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Abstract

We introduce a method for showing that there exist prime numbers which are
very close together. The method depends on the level of distribution of primes in
arithmetic progressions. Assuming the Elliott-Halberstam conjecture, we prove
that there are infinitely often primes differing by 16 or less. Even a much weaker
conjecture implies that there are infinitely often primes a bounded distance apart.
Unconditionally, we prove that there exist consecutive primes which are closer than
any arbitrarily small multiple of the average spacing, that is,

lim inf
n!1

pnC1�pn

logpn
D 0:

We will quantify this result further in a later paper.

1. Introduction

One of the most important unsolved problems in number theory is to establish
the existence of infinitely many prime tuples. Not only is this problem believed to
be difficult, but it has also earned the reputation among most mathematicians in
the field as hopeless in the sense that there is no known unconditional approach for
tackling the problem. The purpose of this paper, the first in a series, is to provide
what we believe is a method which could lead to a partial solution for this problem.
At present, our results on primes in tuples are conditional on information about
the distribution of primes in arithmetic progressions. However, the information
needed to prove that there are infinitely often two primes in a given k-tuple for
sufficiently large k does not seem to be too far beyond the currently known results.
Moreover, we can gain enough in the argument by averaging over many tuples
to obtain unconditional results concerning small gaps between primes which go
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far beyond anything that has been proved before. Thus, we are able to prove the
existence of very small gaps between primes which, however, go slowly to infinity
with the size of the primes.

The information on primes we utilize in our method is often referred to as the
level of distribution of primes in arithmetic progressions. Let

(1.1) �.n/D

�
logn if n is prime;
0 otherwise;

and consider the counting function

(1.2) �.N I q; a/D
X
n�N

n�a.modq/

�.n/:

The Bombieri-Vinogradov theorem states that for any A > 0 there is a B D B.A/
such that, for QDN

1
2 .logN/�B ,

(1.3)
X
q�Q

max
a

.a;q/D1

ˇ̌̌̌
�.N I q; a/�

N

�.q/

ˇ̌̌̌
�

N

.logN/A
:

We say that the primes have level of distribution # if (1.3) holds for any A > 0 and
any " > 0 with

(1.4) QDN #�":

Elliott and Halberstam [5] conjectured that the primes have level of distribution
1. According to the Bombieri-Vinogradov theorem, the primes are known to have
level of distribution 1=2.

Let n be a natural number and consider the k-tuple

(1.5) .nC h1; nC h2; : : : ; nC hk/;

where HD fh1; h2; : : : ; hkg is a set composed of distinct non-negative integers. If
every component of the tuple is a prime we call this a prime tuple. Letting n range
over the natural numbers, we wish to see how often (1.5) is a prime tuple. For
instance, consider HD f0; 1g and the tuple .n; nC 1/. If nD 2, we have the prime
tuple .2 ; 3/. Notice that this is the only prime tuple of this form because, for n > 2,
one of the numbers n or nC 1 is an even number bigger than 2. On the other hand,
if HD f0; 2g, then we expect that there are infinitely many prime tuples of the form
.n; nC 2/. This is the twin prime conjecture. In general, the tuple (1.5) can be a
prime tuple for more than one n only if for every prime p the hi ’s never occupy
all of the residue classes modulo p. This is immediately true for all primes p > k;
so to test this condition we need only to examine small primes. If we denote by
�p.H/ the number of distinct residue classes modulo p occupied by the integers hi ,
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then we can avoid p dividing some component of (1.5) for every n by requiring

(1.6) �p.H/ < p for all primes p:

If this condition holds we say that H is admissible and we call the tuple (1.5)
corresponding to this H an admissible tuple. It is a long-standing conjecture that
admissible tuples will infinitely often be prime tuples. Our first result is a step
towards confirming this conjecture.

THEOREM 1. Suppose the primes have level of distribution # > 1=2. Then
there exists an explicitly calculable constant C.#/ depending only on # such that
any admissible k-tuple with k � C.#/ contains at least two primes infinitely often.
Specifically, if # � 0:971, then this is true for k � 6.

Since the 6-tuple .n; nC 4; nC 6; nC 10; nC 12; nC 16/ is admissible, the
Elliott-Halberstam conjecture implies that

(1.7) lim inf
n!1

.pnC1�pn/� 16;

where the notation pn is used to denote the n-th prime. This means that pnC1�pn�
16 for infinitely many n. Unconditionally, we prove a long-standing conjecture
concerning gaps between consecutive primes.

THEOREM 2. We have

(1.8) �1 WD lim inf
n!1

pnC1�pn

logpn
D 0:

There is a long history of results on this topic which we will briefly mention.
The inequality �1 � 1 is a trivial consequence of the prime number theorem. The
first result of type �1 < 1 was proved in 1926 by Hardy and Littlewood [18],
who on assuming the Generalized Riemann Hypothesis (GRH) obtained �1 � 2=3.
This result was improved by Rankin [26] to �1 � 3=5; also assuming the GRH.
The first unconditional estimate was proved by Erdős [7] in 1940. Using Brun’s
sieve, he showed that �1 < 1� c with an unspecified positive explicitly calculable
constant c. His estimate was improved by Ricci [27] in 1954 to �1 � 15=16: In
1965, Bombieri and Davenport [2] refined and made unconditional the method
of Hardy and Littlewood by substituting the Bombieri-Vinogradov theorem for
the GRH, and obtained �1 � 1=2. They also combined their method with the
method of Erdős and obtained �1 � 0:4665 : : : . Their result was further refined
by Pilt’ai [25] to �1 � 0:4571 : : : , Uchiyama [33] to �1 � 0:4542 : : : and in
several steps by Huxley [20], [21] to yield �1 � 0:4425 : : : , and finally in 1984
to �1 � :4393 : : : [22]. This was further improved by Fouvry and Grupp [9] to
�1 � :4342 : : : : In 1988 Maier [23] used his matrix-method to improve Huxley’s
result to �1 � e�
 � 0:4425 : : :D 0:2484 : : : , where 
 is Euler’s constant. Maier’s
method by itself gives �1 � e�
 D 0:5614 : : : . The recent version of the method
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of Goldston and Yıldırım [13] led, without combination with other methods, to
�1 � 1=4.

In a later paper in this series we will prove the quantitative result that

(1.9) lim inf
n!1

pnC1�pn

.logpn/
1
2 .log logpn/2

<1:

While Theorem 1 is a striking new result, it also reflects the limitations of our
current method. Whether these limitations are real or can be overcome is a critical
issue for further investigation. We highlight the following four questions.

Question 1. Can it be proved unconditionally by the current method that there
are, infinitely often, bounded gaps between primes? Theorem 1 would appear to be
within a hair’s breadth of obtaining this result. However, any improvement in the
level of distribution # beyond 1=2 probably lies very deep, and even the GRH does
not help. Still, there are stronger versions of the Bombieri-Vinogradov theorem, as
found in [3], and the circle of ideas used to prove these results, which may help to
obtain this result.

Question 2. Is # D 1=2 a true barrier for obtaining primes in tuples?
Soundararajan [31] has demonstrated this is the case for the current argument,
but perhaps more efficient arguments may be devised.

Question 3. Assuming the Elliott-Halberstam conjecture, can it be proved that
there are three or more primes in admissible k-tuples with large enough k? Even
under the strongest assumptions, our method fails to prove anything about more
than two primes in a given tuple.

Question 4. Assuming the Elliott-Halberstam conjecture, can the twin prime
conjecture be proved with a refinement of our method?

The limitation of our method, identified in Question 3, is the reason we are
less successful in finding more than two primes close together. However, we are
able to improve on earlier results, in particular the recent results in [13]. For � � 1,
let

(1.10) �� D lim inf
n!1

pnC� �pn

logpn
:

Bombieri and Davenport [2] showed �� � ��1=2. This bound was later improved
by Huxley [20], [21] to �� � � � 5=8CO.1=�/, by Goldston and Yıldırım [13]
to �� � .

p
� � 1=2/2, and by Maier [23] to �� � e�
 .� � 5=8CO .1=�//. In

proving Theorem 2 we will also show, assuming the primes have level of distribution
# ,

(1.11) �� �max.� � 2#; 0/;
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and hence unconditionally �� � �� 1. However, by a more complicated argument,
we will prove the following result.

THEOREM 3. Suppose the primes have level of distribution # . Then for � � 2,

(1.12) �� � .
p
� �
p
2#/2:

In particular, we have unconditionally, for � � 1,

(1.13) �� � .
p
� � 1/2:

From (1.11) or (1.12) we see that the Elliott-Halberstam conjecture implies
that

(1.14) �2 D lim inf
n!1

pnC2�pn

logpn
D 0:

We can improve on (1.13) by combining our method with Maier’s matrix
method [23] to obtain

(1.15) �� � e
�
 .
p
� � 1/2:

Huxley [20] generalized the results of Bombieri and Davenport [2] for�� to primes
in arithmetic progressions with a fixed modulus. We are able to prove the analogue
of (1.15) for primes in arithmetic progressions where the modulus can tend slowly
to infinity with the size of the primes considered.

Another extension of our work is that we can find primes in other sets besides
intervals. Thus we can prove that there are two primes among the numbers nC ai ,
1� i � h, for N < n� 2N and the ai ’s are given arbitrary integers in the interval
Œ1; N � if h < C

p
logN.log logN/2 and N is restricted to some sequence N�

tending to infinity, which avoids Siegel zeros for moduli near to N . It is interesting
to note that such a general result can be proved regardless of the distribution of the
ai values, in contrast to our present case where Gallagher’s theorem (3.7) requires
the ai ’s to lie in an interval. The proofs of these results will appear in later papers
in this series.

While this paper is our first paper on this subject, we have two other papers
that overlap some of the results here. The first paper [15], written jointly with
Motohashi, gives a short and simplified proof of Theorems 1 and 2. The second
paper [14], written jointly with Graham, uses sieve methods to prove Theorems 1
and 2 and provides applications for tuples of almost-primes (products of a bounded
number of primes.)

The present paper is organized as follows. In Section 2, we describe our
method and its relation to earlier work. We also state Propositions 1 and 2 which
incorporate the key new ideas in this paper. These are developed in a more general
form than in [14] or [15] so as to be employable in many applications. In Section 3,
we prove Theorems 1 and 2 using these propositions. The method of proof is due
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to Granville and Soundararajan. In Section 4 we make some further comments
on the method used in Section 3. In Section 5 we prove two lemmas needed later.
In Section 6, we prove a special case of Proposition 1 which illustrates the key
points in the general case. In Section 7 we begin the proof of Proposition 1 which
is reduced to evaluating a certain contour integral. In Section 8 we evaluate a more
general contour integral that occurs in the proof of both propositions. In Section
9, we prove Proposition 2. In this paper we do not obtain results that are uniform
in k, and therefore we assume here that our tuples have a fixed length. However,
uniform results are needed for (1.9), and they will be the topic of the next paper in
this series. Finally, we prove Theorem 3 in Section 10.

