro conjecture formulated in 1993. The
conjecture is proved in [EG02b] for r D 1; see a more elementary proof also for
r D 1 in [EG05]. The conjecture, its supporting evidence, and applications are
discussed in [EG02b], [EG02a], [EG05], [EGSV06], [ESS06], [KS03], [RSSS06],
[Sot97a], [Sot97b], [Sot99], [Sot00b], [Sot03], [Sot00a] and [Ver00].

1.2. Parametrized rational curves with real ramification points. For a projec-
tive coordinate system .v1 W � � � W vrC1/ on the complex projective space CPr , the
subset of points with real coordinates is called the real projective subspace and is
denoted by RPr .

Let � WCP1!CPr be a parametrized rational curve. If .u1 Wu2/ are projective
coordinates on CP1 and .v1 W � � � W vrC1/ are projective coordinates on CPr , then �
is given by the formula

� W .u1 W u2/ 7! .�1.u1; u2/ W � � � W �rC1.u1; u2//;

where �i are homogeneous polynomials of the same degree. We assume that at
any point of CP1 at least one component �i is nonzero. Choose the local affine
coordinate uD u1=u2 on CP1 and local affine coordinates v1=vrC1; : : : ; vr=vrC1
on CPr . In these coordinates, the map � takes the form

(1.1) f W u 7!

�
f1.u/

frC1.u/
; : : : ;

fr.u/

frC1.u/

�
; where fi .u/D �i .u; 1/.
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The map � is said to be ramified at a point of CP1 if its first r derivatives
at this point do not span CPr [KS03]. More precisely, a point u is a ramification
point if the vectors f .1/.u/; : : : ; f .r/.u/ are linearly dependent.

We assume that a generic point of CP1 is not a ramification point.

THEOREM 1.2. If all ramification points of the parametrized rational curve �
lie on a circle in the Riemann sphere CP1, then � maps this circle into a suitable
real subspace RPr � CPr .

A maximally inflected curve is, by definition [KS03], a parametrized real
rational curve whose ramification points are all real. Theorem 1.2 implies the
existence of maximally inflected curves for every placement of the ramification
points.

Theorem 1.2 follows from Theorem 1.1. Indeed, if all ramification points lie
on a circle, then after a linear change of coordinates .u1 W u2/, we may assume that
the ramification points lie on the real line RP1 and that the point .0 W 1/ is not a
ramification point. After a linear change of coordinates .v1 W � � � W vrC1/ on CPr ,
we may assume that �rC1 is not zero at any of the ramification points. Let us use
the affine coordinates uD u1=u2 and v1=vrC1; : : : ; vr=vrC1, and formula (1.1).
Then the determinant of coordinates of the vectors f .1/.u/; : : : ; f .r/.u/ is equal to

Wr
�
f1

frC1
; : : : ;

fr

frC1
; 1

�
.u/D

1

.frC1/rC1
Wr.f1; : : : ; fr ; frC1/.u/:

Hence the vectors f .1/.u/; : : : ; f .r/.u/ are linearly dependent if and only if the
Wronskian of f1; : : : ; frC1 at u is zero. Since not all points of CP1 are ramification
points, the complex span V of polynomials f1; : : : ; frC1 is an .rC1/-dimensional
space. By assumptions of Theorem 1.2, all zeros of the Wronskian of V are real. By
Theorem 1.1, the space V is real. This means that there exist projective coordinates
on CPr in which all polynomials f1; : : : ; frC1 are real. Theorem 1.2 is deduced
from Theorem 1.1.

1.3. Reduction of Theorem 1.1 to a special case.

THEOREM 1.3. If all roots of the Wronskian are real and simple, then V is
real.

We deduce Theorem 1.1 from Theorem 1.3. Indeed, let V0 be an .rC1/-
dimensional space of polynomials whose Wronskian has real roots only. Let d be
the degree of a generic polynomial in V0.

� Let Cd Œx� be the space of polynomials of degree not greater than d .

� Let G.rC1; d/ be the Grassmannian of .rC1/-dimensional vector subspaces
in Cd Œx�.
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� Let P.C.rC1/.d�r/Œx�/ be the projective space associated with the vector space
C.rC1/.d�r/Œx�.

The varieties G.r C 1; d/ and P.C.rC1/.d�r/Œx�/ have the same dimension. The
assignment V 7!WrV defines a finite morphism

� WG.r C 1; d/! P.C.rC1/.d�r/Œx�/I

see for example [Sot97b] and [EG02b]. The space V0 is a point of G.r C 1; d/.
Since � is finite and V0 has Wronskian with real roots only, there exists a

continuous curve � 7! V� 2G.r C 1; d/ for � 2 Œ0; 1/ such that the Wronskian of V�
for � > 0 has simple real roots only. By Theorem 1.3, the space V� is real for � > 0.
Hence, the fundamental differential operator of V� has real coefficients. Therefore,
the fundamental differential operator of V0 has real coefficients and the space V0 is
real. Theorem 1.1 is deduced from Theorem 1.3.

1.4. The upper bound for the number of complex vector spaces with the same
exponents at infinity and the same Wronskian. Let f1; : : : ; frC1 be a basis of V
such that degfi D di for some sequence d Dfd1< � � �<drC1g. We say that V has
exponents d at infinity. If V has exponents d at infinity, then deg WrV D n, where
nD

PrC1
iD1 .di � i C 1/. Let T D

Qn
sD1.x� zs/ be a polynomial in x with simple

(complex) roots z1: : : : ; zn. Then the upper bound for the number of complex vector
spaces V with exponents d at infinity and Wronskian T is given by the number
N.d/ defined as follows.

Consider the Lie algebra slrC1 with Cartan decomposition

slrC1 D n�˚ h˚ nC

and simple roots ˛1; : : : ; ˛r 2 h�. Fix the invariant inner product on h� by the
condition .˛i ; ˛i /D 2. For any integral dominant weight ƒ 2 h�, denote by Lƒ
the irreducible slrC1-module with highest weight ƒ. Let !r 2 h� be the last
fundamental weight.

