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The Quasi-Additivity Law
in conformal geometry

By Jeremy Kahn and Mikahil Lyubich

Abstract

On a Riemann surface S of finite type containing a family of N disjoint
disks Di (“islands”), we consider several natural conformal invariants measur-
ing the distance from the islands to ∂S and the separation between different
islands. In a near degenerate situation we establish a relation between them
called the Quasi-Additivity Law. We then generalize it to a Quasi-Invariance
Law providing us with a transformation rule of the moduli in question under
covering maps. This rule (and in particular, its special case called the Covering
Lemma) has important applications in holomorphic dynamics.

1. Introduction

Several central problems in holomorphic dynamics depend on the so-called
a priori bounds, that is, uniform lower bounds on the conformal moduli of
certain dynamically defined annuli. So far, the only analytic tools suitable to
this end (for unreal maps) were the basic properties of the moduli of annuli
(transformation rules and the Grötzcsh Inequality). In this paper we design a
new analytic tool, the Covering Lemma, that provides us, in a near degenerate
situation, with a much stronger version of the transformation rule for conformal
moduli under covering maps. In the following papers, it is used to generalize
the Yoccoz Theorem (on local connectivity of non-renormalizable Julia sets) to
higher degree unicritical maps [KL1] and to prove a priori bounds (and hence
MLC) for some classes of infinitely renormalizable quadratic maps [K], [KL2],
[KL3]. Further applications of this method (to multicritical maps) are under
way, see [KS], [QY], [RY].

We will derive the Covering Lemma from a “Quasi-Additivity Law” relat-
ing three natural conformal moduli for a Riemann surface with several Jordan
disks marked. Let us formulate it precisely.

Let S stand for a compact Riemann surface with boundary. We denote the
extremal length of a family G of curves by L(G), and we letW(G) = L(G)−1 be
the corresponding extremal width (see the Appendix). Given a compact subset
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K ⊂ intS, we let L(S,K) and W(S,K) be respectively the extremal length
and width of the family of curves in S rK connecting ∂S to K.

An open subset A b intS is called an (open) archipelago if its closure
is a Riemann surface of finite type (not necessarily connected) with smooth
boundary. Its connected components are called islands.

Let Aj (j = 1, . . . , N) be a finite family of archipelagos in S with disjoint
closures. We call the number

Top = TopS{Aj} = −χ(S) +
∑
j

# Comp ∂Aj

the topological complexity of the family of archipelagos.
Let us introduce three conformal moduli of this family of archipelagos:

X = XS{Aj}=W(S,
N⋃
j=1

Aj);(1.1)

Y = YS{Aj}=
N∑
j=1

W(S,Aj),

Z = ZS{Aj}=
N∑
j=1

W(S r
⋃
k 6=j

Ak, Aj).

The first modulus measures the (inverse) extremal distance from the union of
the archipelagos to the boundary of S, the second one is the sum of the inverse
extremal distances from the individual archipelagos to the boundary of S, while
the last one measures the (inverse) separation between the archipelagos.

There are some obvious relations between these moduli: X ≤ Y ≤ Z and
Y ≤ NX. The goal of this paper is to establish one non-obvious relation in
a near degenerate situation, (i.e., when Y is big), namely, to bound Y by the
geometric mean of X and Z with an absolute constant. The number N of the
archipelagos does not appear in the estimate: it only influences how degenerate
the situation should be:

Quasi-Additivity Law. There exists K depending only on the topo-
logical complexity of the family of archipelagos such that :

Y ≥ K ⇒ Y 2 ≤ 2XZ .1

The proof of this law will occupy most of the paper.

1In fact, our proof shows that “2” can be replaced with any constant C > 4/3. On the
other hand, one can show that C < 32/27 would not work.
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Figure 1.1: Example: every island is a horizonal line segment.

A simple example. Figure 1.1 presents a simple configuration of archipela-
gos (consisting of a single island each) for which the asymptotics for the X-, Y -
and Z-moduli can be calculated explicitly, so that the QA Law can be verified
directly. At the same time, this configuration is nearly optimal as the constant
in the QA Law is concerned.

Let S be the closure of the upper half-plane in the Riemann sphere. Given
a sequence a1 > a2 > · · · > an > 0, let us consider archipelagos Ai = [0,W ]×
{a−1

i }, where W is large in terms of the a−1
i . (Here our archipelagos are closed

rather than open; see §2.10.1 for a discussion.) Then

X ∼Wa1, Y ∼W
n∑
j=1

aj ,

and

Z ∼W
n∑
i=1

(bi + bi+1),

where b−1
i = a−1

i−1 − a−1
i (and b1 = a1, bn+1 = 0). Then the QA Law in this

case follows immediately from the arithmetic inequality n∑
j=1

aj

2

≤ 4
3
b1

n∑
j=1

bj ,

which is proved in Section 2.8.
Given ξ ≥ 1, we say that the archipelagos are ξ-separated if Z ≤ ξY . The

following immediate corollary shows that in a near degenerate situation, under
the separation assumption, the moduli X and Y are comparable:

QA law with separation. Assume that the archipelagos Aj b intS
are ξ-separated. Then there exists K depending only on ξ and the topological
complexity of the family of archipelagos such that :

Y ≥ K ⇒ Y ≤ 2ξX.
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In Section 2.10 we give several variations of the QA Law adapted to the
needs of holomorphic dynamics.

We then generalize the QA Law to a Quasi-Invariance Law providing us
with a transformation rule of the moduli in question under covering maps in a
near degenerate situation. Keeping in mind further applications, we formulate
in Section 3.1 a number of variations and special cases of this law. Let us
formulate here one of them.

If we have a branched covering f : U → V of degree D between two disks
that restricts to a branched covering f : Λ → B of degree d between smaller
disks, then a simple general estimate shows that mod(V rB) ≤ Dmod(UrΛ).
It turns out that given d, in a near degenerate situation the above moduli are,
in fact, comparable (under a “collar assumption”):

Covering lemma. Fix some η ∈ (0, 1]. Let U ⊃ Λ′ ⊃ Λ and V ⊃
B′ ⊃ B be two nests of Jordan disks. Let f : (U,Λ′,Λ) → (V,B′, B) be a
branched covering between the respective disks, and let D = deg(U → V ),
d = deg(Λ′ → B′). Under the following Collar Assumption:

mod(B′ rB) > ηmod(U r Λ),

there exists an ε > 0 (depending on η and D) such that if

0 < mod(U r Λ) < ε

then
mod(V rB) < 2η−1d2 mod(U r Λ).

V

f

Λ′

Λ B ′

B

U

Figure 1.2: Covering between two nests of three disks

We derive the QI Law (and, in particular, this Covering Lemma) from the
QA Law by passing to an appropriate Galois covering of U .

The needed background in the extremal length techniques is summarized
in the Appendix.
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reading of the manuscript and making many useful comments. We thank
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2. Quasi-Additivity Law

2.1. Outline of the proof. Let us assume for simplicity (in this outline only)
that S and all the archipelagos Aj are disks. Then each S rAj is an annulus.
Let us endow it with the vertical foliation Fj (the one that becomes genuinely
vertical after uniformization of SrAj by a standard Euclidean cylinder). Then
Y =

∑W(Fj).
We begin with analyzing topology of these foliations relative to our family

of archipelagos (§§2.2–2.3). Namely, we associate to each leaf γ of each Fj a
combinatorial invariant called its route. This invariant records the archipela-
gos visited by γ (in order of first appearance) and some extra homotopy data
about γ. These data are selected in the minimal way to ensure that if two
disjoint paths are parallel (i.e., have the same route), then together with ap-
propriate arcs of the boundary of S ∪⋃Aj they bound a rectangle. Moreover,
any vertical path in this rectangle has the same route. Thus, the vertical paths
with a given route vertically foliate a rectangle.

Let us consider one such rectangle, P , and let (A1, . . . , Al) be the list of
the archipelagos visited by P . This rectangle comes together with a sequence
of associated “big” and “little” rectangles,

Pk ⊂ S r
N⋃
j=k

Aj , Qk ⊂ S r
N⋃
j=1

Aj , k = 1, . . . , l.

The big rectangles correspond to the pieces of its vertical boundary ∂vP until
its first entry to the archipelago Ak, while the little ones correspond to the last
piece of ∂vP in S ∪⋃Aj . The first of these rectangles, Q1, is called “initial”.

Cutting off from P two buffers of width four each, we obtain a trun-
cated rectangle P̃ coming together with the associated truncated rectangles P̃j
and Q̃j .

At this point, we make use of a Small Overlapping Principle asserting
that families of curves with large extremal width have a relatively small inter-
section (see §2.5). This implies that if two truncated little rectangles overlap
(with matching vertical orientation) then the corresponding big rectangles have
comparable routes (i.e., one route is an extension of the other), see §2.6.