Notation. In the following, c and C will denote (sufficiently) small and (suf-
ficiently) large absolute positive constants, respectively, which have been chosen
appropriately. This is also true for constants formed from c or C with subscripts or
accents. We unconventionally will allow these constants to be different at different
occurrences. Constants implied by pure o, O ,� symbols will be absolute, unless
otherwise stated. ŒS� is 1 if the statement S is true and is 0 if S is false. The
symbol

P[ indicates the summation is over squarefree integers, and
P0 indicates

the summation variables are pairwise relatively prime.
The ideas used in this paper have developed over many years. We are indebted

to many people, not all of whom we can mention. In particular, we would like
to thank A. Balog, E. Bombieri, T. H. Chan, J. B. Conrey, P. Deift, D. Farmer,
K. Ford, J. Friedlander, S. W. Graham, A. Granville, C. Hughes, D. R. Heath-Brown,
A. Ledoan, H. L. Montgomery, Y. Motohashi, Sz. Gy. Revesz, P. Sarnak, J. Sivak,
and K. Soundararajan.

2. Approximating prime tuples

Let

(2.1) HD fh1; h2; : : : ; hkg with 1� h1; h2; : : : ; hk � h distinct integers;

and let �p.H/ denote the number of distinct residue classes modulo p occupied by
the elements of H.1 For squarefree integers d , we extend this definition to �d .H/
by multiplicativity. We denote by

(2.2) S.H/ WD
Y
p

�
1�

1

p

��k�
1�

�p.H/

p

�
the singular series associated with H. Since �p.H/D k for p > h, we see that the
product is convergent and therefore H is admissible as defined in (1.6) if and only

1The restriction of the set H to positive integers is only for simplicity, and, if desired, can easily
be removed later from all of our results.
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if S.H/ ¤ 0. Hardy and Littlewood conjectured an asymptotic formula for the
number of prime tuples .nCh1; nCh2; : : : ; nChk/, with 1� n�N , as N !1.
Let ƒ.n/ denote the von Mangoldt function which equals logp if nD pm, m� 1,
and zero otherwise. We define

(2.3) ƒ.nIH/ WDƒ.nC h1/ƒ.nC h2/ � � �ƒ.nC hk/

and use this function to detect prime tuples and tuples with prime powers in
components, the latter of which can be removed in applications. The Hardy-
Littlewood prime-tuple conjecture [17] can be stated in the form

(2.4)
X
n�N

ƒ.nIH/DN.S.H/C o.1//; as N !1.

(This conjecture is trivially true if H is not admissible.) Except for the prime number
theorem (1-tuples), this conjecture is unproved.2

The program the first and third authors have been working on since 1999 is to
compute approximations for (2.3) with k � 3 using short divisor sums and to apply
the results to problems on primes. The simplest approximation of ƒ.n/ is based on
the elementary formula

(2.5) ƒ.n/D
X
d jn

�.d/ log
n

d
;

which can be approximated with the smoothly truncated divisor sum

(2.6) ƒR.n/D
X
d jn
d�R

�.d/ log
R

d
:

Thus, an approximation for ƒ.nIH/ is given by

(2.7) ƒR.nC h1/ƒR.nC h2/ � � �ƒR.nC hk/:

In [13], Goldston and Yıldırım applied (2.7) to detect small gaps between primes
and proved

�1 D lim inf
n!1

�
pnC1�pn

logpn

�
�
1

4
:

In this paper we introduce a new approximation, the idea for which came
partly from a paper of Heath-Brown [19] on almost prime tuples. His result is
itself a generalization of Selberg’s proof from 1951 (see [29, pp. 233–245]) that the
polynomial n.nC 2/ will infinitely often have at most five distinct prime factors,
so that the same is true for the tuple .n; nC 2/. Not only does our approximation
have its origin in these papers, but in hindsight the argument of Granville and

2Asymptotic results for the number of primes in tuples, unlike the existence result in Theorem 1,
are beyond the reach of our method.
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Soundararajan (employed in the proof of Theorems 1 and 2) is essentially the same
as the method used in these papers.

In connection with the tuple (1.5), we consider the polynomial

(2.8) PH.n/D .nC h1/.nC h2/ � � � .nC hk/:

If the tuple (1.5) is a prime tuple then PH.n/ has exactly k prime factors. We detect
this condition by using the k-th generalized von Mangoldt function

(2.9) ƒk.n/D
X
d jn

�.d/

�
log

n

d

�k
;

which vanishes if n has more than k distinct prime factors.3 With this, our prime
tuple detecting function becomes

(2.10) ƒk.nIH/ WD
1

kŠ
ƒk.PH.n//:

The normalization factor 1=kŠ simplifies the statement of our results. As we will
see in Section 5, this approximation suggests the Hardy-Littlewood type conjecture

(2.11)
X
n�N

ƒk.nIH/DN .S.H/C o.1// :

This is a special case of the general conjecture of Bateman–Horn [1] which is the
quantitative form of Schinzel’s conjecture [28].

In analogy with (2.6) (when k D 1), we approximate ƒk.n/ by the
smoothed and truncated divisor sumX

d jn
d�R

�.d/

�
log

R

d

�k
and define

ƒR.nIH/D
1

kŠ

X
d jPH.n/
d�R

�.d/

�
log

R

d

�k
:(2.12)

However, as we will see in the next section, this approximation is not adequate to
prove Theorems 1 and 2.

A second simple but crucial idea is needed: rather than only approximate
prime tuples, one should approximate tuples with primes in many components.
Thus, we consider when PH.n/ has kC ` or fewer distinct prime factors, where

3As withƒ.n/, we overcount the prime tuples by including factors which are proper prime powers,
but these can be removed in applications with a negligible error. The slightly misleading notational
conflict between the generalized von Mangoldt function ƒk and ƒR will only occur in this section.
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0� `� k, and define

(2.13) ƒR.nIH; `/D
1

.kC `/Š

X
d jPH.n/
d�R

�.d/

�
log

R

d

�kC`
;

where jHj D k. If HD∅, then k D `D 0 and we define ƒR.nI∅; 0/D 1.
The advantage of (2.13) over (2.7) can be seen as follows. If in (2.13) we restrict

ourselves to d ’s with all prime factors larger than h, then the condition d jPH.n/

implies that we can write d D d1d2 � � � dk uniquely with di jnChi , 1� i � k, the
di ’s pairwise relatively prime, and d1d2 � � � dk � R. In our application to prime
gaps we require that R�N

1
4
�". On the other hand, on expanding, (2.7) becomes a

sum over di jnChi , 1� i � k, with d1 �R, d2 �R, : : : , dk �R. The application
to prime gaps here requires that Rk � N

1
4
�", and so R � N

1
4k
� "
k . Thus (2.7)

has a more severe restriction on the range of the divisors. An additional technical
advantage is that having one truncation rather than k truncations simplifies our
calculations.

Our main results on ƒR.nIH; `/ are summarized in the following two proposi-
tions. Suppose H1 and H2 are, respectively, sets of k1 and k2 distinct non-negative
integers � h. We always assume that at least one of these sets is nonempty. Let
M D k1C k2C `1C `2.

PROPOSITION 1. Let H D H1 [ H2, jHi j D ki , and r D jH1 \ H2j. If
R�N

1
2 .logN/�4M and h�RC for any given constantC >0, then asR;N!1,

(2.14)
X
n�N

ƒR.nIH1; `1/ƒR.nIH2; `2/

D

�
`1C`2
`1

�.logR/rC`1C`2

.r C `1C `2/Š
.S.H/CoM .1//N:

PROPOSITION 2. Let HD H1 [H2, jHi j D ki , r D jH1 \H2j, 1 � h0 � h,
and H0 DH [ fh0g. If R�M N

1
4 .logN/�B.M/ for a sufficiently large positive

constant B.M/, and h�R, then as R;N !1,

(2.15)
X
n�N

ƒR.nIH1; `1/ƒR.nIH2; `2/�.nCh0/

D

8̂̂̂̂
ˆ̂̂̂<̂
ˆ̂̂̂̂̂̂
:

�
`1C`2
`1

�.logR/rC`1C`2

.rC`1C`2/Š
.S.H0/CoM .1//N if h0 62H;�

`1C`2C1

`1C1

�.logR/rC`1C`2C1

.rC`1C`2C1/Š
.S.H/CoM .1//N if h0 2H1 nH2,�

`1C`2C2

`1C1

�.logR/rC`1C`2C1

.rC`1C`2C1/Š
.S.H/CoM .1//N if h0 2H1\H2.
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With the assumption that the primes have level of distribution # > 1=2, i.e. (1.3)
with (1.4) holds, the asymptotics in (2.15) hold with R�N

#
2
�" and h� R", for

any fixed " > 0.

By relabeling the variables, we obtain the corresponding form if h0 2 H2,
h0 62H1.

Propositions 1 and 2 can be strengthened in several ways. We will show that
the error terms oM .1/ can be replaced by a series of lower order terms and a prime
number theorem type of error term. Moreover, we can make the result uniform for
M !1 as an explicit function of N and R. This will be proved in a later paper
and used in the proof of (1.9).

3. Proofs of Theorems 1 and 2

In this section we employ Propositions 1 and 2 and a simple argument due to
Granville and Soundararajan to prove Theorems 1 and 2.

For ` � 0, Hk D fh1; h2; : : : ; hkg, 1 � h1; h2; : : : ; hk � h � R, we deduce
from Proposition 1, for R�N

1
2 .logN/�B.M/ and R;N !1, that

(3.1)
X
n�N

ƒR.nIHk; `/
2
�

1

.kC 2`/Š

�
2`
`

�
S.Hk/N.logR/kC2`:

For any hi 2Hk , we have from Proposition 2, for R�N
#
2
�", and R;N !1,

(3.2)X
n�N

ƒR.nIHk; `/
2�.nC hi /�

1

.kC 2`C 1/Š

�
2`C 2
`C 1

�
S.Hk/N.logR/kC2`C1:

Taking RDN
#
2
�", we obtain4

(3.3)

S WD

2NX
nDNC1

� kX
iD1

�.nC hi /� log 3N
�
ƒR.nIHk; `/

2

�
k

.kC 2`C 1/Š

�
2`C 2
`C 1

�
S.Hk/N.logR/kC2`C1

� log 3N
1

.kC 2`/Š

�
2`
`

�
S.Hk/N.logR/kC2`

�

�
2k

kC 2`C 1

2`C 1

`C 1
logR� log 3N

�
1

.kC 2`/Š

�
2`
`

�
S.Hk/N.logR/kC2`:

4In (3.3), as well as later in (3.8), the asymptotic sign replaces an error term of size o.logN/ in
the parenthesis term after log 3N . We thus make the convention that the asymptotic relationship holds
only up to the size of the apparent main term.
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Here we note that if S> 0 then there exists an n 2 ŒN C 1; 2N � such that at least
two of the numbers nC h1; nC h2; : : : ; nC hk will be prime. This occurs when

(3.4)
k

kC 2`C 1

2`C 1

`C 1
# > 1:

If k; `!1 with `D o.k/, then the left-hand side has the limit 2# , and thus (3.4)
holds for any # > 1=2 if we choose k and ` appropriately depending on # . This
proves the first part of Theorem 1. Next, assuming # > 20=21, we see that (3.4)
holds with `D 1 and k D 7. This proves the second part of Theorem 1 but with
kD 7. The case kD 6 requires a slightly more complicated argument and is treated
later in this section.

