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Fitting a Cm-smooth function to data I

By Charles Fefferman∗ and Bo’az Klartag∗*

Abstract

Suppose we are given a finite subset E ⊂ Rn and a function f : E → R.
How to extend f to a Cm function F : Rn → R with Cm norm of the smallest
possible order of magnitude? In this paper and in [20] we tackle this question
from the perspective of theoretical computer science. We exhibit algorithms
for constructing such an extension function F , and for computing the order of
magnitude of its Cm norm. The running time of our algorithms is never more
than CN logN , where N is the cardinality of E and C is a constant depending
only on m and n.

1. Introduction

Let m,n ≥ 1, and suppose we are given N points in Rn+1. We regard m

and n as fixed, but N as arbitrarily large. Among all functions F : Rn → R
whose graphs pass through (or near to) the given points, we would like to find
one whose norm in Cm(Rn) is of the smallest possible order of magnitude.
Also, we would like to know the order of magnitude of the Cm norm of such
an F . In this paper and [20], we give algorithms to solve these problems, and
we estimate the resources required by an (idealized) computer to carry them
out.

To state the above problems more precisely, we set up some notation. Let
E ⊂ Rn be a finite set of cardinality

(0) #(E) = N ,

and let f : E → R and σ : E → [0,∞) be given functions on E. Then we
write ‖f‖Cm(E,σ) to denote the infimum of all M > 0 for which there exists
F ∈ Cm(Rn), such that

(1) ‖F‖Cm(Rn) ≤M , and |F (x)− f(x)| ≤Mσ(x) for all x ∈ E.
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∗∗ Supported by the Clay Mathematics Institute and by NSF grant #DMS-0456590.
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The case σ = 0 is natural, as it corresponds to the problem of extending the
function f : E → R to a Cm function on the entire Rn, with Cm norm of
the smallest possible order of magnitude. Here, as usual, Cm(Rn) denotes the
space of all m-times continuously differentiable F : Rn → R, for which the
norm

‖F‖Cm(Rn) = max
|β|≤m

sup
x∈Rn

∣∣∣∂βF (x)
∣∣∣

is finite.
In this paper we solve

Problem 1. Compute the order of magnitude of ‖f‖Cm(E,σ).

By “order of magnitude” we mean the following: Two numbers X,Y ≥ 0
determined by E, f, σ,m, n are said to have “the same order of magnitude”
provided we have cX ≤ Y ≤ CX, with constants c and C depending only on
m and n. To “compute the order of magnitude of X” is to compute some Y
such that X and Y have the same order of magnitude.

In [20] we will solve

Problem 2. Compute a function F ∈ Cm(Rn) that satisfies (1), with M
having the same order of magnitude as ‖f‖Cm(E,σ).

To “compute a function F” means the following: First, we enter the data
E, f, σ into a computer. The computer works for a while, performing L0 ma-
chine operations. It then signals that it is ready to accept further input.
Whenever we enter a point x ∈ Rn, the computer responds by producing an
mth degree polynomial Px on Rn, using L1 machine operations to make the
computation. We say that our algorithm “computes the function F” if, for
each x ∈ Rn, the polynomial Px produced by that algorithm is precisely the
mth order Taylor polynomial of F at x.

We call L0 the “one-time work” and L1 the “work to answer a query”.
When we “compute a function F”, the response Px to a query x is not allowed
to depend on any queries x′ that may have been previously addressed to the
computer.