This allows us to relate the moduli X and Z to the widths of the trun-
cated small rectangles (§2.7). Namely, the total width of the truncated little
rectangles is bounded by Z, while the total width of the truncated initial little
rectangles is bounded by X. On the other hand, the total width of the trun-
cated big rectangles is bounded from below by (1− δ)Y , as long as Y > 16s/δ,
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where s is the total number of these rectangles, which can be bounded in terms
of the topological complexity.

Moreover, by the Series Law for the extremal length, the width of each
truncated big rectangle is bounded by the harmonic sum of the widths of the
associated little ones. By an “arithmetic inequality” of Section 2.8, this yields
the desired quadratic relation between the moduli X, Y and Z.

2.2. Paths and rectangles. Let S be a Riemann surface with boundary.
All the curves γ : [0, 1] → S below will be considered naturally oriented. A
curve γ : [0, 1] → S is called proper if γ{0, 1} ⊂ ∂S. Two proper curves are
called properly homotopic in S if they are homotopic through a family of proper
curves. A proper curve is called trivial if it is properly homotopic to a curve
[0, 1]→ ∂S. A path in S is a curve without self-intersections, i.e., an embedded
(oriented) interval [0, 1]→ S.

In this paper, a standard (Euclidean) rectangle E will mean I×[0, h] where
I is an interval of arbitrary type (closed, semi-closed, or open), and h > 0. Its
horizontal boundary I×{0, h} comprises the base I×{0} and the roof I×{h}.
A vertical path in E is a path connecting its horizontal sides. Every vertical
path is naturally oriented (from the base to the roof) which endows E with
vertical orientation. The intervals {x} × [0, h] will be referred to as genuine
vertical paths in E; together, they form the genuine vertical foliation.

A (topological) rectangle P on a surface S will mean an embedded Eu-
clidean rectangle, coming together with all the previously described affiliated
structure: the horizontal boundary ∂hP comprising the base and the roof, and
the vertical orientation. In what follows we will often deal with properly em-
bedded rectangles, i.e., such that ∂hP ⊂ ∂S. Any topological rectangle can be
conformally uniformized by a standard rectangle, supplying the former with
the genuine vertical foliation.

Similarly, a standard cylinder will mean C = T× [0, h], where T is a round
circle, coming together with the base and the roof, and the vertical orientation
(and the genuine vertical foliation, too). A (topological) annulus R on S is an
embedded cylinder supplied with all the affiliated structure.

If we cut the annulus along two disjoint vertical paths, we obtain two
rectangles. This situation is special, as only one rectangle would be cut off
from any other Riemann surface:

Lemma 2.1. Assume S is connected and not an annulus. Let C1 and C2 be
two disjoint properly homotopic non-trivial paths in S such that int Ci ⊂ intS.

(i) Then there exist two unique arcs α and ω on the boundary ∂S which
together with the paths Ci bound a closed rectangle P with base α and roof ω.

(ii) Let (Ct), 1 ≤ t ≤ 2, be a proper homotopy between the above paths,
and let (et) ⊂ ∂S be the corresponding motion of the endpoint et of Ct. Then



QUASI-ADDITIVITY LAW 567

the curve (et)1≤t≤2 is homotopic in ∂S rel its endpoints to the arc ω oriented
from e1 to e2.

(iii) Let C3 be a third path which is disjoint and properly homotopic to the
above two. Let Pj , j = 1, 2, 3, be the rectangles bounded by the pairs of these
three paths. Then one of these rectangles is tiled by the other two.

Proof. (i) Let us consider the universal covering π : Ŝ → S of S. It is
conformally equivalent to D̄rK, where D̄ is the closed unit disk and K ⊂ T is
a nowhere dense compact subset of the unit circle (the limit set of the Fuchsian
group of deck transformations). Since the paths Ci are properly homotopic,
they lift to (disjoint) properly homotopic paths Ĉi in Ŝ. Let these lifts begin
at points bi ∈ T and end at points ei ∈ T. Then b1 and b2 (resp., e1 and e2)
bound an arc α̂ ⊂ ∂Ŝ (resp. ω̂ ⊂ ∂Ŝ). These two arcs are disjoint since the
paths Ci are non-trivial. They are also disjoint from the int Ci ⊂ int Ŝ. Hence
the four paths, C1, C2, α̂ and ω̂, bound a closed rectangle P̂ in Ŝ.

Let us consider all the lifts Ĉij of Ci that cross P̂ , where Ĉi0 ≡ Ĉi. For
each i = 1, 2, the lifts Ĉij are pairwise disjoint since the paths Ci do not have
self-intersections. Any two paths Ĉ1

j and Ĉ2
k are disjoint as well since C1 and

C2 do not cross each other. Hence each Ĉij is completely contained in P and
moreover, ∂Ĉij ⊂ α̂ ∪ ω̂. But ∂Ĉij cannot belong to one horizontal side, α or ω,
since the paths Ci are non-trivial. Thus, we obtain a family of disjoint vertical
paths Ĉij in P̂ .

If one of the above curves, say C1, has more than one lift in P̂ , then we
consider the lift Ĉ1

1 such that there are no other lifts in between Ĉ1
0 and Ĉ1

1 .
Then Ĉ1

0 and Ĉ1
1 , together with two subarcs of α̂, and ω̂ bound a rectangle Π̂.

The projection of this rectangle to S is a clopen annulus R in S. Since S is
connected, S = R contradicting our assumption.

Thus, each curve Ci has only one lift to P̂ , so that P̂ ∩ π−1(Ci) = Ĉi. It
follows that the paths Ci lie on the boundary of P ≡ π(P̂ ). Hence π(∂P̂ ) ⊂ ∂P ,
and the map π : P̂ → P is proper. Moreover, it is injective over Ci and hence
has degree 1. Thus, the map π : P̂ → P is a homeomorphism.

If there were two rectangles P 1 and P 2 as above then they would be glued
along the paths Ci to form an annulus.

(ii) The homotopy (Ct) lifts to a proper homotopy Ĉt on Ŝ between the
lifts Ĉi considered in (i). The endpoint êt of this lift moves along a component
ξ̂ of ∂Ŝ. Since ξ̂ is an interval, the curve (êt) is homotopic to the arc ω̂ on ξ̂

rel the endpoints. Hence (et) is homotopic to ω on ∂S rel the endpoints.

(iii) The paths Ci lift to proper paths Ĉi in Ŝ that begin and end on the
same component of ∂Ŝ. Then one of the lifted rectangles P̂j is tiled by the
other two. Since π : P̂j → Pj is a homeomorphism, the same is true for the
Pj ’s.
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Somewhat loosely, we will say that the above rectangle P is bounded by
the curves C1 and C2.

To avoid the ambiguity in the choice of the rectangle P , in what follows we
assume that the Riemann surface S under consideration is not an annulus. A
simple trick shows that this assumption does not reduce generality (see §2.4).

Let us consider an archipelago A in S. Given a proper path C in S

that crosses Ā, let a be the last point of intersection of C with Ā, and let
δ ⊂ S r A be the terminal closed segment of C which connects a to ∂S. Note
that int δ ⊂ int(S r A). If we have several paths Ci as above, we naturally
label the corresponding objects as ai and δi, etc.

Two disjoint proper paths C1 and C2 in S that cross Ā are called roof
parallel (rel A) if:

• C1 and C2 are properly homotopic in S, and hence they bound a “big
rectangle” P ;

• The paths δi are properly homotopic in S rA, and hence they bound a
“terminal little rectangle” Q ⊂ S rA;

• The rectangles P and Q share the roof (Figure 2.1 illustrates that this is
not automatic).

C2

δ2

C1

P

σ

A

α

δ1

Q

Figure 2.1: Strange configuration of rectangles

Two paths are called base parallel (rel A) if after reversing orientation
they become roof parallel. Initial segments of these paths bound an initial
little rectangle Q1 ⊂ S r A which shares the base with P . Two paths are
called parallel if they are roof and base parallel.

We will now formulate several statements about roof parallel paths. The
corresponding statements about base parallel paths are obtained by reversing
orientation, and the corresponding statements about parallel paths immedi-
ately follow.
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Lemma 2.2. Let C1 and C2 be two roof parallel (rel A) proper paths in S,
and P and Q be the corresponding big and little rectangles. Let C be a positively
oriented vertical path in P which is disjoint from the Ci. Then it is roof parallel
(rel A) to each Ci. Moreover, its terminal segment δ is a vertical path in Q.

Proof. Any vertical path in P is properly homotopic to the sides Ci. Let
P i be the big rectangles bounded by the paths C and Ci, and let ωi be their
roofs, i = 1, 2. Of course, they tile the roof ω, overlapping at the endpoint e
of C.