The table below gives the values of C.#/, defined in Theorem 1, obtained
from (3.4). For a certain # , it gives the smallest k and corresponding smallest `
for which (3.4) is true. Here h.k/ is the shortest length of any admissible k-tuple,
which has been computed by Engelsma [6] by exhaustive search for 1� k � 305
and covers every value in this table and the next except h.421/, where we have
taken the upper bound value from [6].

# k ` h.k/

1 7 1 20
0.95 8 1 26
0.90 9 1 30
0.85 11 1 36
0.80 16 1 60
0.75 21 2 84
0.70 31 2 140
0.65 51 3 252
0.60 111 5 634
0.55 421 10 2956�

* indicates that this value could be an upper bound of the true value.

To prove Theorem 2, we modify the previous proof by considering

(3.5) zS WD
2NX

nDNC1

� X
1�h0�h

�.nCh0/�� log 3N
� X
1�h1;h2;:::;hk�h

distinct

ƒR.nIHk; `/
2;

where � is a positive integer. To evaluate zS, we need the case of Proposition 2
where h0 62Hk:

(3.6)
X
n�N

ƒR.nIHk; `/
2 �.nCh0/�

1

.kC2`/Š

�
2`
`

�
S.Hk[fh0g/N.logR/kC2`:
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We also need a result of Gallagher [10]: as h!1,

(3.7)
X

1�h1;h2;:::hk�h
distinct

S.Hk/� h
k :

Taking RDN
#
2
�", and applying (3.1), (3.2), (3.6), and (3.7), we find that

zS�
X

1�h1;h2;:::;hk�h
distinct

 
k

.kC 2`C 1/Š

�
2`C 2
`C 1

�
S.Hk/N.logR/kC2`C1

C

X
1�h0�h

h0¤hi ;1�i�k

1

.kC 2`/Š

�
2`
`

�
S.Hk [fh0g/N.logR/kC2`

� � log 3N
1

.kC 2`/Š

�
2`
`

�
S.Hk/N.logR/kC2`

!

�

�
2k

kC2`C1

2`C 1

`C 1
logRCh� � log 3N

�
1

.kC2`/Š

�
2`
`

�
Nhk.logR/kC2`:

(3.8)

Thus, there are at least � C 1 primes in some interval .n; nC h�, N < n � 2N ,
provided that

(3.9) h >

�
� �

2k

kC 2`C 1

2`C 1

`C 1

�
#

2
� "

��
logN;

which, on letting `D Œ
p
k=2� and taking k sufficiently large, gives

(3.10) h >

�
� � 2# C 4"CO

�
1
p
k

��
logN:

This proves (1.11). Theorem 2 is the special case � D 1 and # D 1=2.
We are now ready to prove the last part of Theorem 1. Consider

S0 W D

2NX
nDNC1

� kX
iD1

�.nC hi /� log 3N
�� LX

`D0

a`ƒR.nIHk; `/

�2
(3.11)

D

2NX
nDNC1

� kX
iD1

�.nC hi /� log 3N
�

�

X
0�`1;`2�L

a`1a`2ƒR.nIHk; `1/ƒR.nIHk; `2/

D

X
0�`1;`2�L

a`1a`2M`1;`2 ;
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where

(3.12) M`1;`2 D
zM`1;`2 � .log 3N/M`1;`2 ;

say. Applying Propositions 1 and 2 with RDN
#
2
�", we deduce that

M`1;`2 �

�
`1C `2
`1

�.logR/kC`1C`2

.kC `1C `2/Š
S.Hk/N

and

zM`1;`2 � k
�
`1C `2C 2

`1C 1

� .logR/kC`1C`2C1

.kC `1C `2C 1/Š
S.Hk/N:

Therefore,

M`1;`2 �

�
`1C `2
`1

�
S.Hk/N

.logR/kC`1C`2

.kC `1C `2/Š

�

�
k.`1C `2C 2/.`1C `2C 1/

.`1C 1/.`2C 1/.kC `1C `2C 1/
logR� log 3N

�
:

Defining b`D .logR/`a` and b to be the column matrix corresponding to the vector
.b0; b1; : : : ; bL/, we obtain

S�.N;Hk; #;b/ WD
1

S.Hk/N.logR/kC1
S 0(3.13)

�

X
0�`1;`2�L

b`1b`2

�
`1C `2
`1

� 1

.kC `1C `2/Š

�

�
k.`1C `2C 2/.`1C `2C 1/

.`1C 1/.`2C 1/.kC `1C `2C 1/
�
2

#

�
� bTMb;

where

(3.14) MD

��
iCj

i

� 1

.kCiCj /Š

�
k.iCjC2/.iCjC1/

.iC1/.jC1/.kCiCjC1/
�
2

#

��
0�i;j�L

:

We need to choose b so that S� > 0 for a given # and minimal k. On taking b to
be an eigenvector of the matrix M with eigenvalue �, we see that

(3.15) S� � bT �bD �

kX
iD0

jbi j
2

will be > 0 provided that � is positive. Therefore S� > 0 if M has a positive
eigenvalue and b is chosen to be the corresponding eigenvector. Using Mathematica
we computed the values of C.#/ indicated in the following table, which may be
compared to the earlier table obtained from (3.4).
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# k L h.k/

1 6 1 16
0.95 7 1 20
0.90 8 2 26
0.85 10 2 32
0.80 12 2 42
0.75 16 2 60
0.70 22 4 90
0.65 35 4 158
0.60 65 6 336
0.55 193 9 1204

In particular, taking k D 6, LD 1, b0 D 1, and b1 D b in (3.13), we get

S� �
1

8Š

�
96�

112

#
C 2b

�
18�

16

#

�
C b2

�
4�

4

#

��
��

4.1�#/

8Š#

�
b2� 2b

18# � 16

4.1�#/
�
96# � 112

4.1�#/

�
��

4.1�#/

8Š#

��
b�

18# � 16

4.1�#/

�2
C
15#2� 64# C 48

4.1�#/2

�
:

Choosing b D 18#�16

4.1�#/
, we then have

S� ��
15#2� 64# C 48

8Š#.1�#/
;

of which the right-hand side is > 0 if # � 1 lies between the two roots of the
quadratic; this occurs when 4.8�

p
19/=15 < # � 1. Thus, there are at least two

primes in any admissible tuple Hk for k D 6, if

(3.16) # >
4.8�

p
19/

15
D 0:97096 : : : :

This completes the proof of Theorem 1. �

4. Further remarks on Section 3

We can formulate the method of Section 3 as follows. For a given tuple
HD fh1; h2; : : : ; hkg we define

(4.1) Q1 WD

2NX
nDNC1

fR.nIH/
2; Q2 WD

2NX
nDNC1

� kX
iD1

�.nC hi /

�
fR.nIH/

2;
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where f should be chosen to make Q2 large compared with Q1, and RDR.N/
will be chosen later. It is reasonable to assume

(4.2) fR.nIH/D
X

d jPH.n/
d�R

�d;R:

Our goal is to select the �d;R which maximizes

(4.3) �D �.N IH; f / WD
1

log 3N

�
Q2

Q1

�
for the purpose of obtaining a good lower bound for �. If � > � for some N and
positive integer �, then there exists an n, N < n� 2N , such that the tuple (1.5) has
at least �C 1 prime components.

This method has much in common with the method introduced for twin primes
by Selberg and for general tuples by Heath-Brown. However, they used the divisor
function d.nC hi / in Q2 in place of �.nC hi / and sought to minimize (4.3) to
obtain a good upper bound for �. Heath-Brown even chose f DƒR.nIH; 1/.

As a first example, suppose we choose f as in (2.6) and (2.7), so that

(4.4) fR.nIH/D

kY
iD1

ƒR.nC hi /:

By [13], we have, as R;N !1,5

Q1 � NS.H/.logR/k if R �N
1
2k
.1�"/;(4.5)

Q2 � kNS.H/.logR/kC1 if R �N
#
2k
.1�"/:

On taking RDN
#0
2k , 0 < #0 < # , we see that, as N !1,

(4.6) � � k
logR
logN

�
#0

2
:

Notice that � < 1, so that we fail to detect primes in tuples. In Section 3, we proved
that on choosing f DƒR.nIH; `/, by (3.1) and (3.2), as N !1,

(4.7) � �
k

kC 2`C 1

2`C 1

`C 1
#0:

If `D 0 this gives � � k
kC1

#0, which, for large k, is twice as large as (4.6), while
(4.7) gains another factor of 2 when `!1 slowly as k!1. This finally shows
� > 1 if # > 1=2, but just fails if # D 1=2.

5For special reasons, the validity of the formula for Q2 actually holds here for R�N
#

2.k�1/
.1�"/

if k � 2, but this is insignificant for the present discussion.
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In (3.11) we chose

(4.8) fR.nIH/D

LX
`D0

b`

.logR/`
ƒR.nIHk; `/D

X
d jPH.n/
d�R

�.d/P

�
log.R=d/

logR

�

where P is a polynomial with a k-th order zero at 0. The matrix procedure does
not provide a method for analyzing � unless L is taken fixed, but the general
problem has been solved by Soundararajan [31]. In particular, he showed that � < 1
if # D 1=2, so that one can not prove there are bounded gaps between primes
using (4.8). The exact solution from Soundrarajan’s analysis was obtained by a
calculus-of-variations argument by Conrey, which gives, as N !1,

(4.9) �D
k.k� 1/

2ˇ
#0;

where ˇ is determined as the solution of the equation

(4.10)
1

ˇ
D

R 1
0 y

k�2q.y/2 dyR 1
0 y

k�1q0.y/2 dy
with q.y/DJk�2.2

p
ˇ/�y1�

k
2 Jk�2.2

p
ˇy/;

where Jk is the Bessel function of the first type. Using Mathematica, one can check
that this gives exactly the values of k in the previous table, which is in agreement
with our earlier calculations; but it provides somewhat smaller values of # for which
a given k-tuple will contain two primes. Thus, for example, we can replace (3.16)
by the result that every admissible 6-tuple will contain at least two primes if

(4.11) # > :95971 : : : :

5. Two lemmas

In this section we will prove two lemmas needed for the proof of Propositions
1 and 2. The conditions on these lemmas have been constructed in order for them
to hold uniformly in the given variables.

