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Abstract

We prove that the Julia set J.f / of at most finitely renormalizable unicritical
polynomial f W z 7! zd C c with all periodic points repelling is locally connected.
(For d D 2 it was proved by Yoccoz around 1990.) It follows from a priori bounds
in a modified Principal Nest of puzzle pieces. The proof of a priori bounds makes
use of new analytic tools developed in [KL09] that give control of moduli of annuli
under maps of high degree.

1. Introduction

1.1. Statement of the results. About 15 years ago Yoccoz proved that the Julia
set of at most finitely many renormalizable quadratic polynomials f W z 7! z2C c

with all periodic points repelling is locally connected (see [Hub93], [Mil00a]). In
this paper, we generalize this result to higher degree unicritical polynomials:

THEOREM A. The Julia set J.f / of at most finitely renormalizable unicritical
polynomials f W z 7! zd C c with all periodic points repelling is locally connected.

This result follows from a priori bounds in an appropriate “Modified Principal
Nest” of puzzle pieces,

E0 cE1 c � � � 3 0 W

THEOREM B. The (modified) principal moduli stay away from zero:

mod.Ei�1
XEi /� � > 0:

These a priori bounds imply that the puzzle pieces Ei shrink to the critical
point, which yields Theorem A by a standard argument.
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1.2. Techniques. As usual in holomorphic dynamics, our proof has two sides:
combinatorial and analytic. Our combinatorial tool is a refined Principal Nest tech-
nique of [Lyu97], while the analytic tool is a recently established Quasi-Invariance
Law (Covering Lemma) in conformal geometry [KL09]. Let us briefly comment
on both sides.

The puzzle machinery was introduced to holomorphic dynamics by Branner
and Hubbard [BH92] (in the context of cubic polynomials with one escaping critical
point) and Yoccoz [Hub93], [Mil00a] (in the context of quadratic polynomials).
The idea is to tile shrinking neighborhoods of the Julia set into topological disks
called puzzle pieces, and to translate the dynamics on J.f / to the combinatorics of
these tilings.

An efficient way to describe these combinatorics is given by the Principal nest
of puzzle pieces around the origin, V 0 � V 1 � : : : V n � � � 3 0, which is inductively
constructed so that the first return maps f ni W V i ! V i�1 are unicritical branched
coverings [Lyu97]. It turns out that this nest is not quite suitable for our purposes,
so we modify it slightly to obtain a dynasty of kingdom maps; see Section 2.

We then observe that since the return times in the dynasty grow exponentially,
one can send some puzzle piece Ei�1 to the top level by an appropriate composition
‰ of the kingdom maps, while the next puzzle piece, Ei , will go at most five levels
up (time inequality). Thus, the map ‰jEi has a bounded degree, which puts us in
a position to apply the analytic techniques of [KL09].

The puzzle bears complete information about the Julia set only if the puzzle
pieces shrink to points, and so this is a key geometric issue of the theory. To
handle this issue, Branner & Hubbard and Yoccoz made use of the Series Law
from conformal geometry.1 It was immediately realized, however, that this method
would not work for higher degree polynomials, so that in the higher degree case
the problem has remained open since then.

A new analytic tool that we exploit is a Covering Lemma (Quasi-Invariance
Law) in conformal geometry [KL09] which roughly asserts that given a branched
covering g WU ! V of degree N which restricts to a branched covering g WA!B

of degree d such that mod.U XA/ is small (depending on N ), then, under a certain
“Collar Assumption”, mod.V XB/ is comparable to d2 mod.U XA/ (independently
of N ) – see Section 3 for the precise statement.

The Covering Lemma allows us to transfer moduli information from deep
levels of the dynasty to shallow ones, and to argue that if on some deep levels the
moduli are small, then they must be even smaller on shallow ones. This certainly
implies that, in fact, the moduli can never be too small (Theorem B).

1also called the Grötzsch Inequality.
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Note that for real c, Theorem A was proved before by Levin and van Strien
[LvS98]. The method used in [LvS98] exploited real symmetry in a substantial way.

In the forthcoming notes (joint with A. Avila and W. Shen) our a priori bounds
will be used to prove rigidity of the unicritical polynomials under consideration.

