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The Ten Martini Problem
By ARTUR AVILA and SVETLANA JITOMIRSKAYA

Abstract

We prove the conjecture (known as the “Ten Martini Problem” after Kac and
Simon) that the spectrum of the almost Mathieu operator is a Cantor set for all
nonzero values of the coupling and all irrational frequencies.

1. Introduction

The almost Mathieu operator is the Schrödinger operator H�;˛;� on `2.Z/
defined by

(1-1) .H�;˛;�u/n D unC1Cun�1C 2� cos 2�.� Cn˛/un;

where �; ˛; � 2 R are parameters (called the coupling, frequency, and phase, re-
spectively), and one assumes that �¤ 0. The interest in this particular model is
motivated both by its connections to physics and by a remarkable richness of the
related spectral theory. This has made the latter a subject of intense research in the
last three decades (see [Las05] for a recent historical account and for the physics
background). Here we are concerned with the topological structure of the spectrum.

If ˛ D p=q is rational, it is well known that the spectrum consists of the
union of q intervals called bands, possibly touching at the endpoints. In the case of
irrational ˛, the spectrum †�;˛ (which in this case does not depend on � ) has been
conjectured for a long time to be a Cantor set; see a 1964 paper of Azbel [Azb64].
Proving this has been dubbed the Ten Martini Problem by Barry Simon, after an
offer of Mark Kac in 1981; see [Sim00, Prob. 4]. For a history of this problem see
[Las05]. Earlier partial results include [BS82], [Sin87], [HS89], [CEY90], [Las94],
and recent advances include [Pui04] and [AK06]. In this paper, we solve the Ten
Martini Problem as stated in [Sim00].

Avila is a Clay Research Fellow. Jitomirskaya was supported in part by NSF grant DMS-0300974 and
grant 2002068 from the United States-Israel Binational Science Foundation (BSF), Jerusalem.
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MAIN THEOREM. The spectrum of the almost Mathieu operator is a Cantor
set for all irrational ˛ and for all �¤ 0.

It is important to emphasize that the previous results mentioned above covered a
large set of parameters .�; ˛/, which is both topologically generic [BS82] and of full
Lebesgue measure [Pui04]. As often happens in the analysis of quasiperiodic sys-
tems, the “topologically generic” behavior is quite distinct from the “full Lebesgue
measure” behavior, and the narrow set of parameters left behind does indeed lie in
the interface of two distinct regimes. Furthermore, our analysis seems to indicate
an interesting characteristic of the Ten Martini Problem, that the two regimes do not
cover nicely the parameter space, and hence there is a nonempty “critical region” of
parameters in between; see Remarks 1.1, 5.1, 5.2 and the comments after Theorem
8.2.

This is to some degree reflected in the structure of the proof. While the
reasoning outside of the critical region can be made quite effective, in the sense
that one essentially identifies specific gaps in the spectrum,1 in order to be able to
cover the critical region we make use of very indirect arguments. As an example,
we show that absence of Cantor spectrum enables us to “analytically continue”
effective solutions of a small divisor problem, and it is the noneffective solutions
thus obtained that can be related to gaps in the spectrum.

This paper builds on a large theory. Especially important for us are [CEY90],
[Jit99], [Pui04], whose methods we improve, but several other ingredients are needed
(such as Kotani theory [Sim83] and the recent estimates on Lyapunov exponents of
[BJ02]). An important new ingredient is the use of analytic continuation techniques
in the study of m-functions and in extending the reach of the analysis of Anderson
localization.

1.1. Strategy. In this problem, arithmetics of ˛ rules the game. When ˛ is
not very Liouville, it is reasonable to try to deal with the small divisors. When
˛ is not very Diophantine, this does not work, and we deal instead with rational
approximation arguments. Let pn=qn be the approximants of ˛ 2 R nQ. Let

(1-2) ˇ D ˇ.˛/D lim sup.ln qnC1=qn/:

The relation between eˇ and � will play an important role in our argument, and will
decide whether we approach the problem from the Diophantine side or from the
Liouvillian side. As discussed before, our analysis indicates that there are parameters
that cannot be effectively described from either side, and it is only through the use
of indirect arguments that we can enlarge artificially the Diophantine and Liouville

1These gaps are related either to gaps of periodic approximations or to eigenvalues of a dual almost
Mathieu operator.
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regimes to cover all parameters. It should be noted that even with such tricks, both
sides will just about meet in the middle.

Since †�;˛ D †��;˛, it is enough to assume � > 0. It is known that the
behavior of the almost Mathieu operator changes drastically at � D 1 (“metal-
insulator” transition [Jit99]). Aubry duality shows that †�;˛ D �†��1;˛. So each
�¤ 1 admits two lines of attack, and this will be determinant in what follows. The
case �D 1 was settled in [AK06] (after several partial results [AvMS90], [HS89],
[Las94]), but it is also recovered in our approach.

We will work on � < 1 when approaching from the Liouville side. The
approach from the Diophantine side is more delicate. There are actually two
classical small divisor problems that apply to the study of the almost Mathieu
operator, corresponding to Floquet reducibility (for �<1) and Anderson localization
(for � > 1). An important point is to attack both problems simultaneously, mixing
the best of each problem (“soft” analysis in one case, “hard” analysis in the other).

A key idea in this paper is that absence of Cantor spectrum implies improved
regularity of m-functions in the regime 0 < � � 1. This is proved by analytic
continuation techniques. The improved regularity ofm-functions (which is fictitious,
since we will prove Cantor spectrum) will be used both in the Liouville side and in
the Diophantine side. In the Liouville side, it will give improved estimates for the
continuity of the spectrum with respect to the frequency. In the Diophantine side, it
will allow us to use (again) analytic continuation techniques to solve some small
divisor problems in some situations that are beyond what is expected to be possible.

Remark 1.1. Since our approach, designed to overcome the difficulties in the
interface of the Diophantine and Liouville regimes, works equally well for other
ranges of parameters, it will not be necessary in the proof to precisely delimit
a critical region. For the reasons discussed in Remarks 5.1 and 5.2 and in the
comments after Theorem 8.2, the critical region is believed to contain the parameters
such that ˇ>0 and ˇ�jln�j�2ˇ, the parameters such that ˇDjln�j (respectively,
2ˇ D jln�j) being seemingly inaccessible (even after artificial extension) by the
Diophantine method (respectively, Liouville method). It is reasonable to expect
that something should be different in the indicated critical region. For instance, it
is the natural place to look for possible counterexamples to the “Dry Ten Martini”
conjecture (for a precise formulation see Section 8).

2. Background

2.1. Cocycles, Lyapunov exponents, and fibered rotation number. A (one-
dimensional quasiperiodic SL.2;R/) cocycle is a pair

.˛; A/ 2 R�C 0.R=Z;SL.2;R//;
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understood as a linear skew-product:

.˛; A/ W R=Z�R2! R=Z�R2;

.x; w/ 7! .xC˛;A.x/ �w/:

For n� 1, we let An.x/DA.xC .n�1/˛/ � � �A.x/ (˛ is implicit in this notation).
Given two cocycles .˛; A/ and .˛; A0/, a conjugacy between them is a contin-

uous B W R=Z! SL.2;R/ such that

B.xC˛/A.x/B.x/�1 D A0.x/:

The Lyapunov exponent is defined by

(2-1) lim 1

n

Z
lnkAn.x/kdx;

so L.˛;A/� 0. It is invariant under conjugacy.
Assume now that A WR=Z! SL.2;R/ is homotopic to the identity. Then there

exists  W R=Z�R=Z! R and u W R=Z�R=Z! RC such that

(2-2) A.x/ �

�
cos 2�y
sin 2�y

�
D u.x; y/

�
cos 2�.yC .x; y//
sin 2�.yC .x; y//

�
:

The function  is called a lift of A. Let � be any probability on R=Z�R=Z which is
invariant by the continuous map T W .x; y/ 7! .xC˛; yC .x; y//, projecting over
Lebesgue measure on the first coordinate (for instance, take � as any accumulation
point of 1

n

Pn�1
kD0 T

k
� �, where � is Lebesgue measure on R=Z�R=Z). Then the

number

�.˛;A/D

Z
 d�mod Z

does not depend on the choices of  and �, and is called the fibered rotation number
of .˛; A/; see [JM82] and [Her83]. It is invariant under conjugacies homotopic to
the identity. It immediately follows from the definitions that the fibered rotation
number is a continuous function of .˛; A/.

If A;A0 W R=Z ! SL.2;R/ and B W R=Z ! SL.2;R/ are continuous such
that A is homotopic to the identity and B.x C ˛/A.x/B.x/�1 D A0.x/, then
�.˛;A/D �.˛;A0/�k˛, where k is such that x 7!B.x/ is homotopic to x 7!Rkx ,
where

R� D

�
cos 2�� � sin 2��
sin 2�� cos 2��

�
:

2.2. Almost Mathieu cocycles, integrated density of states, and spectrum. Let

(2-3) S�;E D

�
E � 2� cos 2�x �1

1 0

�
:



THE TEN MARTINI PROBLEM 307

We call .˛; S�;E /, for �; ˛;E 2R and �¤ 0, almost Mathieu cocycles. A sequence
.un/n2Z is a formal solution of the eigenvalue equation H�;˛;�uDEu if and only
if

S�;E .� Cn˛/ �
� un
un�1

�
D

�unC1
un

�
:

Let L�;˛.E/D L.˛; S�;E /. It is easy to see that �.˛; S�;E / admits a deter-
mination ��;˛.E/ 2 Œ0; 1=2�. We let

N�;˛.E/D 1� 2��;˛.E/ 2 Œ0; 1�:

It follows that E 7!N�;˛.E/ is a continuous nondecreasing function. The function
N is the usually defined integrated density of states of H�;˛;� if ˛ 2 R nQ (for
˛ 2Q, N is the integral of the density of states over different � ); see [AS83] and
[JM82]. Thus defining

†�;˛ D fE 2 R WN�;˛ is not constant in a neighborhood of Eg;

we see that (consistently with the introduction) †�;˛ is the spectrum of H�;˛;� for
˛ 2RnQ (in this case the spectrum does not depend on � ), while for ˛ 2Q, †�;˛
is the union of the spectra of H�;˛;� for � 2 R. One also has

†�;˛ �
�
�2� 2j�j; 2C 2j�j

�
:

Continuity of the fibered rotation number implies that N�;˛ depends continu-
ously on .�; ˛/.

It turns out that there is a relation between N and L, the Thouless formula
(see [AS83])

L.E/D

Z
lnjE �E 0jdN.E 0/:

By the Schwarz reflection principle, if J �R is an open interval where the Lyapunov
exponent vanishes, then E 7!N�;˛.E/ is an increasing analytic function of E 2 J 2

(and obviously J �†�;˛).
We will use several times the following result.

THEOREM 2.1 [BJ02, Cor. 2]. Suppose ˛ 2 R nQ and � ¤ 0. If E 2 †�;˛,
then

L�;˛.E/Dmaxf0; lnj�jg:

This result will be mostly important for us for what it says about the range
0 < �� 1 (zero Lyapunov exponent on the spectrum). It will be also used in very
minor way in our proof of localization when � > 1.

2 This is because N C iL=� is holomorphic in upper half-plane and real on J . It can also be
obtained from the Thouless formula.
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2.3. Kotani theory. Recall the usual action of SL.2;C/ on the Riemann sphere
C:
�
a b
c d

�
� z D .azC b/=.czC d/. We can of course define SL.2;C/ cocycles as

pairs .˛; A/ 2 R � C 0.R=Z;SL.2;C//, but it is convenient to view an SL.2;C/
cocycle as acting by Möbius transformations:

.˛; A/ W R=Z�C! R=Z�C;

.x; z/ 7! .xC˛;A.x/ � z/:

If one lets E become a complex number in the definition of the almost Mathieu
cocycle, we get an SL.2;C/ cocycle.

