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Curvature of vector bundles
associated to holomorphic fibrations

By Bo Berndtsson

Abstract

Let L be a (semi)-positive line bundle over a Kähler manifold, X, fibered
over a complex manifold Y . Assuming the fibers are compact and nonsingular
we prove that the hermitian vector bundle E over Y whose fibers over points
y are the spaces of global sections over Xy to L ⊗ KX/Y , endowed with the
L2-metric, is (semi)-positive in the sense of Nakano. We also discuss various
applications, among them a partial result on a conjecture of Griffiths on the
positivity of ample bundles.

1. Introduction

Let us first consider a domain D = U × Ω in Cm × Cn and a function φ,
plurisubharmonic in D. We also assume for simplicity that φ is smooth up to
the boundary . Then, for each t in U , φt(·) := φ(t, ·) is plurisubharmonic in Ω
and we denote by A2

t the Bergman spaces of holomorphic functions in Ω with
norm

‖h‖2 = ‖h‖2t =
∫

Ω
|h|2e−φt

.

The spaces A2
t are then all equal as vector spaces but have norms that vary

with t. The - infinite rank - vector bundle E over U with fiber Et = A2
t is

therefore trivial as a bundle but is equipped with a nontrivial metric. The first
result of this paper is the following theorem.

Theorem 1.1. If φ is (strictly) plurisubharmonic, then the hermitian
bundle (E, ‖ · ‖t) is (strictly) positive in the sense of Nakano.

Of the two main differential geometric notions of positivity (see §2, where
these matters are reviewed in the slightly nonstandard setting of bundles of
infinite rank), positivity in the sense of Nakano is the stronger one and implies
the weaker property of positivity in the sense of Griffiths. On the other hand
the Griffiths notion of positivity has nicer functorial properties and implies in
particular that the dual bundle is negative (in the sense of Griffiths). This
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latter property is in turn equivalent to the condition that if ξ is any nontrivial
local holomorphic section of the dual bundle, then the function

log ‖ξ‖2

is plurisubharmonic. We can obtain such holomorphic sections to the dual
bundle from point evaluations. More precisely, let f be a holomorphic map
from U to Ω and define ξt by its action on a local section of E

〈ξt, ht〉 = ht(f(t)).

Since the right-hand side here is a holomorphic function of t, ξ is indeed a
holomorphic section of E∗. The norm of ξ at a point is given by

‖ξt‖2 = sup
‖ht‖≤1

|ht(f(t))|2 = Kt(f(t), f(t)),

where Kt(z, z) is the Bergman kernel function for A2
t . It therefore follows from

Theorem 1.1 that logKt(z, z) is plurisubharmonic (or identically equal to −∞)
in D, which is the starting point of the results in [1]. The point here is of course
that logKt(z, z) is plurisubharmonic with respect to the parameter t, and even
with respect to all the variables (t, z) jointly.

In [1] it is proved that this subharmonicity property of the Bergman kernel
persists if D is a general pseudoconvex domain in Cm×Cn, for general plurisub-
harmonic weight functions. In this case the spaces A2

t are the Bergman spaces
for the slices of D, Dt = {z; (t, z) lies in D}. This more general case should
also lead to a positively curved vector bundle. The main problem in proving
such an extension of Theorem 1.1 is not to prove the inequalities involved, but
rather to define the right notion of vector bundle in this case. In general, the
spaces A2

t will not be identical as vector spaces, so the bundle in question is
not locally trivial.

There is however a natural analog of Theorem 1.1 for holomorphic fi-
brations with compact fibers. Consider a complex manifold X of dimension
n+m which is smoothly fibered over another connected complexm-dimensional
manifold Y . There is then a holomorphic map, p, from X to Y with surjective
differential, and all the fibers Xt = p−1(t) are assumed compact. This im-
plies, see [32], that the fibers are all diffeomorphic, but they are in general not
biholomorphic to each other. We next need a substitute for the assumption
on pseudoconvexity in Theorem 1.1. What first comes to mind is that X is
a projective fibration, i.e. that there is a strictly positive line bundle on X.
This would mean that X contains a divisor A such that X \ A is Stein, so
that we would be almost in the Stein case, which is quite similar to the case
in Theorem 1.1. It turns out however that all we need to assume is that X is
Kähler.

Let L be a holomorphic, hermitian line bundle over the total space X.
Our substitute for the Bergman spaces A2

t is now the space of global sections
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over each fiber of L⊗KXt
,

Et = Γ(Xt, L|Xt ⊗KXt
),

where KXt
is the canonical bundle of, i.e. the bundle of forms of bidegree (n, 0)

on, each fiber. We assume that L is semipositive so that the hermitian metric
on L has nonnegative curvature form. Fix a point y in Y and choose local
coordinates t = (t1, . . . tm) near y with t(y) = 0. We consider the coordinates
as functions on X by identifying t with t ◦ p, and let dt = dt1 ∧ . . . dtm. The
canonical bundle of a fiber Xt can then be identified with the restriction of
KX , the canonical bundle of the total space, to Xt by mapping a local section
u to KXt

to u∧ dt. This map is clearly injective, and it is also surjective since
any section w to KX can locally be written

w = u ∧ dt,

and the restriction of u to Xt is independent of the choice of u. With this
identification, any global holomorphic section of L ⊗KXt

over a fiber can be
holomorphically extended to a holomorphic section of L ⊗KXs

, for s near t.
When L is trivial this follows from the Kähler assumption, by invariance of
Hodge numbers; see [32]. When L is semipositive it follows from a variant of
the Ohsawa-Takegoshi extension theorem, discussed in an appendix . Starting
from a basis for Γ(Xt, L|Xt⊗KXt

) we therefore get a local holomorphic frame
for E, so that E has a natural structure as a holomorphic vector bundle.
Moreover, elements of Et can be naturally integrated over the fiber and we
obtain in this way a metric, ‖ ·‖ on E in complete analogy with the plane case.
We then get the same conclusion as before:

Theorem 1.2. If the total space X is Kähler and L is (semi)positive over
X, then (E, ‖ · ‖) is (semi)positive in the sense of Nakano.

This can be compared to results of Fujita, [13], Kawamata, [18], and
Kollár, [20], who proved positivity properties for E when L is trivial. Kawa-
mata also extended these results to multiples of the canonical bundle, and,
in [19], to nontrivial L equipped with a special, singular, semipositive metric.
Related work is also due to Tsuji, see [29] and the references therein. The
proofs in these papers are based on results of Griffiths on variations of Hodge
structures, whereas our proofs use techniques related to Hörmander-like L2-
estimates for ∂̄. This seems to be the main novelty in our approach. Among
the advantages are that this permits us to work directly in the twisted con-
text (i.e. with nontrivial L), it gives Nakano positivity and not just Griffiths
positivity and it also works in the noncompact case (like Theorem 1.1). More-
over it gives an explicit interesting lower bound for the curvature operator; see
Section 6.
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After a first version of this paper was posted on the ArXiv, Tsuji also
announced a version of Theorem 1.2 in [30]. In this paper he indicates a proof
that E is Griffiths positive, assuming the fibrations is projective, by a reduction
to the case of a locally trivial fibration.

Theorems 1.1 and 1.2 have applications, or at least illustrations, in a num-
ber of different contexts. One concerns subharmonicity properties of Bergman
kernels depending on a parameter, which follow from Theorem 1.1 as explained
above; see [1]. This can be seen as a complex version of the Brunn-Minkowski
inequality. The link to Brunn-Minkowski theory lies in the fact that the inverse
of the volume of a domain in Rn is the Bergman kernel for the space of constant
functions on the domain. The classical Brunn-Minkowski inequality is there-
fore a convexity property, with respect to parameters, of the Bergman kernel
for the nullspace of the d-operator, whereas here we have plurisubharmonicity
of the Bergman kernel for the nullspace of the ∂̄-operator.