1.3 Terminology and notation. A topological disk means a simply connected
domain in C.

We let orb.z/� orbg.z/D .g
nz/1nD0 be the orbit of z under a map g.

Given a map g W U ! V and a domain D � V , components of g�1.D/

are called pullbacks of D under g. Given a connected set X � g�1.D/, we let
g�1.D/jX be the pullback of D containing X .

Given a subset W � V , the first landing map H to W is defined (on the set
of points z whose orbits intersect W ) as follows: H.z/D f lz, where l � 0 is the
first moment for which f lz 2W .

We say that a map g W U ! V is unicritical if it has one critical point (of
arbitrary local degree)

Acknowledgment. We thank Artur Avila for carefully reading the manuscript
and making a number of useful comments. We also thank all the foundations that
have supported this work: the Guggenheim Fellowship, Clay Mathematics Institute,
NSF, and NSERC.

2. Modified Principal Nest

2.1. Generalized polynomial-like maps. A generalized polynomial-like map
(GPL map) is a holomorphic map gW [Wi ! V , where V � C is a topological disk
and Wi b V are topological disks with disjoint closures such that the restrictions
g WWi ! V are branched coverings, and moreover, all but finitely many of them
have degree one.

Remark. To prove Theorem B in full generality, we need to allow infinitely
many disks Wi . However, in the “persistently recurrent” case that interests us most
it is enough to consider GPL maps defined on finitely many disks Wi .

We let Kg D
T1

nD0 g
�nV be the set of points of V on which g is infinitely

iterable (the “filled Julia set”).
A GPL map g is called unicritical if it has a single critical point. In what

follows we consider only unicritical GPL maps, and will always put their critical
points at 0. Let d be the local degree of g near 0. We let W0 �W be the “central
domain”, that is, the one containing 0.

The postcritical set Og of a (unicritical) GPL map is the closure of the orbit
fgn0g1nD0.
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Puzzle pieces of depth n of a GPL map g are components of g�n.V /. Puzzle
pieces containing 0 are called critical.

If the critical point returns to some critical puzzle piece A, then the first return
map h to A is also GPL. Let [Bi be its domain of definition. Restricting h to the
union of those components Bi that intersect the postcritical set, we obtain a GPL
map called the generalized renormalization rA.g/ of g on A.

If we do not specify the domain A of the generalized renormalization, then it
is assumed to be W , so r.g/� rW .g/.

2.2. Dynasty of kingdoms. Let us introduce a modified notion of (unicritical)
GPL map called a kingdom map.

We consider three topological disks, W � U c A 3 0, called the kingdom
domain, the castle, and the king respectively. Let us consider a family of topological
disks Dj b W X NA (“king’s subjects”) such that NDj \ @U D ∅. Finally, let
Mk b U X NA be another family of topological disks (“king’s men”). A map

G W A[
S
j

Dj [
S
k

Mk!W

is called a kingdom map (of local degree d ) if
� The closures NA, NDj and NMk are pairwise disjoint;

� G W A!W is a d -to-1 branched covering ramified only at 0;

� Each G WDj !W is a biholomorphic isomorphism;

� Each G WMk! U is a biholomorphic isomorphism.

We let OG be the postcritical set of the kingdom map G.
When U DW , kingdom maps become GPL maps.
Let us now consider a (unicritical) GPL map g W [Wi ! V , W �W0. Let us

define the kingdom renormalization G DR.g/ of g whose result will be a kingdom
map G.

If g.0/ 2 W then we say that the central return occurs. If gk.0/ 2 W for
k D 0; : : : ; N � 1 but gN .0/ 62W , then we have a nest of topological disks

(2.1) V ��0 cW ��1 c � � �c�N � U

such that g W �kC1 ! �k is a unicritical branched covering of degree d and
g.0/ 2�N�1 X�N . This nest is called a central cascade (of length N ). Note that
the non-central-return event corresponds to the cascade of length 1.

In the kingdom renormalization Rg, W will be the kingdom domain and U
will be the castle.