Let H be the upper half-plane. Fix .�; ˛/. It is well known that there exists
a continuous function mD m�;˛ W H�R=Z! H such that S�;E .x/ �m.E; x/D
m.E; xC˛/, thus defining an invariant section for the cocycle .˛; S�;E /:

(2-4) .˛; S�;E /.x;m.E; x//D .xC˛;m.E; xC˛//:

Moreover, E 7!m.E; x/ is holomorphic on H.

Remark 2.1. In the literature (for instance, in [Sim83]), it is more common
to find the definition of a pair m˙.x;E/ of m-functions, which is given in terms
of nonzero solutions .u˙.n//n2Z of H�;˛;xu D Eu that are `2 at ˙1, that is,
m˙.x;E/D�u˙.˙1/=u˙.0/. In this notation we havem.x;E/D�1=m�.x;E/.
The relation S�;E .x/ �m.E; x/Dm.E; xC˛/ is an immediate consequence of the
definition of m�.x;E/.

The following result of Kotani theory [Sim83], [DCJ87] will be important in
two key parts of this paper.

THEOREM 2.2. Let ˛2RnQ, and assume thatL�;˛.E/D0 in an open interval
J � R. Then for every x 2 R=Z, the function E 7!m.E; x/ admits a holomorphic
extension to Cn .RnJ /, with values in H. The function m W Cn .RnJ /�R=Z!H

is continuous in both variables.

2.4. Polar sets. Recall one of the possible definitions of a polar set in C: it is
a set of zero logarithmic capacity. We will need only some properties of polar sets
in C (see for instance [Hör94]):

(i) A countable union of polar sets is polar.

(ii) The image of a polar set by a nonconstant holomorphic function (defined in
some domain of C) is a polar set.

(iii) Polar sets have Hausdorff dimension zero; thus their intersections with R have
zero Lebesgue measure.

(iv) Let U � C be a domain, and let fn W U ! R be a sequence of subharmonic
functions that is uniformly bounded in compacts of U . Then f W U ! R
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given by f D lim supfn coincides with its (subharmonic) upper regularization
f � W U ! R (given by f �.z/D lim supw!z f .w/) outside a polar set.

We will say that a subset of R is polar if it is polar as a subset of C.
The following result on analytic continuation is well known. We will quickly

go through the proof, since a similar idea will play a role later in a small divisor
problem.

LEMMA 2.3. LetW �C be a domain, and let f WW �R=Z!C be a continuous
function. If z 7! f .z; w/ is holomorphic for all w 2 R=Z and w 7! f .z; w/ is
analytic for some nonpolar set of z 2W , then f is analytic.

Proof. We may assume that jf .z; w/j< 1 for .z; w/ 2W �R=Z. Let

(2-5) f .z; w/D
X
Ofz.k/e

2�ikw :

Then z 7! Ofz.k/ is holomorphic, and j Ofz.k/j< 1. Using property (i) of polar sets,
we obtain that there exists a nonpolar set � � W , � > 0, and k > 0 such that
j Ofz.n/j � e

��jnj for z 2� and jnj> k. Let

h.z/D sup
jnj>k

1

jnj
lnj Ofz.n/j:

Then, by property (iv) of polar sets, h� is a nonpositive subharmonic function
satisfying h�.z/ � �� for z 2� nX , where X is polar. Since � is nonpolar, we
conclude that h� is not identically 0 in W . It follows from the maximum principle
that h�.z/ < 0 for z 2 W . Thus for any domain U � W compactly contained
in W , there exists a ı D ı.U / > 0 such that h.z/ � �ı for z 2 U . Therefore
.lnj Ofz.n/j/=jnj � �ı for jnj > k and z 2 U , which implies that (2-5) converges
uniformly on compacts of W � fw 2 C=Z; 2�jImwj< ıg. �

3. Regularity of the m-functions

THEOREM 3.1. Let ˛ 2RnQ and � > 0. Let mDm�;˛ WH�R=Z!H be as
in Section 2.3. Then m is analytic.

Proof. Let us show that m has a holomorphic extension to

�� D f.E; x/ W ImE > 0; 2� sinhj2� Im xj< ImEg:

We have S�;E .x/ � z DE � 2� cos.2�x/� 1=z. For .E; t/ satisfying

(3-1) ImE > 0 and 2� sinhj2�t j< ImE;

define the half-plane

K1�;E;t D fz W Im z > ImE � 2� sinhj2�t jg � H;
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and the disk

K2�;E;t D fjzj< jEjC 2� coshj2�t jC 1=.ImE � 2� sinhj2�t j/g ;

and let K�;E;t DK1�;E;t \K
2
�;E;t

, which is a domain compactly contained in H

depending continuously on .E; t/ satisfying (3-1). If .E; x/ 2��, then .E; Im x/

satisfies (3-1) and one checks directly that

S�;E .x/ �H�K
1
�;E;Imx and S�;E .x/ �K

1
�;E;Imx �K

2
�;E;Imx :

Since Im x D Im.xC˛/, we have

S�;E .xC˛/ �S�;E .x/ �H�K�;E;Imx :

Thus, by the Schwarz lemma applied to H, for every .E; x/ 2��,

S�;E .x�˛/ � � �S�;E .x�n˛/ �H

is a sequence of nested compact sets shrinking to a single point Om.E; x/. This
implies that Om.E; x/ is the unique solution to (2-4) in H. As m W H�R=Z! H

is a continuous function satisfying (2-4), we must have Om.E; x/ D m.E; x/ for
.E; x/ 2 H�R=Z.

Since holomorphic functions mn W��! H given by

mn.E; x/D S�;E .x�˛/ � � �S�;E .x�n˛/ � i

take values in H, the sequence mn is normal. Since it converges pointwise to Om,
we conclude that Om is holomorphic. �

THEOREM 3.2. Let ˛ 2RnQ, and let 0<�� 1. LetmDm�;˛ WH�R=Z!H

be as in Section 2.3. If J � †�;˛ is an open interval, then m admits an analytic
extension m W C n .R nJ /�R=Z! H.

Proof. By Theorems 2.1 and 2.2, there exists a continuous extension

m W C n .R nJ /�R=Z! H

that is analytic in E. By Theorem 3.1, m is also analytic in x for E 2H. Analyticity
in .E; x/ then follows by Lemma 2.3. �

4. Analytic continuation

LEMMA 4.1. Let ˛ 2 R n Q, let � W R=Z ! R be analytic, and let � DR
R=Z

�.x/dx. The following are equivalent:

(i) There exists an analytic function O W R=Z ! SL.2;R/, homotopic to the
identity, such that O.xC˛/R�.x/O.x/�1 DR� :

(ii) There exists an analytic function  W R=Z! R such that

(4-1) �.x/� � D  .xC˛/� .x/:
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Proof. Obviously (ii) implies (i): it is enough to take O.x/DR� .x/.
Let us show that (i) implies (ii). If O.x/ � i D i for all x, then we have

O.x/ 2 SO.2;R/ for all x, and since O is homotopic to the identity, we have
O.x/DR� .x/ for some analytic function WR=Z!R that must satisfy �.x/��D
 .xC˛/� .x/.

Thus we may assume that O.x0/ � i ¤ i for some x0. Notice that

O.x0Cn˛/ � i DRn�O.x0/ � i:

It follows that if nk˛ ! 0 in R=Z, then 2nk� ! 0 in R=Z. This implies that
� D .l=2/˛ for some l 2 Z. We have

O.xC˛/R�.x/O.x/
�1
DR.l=2/.xC˛/R�.l=2/x;

which implies R�.l=2/.xC˛/O.xC˛/R�.x/ DR�.l=2/xO.x/, and we get

R�.l=2/.xC˛/O.xC˛/ � i DR�.l=2/xO.x/ � i:

It follows that R�.l=2/xO.x/ � i D z does not depend on x. Let Q 2 SL.2;R/ be
such that Q � z D i , and set

S.x/DR.l=2/xQR�.l=2/xO.x/:

Since O;Q W R=Z! SL.2;R/, where Q.x/ DQ, are homotopic to the identity,
S W R=Z! SL.2;R/ is homotopic to the identity and, using that � D .l=2/˛, we
have S.xC ˛/R�.x/S.x/�1 D R� . Moreover, S.x/ � i D i , so S.x/ 2 SO.2;R/,
and thus S.x/DR� .x/ where  W R=Z! R. It follows that  satisfies (4-1). �

For ˛ 2RnQ and 0 < �� 1, let ƒ�;˛ be the set of E such that there exists an
analytic function BE W R=Z! SL.2;R/, homotopic to the identity, and �.E/ 2 R,
such that

BE .xC˛/S�;E .x/BE .x/
�1
DR�.E/:

THEOREM 4.2. Let ˛ 2 R nQ and 0 < � � 1. Let J � †�;˛ be an open
interval. Then

(i) if ˇ D 0, then ƒ�;˛ \J D J ;

(ii) if ˇ <1, then either ƒ�;˛ \J is polar or intƒ�;˛ \J ¤∅.

Proof. Assume that J �†�;˛ is an open interval. Let mDm�;˛ be given by
Theorem 3.2, so that m W C n .R n J /�R=Z! H is continuous, E 7!m.E; x/ is
holomorphic, and S�;E �m.E; x/Dm.E; xC˛/. Let

(4-2) CE .x/D

0BB@
Rem.E; x/

jm.E; x/j.Imm.E; x//1=2
�

jm.E; x/j

.Imm.E; x//1=2

.Imm.E; x//1=2

jm.E; x/j
0

1CCA :
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Then CE .x C ˛/S�;E .x/CE .x/�1 2 SO.2;R/ for E 2 J and x 2 R=Z. Since
x 7! CE .x/ is easily verified to be homotopic to the identity for E 2 J , we
have CE .xC˛/S�;E .x/CE .x/�1 DR�.E;x/ for some real-analytic function � W
J �R=Z! R. It follows that � has a holomorphic extension � W Z! C, where
Z �C�C=Z is some domain containing J �R=Z. So there exists a domain ��C

such that J �� and ��R=Z�Z. For E 2�, let

�.E; x/D
X
O�E .k/e

2�ikx :

Let E 2 J be such that there exists an analytic function  E W R=Z! R such
thatZ

R=Z

 E .x/dx D 0 and �.E; x/�

Z
R=Z

�.E; x/dx D  E .xC˛/� E .x/:

Then

(4-3)  E .x/D
X
O E .k/e

2�ikx;

where O E .k/D
�
O�E .k/=.e

2�ik˛ � 1/ if k ¤ 0;
0 if k D 0:

We can then define an analytic function BE W R=Z! SL.2;R/ by

BE .x/DR� E.x/CE .x/;

which satisfies

BE .xC˛/S�;E .x/BE .x/
�1
DR�.E/ and �.E/D

Z
R=Z

�.E; x/dx:

Reciprocally, if there exists an analytic function BE W R=Z! SL.2;R/ ho-
motopic to the identity such that BE .xC˛/S�;E .x/BE .x/�1 DR�.E/ for some
�.E/ 2 R, then we can write

OE .xC˛/R�.x/OE .x/
�1
DR�.E/; where OE .x/D BE .x/CE .x/�1:

By the previous lemma, there exists an analytic function (having average 0)  W
R=Z! R satisfying �.x/�

R
R=Z

�.x/dx D  .xC˛/� .x/.
Notice that

(4-4) lim sup
jkj!1

1

jkj
ln 1

je2�ik˛�1j
D ˇ;

so that if ˇ D 0, then (4-3) really defines an analytic function for any E 2 J ; thus
(i) follows.