For i D 1; : : : ; r , introduce the numbers

li D
Pi
jD1.dj � j C 1/

and the integral dominant weight

(1.2) ƒ.d/D n!r �
Pr
iD1 li˛i :

Set N.d/ to be the multiplicity of the module Lƒ.d/ in the n-fold tensor product

L˝n!r
D L!r

˝ � � �˝L!r
:

According to Schubert calculus, the number of complex .r C 1/-dimensional
vector spaces V with exponents d at infinity and Wronskian T is not greater than the
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number N.d/. This is a standard statement of Schubert calculus; see for example
[MV04, �5].

Thus, in order to prove Theorem 1.3, it is enough to prove this:

THEOREM 1.4. For generic real z1; : : : ; zn, there exist exactly N.d/ distinct
real vector spaces V with exponents d at infinity and with Wronskian T D

Qn
sD1.x�

zs/.

1.5. Structure of the paper. In Section 2, for generic complex z1; : : : ; zn, we
construct exactly N.d/ distinct complex vector spaces V with exponents d at
infinity and Wronskian T . In Section 3, we show that all of these vector spaces are
real if z1; : : : ; zn are real. This proves Theorem 1.4.

The constructions of Sections 2 and 3 are the Bethe ansatz constructions for
the Gaudin model on L˝n!r

.
In Appendix A, we discuss properties of differential operators associated with

the Bethe vectors in the Gaudin model and give applications of the Bethe ansatz
constructions of Section 3. In particular, we prove Corollary A.3, which may be
useful in complex algebraic geometry; it claims that certain Schubert cycles in a
Grassmannian intersect transversally if the spectrum of the corresponding Gaudin
Hamiltonians is simple; cf. [EH83] and [MV04].

In Appendix B, we formulate a conjecture on reality of orbits of critical points
of master functions and prove this conjecture for master functions associated with
Lie algebras of types Ar , Br , Cr .

2. Construction of spaces of polynomials

2.1. Construction of (not necessarily real) spaces with exponents d at infinity
and with Wronskian T D

Qn
sD1.x�zs/ having simple roots. Write zD .z1; : : : ; zn/.

Introduce a function of l1C � � �C lr variables

t D .t
.1/

1 ; : : : ; t
.1/

l1
; : : : ; t

.r/

1 ; : : : ; t
.r/

lr
/

by the formula

(2.1) ˆd.tI z/D

lrY
jD1

nY
sD1

.t
.r/

j � zs/
�1

rY
iD1

Y
16j<s6li

.t
.i/
j � t

.i/
s /

2

�

r�1Y
iD1

liY
jD1

liC1Y
kD1

.t
.i/
j � t

.iC1/

k
/�1:

The functionˆd is a rational function of t, depending on parameters z. The function
is called the master function.
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The master functions arise in the hypergeometric solutions of the KZ equations
[SV91], [Var95] and in the Bethe ansatz method for the Gaudin model [RV95],
[SV03], [MV00], [MV04], [MV05], [Var06]. For more general master functions,
see Appendix B. In particular, the master function (2.1) corresponds to the collection
.!r ; : : : ; !r/ of integral dominant slrC1 weights and the integral dominant weight
ƒ.d/; see (1.2).

The product of symmetric groups †l D†l1 � � � � �†lr acts on the variables t

by permuting the coordinates with the same upper index. The master function is
†l -invariant.

We call a point t with complex coordinates a critical point of ˆd . � I z/ if�
ˆ�1d

@ˆd

@t .i/
j

�
.tI z/D 0 for i D 1; : : : ; r and j D 1; : : : ; li :

In other words, a point t will be called a critical point if the system

0D�

l1X
sD1;s¤j

2

t .1/

j �t
.1/

s

C

l2X
sD1

1

t .1/

j �t
.2/

s

;(2.2)

0D�

liX
sD1;s¤j

2

t .i/
j �t

.i/
s

C

li�1X
sD1

1

t .i/
j �t

.i�1/

s

C

liC1X
sD1

1

t .i/
j �t

.iC1/

s

;

0D

nX
sD1

1

t .r/

j �zs
�

lrX
sD1;s¤j

2

t .r/

j �t
.r/

s

C

lr�1X
sD1

1

t .r/

j �t
.r�1/

s

of l1 C � � � C lr equations is satisfied, where j D 1; : : : ; l1 in the first group of
equations, i D 2; : : : ; r �1 and j D 1; : : : ; li in the second group of equations, and
j D 1; : : : ; lr in the last group of equations. We require that all denominators in
these equations are not equal to zero.

In the Gaudin model, the equations (2.2) are called the Bethe ansatz equations.
The set of critical points of ˆd . � I z/ is †l -invariant.
For a critical point t, define the tuple yt D .y1; : : : ; yr/ of polynomials in

variable x by

(2.3) yi .x/D

liY
jD1

.x� t
.i/
j / for i D 1; : : : ; r:

Consider the .rC1/-st order linear differential operator

Dt D

�
d

dx
� ln0

�
T

yr

���
d

dx
� ln0

�
yr
yr�1

��
� � �

�
d

dx
� ln0

�
y2
y1

���
d

dx
� ln0.y1/

�
;

where ln0.f / denotes .df =dx/=f for any f . Denote by Vt the kernel of Dt .
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Call Dt the fundamental operator of the critical point t, and call Vt the
fundamental space of the critical point t.