Our algorithms will run on an idealized computer with standard von-
Neumann architecture, able to work with exact real numbers. That is, we
assume a model of computation in which the registers and the memory cells
are able to store a real number to perfect accuracy, and in which the processor
is capable of performing basic arithmetic operations on real numbers. We
refer the reader to, e.g., [33] and [25] for a thorough discussion of the von-
Neumann architecture, and to, e.g., [28] for the concept of a computer that
works with exact real numbers (i.e., the “real RAM” model). We assume that
a real number consumes a single register or memory cell, and we assume that
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it takes one machine operation to add, subtract, multiply or divide two given
real numbers x and y, or to compare them (i.e., decide whether x < y, x > y

or x = y). These operations are performed with perfect accuracy. Thus, we
ignore here roundoff, overflow and underflow errors, although it is possible to
modify our discussion to take account of these issues (see, e.g., the appendix of
[20]). We also ignore here issues of parallel computation, although we believe
that our algorithms are well-suited to parallelism (see Callahan-Kosaraju [11]).

The “work” or “running time” of an algorithm is the number of machine
operations needed to carry it out, and the “storage” of an algorithm is the
number of random access memory addresses required.

Our results for Problems 1 and 2 are as follows. Recall that N is the
number of points in E.

Theorem 1. The algorithm to be explained below computes the order
of magnitude of ‖f‖Cm(E,σ) using work at most CN logN and storage at most
CN , where C depends only on m and n.

Theorem 2. The algorithm to be described in [20] computes a function
F ∈ Cm(Rn) that satisfies (1), with M having the same order of magnitude
as ‖f‖Cm(E,σ). The one-time work of our algorithm is at most CN logN , the
storage is at most CN , and the work to answer a query is at most C logN .
Here, C depends only on m and n.

Formally, the model of computation we work with in Theorem 2, is slightly
different from what was described above. We require, in addition to compar-
isons and arithmetic operations on exact real numbers, the operations of log-
arithm, powers of two, and rounding a real number to the closest integer. As
will be explained in [20], we do not “abuse” these operations, which are stan-
dard computer operations in any programming language known to the authors.
For instance, suppose we switch to the common digital computer model, and
consider an instance of Problem 2 in which the values of f and σ, and the
coordinates of the points of E, are R-bit numbers. Then the algorithm an-
nounced in Theorem 2 returns the answer to an accuracy of R bits, and never
uses numbers - neither integers nor reals - in an accuracy that requires more
than CR bits, for C depending only on m and n. Details are in [20].

The proof of Theorem 1, and a key idea in the proof of Theorem 2, will be
given here. The full details of the proof of Theorem 2, including the description
of the algorithm, will appear in [20]. In [20] we also deal with some variants of
Problem 2. For instance, the function F in Problem 2 may actually be taken
to depend linearly on f . We will discuss in [20] a version of the algorithm
that computes the coefficients of this linear dependence. An additional feature
is related the fact that F in Problem 2 is not uniquely determined. Given
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x ∈ Rn, consider the set of all Taylor polynomials at x of functions that satisfy
(1), with M of the same order of magnitude as ‖f‖Cm(E,σ). We show in [20]
that given x ∈ Rn, an approximation to this set can be computed in C logN
operations, after one-time-work of CN logN operations and CN storage. We
also consider initial data of a different kind from E, f , σ as above.

A significant feature of our algorithms is that they work for arbitrary
(finite) E ⊂ Rn, f : E → R, σ : E → [0,∞). Under simplifying assumptions
on the geometry of the set E, it is easy to give fast algorithms for Problems
1 and 2. A delicate case is indicated in Figure 1, where E ⊂ R2 lies near the
curve {Q = 0} for a low-degree polynomial Q. We take σ = 0, and we take
E to consist of the dots in Figure 1. To solve Problem 2, we must be able
to determine Px, the Taylor polynomial of our desired Cm function F at the
point x in Figure 1, given the values of F at the points of E. Since all points
of E lie close to {Q = 0}, a crude algorithm may fail to distinguish between
the hypotheses Px = P and Px = P + Q for a given polynomial P . However,
we can make progress by means of the following idea. The line segment joining
the two nearby points y and z in Figure 1 meets {Q = 0} at a not-so-small
angle. We write ν for the unit vector in the direction y−z, and we approximate
ν · ∇F (x) by ν · ∇F (z), which in turn is approximated by F (y)−F (z)

|y−z| .
Hence, hopefully, ν · ∇F (x) is well-approximated by something we can

calculate from the values of F at points in E. This allows us to distinguish
between the two hypotheses Px = P and Px = P +Q. However, the same idea
works less effectively at the point w in Figure 1, because w lies too far away
from y and z. This gives some idea of the issues relevant to Problems 1 and 2
in a delicate case. We invite the reader to trace what our algorithms do in the
example sketched in Figure 1. We return now to the general case.

