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Abstract

We prove the formulae conjectured by the first author for the index of K-theory
classes over the moduli stack of algebraic G-bundles on a smooth projective curve.
The formulae generalize E. Verlinde’s for line bundles and have Witten’s integrals
over the moduli space of stable bundles as their large level limits. As an application,
we prove the Newstead-Ramanan conjecture on the vanishing of high Chern classes
of certain moduli spaces of semi-stable G-bundles.

Introduction

Let G be a reductive, connected complex Lie group and M be the moduli stack
of algebraic G-bundles over a smooth projective curve † of genus g. In this paper,
we determine the analytic index on a dense sub-ring of the topological K-theory of
M. For line bundles, we recover the famous formula due to E. Verlinde [Ver88],
which we extend to include the Atiyah-Bott classes, described in Section 1. From
this angle, our index is analogous to Witten’s cohomological integration formula
[Wit92] over the moduli space of semi-stable bundles, which appears for us in
the large level limit of the index. Like the Verlinde formula, but unlike Witten’s,
our index is expressed as a finite sum; this removes the convergence problems
and consequent regularisation in [Wit92]. While other regularisations have been
considered in the literature [JK98], ours is intrinsically meaningful in topological
K-theory, and expresses the fact that indexes of vector bundles over M, and not
just those of line bundles, are controlled by finite-dimensional Frobenius algebras
[Tel04].

C.T. was partially supported by EPSRC grant GR/S06165/01. C.W. was partially supported by NSF
grant DMS-0093647.
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For a smooth projective variety X , the analytic index of a holomorphic vector
bundle V can be defined as the alternating sum �.X IV / of its sheaf cohomologies.
This agrees with the topological index of V , defined by the Gysin map to a point in
topologicalK-theory. The construction extends to certain well-behaved Artin stacks.
Thus, when G acts on X , a vector bundle over the quotient stack X=G corresponds
to an equivariant bundle V over X , and the holomorphic Euler characteristic
�.X=GIV / (defined, say, using the simplicial bar construction of X=G) agrees
with the invariant part of the virtual G-representation �.X IV /. Now, �.X IV /
agrees with the equivariant topological index, the image of V under the Gysin map
from K0Gk

.X/ to RG , the representation ring of the maximal compact subgroup
Gk � G. Regarding the map RG ! Z which extracts the invariant part of a
representation as the Gysin projection from the classifying stack BGk to a point
gives us an “analytic = topological” index theorem for X=G.

Our stack M fails a basic test for good behavior: it has infinite type. Thus,
when G is a torus, M has infinitely many connected components, labelled by
H 2.†; �1G/. Nonetheless, M has a distinguished Shatz stratification. For a torus,
the strata are the connected components. Finite, open unions of strata can be
presented as quotients of smooth quasi-projective varieties by reductive groups;
this allows us to use familiar techniques of sheaf cohomology. In addition, special
geometric features of the stratification — reflected in the properties of canonical
parabolic reductions of G-bundles — ensure the finiteness of sheaf cohomology,
and allow us to define the index, for a sub-ring of admissible K-theory classes.
When G is simply connected, these classes are dense in the rational K-theory of
M, in the topology induced by the stratification. The index is not continuous in
this topology and does not extend to all of K0; nevertheless, interesting limits do
exist, such as in our application to the Newstead conjecture in Section 7.

This extension of Verlinde’s formula, capturing the index of vector bundles,
emerged from the discovery that a certain twistedK-theory was the topological home
for the index of line bundles over M [FHT08, �8]. Thus motivated, formulae for the
index of admissible classes were proposed in [Tel04], equating the analytic index
over M, defined from coherent sheaf cohomology, with a topological index defined
in twisted K-theory. (See also the informal notes [Tel03].) The topological index
can be calculated by the Atiyah-Bott fixed-point method, and when �1G is free,
one obtains a formula in terms of the maximal torus T and the Weyl denominator.
In this situation, [Tel04] offers two conjectural formulae for the analytic index over
M which do not involve twisted K-theory: a localization formula, which reduces
the index to the stack of principal T -bundles, and a Verlinde-like formula involving
a finite sum over conjugacy classes.

We prove these formulae here. It is clear that our method leads to the equality
of analytic and topological indexes for all compact groups, but for simplicity we
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confine ourselves to connected groups with free �1; explicit formulae for more
general groups require additional calculations (�4.14).

In principle, we also solve the index problem over the more traditional moduli
space M of semi-stable bundles. For large levels (twists by large line bundles), the
contribution of unstable strata of M vanishes, and the index over M is equal to that
over the open sub-stack Mss of semi-stable bundles (1.5). The cohomology of a
coherent sheaf over Mss agrees with that of its direct image to M . The index over
M , which is a projective variety, depends (quasi-)polynomially on the level, and so
we can give a formula (unpleasant, but explicit) for the index of (the direct image to
M of) admissible classes, at any level. When all semi-stable G-bundles are stable,1

Mss is an orbifold with coarse quotient M , and the rational cohomology calculation
of [AB83] shows that we generate all of K0.M IQ/ in this way.

Our proof relies on a remarkable symmetry of the index over M which is absent
on M , or on any finite-type approximation. The symmetry arises from a loop group
version of Bott’s reflection argument [Bot57], a Hecke correspondence. (This device
was already used in [BS93] in relation to the Verlinde formula.) The reader should
refer to Section 1.1 below for the definitions in what follows. Choose an admissible
line bundle L and an index bundle E�†V . For a weight � of the maximal torus
T , denote by V� the holomorphically induced virtual G-representation. Regard
the index of L˝ expŒtE�†V �˝E

�
xV�, a formal series in t , as the e�-coefficient

for a Fourier series on T , with values in QŒŒt ��. This series turns out to be anti-
invariant for a certain action of the affine Weyl group, and is thereby constrained to
represent a sum of ı-functions at prescribed, regular points of T . Regularity of its
support, combined with Atiyah’s localization theorem for the index of transversally
elliptic operators, implies that the index distribution only sees the contribution of
principal bundles whose structure group reduces to T . This can be calculated by
Riemann-Roch, leading to our explicit index formula.

The paper is organized as follows. In Section 1 we describe the admissible K-
classes and define their analytic index. We include a brief review of the stratification
of M and the local cohomology vanishing results of [Tel00]. Section 2 contains
the precise statements of our formulae. The proof is split into Section 3, where
we check the anti-symmetry of the index distribution, and Section 4 where we
eliminate the contributions of nontoric principal bundles.

The last sections contain two applications. In Section 5, we show how Witten’s
integration formulae over M arise from our index formula in the large level limit;
we only give full details for SL.2/. (The formulae were proven for SL.r/ by Jeffrey-
Kirwan [JK98] and, independently of our work but simultaneously, by Meinrenken
[Mei05] for compact, 1-connected G.) Section 6 enhances our index formulae by

1When G ¤ GL.n/, this condition can only hold if we include parabolic structures.
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incorporating Kähler differentials, needed in our next application in Section 7 to a
conjecture of Newstead and Ramanan. The original version, proved by Gieseker
[Gie84], asserted the vanishing of the top 2g� 1 Chern classes of the moduli space
of stable, odd degree vector bundles of rank 2 on †. An analogue in rank 3 was
settled by Kiem and Li [KL07]. We generalize this to the vanishing of the top
.g� 1/` rational Chern classes of the moduli space M of stable principal bundles
with semi-simple structure group of rank `, whenever M (or a variant decorated
with parabolic structures) is a compact orbifold.

The appendix reviews some background on the topological K-theory of M

and on its variants decorated with parabolic structures; the exotic parabolic structure
associated to the simple affine root of g plays a special role in the proof. We do not
review general properties of stacks and their cohomology, these matters having had
increasing coverage in the literature since the detailed treatments [BL94], [LS97];
a review suited to our needs is found in [Tel98], [Tel00].

We thank the referee for a careful reading of the manuscript and for many
helpful suggestions.

Notation. G is a reductive group, T a maximal torus and B � T a Borel
subgroup. Gk; Tk will be the compact forms and gk; tk their Lie algebras. The
coweight lattice of T , log.1/=2�i, lies in itk; its Z-dual is the weight lattice in
it_
k

. W is the Weyl group and � WD
Q
˛>0 2 sin.i˛=2/ the Weyl denominator. The

Weyl vector � is the half-sum of the positive roots. The simple roots are ˛1; : : : ; ˛`;
when g is simple, the simple affine root ˛0 sends � 2 t to 1�#.�/, with the highest
root # . (The affine root vector of ˛0 is z�1e# .) The representation ring of Gk is
denoted by RG , and CRG WD C˝RG .

1. Atiyah-Bott classes

In this section, we introduce the Atiyah-Bott classes and admissible classes. We
then define their analytic index and derive its finiteness from the local cohomology
vanishing results of [Tel00]. This requires a brief review of the Shatz stratification.

1.1. Admissible classes. Given a representation V of G, call E�V the vector
bundle over †�M associated to the universal G-bundle. Call � the projection
along †,

p
K a square root of the relative canonical bundle, and ŒC � the topological

K1-homology class of a 1-cycle C on †. Consider the following classes in the
topological K-theory of M:

(i) The restriction E�xV 2K
0.M/ of E�V to a point x 2†;

(ii) The slant product E�CV WDE
�V=ŒC � 2K�1.M/ of E�V with ŒC �;

(iii) The Dirac index bundle E�†V WD R��.E
�V ˝

p
K/ 2 K0.M/ of E�V

along †;
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(iv) The inverse determinant of cohomology, D†V WD det�1E�†V .