THEOREM 2.1 [MV04, �5]. The fundamental space Vt is an .r C 1/-dimen-
sional space of polynomials with exponents d at infinity and Wronskian T . The tuple
yt can be recovered from the fundamental space Vt as follows. Let f1; : : : ;frC1 be
a basis of Vt consisting of polynomials with degfi D di for all i . Then y1; : : : ; yr
are respective scalar multiples of the polynomials

f1; Wr.f1; f2/; Wr.f1; f2; f3/; : : : ;Wr.f1; : : : ; fr/:

Thus distinct orbits of critical points define distinct .rC1/-dimensional spaces
V with exponents d at infinity and Wronskian T .

THEOREM 2.2 [MV05, Th. 6.1]. For generic complex z1; : : : ; zn, the master
function ˆd . � I z/ has N.d/ distinct orbits of critical points.

Therefore, by Theorems 2.1 and 2.2, we constructed N.d/ distinct spaces of
polynomials with Wronskian T . All these spaces are fundamental spaces of critical
points of the master function ˆd . � I z/.

3. Bethe vectors

3.1. Generators. Let Ei;j for i; j D 1; : : : ; r C 1 be the standard generators
of glrC1. The elements Ei;j for i ¤ j and Hi DEi;i �EiC1;iC1 for i D 1; : : : ; r
are the standard generators of slrC1. We have slrC1 D nC˚ h˚ n�, where

nC D
M
i<j

C �Ei;j ; hD

rM
iD1

C �Hi ; n� D
M
i>j

C �Ei;j :

3.2. Construction of Bethe vectors. For � 2 h�, denote by L˝n!r
Œ�� the vector

subspace of L˝n!r
of vectors of weight � and by SingL˝n!r

Œ�� the vector subspace
of singular vectors of weight �, that is,

L˝n!r
Œ��D fv 2 L˝n!r

j hv D h�; hiv for any h 2 hg;

SingL˝n!r
Œ��D fv 2 L˝n!r

j nCv D 0; hv D h�; hiv for any h 2 hg:

For a given l D .l1; : : : ; lr/, set l D l1C � � � C lr and �D n!r �
Pr
iD1 li˛i . Let

Cl be the space with coordinates t .i/
j for i D 1; : : : ; r and j D 1; : : : ; li , and let Cn

be the space with coordinates z1; : : : ; zn. We construct a rational map

! W Cl �Cn! L˝n!r
Œ��

called the universal weight function.
Let P.l ; n/ be the set of sequences I D .i11 ; : : : ; i

1
k1
I : : : I in1 ; : : : ; i

n
kn
/ of inte-

gers in f1; : : : ; rg such that for all i D 1; : : : ; r , the integer i appears in I precisely
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li times. For I 2P.l ; n/, the l positions in I are partitioned into subsets I1; : : : ; Ir ,
where Ii consists of positions of the integer i . To every position a

b
in I , assign

an integer j a
b

such that fj a
b
j a
b
2 Iig D f1; : : : ; lig. For � D .�1; : : : ; �r/ 2 †l ,

denote by tI . ab I �/ the variable t .i/
�i .j /

, where i D ia
b

and j D j a
b

and �i .j / denotes
the image of j under the permutation �i . For a given � , the assignment of this
variable to a position establishes a bijection of l positions of I and the set ft .1/

1 ;

: : : ; t .1/

l1
; : : : ; t .r/

1 ; : : : ; t .r/

lr
g.

Fix a highest weight vector v!r
in L!r

. To every I 2 P.l ; n/, assign the
vector

EIv DEi11C1;i
1
1
� � �Ei1

k1
C1;i1

k1

v!r
˝ � � �˝Ein1C1;i

n
1
� � �Ein

kn
C1;in

kn
v!r

in L˝n!r
Œ�� and scalar functions !I;� labeled by � D .�1; : : : ; �r/ 2†l , where

!I;� D !I;�;1.z1/ : : : !I;�;n.zn/ ;

!I;�;j .zj /D
1

.tI .
j
1 I �/� tI .

j
2 I �// � � � .tI .

j

kj�1
I �/� tI .

j

kj
I �// .tI .

j

kj
I �/� zj /

:

We set

(3.1) !.tI z/D
X

I2P.l ;n/

X
�2†l

!I;�EIv:

The universal weight function is invariant with respect to the †l -action on vari-
ables t .i/

j .
The universal weight function was introduced in [Mat90] and [SV91] to solve

the KZ equations. The other formulas for the universal weight function can be
found in [RSV05].

Examples. If nD 2 and l D .1; 1; 0; : : : ; 0/, then

!.tI z/D
E2;1E3;2v!r

˝ v!r

.t .1/

1 � t
.2/

1 /.t .2/

1 � z1/
C

E3;2E2;1v!r
˝ v!r

.t .2/

1 � t
.1/

1 /.t .1/

1 � z1/

C
E2;1v!r

˝E3;2v!r

.t .1/

1 � z1/.t
.2/

1 � z2/
C
E3;2v!r

˝E2;1v!r

.t .2/

1 � z1/.t
.1/

1 � z2/

C
v!r
˝E2;1E3;2v!r

.t .1/

1 � t
.2/

1 /.t .2/

1 � z2/
C

v!r
˝E3;2E2;1v!r

.t .2/

1 � t
.1/

1 /.t .1/

1 � z2/
:

If l D .2; 0; : : : ; 0/, then

!.tI z/D
�

1

.t .1/

1 �t
.1/

2 /.t .1/

2 �z1/
C

1

.t .1/

2 �t
.1/

1 /.t .1/

1 �z1/

�
E22;1v!r

˝ v!r

C

�
1

.t .1/

1 �z1/.t
.1/

2 �z2/
C

1

.t .1/

2 �z1/.t
.1/

1 �z2/

�
E2;1v!r

˝E2;1v!r

C

�
1

.t .1/

1 �t
.1/

2 /.t .1/

2 �z2/
C

1

.t .1/

2 �t
.1/

1 /.t .1/

1 �z2/

�
v!r
˝E22;1v!r

:
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The values of the universal weight function at the critical points of the master
function are called the Bethe vectors.