The Riemann zeta-function has the Euler product representation, with s D
� C i t ,

(5.1) �.s/D
Y
p

�
1�

1

ps

��1
; � > 1:

The zeta-function is analytic except for a simple pole at s D 1, where as s! 1

(5.2) �.s/D
1

s� 1
C 
 CO.js� 1j/:

(Here 
 is Euler’s constant.) We need standard information concerning the classical
zero-free region of the Riemann zeta-function. By Theorem 3.11 and (3.11.8) in
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[32], there exists a small constant c > 0, for which we assume c � 10�2, such that
�.� C i t/¤ 0 in the region

(5.3) � � 1�
4c

log.jt jC 3/

for all t . Furthermore, we have

�.� C i t/�
1

� � 1C i t
� log.jt jC 3/;

1

�.� C i t/
� log.jt jC 3/;(5.4)

�0

�
.� C i t/C

1

� � 1C i t
� log.jt jC 3/;

in this region. We will fix this c for the rest of the paper (we could take, for instance,
c D 10�2, see [8]). Let L denote the contour given by

(5.5) s D�
c

log.jt jC 3/
C i t:

LEMMA 1. For R � C , k � 2, B � Ck,

(5.6)
Z

L
.log.jsjC 3//B

ˇ̌̌̌
Rs

sk
ds

ˇ̌̌̌
� C k1 R

�c2 C e�
p
c logR=2;

where C1; c2 and the implied constant in� depends only on the constant C in the
formulation of the lemma. In addition, if k � c3 logR with a sufficiently small c3
depending only on C , then

(5.7)
Z

L
.log.jsjC 3//B

ˇ̌̌̌
Rs

sk
ds

ˇ̌̌̌
� e�

p
c logR=2:

Proof. The left-hand side of (5.6) is, with C4 depending on C ,

(5.8)

�

Z 1
0

R�.t/
.log.jt jC 4//B

.jt jC c=2/k
dt

�

Z C4

0

C k1 R
�c2dt C

Z !�3

C4

R
� c

log.jtjC3/

t3=2
dt C

Z 1
!�3

t�3=2dt

� C k1 R
�c2 C e

�
c logR
log! C!�

1
2 ;

where now C1 is a constant depending on C . On choosing log! D
p
c logR, the

first part of the lemma follows. The second part is an immediate consequence of
the first part. �

The next lemma provides some explicit estimates for sums of the generalized
divisor function. Let !.q/ denote the number of prime factors of a squarefree
integer q. For any real number m, we define
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(5.9) dm.q/Dm
!.q/:

This agrees with the usual definition of the divisor functions when m is a positive
integer. Clearly, dm.q/ is a monotonically increasing function of m (for a fixed q),
and for real m1, m2, and y, we see that

(5.10) dm1.q/dm2.q/D dm1m2.q/; .dm.q//
y
D dmy .q/:

Recall that
P[ indicates a sum over squarefree integers. We use the ceiling function

dye WDminfn 2 ZIy � ng.

LEMMA 2. For any positive real m and x � 1 we have

D0.x;m/W D
X[

q�x

dm.q/

q
� .dmeC log x/dme � .mC 1C log x/mC1;(5.11)

D�.x;m/W D
X[

q�x

dm.q/� x.dmeC log x/dme � x.mC 1C log x/mC1:(5.12)

Proof. First, we treat the case when m is a positive integer. We prove (5.11)
by induction. Observe that the assertion is true for mD 1, that is, when d1.q/D 1
by definition. Suppose (5.11) is proved for m� 1. Let us denote the smallest term
in a given product representation of q by j D j.q/� x1=m. Then this factor can
stand at m places, and, therefore, with q D q0j.q/D q0j ,

X[

q�x

dm.q/

q
�m

x1=mX
jD1

[ 1

j

X[

q0�x=j

dm�1.q
0/

q0
�m.1C log x

1
m / .m� 1C log x/m�1

� .mC log x/.mC log x/m�1 D .mC log x/m:

This completes the induction. For real m, the result holds since D0.x;m/ �
D0.x;dme/. We note that (5.12) follows from (5.11) becauseD�.x;m/�xD0.x;m/.

�

6. A special case of Proposition 1

In this section we prove a special case of Proposition 1 which illustrates the
method without involving the technical complications that appear in the general
case. This allows us to set up some notation and obtain estimates for use in the
general case. We also obtain the result uniformly in k.

Assume H is nonempty (so that k � 1), `D 0, and ƒR.nIH; 0/DƒR.nIH/.

PROPOSITION 3. Suppose

(6.1) k��0 .logR/
1
2
��0 with an arbitrarily small fixed �0 > 0;
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and h�RC , with C any fixed positive number; then

(6.2)
NX
nD1

ƒR.nIH/DS.H/N CO.Ne�c
p

logR/CO
�
R.2 logR/2k

�
:

This result motivates the conjecture (2.11).

Proof. We have

(6.3) SR.N IH/ WD

NX
nD1

ƒR.nIH/D
1

kŠ

X
d�R

�.d/

�
log

R

d

�k X
1�n�N
d jPH.n/

1:

If for a prime p we have pjPH.n/, then among the solutions n � �hi .modp/,
1� i � k, there will be �p.H/ distinct solutions modulo p. For d squarefree we
then have by multiplicativity �d .H/ distinct solutions for n modulo d which satisfy
d jPH.n/, and for each solution, n runs through a residue class modulo d . Hence
we see that

(6.4)
X

1�n�N
d jPH.n/

1D �d .H/

�
N

d
CO.1/

�
:

Trivially, �q.H/� k!.q/ D dk.q/ for squarefree q. Therefore, we conclude that

SR.N IH/DN

0@1
kŠ

X
d�R

�.d/�d .H/

d

�
log

R

d

�k1ACO
0@.logR/k

kŠ

X[

d�R

�d .H/

1A
DNTR.H/CO

�
R.kC logR/2k

�
;

(6.5)

by Lemma 2.
Let .a/ denote the contour s D aC i t , �1< t <1. We apply the formula

(6.6)
1

2�i

Z
.c/

xs

skC1
ds D

�
0 if 0 < x � 1,
1
kŠ
.log x/k if x � 1,

for c > 0, and have that

(6.7) TR.H/D
1

2�i

Z
.1/

F.s/
Rs

skC1
ds;

where, letting s D � C i t and assuming � > 0,

(6.8) F.s/D

1X
dD1

�.d/�d .H/

d1Cs
D

Y
p

�
1�

�p.H/

p1Cs

�
:
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Since �p.H/D k for all p > h,

(6.9) F.s/D
GH.s/

�.1C s/k
;

where by (5.1)

(6.10) GH.s/D
Y
p

�
1�

�p.H/

p1Cs

��
1�

1

p1Cs

��k
D

Y
p

�
1C

k� �p.H/

p1Cs
COh

�
k2

p2C2�

��
;

which is analytic and uniformly bounded for � >�1=2C ı for any ı > 0. Also, by
(2.2) we see that

(6.11) GH.0/DS.H/:

From (5.4) and (6.9), the function F.s/ satisfies the bound

(6.12) F.s/� jGH.s/j.C log.jt jC 3//k

in the region on and to the right of L. Here GH.s/ is analytic and bounded in this
region, and has a dependence on both k and the size h of the components of H. We
note that �p.H/D k not only when p > h, but whenever p 6 j�, where

(6.13) � WD
Y

1�i<j�k

jhj � hi j;

since then all k of the hi ’s are distinct modulo p. We now introduce an important
parameter U that is used throughout the rest of the paper. We want U to be an
upper bound for log�, and since trivially �� hk

2

we choose

(6.14) U WD Ck2 log.2h/

and have

(6.15) log�� U:

We now prove, for �1=4 < � � 1,

(6.16) jGH.s/j � exp.5kU ı log logU/; where ı Dmax.��; 0/:

We treat separately the different pieces of the product defining GH. First, by use of
the inequality log.1C x/� x for x � 0, we have
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ˇ Y
p�U

�
1�

�p.H/

p1Cs

�ˇ̌̌̌
ˇ� Y

p�U

�
1C

k

p1�ı

�

D exp
� X
p�U

log
�
1C

k

p1�ı

��
� exp

� X
p�U

k

p1�ı

�

� exp
�
kU ı

X
p�U

1

p

�
� exp

�
kU ı log logU

�
:

Second, by the same estimates and the inequality .1�x/�1�1C3x for 0�x�2=3,
we see thatˇ̌̌̌
ˇ Y
p�U

�
1�

1

p1Cs

��k ˇ̌̌̌ˇ�
� Y
p�U

�
1�

1

p1�ı

��1 �k

�

� Y
p�U

�
1C

3

p1�ı

��k �
since

1

p1�ı
�

1

23=4
<
2

3

�
;

� exp
�
3kU ı log logU

�
:

Hence, the terms in the product for GH.s/ with p � U are

� exp
�
4kU ı log logU

�
:

For the terms p >U , we first consider those for which pj�. In absolute value,
they are

�

Y
pj�
p>U

�
1C

k

p1�ı

��
1C

3

p1�ı

�k
� exp

� X
pj�
p>U

4k

p1�ı

�
:

Since there are fewer than .1Co.1// log�<U primes with pj�, the sum above is
increased if we replace these terms with the integers between U and 2U . Therefore
the right-hand side above is

� exp
�
4k

X
U<n�2U

1

n1�ı

�
� exp

�
4k.2U /ı

X
U<n�2U

1

n

�
� exp.4kU ı/:

Finally, if p > U ˇ̌̌̌
k

p1Cs

ˇ̌̌̌
�

k

U 1�ı
�
1

2
;
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so that in absolute value the terms with p > U and p 6 j� are

D

ˇ̌̌̌
ˇ Y
p 6 j�
p>U

�
1�

k

p1Cs

��
1�

1

p1Cs

��k ˇ̌̌̌ˇ
D

ˇ̌̌̌
ˇ exp

 X
p 6 j�
p>U

�
�

1X
�D1

1

�

� k

p1Cs

��
C k

1X
�D1

1

�

� 1

p1Cs

���!ˇ̌̌̌ˇ
� exp

� X
p>U

1X
�D2

2

�

� k

p1�ı

���
� exp

� X
p>U

1X
�D2

� k

p1�ı

���

� exp
�
2k2

X
n>U

1

n2�2ı

�
� exp

�4k2U ı
U 1�ı

�
� exp

�
2kU ı

�
:

Thus, the terms with p >U contribute � exp
�
6kU ı

�
, from which we obtain (6.16).

In conclusion, for h� RC (where C > 0 is fixed and as large as we wish)
and for s on or to the right of L, we have

(6.17) F.s/� .C log.jt jC 3//k exp.5kU ı log logU/:

Returning to the integral in (6.7), we see that the integrand vanishes as jt j!1,
�1=4 < � � 1. By (6.9) we see that in moving the contour from .1/ to the left
to L we either pass through a simple pole at s D 0 when H is admissible (so that
S.H/¤ 0), or we pass through a regular point at s D 0 when H is not admissible.
In either case, we have by virtue of (5.2), (6.11), (6.14), (6.17), and Lemma 1, for
any k satisfying (6.1),

(6.18) TR.H/DGH.0/C
1

2�i

Z
L

F.s/
Rs

skC1
ds DS.H/CO.e�c

p
logR/:

Equation (6.2) now follows from this and (6.5). �

Remark. The exponent 1=2 in the restriction k� .logR/1=2��0 is not signifi-
cant. Using Vinogradov’s zero-free region for �.s/ we could replace 1=2 by 3=5.