Let a W�! Œ�1; ˇ� be given by

a.E/D lim sup
jkj!1

1

jkj
ln
ˇ̌̌̌
O�E .k/

e2�ik˛�1

ˇ̌̌̌
:
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By the previous discussion, ƒ�;˛ D fE 2 J W a.E/ < 0g. If ˇ <1, then a is
lim sup of a sequence of subharmonic functions which are uniformly bounded on
compacts of �. It follows that a coincides with its upper regularization

a�.E/D lim sup
E 0!E

a.E 0/

for E outside some polar exceptional set. Thus the set fE 2 J W a.E/ < 0g is either
polar (contained in the exceptional set) or it has nonempty interior. �

LEMMA 4.3. Let ˛ 2 R nQ and � > 0. Then ƒ�;˛ has empty interior.

Proof. We may assume that 0 < �� 1 (otherwise the Lyapunov exponent is
positive on †�;˛ , which easily implies that ƒ�;˛ D∅). Assume that J �ƒ�;˛ is
an open interval. Then J �†�;˛ (since L�;˛.E/D 0 for E 2 J ). Let BE be as in
the definition of ƒ�;˛ . Then the definition of fibered rotation number (see Section
2.1) implies ��;˛.E/D �.E/.mod Z/. By the analyticity of � on J (see note 2),
there existE 2J and l 2Z such that �.E/D l˛.mod Z/. Let TE WR=Z!SL.2;R/
be given by TE .x/DR�lxBE .x/. Then

TE .xC˛/S�;E .x/TE .x/
�1
D id :

The conclusion is as in [Pui04]. For v 2 R2,

S�;E .x/TE .x/
�1v D TE .xC˛/

�1v:

So by (2-3) there exists an analytic Uv W R=Z! R such that

TE .xC˛/
�1
� v D

�
Uv.x/

Uv.x�˛/

�
:

Let Uv.x/ D
P
uvne

2�inx . It is a standard Aubry duality argument (and can be
checked by direct calculation) that uvn 2 `

2.Z/ is an eigenvector of H��1;˛;0 with
eigenvalue ��1E. The fact that we get such an eigenvector for every v 2 R2

contradicts the simplicity of the point spectrum. �
Remark 4.1. Notice that Lemma 4.3 and Theorem 4.2(i) already imply the

Ten Martini problem in the case ˇ D 0, and we did not need any localization result
(the only recent result we used was Theorem 2.1).

5. Localization and Cantor spectrum

We say that the operator H�;˛;� displays Anderson localization if it has pure
point spectrum with exponentially decaying eigenvectors. This requires ˛ 2 R nQ,
and implies that eigenvalues are dense in †�;˛.

THEOREM 5.1. Let ˛ 2 R nQ, and let �� 1. Assume that ˇ <1. If H�;˛;�
displays Anderson localization for a nonpolar set of � 2 R, then †�;˛ is a Cantor
set.
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Proof. Let ‚ be the set of � such that H�;˛;� displays Anderson localization.
If � 2‚ and E is an eigenvalue for H�;˛;� , let .un/n2Z be a nonzero eigenvector.
Then

S��1;��1E �W.x/D e
2�i�W.xC˛/;

where

W.x/D

�
U.x/e2�i�

U.x�˛/

�
and U.x/D

X
une

2�inx :

Let M.x/ be the matrix with columns W.x/ and W.x/. Then

S��1;��1E .x/ �M.x/DM.xC˛/

�
e2�i� 0

0 e�2�i�

�
:

This implies that detM.x/ is independent of x, so detM.x/D ci for some c 2 R.
Notice that if c D 0, then

V.xC˛/D e�4�i�V.x/;

with V.x/D U.x/=U.x/ (observe that U.x/¤ 0 except at finitely many x since
U.x/ is a nonconstant analytic function), and in particular, if nk˛ ! 0, then
2nk� ! 0. So 2� D k˛C l for some k; l 2 Z. If c > 0, we have

S��1;��1E .x/DQ.xC˛/R�Q.x/
�1;

where Q W R=Z! SL.2;R/ is given by

(5-1) Q.x/D
1

.2c/1=2
M.x/

�
1 i

1 �i

�
and if c < 0, we have

S��1;��1E .x/DQ.xC˛/R��Q.x/
�1;

where Q W R=Z! SL.2;R/ is given by

(5-2) Q.x/D
1

.�2c/1=2
M.x/

�
1 i

1 �i

��
1 0

0 �1

�
:

It follows that in either case ��1E 2ƒ��1;˛, and moreover,

���1;˛.�
�1E/D ˙ � C k˛.mod Z/ for some k 2 Z

(note that Q defined by (5-1) or (5-2) is not necessarily homotopic to the identity).
Let ‚0 � ‚ be the set of all � such that 2� ¤ k˛C l for all k; l 2 Z. Let

J �†�;˛ be an open interval. Then for any � 2‚0, there exists some E 2 J such
that E is an eigenvalue for H�;˛;� , and by the previous discussion any such E
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satisfies

N��1;˛.�
�1E/D 1� 2���1;˛.�

�1E/D 1� 2."� C k˛C l/

for some k; l 2 Z; " 2 f1;�1g; and ��1E 2ƒ��1;˛:

It follows that

‚0 �
n
"

2
.1�N��1;˛.ƒ��1;˛ \�

�1J //� k˛� l W k; l 2 Z; " 2 f1;�1g
o
:

By Theorem 4.2(ii) and Lemma 4.3, ƒ��1;˛ \ �
�1J is polar. Since L D 0 on

��1J , we have that N��1;˛ is a nonconstant analytic function on ��1J ; thus it
follows that ‚0 is also polar. Therefore ‚ �‚0 [ f1

2
.k˛C l/ W k; l 2 Zg is polar,

which is a contradiction. �

Remark 5.1. In [Pui04], it is shown that if ˛ 2DC , then Anderson localization
of H�;˛;0 implies Cantor spectrum. We can not however use the argument of Puig
(based on analytic reducibility) to conclude Cantor spectrum in the generality we
need. Indeed, we are not able to conclude analytic reducibility from localization of
H�;˛;0 in our setting (in a sense, we spend all our regularity to take care of small
divisors in the localization result, which is half of analytic reducibility, and there is
nothing left for the other half). Though this can be bypassed (using Kotani theory
to conclude continuous reducibility under the assumption of non-Cantor spectrum),
there is a much more serious difficulty in this approach; see Remark 5.2.

The next result gives us a large range of � and ˛ where Theorem 5.1 can be
applied.

THEOREM 5.2. Let ˛ 2RnQ be such that ˇD ˇ.˛/ <1, and let �> e16ˇ=9.
Then H�;˛;� displays Anderson localization for almost every � .

This result improves on [Jit99], where Anderson localization was proved under
the assumption that ˛ is Diophantine. Recall that ˛ is said to satisfy a Diophantine
condition (briefly, ˛ 2DC ) if ln qnC1 DO.ln qn/, where pn=qn are the rational
approximations of ˛. In particular ˛ 2DC implies (but is strictly stronger than)
ˇ.˛/D 0. The proof in [Jit99] with some modifications can be extended to the case
ˇ.˛/D 0 but not to the case ˇ.˛/ > 0.

The proof of Theorem 5.2 is the most technical part of this paper, and the
considerations involved are independent from our other arguments. We will thus
postpone it to Section 9.

Remark 5.2. We expect that the operator H�;˛;0 does not display Anderson
localization for 1 < � � e2ˇ . The key reason is that in this regime 0 is a very
resonant phase, and since ˛ is Diophantine only in a very weak sense, the compound
effect on the small divisors can not be compensated by the Lyapunov exponent. See
also Remark 9.1.
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6. Fictitious results on continuity of the spectrum

The spectrum †�;˛ is a continuous function of ˛ in the Hausdorff topology.
There are several results in the literature about quantitative continuity. The best
general result, due to [AvMS90], concerns 1=2-Hölder continuity. Better estimates
can be obtained for ˛ not very Liouville in the region of positive Lyapunov exponent
[JK02]. None of those results are enough for our purposes.

The results described above have something in common: they deal with
something that actually happens, and it is not clear if it is possible to improve them
sufficiently (to the level we need). Thus we will argue by contradiction: assuming
the spectrum is not Cantor, we will get very good continuity estimates. This will
allow us to proceed the argument, but obviously, since we will eventually conclude
that the spectrum is a Cantor set, estimates in this section are not valid for any
existing almost Mathieu operator. Those estimates might be useful also when
analyzing more general Schrödinger operators.

THEOREM 6.1. Let ˛ 2 R nQ and 0 < �� 1. Let J � R be an open interval
such that J � int†�;˛. There exists K > 0 such that

jN�;˛.E/�N�;˛0.E/j �Kj˛�˛
0
j for E 2 J:

Proof. Let m D m�;˛ be as in Theorem 3.2. Define x 7! CE .x/ by (4-2).
Then, as discussed in the proof of Theorem 4.2, CE WR=Z!SL.2;R/ is homotopic
to the identity, with CE .xC˛/S�;E .x/CE .x/�1 2 SO.2;R/. So

CE .xC˛/S�;E .x/CE .x/
�1
DR�E.x/;

where �E WR=Z!R is analytic. Recall the definition of the fibered rotation number
in Section 2.1. Then �.˛; S�;E .x//D �.˛;R�.x//. In this case we can take as lift
of R�E.x/ the function  .x; y/D �.x/.

Write

�.˛0; S�;E /D �.˛
0; CE .xC˛

0/S�;E .x/CE .x/
�1/

D �.˛0; CE .xC˛
0/CE .xC˛/

�1R�E.x//:

Since m is analytic in x, we can take as lift of CE .xC˛0/CE .xC˛/�1R�E.x/ a
function Q .x; y/ satisfying j Q .x; y/��.x/j �Kj˛�˛0j. Thus

k�.˛; S�;E /� �.˛
0; S�;E /kR=Z �

Z
sup
y
j�.x/� Q .x; y/jdx �Kj˛�˛0j:

The result now follows, since N D 1� 2� (see Section 2.2) for the determination
of � in Œ0; 1=2�. �

Remark 6.1. Clearly we also get the fictitious estimate

jL�;˛0.E/�L�;˛.E/j �Kj˛�˛
0
j for E 2 J:
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7. Gaps for rational approximants

It is well known for any � ¤ 0 that if p=q is an irreducible fraction then
†�;p=q consists of q bands with disjoint interior. All those bands are actually
disjoint, except if q is even, when there are two bands touching at 0; see [vM89],
[CEY90]. The variation of N�;p=q in each band is precisely 1=q. The connected
components of R n†�;p=q are called gaps. Let M.�; p=q/ be the maximum size
of the bands of †�;p=q .

The following result is well known.

LEMMA 7.1. Let ˛ 2 R nQ, �¤ 0. If pn=qn! ˛, then M.�; pn=qn/! 0.
In particular (since N�;pn=qn!N�;˛ uniformly), if one selects a point an;i in each
band of †�;pn=qn , then

(7-1) 1

qn

X
i

ıan;i ! dN�;˛ in the weak� topology.

In [CEY90], a lower bound for the size of gaps of †�;p=q is derived of the
form C.�/�q , where, for instance, C.1/D8. We will need the following sharpening
of this estimate, in the case where p=q are close to a given irrational number.

THEOREM 7.2. Let ˛ 2 R nQ and let 0 < �� 1. Let pn=qn! ˛. For every
� > 0 and for every n sufficiently large, all gaps of †�;pn=qn have size at least
e��qn�qn=2.