Just as in the case of Theorem 1.1, Theorem 1.2 also has as a consequence
a result on plurisubharmonicity of a Bergman kernel. In this case however, the
Bergman kernel is not a function, but transforms as a metric on the relative
canonical bundle of the fibration

KX/Y := KX ⊗ p∗(KY )−1,

twisted with L. In forthcoming work with Mihai Paun, [4] and [5], we show
how Theorem 1.2 implies that this Bergman kernel has semipositive curvature
or is identically equal to 0. In particular L+KX/Y is pseudoeffective if it has
a nontrivial square integrable holomorphic section over at least one fiber. In
[4], [5] we also extend this result to the case when L has a singular metric and
the map p is not necessarily a smooth fibration. Moreover, these methods can
be extended to twisted multiples of the canonical bundle, generalising to the
twisted case the work of Kawamata quoted above.

Not surprisingly, the curvature of the bundle E in Theorem 1.2 can be
zero at some point and in some direction only if the curvature of the line
bundle L also degenerates. In Section 5 we prove a result that indicates that
conditions for degeneracy of the curvature of E are much more restrictive than
that: When X is a product, null vectors for the curvature can only come from
infinitesimal automorphisms of the fiber.

In Section 6 we discuss some, largely philosophical, relations between The-
orem 1.2 and recent work on the variation of Kähler metrics. This corresponds
to the case when X is a product U×Z with one-dimensional base U , and when
L is the pull-back of a bundle on Z under the second projection map. The
variation of the metric on L that we get from the fibration then gives a path
in the space of Kähler metrics on Z and the lower bound that we get for the
curvature operator in this case is precisely the Toepliz operator defined by the
geodesic curvature of this path. This theme is further developed in [3].
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Another example of the situation in Theorem 1.2 arises naturally if we
start with a (finite rank) holomorphic vector bundle V over Y and let P(V ) be
the associated bundle of projective spaces of the dual bundle V ∗. This is then
clearly an - even locally trivial - holomorphic fibration and there is a naturally
defined line bundle L over the total space

L = OP(V )(1)

that restricts to the hyperplane section bundle over each fiber. The global
holomorphic sections of this bundle over each fiber are now the linear forms on
V ∗, i.e. the elements of V . To obtain sections to our bundle E defined above,
we take tensor products with the canonical bundle. We therefore replace L by

Lr+1 = OP(V )(r + 1)

(with r being the rank of V ). Since the canonical bundle of a fiber is O(−r)
we see that on each fiber L ⊗KXt

= O(1) so that its space of global sections
is again equal to Vt. Define as before

Et = Γ(Xt, L
r+1|Xt ⊗KXt

).

One can then verify that, globally, E is isomorphic to V ⊗detV . The condition
that L is positive is now equivalent to OP(V )(1) being positive which is the same
as saying that V is ample in the sense of Hartshorne, [16]. We therefore obtain
(in §7) the following result as a corollary of Theorem 1.2.

Theorem 1.3. Let V be a (finite rank) holomorphic vector bundle over a
complex manifold which is ample in the sense of Hartshorne. Then V ⊗ detV
has a smooth hermitian metric which is strictly positive in the sense of Nakano.

Replacing OP(V )(r+1) by OP(V )(r+m), we also get that Sm(V )⊗detV is
Nakano-positive for any nonnegative m, where Sm(V ) is the m:th symmetric
power of V .

It is a well known conjecture of Griffiths, [14], that an ample vector bundle
is positive in the sense of Griffiths. Theorem 1.3 can perhaps be seen as indirect
evidence for this conjecture, since by a a theorem of Demailly, [10], V ⊗ detV
is Nakano positive if V itself is Griffiths positive. It seems that not so much is
known about Griffiths’ conjecture in general, except that it does hold when Y
is a compact curve (see [31], [7]).

After the first version of this mansucript was completed I received a
preprint by C. Mourougane and S. Takayama, [25]. There they prove that
V ⊗ detV is positive in the sense of Griffiths, assuming the base manifold is
projective. The method of proof is quite different from this paper, as is the
metric they find.

We end this introduction with a brief discussion of the proofs. The proof
of Theorem 1.1 is based on regarding the bundle E as a holomorphic subbundle
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of the hermitian bundle F with fibers

Ft = L2(Ω, e−φ
t

) =: L2
t .

By definition, the curvature of F is a (1, 1)-form∑
ΘF
jkdtj ∧ dt̄k

whose coefficients are operators on Ft. By direct and simple computation,

ΘF

is the operator of multiplication with ∂t∂̄tφ, so it is positive as soon as φ is
plurisubharmonic of t for z fixed. By a formula of Griffiths, the curvature of the
holomorphic subbundle E is obtained from the curvature of F by subtracting
the second fundamental form of E, and the crux of the proof is to control this
term by the curvature of F . For this we note that the second fundamental form
is given by the square of the norm of an element in the orthogonal complement
of A2

t in L2
t . This element is therefore the minimal solution of a certain ∂̄-

equation, and the needed inequality follows from an application of Hörmander’s
L2-estimate.

We have not been able to generalize this proof to the situation of The-
orem 1.2. The proof does generalize to the case of a holomorphically trivial
fibration, but in the general case we have not been able to find a natural com-
plex structure on the space of all (not necessarily holomorphic) (n, 0) forms,
extending the complex structure on E. We therefore compute directly the
Chern connection of the bundle E itself, and compute the curvature from
there, much as one proves Griffiths’ formula. In these computations appears
also the Kodaira-Spencer class of the fibration, [32]. This class plays somewhat
the role of another second fundamental form, but this time of a quotient bun-
dle, arising when we restrict (n, 0)-forms to the fiber. The Kodaira-Spencer
class therefore turns out to give a positive contribution to the curvature. This
proof could also be adapted to give Theorem 1.1 by using fiberwise complete
Kähler metrics, but we have chosen not to do so since the first proof seems
conceptually clearer.

Finally, I would like to thank Sebastien Boucksom for pointing out the re-
lation between Theorem 1.1 and the Griffiths conjecture, Jean-Pierre Demailly
for encouraging me to treat also the case of a general nontrivial fibration and
Yum-Tong Siu and Mihai Paun for helpful discussions. Last but not least,
thanks are due to Hiroshi Yamaguchi, whose work on plurisubharmonicity of
the Robin function [33] and Bergman kernels, [24] was an important source of
inspiration for this work.
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2. Curvature of finite and infinite rank bundles

Let E be a holomorphic vector bundle with a hermitian metric over a
complex manifold Y . By definition this means that there is a holomorphic
projection map p from E to Y and that every point in Y has a neighbourhood
U such that p−1(U) is isomorphic to U×W , where W is a vector space equipped
with a smoothly varying hermitian metric. In our applications it is important
to be able to allow this vector space to have infinite dimension, in which case
we assume that the metrics are also complete, so that the fibers are Hilbert
spaces.

Let t = (t1, . . . , tm) be a system of local coordinates on Y . The Chern
connection, Dtj is now given by a collection of differential operators acting on
smooth sections to U ×W and satisfying

∂tj (u, v) = (Dtju, v) + (u, ∂̄tjv),

with ∂tj = ∂/∂tj and ∂̄tj = ∂/∂t̄j . The curvature of the Chern connection is a
(1, 1)-form of operators

ΘE =
∑

ΘE
jkdtj ∧ dt̄k,

where the coefficients ΘE
jk are densily defined operators on W . By definition

these coefficients are the commutators

ΘE
jk = [Dtj , ∂̄tk ].