The Bethe vectors of critical points of the same †l -orbit coincide, since both
the critical point equations and the universal weight function are †l -invariant.

The universal weight function takes values in L˝n!r
Œ��. But if t is a critical

point of the master function, then the Bethe vector !.tI z/ belongs to the subspace
of singular vectors SingL˝n!r

Œ��� L˝n!r
Œ��; see [RV95] and comments on this fact

in [MV05, �2].

By Theorem 2.2, the master function ˆd . � I z/ has N.d/ distinct orbits of
critical points for generic z. Form a list t1; : : : ; tN.d/ of representatives in each of
the orbits. These critical points define a collection of Bethe vectors !.t1I z/; : : : ;
!.tN.d/I z/ belonging to SingL˝n!r

Œ��. The space SingL˝n!r
Œ�� has dimension

N.d/.

THEOREM 3.1 [MV05, Th. 6.1]. For generic z, the Bethe vectors form a basis
in SingL˝n!r

Œ��.

3.3. The Gaudin model. The Gaudin Hamiltonians on SingL˝n!r
Œ�� are certain

linear operators acting on SingL˝n!r
Œ�� and (rationally) depending on a complex

parameter x. We use the construction of the Gaudin Hamiltonians suggested in
[Tal04] and [CT04]; see also [MTV06]. We consider the slrC1-module L!r

as the
glrC1-module of highest weight .0; : : : ; 0; � 1/.

To define the Gaudin Hamiltonians consider the differential operators

Xi;j .x/D ıi;j
d

dx
�

nX
sD1

E.s/

j;i

x� zs
for all i; j D 1; : : : ; r C 1,

where ıi;j is the Kronecker symbol and E.s/

j;i D 1
˝.s�1/

˝Ej;i ˝ 1
˝.n�s/. These

differential operators act on L˝n!r
-valued functions in x. The order of Xij is one if

i D j and is zero otherwise.
Set

(3.2) M D
X

�2†rC1

.�1/�X1;�.1/.x/X2;�.2/.x/ : : : XrC1;�.rC1/.x/;

where .�1/� denotes the sign of the permutation. The operator M is the row-
determinant of the matrix .Xij /.

For example, for r D 1, we have

M D
�
d

dx
�

nX
sD1

E.s/

1;1

x� zs

��
d

dx
�

nX
sD1

E.s/

2;2

x� zs

�
�

� nX
sD1

E.s/

2;1

x� zs

�� nX
sD1

E.s/

1;2

x� zs

�
:
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Write

M D
d rC1

dxrC1
CM1.x/

d r

dxr
C � � �CMrC1.x/;

where Mi .x/ W L
˝n
!r
! L˝n!r

are linear operators depending on x. The coefficients
M1.x/, . . . , MrC1.x/ are called the Gaudin Hamiltonians.

LEMMA 3.2. The Gaudin Hamiltonians commute: ŒMi .u/;Mj .v/�D 0 for all
i , j , u and v. The Gaudin Hamiltonians commute with the glrC1-action on L˝n!r

;
in particular, they preserve SingL˝n!r

Œ��.

The first statement is seen, for example, in [KS82], [Tal04], [CT04], and
[MTV06, Prop. 8.2]. The second statement is seen, for example, in [KS82] and in
[MTV06, Prop. 8.3].

THEOREM 3.3 [MTV06, Th. 9.2]. For any critical point t of the master
function ˆd . � I z/, the Bethe vector !.tI z/ is an eigenvector of Mi .x/ for i D
1; : : : ; rC1. The corresponding eigenvalues �i .x/ are given by the formula

d rC1

dxrC1
C�1.x/

d r

dxr
C � � �C�rC1.x/D�

d

dx
C ln0.y1/

��
d

dx
C ln0

�y2
y1

��
� � �

�
d

dx
C ln0

� yr

yr�1

���
d

dx
C ln0

�
T

yr

��
:

Set

K D
d rC1

dxrC1
�
d r

dxr
M1.x/C � � �C .�1/

rC1MrC1.x/

D
d rC1

dxrC1
CK1.x/

d r

dxr
C � � �CKrC1.x/:

This is the differential operator that is formally adjoint to the differential op-
erator .�1/rC1M . The coefficients Ki .x/ W L˝n!r

! L˝n!r
are linear operators

depending on x. These coefficients can be expressed as differential polynomials in
M1.x/; : : : ;MrC1.x/. For instance,

K1.x/D�M1.x/; K2.x/DM2.x/� r
d

dx
M1.x/;

and so on. Similarly, the operators M1.x/; : : : ;MrC1.x/ can be expressed as
differential polynomials in K1.x/; : : : ; KrC1.x/.

By Lemma 3.2, the operators K1.x/; : : : ; KrC1.x/ pairwise commute, that is,
ŒKi .u/;Kj .v/�D 0 for all i , j , u and v, and they commute with the glrC1-action
on L˝n!r

.
The operators K1.x/; : : : ; KrC1.x/ will be called the Gaudin Hamiltonians,

just like the operators M1.x/; : : : ;MrC1.x/.
For any critical point t of the master function ˆd . � I z/, the Bethe vector

!.tI z/ is an eigenvector of the Gaudin Hamiltonians Ki .x/ for i D 1; : : : ; rC1 by
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Theorem 3.3 and Lemma 3.2. The corresponding eigenvalues �i .x/ are given by
the formula

d rC1

durC1
C�1.x/

d r

dxr
C � � �C�rC1.x/

D

�
d

dx
� ln0

�
T

yr

���
d

dx
� ln0

�
yr
yr�1

���
d

dx
� ln0

�
y2
y1

���
d

dx
� ln0.y1/

�
:

Note that this is the fundamental differential operator Dt of the critical point t.

COROLLARY 3.4. For generic z,

� the Bethe vectors form an eigenbasis of the Gaudin Hamiltonians Ki .x/ for
i D 1; : : : ; rC1,

� the operators K1.x/; : : : ; KrC1.x/ have simple joint spectrum, that is, their
eigenvalues separate the basis Bethe eigenvectors.