Let us consider the first return map to W D�1:

h WX0[

[
i>0

Xi !W;
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D4

A

Figure 2.1. Kingdom map

where X0 3 0 (in case when N � 2, X0 D�2).
Consider the domain Xs , s > 0, containing gN�1.0/. Then the pullback

AD g�.N�1/.Xs/j 0 is the king of Rg. The kingdom map G on A is defined as
h ıgN�1 W A!W . Notice that it is a unicritical d -to-1 branched covering.

Let us define king’s subjects Dj as non-critical pullbacks of the domains Xi

(i 6D 0) under the maps

gk�1
W�k!W; k D 1; 2; : : : ; N;

that intersect the postcritical set. Thus, each subject Dj is univalently mapped onto
some Xi , i > 0, by an appropriate map gk�1 W�k!W , k 2 Œ1; N �. On this subject,
we define the kingdom map G WDj !W as GjDj D h ıg

k�1jDj . Obviously, it
is a biholomorphic isomorphism.

Finally, we define king’s men Mk as the pullbacks of U under g W U !
g.U /� U that intersect the postcritical set. There are at most d king’s men, and g
univalently maps each of them onto U . Let GjMk D gjMk .

Thus, we have defined the desired kingdom renormalization

G DR.g/ W A[
S
j

Dj [
S
k

Mk!W:

Let gN .0/ 2 Wj , j > 0. For G D R.g/, define the king’s apartment � as
g�N .Wj /j 0. Then Ab�� U and the map gNC1 W�! V is a unicritical d -to-1
branched covering. This creates a collar �XA around the king.
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Remark. If N D 1 (i.e., the non-central return occurs under g), then the
kingdom renormalization GDR.g/ coincides with the generalized renormalization
defined in Section 2.1.

Given a kingdom map G, let us define its renormalization g D r.G/ as the
first return map g W [Bi ! A to the king A restricted to those domains Bi that
intersect the postcritical set OG . It is a unicritical GPL map.

Beginning with some GPL map g � g0, we construct in the above way a
dynasty of kingdoms, that is, a sequence .gn; Gn/ such that gn is a GPL map, Gn

is a kingdom map, GnDR.gn/ and gnC1D r.Gn/. This dynasty terminates if and
only if:
� The map g is combinatorially non-recurrent; that is, the critical point does not

return to some critical puzzle piece; or

� Some map gn has an infinite central cascade, i.e., it is a Douady-Hubbard
polynomial-like map [DH85] with non-escaping critical point. In this case g
is called renormalizable in the sense of Douady and Hubbard.

When we consider a dynasty of kingdoms .gn; Gn/, the associated domains
will be marked with superscript n (e.g., V n, W n, etc.) However, we usually skip
the label when we are concerned with a single kingdom.

Remark. It is easy to see that the maps gn coincide with the generalized
renormalizations of g on domains V n as defined in Section 2.1, i.e., gn D rV n.g/.

The nest

V 0
�W 0

� � � � �W n�1
� V n

�W n
� V nC1

� : : :

is called the Modified Principal Nest. Sometimes it is convenient to relabel it in a
uniform way:

(2.2) E0
�E1

� � � � �Ei
�EiC1

� : : : ;

so that V n D E2n, W n D E2nC1. The consecutive E-domains are dynamically
related: Ei�1 D  i .E

i /, where  i is a unicritical d -to-1 branched covering which
is an appropriate iterate of g.

2.3. First king. We will describe in this section how to associate to a unicritical
polynomial f W z 7! zd C c (or, more generally, polynomial-like map) a dynasty of
kingdom maps. Our standing assumption is that the Julia set Jf is connected and
all periodic points of f are repelling. Then f has d � 1 non-dividing fixed points
ˇi (landing points of the external rays2 with angles 2�=.d � 1/), and one dividing

2In the case of a polynomial-like map, external rays are defined by means of straightening.
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fixed point ˛. There are q > 1 external rays R0
i landing at ˛ which are cyclically

permuted by the dynamics; see [Mil00b].
Let us select some equipotential E0; it bounds some topological disk Q0. The

rays R0
i divide Q0 into q disks Y 0

i called the Yoccoz puzzle pieces of depth 0. Let
Y 0 � Y 0

0 stand for the critical puzzle piece, i.e., the one containing 0.
The equipotential E1 D f �1E0 bounds some topological disk Q1. Let us

consider dq rays of f �1.[R0
i /. They divide Q1 into .q � 1/d C 1 topological

disks called Yoccoz puzzle pieces of depth 1. Let Y 1 stand for the critical puzzle
piece of depth 1. There are also q� 1 puzzle pieces Y 1

i of depth 1 contained in the
corresponding off-critical pieces of depth 0. All other puzzle pieces of depth 1 will
be denoted Z1

j . They are attached to the f -preimages of ˛ that are different from
˛ itself.