The vector bundle is said to be positive in the sense of Griffiths if for any
section u of E and any vector v in Cm∑

(ΘE
jku, u)vj v̄k ≥ δ‖u‖2|v|2

for some positive δ. E is said to be positive in the sense of Nakano if for any
m-tuple (u1, . . . , um) of sections of E∑

(ΘE
jkuj , uk) ≥ δ

∑
‖uj‖2.

Taking uj = uvj we see that Nakano positivity implies positivity in the sense
of Griffiths.

The dual bundle of E is the vector bundle E∗ whose fiber at a point t
in Y is the Hilbert space dual of Et. There is therefore a natural antilinear
isometry between E∗ and E, which we will denote by J . If u is a local section
of E, ξ is a local section of E∗, and 〈·, ·〉 denotes the pairing between E∗ and
E, we have

〈ξ, u〉 = (u, Jξ).

Under the natural holomorphic structure on E∗,

∂̄tjξ = J−1DtjJξ,
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and the Chern connection on E∗ is given by

D∗tjξ = J−1∂̄tjJξ.

It follows that
∂̄tj 〈ξ, u〉 = 〈∂̄tjξ, u〉+ 〈ξ, ∂̄tju〉,

and
∂tj 〈ξ, u〉 = 〈D∗tjξ, u〉+ 〈ξ,Dtju〉,

and hence
0 =

[
∂tj , ∂̄tk

]
〈ξ, u〉 = 〈ΘE∗

jk ξ, u〉+ 〈ξ,ΘE
jku〉,

if we let ΘE∗ be the curvature of E∗. If ξj is an r-tuple of sections to E∗, and
uj = Jξj , we thus see that∑

(ΘE∗

jk ξj , ξk) = −
∑

(ΘE
jkuk, uj).

Notice that the order between uk and uj on the right-hand side is opposite to
the order between the ξ’s on the left-hand side. Therefore E∗ is negative in
the sense of Griffiths if and only if E is positive in the sense of Griffiths, but
we cannot draw the same conclusion in the the case of Nakano positivity.

If u is a holomorphic section of E we also find that

∂2

∂tj∂t̄k
(u, u) = (Dtju,Dtku)− (ΘE

jku, u)

and it follows after a short computation that E is (strictly) negative in the
sense of Griffiths if and only if log ‖u‖2 is (strictly) plurisubharmonic for any
nonvanishing holomorphic section u.

We next briefly recapitulate the Griffiths formula for the curvature of a
subbundle. Assume E is a holomorphic subbundle of the bundle F , and let
π be the fiberwise orthogonal projection from F to E. We also let π⊥ be the
orthogonal projection on the orthogonal complement of E. By the definition
of Chern connection we have

DE = πDF .

Let ∂̄tjπ be defined by

(2.1) ∂̄tj (πu) = (∂̄tjπ)u+ π(∂̄tju).

Computing the commutators occurring in the definition of curvature we see
that

(2.2) ΘE
jku = −(∂̄tkπ)DF

tju+ πΘF
jku,

if u is a section of E. By (2.1) (∂̄π)v = 0 if v is a section of E, so that

(2.3) (∂̄π)DFu = (∂̄π)π⊥DFu.
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Since ππ⊥ = 0 it also follows that

(∂̄π)π⊥DFu = −π∂̄(π⊥DFu).

Hence, if v is also a section of E,

((∂̄tkπ)DF
tju, v) =−(∂̄tk(π⊥DF

tju), v)

= ((π⊥DF
tju), DF

tkv) = (π⊥(DF
tju), π⊥(DF

tkv)).

Combining with (2.2) we finally get that if u and v are both sections to E then

(2.4) (ΘF
jku, v) = (π⊥(DF

tju), π⊥(DF
tkv)) + (ΘE

jku, v),

and thus ∑
(ΘF

jkuj , uk) = ‖π⊥
∑

DF
tjuj‖

2 +
∑

(ΘE
jkuj , uk).

which is the starting point for the proof of Theorem 1.1.
For the proof of Theorem 1.2 we finally describe another way of computing

the curvature form of a vector bundle. Fix a point y in Y and choose local
coordinates t centered at y. Any point u0 in the fiber E0 over y can be extended
to a holomorphic section u of E near 0. Modifying u by a linear combination∑
tjvj for suitably chosen local holomorphic sections vj we can also arrange

things so that Du = 0 at t = 0. Let u and v be two local sections with this
property and compute

∂t̄k∂tj (u, v) = ∂t̄k(Dtju, v) = (∂t̄kDtju, v) = −(ΘE
jku, v).

Let uj be an m-tuple of holomorphic sections to E, satisfying Duj = 0 at 0.
Put

Tu =
∑

(uj , uk) ̂dtj ∧ dt̄k.

Here ̂dtj ∧ dt̄k denotes the wedge product of all dti and dt̄i except dtj and dt̄k,
multiplied by a constant of absolute value 1, chosen so that Tu is a positive
form. Then

(2.5) i∂∂̄Tu = −
∑

(ΘE
jkuj , uk)dVt,

so that E is Nakano-positive at a given point if and only if this expression is
negative for any choice of holomorphic sections uj satisfying Duj = 0 at the
point.

3. The proof of Theorem 1.1

We consider the setup described before the statement of Theorem 1.1
in the introduction. Thus E is the vector bundle over U whose fibers are
the Bergman spaces A2

t equipped with the weighted L2 metrics induced by
L2(Ω, e−φ

t

). We also let F be the vector bundle with fiber L2(Ω, e−φ
t

), so that
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E is a trivial subbundle of the trivial bundle F with a metric induced from a
nontrivial metric on F . From the definition of the Chern connection we see
that

DF
tj = ∂tj − φj ,

where the last term on the right-hand side should be interpreted as the operator
of multiplication by the (smooth) function −φj = −∂tjφt. (In the sequel we
use the letters j, k for indices of the t-variables, and the letters λ, µ for indices
of the z-variables.) For the curvature of F we therefore get

ΘF
jk = φjk,

the operator of multiplication with the complex Hessian of φ with respect to
the t-variables. We shall now apply formula (2.4), and so we let uj be smooth
sections of E. This means that uj are functions that depend smoothly on t

and holomorphically on z. To verify the positivity of E in the sense of Nakano
we need to estimate from below the curvature of E acting on the k-tuple u,∑

(ΘE
jkuj , uk).

By (2.4) this means that we need to estimate from above∑
(π⊥(φjuj), π⊥(φkuk)) = ‖π⊥(

∑
φjuj)‖2.

Put w = π⊥(
∑
φjuj). For fixed t, w solves the ∂̄z-equation

∂̄w =
∑

ujφjλdz̄λ,

since the uj ’s are holomorphic in z. Moreover, since w lies in the orthogonal
complement of A2, w is the minimal solution to this equation.

We shall next apply Hörmander’s weighted L2-estimates for the ∂̄-equation.
The precise form of these estimates that we need says that if f is a ∂̄-closed
form in a psedudoconvex domain Ω, and if ψ is a smooth strictly plurisubhar-
monic weight function, then the minimal solution w to the equation ∂̄v = f

satisfies ∫
Ω
|w|2e−ψ ≤

∫
Ω

∑
ψλµfλf̄µe

−ψ,

where (ψλµ) is the inverse of the complex Hessian of ψ (see [9]).
In our case this means that∫

Ω
|w|2e−φt ≤

∫
Ω

∑
φλµφjλujφkµuke

−φt

.