Proof. It is known (see the proof of [CEY90, Th. 3.3] for the case �D 1, the
general case being obtained as described in the proof of [CEY90, Cor. 3.4]) that for
any bounded gap G of †�;p=q , one can find a sequence aj for 1� j � q, with one
aj in each band of †�;p=q , such that G D .ai ; aiC1/ for some 1� i � q� 1; andQ
j¤i jaj � ai j � �

m, where q D 2mC 1 or q D 2mC 2.
Let Gn be a bounded gap of †�;pn=qn of minimal size. Then

(7-2) jGnj � �
qn=2

Y
j¤in;inC1

jan;j � an;in j
�1;

where the an;i satisfy the hypothesis of the previous lemma. Passing to a subse-
quence, we may assume that an;in!E 2†�;˛ and jGnj ! 0 (otherwise the result
is obvious). By (7-2), we get that for 0 < ı < 1 and for n large we have

1

qn
ln.jGnj��qn=2/� �

1

qn

X
j¤in;inC1

lnjan;j � an;in j

� �
1

qn

X
jan;j�an;in j>ı

lnjan;j � an;in j;



318 ARTUR AVILA and SVETLANA JITOMIRSKAYA

which implies by (7-1) and the definition of the weak� topology that

lim inf 1
qn

ln.jGnj��qn=2/� �
Z
jE 0�E j>ı

lnjE �E 0jdN�;˛.E
0/:

Thus

lim inf 1
qn

ln.jGnj��qn=2/� �
Z

lnjE �E 0jdN�;˛.E
0/:

By the Thouless formula and Theorem 2.1, this gives

lim inf 1
qn

ln.jGnj��qn=2/� �L�;˛.E/D 0: �

Remark 7.1. It is possible to get an estimate on the convergence rate in Lemma
7.1 using [AvMS90]. This implies an estimate on the rate of convergence in Theorem
7.2.

8. Proof of the Main Theorem

We now put together the results of the previous sections. Recall that it is
enough to consider � > 0, and that the case �D 1 follows from [AK06, Th. 1.5].
Moreover, Cantor spectrum for � implies Cantor spectrum for 1=�. Let ˇ D ˇ.˛/.
The Main Theorem follows then from the following.

THEOREM 8.1. Let ˛ 2 R nQ.

(i) If ˇ <1 and � > e16ˇ=9, then †�;˛ is a Cantor set.

(ii) If ˇ D1 or if 0 < ˇ <1 and e�2ˇ < �� 1, then †�;˛ is a Cantor set.

Proof.
Item (i) follows from Theorems 5.2 and 5.1.
To get item (ii), we argue by contradiction. Let J � int† be a compact

interval. Then the density of states satisfies dN=dE � c > 0 for E 2 J [AS83]. Let
p=q be close to ˛ such that .1=q/ lnj˛�p=qj is close to �ˇ. By Lemma 7.1 and
Theorem 7.2, J n†p=q contains an interval G D .a; b/ of size e��q�q=2. Notice
that N�;p=q.a/DN�;p=q.b/. Theorem 6.1 implies

jN�;˛.a/�N�;˛.b/j �K j˛�p=qj � e
�qe�ˇq:

Thus

c �
N�;˛.a/�N�;˛.b/

a� b
� e2�qe�ˇq��q=2:

By taking �! 0, we conclude that �� e�2ˇ . �

Let us point out that 1=2-Hölder continuity of the spectrum [AvMS90] (which
holds for every ˛ and �) together with Theorem 7.2 implies the following improve-
ment of [CEY90]. Let us say that all gaps of†�;˛ are open if whenever E 2†�;˛ is
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such that N�;˛.E/D k˛C l for some k 2 Znf0g and l 2 Z, then E is the endpoint
of some bounded gap (this obviously implies Cantor spectrum). The conjecture
that †�;˛ has all gaps open for all �¤ 0 and ˛ 2 R nQ is sometimes called the
“dry” version of the Ten Martini Problem.

THEOREM 8.2. Let ˛ 2 R nQ and let ˇ D ˇ.˛/. If ˇ D1 or if 0 < ˇ <1
and e�ˇ < � < eˇ , then †�;˛ has all gaps open.

The conclusion from Theorem 8.2 appears to be the natural boundary of what
can be taken honestly from the Liouvillian method: our computations indicate that
although one can get improved estimates on continuity of the spectrum for � > eˇ

(following [JK02]), things seem to break up at the precise parameter �D eˇ . Notice
that �D eˇ is the expected threshold for localization (for almost every phase)3 and
falls short of the expected threshold for localization with phase � D 0 and �D e2ˇ .
Thus the use of fictitious estimates does not seem to be an artifact of our estimates,
but a rather essential aspect of an approach that tries to cover all parameters with
Diophantine and Liouvillian techniques.

Remark 8.1. We do not actually need the measure-theoretical result of [AK06]
to obtain Cantor spectrum for j�j D 1. Indeed, Lemma 4.3 and Theorem 4.2(i)
imply Cantor spectrum for ˇD 0 (any �¤ 0; see Remark 4.1), and Theorem 8.1(ii)
implies Cantor spectrum for ˇ > 0 (if j�j D 1).

9. Proof of Theorem 5.2

We will actually prove a slightly more precise version of Theorem 5.2. Let

(9-1) RD f� W jsin 2�.� C .k=2/˛/j< k�2 holds for infinitely many ksg

[ fs�˛=2 W s 2 Zg:

R is easily seen to have zero Lebesgue measure by the Borel-Cantelli lemma.

THEOREM 9.1. Let ˛ 2 RnQ be such that ˇ D ˇ.˛/ <1, and let � > e16ˇ=9.
Then H�;˛;� displays Anderson localization for � …R.

Remark 9.1. For ˇD 0 the theorem holds as well for � D s�˛=2; however the
proof as presented here will not work. See [JKS05] for the details of the argument
needed for this case. In general, we believe that for � of the form s�˛=2 with s 2Z,
the localization would only hold for � > e2ˇ .

Remark 9.2. We believe that for � …R, localization should hold for � > eˇ .
The proof of this fact would require some additional arguments. Moreover, for
�� eˇ , we do not expect any exponentially decaying eigenvectors.

3In particular, by Gordon’s argument enhanced with Theorem 2.1, H�;˛;� has no eigenvalues for
� < eˇ , and no localized eigenfunctions for �D eˇ .
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Remark 9.3. The bound k�2 in (9-1) can be replaced by any other sub-
exponential function without significant changes in the proof.

We will use the general setup of [Jit99]; however our key technical procedure
will have to be quite different.

A formal solution ‰E .x/ of the equation H�;˛;�‰E DE‰E will be called a
generalized eigenfunction if

(9-2) j‰E .x/j � C.1Cjxj/ for some C D C.‰E / <1.

The corresponding E is called a generalized eigenvalue. It is well known that
to prove Theorem 9.1 it suffices to prove that generalized eigenfunctions decay
exponentially [Ber68].

We will use the notation GŒx1;x2�.x; y/ for matrix elements of the Green’s
function .H �E/�1 of the operator H�;˛;� restricted to the interval Œx1; x2� with
zero boundary conditions at x1�1 and x2C1. We now fix �; ˛ as in Theorem 9.1.

Fix a generalized eigenvalue E, and let ‰ be the corresponding generalized
eigenfunction. Then

(9-3) L.E/D ln� > 0:

� will enter into our analysis through L only and it will be convenient to use L
instead. To simplify notations, in some cases the E; �; ˛-dependence of various
quantities will be omitted.

Fix m > 0. A point y 2 Z will be called .m; k/-regular if there exists an
interval Œx1; x2�; x2 D x1C k� 1, containing y, such that

jGŒx1;x2�.y; xi /j< e
�mjy�xi j and dist.y; xi /� k=40 for i D 1; 2:

Otherwise, y will be called .m; k/-singular.
It is well known and can be checked easily that values of any formal solution

‰ of the equation H‰DE‰ at a point x 2 I D Œx1; x2�� Z can be reconstructed
from the boundary values via

(9-4) ‰.x/D�GI .x; x1/‰.x1� 1/�GI .x; x2/‰.x2C 1/:

This implies that if ‰E is a generalized eigenfunction, then every point y 2 Z

with ‰E .y/ ¤ 0 is .m; k/-singular for k sufficiently large, that is, for k greater
than some k1.E;m; �; y/. We assume without loss of generality that ‰.0/ ¤ 0
and normalize ‰ so that ‰.0/ D 1. Our strategy will be to show first that every
sufficiently large y is .m; `.y//-regular for appropriate .m; `/. While ` will vary
with y, m will have a uniform lower bound. This will be shown in Sections 9.4
and 9.3. Exponential decay will be derived out of this property via a “patching
argument” in Section 9.1.
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Let us denote

Pk.�/D det
�
.H�;˛;� �E/

ˇ̌
Œ0;k�1�

�
:

Then the k-step transfer-matrix An.�/ (which is the k-th iterate of the almost
Mathieu cocycle Ak.�/D S�;E .� C .k� 1/˛/ � � �S�;E .�/) can be written as

(9-5) Ak.�/D

�
Pk.�/ �Pk�1.� C˛/

Pk�1.�/ �Pk�2.� C˛/

�
:

Herman’s subharmonicity trick [Her83] yields
R 1
0 lnjPk.�/jd� � k ln�; to-

gether with (9-3), this implies that there is a � 2 Œ0; 1� with jPk.�/j � ekL.E/. Note
that this is the only place in the proof of localization where we have used (9-3).
While this is not really necessary (the rest of the proof can proceed, with only minor
technical changes, under the assumption of the lower bound on only one of the
four matrix elements, which follows immediately from the positivity of L.E/), it
simplifies certain arguments in what follows.

By applying Cramer’s rule we have for any x1 and x2 D x1 C k � 1, with
x1 � y � x2, that

(9-6)
jGŒx1;x2�.x1; y/j D

ˇ̌̌̌
Px2�y.� C .yC 1/˛/

Pk.� C x1˛/

ˇ̌̌̌
;

jGŒx1;x2�.y; x2/j D

ˇ̌̌̌
Py�x1.� C x1˛/

Pk.� C x1˛/

ˇ̌̌̌
:

The numerators in (9-6) can be bounded uniformly in � [Jit99], [Fur97].
Namely, for every E 2 R; � > 0, there exists a k2.�; E; ˛/ such that

(9-7) jPn.�/j< e
.L.E/C�/n for all n > k2.�; E; ˛/ and all � .

Pk.�/ is an even function of �C 1
2
.k�1/˛ and can be written as a polynomial

of degree k in cos 2�.� C 1
2
.k� 1/˛/ W

Pk.�/D

kX
jD0

cj cosj 2�
�
� C 1

2
.k� 1/˛

�
def
D Qk

�
cos 2�.� C 1

2
.k� 1/˛/

�
:

Let Ak;r D f� 2 R W jQk.cos 2��/j � e.kC1/rg. The next lemma shows
that every singular point “produces” a long piece of the trajectory of the rotation
consisting of points belonging to an appropriate Ak;r .

LEMMA 9.2. Suppose y 2 Z is .L� �; k/-singular and 0 < � < L. Then for
any �1 > 0, 1=40� ı < 1=2, for sufficiently large k > k.�; E; ˛; �1; ı/, and for any
x 2 Z such that y � .1� ı/k � x � y � ık, we have that � C .xC .k � 1/˛=2/
belongs to Ak;L��ıC�1 .
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Proof. This follows immediately from the definition of regularity, (9-6), and
(9-7). �

The idea now is to show that Ak;r cannot contain kC 1 uniformly distributed
points. In order to quantify this concept of uniformity we introduce the following
notion.

Definition 9.1. We will say that the set f�1; : : : ; �kC1g is �-uniform if

(9-8) max
z2Œ�1;1�

max
jD1;:::;kC1

kC1Y
`D1
`¤j

jz� cos 2��`/j
jcos 2��j � cos 2��`/j

< ek�:

Note that we will use this terminology with “large” values of � as well. �-
uniformity (the smaller � the better) involves uniformity along with certain cumula-
tive repulsion of the ˙�i .mod 1/.