Let C′ be the path C with reverse orientation. Since P and Q share the
roof, some initial segment of C′ is contained in Q. Since C′ is proper, it must
exit Q. Since int C′ is disjoint from the vertical sides and the roof of Q, it can
exit Q only through its base, σ. Let a be the first point of intersection between
C′ and σ. Then the terminal segment δ of C that begins at a is a positively
oriented vertical path in Q. Hence it is properly homotopic in S r A to the
paths δi.

Let Qi ⊂ S r Ā be the little rectangles bounded by the paths δ and δi,
i = 1, 2. Since δ is a vertical path in Q ending at e, the arcs ωi are the roofs of
the little rectangles Qi. Thus, the Qi respectively share the roofs with the Pi.

The following lemma will be used for counting the number of parallel
classes (see Lemmas 2.7 and 2.8):

Lemma 2.3. Let Ci be three disjoint properly homotopic paths in S cross-
ing the archipelago Ā in such a way that their terminal segments δi are properly
homotopic in S rA. Then at least two of these paths are roof parallel rel Ā.

Proof. For i = 1, 2, 3, let Pi be the big rectangle bounded by the paths
Ck and Cl with {i, k, l} = {1, 2, 3}, and let Qi be the corresponding little
rectangles. Let ωi be the roofs of the Pi, and let λi be the roofs of the Qi. We
need to show that one of the roofs ωi coincides with the corresponding λi.

Since by Lemma 2.1 (iii) one of the big rectangles, say P1, is tiled by the
other two, the roof ω1 is tiled by ω2 and ω3. Denote the complements of the
roofs ωi by ω′i. If ωi 6= λi for i = 2, 3, then λ2 = ω′2 = ω′1 ∪ ω3 and similarly
λ3 = ω′1∪ω2. Hence λ2∪λ3 = ω′1∪ω2∪ω3 = η, where η is the whole component
of ∂S containing the endpoints of the paths Ci. But it is impossible since one
of the roofs λi is tiled by the other two (as one of the little rectangles Qi is
tiled by the other two).

Let us now enlarge the notion of parallel to an equivalence relation on the
class A of all proper curves C in S crossing the archipelago Ā. We say that
two curves C1 and C2 of class A are roof equivalent if
• They are properly homotopic in C;
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• The terminal segments δ1 and δ2 are properly homotopic in S rA;

• The motions of the endpoints, (et) and (qt), of the above homotopies are
homotopic (rel endpoints) curves on ∂S.

The definitions of base equivalent and equivalent paths are straightforward.
Again, we restrict ourselves to a statement concerning roof equivalence only:

Lemma 2.4. Two disjoint curves C1 and C2 of class A are roof parallel if
and only if they are roof equivalent.

Proof. If C1 and C2 are roof parallel then they are homotopic within
the big rectangle P in such a way that the endpoint et parametrizes the roof
ω. Similarly, the curves δ1 and δ2 are homotopic in Q in such a way that qt

parametrizes the same roof ω. So, the motions of the endpoints are homotopic.
Vice versa, by Lemma 2.1 (ii), the homotopy class of the endpoint motion

determines the roof of the rectangle.

In what follows, (roof /base) equivalent curves (not necessarily disjoint)
will also be called (roof /base) parallel. Also, “parallel in S (rel ∅)” just means
“properly homotopic” in S.

Corollary 2.5. Let F be a family of disjoint properly homotopic paths of
class A such that their terminal and initial segments are (respectively) properly
homotopic in S r Ā. Then F comprises at most four parallel classes.

We close with two combinatorial lemmas.

Lemma 2.6. Suppose that S is a Riemann surface of finite topological type
such that each connected component of S has negative Euler characteristic.
Then there can be at most −3χ(S) disjoint non-parallel (rel ∅) proper paths
in S.

Proof. Removing the boundary from S, we obtain a Riemann surface
homeomorphic to a compact Riemann surface S with finitely many punctures
vk, k = 1, . . . , n, where say, the first l of them correspond to the removed
boundary. Proper paths in S correspond to paths in S r {vk} connecting
two of the first l punctures. Of course, if we allow ourselves to connect other
vertices as well, we obtain only more paths. So, we can assume in the first
place that S = S r {vk}nk=1 and l = n (and of course, we can assume that
n ≥ 1). Since the Euler characteristic is additive, we can also assume that S
is connected.

Let us call the punctures “vertices,” and non-trivial paths in S r {vk},
connecting them, “edges”. It is well-known that any finite family F of disjoint
non-parallel edges can be completed to a triangulation of the surface S with
the same vertices vk (provided χ(S) < 0). (To see this, let us first complete
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F to a connected graph containing all the vertices vk. We then consider any
“face” D of it, i.e., a component of the complement of the edges. If D has
positive genus, we can add to F a closed non-dividing edge connecting some
vertex to itself. Cutting along this edge, we reduce the genus of D. Proceeding
in this way, we will eventually obtain a graph whose faces are polygons. None
of these faces can be a bigon, since the edges are not parallel. It cannot be a
one-gon either since χ(S) < 0. Thus, all the polygons are at least m-gons with
m ≥ 3, and we can further triangulate them.)

Let us apply the Euler formula to this triangulation:

F − E + V = χ(S),

where E is the number of proper paths, V = n, and 3F = 2E. Therefore
−E/3 = χ(S)− n = χ(S), and we are done.

Lemma 2.7. Suppose that A is an archipelago on S, and let F be a set of
disjoint proper paths on S. Then there are at most

−108χ(S)χ(S rA)2

distinct parallel classes (rel A) in F .

Proof. There are at most −3χ(S) distinct homotopy classes of curves γ
in F , and at most −3χ(SrA) distinct homotopy class for the initial and final
segments of γ. By Corollary 2.5, there are at most four distinct parallel classes,
given the homotopy classes for γ and its initial and terminal segments.

2.3. Routes and associated rectangles. Let us now consider a finite family
A of archipelagos Aj (j = 1, . . . , N) in S with disjoint closures. We consider a
path C in S that begins at b ⊂ ∂S and ends at a point e on some archipelago
Ā. Such a path is called good if int C does not intersect ∂S ∪ Ā.

Given a good path C in S, we relabel (if needed) our archipelagos so that
(A1, . . . , Al ≡ A) is the sequence of distinct archipelagos whose closures are
crossed by C ordered according to their first appearance, while Al+1, . . . , AN
are the archipelagos that are not crossed by C ordered in an arbitrary way.
Thus, for any 1 ≤ i < j ≤ l, the path C enters Ai for the first time before
it enters Aj . Note that though C can enter each archipelagos Ai (1 ≤ i ≤ l)
many times, it is recorded only once.

Let ej be the first point of intersection of C with Āj , and let Cj be the
segment of C bounded by b ≡ e0 and ej . In this way we obtain the associated
sequence

C1 ⊂ C2 ⊂ . . . Cl ≡ C

of good paths in S. We let |C| = l and call it the height of C.
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Let

Λj =
N⋃
i=j

Ai, Ωj =
j−1⋃
i=1

Ai.

(Note that Ω1 = ∅. Also, we let Λ ≡ Λ1 be the union of all archipelagos.)
Then Cj is a proper path in SrΛj , and Ωj is an archipelago in SrΛj . Let αj

be the class of proper paths in S r Λj parallel to Cj rel Ωj . We say that these
paths and classes are associated to C. The sequence of the associated parallel
classes,

R(C) = (αj)lj=1,

is called the route of C. Note that the route determines the base component of
∂S where C begins, and the components of ∂Aj where the curves Cj end. Two
good paths are called parallel rel the family A of archipelagos if they have the
same route. Note that parallel paths can cross some particular archipelagos A
different number of times (see Figure 2.2).

S

S

S

(a)

A3

A3

A4

A2

A2
A3

A1

A1

A1

A4
A2

A4

δ2
3

δ1
3

Q3

C2C1

(c)

(b)

Q1

Q2

Figure 2.2: This picture illustrates the notion of parallelism. Here the family
A comprises four archipelagos Ai each consisting of a single island. The routes
of the paths C1 and C2 have height l = 3, and Λ3 = A3 ∪ A4, Ω3 = A1 ∪ A2.
The paths on figure (a) are not parallel since they are not properly homotopic
in Sr Λ3. The paths on figure (b) are not parallel since their terminal arcs, δ13
and δ23 , are not properly homotopic in Sr Λ. On the other hand, the paths on
(c) are parallel, notwithstanding C2 visits the island A1 twice, while C1 visits it
only once. In all three cases, the initial segments of the paths (of height two),
C1

2 and C2
2 , are obviously parallel.
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We will now derive a bound on the number of routes:

Lemma 2.8. Let A1, . . . , AN be distinct archipelagoes in S, and let T be
a set of disjoint good paths in S. Then among the elements of T there are
at most s(Top,N) = N ! (108Top3)N+1 distinct routes rel {Aj} (where Top =
TopS{Aj} is the topological complexity defined in the Introduction).