We call the classes (i)–(iii) the Atiyah-Bott generators; they are introduced in [AB83,
�2], along with their counterparts in cohomology, and can also be described from
the Künneth decomposition of E�V in

K0.†�M/ŠK0.†/˝K0.M/˚K1.†/˝K1.M/;

by contraction with the various classes in†. Classes (i) and (iv) are represented by al-
gebraic vector bundles, while (iii) can be realized as a perfect complex of O-modules.
The class E�CV in (ii) is not algebraic. Note that detE�†V D detR��.E�V / when
detV is trivial; an important example is the canonical bundle KD detE�†g of M,
defined from the adjoint representation g.

For general (nonsimply connected) groups, determinant line bundles are quite
restrictive; we will consider, more generally, line bundles which have a level, defined
below, and call them admissible if their level exceeds that of K1=2. (Recall [LS97]
that K has a distinguished Pfaffian square root.) Products of an admissible line
bundle and any number of Atiyah-Bott generators span the ring of admissible
classes.

1.2. Line bundles with a level. To certain line bundles on M we will now
associate a level, a quadratic form on the Lie algebra g. Briefly, for any V , the
level of detE�†V is the trace from �; � 7! TrV .��/, and we wish to extend this by
linearity in the first Chern class of the line bundle.

Riemann-Roch along† expresses c1.E�†V / as the image of ch2.V /D 1
2
c21.V /

�c2.V / under transgression along†, � WH 4.BGIQ/!H 2.MIQ/ (construction
(1.1.iii) in cohomology). It is important that � is injective (�4.11). We now identify
H 4.BGIR/ with the space of invariant symmetric bilinear forms on gk so that TrV
corresponds2 to ch2.V /. We say that the line bundle L has a level if its Chern class
c1.L/ agrees with some �.h/ in H 2.MIQ/; the form h, called level of L, is then
unique.

For SLn, the level of the positive generator of Pic.M/ is �TrCn in the standard
representation; the calculation is due to Quillen. For another example, the level of
K�1=2 is c WD �1

2
Trg. Positivity of a level refers to the quadratic form on gk; thus,

D†V has positive level if and only if V is g-faithful. Finally, L, with level h, is
admissible if and only if h > �c as a quadratic form.

1.3. Remarks. (i) When G is simply connected, � WH 4.BGIZ/!H 2.MIZ/

is an isomorphism, but this fails (even rationally) as soon as �1G¤ 0. Line bundles
with a level satisfy a prescribed relation between their Chern classes over the
different components of M; cf. (4.8).

2It is more standard to identify Tr with 2 ch2; our choice here avoids factors of 2 elsewhere.
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(ii) The traces span the negative semi-definite cone in H 4.BGIR/; so L has
positive level if and only if c1.L/ lies in the QC-span of the c1.D†V /’s, with
g-faithful V .

(iii) For semi-simple G, K has negative level, and so O is admissible. This
fails for a torus, but positive-level line bundles are admissible for any G.

(iv) For g > 1 and simply connected G, positivity of the level is equivalent
to amplitude on the moduli space. (It suffices to check this for simple G: recall
then that Pic.M/D Z and that K�1 is ample.) When �1G ¤ 0, the positive level
condition is much more restrictive.

1.4. The index of an admissible class. We first recall the finiteness result which
enables us to define the index of admissible classes by means of sheaf cohomology.
It is a consequence of combining the relative case of the main theorem in [Tel00,
�5] with the discussion of M in �8 and �9 of the same reference. For the reader’s
convenience we will also outline the proof in Section 1.11, after we review the
stratification of M.

Let E be the twist of an external tensor product �E�Vk of universal bundles
over †n �M by an admissible line bundle L. Call E the direct image to †n �M ,
the moduli space, of the restriction of E to the semi-stable part Mss. Consider the
projections � and � from †n �M, resp. †n �M , to †n.

1.5. LEMMA. The total direct image
L
i R

i��E is coherent on †n. For large
enough L, depending on the Vk , it agrees with

L
i R

i�
�

E. �

A lower bound for the level of L can be given, linear in the highest weights of
the Vk; see Section 1.11.

Choose now cycles Ck on † of various dimensions, but with even total degree.
We wish to define the index of L˝

N
k E
�
Ck
Vk over M as the Euler characteristic

of its coherent sheaf cohomology, but the non-algebraic classes (1.1.ii) impose the
indirect

1.6. Definition. The index over M of L ˝
N
k E
�
Ck
Vk is the pairing of

�kŒCk� 2K0.†
n/ with the topological K-theory class of

P
i .�1/

iRi��E.

When all the Ck are even, we can switch and push down along †n first,
recovering the Euler characteristic. When G is abelian, the index theorem applied
to the components of M shows that our index only depends on the underlying
topological K-class of the bundle. This is not obvious in general, but will follow,
for instance, from our abelianisation formula (2.20).

1.7. Shatz stratification. Recall that any G-bundle over † admits a canonical
reduction of structure group to a standard parabolic subgroup P of G, for which
the associated bundle with Levi structure group is semi-stable. Topologically, this
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reduction is classified by a coweight of P=ŒP; P �; we identify this with a (possibly
fractional) dominant coweight � of g, called the instability type of the original
bundle. Then, P is the standard parabolic subgroup defined by �; we will denote it
by P� and its Levi subgroup by G� . If M� denotes the stack of G-bundles of type
�, we have an algebraic stratification [Sha77], [AB83]

MD
[

�
M� :

Sending a P�-bundle to its associated Levi bundle gives a morphism from M�

to the stack Mss
G� ;�

of semi-stable principal G�-bundles of type �; the fibres are
quotient stacks of affine spaces by nilpotent groups. The virtual normal bundle for
the morphism Mss

G� ;�
!M is the complex

�� DR��E
�.g=g�/Œ1�:

Its K-theory Euler class should be the alternating sum of exterior powers3

��1.�
_
� / WD

X
.�1/p�p.�_� /;

but for now this infinite sum is only a formal expression, whose meaning is to be
spelled out.

1.8. Local cohomology. Finite, open unions of Shatz strata

M�� D
[

���
M�

can be presented as quotient stacks of smooth quasi-projective varieties by reductive
groups. The cohomology with supports over M� of a vector bundle E is

(1.9) H �M�
.M�� ;E��/DH

��d� .M� ;R�E/

where d� is the codimension of M� and R�E!M� the sheaf of “E-valued residues
along M�”, the cohomology sheaves relative to the complement of M� . Pushing
down to Mss

G� ;�
and passing to the associated graded sheaf for the filtration by order

of the pole leads to

(1.10) H �.Mss
�;G�

;E� ˝Eul.��/
�1
C /

where E� is the restriction to Mss
G� ;�

, while the complex of sheaves

Eul.��/
�1
C WD SymR��

�
E�.p�=g�/Œ1�

_
˚R��E

�.g=p�/Œ1�
�

˝ det.R��E�.g=p�/Œ1�/Œd� �

3Recall that the pth exterior power �p of a complex V 0
ı
�! V 1 is the complex with qth space

ƒp�qV 0˝SymqV 1 and obvious differential induced by ı. A similar definition applies to symmetric
powers.
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is formally an inverse to the Euler class ��1.�_� / which “prefers” the �-negative
eigenvalues in the geometric expansion.

1.11. Finiteness and vanishing. All eigenvalues of � appearing in Eul.��/�1C
are negative, with finite multiplicity. The determinant factor has weight c.�; �/
(negative, as � 2 itk). An admissible line bundle factor L in E changes this behavior
to .hCc/.�; �/. Atiyah-Bott bundles E�

‹
V alter this behavior linearly in � . Overall,

for any admissible E, the �-invariant part of E˝Eul.��/�1C is finite-dimensional,
and vanishes for all but finitely many � .

It follows that almost all cohomologies (1.9) vanish, and the index of E over
M is the sum of finitely many local contributions over the M� . Passage to the Gr
does not change the index and we obtain

(1.12) Ind.M;E/D
X

�
Ind.Mss

G� ;�
;E� ˝Eul.��/

�1
C /:

Lemma 1.5 is the relative version of this story for the projection � to †n, with
Ri�� replacing cohomology and

P
.�1/iRi�� 2K

0.†n/ replacing the index.

1.13. Remark. Formula (1.12) is related to the nonabelian localization prin-
ciple of Witten [Wit92]. When presenting M�� as a quotient of a manifold by a
reductive group, the N@ operator can be deformed so that the invariant part of its
kernel localizes at the critical points of the norm-square of the moment map, leading
to the individual contributions in (1.12); see Paradan [Par01].

1.14. Remark. Inadmissible L’s can have infinitely many contributions to
(1.12). However, when G is semi-simple, the theorems of Kumar [Kum87] and
Mathieu [Mat88] imply the vanishing of all the direct images for negative L: M is
then isomorphic to a quotient of the generalized flag variety X WDG..z//=GŒŒz�� for
the loop group by the group GŒ† n fxg� of algebraic maps on the punctured curve,
and the cohomology of L vanishes over X .

2. The index formulae

The index formulae involve a sum over deformations of certain Verlinde
conjugacy classes in G, which appear in the formula for line bundles. We start by
recalling that story.

2.1. Isogenies from admissible levels. Contraction � 7! �.�/h with the level
h of an admissible line bundle L maps the coweight lattice to its dual, the weight
lattice. This map descends to a homomorphism � W T ! T _, the dual torus. The
homomorphism �0 defined from h0 WD hC c is an isogeny, with kernel F � T . Let
F� be the translate of F lying over e2� i� 2 T _. This last point does not depend on
the Weyl chamber used to define �, and gives the spin covering of T in the adjoint
representation g.