The map f is called satellite renormalizable (or immediately renormalizable) if

f lq.0/ 2 Y 0; l D 0; 1; 2 : : : :

In this case, we let Y lq D f �lq.Y 0/j 0 and consider the unicritical branched
covering f q W Y q! Y 0 of degree d . By a slight “thickening” of the domain of this
map (see [Mil00a]), it can be turned into a unicritical GPL map called the (satellite)
renormalization Rf of f .3

In the satellite renormalizable case, f does not originate any dynasty. Other-
wise, there exists an l 2N such that f lq.0/ belongs to some puzzle pieceZ1

j . In this
case, we let V 0Df �lq.Z1

j /j0 be the first kingdom, and we let g�g0 W [W
0

i !V 0

be the first return map to V 0. It is easy to check that W 0
i b V

0. Let G0 be the
associated kingdom map, which originates the dynasty .gn; Gn/ associated with f .

The map f is called primitively renormalizable if its dynasty contains a
quadratic-like map gn W W

n! V n with connected Julia set. This quadratic-like
map is called the (primitive) renormalization Rf of f . In this case, we cannot
construct the next kingdom map Gn, so the dynasty terminates. It also terminates if
the map g is combinatorially non-recurrent. Otherwise, the process can be continued
indefinitely, and the dynasty .gn; Gn/ is eternal.

If the map f is renormalizable (either in the satellite or in the primitive
sense), we can take its renormalization Rf and consider its dynasty. If Rf is
renormalizable, we can pass to the second renormalization R2f , and so on. If the
map f is at most finitely renormalizable, in the end we obtain a non-renormalizable
quadratic-like map Rmf . This is the map we will be working with. So, in what
follows we will assume that f itself is non-renormalizable.

3In the context of GPL maps we use the term “DH renormalization” to distinguish it from the
generalized renormalization. In the polynomial case, we refer to it as just “renormalization”, which
should not lead to confusion.
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From now on, we can forget about the original polynomial f W z 7! zd C c,
and replace it with the first map g W [W 0

i ! V 0 of the associated dynasty.

2.4. Extensions. Let us begin with a trivial but useful observation:

LEMMA 2.1 (Telescope). Let Xk be a sequence of topological disks, k D
0; 1; : : : ; n, and let �k WXk! �.Xk/ be branched coverings of degree dk such that
�.Xk/�XkC1. LetˆD �n�1 ı � � �ı�0 (wherever it is defined), and let P �X0 be
a component of its domain of definition. Then ˆ W P ! Vn is a branched covering
of degree at most d0 � � � dn�1.

LEMMA 2.2. Let gmz 2A be the first landing of orb.z/ at A. Then there exists
a puzzle piece P 3 z such that gm univalently maps P onto U .

Proof. Let P D g�m.U /jz. Then gm D hk ı gs , where gs.z/ is the first
landing of orb z at U , hD hU W [Bi ! U is the generalized renormalization on
U , and k is the first landing moment of orbh.g

s.z// at A. It is a simple exercise
to show that gs is univalent on g�s.U /jz. Moreover, h univalently maps each
non-central component Bi , i > 0, onto U . Now the assertion follows from the
Telescope Lemma. �

COROLLARY 2.3. Let z 2 A, and let gmz 2 A be the first return of orb.z/ to
A. Let P D g�m.A/jz. If P is not critical then the map gm W P ! A is univalent.
Otherwise gm W P ! A is a unicritical branched covering of degree d .