Proof. Let us bound the number of routes R(C) (for C ∈ T ) for which
A1, . . . , Ak are visited in sequence (so that the terminal point of Cj lies in Āj).
By the previous lemma, there are at most

−108χ(S r Λj)χ(S r Λ)2 ≤ 108Top3

distinct parallel classes for Cj , so there are at most (108 Top3)k distinct routes
which visit A1, . . . , Ak in sequence. There are N !

(N−k)! injective functions σ :
{1, . . . , k} → {1, . . . , N}, so there are at most

N !
(N − k)!

(108Top3)k

distinct routes of length k. The total number of these routes is bounded as
desired.

Let us consider two disjoint parallel good paths C1 and C2 with route
of height l. By Lemma 2.1, these two paths, together with a base α and a
roof ω, bound a good big rectangle P . Moreover, for each j = 1, . . . , l, the
associated good paths C1

j and C2
j , together with a base αj and a roof ωj ,

bound an associated good big rectangle Pj ⊂ S r Λj , where Pl ≡ P . In fact,
the Pj share the same base, i.e. α = αj , since they share the base with the
same associated initial little rectangle Q1 ≡ P1. Furthermore, each rectangle
Pj shares the roof with associated (terminal) little rectangle Qj , j = 2, . . . , l,
bounded by the terminal paths δ1j and δ2j , a base σj , and the roof ωj . Note
that the little rectangles Qj are not necessarily contained in the big rectangle
P (see Figure 2.3). All the above rectangles are vertically orientated.

We say that a path C (positively) vertically overflows a little rectangle Qj
if C contains a segment δ which is a (positively oriented) vertical path in Qj .

The notion of “parallel curves” was designed to ensure the following prop-
erty:

Lemma 2.9. Let C1 and C2 be two disjoint parallel (rel A) good paths of
height l, and let P ≡ Pl be the corresponding good big rectangle. Let C be a
positively oriented vertical path in P . Then it is parallel to C1 and C2 (rel A)
and, in particular, it has height l. Moreover, C positively vertically overflows
all associated little rectangles Qj, j = 1, . . . , l.

Proof. Let us begin with the last assertion. For j = l and j = 1 it
immediately follows from Lemma 2.2 (by reversing orientation for j = 1). Let
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A3

A2

A1

α = σ1

δ2
1

δ2
2

δ2
3

Q1

Q2δ1
2

δ2
1

δ1
3

ω3

Q3

Figure 2.3: This picture illustrates that the little rectangles Qi (shaded) are
not necessarily contained in the big ones.

1 < j < l. Since Pj has the same base α ⊂ ∂S as P , a little initial segment
of C is contained in Pj . On the other hand, the endpoint of C belongs to the
archipelago Āl which is disjoint from Pj since

Pj ⊂ (S r Λ̄j) ∪ ∂Aj ⊂ S r Λ̄l.

Hence the curve C must exit the rectangle Pj . But since C is a vertical curve
in P , it can exit Pj only through the roof ωj . Let ej be the first intersection
point of C with this roof. Then the initial segment Cj of C with endpoint ej
is a vertical path of Pj . By Lemma 2.2, it positively vertically overflows the
little rectangle Qj . All the more, C does also.

Since each Pj is a good big rectangle as well, we can apply to it the
previous result and conclude that for any i ≤ j, Cj vertically overflows Qi. In
particular it crosses the roof ωi ⊂ ∂Ai, and hence Ci ⊂ Cj .

Let us show that C1 ⊂ · · · ⊂ Cl is the associated sequence of good paths.
Since all the paths Cj are good initial segments of C, it is part of the associated
sequence. Moreover, C does not contain any other good initial segment since
all other archipelagos Ak, k = l + 1, . . . , N , are disjoint from P .

In particular, C has the same height l as C1. Moreover, by Lemma 2.2,
the paths Cj are parallel to C1

j and C2
j rel Ωj . Hence C is parallel to C1 and C2

rel A.

The previous lemma can be sharpened as follows:

Lemma 2.10. Let C1 and C2 be two disjoint parallel (rel A) good paths of
height l, and let P ≡ Pl be the corresponding good big rectangle with base α.



QUASI-ADDITIVITY LAW 575

Let C be a good path disjoint from C1 and C2 which begins on α. Then either
the route R(C) extends R(C1) = R(C2), or the other way around.

Proof. Assume C is not contained in the rectangle P . Then it must exit P
through the roof ω. Let e be the first point of intersection of C with ω. Then
the initial segment C∗ of C ending at e is a vertical path in P . By Lemma 2.9,
R(C∗) = R(C1), so that R(C) extends R(C1).

Assume now that C ⊂ P . Let us consider the biggest j ≤ l such that C
intersects the roof ωj of the good big rectangle Pj , and let ej ∈ C ∩ ωj be the
first intersection point. Then the initial segment Cj of C with endpoint ej is a
vertical path in Pj . By Lemma 2.9, it has the same route as C1

j . In particular,
it crosses all the archipelagos Ai, i = 1, . . . , j.

But in fact, C = Cj , for otherwise C (being good) would end at some
archipelago Ai with i > j. For i > l this is impossible since those archipelagos
are disjoint from P . For i ∈ [j + 1, l] this is impossible for otherwise C would
exit the rectangle intPi and hence would cross the roof ωi.

We conclude that R(C1) is an extension of R(Cj) = R(C).

Let us now consider two disjoint vertical curves Γ1 and Γ2 in a good
rectangle P . Together with appropriate base and roof arcs, they bound a
truncated good rectangle P̃ ⊂ P .

Lemma 2.11. For the associated sequence of little rectangles, Q̃j ⊂ Qj.

Proof. By Lemma 2.9, Γ1 and Γ2 have the same route as P . We consider
the associated sequences of good curves Γ1

j and Γ2
j , j = 1, . . . , l and let δ̃1j

and δ̃2j be the terminal paths in S r
⋃
Aj of these curves. By definition, Q̃j

is the rectangle bounded by these two paths, together with two appropriate
horizontal arcs. By Lemma 2.2, the δ̃ij are vertical paths in the little rectangle
Qj . Hence Q̃j ⊂ Qj .

Finally, we have the following important disjointness property:

Proposition 2.12. Let P and P ′ be two good rectangles with disjoint
vertical boundaries. Assume that some associated little rectangles, Qj and Q′k,
have a non-trivial overlap. Then they represent the same proper homotopy
class in Sr Λ (up to orientation). If their orientations match, then one of the
routes, R(P ) or R(P ′), is an extension of the other, and j = k.

Proof. Since the overlapping little rectangles Qj and Q′k have disjoint
vertical boundaries, one of the vertical boundary components, say δ′k ⊂ ∂Q′k,
must be a vertical path in the other rectangle, Qj , which implies the first
assertion.
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Assume the vertical orientation of Qj and Q′k match. Let C′ be the vertical
boundary component of P ′ containing the path δ′k, and let C′k be the associated
good curve ending with the path δ′k.

Let us consider the (associated with P ) good big rectangle Pj (with the
little rectangle Qj just under its roof ωj). Since the path δ′k is positively
oriented in Qj , it ends on the roof ωj . Thus, the whole curve C′k also ends on
ωj . But since C′k is good, its interior does not cross ωj . Neither can it cross
the vertical boundary of Pj (by the assumption). Hence C′k is trapped in Pj ,
and must begin on the base αj of Pj .

Thus, C′k is a vertical curve in Pj . By Lemma 2.9, C′k and Pj have the
same height, so that k = j. By Lemma 2.10, the route R(C′) = R(P ′) is either
an extension of R(P ), or the other way around.

2.4. Harmonic foliations. Let now S be a compact Riemann surface with
boundary, and let S be obtained from S by making finitely many punctures
pk ∈ int S. We let ∂S = ∂S.

By making a few artificial punctures (depending only on the topological
complexity of the family of archipelagos), we can ensure that no component
of S rAj is an annulus (see our convention after Lemma 2.1 and Figure 2.4).
Note that making extra punctures does not change extremal lengths of the
path families in question.

Figure 2.4: Long Island. On this picture, S is an annulus with one island on it.
Without an artificial puncture, all the leaves of the harmonic foliation would
be in the same parallel class. With the puncture, the leaves are decomposed
into three parallel classes that form three rectangles.