THE INDEX FORMULA FOR THE MODULI OF G-BUNDLES 503

2.2. Example. If G D SL.n/, Pic.M/ Š Z, with positive generator O.1/ D

D†Cn and KD O.�2n/. T _ is the maximal torus of PSL.n/ and �, for O.1/, is the
natural projection. Hence, for LD O.l/, F D F� comprises the .l C n/th roots of
the center of SL.n/. The analogue holds for simply connected, simply laced groups,
if n is replaced by the dual Coxeter number.

A formula of E. Verlinde (first given in the context of conformal field theory)
describes the index of a determinant line bundle over M. Let ‚ be the sum of
delta-functions on the regular Gk-conjugacy classes through F�, divided by the
order jF j of F . Define a linear map RG! Z on representations by

(2.3) U 7!‚.U /D

Z
Gk

TrU .g/ �‚.g/dg D
X

f 2F
reg
� =W

TrU .f / �
�.f /2

jF j
:

(Recall that we normalized the Weyl denominator so that �.f /2 is the volume of
the conjugacy class.) Let �.f /D�.f /2=jF j; Verlinde’s formula4 gives the index
of L as

(2.4) Ind.MIL/D
X

f 2F
reg
� =W

�.f /1�g :

2.5. Remark. There is a version of formula (2.4) with F� replaced by F . The
components M./ of M are labelled by  2 �1G, and the spin covering of the
adjoint representation of G defines a character � W �1G! f˙1g. The calculations
of Section 4 give a graded index formula

(2.6)
X
2�1G

�./ � Ind.M./
IL/D

X
f 2F reg=W

�.f /1�g :

The same applies to our generalized index formulae below.

2.7. Remark. The kernel of the pairing .U; U 0/ 7! ‚.U ˝ U 0/ is the ideal
Ih � RG of virtual characters which vanish on F reg

� . We obtain a nondegenerate
pairing on the quotient RG=Ih, which becomes an integral Frobenius algebra, the
Verlinde ring at level h. Its complex spectrum is F reg

� =W . A folk result asserts that
a Frobenius algebra is the same as a 2-dimensional topological field theory, and
formula (2.4) is the “partition function” for a genus g surface in the Verlinde ring.

2.8. Deformations. Given a representation V of G, consider the following
formal one-parameter family of transformations on G:

(2.9) g 7!mt .g/ WD g � exp Œt rTrV .g/� ;

4See, e.g. [AMW01] for semi-simple G; we shall reprove it below when �1G is free.
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with the gradient in the bilinear form h0. This descends to the space G=AdG of
conjugacy classes; note from the Ad-invariance of TrV that singular classes remain
singular. Restricting to conjugacy classes in Gk and composing with ‚ give a
formal t-family ‚t WD ‚ ımt of distributions, even though the points ft of its
support, the solutions to mt .ft /D f , can move in complex directions (when TrV
is not real):

‚t .U / WD

Z
Gk

TrU .g/ �‚.mt .g// dg D
X

f 2F
reg
� =W

TrU .ft / � �t .ft / 2 CŒŒt ��:

The �t are described as follows. Call HV the Hessian of TrV : HV .u/.�; �/ D
TrV .u��/, for u 2 T and �; � 2 t, and denote by HV .u/� its conversion via h0 to
an endomorphism of t. In view of the volume scaling under (2.9), we have

(2.10) �t .ft /D det�1
h
1C tHV .ft /

�
i
�
�.ft /

2

jF j
:

An alternate description of �t is as follows. Strictly speaking, it applies only when
TrV is real; see the closely related Fourier expansion of ‚t , in (4.12), which is
free of this flaw. The push-down of ‚ to the space Gk=AdGk D Tk=W of unitary
conjugacy classes is

(2.11)
X

F�=W
�.f / � ıf D�

2
� ı� ı�

0;

with the delta-function ı� at e2� i� 2 T _ and the isogeny �0 W T ! T _ of Section
2.1. Viewing d TrV as a map T ! t_, we see that �0 has a formal deformation to
�0t WD �

0 � exp.td TrV /, under which (2.11) deforms to

(2.12)
X

�t .ft / � ıft D�
2
� ı� ı�

0
t :

2.13. Remark. Pulling back Fourier modes on T _ by �0t defines a group
homomorphism from �1T to the units in CRT ŒŒt ��. This defines a (higher) twisting
for the equivariant K-theory KT .T ICŒŒt ��/. This extends to a twisting for the
conjugation action of G on itself, and the twisted K-group KG.G/ turns out to be
the quotient of CRG ŒŒt �� by the kernel of the pairing ‚t .U ˝U 0/. It is a Frobenius
algebra over CŒŒt ��, deforming the complex Verlinde ring at t D 0. See [Tel04] for
more details.

2.14. Even Atiyah-Bott generators. We incorporate the index bundles (1.1.iii)
into Verlinde’s formula by means of a generating function

L˝ expŒt1E�†V1C : : :C tnE
�
†Vn�˝E

�
xU 2K

�.M/ŒŒt1; : : : ; tn��:

Let �t.f / denote the multi-parameter version of �t .f /, for tD .t1; : : : ; tn/.
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2.15. THEOREM (Index formula for even classes).

Ind
�
MIL˝ expŒt1E�†V1C : : :C tnE

�
†Vn�˝E

�
xU

�
D

X
f 2F

reg
� =W

�t.f /
1�g
�TrU .ft/:

With tD 0 and the trivial representation U , this recovers (2.4).

2.16. Example. When G D SL.2/, LD O.l/ and TrV D
P
'nu

n on matrices
with eigenvalues fu; u�1g, we have, as conjectured in [Tel04],

Ind
�
MIL˝ expŒtE�†V �

�
D

X
�t

"
2l C 4C t R'.�t /ˇ̌
�t � �

�1
t

ˇ̌2
#g�1

where the �t range over the solutions of �2lC4t � exp .t P'.�t // D 1 with positive
imaginary part, P'.u/D

P
n'nu

n and R'.u/D
P
n2'nu

n.

2.17. Odd generators. The bilinear form h0C tHV .u/ on t is nondegenerate;
denote by h j i.u/ the inverse form on t_. To an even product  of odd Atiyah-
Bott generators (1.1.ii), we assign a function Œ �.u/ on T as follows: split  into
quadratic factors E�CU ^E

�
C 0U

0, replace each factor by the number

�#.C \C 0/ � hd TrU .u/jd TrU 0.u/i.u/;

where #.C \C 0/ is the intersection pairing, and sum over all possible quadratic
splittings, with signs as required by re-ordering. Set Œ �.u/D 0 if  is odd. We
shall see in Section 4 that Œ �.u/ is expressible in terms of the integral of the Chern
character Ch. / against a Gaussian form expfŒh0CtHV .u/�˝�g on the Jacobian
of T -bundles on †; in particular, it only depends on the K-theory class of  . The
following gives the index for odd and even classes; for simplicity we use a single V .

2.18. THEOREM (Index formula for general classes).

Ind
�
MIL˝ expŒtE�†V �˝E

�
xU ˝ 

�
D

X
f 2F

reg
� =W

TrU .ft /�t .ft /1�g � Œ �.ft /:

2.19. Abelianisation. We will derive our index formulae from a more concep-
tual “virtual localization” to the stack MT of T -bundles. Let

� WDR��E
�.g=t/Œ1�

be the virtual normal bundle for the morphism j WMT !M. In Section 4.2, we
will see that the K-theoretic Euler class ��1.�_/ is well-defined after inverting the
Weyl denominator and equals

��1.�
_/D .�1/2�./�2g�2K1=2
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on the component of MT of topological type  .

2.20. THEOREM. For admissible E,

Ind .MIE/D jW j�1 � “Ind”
�
MT I j

�E˝��1.�
_/�1

�
:

The right-hand side needs clarification. Each component of MT is the product
of the classifying stack BT with a Jacobian of T -bundles, and the index over
MT should be the sum of the T -invariant parts of indexes over these Jacobians.
Because of the Weyl denominator, ��1.�_/ is not invertible in K�.MT /; the index
of j �E˝��1.�

_/�1 over each Jacobian lands in RT Œ��1�, and its T -invariant part
is not a priori well-defined. However, in Section 4.5 we will see that summing over
all Jacobians leads to a well-defined distribution on the regular part of Tk , supported
on F reg

� . We declare the index over MT to be the invariant part (= integral over
Tk) of this index distribution, after extension by zero to the singular locus.

A formula which does not require inverting jW j will be given in Proposition
4.1. In a family of curves, the index is replaced with a K-theory class on the base,
and the alternate formula loses slightly less torsion. We hope to return to this in
future work.

3. Affine Weyl symmetry

In this section, we establish the anti-symmetry of the index under an action of
the affine Weyl group (Proposition 3.3). This constrains the general form of the
answer (Corollary 3.8).

3.1. Affine Weyl action. Define a group homomorphism from the coroot lattice
… to the units in CRT ŒŒt �� by

… 3  7! exp
�
�./h0C t

@TrV
@

�
:

(This is the homomorphism mentioned in �2.13.) Multiplication by these units
combines with the Weyl transformations into an action of the affine Weyl group
Waff WDW Ë… on CRT ŒŒt ��. This action extends to the space of formal (unrestricted)
Fourier series on T with coefficients in CŒŒt ��.

For a weight� ofB , call V� the holomorphically induced virtual representation
of G, that is, the G-equivariant index of the weight line bundle O.�/ over the flag
variety G=B . Define the following index series on T , a formal Fourier series with
coefficients in CŒŒt ��:

(3.2) I WD
X

�
Ind.MIL˝ expŒtE�†V �˝E

�
xV�C�/e

��:
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We use a single t and only even classes to keep the notation manageable, but this
restriction is not necessary (cf. �3.9 below).