LEMMA 9.3. Let �1 < �. If �1; : : : ; �kC1 2 Ak;L�� and k > k.�; �1/ is suffi-
ciently large, then f�1; : : : ; �kC1g is not �1-uniform.

Proof. Write polynomial Qk.z/ in the Lagrange interpolation form using
cos 2��1; : : : ; cos 2��kC1:

(9-9) jQk.z/j D

ˇ̌̌̌
ˇ
kC1X
jD1

Qk.cos 2��j /

Q
`¤j .z� cos 2��`/Q

`¤j .cos 2��j � cos 2��`/

ˇ̌̌̌
ˇ:

Let �0 be such that jPk.�0/j � exp.kL/. The lemma now follows immediately
from (9-9) with z D cos 2�.�0C 1

2
.k� 1/˛/. �

Suppose we can find two intervals, I1 around 0 and I2 around y, of combined
length jI1jCjI2j D kC1,4 such that we can establish the uniformity of f�ig where
�i D �C.xC

1
2
.k�1/˛/ for i D 1; : : : ; kC1 and x ranging through I1[I2. Then

we can apply Lemma 9.2 and 9.3 to show regularity of y. This is roughly going to
be the framework for our strategy to establish regularity. The implementation will
depend highly on the position of k with respect to the sequence of denominators
qn.

Assume without loss of generality that k > 0. Define

bn Dmaxfq8=9n ; 1
20
qn�1g:

Find n such that bn < k � bnC1. We will distinguish two cases:

(i) Resonant means jk� `qnj � bn for some `� 1.

(ii) Nonresonant means jk� `qnj> bn for all `� 0.

4Here and in what follows, the “length” jI j of an interval I D Œa; b� � Z denotes cardinality:
jI j D b� aC 1.
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We will prove the following estimates.

LEMMA 9.4. Assume � … R. Suppose k is nonresonant. Let s 2 N[ f0g be
the largest number such that sqn�1 � dist.k; f`qng`�0/� k0. Then for any � > 0
and for sufficiently large n, the following hold:

(i) If s � 1 and L> ˇ, then k is .L� ln qn=qn�1� �; 2sqn�1� 1/-regular.

(ii) If s D 0, then k is either .L� �; 2Œqn�1=2�� 1/ or .L� �; 2Œqn=2�� 1/ or
.L� �; 2qn�1� 1/-regular.

LEMMA 9.5. Let in addition L > 16
9
ˇ. Then for sufficiently large n, every

resonant k is .L=50; 2qn� 1/-regular.

We will prove Lemma 9.4 in Section 9.3 and Lemma 9.5 in Section 9.4. These
two sections are not independent: the proof of Lemma 9.5 uses a corollary of the
proof of Lemma 9.4 as an important ingredient. As our proofs rely on establishing
�-uniformity of certain quasiperiodic sequences, we will repeatedly use estimates
on trigonometric products proved in Section 9.2.

Theorem 9.1 can be immediately derived from Lemmas 9.4 and 9.5 via a
“patching argument”, which we describe now. (A patching argument will also be
used in one step of the proof of Lemma 9.5.)

9.1. Patching. Proof of Theorem 9.1 assuming Lemmas 9.4 and 9.5. It is an
important technical ansatz of the multiscale analysis that the exponential decay of a
Green’s function at a scale k under certain conditions generates exponential decay
with the same rate at a larger scale. The proof is usually done using block-resolvent
expansion, with the combinatorial factor being killed by the growth of scales. The
proof of Theorem 9.1 will consist, roughly, of adapting this type of argument to
our situation.

Fix a generalized eigenvalue E of H�;˛;� , and let ‰ be the corresponding
generalized eigenfunction.

Assume without loss of generality that k is positive. Find n so that k > qn.
We assume that n is sufficiently large. Let L1 D L=50� L�ˇ. By Lemmas 9.4
and 9.5 and the definition of regularity, for any y > bn there exists an interval
y 2 I.y/D Œx1; x2�� Z such that

dist.y; @I.y// > jI.y/j=40;(9-10)

jI.y/j � q8
=9
n � 2;(9-11)

GI.y/.k; xi / < e
�L1jk�xi j for i D 1; 2:(9-12)

In addition, if bj < y � bjC1 we have

(9-13) jI.y/j � 2qj :
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We denote the boundary of the interval I.y/, the set fx1; x2g, by @I.y/. For
z 2 @I.y/ we let z0 be the neighbor of z (i.e., jz� z0j D 1/ not belonging to I.y/.

We now expand ‰.x2C 1/ in (9-4), iterating (9-4) with I D I.x2C 1/. In
case q8=9n < x1� 1 we also expand ‰.x1� 1/ using (9-4) with I D I.x1� 1/. We
continue to expand each term of the form ‰.z/ in the same fashion until we arrive
to z such that either z � bn and z > k2 or the number of GI terms in the product
becomes Œ40k=q8=9n �, whichever comes first. We then obtain an expression of the
form

(9-14) ‰.k/D
X

sIziC12@I.z
0
i
/

GI.k/.k;z1/GI.z01/
.z01;z2/ � � �GI.z0s/.z

0
s;zsC1/‰.z

0
sC1/:

where in each term of the summation we have zi > bn for i D 1; : : : ; s, and
either 0 < z0sC1 � bn and s � 40k=q8=9n or z0sC1 > k2 and s � 40k=q8=9n or
sC 1 D Œ40k=q8=9n �. By construction, for each z0i with i � s, we have that I.z0i /
is well defined and satisfies (9-12) and (9-13). We now consider the three cases,
0 < z0sC1 � bn, z0sC1 > k

2, and sC 1D Œ40k=q8=9n � separately. If 0 < z0sC1 � bn
we have, by (9-12) and (9-2),

jGI.k/.k; z1/GI.z01/
.z01; z2/ � � �GI.z0s/.z

0
s; zsC1/‰.z

0
sC1/j

� C exp.�L1.jk� z1jC
Ps
iD1jz

0
i � ziC1j//.1C bn/

� C exp.�L1.jk� zsC1j � .sC 1///.1C bn/

� C exp.�L1.k� bn� 40k=q8=9n //.1C bn/:

Similarly, if z0sC1 > k
2; we use (9-12) and (9-13) to get

jGI.k/.k; z1/GI.z01/
.z01; z2/ � � �GI.z0s/.z

0
s; zsC1/‰.z

0
sC1/j

� C exp.�L1.k2� k� 40k=q8=9n //.1C 3k9=4/:

Finally, if sC 1D Œ40k=q8=9n �; using again (9-2), (9-12), and also (9-10) we can
estimate

jGI.k/.k; z1/GI.z01/
.z01; z2/ � � �GI.z0s/.z

0
s; zsC1/‰.z

0
sC1/j

� C exp.�L1 140q
8=9
n Œ40k=q8=9n �/.1C k2/:

In either case,

(9-15) jGI.k/.k; z1/GI.z01/
.z01; z2/ � � �GI.z0s/.z

0
s; zsC1/‰.z

0
sC1/j � e

�9L1k=10

for k sufficiently large. Finally, we observe that the total number of terms in (9-14)
is bounded above by the Œ40k=q8=9n �-th power of 2. Combining it with (9-14) and
(9-15) we obtain

j‰.k/j � 2Œ40k=q
8=9
n �e�9L1k=10 < e�4L1k=5 for large k: �
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9.2. Estimates on trigonometric products. We will write kzkR=Z for the dis-
tance to the nearest integer.

LEMMA 9.6. Let p and q be relatively prime.

(i) Let 1� k0 � q be such that

jsin 2�.xC k0p=.2q//j D min
1�k�q

jsin 2�.xC kp=.2q//j:

Then

(9-16) ln qC ln 2=� <
qX
kD1
k¤k0

lnjsin 2�.xC kp=.2q//jC .q� 1/ ln 2� ln q:

(ii)
q�1X
kD1

lnjsin�kp=qj D �.q� 1/ ln 2C ln q:

Proof. We use that

(9-17) lnjsin x=2j D � ln 2� 1
2

X
k¤0

eikx

jkj
pointwise for x … 2�Z.

Thus, for x ¤ k=.2q/,
qX

jD1

lnjsin 2�.xC jp=.2q//j D �q ln 2� 1
2

X
k¤0

1

jkj

qX
jD1

e2�ik.2xCjp=q/

D�q ln 2� 1
2

X
k¤0

1

jkj
e4�ikqx D�q ln 2C ln 2C lnjsin 2�qxj:

Thus

(9-18)
qX
kD1
k¤k0

ln
ˇ̌̌
sin 2�

�
xC

kp

2q

�ˇ̌̌
C .q� 1/ ln 2D ln

jsin 2�q.xC k0p=.2q//j
jsin 2�.xC k0p=.2q//j

:

It is easily checked that if 0< qx��=2, then 2q=� < sin qx=sin x < q. Since
k2xCk0p=qkR=Z � 1=.2q/, (9-18) implies (9-16). Then (ii) follows by taking the
limit in (9-18). �

For ˛ …Q, let pn=qn be its continued fraction approximants. Setting �n D
jqn˛�pnj, we recall the basic estimates

1=qn >�n�1 > 1=.qnC qn�1/;(9-19)

kk˛kR=Z >�n�1 for qn�1C 1� k � qn� 1:(9-20)
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Notice that if z; w 2 R are such that cos.z�w/� 0, then

(9-21)
ˇ̌̌

sin z
sinw

� 1
ˇ̌̌
�

ˇ̌̌
cos.z�w/� 1C cosw

sinw
sin.z�w/

ˇ̌̌
�

ˇ̌̌
2

sin.z�w/
sinw

ˇ̌̌
:

LEMMA 9.7. Let 1� k0 � qn be such that

jsin 2�.xC k0˛=2/j D min
1�k�qn

jsin 2�.xC k˛=2/j:

Then

(9-22)
ˇ̌̌̌ qnX
kD1
k¤k0

lnjsin 2�.xC k˛=2/jC .qn� 1/ ln 2
ˇ̌̌̌
< C ln qn:

Proof. Let 1� k1 � qn be such that

jsin 2�.xC k1pn=.2qn//j D min
1�k�qn

jsin 2�.xC kpn=.2qn//j:

We first remark that, by (9-20)

(9-23) k.2xC k˛/� .2xC k0˛/kR=Z D k.k� k
0/˛kR=Z ��n�1

for 1� k; k0 � qn and k ¤ k0:

Applying this to the case k0 D k0, we get, by (9-19),ˇ̌
lnjsin 2�.xC k˛=2/j

ˇ̌
< C ln qn for k ¤ k0:

An even simpler argument,

(9-24) k.2xC kpn=qn/� .2xC k0pn=qn/kR=Z D k.k� k
0/pn=qnkR=Z � 1=qn;

for 1� k; k0 � qn and k ¤ k0;

also gives that if k ¤ k1 then jlnjsin 2�.x C kpn=.2qn//jj < C ln qn. This and
(9-16) show that it is enough to get the estimate

(9-25)
qnX
kD1

k¤k0;k1

ln
ˇ̌̌ sin 2�.xC k˛=2/
sin 2�.xC kpn=.2qn//

ˇ̌̌
< C ln qn:

By (9-21),

(9-26)
ˇ̌̌ sin 2�.xC k˛=2/
sin 2�.xC kpn=.2qn//

� 1
ˇ̌̌
<

C0�n

jsin 2�.xC kpn=.2qn//j
;

so, if C0�n < .1=4/jsin 2�.xC kpn=.2qn//j, we have

ln
ˇ̌̌ sin 2�.xC k˛=2/
sin 2�.xC kpn=.2qn//

ˇ̌̌
<

C�n

jsin 2�.xC kpn=.2qn//j
;
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Suppose s1; : : : ; sr is an enumeration of f1� k� qn; k¤ k0; k1g in nondecreasing
order of jsin 2�.xC kpn=.2qn//j (so r D qn � 1 or r D qn � 2). By (9-24), we
have jsin 2�.xC sjpn=.2qn//j> C1j=qn. Then we get (9-25):

qnX
kD1

k¤k0;k1

ln
ˇ̌̌ sin 2�.xC k˛=2/
sin 2�.xC kpn=.2qn//

ˇ̌̌
D

X
1�j�4C0=C1

ln
ˇ̌̌ sin 2�.xC sj˛=2/
sin 2�.xC sjpn=.2qn//

ˇ̌̌

C

X
4C0=C1<j�r

ln
ˇ̌̌ sin 2�.xC sj˛=2/
sin 2�.xC sjpn=.2qn//

ˇ̌̌
� C ln qnC

X
4C0=C1<j�r

Cqn�n=j � C ln qn: �

LEMMA 9.8. Let ` 2 N be such that ` < qrC1=.10qn/, where r � n. Given a
sequence j`kj � `� 1 for k D 1; : : : ; qn, let 1� k0 � qn be such that

jsin 2�.xC .k0C `k0qr/˛=2/j D min
1�k�qn

jsin 2�.xC .kC `kqr/˛=2/j:

Then

(9-27)
ˇ̌̌̌ qnX
kD1
k¤k0

lnjsin 2�.xC .kC `kqr/˛=2/jC .qn� 1/ ln 2
ˇ̌̌̌

< ln qnCC.�nC .`� 1/�r/qn ln qn:
Proof. Notice that k.k� k0/˛kR=Z ��n�1 � 1=.2qn/, while

k.`k � `k0/qr˛kR=Z �
qrC1

5qn
�r <

1

5qn
:

This implies

(9-28) k.2xC .kC `kqr/˛/� .2xC .k
0
C `k0qr/˛/kR=Z �

1

5qn

for 1� k; k0 � qn with k ¤ k0.
By (9-21), we have

(9-29)
ˇ̌̌sin 2�.xC .kC `kqr/˛=2/

sin 2�.xC kpn=.2qn//
� 1

ˇ̌̌
�

C0.�nC .`� 1/�r/

jsin 2�.xC kpn=.2qn//j
:

We now argue as in the previous lemma, using (9-28) and (9-29) instead of (9-23)
and (9-26). �

9.3. Nonresonant case. Proof of Lemma 9.4. In the arguments that follow,
we will actually consider a slightly larger range of k, by assuming a weaker upper
bound k � maxf 1

20
qn; 50q

8=9
nC1g. The fact that the estimates hold for this larger

range will be useful later (when dealing with the resonant case).
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We start with the proof of the first part. Let

k Dmqn˙ .sqn�1C r/Dmqn˙ k0; ;

with s � 1; 0� r < qn�1 and k0 � qn=2, be nonresonant. Notice that 2sqn�1 <qn.
Assume without loss of generality that k DmqnC k0, the other case being treated
similarly.

Notice that if m� 1 then k > 1
20
qn, which implies that k � 50q8=9nC1, and we

have

(9-30) m� 50q8
=9
nC1=qn

(which is also obviously satisfied if mD 0). Set

I1 D Œ�Œsqn�1=2�; sqn�1� Œsqn�1=2�� 1�;

I2 D ŒmqnC k0� Œsqn�1=2�;mqnC k0C sqn�1� Œsqn�1=2�� 1�:

Set �j D �C j˛ for j 2 I1[ I2. The set f�j gj2I1[I2 consists of 2sqn�1 elements.

LEMMA 9.9. For any � > 0 and sufficiently large n, the set f�j gj2I1[I2 is
.�2 ln.s=qn/=qn�1C �/-uniform.

Proof. We will first estimate the numerator in (9-8). We have

(9-31)
X

j2I1[I2
j 6Di

ln jcos 2�a� cos 2��j j

D

X
j2I1[I2
j 6Di

ln
ˇ̌̌̌
sin 2�

aC �j

2

ˇ̌̌̌
C

X
j2I1[I2
j 6Di

ln
ˇ̌̌̌
sin 2�

a� �j

2

ˇ̌̌̌
C .2sqn�1�1/ ln 2

D†CC†�C .2sqn�1� 1/ ln 2:

Both †C and †� consist of 2s terms of the form of (9-22) plus 2s terms of
the form

(9-32) ln min
jD1;:::;qn�1

jsin.2�.xC j˛=2//j;

minus lnjsin.a˙ �i /=2j. Therefore, by (9-22)

(9-33)
X

j2I1[I2
j¤i

lnjcos 2�a� cos 2��j j � �2sqn�1 ln 2CCs ln qn�1:

To estimate the denominator of (9-8), we represent it again in the form (9-31)
with aD �i . Assume that i D j0qn�1C i0 2 I1 with 0� i0 < qn�1, the other case
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being treated similarly. Then

(9-34) †� D
X

j2I1[I2
j¤i

lnjsin�.i � j /˛j:

On each interval I � I1 of length qn�1, the minimum over t 2 I of jsin�.t �
i/˛j is achieved at t � i of the form jqn�1 for some j . This follows from the fact
that if 0 < jzj< qn�1 and 2jj jqn�1 < qn, then

k.jqn�1C z/˛kR=Z > kjqn�1˛kR=Z;

since kz˛k ��n�2 and kjqn�1˛k<�n�2=2. The possible values of j form an
interval Œj 0�; j

0
C
� of size s containing j0.

Let now T be an arbitrary interval of length qn�1 contained in I2. Notice that
T is contained in Œi CmqnC 1; i C .mC 1/qn� 1�. The minimum over t 2 T of
jsin�.t � i/˛j is achieved at t � i of either the form mqn C jqn�1 or the form
.mC 1/qn � jqn�1 for some j 2 N.5 For u 2 f0; 1g, let tu 2 T be (the unique
number) of the form tu D i C .mCu/qnC .�1/

ujuqn�1 for some ju 2 N. Since
jtu� t1�uj< qn�1 it follows that

(9-35) 0� j1�uC ju� Œqn=qn�1�� 1:

For all j 2 Œ1; Œqn=qn�1��, we have the lower bound

k..�1/ujqn�1C .mCu/qn/˛kR=Z ��n�1=2:

Indeed, by (9-30), if m� 1 then .mCu/�n � 100.q8
=9
nC1=qn/�n ��n�1=2, while

kjqn�1˛kR=Z ��n�1. If mD 0 then .mCu/qnC .�1/ujqn�1 2 Œ1; qn�1�, and
we get the lower bound �n�1. Those considerations also give the upper bound
.mCu/�n �maxf�n�1=2;�ng. This gives the estimate

(9-36) k..�1/ujqn�1C .mCu/qn/˛kR=Z � j�n�1=C

for all j 2 Œ1; Œqn=qn�1��.
Let T now run through the set of disjoint segments T p, each of length qn�1,

such that I2 D
Ss
pD1 T

p . It is not difficult to see that there exists a u (possibly both
uD 0 and uD 1) such that for all p the corresponding ju satisfy ju� 3

4
Œqn=qn�1�.6

5Suppose that t 2 T minimizes k.t � i/˛kR=Z, and suppose that ju, u 2 f0; 1g, is such that
tu D .mC u/qn C .�1/

ujuqn�1 C i 2 T . If t ¤ t0 and t ¤ t1, then k.t � tu/˛kR=Z � �n�2
as above. Since the .tu � i/˛ minus nearest integer are on opposite sides of 0, this implies that
k.t0 � t1/˛kR=Z � 2�n�2. But one easily checks that k.t0 � t1/˛kR=Z is either equal to �n�2 (if
t1 > t0) or to �n�1C�n�2 (if t1 � t0).

6 For u D 0; 1 the ju form an interval Œju� ; j
u
C
� of length s contained in Œ1; Œqn=qn�1��. If

ju
C
> 3
4 Œqn=qn�1�, then, since s � Œqn=2qn�1�, we have that ju� >

1
4 Œqn=qn�1�C1. Then, by (9-35),

j 1�u
C

< 3
4 Œqn=qn�1�.
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We now fix u 2 f0; 1g with this property. Then

k..mCu/qnC .�1/
ujuqn�1/˛kR=Z �

3
4
Œqn=qn�1��n�1CjmCuj�n

� .3
4
Œqn=qn�1�C 1/�n�1

:

Then, by (9-35), j1�u � 1
4
Œqn=qn�1� and by (9-36),

k..�1/1�uj1�uqn�1C .mC 1�u/qn/˛kR=Z �
1

4C
Œqn=qn�1��n�1:

Thus k.t1�u� i/˛kR=Z � k.tu� i/˛kR=Z=.7C /.
Notice that the ju form an interval Œj�; jC� of length s, which is contained in

Œ1; Œ3qn=.4qn�1/��.
Splitting again †� into 2s sums of length qn�1 and applying (9-22) on each,

we obtain

(9-37) †� > �2sqn�1 ln 2C
X

j 0��j�j
0
C

j¤j0

lnjsin�.j � j0/qn�1˛j

C

jCX
jDj�

lnjsin�..�1/ujqn�1C .mCu/qn/˛j �Cs�Cs ln qn�1:

Denote the sums in (9-37) by†1 and†2. Since j 0�� j0� j
0
C

and jŒj 0�; j
0
C
�jD

s, we have that

(9-38) †1 > 2

Œs=2�X
jD1

ln sinj�jqn�1˛j> 2
Œs=2�X
jD1

ln 2j�n�1 > s.ln s=qn�C/;

where the second inequality follows from the Stirling formula. For j 2 Œj�; jC�,
we use (9-36) to obtain

(9-39) †2 >

sX
jD1

ln j�n�1�Cs > s ln s=qn�Cs:

Therefore,

(9-40) †� > �2sqn�1 ln 2C 2s.ln s=qn�C ln qn�1/:

†C is estimated in a similar way. Set J1 D Œ�Œ.sC 1/=2�; s� Œ.sC 1/=2�� 1� and
J2 D ŒŒs=2�; sC Œs=2�� 1�, which are two adjacent disjoint intervals of length s.
Then I1[I2 can be represented as a disjoint union of segments Bj for j 2 J1[J2,
each of length qn�1. Applying (9-22) on each Bj we obtain

(9-41) †C > �2sqn�1 ln 2

C

X
j2J1[J2

lnjsin 2� O�j j �Cs ln qn�1� lnjsin 2�.� C i˛/j;
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where jsin 2� O�j j Dmin`2Bj jsin 2�.� C .i C `/˛=2/j:
Let Q�j D O�j for j 2 J1 and Q�j D O�j �mqn˛=2 for j 2 J2. Since � …R, for

sufficiently large n, we have that

min
j2J1[J2

jsin 2� Q�j j> 1=.9s2q2n�1/:

To estimate jsin 2� O�j j; j 2 J2, we distinguish two cases:

� If qnC1 > .20s2q2n�1/
9, we write

(9-42)
jsin 2� O�j j � jsin 2� Q�j cos�m�nj � jcos 2� Q�j sin�m�nj

> .10s2q2n�1/
�1
� .q1

=9
nC1/

�1 > .20s2q2n�1/
�1:

� If qnC1 � .20s2q2n�1/
9 we use that since � …R, for large n,

(9-43) min
j2J2
jsin 2� O�j j> ..2mC 2/qn/�2 > .4qnC1/�2 > .20sqn�1/�36

In either case, ln minj2J2 jsin 2� O�j j> �C ln sqn�1:
Let J D J1 or J D J2 and assume that O�jC1 D O�j C .qn�1=2/˛ for every

j; j C 1 2 J . We obtain therefore

(9-44)