Proof. Decompose gm W P ! A as g W P ! g.P / and the first landing map
gm�1 W g.P /! A. �

Applying this to the first return of the critical point to An�1 D V n, we obtain:

COROLLARY 2.4. The map gn W W
n! V n admits an analytic extension to

a puzzle piece QW n c W n such that gn W QW
n ! U n�1 is a unicritical branched

covering of degree d . Moreover, QW n � V n.

Let us now construct similar extensions for kingdom maps:

LEMMA 2.5. There is puzzle piece QA c A such that the map G W A! W

admits a unicritical degree d extension to a map QA! V . Moreover, QA�� where
� is the king’s apartment.

Proof. The map G W A!W can be decomposed as gk ıgN where N is the
length of the central cascade of g, and k is the first entry time of orbg.g

N .A// to
W (recall that gN .A/ � V XW ). The map gN W A! gN .A/ admits an analytic
extension to a unicritical d -to-1 branched covering gN W�!Wj for some j > 0,
while g WWi!V is a biholomorphic isomorphism for any i >0. Now the conclusion
follows by the Telescope Lemma. �
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Let us define enlargements OEi of domains Ei of the Modified Principal Nest
(2.2) as follows: OW n D V n and OV n D U n�1. We also have the buffers QEi � OEi

constructed in Corollary 2.4 and Lemma 2.5. These lemmas tell us that any map
 i analytically extends to a unicritical d -to-1 branched covering  i W QE

i ! OEi�1.
For i < k, let

ˆi;k D  iC1 ı � � � ı k WE
k
!Ei :

By the Telescope Lemma, we have:

LEMMA 2.6. For 0 < i < k, the map ˆi;k admits an analytic extension to a
dk�i -to-1 branched covering from some puzzle piece F k �Ek onto OEi .

2.5. Travel times. Consider two puzzle pieces P and Q for some GPL or
kingdom map F . If F lP D Q, we let TimeF .P;Q/ D l (note that time l is
uniquely determined). For the “absolute time” measured with respect to the initial
map g, we use notation Time.P;Q/� Timeg.P;Q/.

Let

� TnD Time.An; W n/, i.e., GnjA
n D gTn jAn;

� tn D Time.W n; V n/, i.e., gnjW
n D gtn ;

� sn D Time.W n; W n�1/D tnCTn�1 for n� 1; s0 D t0 D Time.W 0; V 0/.

LEMMA 2.7. The travel times satisfy the following inequalities:

tn � Tn�1 I Tn � sn I sn � 2sn�1:

Proof. By definition, gn.W
n/ is the first return of W n to V n D An�1 under

iterates of Gn�1, so that gnjW
n DGk

n�1jW
n for some k � 1. Hence

gtn jW n
D gnjW

n
DG

ı.k�1/
n�1 ıGn�1jW

n
D gs

ıgTn�1 jW n

for some s � 0, and the first inequality follows.
For the second inequality, notice that Tn is the first return time of the critical

orbit toW n after the first entry to the annulus V nXW n. The first entry to V nXW n

occurs at time � tn (since tn is the first return time of 0 to V n). Return back to
W n from V nXW n occurs at time � Tn�1 (since Tn�1 is the first moment T when
gT .V n/\V n 6D∅).

Now the third inequality follows:

sn D tnCTn�1 � 2Tn�1 � 2sn�1: �

COROLLARY 2.8. For any g; we have tn D Time.W n; V n/� 2n�1:

LEMMA 2.9. Time.W n; W n�2/� Time.V n; V 0/:
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Proof. We have:

Time.W n; W n�2/D snC sn�1 D tnCTn�1C sn�1;

while
Time.V n; V 0/D Time.An�1; W n�1/CTime.W n�1; V 0/

D Tn�1C sn�1C � � �C s0:

Thus, the desired inequality is reduced to:

tn � sn�2C � � �C s0:

Now the first two inequalities of Lemma 2.7 imply that tn � sn�1, and the last one
implies that sn�1 � sn�2C � � �C s0: �

Take some W n, and let l0 be the smallest l � Time.V n; V 0/ such that
gl.W n/�W 0.

LEMMA 2.10. l0 � Time.W n; W n�2/.