3.3. PROPOSITION. The index series I is anti-invariant under the affine Weyl
action.

Proof. Weyl anti-invariance being clear from the holomorphic induction step, it
suffices to confirm, for each simple factor of g, the sign change under the following
affine reflection S : the highest Weyl reflection s0, followed by subtraction of the
coroot H of the highest root # . This is the affine analogue of the famous Bott
reflection [Bot57].

The stack M.x;B/ of G-bundles over † with B-reduction at x is a G=B-fibre
bundle over M (�A.4.i) and carries natural extensions of the weight line bundles
O.�/ on the fibre. From the Borel-Weil-Bott and Leray theorems, the e�� Fourier
coefficient is

I.e�/D Ind
�
M.x;B/IL.�C �/˝ expŒtE�†V �

�
;

where .�/ is the twist by O.�/ and, abusively, L stands for its own lift to M.x;B/.
Let M0 be the stack of G-bundles with parabolic structure at x defined by the

simple affine root ˛0 (Example A.4.iii). We have

M.x;B/ŠP�PSL.2/ P1;

for the principal PSL.2/-bundle P!M0 determined by ˛0. Call p the projection
to M0. For a vector bundle E over M.x;B/ which tensors into SL.2/-equivariant
bundles over the two factors,5 define a new bundle DE by dualising the P1-factor
and then twisting by the relative canonical bundle O.�#/ along p. Relative Serre
duality along P1 givesRip�DEDR1�ip�E (as can be seen from SL.2/-equivariant
Serre duality on P1 and self-duality of SL.2/-representations). Integration over M0

shows that the indexes of E and DE over M.x;B/ differ by a sign, and we will
prove our proposition by relating S to D.

We claim that L factors for the fibre product presentation of M.x;B/ as

(3.4) LŠ L.�1
2
�.H/h/�O.1

2
�.H/h/:

Then, DLD L.��.H/h�#/. Further,6 �.H/c D �� s0�C# , and we get

(3.5) D ŒL.�C �/�D L.s0�� �.H/h
0
C �/D L.S�C �/;

confirming the proposition for t D 0.
To verify (3.4), note that some such formula must hold, with h replaced by

a fixed multiple of itself; namely, the one which renders the first factor trivial

5But such that the diagonal action factors through PSL.2/.
6Both sides are parallel to # , so that the equality only needs to be tested against H=2, when the

two sides become c.H;H/=2 and �.H/C 1, which are equal to the dual Coxeter number.
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along the fibres P1. From its definition, it follows that D preserves any square
root K1=2.�/ of the canonical bundle of M.x;B/. Setting hD�c; �D 0 gives a
fixed-point for (3.5) and shows the Ansatz (3.4) to be correct.

For more general admissible classes, S and D are only related after splitting
some filtrations. Denote by @E�xV =@H the sum of weight line bundles on M.x;B/

defined by the virtual character @TrV =@H of T . We claim that

(3.6) D gr
˚
L.�C �/˝ expŒtE�†V �

	
D L.S�C �/˝ gr

˚
expŒ�t � @E�xV =@H/�˝ expŒtE�†V �

	
;

for certain finite filtrations (term by term in t ) on the two sides. To see this, let � be
the highest weight of V and let E0 be the sheaf of sections of E�V whose �-weight
component vanishes at x to order 1

2
.� ��/.H/ or higher. This condition is stable

under the ˛0-root sl.2/, so E0 descends to † �M0. The quotient Q D E�V=E0

is supported on fxg �M.x;B/. It has a finite filtration whose associated graded
sheaf is a sum of weight line bundles O.�/ on M.x;B/, for the weights � of V and
various multiplicities. By construction,

s0.grQ/� grQD @E�xV =@H:

Dualising grE�†V along the fibres of p then results in grE�†V � @E
�
xV =@H ,

proving (3.6).
The sign change of I under the action (3.1) of S follows now by factoring the

index map, induced by the morphism from M to a point, via M0, since splitting the
filtrations does not change the index. �

3.7. Example. When G D SL.2/, M.x;B/ is the moduli stack of pairs .E; L/,
where E is a rank-2 bundle with trivial determinant and L a line in the fibre at x.
Also, M0 is naturally equivalent to the stack of rank-2 bundles with determinant
identified with the line bundle O†.�x/. The morphism p takes .E; L/ to its sub-
sheaf E0 of sections whose value at x lies in L. The lines L assemble to the weight
line bundle O.�1/ over M.x; B/. The vector bundles associated to irreducible
representations of SL.2/ are the symmetric powers of E, and the maximal sub-
sheaves in the proof of Proposition 3.3 are the symmetric powers of E0. The
quotient SnE=SnE0 is supported at x; its associated graded sheaf over M.x; B/ isL
0�k�n O.n� 2k/˚k and the anti-symmetrisation is

L
O.k/˚k (k D n mod 2,

jkj � n).

3.8. COROLLARY. The series I represents a Weyl anti-symmetric linear
combination of ı-functions on Tk . In particular, it is supported at regular points
only.

Proof. Weyl anti-symmetry is clear. Assume first that G is simply connected,
so that …D�1T . At t D 0, invariant functionals under the lattice … are spanned by
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ı-functions supported on F . However, the t -deformed action is obtained from the
one at t D 0 by the change of coordinates (2.9); so the …-invariant Fourier series
are spanned by the ı-functions at the regular ft .

In general, the Waff-symmetry of Section 3.1 can be enhanced by the action
of the coweights of the center Z.G/�G. Geometrically, these central coweights
define elementary transformations on bundles which translate the components
of M, and the multiplicative factor in the Waff-action corrects for the change in
L˝ expŒtE�†V �. The extended lattice is cocompact in tk , so our index functional
is a span of ı-functions, as before. �

3.9. Odd classes. The arguments of this section also apply to more general
bundles

N
k E
�
Ck
Vk ˝ L˝ expŒtE�†V � which include odd factors E�CkVk from

(1.1.ii). Each Ck can be moved to avoid the Hecke point x, and E�CkVk remains
unchanged in the Serre duality step. Let us rephrase this observation to match our
indirect Definition 1.6 of the index.

The index is obtained by first pushing down �kE�Vk˝L˝ expŒtE�†V �˝
E�xV� to †n, and then taking the index over �Ck . Now, �Ck lies within .†ı/n,
with †ı WD † n fxg, and so we can restrict our bundle to M.x;B/ � .†ı/n. In
repeating the arguments, we note that each bundle E�Vk is in fact pulled back from
M0� .†ı/n. This is because the corresponding E0 used the proof of Proposition 3.3
as part of an exhaustive filtration, once we allowed arbitrary poles at x. Therefore,
each factor survives Serre duality unchanged, leading to the same symmetry.

4. Abelianisation

We now prove Theorems 2.18 and 2.20. For technical reasons, we must use
the stack M.x;B/ of bundles decorated with a Borel structure at x 2 †. Fix an
admissible class E and let

IE WD

X
�

Ind .M.x;B/IE.�C �// � e��:

Taylor expansion in Corollary 3.8 (and �3.9, if E contains odd classes) shows that
IE is a distribution supported on a finite set of regular points in Tk . Let eMT denote
the moduli of T -bundles trivialized at x (a disjoint union of Jacobians), and IndT
the T -equivariant index of a vector bundle lifted from MT . Call �B the virtual
normal bundle of the morphism MT !M.x;B/.

4.1. PROPOSITION. Over the regular part of Tk ,

IE D IndT
�eMT IE.�/=��1.�

_
B /
�

as distributions.

For the proof, we need a preliminary calculation of the Euler complex of
Section 1.8.
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4.2. The Euler complex. For any � labelling a Shatz stratum, recall the complex

Eul.��/
�1
C D Sym

�
R��E

�.p�=g�/Œ1�
_
˚R��E

�.g=p�/Œ1�
�

˝ det.R��E�.g=p�/Œ1�/Œd� �:

It splits by �-eigenvalue into bounded complexes with coherent cohomologies, and
for index purposes we may perform K-theoretic cancellations. One such arises
from Serre duality

(4.3) R��E
�p�=g� Œ1�

_
DR��.E

�g=p� ˝K/;

by use of the G�-isomorphism .g=p�/
_ D p�=g� . Replacing the second complex,

in K-theory, by R��E�g=p�˚ .2g�2/E�xg=p� simplifies the symmetric factor to�
SymE�xg=p�

�˝.2g�2/
:

Similarly, the determinant can be rewritten as detg�1E�xg=p� ˝D†.g=p�/. Using
Serre duality again, as in (4.3), we get D†.g=p�/ŠD†.p�=g�/. With �� ; �� and
K� denoting the G�-counterparts of �; �;K, and using the codimension formula
d� D .g � 1/ dim.g=p�/ C 2.� � ��/.�/, we obtain the following K-theoretic
replacement of the inverse Euler complex:

(4.4) E.��/
�1
C WD .�1/

2.����/.�/E�x
�
��=�

�2g�2
C

˝ .K�=K/1=2;

remarkably, a line bundle twist of a geometric series of weight line bundles. The
subscriptC denotes that �-negative modes are to be chosen for the Fourier expansion
of the Weyl denominator.

For simplicity, we have avoided parabolic structures; in the special case of
Borel structure at a single point x, to be used in the proof below, (4.4) carries an
additional factor of e����.��=�/C, from the flag varieties of G and G� .