Inserting this estimate in formula (2.4) together with the formula for the cur-
vature of F we find

(3.1)
∑

(ΘE
jkuj , uk) ≥

∫
Ω

∑
jk

φjk −∑
λµ

φλµφjλφ̄kµ

uj ūke
−φt

.
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We claim that the expression

Djk =:

φjk −∑
λµ

φλµφjλφ̄kµ

 ,

in the integrand is a positive definite matrix at any fixed point . In the proof
of this, we may by a linear change of variables in t, of course, assume that the
vector u that D acts on equals (1, 0 . . . 0). The positivity of D then follows
from a computation in [27], but we will give the short argument here too. Let
Φ = i∂∂̄φ where the ∂∂̄-operator acts on t1 and the z-variables, the remaining
t-variables being fixed. Then

Φ = Φ11 + iα ∧ dt̄1 + idt1 ∧ ᾱ+ Φ′,

where Φ11 is of bidegree (1, 1) in t1, α is of bidegree (1, 0) in z, and Φ′ is of
bidegree (1, 1) in z. Then

Φn+1 = Φn+1/(n+ 1)! = Φ1,1 ∧ Φ′n − iα ∧ ᾱ ∧ Φ′n−1 ∧ idt1 ∧ dt̄1.

Both sides of this equation are forms of maximal degree that can be written
as certain coefficients multiplied by the Euclidean volume form of Cn+1. The
coefficient of the left-hand side is the determinant of the complex Hessian of φ
with respect to t1 and z together. Similarily, the coefficient of the first term on
the right-hand side is φ11 times the Hessian of φ with respect to the z-variables
only. Finally, the coefficient of the last term on the right-hand side is the norm
of the (0, 1) form in z,

∂̄z∂t1φ,

measured in the metric defined by Φ′, multiplied by the volume form of the
same metric. Dividing by the coefficient of Φ′n we thus see that the matrix
D acting on a vector u as above equals the Hessian of φ with respect to t1
and z divided by the Hessian of φ with respect to the z-variables only. This
expression is therefore positive so that the proof of Theorem 1.1 is complete.

4. Kähler fibrations with compact fibers

Let X be a Kähler manifold of dimension m + n, fibered over a complex
m-dimensional manifold Y . This means that we have a holomorphic map p

from X to Y with surjective differential at all points. All our computations
will be local, and so we may as well assume that Y = U is a ball or polydisk
in Cm. For each t in U we let

Xt = p−1(t)

be the fiber of X over t. We shall assume that all fibers are compact.
Next, we let L be a holomorphic hermitian line bundle over X. Our

standing assumption on L is that it is semipositive, i.e. that it is equipped
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with a smooth hermitian metric of nonnegative curvature. For each fiber Xt

we are interested in the space of holomorphic L-valued (n, 0)-forms on Xt,

Γ(Xt, L|Xt
⊗KXt

) =: Et.

For each t, Et is a finite-dimensional vector space and we claim that

E :=
⋃
{t} × Et

has a natural structure as a holomorphic vector bundle.
To see this we need to study how Et varies with t. First note that KXt

is
isomorphic to KX |Xt

, the restriction of the canonical bundle of the total space
to Xt, via the map that sends a section u to KXt

to

ũ := u ∧ dt,

where dt = dt1 ∧ . . . dtm. It is clear that this map is injective. Conversely,
any local section ũ to KX can be locally represented as ũ := u ∧ dt, and
even though u is not uniquely determined, the restriction of u to each fiber is
uniquely determined. We thus have two ways of thinking of an element u in
Et: as a holomorphic L-valued (n, 0)-form on Xt or as a section ũ = u ∧ dt
of KX over Xt. It turns out to be convenient for the computations later on
to have yet another interpretation: as the restriction of and (n, 0)-form, u′,
on X to Xt (here we understand by restriction the pullback to Xt under the
inclusion map from Xt to X). Clearly, u′ is not uniquely determined by u.
Indeed u′ restricts to 0 on Xt0 precisely when u′ ∧ dt = 0 vanishes for t = t0,
which in turn is equivalent to saying that

u′ =
∑

γj ∧ dtj .

We will refer to a choice of u′ as a representative of u. When t varies, a
smooth section of E is then represented by a smooth (n, 0)-form on X. To
avoid cumbersome notation we will in the sequel use the same letter to denote
an element in Et and any representative of it.

The semipositivity of L, and the assumption that X is Kähler, implies
that any holomorphic section u to KXt

for one fixed t can be locally extended
in the sense that there is a holomorphic section ũ to KX over p−1(W ) for some
neighbourhoodW of t whose restriction toXt maps to u under the isomorphism
above. In case L is trivial this follows from the fact that Hodge numbers are
locally constant; see [32]. For general semipositive bundles L it follows from a
result of Ohsawa-Takegoshi type, to be discussed in an appendix.

Taking a basis for Et for one fixed t and extending as above we therefore
get a local frame for the bundle E. We define a complex structure on E by
saying that an (n, 0)-form over p−1(W ), u, whose restriction to each fiber is
holomorphic, defines a holomorphic section of E if u ∧ dt is a holomorphic
section of KX . The frame we have constructed is therefore holomorphic.
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Note that this means that u is holomorphic if and only if ∂̄u ∧ dt = 0,
which means that ∂̄u can be written

(4.1) ∂̄u =
∑

ηj ∧ dtj ,

with ηj smooth forms of bidegree (n − 1, 1). Again, the ηj are not uniquely
determined, but their restrictions to fibers are.

Remark. Even though we will not use it, it is worth mentioning the
connection between the forms ηj and the Kodaira-Spencer map of the fibration;
see [32], [21].

The Kodaira-Spencer map at a point t in the base, is a map from the
holomorphic tangent space of U to the first Dolbeault cohomology group,

H0,1(Xt, T
1,0(Xt)),

of Xt with values in the holomorphic tangent space of Xt, i.e., as t varies it is a
(1, 0)-form,

∑
θjdtj on U with values in H0,1(Xt, T

1,0(Xt)).The classes θj can
be represented by ∂̄-closed (0, 1)-forms, ϑj , on Xt whose coefficients are vector
fields of type (1, 0) tangent to the fiber. Such representatives can be found as
follows. Let Vj be some choice of smooth (1, 0) vector fields on X, such that
dp(Vj) = ∂/∂tj . Then dp(∂̄Vj) = 0 so that the ∂̄Vj are ∂̄-closed forms with
values in the bundle of vectors tangent to fibers. It is not hard to check that
they represent the classes θj , by use of the definition in [21].

Letting the vectorfield in the coefficients of ϑj act on forms by contraction,
we obtain maps

v 7→ ϑjcv

from (p, q)-forms on Xt to (p− 1, q + 1)-forms. We claim that the forms

ηj ,

restricted to fibers Xt, is what we obtain when we let these map operate on
u. Different representatives of u correspond to different representatives of the
same cohomology class.

To prove the claim, we need to verify that ηj = ϑjcu on each fiber, where
ϑj is some representative on Xt of the class θj . Let d̂tj be the wedge product
of all differentials dtk, except dtj , with the right ordering, and let ũ = u ∧ dt.
Then

Vjcũ = (Vjcu) ∧ dt+ u ∧ d̂tj .

Hence
∂̄Vjcũ = (∂̄(Vjcu)) ∧ dt+ ηj ∧ dt.

Since ∂̄Vjcdt = ∂̄(Vjcdt) = 0, it follows that

(∂̄Vjcu) ∧ dt = (∂̄(Vjcu)) ∧ dt+ ηj ∧ dt.
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Therefore
∂̄Vjcu = ∂̄(Vjcu) + ηj

on fibers, which proves our claim.

Let u be a smooth local section of E. This means that u can be represented
by a smooth L-valued form of bidegree (n, 0) over p−1(W ) for some W open
in U , such that the restriction of u to each fiber is holomorphic. Then ∂̄u∧dt∧dt̄
= 0, so that

∂̄u =
∑

dt̄j ∧ νj +
∑

ηj ∧ dtj ,

where the νj define sections to E. We define the (0, 1)-part of the connection
D on E by letting

D0,1u =
∑

νjdt̄j .