7. First part of the proof of Proposition 1

Let
HDH1[H2; jH1j D k1; jH2j D k2; k D k1C k2;(7.1)

r D jH1\H2j; M D k1C k2C `1C `2:

Thus jHj D k� r . We prove Proposition 1 in the following sharper form.
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PROPOSITION 4. Let h� RC , where C is any positive fixed constant. As
R;N !1, we haveX

n�N

ƒR.nIH1; `1/ƒR.nIH2; `2/D
�
`1C `2
`1

�.logR/rC`1C`2

.r C `1C `2/Š
S.H/N(7.2)

C N

rC`1C`2X
jD1

Dj .`1; `2;H1;H2/.logR/rC`1C`2�j

C OM .Ne
�c
p

logR/CO.R2.3 logR/3kCM /;

where the Dj .`1; `2;H1;H2/’s are functions independent of R and N which satisfy
the bound

(7.3) Dj .`1; `2;H1;H2/�M .logU/Cj �M .log log 10h/C
0
j

where U is as defined in (6.14) and Cj and C 0j are two positive constants depending
on M .

Proof. We can assume that both H1 and H2 are nonempty since the case where
one of these sets is empty can be covered in the same way we did in the case of
`D 0 in Section 6. Thus k � 2 and we have

(7.4)

SR.N IH1;H2; `1; `2/ WD

NX
nD1

ƒR.nIH1; `1/ƒR.nIH2; `2/

D
1

.k1C`1/Š.k2C`2/Š

X
d;e�R

�.d/�.e/

�
log

R

d

�k1C`1 �
log

R

e

�k2C`2 X
1�n�N
d jPH1

.n/

ejPH2
.n/

1:

For the inner sum, we let d D a1a12, e D a2a12 where .d; e/ D a12. Thus a1,
a2, and a12 are pairwise relatively prime, and the divisibility conditions d jPH1.n/

and ejPH2.n/ become a1jPH1.n/, a2jPH2.n/, a12jPH1.n/, and a12jPH2.n/. As
in Section 6, we get �a1.H1/ solutions for n modulo a1, and �a2.H2/ solutions
for n modulo a2. If pja12, then from the two divisibility conditions we have
�p.H1.p/\H2.p// solutions for n modulo p, where

H.p/D fh01; : : : ; h
0
�p.H/ W h

0
j � hi 2H for some i; 1� h0j � pg:

Notice that H.p/DH if p > h . Alternatively, we can avoid this definition which
is necessary only for small primes by defining

(7.5) �p.H1\H2/ WD �p.H1.p/\H2.p// WD �p.H1/C �p.H2/� �p.H/
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and then extending this definition to squarefree numbers by multiplicativity.6 Thus
we see thatX

1�n�N
d jPH1

.n/

ejPH2
.n/

1D �a1.H1/�a2.H2/�a12.H1\H2/

�
N

a1a2a12
CO.1/

�
;

and have

(7.6)

SR.N I `1; `2;H1;H2/D
N

.k1C `1/Š.k2C `2/Š

�

X
a1a12�R
a2a12�R

�.a1/�.a2/�.a12/
2�a1.H1/�a2.H2/�a12.H1\H2/

a1a2a12

�

�
log

R

a1a12

�k1C`1 �
log

R

a2a12

�k2C`2
CO

 
.logR/M

X
a1a12�R
a2a12�R

�.a1/
2�.a2/

2�.a12/
2�a1.H1/�a2.H2/�a12.H1\H2/

!

DNTR.`1; `2IH1;H2/CO.R
2.3 logR/3kCM /;

where
P0 indicates the summands are pairwise relatively prime. Notice that by

Lemma 2, the error term was bounded by

� .logR/M
X[

q�R2

X
qDa1a2a12

dk.q/D .logR/M
X[

q�R2

d3.q/dk.q/

D .logR/M
X[

q�R2

d3k.q/�R2.3 logR/3kCM :

By (6.6), we have
(7.7)

TR.`1; `2IH1;H2/D
1

.2�i/2

Z
.1/

Z
.1/

F.s1; s2/
Rs1

s1k1C`1C1

Rs2

s2k2C`2C1
ds1 ds2;

where, by letting sj D �j C i tj and assuming �1; �2 > 0,

6We are establishing a convention here that for �p we take intersections modulo p.
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F.s1; s2/D
X

1�a1;a2;a12<1

�.a1/�.a2/�.a12/
2�a1.H1/�a2.H2/�a12.H1\H2/

a11Cs1a21Cs2a121Cs1Cs2

D

Y
p

�
1�

�p.H1/

p1Cs1
�
�p.H2/

p1Cs2
C
�p.H1\H2/

p1Cs1Cs2

�
:

(7.8)

Since for all p > h we have �p.H1/ D k1, �p.H2/ D k2, and �p.H1 \H2/ D r ,
we factor out the dominant zeta-factors and write

(7.9) F.s1; s2/DGH1;H2.s1; s2/
�.1C s1C s2/

r

�.1C s1/k1�.1C s2/k2
;

where by (5.1)
(7.10)

GH1;H2.s1; s2/D
Y
p

0B@
�
1�

�p.H1/

p1Cs1
�
�p.H2/

p1Cs2
C
�p.H1\H2/

p1Cs1Cs2

� �
1� 1

p1Cs1Cs2

�r
�
1� 1

p1Cs1

�k1 �
1� 1

p1Cs2

�k2
1CA

is analytic and uniformly bounded for �1; �2 >�1=4Cı, for any fixed ı > 0. Also,
from (2.2), (7.1), and (7.5) we see immediately that

(7.11) GH1;H2.0; 0/DS.H/:

Furthermore, the same argument leading to (6.16) shows that for s1, s2 on L or to
the right of L

(7.12) GH1;H2.s1; s2/� exp.CkU ı1Cı2 log logU/;

with ıi D�min.�i ; 0/ and U as defined in (6.14). We define

(7.13) W.s/ WD s�.1C s/

and

(7.14) D.s1; s2/DGH1;H2.s1; s2/
W.s1C s2/

r

W.s1/k1W.s2/k2
;

so that
(7.15)

TR.`1; `2IH1;H2/D
1

.2�i/2

Z
.1/

Z
.1/

D.s1; s2/
Rs1Cs2

s1`1C1s2`2C1.s1C s2/r
ds1ds2:

To complete the proof of Proposition 1, we need to evaluate this integral. We
will also need to evaluate a similar integral in the proof of Proposition 2, where
the parameters k1, k2, and r have several slightly different relationships with H1

and H2, and G is slightly altered. Therefore we change notation to handle these
situations simultaneously.
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8. Completion of the proof of Proposition 1: Evaluating an integral

Let

(8.1) T�R.a; b; d; u; v; h/ WD
1

.2�i/2

Z
.1/

Z
.1/

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d
ds1 ds2;

where

(8.2) D.s1; s2/D
G.s1; s2/W

d .s1C s2/

W a.s1/W b.s2/

and W is from (7.13). We assume G.s1; s2/ is regular on L and to the right of L

and satisfies the bound, with ıi D�min.�i ; 0/,

(8.3) G.s1; s2/�M exp.CMU ı1Cı2 log logU/; where U D CM 2 log.2h/:

LEMMA 3. Suppose that

(8.4) 0� a; b; d; u; v �M; aCu� 1; bC v � 1; d �min.a; b/;

where M is a large constant and our estimates may depend on M . Let h� RC ,
with C any positive fixed constant. Then we have, as R!1,

(8.5) T�R.a; b; d; u; v; h/D
�
uC v
u

�.logR/uCvCd

.uC vC d/Š
G.0; 0/

C

uCvCdX
jD1

Dj .a; b; d; u; v; h/.logR/uCvCd�jCOM .e�c
p

logR/;

where the Dj .a; b; d; u; v; h/’s are functions independent of R which satisfy the
bound

(8.6) Dj .a; b; d; u; v; h/�M .logU/Cj �M .log log 10h/C
0
j

for some positive constants Cj , C 0j depending on M .

Proof. One would expect to proceed exactly as in Section 6 by moving both
contours to the left to L. There is, however, a complication because the integrand
now contains the function �.1C s1C s2/ which necessitates also that s1C s2 be
restricted to the region to the right of L if we wish to use the bounds in (5.4).7 By

7This was pointed out to us by J. Sivak and also Y. Motohashi and was handled in similar ways in
[30] and in [15]; we have also adopted this approach here.
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the conditions of Lemma 3, (5.4), and (8.3), we have

(8.7)
D.s1; s2/

suC11 svC12 .s1Cs2/d

�M

exp.CMU ı1Cı2 log logU/
�

log.jt1jC3/ log.jt2jC3/
�2Mmax.1; js1Cs2j�d /

js1jaCuC1js2jbCvC1

provided s1, s2, and s1C s2 are on or to the right of L. We next let

(8.8) V D e
p

logR

and define the contours, for j D 1 or 2,

L0j D
� 4�j c

logV

�
D

n 4�j c
logV

C i t W �1< t <1
o
;(8.9)

Lj D
n 4�j c

logV
C i t W jt j � 4�jV

o
;

Lj D
n
�
4�j c

logV
C i t W jt j � 4�jV

o
;

Hj D
n
�j ˙ i4

�jV W j�j j �
4�j c

logV

o
:

By (8.7) the integrand in (8.1) vanishes as jt1j !1 or jt2j !1 provided s1 and
s2 are to the right of L02. We first shift the contours .1/ for the integrals over s1
and s2 to L01 and L02, respectively. Next, we truncate these contours so that they
may be replaced with L1 and L2. In doing this there are two error terms which are
estimated by (8.7). For example the error term coming from L01 and the truncated
piece of L02 is

�M .logU/CM .logV /MV
5c
16

 Z 1
�1

.log jt jC 3/2M

j
c

4 logV C i t j
aCuC1

dt

!
�

 Z 1
V=16

.log t /2M

t2
dt

!
�M

.logV /6M

V 1�
5c
16

�M e�c
p

logR:

Hence

(8.10) T�R D
1

.2�i/2

Z
L2

Z
L1

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d
ds1 ds2COM .e

�c
p

logR/:

To replace the s1-contour along L1 with the contour along L1 we consider the
rectangle formed by L1, H1, and L1 which contains poles of the integrand as a
function of s1 at s1 D 0 and s1 D�s2. Hence we see that
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(8.11) T�R D
1

2�i

Z
L2

Res
s1D0

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
ds2

C
1

2�i

Z
L2

Res
s1D�s2

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
ds2

C
1

.2�i/2

Z
L2

Z
L1[H1

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d
ds1 ds2COM .e

�c
p

logR/:

Here the contours along L1 and H1 are oriented clockwise. In the first and third
integrals we move the contour over L2 to L2 in the same fashion, but now we only
pass a pole at s2 D 0. Thus we obtain

(8.12)

T �R D Res
s2D0

Res
s1D0

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d

C
1

2�i

Z
L2[H2

Res
s1D0

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
ds2

C
1

2�i

Z
L1[H1

Res
s2D0

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
ds1

C
1

2�i

Z
L2

Res
s1D�s2

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
ds2

C
1

.2�i/2

Z
L2[H2

Z
L1[H1

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d
ds1 ds2COM .e

�c
p

logN /

WD I0C I1C I2C I3C I4COM .e
�c
p

logR/:

We will see that the residue I0 provides the main term and some of the lower order
terms, the integral I3 provides the remaining lower order terms, and the integrals
I1, I2, and I4 are error terms.