Proof of Proposition 4.1. Stratify M.x;B/ using a generic polarisation (�A.5)
and express the index distribution IE as a sum of contributions IE;� from Shatz
strata M� as in (1.12). Each IE;� is a formal Fourier series whose coefficients are
the indices of E�˝E.��/

�1
C

over the moduli stack Mss
G� ;�

of semi-stableG� -bundles
of topological type �, with Borel reduction at x. We claim that

(i) Each IE;� is a distribution on Tk .
(ii) Unless G� D T , IE;� is supported in the g-singular locus of Tk .

(iii)
P

IE;� D IE, convergent as a series of distributions.7

When g� D t, E.�B/
�1
C
D ��1.�

_
B /
�1 over the regular locus of Tk , proving our

proposition subject to the three claims.

7Convergence as a formal Fourier series is clear, but we need distributional convergence for our
argument.
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We now prove the claims. Since the polarisation is generic, the stack Mss
G� ;�

is
the quotient by T of a smooth, quasi-projective variety on which the center z� of g�
acts trivially and t=z� acts freely. If we ignore the automorphisms coming from the
trivial action of Z� , then Mss

G� ;�
is a smooth, proper Deligne-Mumford stack. The

Narasimhan-Mehta-Seshadri construction [MS80] presents the underlying orbifold
as a (locally free) quotient of a compact manifold by a compact group: namely the
quotient by .T=Z�/k-conjugation of the manifoldM �

�
of flat unitaryG� -connections

on † n fxg with a prescribed, G� -regular value in Tk of the monodromy at x.
The index of a vector bundle over Mss

G� ;�
is the Z� -invariant part of the index

of its direct image to the orbifold. GAGA, applied to the coarse moduli space,
allows us to use the holomorphic Euler characteristic instead. As in the manifold
case, this can be identified with the index of a twisted Dolbeault operator (see e.g.
Duistermaat [Dui96]). By Kawasaki [Kaw81, Ex. II], the latter is the invariant
part of the distributional index of a twisted Dolbeault operator on M �

�
, which is

transversally elliptic for the Tk-action. (See [Ver96], [Par01] for further discussion
of these methods.) By (4.4), expansion into Fourier modes equates the index series
IE;� with the distributional Dolbeault index of E�˝ .K�=K/1=2 on M �

�
, multiplied

by .��=�/
2g�2
C

. Since Z� acts trivially, the distributional index is in fact a Fourier
polynomial along Z� , and the �-negative choice of the Fourier expansion ensures
convergence of the sum to a distribution. This proves claim (i).

We derive claim (ii) from Atiyah’s localization theorem [Ati74, Th. 4.6], which
asserts that the distributional index of a transversally elliptic operator is supported
over the union of all stabilizer subgroups. Now, the freedom of �1G implies that all
stabilizers of the Tk-action on M �

G� ;�
lie in the g-singular locus. Indeed, a result of

Borel’s ensures that the Gk-centralizer of any g-regular torus element is Tk itself;
but if all monodromies were in Tk , then the monodromy around x would be trivial.

Finally, for (iii), it suffices to fix � and G� and show convergence of the sum
of IE;�C over the coweights  of Z� . We will also need to divide into cosets
of W=W� , for the different expansions of the inverse Euler class. Compared with
IE;� , the Atiyah-Bott factors (i) and (ii) in IE;�C are unchanged, while each index
bundle E�†V acquires a summand E�x .@TrV =@/. This is a sum of weight spaces
of V , with multiplicities linear in  , and factors out of the index. Finally, a line
bundle L of E gets shifted by the weight �./h of T (see for instance (4.8) below),
while E.��/

�1
C

acquires a factor of e�./c from the canonical bundles. This gives a
sum of the formX



IE;�C D

X
 Ij I�

pj;�./I
0
E;j;� � e

�
� e�./h

0
Y

˛.�C/<0

.1� e˛/2�2g ;

over finitely many values of j; �, with distributional Dolbeault indices I0E;j;� of
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vector bundles over M �
�

and polynomials pj;� in  . For g > 1, the product is
expanded into the obvious geometric series, matching the choice of sign in the
Euler complex (4.4). The distributions I0E;j;� are in fact Fourier polynomials along
Z� , and so the negativity constraint on the roots ˛ and negative-definiteness of h0

on the coweight lattice assures distributional convergence after expansion into a
Fourier series. �

4.5. The Jacobian contributions. In preparation for the proof of Theorem 2.18,
we now spell out the Riemann-Roch formula for the T -Jacobians. The components
of MT are labelled by the first Chern classes of T -bundles, valued in the coweight
lattice. Each component M

./
T factors as J �BT , so that the projection to BT

lifts the T -representation C� with weight � to the line bundle E�xC�, and each
J is identified with the T -Jacobian J WD J0 by an elementary transformation at
x. Call ! the positive integral generator of H 2.†/ and ‰ the duality tensor in
H1.†/˝H

1.†/. After the natural identifications

H 1.J /Š T _J ŠH 1.†I t/_ Š t_˝H1.†/;

we have on M
./
T �†

(4.6) c1.E
�C�/D �

�c1.E
�
xC�/C�./ �!C i�˝‰:

With the cup-product form � 2ƒ2H1.†/, we note the relation

.�˝‰/2 D�2�˝2˝ �^! 2H 4.J �†/;

where �˝2 is the square in Sym2t_. We now use the equivariant Chern character
to convert admissible K-classes over MT D J �BT into cohomology classes on
J with coefficients in RT . For instance, the Chern character Ch.E�xC�/ becomes
the group character e�. Formula (4.6) gives

Ch.E�C�/D e
� .1C�./ �!/ .1C i�˝‰C�˝2˝ �^!/;(4.7)

Ch
�
E�†C�

�
D e�

�
�./C�˝2˝ �

�
;

Ch
�
E�CC�

�
D e� �C ˝ i� 2H 1.J /;

Ch.D†C�/D e
����./ exp.��˝2˝ �/;

Ch
�
exp

�
tE�†C�/

��
D exp

˚
te�

�
�./C�˝2˝ �

�	
;

whence we get on BT �J , for any T -representations U; V , the two formulae

Ch.D†U/D e�./h � exp.h˝ �/;(4.8)

Ch
�
expŒtE�†V �

�
.u/D exp ft Œ@TrV .u/=@ CHV .u/˝ ��g ;(4.9)

with the metric hD�TrU on t and the Hessian 2-form HV .u/ of TrV at u 2 T .
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Finally, to find the Riemann-Roch expression for ��1.�_/, we apply the
argument of Section 4.2 over a -component of MT , restricting to the regular
points of Tk (where the choice of expansion of the series is immaterial). We get
from (4.8),

(4.10) Ch.��1�_/�1 D .�1/2�./�2�2gec./ expŒc˝ ��:

4.11. Remark. Note from (4.8) that h can be recovered from c1.D†U/ when
G is a torus, and then for any G by passing to the maximal torus.

Proof of Theorem 2.18. Summing over  the products of contributions in (4.8),
(4.9) and (4.10) gives the following answer on T �J :

X
2�1T

Ch
�
L˝ expŒtE�†V �

�
^Ch.��1�_/�1

(4.12)

D

X


.�1/2�./

�.u/2g�2

h
uh

0

exp Œtd TrV .u/�
i
� exp

˚
Œh0C tHV .u/�˝ �

	
D ı� ı�

0
t .u/ � exp

˚
Œh0C tHV .u/�˝ �

	ı
�.u/2g�2:

Now observe that

(4.13)
Z
J

exp
˚
Œh0C tHV .u/�˝ �

	
D jF jg detg

h
1C tHV .u/

�
i
:

At t D 0, this follows because jF j is the determinant of h0 W t! t_ (with volume
form normalized by the respective lattices), and the polarisation � on the GL.1/
Jacobian is principal; while from t D 0 the formula is clear in general. Theorem
2.15 now follows from (2.10) and (2.12).

To prove Theorem 2.18, recall from (4.7) the Chern characters i d TrV .u/˝
ŒC � 2H 1.J / of odd classes E�CV . When a monomial  in these odd classes is
included in the integrand of (4.13), the effect is to multiply the integral by the
number Œ �.u/ defined in Section 2.17. �

4.14. Remark. Summing over the relevant part of MT gives the correct answer
for each component of MG separately. Similarly, we can produce a formula for the
index over the moduli of vector bundles with fixed but nontrivial determinant from
the sum over appropriate Jacobians. However, torsion in �1 brings in additional
contributions from principal bundles under the normalizer of T in G; see the closely
related calculation in [AMW01] for line bundles.

Proof of Theorem 2.20. In K0.MT /, �B D �CE�x .g=b/; cf. Section 2.19. So
��1.�B/D ��1.�/˝��1.E

�
x .g=b//. Anti-symmetry Proposition 3.3 allows us to
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sign-average over W ; Weyl’s character formula converts

e�=��1.E
�
x .g=b/

_/ into E�xV�=jW j;

while leaving the factor E=��1.�
_/ unchanged. �

5. Witten’s formulae from the large level limit

Assume now that the genus g is 2 or more. If M were a compact manifold of
complex dimension d D .g�1/ dimG, Riemann-Roch would enforce the behavior

(5.1) Ind
�
MI nE

�
D nd

Z
M

Ch.E/CO.nd�1/

for any K-class E and its nth Adams power  nE. (Recall that  nL D Ln for a
line bundle L, and  n extends to K-theory additively by the splitting principle.)