This paper is part of a literature on the problem of extending a given
function f : E → R, defined on an arbitrary subset E ⊂ Rn, to a function
F ∈ Cm(Rn). The question goes back to Whitney [35], [36], [37], with contri-



FITTING A Cm–SMOOTH FUNCTION TO DATA 319

butions by Glaeser [22], Brudnyi-Shvartsman [5]–[10] and [29], [30], [31], Zobin
[38], [39], Bierstone-Milman-Paw lucki [2], [3], Fefferman [13]–[19] and A. and
Y. Brudnyi [4]. Here, we take E finite, and we pose the question from the
viewpoint of theoretical computer science.

The following result from [14] will play a crucial rôle in our treatment of
Problems 1 and 2. (See also Brudnyi-Shvartsman [8], whose earlier results and
conjectures overlap with those of [14].) We write P for the vector space of real
(m− 1)rst degree polynomials on Rn.

Theorem 3. Given m, n ≥ 1, there exists k, depending only on m and
n, for which the following holds.

Let E ⊂ Rn be finite, let f : E → R and σ : E → [0,∞) be functions on
E, and let M ∈ (0,∞). Assume that, given any S ⊆ E with #(S) ≤ k, there
exists a map y 7→ P y, from S into P, such that:

(a) |∂αP y(y)| ≤M for |α| ≤ m− 1, y ∈ S;

(b) |∂α(P y − P y′)(y)| ≤M |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(c) |P y(y)− f(y)| ≤Mσ(y) for all y ∈ S.

Then ‖f‖Cm(E,σ) ≤ CM , where C depends only on m and n.

The converse of Theorem 3 is obvious. Also, for fixed S, the order of mag-
nitude of the smallest M satisfying (a), (b), (c) above may be easily computed
by linear algebra. Consequently, Theorem 3 gives rise to an obvious algorithm
that solves Problem 1 with work CNk. Since k is a large constant determined
by m and n, the obvious algorithm does far too much work. Nevertheless,
ideas in the proof of Theorem 3 will play a crucial role here and in [20].

The proof of Theorem 3 in [14] is based on the study of a certain family
of convex sets Kf (x, k,M) ⊂ P. The sets Kf (x, k,M) help greatly in under-
standing ‖f‖Cm(E,σ), but they are hard to compute.

Here, we will introduce another family of convex sets Γ(x, `,M), just as
useful as the Kf (x, k,M), but much easier to compute. In this paper, we define
Γ(x, `,M), prove its basic properties, show how to compute it, and use it to
solve Problem 1 by quoting Theorem 3. In [20] we will solve Problem 2, by
adapting the proof of Theorem 3, with Γ(x, `,M) in place of Kf (x, k,M). We
explain this idea further in Section 9.

Our results, here and in [20], imply a refinement of Theorem 3 that allows
an alternate computation of the order of magnitude of ‖f‖Cm(E,σ).

Theorem 4. Given m,n ≥ 1, there exist k,C, depending only on m and
n, for which the following holds.
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Let E ⊂ Rn be finite, and let σ : E → [0,∞). Suppose #(E) = N . Then
there exists a collection S, consisting of subsets S ⊂ E, with the following
properties:

(A) Each S ∈ S satisfies #(S) ≤ k.

(B) The number of distinct S ∈ S is at most CN .

(C) Let f : E → R, and let M > 0. Assume that for each S ∈ S there exists
a map y 7→ P y, from S into P, satisfying (a), (b), (c) from Theorem 3.
Then ‖f‖Cm(E,σ) ≤ CM .