Sometimes we write
νj = ∂̄tju

with the understanding that this refers to the ∂̄ operator on E. Note that
D0,1u = 0 for t = t0 if and only if each νj vanishes when restricted to Xt0 , i.e.
if ∂̄u ∧ dt = 0, which is consistent with the definition of holomorphicity given
earlier. Note also that if we choose another (n, 0)-form u′ to represent the
same section of E, then u − u′ vanishes when restricted to each fiber. Hence
u− u′ =

∑
aj ∧ dtj and it follows that D0,1 is well defined.

The bundle E has a naturally defined hermitian metric, induced by the
metric on L. To define the metric, let ut be an element of Et. Locally, with
respect to a local trivialization of L, ut is given by a scalar valued (n, 0)-form,
u′, and the metric on L is given by a smooth weight function φ′. Put

[ut, ut] = cnu
′ ∧ u′e−φ′ ,

with cn = in
2

chosen to make this (n, n)-form positive. Clearly this definition
is independent of the trivialization, so that [ut, ut] is globally defined. The
metric on Et is now defined as

‖ut‖2 =
∫
Xt

[ut, ut],

and the associated scalar product is

(4.2) (ut, vt)t =
∫
Xt

[ut, vt].

In the sequel we will, abusively, write [u, v] = cnu ∧ v̄e−φ. When t varies we
suppress the dependence on t and get a smooth hermitian metric on E. For
local sections u and v to E the scalar product is then a function of t and it
will be convenient to write this function as

(u, v) = p∗([u, v]) = p∗(cnu ∧ v̄e−φ),
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where u and v are forms on X that represent the sections. Here p∗ denotes
the direct image, or push-forward, of a form, defined by∫

U
p∗(α) ∧ β =

∫
X
α ∧ p∗(β),

if α is a form on X and β is a form on U .
With the metric and the ∂̄ operator defined on E we can now proceed to

find the (1, 0)-part of the Chern connection. Let u be a form on X with values
in L. Locally, with respect to a trivialization of L, u is given by a scalar-valued
form u′ and the metric on L is given by a function φ′. Let

∂φ
′
u′ = eφ

′
∂(e−φ

′
u′).

One easily verifies that this expression is invariantly defined, and we will,
somewhat abusively, write ∂φ

′
u′ = ∂φu, using φ to indicate the metric on L.

In particular, let u be of bidegree (n, 0) such that the restrictions of u to fibers
are holomorphic. As ∂φu is of bidegree (n+ 1, 0) we can write

∂φu =
∑

dtj ∧ µj ,

where µj are smooth (n, 0)-forms whose restrictions to fibers are uniquely de-
fined. These restrictions are in general not holomorphic and so we let

P (µj)

be the orthogonal projection of µj on the space of holomorphic forms on each
fiber.

Lemma 4.1. The (1, 0)-part of the Chern connection on E is given by

D1,0u =
∑

P (µj)dtj .

Proof. Even though it will follow implicitly from the proof below, we
will first prove that D1,0u is well defined, i.e. independent of the choice of a
representative of u. Let therefore u be a form that restricts to 0 on Xt for t in
some open set. Then we can write u =

∑
γj ∧ dtj there. Hence

∂φu =
∑

∂φγj ∧ dtj ,

so that µj = ∂φγj on any fiber. It then follows from the definition of the scalar
product on Xt, and Stokes theorem, that µj is orthogonal to all holomorphic
forms on the fiber. In other words, P (µj) = 0, so that D1,0u = 0, which is
what we wanted to prove.

To prove the lemma it suffices, by the definition of Chern connection, to
verify that

(4.3) ∂tj (u, v) = (P (µj), v) + (u, ∂̄tjv) = (µj , v) + (u, ∂̄tjv)
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if u and v are smooth sections to E. But

∂(u, v) = ∂p∗([u, v]) = cn(p∗(∂φu ∧ v̄ e−φ) + (−1)np∗(u ∧ ∂̄v e−φ))

= cn(p∗(
∑

µj ∧ v̄ ∧ dtj e−φ) + p∗(u ∧ ν̄j ∧ dtj e−φ)).

This equals ∑
((µj , v) + (u, νj))dtj ,

and so we have proved 4.2.

We will write P (µj) = Dtju. We are now ready to verify the Nakano
positivity of the bundle E. For this we will use the recipe given at the end
of Section 2. Let uj be an m-tuple of holomorphic sections to E that satisfy
D1,0uj = 0 at a given point that we take to be equal to 0. Let

Tu =
∑

(uj , uk) ̂dtj ∧ dt̄k.

Here ̂dtj ∧ dt̄k denotes the product of all differentials dti and dt̄i, except dtj
and dt̄k multiplied by a number of modulus 1, so that Tu is nonnegative. We
need to verify that

i∂∂̄Tu

is negative. Represent the uj ’s by smooth forms on X, and put

û =
∑

uj ∧ d̂tj .

Then, with N = n+m− 1,

Tu = cNp∗(û ∧ û e−φ).

Thus
∂̄Tu = cN (p∗(∂̄û ∧ ûe−φ) + (−1)Np∗(û ∧ ∂φûe−φ)).

Since each uj is holomorphic we have seen that

∂̄uj =
∑

ηlj ∧ dtl.

Therefore each term in the form

p∗(∂̄û ∧ ûe−φ)

contains a factor dt. On the other hand, the push forward of an (n + m − 1,
n+m)-form is of bidegree (m− 1,m), and so we conclude that

p∗(∂̄û ∧ ûe−φ) = 0.

Thus
∂∂̄Tu = cN ((−1)Np∗(∂φû ∧ ∂φûe−φ) + p∗(û ∧ ∂̄∂φû)).

We rewrite the last term, using

∂̄∂φ + ∂φ∂̄ = ∂∂̄φ.
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Since
p∗(û ∧ ∂̄ûe−φ)

vanishes identically we find that

(−1)Np∗(û ∧ ∂φ∂̄ûe−φ) + p∗(∂̄û ∧ ∂̄ûe−φ) = 0,

so all in all

∂∂̄Tu = cN

(
(−1)Np∗(∂φû ∧ ∂φûe−φ)(4.4)

−p∗(û ∧ û ∧ ∂∂̄φe−φ) + (−1)Np∗(∂̄û ∧ ∂̄ûe−φ)
)
.

So far, the computations hold for any choice of representative of our sections
uj . We shall next choose our representatives in a careful way.

Proposition 4.2. Let u be a section of E over an open set U containing
the origin, such that

D0,1u = 0,

in U and
D1,0u = 0

at t = 0. Then u can be represented by a smooth (n, 0)-form, still denoted u,
such that

(4.5) ∂̄u =
∑

ηk ∧ dtk,

where ηk is primitive on X0, i.e. satisfies ηk ∧ω = 0 on X0, and furthermore

(4.6) ∂φu ∧ d̂tj = 0,

at t = 0 for all j.

To prove the proposition we need two lemmas.

Lemma 4.3. Let u be an (n, 0)-form on X, representing a holomorphic
section of E, and write

∂̄u =
∑

ηk ∧ dtk.

Then ηk ∧ ω are ∂̄-exact on any fiber.

Proof. Since u ∧ ω is of bidegree (n+ 1, 1) we can write locally

u ∧ ω =
∑

uk ∧ dtk.

The coefficients uk here are not unique, but their restrictions to fibers are
unique. This follows since

∑
uk ∧ dtk = 0 implies∑

uk ∧ dtk ∧ d̂tk = uk ∧ dt = 0,

which implies that uk vanishes when restricted to any fiber.
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Hence in particular the uk are well defined global forms on any fiber.
Moreover ∑

ηk ∧ ω ∧ dtk = ∂̄u ∧ ω =
∑

∂̄uk ∧ dtk,

so that ∑
(ηk ∧ ω − ∂̄uk) ∧ dtk = 0.