We consider first I0. At s1D 0 there is a pole of order � uC1, and therefore8

by Leibniz’s rule we have

Res
s1D0

D.s1; s2/R
s1

suC11 .s1C s2/d
D
1

uŠ

uX
iD0

�
u
i

�
.logR/u�i

@i

@si1

�
D.s1; s2/

.s1C s2/d

� ˇ̌̌̌
ˇ
s1D0

8If G.0; 0/ D 0 then the order of the pole is u or less, but the formula we use to compute the
residue is still valid. In this situation one or more of the initial terms will have the value zero.
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and

@i

@si1

�
D.s1; s2/

.s1C s2/d

� ˇ̌̌̌
ˇ
s1D0

D .�1/i
D.0; s2/d.d C 1/ � � � .d C i � 1/

sdCi2

C

iX
jD1

�
i
j

� @j
@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇ
s1D0

.�1/i�j
d.d C 1/ � � � .d C i � j � 1/

s
dCi�j
2

;

where in case of i D j (including the case when i D j D 0 and d � 0 arbitrary)
the empty product in the numerator is 1. We conclude that

(8.13) Res
s1D0

D.s1; s2/R
s1

suC11 .s1C s2/d
D

uX
iD0

iX
jD0

a.i; j /.logR/u�i

s
dCi�j
2

@j

@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇ
s1D0

with a.i; j / as given explicitly in the previous equations. To complete the evaluation
of I0, we see that the .i; j /th term contributes to I0 a pole at s2 D 0 of order
vC 1C d C i � j (or less), and therefore by Leibniz’s formula

Res
s2D0

Rs2

s
vC1CdCi�j
2

@j

@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇ
s1D0

D
1

.vCdCi�j /Š

vCdCi�jX
mD0

�
vC d C i � j

m

�
.logR/vCdCi�j�m

@m

@sm2

@j

@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇs1D0
s2D0

:

This completes the evaluation of I0, and we conclude
(8.14)

I0 D

uX
iD0

iX
jD0

vCdCi�jX
mD0

b.i; j;m/

�
@m

@sm2

@j

@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇs1D0
s2D0

�
.logR/uCvCd�j�m;

where
(8.15)

b.i; j;m/D .�1/i�j
�
u
i

��
i
j

��
vC d C i � j

m

�d.d C 1/ � � � .d C i � j � 1/
uŠ.vC d C i � j /Š

:

The main term is of order .logR/uCvCd and occurs when j DmD 0. There-
fore, it is given by

G.0; 0/.logR/uCvCd
 
1

uŠ

uX
iD0

�
u
i

�
.�1/i

d.d C 1/ � � � .d C i � 1/

.vC d C i/Š

!
:

It is not hard to prove that

(8.16)
1

uŠ

uX
iD0

�
u
i

�
.�1/i

d.d C 1/ � � � .d C i � 1/

.vC d C i/Š
D

�
uC v
u

� 1

.uC vC d/Š
;



848 DANIEL A. GOLDSTON, JÁNOS PINTZ, and CEM Y. YILDIRIM

from which we conclude that the main term is

(8.17) G.0; 0/
�
uC v
u

� 1

.uC vC d/Š
.logR/dCuCv:

Motohashi found the following approach which avoids proving (8.16) directly and
which can be used to simplify some of the previous analysis. Granville also made a
similar observation. The residue we are computing is equal to

1

.2�i/2

Z
�2

Z
�1

D.s1; s2/R
s1Cs2

suC11 svC12 .s1C s2/d
ds1 ds2;

where �1 and �2 are the circles js1j D � and js2j D 2�, respectively, with a small
� > 0. When s1 D s and s2 D sw, this is equal to

1

.2�i/2

Z
�3

Z
�1

D.s; sw/Rs.wC1/

suCvCdC1wvC1.wC 1/d
ds dw;

with �3 the circle jwj D 2. The main term is obtained from the constant term
G.0; 0/ in the Taylor expansion of D.s; sw/ and, therefore, equals

G.0; 0/
.logR/uCvCd

.uC vC d/Š

1

2�i

Z
�3

.wC 1/uCv

wvC1
dwDG.0; 0/

.logR/uCvCd

.uC vC d/Š

�
uC v
v

�
;

by the binomial expansion.
To complete the analysis of I0, we only need to show that the partial derivatives

of D.s1; s2/ at .0; 0/ satisfy the bounds given in the lemma. For this, we use
Cauchy’s estimate for derivatives

(8.18) jf .j /.z0/j � max
jz�z0jD�

jf .z/j
j Š

�j
;

if f .z/ is analytic for jz� z0j � �. In the application below we will choose z0 on
L or to the right of L and

(8.19) �D
1

C logU logT
; where T D js1jC js2jC 3:

Thus we see the whole circle jz�z0�1j D � will remain in the region (5.3) and the
estimates (5.4) hold in this circle. (We remind the reader that the generic constants
c; C take different values at different appearances.) Thus, we have for s1; s2 on L
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or to the right of L, and j �M , m� 2M ,

@m

@sm2

@j

@s
j
1

D.s1; s2/(8.20)

� j ŠmŠ.C logU logT /jCm max
js�1�s1j��;js

�
2�s2j��

jD.s�1 ; s
�
2 /j

�M exp.CMU ı1Cı2 log logU/.logT /6M
max.1; js1C s2j/d

max.1; js1j/a max.1; js2j/b
;

which, if max.js1j; js2j/� C , reduces to

(8.21)
@m

@sm2

@j

@s
j
1

D.s1; s2/�M exp
�
CMU ı1Cı2 log logU

�
:

In particular, we have

(8.22)
@m

@sm2

@j

@s
j
1

D.s1; s2/

ˇ̌̌̌
ˇs1D0
s2D0

�M .logU/CM :

We conclude from (8.14), (8.17), and (8.22) that I0 provides the main term and
some of the secondary terms in Lemma 3 which satisfy the stated bound.

We now consider I1. By (8.13) and (8.20),
(8.23)

I1�M .logR/u
Z

L2[H2

eCMU ı2 log logU .log.jt2jC 3//3M max.1; js2jd /
js2jvC1Cd max.1; js2jb/

jRs2 jjds2j:

By (8.4) we have bC v � 1, along H2, jRs2 j � ec
p

logR, and along both L2 and
H2 we have U ı2 � 1. When js2j � 1,

max.1; js2jd /
js2jvC1Cd max.1; js2jb/

�
1

js2jvC1Cb
�

1

js2j2
;

and therefore the contribution from H2 to I1 is

�M
.logR/7M=2�1=2

V 2
ec
p

logR
�M e�c

p
logR:

Similarly the integral along L2 is bounded by

�M .logR/2MR�
c

16 logV

Z V

�V

.log.jt jC 3//3M min
�

1

.logV /�3M
;
1

t2

�
dt

�M .logR/3MR�
c

16 logV

�M e�c
p

logR;
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and therefore I1 also satisfies this bound. The same bound holds for I2 since it
is with relabeling equal to I1. Further, I4 also satisfies this bound by the same
argument on applying (8.7) and noting that js1C s2j � c

logV in I4.
Finally, we examine I3, which only occurs if d � 1:

Res
s1D�s2

�
D.s1; s2/R

s1Cs2

suC11 svC12 .s1C s2/d

�
D lim
s1!�s2

1

.d � 1/Š

@d�1

@s1
d�1

�
D.s1; s2/R

s1Cs2

s1uC1s2vC1

�

D
1

.d � 1/Š

d�1X
iD0

Bi .s2/.logR/d�1�i ;

(8.24)

where

(8.25) Bi .s2/

D

�
d � 1
i

� iX
jD0

�
i
j

� @i�j
@s
i�j
1

D.s1; s2/

ˇ̌̌̌
ˇ
s1D�s2

.�1/j .uC 1/ � � � .uC j /

.�1/uCjC1s
uCvCjC2
2

:

Therefore by (8.12), (8.24), and (8.25),

(8.26) I3 D
1

.d � 1/Š

d�1X
iD0

Ci .logR/d�1�i ;

where

(8.27) Ci D
1

2�i

Z
L2

Bi .s2/ ds2; 0� i � d � 1:

By (8.20) and (8.25) we see that for s2 to the right of L

(8.28) Bi .s2/�M exp
�
CMU jı2j log logU

� �
log.jt2jC 3/

�4M
jt2juCvCaCbC2 max.1; jt2ji /

:

In (8.27) we may shift the contour L2 to the imaginary axis with a semicircle of
radius 1= logU centered at and to the right of s2 D 0. Further, we can extend this
contour to the complete imaginary axis with an error OM .e�c

p
logR/ using (8.28)

and the same argument used above (8.10). Letting

(8.29) L0 D
n
s D i t W jt j �

1

logU

o
[

n
s D

ei#

logU
W �

�

2
� # �

�

2

o
oriented from �i1 up to i1, we conclude

(8.30) Ci D
1

2�i

Z
L0

Bi .s2/ ds2COM .e
�c
p

logR/; 0� i � d � 1:
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The integral here is independent of R but depends on h. Therefore this provides in
(8.26) some further lower order terms in Lemma 3. The contribution to Ci from
the integral along the imaginary axis is

(8.31) �M .logU/uCvCiCaCbC1 exp.CM log logU/�M .logU/C
0M :

This expression also bounds the contribution to Ci from the semicircle contour,
completing the evaluation of I3. Combining our results, we obtain Lemma 3. �

9. Proof of Proposition 2

We introduce some standard notation associated with (1.2) and (1.3). Let

(9.1) �.xI q; a/ WD
X
p�x

p�a.modq/

logp D Œ.a; q/D 1�
x

�.q/
CE.xI q; a/;

where ŒS� is 1 if the statement S is true and is 0 if S is false. Next, we define

(9.2) E 0.x; q/ WD max
a; .a;q/D1

jE.xI q; a/j; E�.x; q/Dmax
y�x

E 0.y; q/:

In this paper we only need level of distribution results for E 0, but usually these
results are stated in the stronger form for E�. Thus, for some 1=2 � # � 1, we
assume, given any A > 0 and " > 0, that

(9.3)
X

q�x#�"

E�.x; q/�A;"
x

.log x/A
:

This is known to hold with # D 1=2.
We prove the following stronger version of Proposition 2. Let

CR.`1; `2;H1;H2; h0/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

1 if h0 62H,

.`1C`2C1/ logR
.`1C1/.rC`1C`2C1/

if h0 2H1 nH2,

.`1C`2C2/.`1C`2C1/ logR
.`1C1/.`2C1/.rC`1C`2C1/

if h0 2H1\H2.