The first statement follows from Theorem 3.1 and Theorem 3.3.
Let us prove the second statement. If two Bethe vectors have the same eigen-

values, then they have the same fundamental operators, hence the same fundamental
spaces. The fundamental space of a critical point uniquely determines the orbit of
the critical point by Theorem 2.1. Hence the two Bethe vectors correspond to the
same orbit of critical points and hence are equal.

3.4. The Shapovalov form and real z. Define an anti-involution

� W glrC1! glrC1; Ei;j 7!Ej;i for all i; j .

Let W be a highest weight glrC1-module with highest weight vector w. The
Shapovalov form on W is the unique symmetric bilinear form S defined by the
conditions

S.w;w/D 1 and S.gu; v/D S.u; �.g/v/

for all u; v 2W and g 2 glrC1; see [Kac90]. The Shapovalov form is nondegenerate
on an irreducible moduleW and is positive definite on the real part of the irreducible
module W .

Let Lƒ1
˝� � �˝Lƒn

be the tensor product of irreducible highest weight glrC1-
modules. Let vƒi

2 Lƒi
be a highest weight vector and Si the corresponding

Shapovalov form on Lƒi
. Define the symmetric bilinear form on the tensor product

by the formula S D S1˝ � � � ˝ Sn: The form S is called the tensor Shapovalov
form.

THEOREM 3.5 [MTV06, Prop. 9.1]. The Gaudin Hamiltonians Ki .x/ for
i D 1; : : : ; rC1 are symmetric with respect to the tensor Shapovalov form S :

S.Ki .x/u; v/D S.u;Ki .x/v/ for all i; x; u; v:



874 EVGENY MUKHIN, VITALY TARASOV, and ALEXANDER VARCHENKO

COROLLARY 3.6. If all of z1; : : : ; zn; x are real numbers, then the Gaudin
Hamiltonians Ki .x/ for i D 1; : : : ; rC1 are real linear operators on the real part
of the tensor product Lƒ1

˝� � �˝Lƒn
. These operators are symmetric with respect

to the positive definite tensor Shapovalov form. Hence they are simultaneously
diagonalizable and have real spectrum.

3.5. Proof of Theorem 1.4. If z1; : : : ; zn; x are real, then all of the Gaudin
Hamiltonians on SingL˝n!r

Œ�� have real spectrum, since they are symmetric opera-
tors on a Euclidean space. If t is a critical point of ˆd . � I z/, then the eigenvalues
�1.x/; : : : ; �rC1.x/ of the corresponding Bethe vector !.tI z/ are real rational
functions. Hence the fundamental differential operator Dt has real coefficients.
Therefore, the fundamental vector space of polynomials Vt is real. Thus for generic
real z1; : : : ; zn we have N.d/ distinct real spaces of polynomials with exponents
d at infinity and Wronskian

Qn
sD1.x� zs/. Thus Theorem 1.4 is proved. �

Appendix A

A.1. The differential operator K has polynomial solutions only. Suppose
z1; : : : ; zn 2 C. Let ƒ1; : : : ; ƒn; ƒ1 2 h� be dominant integral weights. Assume
that the irreducible slrC1-module Lƒ1 is a submodule of the tensor product
Lƒ1
˝ � � �˝Lƒn

.
For any s D 1; : : : ; n;1, and i D 1; : : : ; r , set ms;i D .ƒs;

Pi
jD1 j̨ / and

l D
1

rC1

rX
iD1

� nX
sD1

ms;i �m1;i

�
:

For any s D 1; : : : ; n, we will consider the slrC1-module Lƒs
as the glrC1-

module of highest weight .0; �ms;1; �ms;2; : : : ; �ms;r/. Considered as a sub-
module of the glrC1-module Lƒ1

˝ � � � ˝Lƒn
, the slrC1-module Lƒ1 has the

glrC1-highest weight

.�l; � l �m1;1; � l �m1;2; : : : ; � l �m1;r/:

THEOREM A.1. Consider the operator K as a differential operator acting on
Lƒ1
˝ � � �˝Lƒn

-valued functions in x.

(i) Then all singular points of the operator K are regular and lie in the set
fz1; : : : ; zn;1g.

(ii) Let u.x/ be any germ of an Lƒ1
˝� � �˝Lƒn

-valued function such that KuD 0.
Then u is the germ of an Lƒ1

˝ � � �˝Lƒn
-valued polynomial in x.

(iii) Let w 2 Sing.Lƒ1
˝ � � � ˝ Lƒn

/Œƒ1� be an eigenvector of the operators
K1.x/; : : : ; KrC1.x/ with the eigenvalues �1.x/; : : : ; �rC1.x/, respectively.
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Consider the scalar differential operator

Dw D
d rC1

dxrC1
C�1.x/

d r

dxr
C � � �C�rC1.x/:

Then the exponents of the differential operator Dw at1 are

�l; �m1;1� 1� l; : : : ; �m1;r � r � l:

(iv) If z1; : : : ; zn are distinct, then for any s D 1; : : : ; n, the exponents of the differ-
ential operator Dw at zs are 0;ms;1C 1; : : : ; ms;r C r .

(v) The kernel of the differential operator Dw is an .r C 1/-dimensional space of
polynomials.

Proof. Part (i) is a direct corollary of the definition of the operator K .
We first prove part (ii) in the special case of ƒ1 D � � � Dƒn D !r and generic

z1; : : : ; zn. By construction, the operator K commutes with the glrC1-action on
L˝n!r

. This fact and Theorem 3.1 imply that K has an eigenbasis consisting of the
Bethe vectors and their images under the glrC1-action. Then by Theorems 3.3 and
2.1, all solutions of the differential equation KuD 0 are polynomials.