Again, wedging with d̂tk, we see that

ηk ∧ ω = ∂̄uk

on fibers, so that ηk ∧ ω is exact on fibers.

Lemma 4.4. Let µ be an (n, 0)-form on a compact n-dimensional Kähler
manifold Z, with values in a hermitian holomorphic line bundle L. Assume
µ is orthogonal to the space of holomorphic L-valued forms under the scalar
product (4.2). Let ξ be a ∂̄-exact (n, 2)-form on Z, with values in L. Then
there is an L-valued form γ of bidegree (n− 1, 0) such that

∂φγ = µ,

and
∂̄γ ∧ ω = ξ.

Proof. Since ξ is exact we can solve ∂̄χ = ξ. Then µ− ∂̄∗χ is orthogonal
to holomorphic forms, and so we can solve

∂̄∗α = µ− ∂̄∗χ,

with ∂̄α = 0. This follows since the range of ∂̄∗ is closed on a compact manifold.
When α′ = α+ χ,

µ = ∂̄∗α′

and ∂̄α′ = ξ. Write α′ = γ ∧ ω, where ω is the Kahler form. Then γ satisfies
the conditions in the lemma (possibly up to a sign).

We are now ready to prove Proposition 4.2.
Recall that u can in any case be represented by a form satisfying

∂̄u =
∑

ηk ∧ dtk,

over U and
∂φu =

∑
µk ∧ dtk,

where the restriction of µk is orthogonal to holomorphic forms on X0. By
Lemmas 4.3 and 4.4 there are forms γk on X0 such that

µk = ∂φγk

and
∂̄γk ∧ ω = ηk ∧ ω
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on X0. Extend γk smoothly to a neighbourhood of X0 (i.e. find a form that
restricts to γk), and put

u′ = u−
∑

γk ∧ dtk.

Then u′ is a form of bidegree (n, 0) that represents the same section of E as
u. Then

∂φu′ ∧ d̂tj = ∂φu ∧ d̂tj − ∂φγj ∧ dt = (µj − ∂φγj) ∧ dt = 0

at t = 0, since
µj = ∂φγj

on X0. Moreover
∂̄u′ =

∑
(ηk − ∂̄γk) ∧ dtk,

and
((ηk − ∂̄γk) ∧ ω = 0

on X0. Hence u′ satisfies all the requirements and the propositions is proved.

We now return to the proof of Theorem 1.2. Note that with the choice
of representatives of our sections uj furnished by Proposition 4.2, formula 4.4
simplifies at t = 0 to

(4.7) ∂∂̄Tu = cN

(
−p∗(û ∧ û ∧ ∂∂̄φe−φ) + (−1)Np∗(∂̄û ∧ ∂̄ûe−φ)

)
.

The first term on the right-hand side obviously gives a (semi)negative contri-
bution to i∂∂̄T . To analyse the last term write

∂̄uj =
∑

ηkj ∧ dtk,

and
∂̄û =

∑
ηjj ∧ dt =: η ∧ dt.

Then the last term equals

cn

∫
X0

η ∧ η̄ e−φ dVt.

In general the quadratic form in η appearing here is indefinite. In our case
however, all the ηkj are primitive on X0, and it is well known that

cnη ∧ η̄ = −|η|2

if η is primitive. (This is easily checked by hand at a point by choosing coor-
dinates that are orthogonal at the point.) Hence

cn

∫
X0

η ∧ η̄e−φ dVt = −
∫
X0

|η|2 dVt.
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and we get

(4.8) i∂∂̄T = cN

(
−p∗(û ∧ û ∧ i∂∂̄φe−φ)

)
−
∫
X0

|η|2 dVt.

By 4.4, this means that i∂∂̄Tu ≤ 0, and so E is at least seminegative in the
sense of Nakano. If i∂∂̄φ is strictly positive, it is clear that the curvature term
alone gives a strictly negative contribution to i∂∂̄T . Therefore E is strictly
positive if L is strictly positive and so we have proved Theorem 1.2. In the
next section we shall see that even when L is only semipositive, equality can
hold in our estimates only in very special cases.

We want to add one remark on the relation between the proof of Theorem
1.2 in this section and the proof of Theorem 1.1 in Section 3. The proof in
Section 3 is easily adapted to the case of a trivial fibration (so that X is a
global product). It may then seem that the proof here is quite different since
it does not use the Hörmander-Kodaira L2-estimates at all. The two proofs
are however really quite similar, the difference being that in this section we
basically reprove the special case of the L2-estimates that we need as we go
along.

5. Semipositive vector bundles

In this section we will discuss when equality holds in the inequalities of
Theorem 1.2, i.e. when the bundle E is not strictly positive. As we have already
seen in the last section, this can only happen if the line bundle L is not strictly
positive. More precisely, provided the components uj of û are chosen to satisfy
the conditions in Proposition 4.2, equality holds if and only if

η = 0

and
û ∧ ¯̂u ∧ i∂∂̄φ = 0.

Since i∂∂̄φ ≥ 0, the last condition is equivalent to

(5.1) û ∧ i∂∂̄φ = 0.

For simplicity we assume from now on that the base domain U is one-
dimensional, so that we do not need to discuss degeneracy in different direc-
tions, and that the fibration we consider is locally holomorphically trivial, i.e.
that X = U × Z, where Z is a compact n-dimensional complex manifold.
Moreover, we assume that the curvature of our metric φ on L, ΘL, is strictly
positive along each fiber Xt ' Z. Then we can also assume that we have
chosen our Kähler metric ω on X so that ωt := ω|Xt = iΘL|Xt on each fiber.

Since X now is a global product we can decompose ΘL according to its
degree in t and z, where z is any local coordinate on Z. In particular, there is
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a well defined (0, 1)-form θL on X such that dt ∧ θL is the component of ΘL

of degree 1 in dt. Expressed in invariant language,

θL = δ∂/∂tΘ
L,

where δ· means contraction with a vector field. By the formulas

(5.2) ∂δV + δV ∂ = LV ,

where L is the holomorphic Lie derivative, and

(5.3) ∂̄δV + δV ∂̄ = 0,

if V is a holomorhic vector field we see that θL is ∂̄-closed on X, and that

∂θL = L∂/∂tΘL

on X. On the other hand, on each fiber Xt there is a unique (1, 0) vector field
Vt, defined by

δVt
ωt = θL.

Our key obeservation is contained in the next lemma.

Lemma 5.1. Assume that for some u 6= 0 in E0, (ΘEu, u) = 0. Then V0

is a holomorphic vector field on X0.

Proof. Since the base U is one dimensional, û = u and since X = Z × U
is a global product we can decompose

u = u0 + dt ∧ v,

where u0 does not contain dt, i.e. δ∂/∂tu0 = 0. Here u is chosen to satisfy the
conditions of Proposition 4.2,

∂̄u = η ∧ dt,

where η ∧ ω = 0 on X0, and
∂φu = 0

for t = 0. Since u is holomorphic on X0, ∂̄u0 = 0, so that η = ∂̄v on X0. But
we have seen above that if u is a null vector for the curvature of E at t = 0,
then η = 0 so the restriction of v to X0 is a holomorphic (n− 1, 0)-form.

We also know from (5.1) that

u ∧ΘL = 0

for t = 0. Applying δ∂/∂t, we get

v ∧ΘL + (−1)nu ∧ θL = 0

for t = 0. Restriction to X0 yields

v ∧ΘL = (−1)n+1u ∧ δV0ΘL



552 BO BERNDTSSON

on X0. But, u ∧ΘL = 0 on X0 (for reasons of bidegree) so that

δV0u ∧ΘL + (−1)nu ∧ δV0ΘL = 0.