By relabeling the variables we obtain the corresponding form if h0 2H2 nH1. We
continue to use the notation (7.1).

PROPOSITION 5. Suppose h� R. Given any positive A, there exists B D
B.A;M/ such that for

(9.4) R�M;A N
1
4 =.logN/B and R;N !1

we have
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(9.5)
NX
nD1

ƒR.nIH1; `1/ƒR.nIH2; `2/�.nC h0/

D
CR.`1; `2;H1;H2; h0/

.r C `1C `2/Š

�
`1C `2
`1

�
S.H0/N.logR/rC`1C`2

CN

rX
jD1

Dj .`1; `2;H1;H2; h0/.logR/rC`1C`2�j COM;A

�
N

.logN/A

�
;

where the Dj .`1; `2;H1;H2; h0/’s are functions independent of R and N which
satisfy the bound

(9.6) Dj .H1;H2; h0/�M .logU/Cj �M .log log 10h/C
0
j

for some positive constants Cj , C 0j depending on M . If conjecture (9.3) holds, then
(9.5) holds for R�M N

#
2 � " and h�R", for any given " > 0.

Proof. We assume that both H1 and H2 are nonempty so that k1 � 1 and
k2 � 1. The proof in the case when one of these sets is empty is much easier and
may be obtained by an argument analogous to that of Section 6. We have

(9.7) zSR.N IH1;H2; `1; `2; h0/ WD

NX
nD1

ƒR.nIH1; `1/ƒR.nIH2; `2/�.nC h0/

D
1

.k1C `1/Š.k2C `2/Š

X
d;e�R

�.d/�.e/

�
log

R

d

�k1C`1 �
log

R

e

�k2C`2
�

X
1�n�N
d jPH1

.n/

ejPH2
.n/

�.nC h0/:

To treat the inner sum above, let d D a1a12 and e D a2a12, where .d; e/D a12,
so that a1, a2, and a12 are pairwise relatively prime. As in Section 7, the n for
which d jPH1.n/ and ejPH2.n/ cover certain residue classes modulo Œd; e�. If
n� b .mod a1a2a12/ is such a residue class, then letting

mD nC h0 � bC h0.mod a1a2a12/;

we see that this residue class contributes to the inner sum

(9.8)
X

1Ch0�m�NCh0
m�bCh0 .moda1a2a12/

�.m/

D �.NCh0I a1a2a12; bCh0/� �.h0I a1a2a12; bCh0/

D Œ.bC h0; a1a2a12/D 1�
N

�.a1a2a12/
CE.N I a1a2a12; bCh0/CO.h logN/:
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We must determine the number of these residue classes where .bCh0; a1a2a12/
D 1 so that the main term is non-zero. If pja1, then b � �hj .modp/ for some
hj 2H1, and therefore bC h0 � h0� hj .modp/. Thus, if h0 is distinct modulo
p from all the hj 2H1, then all �p.H1/ residue classes satisfy the relatively prime
condition, while otherwise h0 � hj .modp/ for some hj 2H1 leaving �p.H1/� 1

residue classes with a non-zero main term. We introduce the notation ��p .H1
0/ for

this number in either case, where we define for a set H and integer h0

(9.9) ��p .H
0/D �p.H

0/� 1;

where

(9.10) H0
DH[fh0g:

We extend this definition to ��
d
.H0/ for squarefree numbers d by multiplicativity.

The function ��
d

is familiar in sieve theory; see [16]. A more algebraic discussion
of �d� may also be found in [14], [15]. We define ��d

�
.H1\H2/

0
�

as in (7.5).
Next, the divisibility conditions a2jPH2.n/, a12jPH1.n/, and a12jPH2.n/ are

handled as in Section 7 together with the above considerations. Since E.nI q; a/�
.logN/ if .a; q/ > 1 and q �N , we conclude that

(9.11)
X

1�n�N
d jPH1

.n/

ejPH2
.n/

�.nC h0/D �
�
a1
.H1

0/��a2.H2
0/��a12

�
.H1\H2/

0
� N

�.a1a2a12/

CO
�
dk.a1a2a12/

�
max
b

.b;a1a2a12/D1

ˇ̌
E.N I a1a2a12; b/

ˇ̌
C h.logN/

��
:

Substituting this into (9.7) we obtain for zSR.N IH1;H2; `1; `2; h0/ the value

N

.k1C `1/Š.k2C `2/Š

�

X
a1a12�R
a2a12�R

�.a1/�.a2/�.a12/
2��a1.H1

0/��a2.H2
0/��a12

�
.H1\H2/

0
�

�.a1a2a12/

�

�
log

R

a1a12

�k1C`1 �
log

R

a2a12

�k2C`2
CO

 
.logR/M

X
a1a12�R
a2a12�R

dk.a1a2a12/E
0.N; a1a2a12/

!

CO.hR2.3 logN/MC3kC1/;
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that is to say,

(9.12) zSR.N IH1;H2; `1; `2; h0/DN zTR.H1;H2; `1; `2; h0/

CO
�
.logR/MEk.N /

�
CO

�
hR2.3 logN/MC3kC1

�
;

where the last error term was obtained using Lemma 2. To estimate the first error
term we use Lemma 2, (1.3), and the trivial estimate E 0.N; q/� .2N=q/ logN for
q �N to find, uniformly for k �

p
.logN/=18, that

(9.13) jEk.N /j

�

X[

q�R2

dk.q/ max
b

.b;q/D1

ˇ̌
E.N I q; b/

ˇ̌ X
qDa1a2a12

1

D

X[

q�R2

dk.q/d3.q/E
0.N; q/�

vuutX[

q�R2

d3k.q/
2

q

sX
q�R2

q.E 0.N; q//2

�

q
.logN/9k2

p
2N logN

sX
q�R2

E 0.N; q/�N.logN/.9k
2C1�A/=2;

provided R2�N
1
2 =.logN/B . On relabeling, we conclude that given any positive

integers A and M there is a positive constant B D B.A;M/ so that for R �
N
1
4 =.logN/B and h�R,

(9.14)
zSR.N IH1;H2; `1; `2; h0/DN zTR.H1;H2; `1; `2; h0/COM

�
N

.logN/A

�
:

Using (9.3) with any # > 1=2, we see that (9.14) holds for the longer range
R�M N

#
2
�", h�N ".

Returning to the main term in (9.12), we have by (6.6) that

(9.15) zTR.H1;H2; `1; `2; h0/

D
1

.2�i/2

Z
.1/

Z
.1/

F.s1; s2/
Rs1

s1k1C`1C1

Rs2

s2k2C`2C1
ds1ds2;

where, by letting sj D �j C i tj and assuming �1; �2 > 0,

(9.16) F.s1; s2/

D

X
1�a1;a2;a12<1

�.a1/�.a2/�.a12/
2��a1.H1

0/��a2.H2
0/��a12

�
.H1\H2/

0
�

�.a1/a1s1�.a2/a2s2�.a12/a12s1Cs2

D

Y
p

�
1�

��p .H1
0/

.p� 1/ps1
�

��p .H2
0/

.p� 1/ps2
C
��p
�
.H1\H2/

0
�

.p� 1/ps1Cs2

�
:
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We now consider three cases.

Case 1. Suppose h0 62H. Then we have, for p > h,

��p .H1
0/D k1; ��p .H2

0/D k2; ��p
�
.H1\H2/

0
�
D r:

Therefore in this case we define GH1;H2.s1; s2/ by

(9.17) F.s1; s2/DGH1;H2.s1; s2/
�.1C s1C s2/

r

�.1C s1/k1�.1C s2/k2
:

Case 2. Suppose h0 2 H1 but h0 62 H2. (By relabeling this also covers the
case where h0 2H2 and h0 62H1.) Then for p > h

��p .H1
0/D k1� 1; ��p .H2

0/D k2; ��p
�
.H1\H2/

0
�
D r:

Therefore, we define GH1;H2.s1; s2/ by

(9.18) F.s1; s2/DGH1;H2.s1; s2/
�.1C s1C s2/

r

�.1C s1/k1�1�.1C s2/k2
:

Case 3. Suppose h0 2H1\H2. Then for p > h

��p .H1
0/D k1� 1; ��p .H2

0/D k2� 1; ��p
�
.H1\H2/

0
�
D r � 1:

Thus, we define GH1;H2.s1; s2/ by

(9.19) F.s1; s2/DGH1;H2.s1; s2/
�.1C s1C s2/

r�1

�.1C s1/k1�1�.1C s2/k2�1
:

In each case, G is analytic and uniformly bounded for �1; �2 > �c, with any
c < 1=4.

We now show that in all three cases

(9.20) GH1;H2.0; 0/DS.H0/:

Notice that in Cases 2 and 3 we have H0 DH. By (5.1), (7.5), (9.9), and (9.16),
we find in all three cases

(9.21) GH1;H2.0; 0/

D

Y
p

�
1�

�p.H1
0/C �p.H2

0/� �p..H1\H2/
0/� 1

p� 1

��
1�

1

p

��a.H1;H2;h0/
D

Y
p

�
1�

�p.H
0/� 1

p� 1

��
1�

1

p

��a.H1;H2;h0/
;

where a.H1;H2; h0/Dk1Ck2�rDk�r in Case 1; a.H1;H2; h0/D .k1�1/Ck2�

rDk�r�1 in Case 2; and a.H1;H2; h0/D .k1�1/C.k2�1/�.r�1/Dk�r�1
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in Case 3. Hence, in Case 1 we have

GH1;H2.0; 0/D
Y
p

�p� �p.H0/

p� 1

��
1�

1

p

��.k�r/
(9.22)

D

Y
p

�
1�

�p.H
0/

p

��
1�

1

p

��.k�rC1/
DS.H0/;

while in Cases 2 and 3 we have

(9.23) GH1;H2.0; 0/D
Y
p

�p� �p.H/
p� 1

��
1�

1

p

��.k�r�1/
D

Y
p

�
1�

�p.H/

p

��
1�

1

p

��.k�r/
DS.H/ .DS.H0//:

We are now ready to evaluate TR.H1;H2; `1; `2; h0/. There are two differ-
ences between the functions F and G that appear in (9.16)–(9.19) and the earlier
(7.8)–(7.10). The first difference is that a factor of p in the denominator of the Euler
product in (7.8) has been replaced by p�1, which only affects the value of constants
in calculations. The second difference is the relationship between k1, k2, and r ,
which affects the residue calculations of the main terms. However, the analysis of
lower order terms and the error analysis are essentially unchanged and, therefore,
we only need to examine the main terms. We use Lemma 3 here to cover all of the
cases. Taking into account (9.17)–(9.19) we have in Case 1 that aDk1; bDk2; d D
r; u D `1; v D `2; in Case 2 that a D k1 � 1; b D k2; d D r; u D `1C 1; v D `2;
and in Case 3 that aD k1� 1; b D k2� 1; d D r � 1; uD `1C 1; v D `2C 1. By
(9.22) and (9.23), the proof of Propositions 5 and 2 is thus complete. �

10. Proof of Theorem 3

For convenience, we agree in our notation below that we consider every set of
size k with a multiplicity kŠ according to all permutations of the elements hi 2H,
unless mentioned otherwise. While unconventional, this will clarify some of the
calculations.