(D) Moreover, the collection S can be computed from E, σ, using at most
CN logN work and at most CN storage.

Thus, instead of examining all k-element subsets S ⊂ E as in Theorem 3,
it is enough to examine the O(N) subsets S that belong to S.

Consequently, we may compute the order of magnitude of ‖f‖Cm(E,σ) as
follows. Given E and σ, we perform O(N logN) one-time work to produce
the collection S. Having found S, we can compute the order of magnitude
of ‖f‖Cm(E,σ) for any given f : E → R, with work O(N). The total storage
needed is O(N). The proof of Theorem 4 is given in [21].

In the special case m = 1, σ = 0, Problem 1 amounts to computing the
order of magnitude of the Lipschitz norm of a given function defined on a finite
subset of Rn. An essentially optimal solution of this problem is contained in
the work of Callahan and Kosaraju [11] and Har-Peled and Mendel [23]. The
paper [11] strongly influenced ours, as the reader will see below. We would like
to thank A. Naor for pointing us to the relevant computer science literature,
and to A. Razborov for useful discussions on models of computation, which
we will treat further in [20]. We are grateful to A. Tsao, who brought to our
attention the practical problem of fitting a smooth surface to N given points.

We are grateful also to Gerree Pecht for LATEXing this article to ever-
impeccable “Gerree standards”.

2. The plan

First, we present a “pedagogical algorithm” that solves Problem 1 with
running time CN2; then we give a more sophisticated variant with running
time CN logN .

The idea behind our pedagogical algorithm starts with the following ele-
mentary remarks. Suppose F ∈ Cm(Rn). Let M̄ > 0 be an upper bound for
‖F‖Cm(Rn), and suppose that |F (x)−f(x)| ≤ M̄σ(x) for all x ∈ E. Let x ∈ E,
and let P = JxF denote the (m − 1)rst degree Taylor polynomial of F at the
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point x. Then,

(1) |∂αP (x)| ≤ M̄ for |α| ≤ m− 1; and |P (x)− f(x)| ≤ M̄σ(x).

Moreover, suppose x′ ∈ E is another point, and let P ′ = Jx′F , the (m − 1)rst

degree Taylor polynomial of F at x′. Then Taylor’s theorem gives

(2) |∂α(P − P ′)(x)| ≤ CM̄ |x− x′|m−|α| for |α| ≤ m− 1 .

Here and below, C denotes a constant depending only on m and n.
To exploit these remarks, we recall that P was defined to be the vector

space of all (real-valued) (m − 1)rst degree polynomials on Rn; and we define
a family of (possibly empty) convex subsets Σ(x, `,M) ⊂ P by the following
induction on `:

For ` = 1, x ∈ E, M ∈ (0,∞), we define

(3) Σ(x, 1,M) = {P ∈ P : |∂αP (x)| ≤M
for |α| ≤ m− 1, and |P (x)− f(x)| ≤Mσ(x)}.

For ` ≥ 1, suppose we have already defined the sets Σ(x, `,M) for all
x ∈ E and M ∈ (0,∞). Then, for any x ∈ E and M ∈ (0,∞), we define

(4) Σ(x, `+ 1,M) = {P ∈ P : For each x′ ∈ E, there exists P ′ ∈ Σ(x′, `,M),
such that |∂α(P − P ′)(x)| ≤M |x− x′|m−|α| for |α| ≤ m− 1}.

Then observations (1),(2), and an obvious induction on `, show that JxF ∈
Σ(x, `, CM̄) for each x ∈ E, ` ≥ 1. In particular,

(5) Whenever M ≥ C · ‖f‖Cm(E,σ), we have Σ(x, `,M) 6= φ for all `, x. (As
usual, φ denotes the empty set.)

Conversely, for an `∗ ≥ 1, depending only on m and n, the following holds:

(6) Let M > 0, and suppose that Σ(x, `∗,M) 6= φ for all x ∈ E. Then
‖f‖Cm(E,σ) ≤ C ·M .