In general, even the meaning of the integral on the right is unclear. Suppose,
however, that E is a product of a polynomial in the Atiyah-Bott classes with
a sufficiently large admissible line bundle. Then, for all n, Ind .MI nE/ has
vanishing contribution from the unstable strata (��1.5 and 1.11), so the leading n
asymptotic term in the index comes from the semi-stable stratum in (1.12). This
contribution is slightly complicated by the singularities of the moduli space M .
More precisely, the index of  nE over the semi-stable stratum is that of its direct
image from Mss to M . Consider instead the direct image of the pull-back bundle
QE to the orbifold desingularisation QM of M , obtained by Kirwan’s method [Kir85].
BecauseM has rational singularities, the two indices agree, and when nE descends
to QM , the leading term in the M -index is nd

R
QM

Ch. QE/. Descent holds when all
stabilizers on QM act trivially on the fibres. In particular,  nE descends when all
stabilizer orders in QM divide n.

It is more convenient to find the leading term in the twisted limit K1=2 ˝

 n.K�1=2E/. Let EDL˝expŒtE�†V �, specialising to even generators for simplicity.
Riemann-Roch implies

 nE�†V D
1

n
E�†. 

nV /;

and the properties of  give

(5.2)  n exp
�
tE�†V

�
D exp

�
tE�†. 

nV /=n
�
:

Since h0 scales by n and d Tr nV .u/D n � d TrV .un/, the transformation (2.9) is
unchanged, and the effect of the twisted  n operation is to pre-compose the map
�0t W T ! T _ in (2.12) with the nth power map on T . The key observation now is
that the nd contribution to the sum in Theorem 2.15, as n!1, come from those
points ft located near the center of G. Now, the descent condition on E requires the
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center of G to act trivially on the fibres, with the result that the contributions near
the various central elements agree, and summation over the center can be concealed
in the answer. Rescaling the logft ’s in the Lie algebra by n recovers Witten’s sum
over integral weights in [Wit92, �5], with potential Q D h0.�; �/C t � TrV .e�/
.� 2 g/. For example, the rescaled Weyl denominator in the �t converges to the
dimension formula for the representations. We only spell out the complete details
for G D SL.2/, but the method works in general (�5.8).

Let E be as above, with c1.L/D l 2H 2.M;Z/ and V of even spin 2j . In the
notation of Section 2.16, a solution �t of

�
.2lC4/n
t � exp

�
t P'.�nt /

�
D 1

can be written

(5.3) �t D exp
� ikt

.l C 2/n
;

where for each k 2 ZC, kt D kC k1t C k2t2C � � � formally solves the equation

(5.4) kt C t P'

�
exp

� ikt
l C 2

�
D k:

5.5. PROPOSITION. With QE as above, the integral
Z
QM

Ch.K�1=2˝ QE/ equals

2.l C 2/d �

1X
kD1

"
1C

t R'.exp � ikt
lC2

/

2l C 4

#g�1
� .
p
2�kt /

2�2g .mod t .lC2/=j /:

5.6. Remarks. (i) Note that l C 2D c1.K�1=2E/.

(ii) To finite order in t , our formula involves integrals of polynomials in exp.c1/
and Atiyah-Bott cohomology classes; so our ingredients are equivalent to Witten’s,
the exponential term Tr.e�/ notwithstanding. But our truncation is needed precisely
because of the presence of exponentials; for no l does the formula hold to all orders
in t .

(iii) At first, our answer seems to differ from [Wit92]. The dimensions k of
the irreducible representations of SU.2/ have been deformed to kt . To reconcile
the formulae, note that our first factor in the sum in Proposition 5.5 is the Jacobian
determinant of the map � 7! �C trTrV .e�/ on t, whereas its counterpart in [Wit92]
is the corresponding Jacobian on g. The ratio of the two is the volume ratio k2t =k

2

of the two coadjoint orbits.

Proof. We have t-truncated the formula to the place where unstable strata
begin contributing to the index. We must then only check that Proposition 5.5
gives the limiting nd -coefficient in the index over M. To do so, we subdivide the
summation range 1� k < n.l C 2/ into an interior region and two ends. We then
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check that the interior sum is bounded by o.nd /, while the ends gives the wanted
nd -contribution.

The periodicity kt 7! kt C 2l C 4 shows that the system (5.4) involves only
finitely many equations. All have analytic solutions for small t , so we can find a
bound, independent of n and k, for the variation of kt with t . This will allow us to
replace kt by k in some estimates.

We now cut off at k�D
p
n and kCD .lC2/n�

p
n. In-between, j����1j>

�=
p
n.lC2/, so j�1�g j DO.n2g�2/ and the sum over k is bounded byO.n2g�1/,

less than o.n3g�3/ when g > 2:
On the other hand, for k < k�, Taylor expansion of the Weyl denominator

gives

�t � �
�1
t D

2� ikt
n.l C 2/

�
1CO.n�1/

�
;

with k-independent error bound, so the kth term in the index sum is

.l C 2/2.g�1/n3.g�1/ �

"
2l C 4C t R'.exp � ikt

lC2
/

.2�kt /2

#g�1 �
1CO.n�1/

�
and convergence of the series allows us to ignore the error. This and (5.1) give half
of Proposition 5.5, the other half coming from the neighbourhood of � D�1, by
the central symmetry. �

5.7. Remark. The central symmetry relies on our choice of V with even spin.
Its absence for odd spin reflects the fact that the central automorphism of SL.2/-
bundles obstructs the descent of E�†V to QM . Similarly, there is an integration
formula for the moduli of bundles with fixed determinant of degree 1, which
introduces a sign .�1/k in the sum (cf. §4.14). The level l must now be even.
Otherwise, the contributions near �D 1 and �D�1 cancel instead of agreeing, even
for line bundles. This reflects the fact that odd-level line bundles do not descend to
the moduli space (again, the central automorphism acts by a sign).

5.8. Remark. This argument works for any simple G. Subdivide the simplex
Tk=W of conjugacy classes into thickenings of width 1=

p
n of the faces. (First

thicken the vertices, then the remainder of the edges, etc.) For each face ˆ, the
factors in the Weyl denominator are bounded as above: j sin˛j> 1=n if the root ˛
vanishes on ˆ, otherwise j sin˛j> 1=

p
n. With Zˆ denoting the centralizer of ˆ,

there are 1
2
.dimZˆ � dimT / of the former and 1

2
.dimG � dimZˆ/ of the latter.

As jF j DO.ndimT /, the contribution of each point near ˆ to the index formula can
be overestimated by O.n.g�1/p/, with

p D dimT C .dimZˆ� dimT /C
dimG � dimZˆ

2
D

dimZˆC dimG

2
:
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Even after adding dimˆ to account for the number of terms, .g� 1/p is less than
the dimension .g� 1/ dimG of M , unless ˆ is a central vertex of Tk=W , so that
Zˆ DG. Thus, only the ft near the center contribute. The error estimate in their
contribution proceeds as before.

6. Kähler differentials

In this section, we include the Kähler differentials �� over M in our index.
Recall that �p D �p .R��.E�g˝K//, where R��.: : : / is the (perfect) cotangent
complex of M. Thus, �p does not quite land in the admissible K-theory ring, but
rather in its enlargement by the �-operations. While the Abelian reduction formula
in Theorem 2.20 and its proof carry over to this more general setting, our explicit
index formula in Theorem 2.18 does not immediately provide an answer. In this
section, we show how to extend the formula to these more general K-classes.

As we will transfer the result to the moduli space M , we note the following
improvement of Lemma 1.5: the indexes of ��˝L˝E over the stack M and over
its semi-stable part Mss agree for large enough L, depending on the Atiyah-Bott
monomial E but not on the degree of the differentials. The proof requires the finer
calculation in [Tel00, �7]. Also note that, for semi-simple G, the differentials on
the stack of stable bundles are the orbifold differentials over the moduli space of the
same; but in the reductive case, infinitesimal automorphisms cause a discrepancy
which we leave in the care of the reader.

Recall the notation of Section 2; in particular fix a representation V of G. As
1C te˛ is a function on T , .1C te˛/˛ is a T _-valued map. Set

(6.1) �0s;t D �
0
� es�d TrV .:/ �

Y
˛>0

�
1C te˛

1C te�˛

�˛
W T ! T _:

Denote by Fs;t the set of solutions of the equation

(6.2) �0s;t .f /D .�1/
2�
2 T _

and by F reg
s;t the subset of those which are regular as G-conjugacy classes at

sD t D 0. Call H.f / the differential of �0s;t at f 2 T . The notation H stems from
its agreement with the Hessian of the function on t

� 7!
hC c

2
.�; �/C sTrV .e�/�Trg

�
Li2.te�/

�
;

with Euler’s dilogarithm Li2. Using the metric .h C c/, we convert H to an
endomorphism H � of t and define

(6.3) �s;t .f /
�1
D jF j �

Y
˛

1C te˛

1� e˛
� detH �.f /;
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the product ranging over all roots. Note that detH � D 1 at s D t D 0.

6.4. THEOREM. With �t WD
L
p t
p ��p, we have the index formula

Ind
�
MI�t ˝L˝ expŒsE�†V �˝E

�
xU

�
D .1C t /.g�1/`

P
f �s;t .f /

1�g �TrU .f /;

with f 2 F reg
s;t ranging over a complete set of Weyl orbit representatives.