Let us consider the harmonic measure ωj(z) = ωSrAj
(∂Aj , z) of ∂Aj in

the Riemann surface S r Aj (see [A]). It is the unique harmonic function on
int(S rAj) equal to 1 on ∂Aj and vanishing on ∂S. For instance, if S and Aj
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are disks, then ωj is the height function on the annulus SrAj uniformized by
the flat cylinder Cj with height 1 in such a way that ∂S is the base of it.

The harmonic foliation Fj on S is the phase portrait of the gradient flow
γtj of ωj . It has finitely many saddle type singularities (with finitely many
incoming and outgoing separatricies), where the punctures are considered to
be singularities as well. It is oriented according to the direction of the gradient
flow. Each non-singular leaf of Fj begins on ∂S and ends on ∂Aj . In the case
when S is a topological annulus, Fj is the genuinely vertical foliation on the
uniformizing cylinder Cj .

Let us remove from SrAj all separatricies Ok of the foliation Fj and take
the components of Sr(Aj∪

⋃
Ok). We obtain finitely many rectangles Π = Πm

j

foliated by the harmonic leaves. Indeed, take some component λ of ∂Sr
⋃
Ok.

The gradient flow brings every point z ∈ λ in time 1 to some archipelago Aj ,
and these trajectories fill in some component Π of S rAj r

⋃
Ok. The map

(z, t)→ (z, γtj(z)), z ∈ λ, t ∈ [0, 1],

provides us with the rectangular structure on Π. (Since every annular compo-
nent of S rAj contains a puncture, there are no annuli among the Πi’s.)

The conjugate harmonic function ω∗j induces the natural transverse mea-
sure on the Πm

j . In fact, the map ωj + iω∗j provides us with the uniformization
of Πm

j by a standard rectangle of height 1.
Every rectangle Πm

j represents some non-trivial proper homotopy class
of paths in S r Aj . Moreover, different rectangles represent different classes.
Indeed, if two leaves, γ and γ′, of Fj are properly homotopic in S r Aj , then
by Lemma 2.1 they bound a rectangle Q in S r Aj . The conjugate harmonic
functions ωj and ω∗j are well defined on Q, and ωj is constant on its horizontal
sides, while ω∗j is constant on the vertical sides. Hence ωj + iω∗j is a conformal
map of Q onto a standard rectangle, so that neither ωj nor ω∗j has critical
points in Q. It follows that Q is contained in one of the rectangles Πm

j .
A harmonic rectangle in S is a subrectangle of some Πm

j saturated by the
leaves of Fj .

Any non-singular leaf C of a harmonic foliation Fj represents a good path
in S. Notice that the route R(C) determines the proper homotopy class of C in
SrAj , and hence determines the foliation Fj and the rectangle Πm

j containing
C. These remarks, together with Lemma 2.9 imply that the leaves with the
same route, R(C) = α, form a (non-closed) harmonic rectangle P (α) in S. By
Lemma 2.8, there are at most s(Top, N) such routes α. Therefore there are at
most Ns routes for the harmonic foliations to all of the N archipelagoes.

Associated big and little rectangles, Pj(α) and Qj(α), j = 1, . . . l, come
together with any harmonic rectangle P (α).
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p

Figure 2.5: Harmonic foliation Fi. Here S and all Aj are disks. The artificial
puncture p is made in S to ensure that SrAi is not an annulus. One harmonic
rectangle is shaded.

2.5. Buffers and the small-overlapping principle. We are going to make use
of an important principle saying that two wide path families have a relatively
small overlap.

A path family Λ on a rectangle P is called a genuinely vertical lamination if
the paths of Λ are genuinely vertical in R, and the union of these paths, supp Λ,
is measurable. The projection to the horizontal side of P (after uniformization
by a standard rectangle) induces a transverse measure ν on Λ (defined up to
scaling). If P is embedded into a Riemann surface S and γ is a path on S, we
say that γ intersects less than an ε-portion of the total width of Λ if

ν{λ ∈ Λ : λ ∩ γ 6= ∅} < εν(Λ)

(note that this condition does not depend on the normalization of ν). The
same discussion applies to the case of an annulus.

Lemma 2.13. Let κ ≥ 1. Let us consider a genuinely vertical lamination
Λ on some annulus or rectangle R ⊂ S, and let G be another path family on S.
If W(Λ) > κ and W(G) ≥ κ, then there exists a path γ ∈ G that intersects less
than 1/κ-portion of the total width of Λ. In particular, if κ = 1 then there is
a path γ ∈ G that does not cross some leaf of Λ.

Proof. Assume, to be definite, that R is a rectangle. Let φ : E → R be
the uniformization of R by a standard rectangle E = [0, a]× [0, h] normalized
so that the projection of φ∗Λ (which is a genuinely vertical lamination in E)
onto [0, a] has length κ. Let us use the Euclidean metric µ on E to bound
W(Λ):

W(Λ) ≤ area(φ∗Λ)
µ(φ∗Λ)2

=
κ

h
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(where area(φ∗Λ) stands for the area of suppφ∗Λ). Since W(Λ) > κ, we
conclude that h < 1, and thus area(φ∗Λ) < κ.

To bound W(G), let us use the push-forward metric ρ = φ∗(µ|Λ) on S. If
a curve γ ∈ G intersects at least 1/κ-portion of the total width of Λ, then the
projection of φ−1(γ) ⊂ E to [0, a] has length at least 1, and hence

ρ(γ) = µ(φ−1(γ)) ≥ 1.

If this happened for every γ ∈ G then we would have

W(G) ≤ areaρ(Λ) = area(φ∗Λ) < κ,

contradicting the assumption.

Take some number M > 8. Given a harmonic rectangle P (α) of width
greater than M , let us define two buffers, Bl(α) ⊂ P (α) and Br(α) ⊂ P (α),
as harmonic rectangles of width M/2 attached to the vertical sides of P (α).

Lemma 2.14. Consider two harmonic rectangles P (α) and P (β) of width
greater than M . Then there are four disjoint vertical leaves, one from each of
the corresponding four buffers.

Proof. Let Λ be the vertical foliation in Bl(α) ∪Br(α), and let S be the
vertical foliation of Bl(β). Applying the previous lemma to these data, we
conclude that there is a vertical leaf Γl(β) in S that crosses less than 1/4 of
the total width of Λ. Hence it crosses less than 1/2 of the total width of each
Bl(α) and Br(α).

Similarly, there is a vertical leaf Γr(β) that crosses less than 1/2 of the
total width of each Bl(α) and Br(α). Together, Γl(β) and Γr(β) cross less
than the full width of each Bl(α) and Br(α). Hence each Bl(α) and Br(α)
contains a vertical leaf, Γl(α) and Γr(α) respectively, disjoint from both Γl(β)
and Γr(β).

2.6. Truncated rectangles and the disjointness property. Let us remove
the buffers from our harmonic rectangles:

P̃ (α) = cl(P (α) r (Bl(α) ∪Br(α))).

The associated truncated big and little rectangles will be naturally marked
with tildes: P̃j(α) and Q̃j(α).

We can now formulate the key disjointness property for the truncated
rectangles:

Lemma 2.15. If two associated truncated little rectangles Q̃j(α) and Q̃k(β)
overlap then they represent the same proper homotopy class in S r Λ (up to
orientation). If their orientations match, then one of the routes, α or β, is an
extension of the other, and j = k.
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Proof. Let us select in the buffers of Pj(α) and Pk(β) two disjoint pairs
of leaves (by Lemma 2.14) and consider the rectangles Pj(α) ⊂ Pj(α) and
Pk(β) ⊂ Pk(β) bounded by the corresponding pairs. By Lemma 2.11, their
associated little rectangles, Qj(α) and Qk(β), contain the respective little
rectangles Q̃j(α) and Q̃k(β). Hence Qj(α) and Qk(β) overlap as well. Since
the big rectangles Pj(α) and Pk(β) have disjoint vertical boundaries, we can
apply Lemma 2.12 and complete the proof.

Corollary 2.16. For any route α, the little rectangles Q̃i(α) are pair-
wise disjoint.

Proof. Assume Qi(α) ∩ Qj(α) 6= ∅ for some i < j. Then by the first
assertion of the previous lemma, one component of ∂Qi(α) would lie on ∂Aj ,
which is impossible.

Corollary 2.17. Suppose that Q̃j(α) and Q̃k(β) overlap with matched
vertical orientation. Then j = k; moreover, if |α| = |β|, then α = β.

Fix your favorite δ ∈ (0, 1), e.g., δ = 1 −
√

2/3. The total width of the
rectangles P (α) is equal to the modulus Y (by definition (1.1), Example 4.1 and
the Parallel Law). For every route α, we find thatW(P̃ (α)) ≥ W(P (α))−M .
The number of routes α is bounded by Ns = Ns(Top, N). Therefore, if
Y > MNs/δ then

(2.1)
∑
α

W(P̃ (α)) > (1− δ)Y.