We will prove (6) in Section 8 below, by reducing it to Theorem 3 from Sec-
tion 1. From (5) and (6), we see that

(7) ‖f‖Cm(E,σ) has the same order of magnitude as

inf {M > 0 : Σ(x, `∗,M) 6= φ for each x ∈ E}.

The idea of our pedagogical algorithm is to compute an approximation
to the size and shape of the convex sets Σ(x, `∗,M) by an adaptation of the
induction (3), (4), and then to read off the order of magnitude of ‖f‖Cm(E,σ)

from (7). In the next sections, we explain more precisely what this means, and
how to carry it out.
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3. The data structures

In this section, we define the basic data structures used to specify the
“approximate size and shape” of the convex sets Σ(x, `,M) and of similar sets.
Let V be a finite-dimensional (real) vector space. A “blob” in V is a family
K = (KM )M>0 of (possibly empty) convex subsets KM ⊆ V , parametrized by
M ∈ (0,∞), such that M < M ′ implies KM ⊆ KM ′ . The “onset” of a blob
K = (KM )M>0 is defined as the infimum of all the M > 0 for which KM 6= φ.
(If all KM are empty, then onset K = +∞.)

For fixed x ∈ E, ` ≥ 1, the family of sets (Σ(x, `,M))M>0 from the previ-
ous section forms a blob in P, which we call Σ(x, `). In the language of blobs,
the fundamental result (7) from the previous section becomes
(0)
‖f‖Cm(E,σ) has the same order of magnitude as max{onset Σ(x, `∗) : x ∈ E}.

Suppose K = (KM )M>0 and K′ = (K ′M )M>0 are blobs in V , and let
C ≥ 1 be a constant. We say that K and K′ are “C-equivalent” if they satisfy
KM ⊆ K ′CM and K ′M ⊆ KCM for all M ∈ (0,∞). Note that, if K and K′
are C1-equivalent, and if K′ and K′′ are C2-equivalent, then K and K′′ are
C1 · C2-equivalent. Note also that, if K and K′ are C-equivalent, then

(1/C) · onset K ≤ onset K′ ≤ C · onset K .

Rather than dealing with the exact blobs Σ(x, `), we will be satisfied
with having a computerized representation of blobs which are C`-equivalent to
Σ(x, `), for a constant C` that depends solely on `,m and n. There are several
data structures that suit our needs. Two of these, that are not necessarily
optimal from practical aspects, are described here.

The first class of blobs we focus attention on, consists of those given by
“Approximate Linear Algebra Problems”, or “ALPs”. To define these, let
λ1, . . . , λL be (real) linear functionals on V , let b1, . . . , bL be real numbers, let
σ1, . . . , σL be nonnegative real numbers, and let M∗ ∈ [0,+∞]. We call

(1) A = [(λ1, . . . , λL), (b1, . . . , bL), (σ1, . . . , σL),M∗]

an “ALP” in V . With A given by (1), we define a blob K(A) = (KM (A))M>0

in V , by setting

(2) KM (A) = {v ∈ V : |λ`(v)− b`| ≤ M · σ` for ` = 1, . . . , L}

for M ≥M∗, and

(3) KM (A) = φ for M < M∗.

(Our definition (2) motivates the use of the phrase “approximate linear algebra
problem”.) We allow L = 0 in (1), in which case (2) says simply that KM (A) =
V for M ≥M∗.
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An “ALP” is intermediate in generality between a linear algebra problem
and a linear programming problem. Unlike a general blob, an ALP is specified
by finitely many (real) parameters, and may therefore be manipulated by algo-
rithms. ALPs will be of great use in [20], where their implementation details
will be discussed.