To prove Theorem 3 we consider in place of (3.5)

(10.1) SR.N; k; `; h; �/

WD
1

Nh2kC1

2NX
nDNC1

� X
1�h0�h

�.nC h0/� � log 3N
�� X

H�f1;2;:::;hg
jHjDk

ƒR.nIH; `/

�2

D zMR.N; k; `; h/� �
log 3N
h

MR.N; k; `; h/;
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where

MR.N; k; `; h/D
1

Nh2k

2NX
nDNC1

� X
H�f1;2;:::;hg
jHjDk

ƒR.nIH; `/

�2
;(10.2)

zMR.N; k; `; h/(10.3)

D
1

Nh2kC1

2NX
nDNC1

� X
1�h0�h

�.nC h0/

�� X
H�f1;2;:::;hg
jHjDk

ƒR.nIH; `/

�2
:

To evaluate MR and zMR we multiply out the sum and apply Propositions 1 and 2.
We need to group the pairs of sets H1 and H2 according to the size of the intersection
r D jH1 \H2j, and thus jHj D jH1 [H2j D 2k � r . Let us choose now a set
H and here, exceptionally, we disregard the permutation of the elements in H.
(However for H1 and H2 we take into account all permutations.) Given the set H

of size 2k� r , we can choose H1 in
�
2k�r
k

�
ways. Afterwards, we can choose the

intersection set in
�
k
r

�
ways. Finally, we can arrange the elements both in H1 and

H2 in kŠ ways. This gives

(10.4)
�
2k� r
k

��
k
r

�
.kŠ/2 D .2k� r/Š

�
k
r

�2
rŠ

choices for H1 and H2, when we take into account the permutation of the elements
in H1 and H2. If we consider in the summation every union set H of size j just
once, independently of the arrangement of the elements, then Gallagher’s theorem
(3.7) may be formulated as

(10.5)
X�

H�f1;2;:::;hg
jHjDj

S.H/ �
hj

j Š
;

where
P� indicates every set is counted just once. Applying this, we obtain on

letting

(10.6) x D
logR
h

;

and using Proposition 1, that
(10.7)

MR.N; k; `; h/�
1

Nh2k

kX
rD0

.2k�r/Š
�
k
r

�2
rŠ
�
2`
`

�.logR/2 C̀r

.r C 2`/Š
N

X
jHjD2k�r

�
S.H/

�

�
2`
`

�
.logR/2`

kX
rD0

�
k
r

�2 xr

.r C 1/ � � � .r C 2`/
:
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By Proposition 2 and (10.5),

(10.8) zMR.N; k; `; h/�
1

Nh2kC1

kX
rD0

.2k� r/Š
�
k
r

�2
rŠZr ;

where, abbreviating a D 2`C1

`C1
D

�
2`C 1
`C 1

��
2`
`

��1
D
1

2

�
2`C 2
`C 1

��
2`
`

��1
, we

have

Zr WD
�
2`
`

�.logR/2`Cr

.rC2`/Š

(
r
X�

jHjD2k�r

2a
logR

rC2`C1
S.H/N

C.2k�2r/
X�

jHjD2k�r

a
logR

rC2`C1
S.H/N C

X�

jHjD2k�r

hX
h0D1

h0…H

S.H0/N

)

�N
�
2`
`

�.logR/2`Cr

.rC2`/Š

(
h2k�r

.2k�r/Š

2ak logR
rC2`C1

C
2k�rC1

.2k�rC1/Š
h2k�rC1

)
:

(10.9)

In the last sum we took into account which element of H0 is h0, which can be
chosen in 2k� r C 1 ways. Thus we obtain

(10.10) zMR.N; k; `; h/

�

�
2`
`

�
.logR/2`

kX
rD0

�
k
r

�2 xr

.r C 1/ � � � .r C 2`/

�
2ak

r C 2`C 1
xC 1

�
:

We conclude, on introducing the parameters

(10.11) ' D
1

`C 1
; .so that aD 2�'/; ‚D

logR
log 3N

; .so that RD .3N /‚/;

that

(10.12) SR.N; k; `; h; �/�
�
2`
`

�
.logR/2`Pk;`;�.x/;

where

(10.13) Pk;`;�.x/D

kX
rD0

�
k
r

�2 xr

.rC1/ � � � .rC2`/

 
1Cx

 
4.1� '

2
/k

rC2`C1
�
�

‚

!!
:

Let

(10.14) hD � log 3N; so that x D
‚

�
:

The analysis of when S >0 now depends on the polynomial Pk;`;�.x/. We examine
this polynomial as k; `!1 in such a way that `D o.k/. In the first place, the
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size of the terms of the polynomial are determined by the factor

g.r/D
�
k
r

�2
xr ;

and since g.r/ > g.r � 1/ is equivalent to

r <
kC 1

1C 1p
x

we should expect the polynomial is controlled by terms with r close to k=.zC 1/,
where

(10.15) z D
1
p
x
:

Consider now the sign of each term. For small x, the terms in the polynomial are
positive, but they become negative when

1C x

 
4.1� '

2
/k

r C 2`C 1
�
�

‚

!
< 0:

When r D k=.zC 1/ and k; `!1, `D o.k/, we have heuristically

1C x

 
4.1� '

2
/k

r C 2`C 1
�
�

‚

!
� 1C

1

z2

 
4k

k
zC1

�
�

‚

!
D

1

z2

�
.zC 2/2�

�

‚

�
:

Therefore, the terms will be positive for r near k=.zC 1/ if z >
p
�=‚� 2, which

is equivalent to � > .
p
� � 2

p
‚/2. Since we can take ‚ as close to #=2 as we

wish, this implies Theorem 3. To make this argument precise, we choose r0 slightly
smaller than g.r/ maximal, and prove that all the negative terms together contribute
less than the single term r0, which will be positive for z and thus � close to the
values above.

For the proof, we may assume � � 2 and 1=2� #0 � 1 are fixed, with #0 < 1
in case � D 2. (The case � D 1 is covered by Theorem 2, and the case � D 2,
#0 D 1, E2 D 0 is covered by (1.11) proved in Section 3.) First, we choose "0
as a sufficiently small fixed positive number. We will choose ` sufficiently large,
depending on �, #0, "0, and set

(10.16) k D .`C 1/2 D '�2; ` > `0.�; #0; "0/; so that ' < '0.�; #0; "0/:

Furthermore, we choose

(10.17) ‚D
logR

log 3N
D
#0.1�'/

2
;

and (because of our assumptions on �) we can define

(10.18) z0 WD
p
2�=#0� 2 > 0:
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Thus, we see that

(10.19) 1C
1

z02

 
4k

k
z0C1

�
2�

#0

!
D

1

z02

�
.z0C 2/

2
�
2�

#0

�
D 0;

Let us choose now

(10.20) r0 D

�
kC 1

z0C 1

�
; r1 D r0C'k D r0C `C 1;

and put

(10.21) z D z0.1C "0/:

The linear factor in each term of Pk;`;�.x/ is, for r0 � r � r1,

1C x

 
4.1� '

2
/k

r C 2`C 1
�
�

‚

!
D 1C

1

z20.1C "0/
2

 
4k.1CO.'//

k
z0C1

CO.k'/
�

2�

#0.1�'/

!

D 1C
�z20 CO.

p
�'/CO.�'/

z20.1C "0/
2

> c.�; #0/"0 if ' < '0.�; #; "0/;

(10.22)

where c.�; #0/ > 0 is a constant. Letting

(10.23) f .r/ WD
�
k
r

�2 xr

.r C 1/ � � � .r C 2`/
;

we have, for any r2 > r1,

f .r2/

f .r0/
<

Y
r0<r�r2

�
kC 1� r

r
�
1

z

�2
<

Y
r0<r�r1

�
kC 1� r

r
�
1

z

�2
(10.24)

<

��
kC 1

r0C 1
� 1

�
1

z

�2`
�

�
z0C 1� 1

z0.1C "0/

�2`
< e�"0`:

Thus, the total contribution in absolute value of the negative terms of Pk;`;�.x/ will
be, for sufficiently large `, at most

(10.25) k

�
1C

4.kC �/

z2

�
e�"0`f .r0/ < e

�"0`=2f .r0/;

while that of the single term r0 will be by (10.22) at least

(10.26) c.�; #0/"0f .r0/ > e
�"0`=2f .r0/ if ` > `0.�; #0; "0/:

This shows that Pk;`;�.x/ > 0. Hence, we must have at least �C 1 primes in some
interval

(10.27) ŒnC1; nCh�D ŒnC1; nC� log 3N �; n 2 ŒNC1; 2N �;
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where

(10.28) �D‚z2 <
#0

2
z20.1C "0/

2
D .1C "0/

2.
p
� �

p
2#0/

2:

Since "0 can be chosen arbitrarily small, this proves Theorem 3.
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[28] A. SCHINZEL and W. SIERPIŃSKI, Sur certaines hypothèses concernant les nombres premiers,
Acta Arith. 4, 185–208; Erratum 5 (1958), 259. MR 21 #4936 Zbl 0082.25802

[29] A. SELBERG, Collected Papers. Vol. II, Springer-Verlag, New York, 1991. MR 95g:01032
Zbl 0729.11001

[30] J. SIVAK, Méthodes de crible appliquées aux sommes de Kloosterman et aux petits écarts entre
nombres premiers, 2005, Thèse de Doctorat de l’Université Paris Sud (Paris XI). Available at
http://www.math.u-psud.fr/~sivak/these.pdf

[31] K. SOUNDARARAJAN, Small gaps between prime numbers: the work of Goldston-Pintz-
Yıldırım, Bull. Amer. Math. Soc. 44 (2007), 1–18. MR 2007k:11150 Zbl 05135876

[32] E. C. TITCHMARSH, The Theory of the Riemann Zeta-Function, second ed., The Clarendon
Press, Oxford University Press, New York, 1986. MR 88c:11049 Zbl 0601.10026

[33] S. UCHIYAMA, On the difference between consecutive prime numbers, Acta Arith. 27 (1975),
153–157. MR 51 #3085 Zbl 0301.10037

(Received September 27, 2005)
(Revised July 22, 2006)

E-mail address: goldston@math.sjsu.edu
DEPARTMENT OF MATHEMATICS, SAN JOSE STATE UNIVERSITY, ONE WASHINGTON SQUARE,
SAN JOSE, CA 95192-0130, UNITED STATES

E-mail address: pintz@renyi.hu
RÉNYI MATHEMATICAL INSTITUTE OF MATHEMATICS, P.O. BOX 127, 1364 BUDAPEST,
HUNGARY

E-mail address: yalciny@boun.edu.tr
BOG̃AZIÇI UNIVERSITY, DEPARTMENT OF MATHEMATICS, BEBEK, 34342 İSTANBUL, TURKEY
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