2.7. a- and b-moduli. We let

ak =
∑
|α|=k

W(P̃ (α)), bki =
∑
|α|=k

W(Q̃i(α)),

and bi = maxk≥i bki , a =
∑

k ak, and b =
∑

i bi.
As introduced in the Appendix (§4.2), x⊕ y stands for the harmonic sum

of x and y.

Lemma 2.18. The a- and b-moduli are related by the Series Inequality :

ak ≤
k⊕
i=1

bi.

Proof . By Lemma 2.9, for each α with |α| = k, every vertical path of
P̃ (α) overflows each of the little rectangles Q̃i(α), with 1 ≤ i ≤ k. Moreover,
by Corollary 2.16, the Q̃i(α) are disjoint. Therefore, by Proposition 4.2,∑

|α|=k
W(P̃ (α)) ≤

k⊕
i=1

∑
|α|=k

W(Q̃i(α)),

and the lemma follows.
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Let us now relate the a- and b-moduli to the geometric moduli X,Y and
Z in the Quasi-Additivity Law (see the Introduction). By (2.1),

(2.2) a ≥ (1− δ)Y,

provided Y > MNs/δ. Furthermore,

Lemma 2.19. b1 ≤ X.

Proof. We need to show that bk1 ≤ X for every k. Let us therefore fix k.
By Corollary 2.17, the Q̃1(α) for |α| = k are all disjoint, so that the union of
the associated vertical path families has width equal to∑

|α|=k
W(Q̃1(α)) = bk1.

On the other hand, this union is a subfamily of the family of paths connecting
∂S and ∂Λ in S r Λ (recall that Λ =

⋃
Aj). Therefore∑

|α|=k
W(Q̃1(α)) ≤ W(S,Λ) = X.

Finally,

Lemma 2.20. b ≤ Z.

Proof. We arbitrarily label the archipelagoes {A1, . . . , An} and let α[i]
denote the label of the ith archipelago visited on the route α. Now, let

bki (l) =
∑

|α|=k;α[i]=l

W(Q̃i(α)),

so that bki =
∑

l b
k
i (l). Let k : N→ N be such that bi = b

k(i)
i .

We claim that ∑
i

b
k(i)
i (l) ≤ W(S r

⋃
k 6=l

Ak, Al);

this would imply (by summing over l) that b ≤ Z. To show the claim, first
note that the Q̃i(α) for |α| = k(i) and α[i] = l are disjoint (where l is fixed
and i is arbitrary). Indeed, any two such rectangles have the same roof, and
so they have the same vertical orientation if they overlap; then by Corollary
2.17, they have the same height i and therefore the same route α. Moreover
the vertical paths of these Q̃i(α) all connect ∂(S r

⋃
k 6=lAk) to ∂Al in S r Λ;

the claim follows.
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2.8. An arithmetic inequality.

Lemma 2.21. Consider two sequences of positive numbers, {ai}ni=1 and

{bi}ni=1, such that a1 = b1, ai ≤
i
⊕
k=1

bk. Then

(2.3)

(
n∑
i=1

ai

)2

≤ 4
3
b1

n∑
i=1

bi.

Proof. Without loss of generality, we can assume

ai =
i⊕

k=1

bk = ai−1 ⊕ bi.

Let

a =
n∑
i=1

ai, b =
n∑
i=1

bi.

We have, for i > 1,

bi =
aiai−1

ai−1 − ai
= ai +

a2
i

ai−1 − ai
.

and therefore

b− b1 =
n∑
i=2

(
ai +

a2
i

ai−1 − ai

)

= a− a1 +
n∑
i=2

a2
i

ai−1 − ai

≥ a− a1 +

(∑n
i=2 ai

)2∑n
i=2(ai−1 − ai)

(2.4)

= a− a1 +
(a− a1)2

a1 − an
≥ a− a1 +

(a− a1)2

a1
,

where inequality (2.4) follows from the Cauchy-Schwarz inequality written as
follows: (∑

xj

)2
≤
∑ x2

j

yj

∑
yj .

Therefore, because a1 = b1,

b1b

a2
≥ 1− a1

a
+
(a1

a

)2
≥ 3

4
.
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2.9. Completion of the proof of the QA Law. Let us consider the a- and
b-moduli from §2.7. Lemma 2.18 puts us into a position to apply estimate (2.3)
to these moduli. Incorporating (2.2) and Lemmas 2.19 and 2.20 into (2.3), we
obtain:

(1− δ)2Y 2 ≤ 4
3
XZ,

provided Y > MNs/δ, and we are done.

2.10. QA Law : variations. We will now formulate several variations and
special cases of the QA Law suitable for the dynamical applications.

2.10.1. Fractal archipelagos. A compact set A ⊂ intS is called a set of
finite type, or a (closed) archipelago, if A = ∩Ui where Ui is a nested sequence
of open archipelagos of bounded topological complexity (equivalently, SrA is
a Riemann surface of finite type). In this case, we let

TopS(A) = lim inf TopS(Ui).

(If there is a finite family of disjoint closed archipelagos Aj , we let TopS{Aj} =
TopS(

⋃
Aj).)

By an approximation argument, the QA Law is valid for these more general
archipelagos as well.

2.10.2. Collars. Let A′j be a topological disk such that

Aj ⊂ A′j ⊂ S r
⋃
k 6=j

Ak.

If mod(A′j , Aj) ≥ ηmod(S,Aj) > 0, then we call A′j an η-collar around Aj . If
all the archipelagos Aj have η-collars, we say that the archipelagos satisfy the
η-Collar Assumption. Under this assumption, they are η−1-separated (since
Z ≤∑W(A′j , Aj)). Thus, we obtain:

QA Law with collars. Under the η-Collar Assumption, there exists
K depending only on η and TopS{Aj} such that :

Y ≥ K ⇒ Y ≤ 2η−1X.

One can also allow general holomorphic collars instead of embedded ones.
Precisely speaking, assume Aj is embedded into an abstract conformal disk A′j
which in turn is mapped into Sr

⋃
k 6=j Ak holomorphically by some map i such

that i|Aj = id and i−1(Aj) = Aj . If mod(A′j , Aj) ≥ ηmod(S,Aj) > 0, then we
call A′j a holomorphic η-collar around Aj . Since every path connecting Aj to
the rest of the boundary of Sr

⋃
Ak can be lifted to a vertical path in A′jrAj ,

Corollary 4.4 yields: Z ≤ ∑W(A′j , Aj). Thus, the η-Collar Assumption for
holomorphic collars implies η−1-separation of the archipelagos as well.
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2.10.3. Comparable terms. In further applications in holomorphic dy-
namics, we will often encounter the situation when the individual terms that
appear in the moduli Y and Z are all comparable. Here is the user-friendly
version of the Quasi-Additivity Law in this situation:

QA Law with comparable terms. Fix some η ∈ (0, 1). Let W b
intU and D′i b intW , i = 1, . . . , N , be topological disks such that the closures
of D′i are pairwise disjoint, and let Di b D′i be smaller disks. Then there exists
a δ0 > 0 (depending on η and N) such that: If for some δ ∈ (0, δ0) and for
all i,

ηδ < mod(D′i rDi) ≤ mod(U rDi) < δ,

then

mod(U rW ) <
2η−1δ

N
.

Of course, this version is a particular case of the QA Law with collars.

3. Quasi-invariance law

In this section, we will prove a general transformation law for conformal
moduli under covering maps. To this end, we will make use of the following
well-known result:

Proposition 3.1. Let f : U → V be a branched cover of Riemann sur-
faces of degree N . Then there is a Galois branched cover g : S → V of degree
at most N ! that factors as g = f ◦ h for some h : S → U . Moreover, g is
ramified only over critical values of f .

The proof uses a lemma that is a simple exercise in group theory:

Lemma 3.2. Suppose that H is a subgroup of a group G, and [G : H] = N .
Then there is a normal subgroup L of G such that L < H, and [G : L] ≤ N !.

Proof. The coset action of G on G/H provides a homomorphism from G

to the group of permutations of G/H, which has order at most N !. We let L
be the kernel of this homomorphism; it has the desired properties.

Proof of Proposition 3.1. Let O be the set of critical values of f , and let
E = f−1(O). Then f : U r E → V r O is an unbranched cover of degree N .
Hence f∗π1(U r E) has index N in π1(V rO), so that by Lemma 3.2 we can
find a subgroup of f∗π1(U r E) that is a normal subgroup of π1(V r O) of
degree at most N !. There is then the corresponding cover g : S′ → V rO which
we can complete to a branched cover g : S → V with the desired properties.
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We say that a closed set K ⊂ S is a hull if it is a full connected non-
degenerate continuum.