Proof. In topological K-theory, R��.E�g˝K/ D E�†g˚E�xg, so �t D

�t
�
E�†g

�
˝�t

�
E�xg

�˝.g�1/. In terms of the Adams operations  p,

�t D
P
p t
p�p D exp

h
�
P
p>0.�t /

p p=p
i
:

Using (5.2), we see that Theorem 6.4 refers to the index over M of

L˝ exp
�
sE�†V �

X
p>0

.�t /p

p2
E�†  

p.g/

�
˝E�x�t .g/

˝.g�1/
˝E�xU;

which now has the form covered in Theorem 2.15. The associated equation

exp
�
.hC c/C s � dTrV �

X
p>0I˛

.�t /p

p
ep˛ �˛

�
D .�1/2�

is precisely (6.2). To reduce formula in Theorem 6.4 to Theorem 2.15, observe that
the pre-factor .1C t /` and the factors 1C te˛ in (6.3) come from the character of
�t .g/, which factors as .1C t /` �

Q
˛.1C te

˛/. �

6.5. Remark. Odd generators are included as in Theorem 2.18, when we use
the contraction procedure with the inverse of the bilinear forms H.f /.

6.6. Full-flag parabolic structures. A formula for the stack M.x;B/ follows
by consideration of the projection M.x;B/!M, with fibres G=B; replace TrU
in Theorem 6.4 by

TrU �
Y
˛>0

.1C te˛/

.1� e˛/
;

and sum over all points of F reg instead of Weyl orbits. The numerator accounts for
the differentials on the fibres G=B , while the denominator and summation over W
together constitute the Weyl character formula.

7. The Newstead-Ramanan conjecture

In important special cases, all semi-stable bundles over † are stable and then
M is a compact orbifold. This happens when G D GL.n/, for the components
of degree prime to n, or else if we enrich the bundle with a sufficiently generic
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parabolic structure.8 Henceforth, we place ourselves in one of these favourable
situations. Let `ss and `c be the semi-simple and central ranks of G. The following
result generalizes an old conjecture of Newstead and Ramanan [New72], [Ram73].

7.1. THEOREM. The top .g� 1/`ssCg`c rational Chern classes of M vanish.

In other words, they vanish above degree dim.G=T /.g � 1/. For rational
cohomology, we can pass to finite covers with impunity [AB83, �7] and split G
as a product of a torus and simple groups; so the only content of the theorem
concerns `ss. We will prove an equivalent result in topological K-theory. Let G be
semi-simple of rank `.

7.2. THEOREM. The top .g � 1/` rational Grothendieck -classes of M
vanish.

The  -classes are recalled below, along with the equivalence of the two theo-
rems above. In some cases, such as G D GL.n/, SL.n/ or Sp.n/, M is known to
be free of homology torsion [AB83], and we get an integral result. It seems to be
unknown whether K.M/ is torsion-free for other (e.g. simply connected) groups.

To prove Theorem 7.2, we pair the total -class
P
tkk of TM against any

test class E in K0.M/ and show that we obtain a polynomial in t of degree no
more than dimM � .g � 1/`. Since the index over the orbifold M varies quasi-
polynomially in the Chern classes of E, it suffices to check this behavior when E

contains a large line bundle factor, which we will do using using the index formula
in Theorem 6.4.

This strategy is not new, cf. Zagier [Zag95] for SL.2/, but the integration
formulae over M turned out to be unwieldy. Our index formula seems to be a better
fit; the reason is the abelian localization in Theorem 2.20. Indeed, over MT , the
tangent complex to M has a trivial summand of rank predicted by the vanishing.
The proof then consists in checking that nothing in the index formula spoils the
vanishing that is already apparent. Still, the method has limits. Thus, we were
unable to decide whether the  -classes vanish in algebraic K-theory.

7.3. The  -classes. For a complex vector bundle V of rank r over a compact
space X , define the classes p.V / 2 K0.X/ as the coefficients of the following
polynomial of degree r :

t .V /D
X

p
tpp.V / WD .1� t /r�t=.1�t/.V /;

with the total �-class �s.V /D
P
sp�p.V /, as before. Note that

t .V ˚W /D t .V / � t .W /

8Note that the moduli of stable vector bundles of degree d is also that of stable vector bundles of
degree 0 but with parabolic structure defined by the vertex diagŒ2� id=n� of the Weyl alcove of gl.n/;
cf. Example A.4.
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for vector bundles V and W , while

t .L/D .1� t /C tL

for a line bundle L. These conditions determine t from the splitting principle.
Also,

1.L/D L� 1;

theK-theory Euler class of the line bundle, and in this sense t is the totalK-theory
Chern class. The next exercise is included for the reader’s convenience.

7.4. PROPOSITION. The following assertions are equivalent:

(i) The top d rational Chern classes of V vanish.

(ii) The top d rational  -classes of V vanish.

(iii) The polynomial �t .V / 2K0.X IQ/Œt � is divisible by .1C t /d .

When K0.X IQ/ satisfies Poincaré duality with respect to a map Ind WK0.X/
!Q, these conditions are equivalent to

(iv) For every W 2 K0.X/, Ind.�t .V / �W / 2 QŒt � vanishes to order d or
more at t D�1.

Proof. The equivalence of (ii) and (iii) is clear from the inversion formula
�t D .1Ct /

rt=.1Ct/. Next, observe that in the ring R of symmetric power series in
variables x1; : : : ; xr the ideal .er�dC1; : : : ; er/ generated by the top d elementary
symmetric functions is the intersection of R with the ideal .xr�dC1; : : : ; xr/ 2
QŒŒx1; : : : ; xr ��. The transformation

xi 7! yi WD e
xi � 1

defines an automorphism of QŒŒx1; : : : ; xr �� which preserves .xr�dC1; : : : ; xr/.
It follows that .er�dC1; : : : ; er/ agrees with the ideal of the top d elementary
symmetric functions in the yk . Let xk be the Chern roots of V ; then,

Ch t .E/D
Y
.1C tyi /;

so that the  -classes are the elementary symmetric functions in y, and we conclude
that (i), (ii). �

7.5. Reduction to Borel structures. We now show that if Theorem 7.2 holds
for moduli of bundles with Borel structures, then it holds for all parabolic structures.
Let M.x;P/ denote the stack of bundles with a P-parabolic structure at x and
call � W M.x;B/ ! M.x;P/ the projection (A.3). Over M.x;B/, we have a
distinguished triangle of tangent complexes

T�M.x;B/! TM.x;B/! ��TM.x;P/! T�M.x;B/Œ1�;



THE INDEX FORMULA FOR THE MODULI OF G-BUNDLES 521

leading to an equality in K-theory,

�t
�
T _M.x;B/

�
D �t

�
T _� M.x;B/

�
˝���t .T

_M.x;P//:

The fibres P=B of � are flag varieties; they are smooth and proper, with cohomology
of type .p; p/. Hodge decomposition gives

R��
�
�t
�
T _M.x;B/

�
˝��E

�
D �t .T

_M.x;P//˝E �
X

.�t /pb2p.P=B/

where the b2p are the Betti numbers. For t D�1, the last factor is positive and so
it does not affect the vanishing order of the index.

7.6. Limit of the index as t !�1. In Theorem 6.4, the desired factor

.1C t /.g�1/`

appears explicitly in the index formula, and so to prove Theorem 7.2 we must check
that no singularities in �s;t .f /1�g or in H.ft / (cf. Remark 6.5) reduce the order
of vanishing at t D �1. To do so, we study the roots of (6.2). When h > 0 and
t D s D 0, �0 is an isogeny and all roots are simple. The following lemma will
ensure that they remain simple for all t 2 .�1; 0� and small s.

7.7. LEMMA. If h > c, s is small and t 2 .�1; 0�, the differential H D d�0s;t
is nondegenerate on Tk .

Proof. With HV .f / denoting the Hessian of TrV at f ,

(7.8) H D .hC c/C sHV .f /C t
X

˛

e˛

1C te˛
.f / �˛˝2:

Note that ˛˝2 is negative semi-definite, t � 0 and < e˛

1Cte˛
� �1 for je˛j D 1. AsP

˛ ˛
˝2 D�2c, H is bounded below by .h� c/C sHV . �

Skew-adjointness of �0 for s D 0 then keeps the solutions in the compact
torus Tk for small variations in the real time t , and thus for all times t 2 Œ�1; 0�.
Non-degeneracy of H also shows that the s-dependence in (6.2) can be solved
order-by-order for all t 2 .�1; 0�, and keeps Fs;t (with s as the formal variable)
in a formal neighbourhood of Tk . We will now show that H remains regular at
t D �1, so the solution can be perturbed analytically in s even there. As certain
regular solutions do wander into the singular locus of T as t !�1, we need to
control this behavior. Let ft D f0;t .

7.9. LEMMA. Let ft 2 F be regular at t D 0 but singular at t D �1. For
small x D

p
t C 1, ft has a convergent expansion

ft D f�1 � exp
hP

k>0 x
k�k

i
:

Moreover, ˇ.�1/¤ 0 for any root ˇ such that eˇ .f�1/D 1.
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Thus, the tangent line to ft at f�1 is regular in the Lie algebra centralizer z of
f�1. We obtain

lim
t!�1

1C te˛

1� e˛
.ft /D 1 for all roots ˛ of g;(7.10)

lim
t!�1

 
eˇ

1C teˇ
.ft /C

e�ˇ

1C te�ˇ
.ft /

!
D�1�

2

ˇ.�1/2
for roots ˇ of z:

The limiting value H.f�1/ in (7.8) is then the positive definite form hC sHV CP
ˇ ˇ
˝2=ˇ.�1/

2, with the sum over roots of z. This excludes unexpected singular-
ities in the index formula.