Hence v equals δV0u on X0, so δV0u is a holomorphic form on X0. Since u is
also holomorphic it follows that V0 must be holomorphic too, except possibly
where u vanishes. But since V is smooth, V must actually be holomorphic
everywhere by Riemann’s theorem on removable singularities.

This lemma could also have been proved using the approach via L2-
estimates. It is then strongly related to the following proposition that we
state explicitly since we feel it has independent interest.

Proposition 5.2. Let L be a positive line bundle over a compact complex
manifold Z. Give Z the Kähler metric defined by the curvature form of L. Let
µ be the L2-minimal solution to ∂̄µ = f , where f is an L-valued (n, 1)-form
on Z. Then equality holds in Hörmander ’s estimate; i.e.,∫

Z
|µ|2 =

∫
Z
|f |2

if and only if γ = ∗f is a holomorphic form.

Proof. Let φ be the metric on L. By Lemma 4.4

µ = ∂φγ,

for some ∂̄-closed (n− 1, 0)-form γ. Thus∫
Z
|µ|2 =

∫
Z
f ∧ γ̄e−φ ≤ ‖f‖‖γ‖,

with equality only if ∗f is proportional to γ. By the Hörmander-Kodaira-
Nakano identity, ∫

Z
γ ∧ γ̄ ∧ i∂∂̄φ e−φ +

∫
Z
|∂̄γ|2 =

∫
Z
|µ|2.

The first term on the left-hand side here is the norm squared of γ and so it
follows that

‖γ‖2 ≤ ‖µ‖2,

with equality only if ∂̄γ = 0, and combined with our previous estimate

‖µ‖2 ≤ ‖f‖2

with equality only if ∂̄γ = 0 and ∗f proportional to γ. Hence ∗f must be
holomorphic. The argument is easily seen to be reversible.
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We are now ready to state the main theorem of this section.

Theorem 5.3. Assume that Z has no nonzero global holomorphic vector
field. Suppose that

(i) X is locally a product U × Z where U is an open set in C,

(ii) L is semipositive on X, and that

(iii) L restricted to each fiber is strictly positive.

Let ωt, the Kähler metric, be the fiber Xt induced by the curvature of L. Then,
if for each t in U there is some element ut in Et such that

(ΘEut, ut) = 0,

it follows that
ωt = ω0

for t in U .

Proof. By Lemma 5.1 the restriction of θL to each fiber Xt is zero. Hence

∂θL = L∂/∂tΘL

also vanishes on fibers, which means that

d
dtωt = 0.

6. The space of Kähler metrics

In this section we will specify the situation even more, and assume that
X = U × Z is a product, and that moreover the line bundle L is the pullback
of a bundle on Z under the projection on the second factor. Intuitively this
means that not only are all fibers the same, but also the line bundle on them,
so it is only the metric that varies. Fix one metric φ0 on L, that we can take
to be the pullback of a metric on the bundle on Z, i.e. independent of the
t-variable. Then any other metric on L can be written

φ = φ0 + ψ,

where ψ is a function on X. We also continue to assume that U is a domain
in C. Let u be an element in Et.

In this situation we have an explicit lower bound for the curvature form
operating on u, generalizing 3.1:

(6.1) (ΘEu, u) ≥
∫
Xt

(
ψtt̄ − |∂̄zψt|2φ

)
[u, u].

Here the expression |f |φ means the norm of the form f with respect to the
metric ω := i∂∂̄zφ on Xt. This can be proved, either by adapting the method of
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Section 3 (note that we may replace any t-derivative of φ by the corresponding
derivative of ψ since φ0 is independent of t) or from the more complicated
proof in Section 4. To see how it follows from the formulas in Section 4 we
again decompose

u = u0 + dt ∧ v

as in the previous section, and also write

i∂∂̄φ = ω − 2Re idt ∧ ∂̄ψt + ψtt̄idt ∧ dt̄.

Then

cNu∧ ū∧ i∂∂̄φ =
(
ψtt̄cnu0 ∧ ū0 + cn−1v ∧ v̄ ∧ ω − 2Re ∂̄ψt ∧ u0 ∧ v̄

)
∧ idt∧ dt̄.

By Cauchy’s inequality

2Re ∂̄ψt ∧ u0 ∧ v̄ ≤ cn−1v ∧ v̄ ∧ ω + |∂̄ψt|2φcnu0 ∧ ū0

so that
cNu ∧ ū ∧ i∂∂̄φ ≥

(
ψtt̄ − |∂̄ψt|2φ

)
cnu0 ∧ ū0,

and (6.1) follows from (4.8) and (2.5). Notice that we have used nowhere
that Θ is positive on the total space X, just that the restrictions to fibers are
positive. Therefore (6.1) holds for any metric on L which is strictly positive
along the fibers, even though, of course, this does not imply that E is positive
in general.

The expression occurring in the integrand in 6.1,

C(ψ) =
(
ψtt̄ − |∂̄zψt|2φ

)
plays a crucial role in the recent work on variations of Kähler metrics on
compact manifolds; see [27], [23], [11], [12], [26] and [8], to cite just a few.
Fixing a line bundle L on Z, these papers consider the space K(L) of all
Kähler metrics whose Kähler form is cohomologous to the Chern class of L.
This means precisely that the Kähler form can be written

i∂∂̄φ = i∂∂̄φ0 + i∂∂̄ψ,

for some function ψ, and so the set up we described above, where ψ depends
on t, corresponds to a path in K(L).

The tangent space of K(L) at a point φ is a space of functions ψ̇ and a
Riemannian metric on the tangent space is given by the L2-norm

|ψ̇|2 =
∫
Z
|ψ̇|2(i∂∂̄φ)n/n!.

In this way, K(L) becomes an infinite-dimensional Riemannian manifold.
Now consider our space X above and let U = {|Re t| < 1} be a strip, and

consider functions ψ that depend only on Re t. Then

4C(ψ) = ψ̈ − |∂̄zψ̇|2φ
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if we use dots to denote derivatives with respect to Re t. The link between
Theorem 1.2 and the papers cited above lies in the fact that, by the results
in [27], the right-hand side here is the geodesic curvature of the path in K(L)
determined by ψ.

A basic idea in the papers cited above is to consider the spaces

Et = Γ(Xt,KXt
⊗ L)

with the induced L2-metric as a finite-dimensional approximation or “quanti-
zation” of the manifold Z with metric φt = φ0 + ψ(t, ·). (Actually this is not
quite true. In the papers cited above one does not take the tensor product
with the canonical bundle, but instead integrates with respect to the volume
element (i∂∂̄φt)n/n!.) Here one also replaces L by Lk - with k−1 playing the
role of Planck’s constant - and studies the asymptotic behaviour as k goes to
infinity.

Under this “quantization” map, functions, χ, on Z correspond to the
induced Toepliz operator, Tχ, on Et. This Toepliz operator is defined by

(Tχu, u)Et
=
∫
{t}×Z

χ[u, u],

if u is any element in Et. Note that the right-hand side in our estimate for the
curvature (6.1) equals (4 times) (Tχu, u), with χ equal to the geodesic curvature
of the path in K. Thus the inequality 6.1 can be formulated as saying that “the
curvature of the quantization is greater than the quantization of the curvature”,
i.e., that the curvature operator of the vector bundle corresponding to a path
in K(L) is greater than the Toepliz operator defined by the geodesic curvature
of the path. Moreover, Theorem 5.3 implies that if Z has no nonzero global
holomorphic vector fields, then equality holds only for a constant path.