Given a holomorphic map f : S → S′, and two closed subsets K ⊂ S,
K ′ ⊂ S′ such that f(K) ⊂ K ′, we say that the restriction f : K → K ′ is a
branched covering of degree d if:
• For any x ∈ K, there exists a neighborhood U 3 x such that K ∩ U =
f−1(K ′) ∩ U ;

• For any regular value x′ ∈ K ′ of f , #(f |K)−1(x) = d.
Let us consider a Riemann surface S with several archipelagos Bj con-

tained in hulls B′j , and several marked points vi (some of them may belong to
the archipelagos or the hulls). Let B =

⋃
Bj . For each k, let us consider two

families G′k and G′′k of proper curves γ ⊂ S r B that begin on Bk and satisfy
one of the following conditions:
• γ ∈ G′k ends on another archipelago Bj , j 6= k, or on ∂S;

• γ ∈ G′′k ends on the same Bk, does not pass through the marked points vi,
and is non-trivial in the sense that it cannot be homotopic in Sr(B∪{vi})
to an arbitrary small neighborhood of the hull B′k.

2

Under these circumstances, we let

ZS{Bj , vi} ≡ ZS{Bj , B′j , vi} =
∑
k

(W(G′k) + 2W(G′′k )).

Remark. In the case when CV ⊂ B ⊂ B′ and the Bj are connected, the
family G′k ∪ G′′k is the family of all non-trivial proper curves γ ⊂ S r B that
begin on Bk.

General quasi-invariance law. Consider the following data:
• Two Riemann surfaces of finite type, U and V ;

• Two closed sets Λ′ =
p⋃
j=1

Λ′j ⊂ U and B′ =
p⋃
j=1

B′j ⊂ V whose connected

components, Λ′j and B′j respectively, are hulls;

• Two families of compact archipelagos, Λj ⊂ Λ′j and Bj ⊂ B′j ;
• A branched covering f : U → V of degree D that restricts to branched

coverings f : Λ′j → B′j of degree dj ≤ d. Suppose Λj is the union of some
components of f−1(Bj), and let CV stand for the set of critical values
of f .

Then there exists K depending on TopV {Bj} and D such that

YU{Λj} > K ⇒ YU{Λj}2 ≤ 2d2XV {Bj}ZV {Bj , B′j ,CV}.

2Notice that a trivial γ is allowed to have arbitrary complexity in B′
k rBk.
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Proof. If we replace the archipelagos Λj with Λj = (f |Λ′j)−1(Bj) we make
the left-hand side bigger without changing the right-hand side. So, we can
assume without loss of generality that Λj = (f |Λ′j)−1(Bj).

Let E = f−1(CV) ⊂ U . By Proposition 3.1, there exists a branched
covering h : S → U of degree at most (D − 1)! with critical values in E such
that g = f ◦ h : S → U is a Galois branched covering. Let Γ be the Galois
group of the covering g acting on S.

Let A′j(i) ⊂ S be the connected components of g−1(B′j) labeled in such
a way that h(A′j(1)) = Λ′j , and let A′j = A′j(1). For any given j, these com-
ponents are transitively permuted by Γ. We let Lj be the number of these
components.

Also, consider the corresponding archipelagos

Aj(i) = (g|A′j(i))−1(Bj), Aj ≡ Aj(1),

A =
⋃
Aj(i) = g−1(B).

Let X , Y and Z stand respectively for the X-, Y - and Z-moduli for this
family of archipelagos. By Lemma 4.7 from the appendix, we have:

(3.1) X = |Γ|XV {Bj}.
Let mj = deg(h : A′j → Λ′j) ≡ deg(h : Aj → Λj). Then the stabilizer

of A′j in Γ consists of djmj elements, and hence the Γ-orbit of Aj consists of
Lj = |Γ|/djmj archipelagos Aj(i). Since for each j, these archipelagos are
symmetric in S, we have:

(3.2) Y =
∑
j

|Γ|
djmj

W(S,Aj) ≥
|Γ|
d

∑
j

W(U,Λj) =
|Γ|
d
YU{Λj}

where the middle inequality follows from Lemma 4.6.
We will now show that

(3.3) Z ≤ |Γ|ZV {Bj ,CV}+ C,

where C depends only on TopU{Λj} (which in turn depends only on TopV {Bj}
and D).

For any k ∈ [1, p], we consider the harmonic foliation Fk that measures
the extremal width between Ak and the rest of the boundary of S r A (see
§2.4). Then SrA is tiled by the harmonic rectangles Πn

k , n = 1, . . . , sk. Their
total number

∑
sk depends only on TopS{Aj(i)}. Applying the group Γ, we

obtain a family of harmonic rectangles Πn
ji (connecting the Aj(i) to the rest of

the boundary of S rA) that are permuted by the Γ-action.
Let Π̃n

ji be the truncated rectangle obtained by removing two buffers of
width four each from Πn

ji (as in §2.6). They are also permuted by Γ. Since
these rectangles represent different homotopy classes in S r A, Lemma 2.14
implies that the truncated rectangles are pairwise disjoint.
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Since the fibers of g coincide with the orbits of Γ, each Π̃n
k projects injec-

tively onto some proper rectangle Q̃lk in V rB, and these rectangles are either
pairwise disjoint or coincide. Moreover, there are dkmk rectangles Π̃n

k that
project onto Q̃lk representing a curve γ ∈ G′k, and twice as many rectangles
that project onto Q̃lk representing γ ∈ G′′k (corresponding to two possible ori-
entations of such a γ). Let Q′k and Q′′k denote these two families of rectangles.

The foliation Fk on
⋃
n Π̃n

k descends to a foliation Hk supported on
⋃
l Q̃

l
k.

The leaves of this foliation belong to the family of curves defining the modulus
ZV {Bj ,CV}. (Indeed, if some leaf γ connecting Bk to itself were trivial then
it would lift to a path connecting A′k to itself.) Hence∑

Q′
k

W(Q̃lk) ≤ W(G′k),
∑
Q′′

k

W(Q̃lk) ≤ W(G′′k ),

and we obtain:

W(S r
⋃
j 6=k

Aj , Ak) =
∑
n

W(Π̃n
k) + 8sk

= dkmk

(∑
Q′

k

W(Q̃lk) + 2
∑
Q′′

k

W(Q̃lk)
)

+ 8sk

≤ dkmk

(
W(G′k) + 2W(G′′k )

)
+ 8sk.

(Here 8sk appears as the total width of the buffers removed.) Multiplying the
last estimate by Lk and summing up over k (making use of the symmetry and
of |Γ| = Lkdkmk), we obtain (3.3).

By the Quasi-Additivity Law, Y2 ≤1.5XZ. Together with (3.1) and (3.2)
and (3.3) it implies the desired estimate, provided Z is sufficiently big (which
is certainly the case when YU{Λj} is sufficiently big).

3.1. QI Law : Variations. We now list several variations and special cases
of the General QI Law. In what follows, the setting of the General QI Law is
assumed, and we let YU = YU{Λj}, XV = XV {Bj}, ZV = ZV {Bj , B′j ,CV}.

3.1.1. Separation. In the context of the QI Law, the ξ-Separation As-
sumption should be formulated as follows:

ZV ≤ ξYU .

QI law with separation. If the archipelagos Bj are ξ-separated, then
there exists K depending only on ξ, TopV {Bj} and D such that :

YU ≥ K ⇒ YU ≤ 2ξd2XV .

3.1.2. Collars. The definition of η-collars should also be adjusted in this
more general context. Namely, a disk Bj ⊃ B′j is called an η-collar of Bj if
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Bj rB′j ⊂ V r (
⋃
k 6=j Bk ∪ CV) and

(3.4) mod(Bj , Bj) ≥ ηmod(U,Λj).

More generally, one can define a holomorphic η-collar Bj as an abstract con-
formal disk Bj such that B′j is embedded into Bj and there is a holomorphic
map i : Bj → V such that i|B′j = id,

i(Bj rB′j) ⊂ V r (B ∪ CV),

and (3.4) is satisfied.

QI law with collars. If all the archipelagos Bj have holomorphic
η-collars then there exists K depending only on η, TopV {Bj} and D such that :

YU ≥ K ⇒ YU ≤ 2η−1d2XV .

3.1.3. Covering lemma. The Basic Covering Lemma stated in the Intro-
duction is a special case of the General QI Law with embedded collars when
both Riemann surfaces, U and V , are conformal disks, and the archipelagos
Λ and B consist of a single Jordan island each. In the following variation the
collars are allowed to be holomorphic:

Covering lemma with holomorphic collars. Fix some η ∈ (0, 1).
Consider two topological disks U and V , two hulls Λ′ ⊂ U and B′ ⊂ V , and
two compact hulls Λ ⊂ Λ′ and B ⊂ B′.