Proof of 7.9. At t D�1, Equation (6.2) simplifies to

(7.11) expŒhC s � dTrV .:/�D 1I

however, the cancellation involved conceals multiple solutions on the singular locus
in T . The latter partitions Tk into alcoves that are simply permuted by the Weyl
group. We claim that each singular solution of (7.11) is a limit of at least one
solution behaving as in Lemma 7.9. If so, then by Weyl symmetry there must be
such a solution from each adjacent alcove. Now, every regular solution of (7.11) is
also the limit of a regular solution of (6.2). This is because it is the limit of some
solution, and Weyl symmetry plus Lemma 7.7 ensures that the points of F that are
singular at t D 0 stay so until t D �1. Finally, recall that the solutions of (7.11)
in a closed Weyl alcove are in bijection with the regular solutions of (6.2) in that
alcove. Our claim then accounts for the t D �1 limits of all regular points of F
and proves Lemma 7.9.

To prove the claim, it suffices to find a formal solution ft as in the lemma. As
t converges faster than ft becomes singular, the function �0s;t converges to (7.11),
so (6.2) is verified to zeroth order precisely when f�1 solves (7.11). To obtain the
constraint on �1, we differentiate in x:

d

dx
�0s;t .ft /D �.�

0/ Œ.hC c/C sHV .ft /�C
X
˛

Œ2xC t˛.� 0/�e˛

1C te˛
.ft / �˛;

with � D
P
k �kx

k . The limit at x D 0 is found from (7.10) and leads to

(7.12) �.�1/ ŒhC sHV .f�1/�D
X

ˇ

ˇ

ˇ.�1/
;

summed over the roots ˇ of z. Its solutions are the critical points of the function

t 3 � 7!
1

2
Œh.�; �/C sHV .�; �/��

P
ˇ log jˇ.�/j:

This function is real-valued for s D 0, blows up on each wall of the Weyl chamber
of z, and is dominated by the quadratic term at large �, so that a minimum must
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exist inside the chamber. Further, the Hessian

hC
X

ˇ

ˇ˝2

ˇ.�/2

is positive-definite, so the minimum is nondegenerate and the s-perturbed equation
can also be solved for small s. Continuing to higher order in x, we get a recursive
family of equations for k > 1:

(7.13) �.�k/

�
hC sHV C

X
ˇ

ˇ˝2

ˇ.�1/2

�
D .expression in �j ; j < k/;

solvable because of the same nondegeneracy. This proves our claim and thus the
lemma. �

Appendix: Background on M

For the more analytically minded, the stack M admits the Atiyah-Bott pre-
sentation as a quotient of the space of .0; 1/-connections by the group of complex
gauge transformations; but its underlying algebraic structure is essential for us.
The algebraic geometry of the stack was discussed in [BL94], [LS97] and further
properties were developed in [Tel98], [Tel00]. In particular, M is covered by
quotients of smooth varieties by reductive groups. Many general properties of sheaf
cohomology follow, without the need of simplicial topos theory as in [Tel98]. In
this appendix, we quickly review the variants of M with parabolic structures and
discuss the topological K-theory of M.

A.1. Parabolic structures. Call B the Iwahori subgroup of the loop group
G..z//, consisting of those formal Taylor loops whose value at z D 0 lies in a
fixed Borel subgroup B . For any subset ˆ of simple affine roots, let Pˆ denote
the standard parabolic subgroup of G..z// generated by B and by the root SL2
subgroups from ˆ. If ‰ � ˆ, then the quotient Pˆ=P‰ is isomorphic (possibly
noncanonically) to a homogeneous space for a subgroup of G.

A.2. Example. (i) P∅ DB. More generally, if ˆ consists of (linear) roots of
g, then Pˆ is the subgroup of formal Taylor loops whose value at z D 0 lies in the
parabolic subgroup Pˆ\G of G.

(ii) If ˆDf˛0g the nonlinear simple root Pˆ has Lie algebra Lie.B/˚z�1g#
and Pˆ=BŠ P1. This parabolic subgroup appears in the proof of Proposition 3.3.

For distinct x1; : : : ; xn 2† and P1; : : : ;Pn standard parabolics, let M.xIP/
denote the moduli stack of G-bundles with quasi-parabolic structures at x1; : : : ; xn.
These are G-bundles over † with singularities at the xi , but with a reduction
of the gauge group to Pi near xi . When G is semi-simple, the uniformisation
theorem [LS97, Th. 9.5] shows that this is the quotient of the product of generalized
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flag varieties G..z//=Pi by the gauge group GŒ† n fx1; : : : ; xng� of the punctured
curve (cf. also [Tel00, �9]). Let P01; : : : ;P

0
n be standard parabolics contained in

P1; : : : ;Pn respectively. The projectionsG..z//=Pi!G..z//=P0i induce a fibration

(A.3) M.xIP0/!M.xIP/

with fibres P1=P01 � � � � �Pn=P0n.

A.4. Example. (i) When each of the parabolics is defined by a subset of the
linear roots of g, M.xIP/ is the stack of G bundles on † with reductions to the
parabolic subgroups P1; : : : ; Pn over x1; : : : ; xn. In this case, the G-bundles have
no singularities and M.xIP/ admits a forgetful morphism to the moduli stack M

with fibre G=P1 � � � � �G=Pn.

(ii) For G D GL.n;C/, every parabolic subgroup of G..z// is conjugate to one
defined by linear roots of g, so that all parabolic bundles can be described as vector
bundles with a choice of flags at the marked points.

(iii) If ˆD f˛0g, then M.x;B/ fibres over M.x;Pˆ/ with fibre P1.

A.5. Shatz stratification. Each stack M.xIP/ is equivalent to a stack M� of
equivariant bundles on a suitable Galois cover Q†!† [TW03, �2.2]. The Shatz
stratification of M� induces a stratification on M.xIP/. This depends on the choice
of the cover, but the dependence can be reduced to a choice of of polarisation on
M.xIP/. For a Borel structure at a single point x, this is equivalent to a choice of
finite-order, regular conjugacy class Gk . To label the strata, we choose a lifting
u 2 Tk .

The coweights � labelling the Shatz strata of M in Section 1.7 have a geometric
meaning. Every stable bundle in Mss

G� ;�
has a unique Hermitian connection with

constant,G� -central curvature 2� i� . The construction above shows that every stable
bundle in MG� ;�.x;B/

ss has a Hermitian connection over † n fxg with constant
central curvature 2� i� and holonomy u at x. The central part of u stems from the
curvature, while the projection to AdG� comes from the global monodromy.

The index of an admissible class E over M.x;P/ breaks up, as before, into a
sum over strata. There is also an extra factor in the Euler complex, relating the flag
varieties of G and G� . The key finiteness result in Lemma 1.5 applies to this more
general setting, but the vanishing of unstable local cohomologies requires the line
bundle L to match the choice of stratification; see [Tel00, �9].

A.6. K-theory of M. The homotopy type of the stack M (which, by definition,
is that of the geometric realisation of an underlying simplicial scheme) is that of
the space of continuous maps from † to BG. (This is GAGA plus the Atiyah-Bott
construction of holomorphic bundles.) But it is more natural to assign to M the
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equivariant homotopy type given by the conjugation action of Gk �G on the space
C�.†;BG/ of continuous maps based at x 2† to BG. This space can be rigidly
realized as a principal fibration over a product product of 2g copies of G, with
fibre the group �G of based loops in G [AB83]. Then, K�.M/ is defined to be
the Gk-equivariant K-theory of C�.†;BG/. It is an inverse limit of finite modules
over the representation ring RG , taken over the finite parts of a Gk-cellular model
of C�.†;BG/. Similarly, K� .M.x;B//DK�Tk .C�.†;BG//; it is a module over
K�.M/ via the natural projection, and K�.M/ is a split summand.

Another description of K�.M/ arises by exhausting M with open sub-stacks
of finite type. Such sub-stacks are presentable as quotients of quasi-projective
manifolds by linear algebraic groups, and their topological K-theory can be defined
from continuous vector bundles that are equivariant under the maximal compact
part of the acting group. (This can be shown to be independent of the quotient
presentation.) If we use the finite, open unions M�� of Shatz strata to exhaust
M, the argument of Atiyah and Bott (see [HL07] for the K-theory version) shows
the surjectivity of the restriction maps between the K�.M��/ and leads to the
description

(A.7) K�.M/D lim� K
�.M��/; grK�.M/D

M
�
K�.M�/:

The two constructions of K.M/ just described can be related by presenting M as a
quotient M�=G of the stack of G-bundles with a framing over x modulo the action
of G on the fibre. Thus, M� can be presented as a quotient of a pro-variety with
the homotopy type of C�.†;BG/ by a pro-unipotent group.

Comparison with the stack MT of T -bundles gives more information. Consider
for simplicity M.x;B/. When �1G is free, the stabilizers of the Tk-action on the
complement of C�.†;BT / in C�.†;BG/ (in the rigid models in A.6 above) are
contained in the singular locus. Consequently, after inverting the Weyl denominator
� in the coefficients of K-theory, the restriction j � W K .M.x;B//! K.MT /

becomes an isomorphism, compatible with the inverse limit (A.7). Poincaré duality
on MT and our index formula show that

.j �/�1 D .�1/2� �K1=2�2g�2 � j�;

with j� defined using the finite-dimensional stack structure. However, our index
formula carries the additional information that inverting � does not damage the
index.

A.8. Remark. In rational homotopy, C�.†;BG/ is a product �G �G2g . The
rational cohomology factors [AB83] as

(A.9) H �.M/ŠH �Gk .�G/˝RH
�
Gk
.G/˝R2g ;
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with RDH �.BGIQ/. A similar factorisation follows for rational K-theory, with
RDQ˝RG , by using Chern characters and fixed-point formulae. It is tempting to
suggest that the analogue of (A.9) holds for integral K-theory when �1G is free,
but we only know how to prove this for the groups GL;SL and Sp.
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