Proof. Let pD Time.V n; V 0/, l D Time.W n; W n�2/. By Lemma 2.9, l � p.
Moreover, gl.W n/DW n�2 �W 0. Hence l � l0 by definition of l0. �

We will now make some combinatorial choices.
Fix some (big) m. Let h be the generalized renormalization of g on W 0.

Assuming Timeh.g
l0.W n//;W 0/ � m, let l0 < l1 < l2 < � � � < lm be the m

consecutive return moments of orb.gl0.W n// to W 0. In other words,

glk .W n/D hk.gl0.W n//:

Let n > log2mC 5. Then by Corollary 2.8 and Lemma 2.10,

Timeh.g
l0.W n/;W 0/� Timeh.W

n�2; V n�2/(2.3)
> Timeh.W

n�3; V n�3/

� Timeg1
.W n�3; V n�3/ > 2n�5 >m:

It follows that the moments lk are well defined and

(2.4) lm� l0 < Time.W n�3; V n�3/ < Time.W n�2; V n�2/:

Putting this estimate together with Lemma 2.10, we conclude:

LEMMA 2.11. lm < Time.W n; V n�2/.

2.6. Degrees. Let O D .glk .W n//m
kD0

. By Lemma 2.11, O is contained in
the piece T of orbhW

n beginning with W n and ending with V n�2. Let us split
T into five pieces. Namely, let Ti be the pieces of T between two consecutive
domains, Ei and Ei�1, of the sequence

(2.5) W n
�E2nC1; E2n; : : : ; E2n�4

� V n�2:

Let Oi D Ti \O .
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By (2.3), each Ti has length bigger than m. Hence at most two of the pieces
Oi are non-empty, and so one of them contains at least m=2 elements. Now, let Oi

stand for such a piece.
Let us consider the enlargement OEi�1 of Ei�1. Notice that it is contained

in W n�3. Pull OEi�1 back along the h-orbit of W n. This inscribes every do-
main of this orbit, W n; h.W n/; : : : ; hs.W n/DEi�1, into a bigger buffer domain
F; h.F /; : : : ; hs.F /D OEi�1.

By Lemma 2.6, we have:

LEMMA 2.12. The map hs W F ! OEi�1 has degree at most d5.

Moreover,

LEMMA 2.13. The domains hk.F / enclosing the domains of Oi are pairwise
disjoint.

Proof. Otherwise there would be two nested domains hk.F /� hs.F /, k < s.
Let L D s � k. Pushing hk.F / forward to OEi�1 we see that hL. OEi�1/ � OEi�1.
All the more, hL.W n�3/�W n�3, so that L� Timeh.W

n�3; V n�3/.
On the other hand, by (2.3),

L< Timeh.W
n�3; V n�3/;

a contradiction. �

Let us now consider some domain ƒD glk .W n/ 2Oi , and let ƒ0 D glk .F /

be its buffer. Since there is a biholomorphic push-forward .ƒ0; ƒ/! . OEi�1; Ei�1/,
we have:

LEMMA 2.14. mod.ƒ0 Xƒ/Dmod. OEi�1 XEi�1/:

Let ‡ D g�lk .V 0/j0.

LEMMA 2.15. We have W n � ‡ � V n and

deg.glk W ‡ ! V 0/� d2nCm:

Proof. The first inclusion is trivial. The second inclusion, ‡ � V n, follows
from lk � l0 � Time.V n; V 0/.

Let us estimate the degree. Let s D Time.V n; V 0/. Then

deg.gs
W V n
! V 0/D d2n:

Let us now consider the first landing map H to W 0. It is easy to see that each
component Qj of the domain of H is mapped biholomorphically onto W 0 and,
moreover, H WQj ! W 0 admits an extension to a biholomorphic isomorphism
QQj ! V 0. Let ‡i D g

li .‡/. Then we have:

‡0 DH ıg
s.‡/
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and

‡iC1 DH ı .gjW
0/ .‡i /; i D 0; 1; : : : ; k� 1�m� 1;

and the Telescope Lemma concludes the proof. �

2.7. Summary. We fix an arbitrary m and let n > log2mC 5. Then for any
domain ƒ D ƒk D g

lk .W n/ 2 Oi , the map ‰ D ‰k D g
lk W W n! ƒ admits a

holomorphic extension to a branched covering

(2.6) ‰ W .‡; F;W n/! .V 0; ƒ0; ƒ/

such that:

(P1) deg.‰ W ‡ ! V 0/� d2nCm;

(P2) deg.‰ W F !ƒ0/ � d5;

and

(P3) ‡ � V n;

(P4) mod.ƒ0 Xƒ/Dmod. OEi�1 XEi�1/.