Let f : U → V be a branched covering of degree D such that Λ′ is a
component of f−1(B′), and Λ is a component of f−1(B). Let d = deg(f :
Λ′ → B′).

Assume B′ is also embedded into a holomorphic η-collar B′; i.e., there is
a holomorphic map i : B → V such that i|B′ = id, i−1(B′) = B′, i(B) r B′

does not contain the critical values of f, and

mod(B, B) > ηmod(U,Λ).

Then
mod(U,Λ) < ε(η,D)⇒ mod(V,B) < 2η−1d2 mod(U,Λ).

The Basic Covering Lemma stated in the Introduction is used in [KL1],
the Covering Lemma with holomorphic collars is used in [KL2], [KL3], while
the QI Law with all critical values in B is used in [K].

4. Appendix: Extremal length and width

There is a wealth of sources containing background material on extremal
length; see, e.g., the book of Ahlfors [A]. We will briefly summarize the neces-
sary minimum.
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4.1. Definitions. Let G be a family of curves on a Riemann surface U .
Given a (measurable) conformal metric µ = µ(z)|dz| on U , let

µ(G) = inf
γ∈G

µ(γ),

where µ(γ) stands for the µ-length of γ. The length of G with respect to µ is
defined as

Lµ(G) =
µ(G)2

areaµ(U)
,

where areaµ is the area corresponding to the form µ2 = µ(z)2dx ∧ dy. Taking
the supremum over all conformal metrics µ, we obtain the extremal length L(G)
of the family G.

The extremal width is the inverse of the extremal length:

W(G) = L−1(G).

It can be also defined as follows. Consider all conformal metrics µ such that
µ(γ) ≥ 1 for any γ ∈ G. Then W(G) is the infimum of the areas µ2(U) of all
such metrics.

Example 4.1. For a standard rectangle P = I × [0, h], let G be the family
of vertical curves, and let Λ be the genuinely vertical foliation. Then

L(G) = L(Λ) =
h

|I| ≡ modP.

Similar formulas hold for the standard cylinder C = T× [0, h].

4.2. Electric circuits laws. We say that a family G of curves overflows a
family H if any curve of G contains some curve of H. Also, two families, G1

and G2, are disjoint if any two curves, γ1 ∈ G1 and γ2 ∈ G2, are disjoint.
We let x ⊕ y = (x−1 + y−1)−1 be the harmonic sum of x and y (it is

conjugate to the usual sum by the inversion map x 7→ x−1).
The following crucial properties of the extremal length and width show

that the former behaves like the resistance in electric circuits, while the latter
behaves like conductance.

Series law/Grötzsch inequality. Let G1 and G2 be two disjoint
families of curves, and let G be a third family that overflows both G1 and G2.
Then

L(G) ≥ L(G1) + L(G2),

or equivalently,
W(G) ≤ W(G1)⊕W(G2).
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Parallel law. For any two families G1 and G2 of curves we have:

W(G1 ∪ G2) ≤ W(G1) +W(G2).

If G1 and G2 are disjoint then

W(G1 ∪ G2) =W(G1) +W(G2)

Note that the Parallel Law inequality implies the estimate X ≤ Y between
the moduli from the Introduction.

From the Series and Parallel Laws we can derive the following more general
result:

Proposition 4.2. Suppose that ∆i
λ, Γλ for i = 1 . . . k, λ ∈ Λ (where Λ is

finite) are path families supported on a Riemann surface S. Assume for each
λ ∈ Λ, the ∆i

λ have disjoint support, and Γλ overflows each of the ∆i
λ. Then

∑
λ

W(Γλ) ≤
k⊕
i=1

∑
λ

W(∆i
λ).

Proof. We form path families ∆̂i
λ and Γ̂λ on the Riemann surface S × Λ

by putting ∆i
λ and Γλ on the copy of S labeled by λ. Let Γ̂ =

⋃
λ Γ̂λ and

∆̂i =
⋃
λ ∆̂i

λ. By the Parallel Law,

W(Γ̂) =
∑
λ

W(Γ̂λ), W(∆̂i) =
∑
λ

W(∆̂i
λ).

Moreover, Γ̂ overflows each of the ∆̂i, and the ∆̂i are disjoint. Therefore, by
the Series Law,

W(Γ̂) ≤
k⊕
i=1

W(∆̂i),

and the result follows.

4.3. Transformation rules. Both extremal length and extremal width are
conformal invariants. More generally, we have:

Lemma 4.3. Let f : U → V be a holomorphic map between two Riemann
surfaces, and let G be a family of curves on U . Then

L(f(G)) ≥ L(G).

Moreover, if f is at most d− to− 1, then

L(f(G)) ≤ d · L(G).
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Proof. Let µ be a conformal metric on U . Let us push-forward the area
form µ2 by f . We obtain the area form ν2 = f∗(µ2) of some conformal metric
ν on V . Then areaν(V ) = areaµ(U) and f∗(ν) ≥ µ. It follows that

Lµ(G) ≤ Lν(f(G)) ≤ L(f(G)).

Taking the supremum over µ completes the proof of the first assertion.
For the second assertion, let us consider a conformal metric ν on V and

pull it back to U , µ = f∗ν. Then µ(γ) = ν(f(γ)) for any γ ∈ G, while
areaµ(U) ≤ d · areaν(V ). Hence

L(G) ≥ Lµ(G) ≥ 1
d
Lν(f(G)),

and taking the supremum over ν completes the proof.

Corollary 4.4. Under the circumstances of the previous lemma, let H
be a family of curves in V satisfying the following lifting property : any curve
γ ∈ H contains an arc that lifts to some curve in G. Then L(H) ≥ L(G).

Proof. The lifting property means that the family H overflows the family
f(G). Hence L(H) ≥ L(f(G)), and the conclusion follows.

4.4. Extremal distance and the Dirichlet integral. Given a compact subset
K ⊂ intU , the extremal distance

L(U,K) ≡ mod(U,K)

(between ∂U and K) is defined as L(G), where G is the family of curves con-
necting ∂U and K. In the case when U is a topological disk and K is connected,
we obtain the usual modulus mod(U rK) of the annulus U rK.

Remark. L(U,K) can also be defined as L(G′) where G′ is the family of
curves in U r K connecting ∂U to K. Indeed, since G ⊃ G′, L(G) ≤ L(G′).
Since each curve of G overflows some curve of G′, L(G) ≥ L(G′). One can also
compromise and use the intermediate family of curves in U connecting ∂U

to K.
We let W(U,K) = L−1(U,K).

Lemma 4.5. Let f : U → V be a branched covering of degree N between
two compact Riemann surfaces with boundary. Let A be a compact subset of
intU and let B = f(A). Then

mod(U,A) ≤ mod(V,B) ≤ N mod(U,A).

Proof. Let G be the family of curves in U connecting ∂U to A, and let H
be the similar family in V . Notice that every curve γ ∈ H lifts to a curve in
G: begin the lifting on A; it must end on ∂U since f : U → V is proper. Thus,
H = f(G), and Lemma 4.3 completes the proof.
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Extremal width W(U,A) can be explicitly expressed as the Dirichlet in-
tegral of the harmonic measure (see [A, §4–9]):

W(U,A) = 4
∫
UrA

|∂h|2

where h : U rA→ R is the harmonic function equal to 1 on ∂A and vanishing
on ∂U , and |∂h|2 is the area form associated with the holomorphic differential
∂h = (∂h/∂z)dz.

4.5. More transformation rules. The Dirichlet integral formulation allows
us to sharpen the lower bound in Lemma 4.5:

Lemma 4.6. Let f : U → V be a branched covering between two compact
Riemann surfaces with boundary. Let A be an archipelago in U , B = f(A),
and assume that f : A→ B is a branched covering of degree d. Then

mod(V,B) ≥ d mod(U,A).

Proof. The Riemann surface V r B is decomposed into finitely many
rectangles saturated by the leaves of the harmonic flow (see §2.4). Slit these
rectangles by the leaves containing the critical values of f . We obtain finitely
many foliated rectangles Πi such that∑

W(Πi) =W(V,B).

Each of these rectangles lifts to d properly embedded rectangles P ji in
U rA (with the horizontal sides on ∂U and ∂A). Moreover, W(P ji ) =W(Πi).
Hence

W(U,A) ≥
∑
W(P ji ) = dW(V,B).

Remark. A similar estimate is still valid for an arbitrary compact set A,
and can be proved by approximating A by archipelagos.

Putting the above two lemmas together (or using directly that the Dirich-
let integral is transformed as the area under branched coverings) we obtain:

Lemma 4.7. Let (U,A) and (V,B) be as above, and let f : UrA→ V rB
be a branched covering of degree N . Then

mod(V,B) = N mod(U,A).
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