7. Bundles of projective spaces

Let V be a holomorphic vector bundle of finite rank r over a complex
manifold Y , and let V ∗ be its dual bundle. We let P(V ) be the fiber bundle
over Y whose fiber at each point t of the base is the projective space of lines
in V ∗t , P(V ∗t ). Then P(V ) is a holomorphically locally trivial fibration. There
is a naturally defined line bundle OP(V )(1) over P(V ) whose restriction to any
fiber P(V ∗t ) is the hyperplane section bundle (see [22]). One way to define this
bundle is to first consider the tautological line bundle OP(V )(−1). The total
space of this line bundle, with the zero section removed, is just the total space
of V ∗ with the zero section removed, and the projection to P(V ) is the map
that sends a nonzero point in V ∗t to its image in P(V ∗t ). The bundle OP(V )(1)
is then defined as the dual of OP(V )(−1). The global holomorphic sections of
this bundle over any fiber are in one-to-one correspondence with the linear
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forms on V ∗t , i.e. the elements of V . More generally, OP(V )(1)l = OP(V )(l) has
as global holomorphic sections over each fiber the homogeneous polynomials
on V ∗t of degree l, i.e. the elemets of the l:th symmetric power of V . We shall
apply Theorem 1.2 to the line bundles

L(l) =: OP(V )(l).

Let E(l) be the vector bundle whose fiber over a point t in Y is the space
of global holomorphic sections of L(l)⊗KP(V ∗t ). If l < r there is only the zero
section, so that we assume from now on that l is greater than or equal to r.

We claim that
E(r) = detV,

the determinant bundle of V . To see this, note that L(r)⊗KP(V ∗t ) is trivial on
each fiber, since the canonical bundle of (r−1)-dimensional projective space is
O(−r). The space of global sections is therefore one dimensional. A convenient
basis element is

r∑
1

zj d̂zj ,

if zj are coordinates on V ∗t . Here d̂zj is the wedge product of all differentials
dzk except dzj with a sign chosen so that dzj ∧ d̂zj = dz1 ∧ . . . dzr. If we make
a linear change of coordinates on V ∗t , this basis element gets multiplied with
the determinant of the matrix giving the change of coordinates, so the bundle
of sections must transform as the determinant of V . Since

L(r + 1)⊗KP(V ∗t ) = OP(V )(1)⊗ L(r)⊗KP(V ∗t ),

it also follows that
E(r + 1) = V ⊗ detV.

In the same way
E(r +m) = Sm(V )⊗ detV,

where Sm(V ) is the mth symmetric power of V .
Let us now assume that V is ample in the sense of Hartshorne, see [16].

By a theorem of Hartshorne, [16], V is ample if and only if L(1) is ample, i.e.
has a metric with strictly positive curvature. Theorem 1.2 then implies that
the L2-metric on each of the bundles E(r+m) for m ≥ 0 has curvature which
is strictly positive in the sense of Nakano; thus, we obtain:

Theorem 7.1. Let V be a vector bundle (of finite rank) over a complex
manifold. Assume V is ample in the sense of Hartshorne. Then for any m ≥ 0
the bundle

Sm(V )⊗ detV

has an hermitian metric with curvature which is (strictly) positive in the sense
of Nakano.
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8. Appendix

In this section we will state and prove an extension result of Ohsawa-
Takegoshi type which in particular implies that the bundles E discussed in
this paper really are vector bundles. The proof follows the method of [2]. See
also [28] for a closely related result.

Theorem 8.1. Let X be a Kähler manifold fibered over the unit ball U in
Cm, with compact fibers Xt. Let L be a holomorphic line bundle on X with a
smooth hermitian metric with semipositive curvature. Let u be a holomorphic
section of KX0 ⊗ L over X0 such that∫

X0

[u, u] ≤ 1.

Then there is a holomorphic section, ũ to KX over X such that ũ = u∧ dt for
t = 0 and ∫

X
[ũ, ũ] ≤ C

where C is an absolute constant.

Proof. We assume m = 1. We see that the general case follows in the
same way, extending with respect to one variable at a time. At first we also
assume that the metric on L is smooth. The proof follows closely the method
in [2] so that we may be somewhat sketchy.

Let f = u ∧ [X0]/(2πi), where [X0] is the current of integration on X0.
Then ∂̄f = 0 and if v is any solution to ∂̄v = f then ũ = tv is a section of
KX ⊗ L that extends u in the sense described. To find a v with L2-estimates
we need to estimate ∫

X
(f, α)

for any compactly supported test form α of bidegree (n + 1, 1) on X. For α
given, decompose α = α1 + α2, where α1 is ∂̄-closed, and α2 is orthogonal to
the kernel of ∂̄. This means that α2 can be written

α2 = ∂̄∗β

for some β. By the regularity of the ∂̄-Neumann problem αi and β are all
smooth up to the boundary. We first claim that

(8.1)
∫

(f, α2) = 0.

This is not surprising since f is ∂̄-closed, but it is not quite evident since f is
not in L2. To prove it, extend u smoothly to X. Then ∂̄u ∧ dt̄ = 0 for t = 0.
Let χ be a smooth cut-off function equal to one near the origin in R, and put

χε(t) = χ(|t|2/ε).
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Then

f = χεf = ∂̄(u ∧ dt
t

)χε − ∂̄u ∧
dt

t
χε

= ∂̄(u ∧ dt
t
χε)− u ∧

dt

t
∧ ∂̄χε − ∂̄u ∧

dt

t
χε =: I + II + III.

Clearly the scalar product between I and α2 vanishes. It is also clear that the
scalar product between III and α2 goes to zero as ε goes to zero. The scalar
product between II and α2 equals, up to signs∫

χ′(∂̄u ∧ dt ∧ dt̄, β)/ε,

which is easily seen to tend to zero as well since ∂̄u ∧ dt̄ vanishes for t = 0.
Hence 8.1 follows. Therefore∣∣∣ ∫

X
(f, α)

∣∣∣2 =
∣∣∣ ∫

X
(f, α1)

∣∣∣2 ≤ ∫
X0

γ ∧ γ̄e−φ,

where γ is the Hodge-* of α1. The form γ satifies ω ∧ γ = α1 and ∂̄∗α =
∂̄∗α1 = ∂φγ. To estimate this we apply the Siu ∂∂̄-Bochner formula (see [2]):
If w is any nonnegative function smooth up to the boundary of X, then

(8.2) −
∫
i∂∂̄w ∧ cnγ ∧ γ̄e−φ +

∫
i∂∂̄φ ∧ cnγ ∧ γ̄e−φw

≤ 2cnRe
∫
∂̄∂φγ ∧ γ̄e−φw = 2

∫
|∂̄∗α|2w + 2Re

∫
(∂̄∗α, ∂w ∧ γ).

Now choose w = (1/2π) log(1/|t|2). (Although w is not smooth it can be
approximated by the smooth functions (1/2π) log(1/(|t|2 +ε)), so formula (8.2)
still holds.) If i∂∂̄φ is nonnegative we then find that∫
X0

γ ∧ γ̄e−φ ≤ C
∫
|∂̄∗α|2(log(1/|t|2 + 1/|t|) +C

∫
X
idt∧ dt̄∧ γ ∧ γ̄e−φ(1/|t|).

To take care of the last term we repeat the last argument once more, this time
choosing w = (1− |t|) and finally obtain an estimate∣∣∣ ∫

X
(f, α)

∣∣∣2 ≤ C ∫ |∂̄∗α|2(1/|t|).

This implies that there is some function v on X such that∫
X

(f, α) =
∫

(v, ∂̄∗α),

for all test forms α, satisfying ∫
|v|2|t| ≤ C.

Then ũ := tv satisfies the conclusion of the theorem.
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