The proof of part (ii) for arbitrary ƒ1; : : : ; ƒn and z1; : : : ; zn clearly follows
from the special case and the following remarks:

� The operator K is well defined for any z1; : : : ; zn, not necessarily distinct, and
rationally depends on z1; : : : ; zn.

� If for generic z1; : : : ; zn, all solutions of the differential equation KuD 0 are
polynomial, then for any z1; : : : ; zn, all solutions of the differential equation
KuD 0 are polynomial.

� Assume that some of z1; : : : ; zn coincide. Partition the set fz1; : : : ; zng into
several groups of coinciding points of sizes n1; : : : ; nk , whose sum is n. Denote
the representatives in the groups by u1; : : : ; uk 2 C, where u1; : : : ; uk are
distinct. Denote Ws D L

˝ns
!r

for s D 1; : : : ; k. Choose an irreducible module
L�s
�Ws for every s. Then the operator K defined for those z1; : : : ; zn on

W1˝ � � �˝Wk preserves the space of functions with values in the submodule
L�1
˝ � � � ˝ L�k

. If we restrict K to the space of functions with values in
L�1
˝ � � � ˝L�k

, then this restriction coincides with the operator K defined
for the tensor product L�1

˝ � � �˝L�k
and u1; : : : ; uk .

� Any highest weight irreducible finite dimensional glrC1-module with highest
weight .m0; : : : ; mr/, where m0 2 Z60, is a submodule of a suitable tensor
power ofL!r

(considered as the glrC1-module with highest weight .0; : : : ; 0;�
1/).

Part (ii) is proved.
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To calculate the exponents of the operator Dw at singular points, we calculate
the exponents of its formal adjoint operator. Namely, we consider the operator

D�w D
d rC1

dxrC1
�
d r

dxr
�1.x/C � � �C .�1/

rC1�rC1.x/

D
d rC1

dxrC1
C�1.x/

d r

dxr
C � � �C�rC1.x/:

The vector w is an eigenvector of the operators M1.x/; : : : ;MrC1.x/, with eigen-
values �1.x/; : : : ; �rC1.x/, respectively.

LEMMA A.2. Let the exponents ofD�w at a point xD z be p1; : : : ; prC1. Then
the exponents of Dw at the point x D z are r �prC1; : : : ; r �p1. �

Consider the U.glrC1/-valued polynomial

(A.1) A.x/D
X

�2†rC1

.�1/�
�
.x� r/ı1;�.1/�E�.1/;1

�
� � ��

.x� 1/ır;�.r/�E�.r/;r

��
xırC1;�.rC1/�E�.rC1/;rC1

�
:

It is known that the coefficients of this polynomial are central elements in U.glrC1/;
see for example [MNO96, Remark 2.11]. If v is a singular vector of a glrC1-weight
.p1; : : : ; prC1/, then formula (A.1) yields

A.x/v D

rC1Y
iD1

.x� r � 1C i �pi /v:

Hence, the operator A.x/ acts on Lƒs
as the identity operator multiplied by

 s.x/D

rY
iD0

.x� r C i Cms;i / :

Let s D 1; : : : ; n. It follows from (3.2) that the indicial polynomial of D�w at
the singular point zs is the eigenvalue of the operator 1˝.s�1/˝A.x/˝ 1˝.n�s/

acting on the vector w, that is,  s.x/. Similarly, the indicial polynomial of D�w
at infinity is the eigenvalue of A.�x/ acting on the vector w that belongs to the
submodule Lƒ1 of the glrC1-module Lƒ1

˝ � � �˝Lƒn
, that is,

 1.x/D

rY
iD0

.�x� r C i C l Cm1;i / :

Hence, by Lemma A.2, the exponents of the operator Dw are as required. This
proves parts (iii) and (iv). Part (v) follows from parts (i)–(iv). �
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COROLLARY A.3. Assume that the operators Ki .x/; : : : ; KrC1.x/ acting on
the subspace of weight singular vectors Sing.Lƒ1

˝ � � �˝Lƒn
/Œƒ1� are diagonal-

izable and have simple joint spectrum. Then there exist

dim Sing.Lƒ1
˝ � � �˝Lƒn

/Œƒ1�

distinct polynomial .rC1/-dimensional spaces V with the following properties. If
D is the fundamental differential operator of such a space, then D has singular
points at z1; : : : ; zn;1 only, with the exponents

0;ms;1C 1; : : : ; ms;r C r at zs for any s;

� l; �m1;1� 1� l ; : : : ; �m1;r � r � l at1:

Consider all .r C 1/-dimensional polynomial spaces V , whose fundamental
operator has exponents at z1; : : : ; zn;1 as indicated in Corollary A.3. Schubert
calculus says that the number of such spaces is not greater than the dimension
of Sing.Lƒ1

˝ � � � ˝ Lƒn
/Œƒ1�; see for example [MV04]. Thus, according to

Corollary A.3, the simplicity of the spectrum of the Gaudin Hamiltonians on
Sing.Lƒ1

˝ � � � ˝ Lƒn
/Œƒ1� implies the transversality of the Schubert cycles

corresponding to these exponents at z1; : : : ; zn;1; cf. [MV04] and [EH83].
The operators K1.x/; : : : ; KrC1.x/ acting on Sing.Lƒ1

˝ � � � ˝Lƒn
/Œƒ1�

are diagonalizable if z1; : : : ; zn are real; see Section 3.4.

Remark A.4. It was conjectured in [CT04] that the monodromy of the dif-
ferential operator M , acting on Lƒ1

˝ � � �˝Lƒn
-valued functions in x, is trivial.

However, the proof of this statement in [CT04] is not satisfactory. On the other
hand, Theorem A.1 implies that the monodromy of the differential operator K ,
acting on Lƒ1

˝� � �˝Lƒn
-valued functions in x, is trivial. Together with Theorem

3.5, this implies that the monodromy of the operator M is trivial as well.