X
j2J

lnjsin 2� O�j j> �C ln sqn�1C
Ps
jD1 ln j�n�1=C

> s ln s=qn�C.ln sqn�1C s/;

where again the last inequality follows from the Stirling formula. In the other
case, decompose J in maximal intervals T� such that for j; j C 1 2 T� we have
O�jC1 D O�j C .qn�1=2/˛. Notice that the boundary points of an interval T� are
either boundary points of J or satisfy k2 O�j kR=ZC�n�1 � �n�2=2. Assuming
T� ¤ J , there exists a j 2 T� such that k2 O�j kR=ZC�n�1 ��n�2=2. An estimate
similar to (9-44) gives

(9-45)
X
j2T�

lnjsin 2� O�j j> �jT� j ln qn�1�C.ln sqn�1CjT� j/:

If T� does not contain a boundary point of J (in particular jTkj � jJ j � 2D s� 2
and Œqn=qn�1�� 2s � 6), then T� does not contain any j with

k2 O�j kR=Z <�n�2=10 < �n�2=2��n�1

(otherwise jT� j�1��n�2=�n�1�2�qn=.2qn�1/�2� s�2, which is impossible)
and hence

(9-46)
X
j2T�

lnjsin 2� O�j j> �jT� j.ln qn�1CC/:
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Putting together all T� , using (9-45) for the ones that intersect the boundary of J
and (9-46) for the others, we get in all cases thatX

j2J

lnjsin 2� O�j j> s ln s=qn�C.ln sqn�1C s/:

Putting together J D J1 and J D J2 we haveX
j2J1[J2

lnjsin 2� O�j j> 2s ln s=qn�C.ln sqn�1C s/:

Combining it with (9-41) we obtain

(9-47) †C > �2sqn�1 ln 2C 2s.ln s=qn�C ln qn�1/:

Putting together (9-47),(9-40), and (9-31) givesX
j2I1[I2
j¤i

lnjcos 2��i � cos 2��j j> 4s.ln.sqn�1=qn/�C ln qn�1/� 2sqn�1 ln 2:

This together with (9-33) yields

max
j2I1[I2

Y
`2I1[I2
`¤j

jz� cos 2��`j
jcos 2��j � cos 2��`j

< e�4s ln.sqn�1=qn/CCs lnqn�1 : �

By Lemmas 9.3 and 9.9 at least one of �j for j 2 I1[ I2 is not in

(9-48) A
.2sqn�1� 1;LC 2 ln.sqn�1=qn/=qn�1� �/;

where � can be made arbitrarily small for large n. By Lemma 9.2 and singularity of
0,7 we have that for all j 2 I1, �j belongs to the set (9-48) (using that .sC1/qn�1>
q8=9n and the bound ln qn=qn�1 <L). Let j0 2 I2 be such that �j0 does not belong
to the set (9-48). Set

I D Œj0� sqn�1C 1; j0C sqn�1� 1�D Œx1; x2�:

Then by (9-6) and (9-7),

jGI .k; xi /j< e
.LC�1/.2sqn�1�2�jk�xi j/�2sqn�1.LC2 ln.sqn�1=qn/=qn�1��/

< e�.LC�1/jk�xi j�4sqn�1 ln.sqn�1=qn/=qn�1C.�1C�/sqn�1 :

Since

(9-49) jk� xi j � Œsqn�1=2�� 1;

7To get what we need here one can take in Lemma 9.2, besides y D 0, also � D 99=100L and
ı D 99=400.
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we obtain that

(9-50) jGI .k; xi /j< exp.�.LC 9 ln.sqn�1=qn/=qn�1� �/jk� xi j/

which in view of .sC1/qn�1 > q8
=9
n gives the statement of the first part of Lemma

9.4.
We now assume sD 0. In this case ˛ is “Diophantine” on the scale qn�1; how-

ever some caution is needed as it may not be so on the scale qn. Let k Dmqn˙ k0
with maxfqn�1=20; q8

=9
n g < k0 < qn�1. We will assume that m D qn C k0, the

other case being analogous.
We distinguish three cases.

� If 1
20
qn�1 < k0 �

4
5
qn�1, set

I1 D Œ�Œ
19
40
qn�1�C 1; Œ

19
40
qn�1��;

I2 D ŒmqnC Œ
19
40
qn�1�C 1;mqnC 2Œ

1
2
qn�1�� Œ

19
40
qn�1��:

� If 4
5
qn�1 < k0 < qn�1 and qn � 2qn�1, set

I1 D Œ�Œ
1
4
qn�C 1; Œ

1
4
qn��;

I2 D ŒmqnC Œ
1
4
qn�C 1;mqnC 2Œ

1
2
qn�� Œ

1
4
qn��:

� If 4
5
qn�1 < k0 < qn�1 and qn > 2qn�1, set

I1 D Œ�Œ
1
2
qn�1�C 1; qn�1� Œ

1
2
qn�1��;

I2 D ŒmqnC qn�1� Œ
1
2
qn�1�C 1;mqnC 2qn�1� Œ

1
2
qn�1��:

Let �j D � C j˛ for j 2 I1[ I2. The set f�j gj2I1[I2 consists of 2Œqn�1=2�
elements in the first case, of 2Œqn=2� elements in the second case, and of 2qn�1
elements in the third case.

LEMMA 9.10. For any � > 0 and sufficiently large n, the set f�j gj2I1[I2 is
�-uniform.

Proof. Consider first the case k0 � 4
5
qn�1. We will assume qn�1 is even, the

other case needing obvious adjustments. As in the proof of Lemma 9.9 we will first
estimate the numerator in (9-8). We have

(9-51)
X

j2I1[I2
j 6Di

ln jcos 2�a� cos 2��j j

D

X
j2I1[I2
j 6Di

ln
ˇ̌̌̌
sin 2�

aC�j

2

ˇ̌̌̌
C

X
j2I1[I2
j 6Di

ln
ˇ̌̌̌
sin 2�

a� �j

2

ˇ̌̌̌
C .qn�1�1/ ln 2

D†CC†�C .qn�1� 1/ ln 2:
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Both †C and †� are of the form (9-27) with `k 2 f0;mg8 and r D n plus a
minimum term minus lnjsin 2�.a˙ �i /=2j, so that the last two cancel each other
for the purpose of the upper bound. Therefore, by (9-27)

(9-52)
X

j2I1[I2
j¤i

lnjcos 2�a� cos 2��j j

� .1� qn�1/ ln 2C 2 ln qn�1CC.�n�1Cm�n/qn�1 ln qn�1

� �qn�1 ln 2CCq8=9n�1 ln qn�1:

To estimate the denominator of (9-8), we write it in the form (9-51) with
aD �i . Then

†� D
X

j2I1[I2
j¤i

lnjsin�.i � j /˛j

is exactly of the form (9-27). Therefore, by (9-27),

(9-53) †� > .1� qn�1/ ln 2� ln qn�1�C..qn/�1C .q1
=9
nC1/

�1/qn�1 ln qn�1

> �qn�1 ln 2�Cq8=9n�1 ln qn�1:

Similarly, for †C we have

(9-54) †C > .1� qn�1/ ln 2C ln min
`2I1[I2

jsin 2�.� C .i C `/˛=2/j

�Cq8
=9
n�1 ln qn�1

> �qn�1 ln 2�Cq8=9n�1 ln qn�1:

Here, we use the estimate

(9-55) ln min
`2I1[I2

jsin 2�.� C .i C `/˛=2/j> �C ln qn�1;

which is obtained by considering separately the two cases qnC1>qCn�1 and qnC1<
qCn�1, and arguing in the same way as in (9-42) and (9-43). Combining (9-52),
(9-51), (9-53) and (9-54), we arrive at

(9-56) max
j2I1[I2

Y
`2I1[I2
`¤j

jz� cos 2��`/j
jcos 2��j � cos 2��`/j

< exp.Cq8=9n�1 ln qn�1/ < e�qn�1

for any � > 0 and sufficiently large n, as stated.
For the other cases, k > 4

5
qn�1, the proof is very similar. If qn � 2qn�1, the

argument is the same (replacing qn�1 by qn). We will concentrate on the case

8Recall that m is chosen so that k DmqnC k0, where k �maxf50q8=9nC1; qn=20g. We have the
bound m� 50q8=9nC1=qn, so (9-27) really applies.
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qn > 2qn�1 where the changes are slightly more substantial. Arguing as above we
obtain by (9-27)

(9-57)
X

j2I1[I2
j¤i

lnjcos 2�a� cos 2��j j

� �2qn�1 ln 2C 4 ln qn�1CC.�n�1Cm�n/qn�1 ln qn�1

< �2qn�1 ln 2CCq8=9n�1 ln qn�1:

The denominator in (9-8) can be again split as †CC†�C .2qn�1� 1/ ln 2. Both
†C and †� are, up to a constant, the sums of two terms of the form (9-27) plus
minimum terms (two for †C and one for †�). For the minimum terms of †C the
estimate (9-55) holds, so we obtain

(9-58) †C > �2qn�1 ln 2�Cq8=9n�1 ln qn�1:

For the minimum term of †�, that is, ln minjsin�.i � j /˛j (where the minimum
is taken over all j that belong to the interval I1 or I2 that does not contain i) we
observe that it is achieved at j0 such that k.i � j0/˛kR=Z � �n�1 �m�n (since
the possible values of ji � j j are contained in ŒmqnC 1;mqnC 2qn�1 � 1� and
qn > 2qn�1 by hypothesis). Thus, recalling that in the present situation we have
q8=9n < qn�1,

ln minjsin�.i � j /˛j> ln.�n�1�m�n/

> ln.1=.2qn/� 50=q1
=9
nC1qn/ > �C ln qn > �C ln qn�1:

Therefore, by (9-27),

(9-59) †� > �2qn�1 ln 2�Cq8=9n�1 ln qn�1:

Combining (9-57),(9-51),(9-59) and (9-58) gives (9-56), as desired. �

By Lemmas 9.3 and 9.10 at least one of the �j , for j 2 I1 [ I2, is not in
A2Œqn�1=2��1;L�� if k0 � 4

5
qn�1, not in A2Œqn=2��1;L�� if 4

5
qn�1 <k0 <qn�1 and

qn � 2qn�1, and not in A2qn�1�1;L�� if k0 > 4
5
qn�1 and qn >2qn�1, where � can

be made arbitrarily small for large n. By Lemma 9.2 and singularity of 0, we have
that, in all three cases, �j belongs to the corresponding A�;L�� for all j 2 I1. Let
j0 2 I2 be such that �j0 … AL��.

For k0 � 4
5
qn�1, set I D Œj0 � Œqn�1=2�C 1; j0C Œqn�1=2��D Œx1; x2�. We

then have

(9-60) jk� xi j>
1
40
qn�1:

Then by (9-6) and (9-7),

(9-61) jGI .k; xi /j< exp..LC �1/.qn�1� 2� jk� xi j/� qn�1.L� �//

< exp.�.LC �1� 40.�1C �//jk� xi j/;
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as desired.
For k0 > 4

5
qn�1 and qn � 2qn�1, set

I D Œj0� Œqn=2�C 1; j0C Œqn=2��D Œx1; x2�:

Then

(9-62) jk� xi j>
1
10
qn;

since
k� x1 >

4
5
qn�1�

1
4
qn �

3
10
qn�1;

x2� k >
3
4
qn� qn�1 D .3qn�2� qn�1/=4 >

1
5
qn�1

(using that 4
5
qn�1 < k0 �

1
2
qn D .qn�1 C qn�2/=2). Thus for any � > 0 and

sufficiently large n, by (9-6) and (9-7) and by estimating as in (9-61)

(9-63) jGI .k; xi /j< exp.�.L� �/jk� xi j/:

For k0 > 4
5
qn�1 and qn > 2qn�1 set

I D Œj0� qn�1C 1; j0C qn�1� 1�D Œx1; x2�:

Then

(9-64) jk� xi j>
3
10
qn�1:

This implies as before that (9-63) holds for any � > 0 and sufficiently large n. This
concludes the proof of Lemma 9.4 in all cases. �

The estimates in the proof of Lemma 9.4 have the following corollary which
will be necessary later (when dealing with the resonant case).