Moreover, there are at least m=2 domains ƒk in the orbit Oi , and their buffers ƒ0
k

are pairwise disjoint.

3. Quasi-Additivity Law and Covering Lemma

QUASI-ADDITIVITY LAW [KL09, �10.3]. Fix some � > 0. Let W b V and
ƒi bƒ0i bW , i D 1; : : : ; m, be topological disks such that the closures of ƒ0i are
pairwise disjoint. Then there exists a ı0 > 0 (depending on � and m) such that: If
for some ı 2 .0; ı0/, mod.V Xƒi / < ı while mod.ƒ0i Xƒi / > �ı, then

mod.V XW / <
2��1ı

m
:

QUASI-INVARIANCE LAW/COVERING LEMMA [KL09]. Fix some � > 0.
Let U c A0 c A and V c B 0 c B be two nests of topological disks. Let g W
.U;A0; A/! .V; B 0; B/ be a branched covering between the respective disks. Let
d D deg.A0! B 0/ and D D deg.U ! V /. Assume

mod.B 0 XB/ > �mod.U XA/:

If mod.U XA/ < ".�;D/ then

mod.V XB/ < 2��1d2 mod.U XA/:
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4. A priori bounds

The following lemma tells us that if some principal modulus is very small then
it should be even smaller on some preceding level:

LEMMA 4.1. There exist nD n.d/ 2 N and "D ".d; n/ > 0 such that: If on
some level q � n, mod.V q XW q/ < ", then on some previous level p < q,

(4.1) mod.V p
XW p/ < 1

2
mod.V q

XW q/:

Proof. We will use the set-up of Section 2.7, except that the base GPL map g
will not be g0 but rather gs on some deeper level. Let us fix some m> 27d23. Let
q > n> log2mC5. We take gD gq�n as the base map and consider the associated
3-domain branched covering ‰ D‰k (2.6)

‰ W .‡; F;W q/! .V q�n; ƒ0; ƒ/;

where ƒDƒk is one of the domains of the orbit Oi . Set �D 1=2d for the First
Covering Lemma. Let us consider two cases:

Case 1. Assume that for some domain ƒ 2Oi ,

mod.ƒ0 Xƒ/ <
1

2d
mod.V q

XW q/:

By Property (P4), mod.ƒ0 Xƒ/ D mod. OEi�1 XEi�1/, which is equal to either
mod.V .i�2/=2 XW .i�2/=2/ (if i is even) or to

mod.U .i�3/=2
XA.i�3/=2/�mod.�.i�3/=2

XA.i�3/=2/

�
1

d
mod.V .i�3/=2

XW .i�3/=2/ if i is odd.

In both cases we conclude that (4.1) holds for p which is equal to either .i � 2/=2
or .i �3/=2. (Note that p < q since by construction of the buffers, i �1 < 2qC1.)

Case 2. Assume that for all ƒk 2Oi ,

(4.2) mod.ƒ0k Xƒk/�
1

2d
mod.V q

XW q/:

Then the Covering Lemma is applicable to every map‰D‰k , provided "D ".d; n/
is sufficiently small. It yields:

(4.3) mod.V q�n
Xƒk/� 4d

11 mod.‡ XW q/� 4d11 mod.V q
XW q/:

Estimates (4.2) and (4.3) show that the Quasi-Additivity Law is applicable with
�D 1=8d12. Since there are at least m domains ƒk �ƒ

0
k
�W n�q in the orbit Oi ,

this implies:

mod.V n�q
XW n�q/�

26d23

m
mod.V q

XW q/ <
1

2
mod.V q

XW q/;

and we are done. �

Lemma 4.1 immediately yields Theorem B from the introduction.
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