A.2. Bethe vectors in Sing.Lƒ1
˝ � � �˝Lƒn

/Œƒ1�. Let zD .z1; : : : ; zn/ be
a point in Cn with distinct coordinates. Let ƒ1; : : : ; ƒn; ƒ1 2 h� be dominant
integral weights. Assume that the irreducible slrC1-module Lƒ1 is a submodule
of the tensor product Lƒ1

˝ � � �˝Lƒn
.

Introduce l D .l1; : : : ; lr/ by the formula ƒ1 D
Pn
sD1ƒs �

Pr
iC1 li˛i . Set

l D l1C � � �C lr . Consider the associated master function

ˆ.tI z/D

rY
iD1

liY
jD1

nY
sD1

.t
.i/
j � zs/

�.ƒs ;˛i /
rY
iD1

Y
16j<s6li

.t
.i/
j � t

.i/
s /

2

�

r�1Y
iD1

liY
jD1

liC1Y
kD1

.t
.i/
j � t

.jC1/

k
/�1:
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Consider the universal weight function ! W Cl �Cn ! .Lƒ1
˝ � � � ˝Lƒn

/Œƒ1�

defined by the formulas of Section 3.2. The value !.tI z/ of the universal weight
function at a critical point t of the master function ˆ. � I z/ is called a Bethe vector
(see [RV95] and [MV04]), and belongs to Sing.Lƒ1

˝� � �˝Lƒn
/Œƒ1�; see [RV95].

For a critical point t, define the tuple yt D .y1; : : : ; yr/ of polynomials in
variable x by formulas of Section 2.1. Define polynomials T1; : : : ; Tr in x by the
formula

Ti .x/D

nY
sD1

.x� zs/
.ƒs ;˛i /

:

Consider the linear differential operator of order r C 1 given by

Dt D

�
d

dx
� ln0

�
T1 � � �Tr
yr

���
d

dx
� ln0

�
yrT1 � � �Tr�1

yr�1

��
� � �

�
d

dx
� ln0

�
y2T1
y1

���
d

dx
� ln0.y1/

�
:

All singular points of Dt are regular and lie in fz1; : : : ; zn;1g. The exponents
of Dt at zs are 0;ms;1 C 1; : : : ; ms;r C r for any s, and the exponents of Dt

at 1 are �l; �m1;1 � 1 � l; : : : ; �m1;r � r � l . The kernel Vt of Dt is an
.r C 1/-dimensional space of polynomials; see [MV04].

The tuple yt can be recovered from Vt as follows. Let f1; : : : ; frC1 be a
basis of Vt consisting of monic polynomials of strictly increasing degree. Then
y1; : : : ; yr are respective scalar multiples of the polynomials

f1;
Wr.f1; f2/

T1
;

Wr.f1; f2; f3/
T2T

2
1

; : : : ;
Wr.f1; : : : ; fr/

Tr�1T
2
r�2 : : : T

r�1
1

I

see [MV04].

THEOREM A.5 [MTV06, Th. 9.2]. For any critical point t of the master
function ˆ. � I z/, the Bethe vector !.tI z/ is an eigenvector of Ki .x/ for i D
1; : : : ; rC1 and the corresponding eigenvalues �1.x/; : : : ; �rC1.x/ are given by
the formula

d rC1

durC1
C�1.x/

d r

dxr
C � � �C�rC1.x/DDt :

COROLLARY A.6. Any two distinct nonzero Bethe vectors cannot have the
same eigenvalues for all Gaudin Hamiltonians.

The proof of the corollary is similar to the proof of the second statement of
Corollary 3.4.

Appendix B

Let g be a simple Lie algebra, let h its Cartan subalgebra, let ˛i 2 h� for
i D 1; : : : ; r be simple roots, and let . � ; � / be the standard invariant scalar product
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on g. Let ƒD .ƒ1; : : : ; ƒn/ be integral dominant weights of g. Let l D .l1; : : : ; lr/

be nonnegative integers such that the weight

ƒ1 D
Pn
sD1ƒs �

Pr
iD1 li˛i

is dominant integral. Let zD .z1; : : : ; zn/ be distinct complex numbers. Introduce
the associated master function depending on variables

t D .t
.1/
1 ; : : : ; t

.1/

l1
; : : : ; t

.r/
1 ; : : : ; t

.r/

lr
/

by the formula

ˆg;ƒ;l .tI z/D

rY
iD1

liY
jD1

nY
sD1

.t
.i/
j � zs/

�.ƒs ;˛i /
rY
iD1

Y
16j<s6li

.t
.i/
j � t

.i/
s /

.˛i ;˛i /

�

Y
16i<j6r

liY
sD1

ljY
kD1

.t
.i/
s � t

.j /

k
/

.˛i ; j̨ /
:

The function ˆ is a rational function of t and depends on parameters z. The master
function is †l -invariant with respect to permutations of variables with the same
upper index. The critical set of the master function with respect to variables t is
†l -invariant. If z consists of real numbers, then the critical set is invariant with
respect to complex conjugation.

CONJECTURE B.1. If z consists of real numbers, then every orbit of critical
points is invariant with respect to complex conjugation.