LEMMA 9.11. Fix � > 0. Assume bn < k �maxf 1
20
qn; 50q

8=9
nC1g and k < qCn

for some C <1. Let d D dist.k; f`qng`�0/ > 1
10
qn. Let � D �E be a generalized

eigenfunction. Then, for sufficiently large n (n > n0.�; c; E; C /),

j�.k/j< exp.�.L� �/d=2/:

Proof. Recall that the previous estimates in this section were obtained, un-
der the nonresonance hypothesis dist.k; f`qng`�0/ > bn, for the range bn < k �
maxf 1

20
qn; 50q

8=9
nC1g.

If qn � q10
=9

n�1 , we have s � Œq1=10n =10�, and the statement follows immediately
from (9-4), (9-2) and (9-50), (9-49).

In case qn < q10
=9

n�1 , (9-50), (9-49), (9-61), (9-60), (9-63), (9-62) and (9-64)
only lead to j�.k/j< exp.�.L� �/cd/ with certain c < 1=2. In order to prove the
lemma as stated we will need an additional “patching” argument, which is very
similar to the one used in Section 9.1.
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We will show that in this case

(9-65) j�.k/j< exp.�.L� �/.d � 1
20
qn�1//;

from which the statement of the lemma follows. Assume `qn < k < .`C 1/qn.
Using (9-50), (9-49), (9-61),(9-60) and (9-63), (9-62), (9-64) we obtain that for
every y 2 Œ`qn; .`C1/qn� with dist.y; f`qn; .`C1/qng/ > 1

20
qn�1, there exists an

interval y 2 I.y/D Œx1; x2�� Œ.`� 1/qn; .`C 2/qn� such that

dist.y; @I.y// > 1
40
qn�1;(9-66)

GI.y/.y; xi / < exp.�.L� �/jy � xi j/ for i D 1; 2(9-67)

(notice that under the condition qn < q10
=9

n�1 we have bn D 1
20
qn�1).

We here denote the boundary of the interval I.y/, the set fx1; x2g, by @I.y/.
For z 2 @I.y/, we let z0 be the neighbor of z, (i.e., jz� z0j D 1/ not belonging to
I.y/.

If x2C1 < .`C1/qn� 1
20
qn�1, we expand �.x2C1/ in (9-4), iterating (9-4)

with I D I.x2C 1/, and if x1� 1 > `qnC 1
20
qn�1, we expand �.x1� 1/ in (9-4),

iterating (9-4) with I DI.x1�1/. We continue to expand each term of the form �.z/

in the same fashion until we arrive to z such that either zC1� .`C1/qn� 1
20
qn�1

and z � 1 � `qnC 1
20
qn�1, or the number of GI terms in the product becomes

Œ40d=qn�1�, whichever comes first. We then obtain an expression of the form

(9-68) �.k/D
X

sIziC12@I.z
0
i
/

GI.k/.k; z1/GI.z01/
.z01; z2/ � � �GI.z0s/.z

0
s; zsC1/�.z

0
sC1/:

where in each term of the summation we have

`qnC
1
20
qn�1C 1 < zi < .`C 1/qn�

1
20
qn�1� 1 for i D 1; : : : ; s,

and either zsC1 … Œ`qnC 1
20
qn�1C1; .`C1/qn�

1
20
qn�1�1�, sC1< Œ40d=qn�1�,

or sC 1D Œ40d=qn�1�.
By construction, for each z0i with i � s, we have that I.z0i / is well defined and

satisfies (9-66) and (9-67). We now consider separately the two cases

zsC1 … Œ`qnC
1
20
qn�1C 1; .`C 1/qn�

1
20
qn�1� 1�; sC 1 < Œ40d=qn�1�;

and sC 1D Œ40d=qn�1�:

Let � be the summand in (9-68). In the first case, we have, by (9-67) and (9-2),

(9-69) j�j � exp.�.L� �/
�
jk� z1jC

Ps
iD1jz

0
i � ziC1j

�
/.1C .`C 2/qn/

� exp.�.L� �/
�
jk� zsC1j � .sC 1///.1C .`C 2/qn

�
� exp.�.L� �/

�
d � 1

20
qn�1� 40d=qn�1

�
/.1C qCn�1/:
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If sC 1D Œ40d=qn�1�, using again (9-2), (9-67), and also (9-66), we obtain

j�j � exp.�.L� �/ 1
40
qn�140d=qn�1/.1C q

C
n�1/:

In either case,

(9-70) j�j � exp.�.L� 2�/.d � 1
20
qn�1//

for n sufficiently large. Finally, we observe that the total number of terms in (9-68)
is bounded above by the Œ40d=qn�1�-th power of 2. Combining it with (9-68) and
(9-70) we obtain that

j�.k/j � 2Œ40d=qn�1� exp.�.L� 2�/.d � 1
20
qn�1//

< exp.�.L� 3�/.d � 1
20
qn�1//

for large n. �

9.4. Resonant case. Proof of Lemma 9.5. Notice that, under the condition that
k is resonant, k � 1

2
qn, which implies q8=9nC1 �

1
2
qn. This is an implicit hypothesis

in the next lemma.

LEMMA 9.12. For any � > 0, for sufficiently large n, and for any b 2
Œ�13

8
qn;�

3
8
qn�\Z, we have � C .bC qn� 1/˛ 2 A2qn�1;23L=32C�.

Proof. Let b1 D b� 1 and b2 D bC 2qn� 1.
Applying Lemma 9.11 we obtain that for i D 1; 2

(9-71) j�E .bi /j<

8<:
e�.L��/.b=2Cqn/ if �13

8
qn � b � �

3
2
qn;

e�.L��/j.bCqn/=2j if �3
2
qn � b � �

1
2
qn; jbC qnj>

1
4
qn;

e.L��/b=2 if �1
2
qn � b � �

3
8
qn:

Using (9-4) with I D Œb; bC 2qn� 2�, we get

max.jGI .0;b/j;jGI .0;bC2qn�2/j/ >

8̂̂̂̂
<̂̂
ˆ̂̂̂:

e.L��/.b=2Cqn/ if �13
8
qn � b � �

3
2
qn;

e.L��/j.bCqn/=2j if �3
2
qn � b � �

1
2
qn;

and jbC qnj> 1
4
qn;

e�.L��/b=2 if �1
2
qn � b � �

3
8
qn;

e��qn if jbC qnj< 1
4
qn:

By (9-6) and (9-7),

jQ2qn�1.cos 2�.� C .bC qn� 1/˛//j

D jP2qn�1.� C b˛/j

<minfjGI .0; b/j�1e.LC�1/.bC2qn�2/; jGI .0; bC 2qn� 2/j�1e�.LC�1/bg:
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Therefore, using these last two results, we obtain that �C.bCqn�1/˛ belongs
to �

A2qn�1;23L=32C� if �13
8
qn � b � �

3
2
qn or �1

2
qn � b � �

3
8
qn;

A2qn�1;5L=8C� if �3
2
qn � b � �

1
2
qn

for any � > 0 and for sufficiently large n. �

Fix 1� `� q8=9nC1=qn. Set

I1 D Œ�Œ
5
8
qn�; Œ

5
8
qn�� 1�;

I2 D Œ.`� 1/qnC Œ
5
8
qn�; .`C 1/qn� Œ

5
8
qn�� 1�:

Set �j D � C j˛ for j 2 I1[ I2. The set f�j gj2I1[I2 consists of 2qn elements.

LEMMA 9.13. Assume L> 16
9
ˇ. There exists an � > 0 such that for sufficiently

large n, the set f�j W j 2 I1[ I2g is . 9
32
L� �/-uniform.

We will now finish the proof of Lemma 9.5 and prove Lemma 9.13 at the end
of the section.

Let k be resonant. Assume without loss of generality that k D `qnC r , with
0� r �maxfq8=9n ; 1

20
qn�1g and 1� `� q8=9nC1=qn.

By Lemmas 9.3, 9.12 and 9.13 there is a j0 2 I2 such that � C j0˛ does not
belong to A2qn�1;23L=32C�. Set I D Œj0� qnC 1; j0C qn� 1�D Œx1; x2�. Then

jGI .k; xi /j< e
.LC�1/.2qn�2�jk�xi j/�2qn.23L=32C�/ < eqn.9L=16C�/�.LC�/jk�xi j:

Since, by a simple computation, jk� xi j> .5=8� �� 1=20/qn, we obtain that

(9-72) jGI .k; xi /j< e
.�L=46C�/jk�xi j;

which gives the statement of Lemma 9.4. �

Proof of Lemma 9.13. As in the proof of Lemma 9.4 we will first estimate the
numerator in (9-8). We have

(9-73)
X

j2I1[I2
j¤i

lnjcos 2�a� cos 2��j j

D

X
j2I1[I2
j¤i

�
ln
ˇ̌̌
sin 2�

aC�j
2

ˇ̌̌
C ln

ˇ̌̌
sin 2�

a��j
2

ˇ̌̌�
C .2qn� 1/ ln 2

D†CC†�C .2qn� 1/ ln 2:

Both †C and †� consist of 2 terms of the form of (9-27) with r D n, plus
two terms of the form

ln min
kD1;:::;qn

jsin 2�.xC 1
2
.kC `kqn/˛/j;

where `k 2 f0;˙.`� 1/;˙`g for k D 1; : : : ; qn, minus lnjsin 2� 1
2
.a˙ �i /j.
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Therefore, by (9-27)

(9-74)
X

j2I1[I2
j¤i

lnjcos 2�a�cos 2��j j� .2�2qn/ ln 2C4 ln qnCC`�nqn ln qn:

To estimate the denominator of (9-8), we write it in the form (9-73) with aD �i .
Then †�D

P
j2I1[I2; j¤i

lnjsin�.i�j /˛j can be split into two sums of the form
(9-27) plus the minimum term. The corresponding minimum term is achieved at
ji � j0j of the form qn or `qn. Therefore, for any �1 > 0 and sufficiently large n

(9-75) †� > �2qn ln 2C lnjsin�qn˛j �C max.ln qn; `�nqn ln qn/

> �2qn ln 2� ln qnC1�C max.ln qn; `�nqn ln qn/:

Since

sin 2�.� C 1
2
.kC i C `kqn/˛/D sin 2�.� C 1

2
.kC i/˛/ cos�`k�n

˙ cos 2�.� C 1
2
.kC i/˛/ sin�`k�n

(the ˙ depending on the sign of qn˛ �pn) we have by (9-1) that if qnC1 � q10n
then

min
k;i2Œ�qn;qn�1�
`k2f0;˙.`�1/;˙`g

jsin 2�.� C .kCiC`kqn/˛
2

/j> 1
10
q�2n ;

and if qnC1 < q10n then we have the obvious

min
k;i2Œ�qn;qn�1�
`k2f0;˙.`�1/;˙`g

jsin 2�.� C 1
2
.kC i C `kqn/˛/j>

1
5
q�2nC1 >

1
5
q�20n :

As before,†C can be split into two sums of the form (9-27) plus two minimum
terms minus lnjsin 2�.� C i˛/j. Therefore,

(9-76) †C > �2qn ln 2�C max.ln qn; `�nqn ln qn/:

Combining (9-73), (9-74), (9-75) and (9-76), we obtain

(9-77) max
j2I1[I2

Y
`2I1[I2
`¤j

jz� cos 2��`/j
jcos 2��j � cos 2��`/j

< qCn e
.ˇC�1/qn :

For ˇ < 9
16
L this gives the desired bound. �
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