For a critical point t, define the tuple yt D .y1; : : : ; yr/ of polynomials in
variable x by formulas of Section 2.1. Conjecture B.1 can be reformulated as
follows. If z consists of real numbers and t is a critical point, then the tuple yt

consists of real polynomials.
Theorems 1.1 and 2.1 imply this conjecture for gD slrC1. In the same way,

Theorems 1.1 and 2.1 imply Conjecture B.1 for g of typesBr or Cr ; see [MV04, �7].
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Uspekhi Mat. Nauk 51 (1996), 27–104. MR 97f:17019 Zbl 0876.17014

[MTV06] E. MUKHIN, V. TARASOV, and A. VARCHENKO, Bethe eigenvectors of higher transfer
matrices, J. Stat. Mech. Theory Exp. 8 (2006), P08002. MR 2007h:82021

[MV04] E. MUKHIN and A. VARCHENKO, Critical points of master functions and flag varieties,
Commun. Contemp. Math. 6 (2004), 111–163. MR 2005b:17052 Zbl 1050.17022

[MV00] E. MUKHIN and A. VARCHENKO, Remarks on critical points of phase functions and
norms of Bethe vectors, in Arrangements (Tokyo, 1998) (M. FALK and H. TERAO, eds.),
Adv. Stud. Pure Math. 27, Kinokuniya, Tokyo, 2000, pp. 239–246. MR 2001j:32012
Zbl 1040.17001

[MV05] , Norm of a Bethe vector and the Hessian of the master function, Compos. Math.
141 (2005), 1012–1028. MR 2006d:82022 Zbl 1072.82012

[RV95] N. RESHETIKHIN and A. VARCHENKO, Quasiclassical asymptotics of solutions to the KZ
equations, in Geometry, Topology, & Physics (S.-T. YAU, ed.), Conf. Proc. Lecture Notes
in Geom. Topology 4, Internat. Press, Cambridge, MA, 1995, pp. 293–322. MR 96j:32025
Zbl 0867.58065

[RSV05] R. RIMÁNYI, L. STEVENS, and A. VARCHENKO, Combinatorics of rational functions
and Poincaré-Birchoff-Witt expansions of the canonical U.n�/-valued differential form,
Ann. Comb. 9 (2005), 57–74. MR 2007k:33013 Zbl 1088.33007

[RSSS06] J. RUFFO, Y. SIVAN, E. SOPRUNOVA, and F. SOTTILE, Experimentation and conjectures
in the real Schubert calculus for flag manifolds, Experiment. Math. 15 (2006), 199–221.
MR 2007g:14066 Zbl 1111.14049

[SV91] V. V. SCHECHTMAN and A. N. VARCHENKO, Arrangements of hyperplanes and Lie
algebra homology, Invent. Math. 106 (1991), 139–194. MR 93b:17067 Zbl 0754.17024



THE B. AND M. SHAPIRO CONJECTURE AND THE BETHE ANSATZ 881

[SV03] I. SCHERBAK and A. VARCHENKO, Critical points of functions, sl2 representations, and
Fuchsian differential equations with only univalued solutions, Mosc. Math. J. 3 (2003),
621–645, 745. MR 2004m:34204 Zbl 1039.34077

[Sot97a] F. SOTTILE, Enumerative geometry for the real Grassmannian of lines in projective
space, Duke Math. J. 87 (1997), 59–85. MR 99a:14079 Zbl 0986.14033

[Sot97b] , Enumerative geometry for real varieties, in Algebraic Geometry (Santa Cruz,
1995) (J. KOLLÁR, R. LAZARSFELD, and D. R. MORRISON, eds.), Proc. Sympos.
Pure Math. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 435–447. MR 99i:14066
Zbl 0986.14033

[Sot99] , The special Schubert calculus is real, Electron. Res. Announc. Amer. Math. Soc.
5 (1999), 35–39. MR 2000c:14074 Zbl 0921.14037

[Sot00a] , The conjecture of Shapiro and Shapiro, web page, Experiment. Math., 2000,
available at http://www.expmath.org/extra/9.2/sottile. Zbl 0997.14016

[Sot00b] , Real Schubert calculus: Polynomial systems and a conjecture of Shapiro and
Shapiro, Experiment. Math. 9 (2000), 161–182. MR 2001e:14054 Zbl 0997.14016

[Sot03] , Enumerative real algebraic geometry, in Algorithmic and Quantitative Real
Algebraic Geometry (Piscataway, NJ, 2001) (S. BASU and L. GONZALEZ-VEGA, eds.),
DIMACS Ser. Discrete Math. Theoret. Comput. Sci. 60, Amer. Math. Soc., Providence,
RI, 2003, pp. 139–179. MR 2004j:14065 Zbl 1081.14080

[Tal04] D. TALALAEV, Quantization of the Gaudin system, preprint, 2004.
arXiv hep-th/0404153v1

[Var95] A. VARCHENKO, Multidimensional hypergeometric functions and representation theory
of Lie algebras and quantum groups, Adv. Ser. Math. Phys. 21, World Sci. Publ., River
Edge, NJ, 1995. MR 99i:32029 Zbl 0951.33001

[Var06] A. VARCHENKO, Bethe ansatz for arrangements of hyperplanes and the Gaudin model,
Moscow Math. Jour. 6 (2006), 195–210, 223–224. MR 2007m:32016 Zbl 05184506

[Ver00] J. VERSCHELDE, Numerical evidence for a conjecture in real algebraic geometry, Experi-
ment. Math. 9 (2000), 183–196. MR 2001i:65062 Zbl 1054.14080

(Received May 8, 2006)
(Revised August 27, 2007)

E-mail address: mukhin@math.iupui.edu
DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY–PURDUE UNIVERSITY,
402 NORTH BLACKFORD ST., INDIANAPOLIS, IN 46202-3216, UNITED STATES

E-mail address: vt@pdmi.ras.ru
E-mail address: vt@math.iupui.edu
ST. PETERSBURG BRANCH OF STEKLOV MATHEMATICAL INSTITUTE, FONTANKA 27, ST. PE-
TERSBURG, 191023, RUSSIA

and

DEPARTMENT OF MATHEMATICAL SCIENCES, INDIANA UNIVERSITY–PURDUE UNIVERSITY,
402 NORTH BLACKFORD ST., INDIANAPOLIS, IN 46202-3216, UNITED STATES

E-mail address: anv@email.unc.edu
DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NORTH CAROLINA AT CHAPEL HILL, CHAPEL

HILL, NC 27599-3250, UNITED STATES