In this paper, we will mostly work with the “Ellipsoidal Blobs”, which are
blobs defined by certain linear and quadratic constraints. For our purposes,
there is no difference at all between ALPs and ellipsoidal blobs - except for
the fact that the implementation of ellipsoidal blobs requires the operation
of a square-root of a positive real number, while ALPs need only addition,
subtraction, multiplication and division. The algorithms presented here may
be easily converted to ALPs (as is in fact described in [20]), and our results here
are valid also in the restricted model of computation, without square-roots.
The reasons we discuss ellipsoidal blobs here, are that the basic operations on
them are easier to describe, that they are perhaps more useful from a practical
viewpoint, and that the competing, elementary, ALPs will be discussed in [20].

To define ellipsoidal blobs, let 0 ≤ L ≤ dimV be an integer, λ1, . . . , λL be
(real) linear functionals on V , b, b1, . . . , bL nonnegative numbers, x0 ∈ V and
let q : V → [0,∞) be a nonnegative quadratic form. We call a blob of the form
K = (KM )M>0 for

(4) KM = {v ∈ V : q(v − x0) + b ≤M2, λ`(v) = b` for ` = 1, . . . , L}

an ellipsoidal blob in V . Note that possibly KM = V for all M > 0, and
possibly KM = φ for all M > 0. An ellipsoidal blob is specified by no more
than 2(D + 1)2 real parameters, with D = dimV ; thus the amount of storage
it consumes is just a constant depending on D. Computing the onset of an
ellipsoidal blob is a standard linear-algebra task, that may be performed in
CD3 operations.

To “compute the approximate size and shape” of the Σ(x, `,M), and of
other convex sets, we will exhibit ellipsoidal blobs, which are C`-equivalent
to the blobs induced by those sets, for a constant C` depending only on `,m

and n. We will construct such ellipsoidal blobs in Sections 4 and 6. Here, we
prepare the way by discussing two elementary operations on blobs in general,
and on ellipsoidal blobs in particular, that will be used in the algorithm.

First, suppose thatKν = (Kν
M )M>0 is a blob in V , for each ν = 1, 2, . . . , N .

Then we define the intersection K1 ∩ · · · ∩ KN by setting

K1 ∩ · · · ∩ KN = (K1
M ∩ · · · ∩KN

M )M>0 .

If each Kν is an ellipsoidal blob, then the intersection need not be an ellipsoidal
blob. Recall that D = dimV . In this section, C,C ′, etc. denote constants that
depend only on D. Next, we will describe an algorithm for computing, in CN
operations, an ellipsoidal blob which is 8D-equivalent to K1 ∩ · · · ∩ KN .
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Assume that the ellipsoidal blob Kν is specified by 0 ≤ Lν ≤ D, linear
functionals λν1 , . . . , λ

ν
Lν

, real numbers bν , bν1 , . . . , b
ν
Lν

, a vector xν0 ∈ V and a
nonnegative quadratic form qν . By Gauss elimination, we can compute in
C ′N computer operations, an integer 0 ≤ L ≤ D, linear functionals λ1, . . . , λL

and nonnegative real numbers b1, . . . , bL such that

(4′) K1
M ∩ · · · ∩KN

M = {v ∈ V : max
ν=1,...,N

qν(v − xν0) + bν ≤M2,

λ1(v) = b1, . . . , λL(v) = bL}.

We fix some nondegenerate scalar product 〈·, ·〉 in V . For each ν, we find
vectors eν1 , . . . , e

ν
D ∈ V such that

∀v ∈ V, qν(v) = ΣD
i=1〈v, eνi 〉2.

This may be done, using standard linear algebra in C̃N operations. Note that
some of the eνi may be zero. Then, for any v ∈ V and ν = 1, . . . , N ,

(5) max
i=1,...,D

〈v − xν0 , eνi 〉2 ≤ qν(v − xν0) ≤ D max
i=1,...,D

〈v − xν0 , eνi 〉2.

Let K′ = (K ′M )M>0 be defined so that K ′M = ∅ for M < maxν=1,...,N

√
bν , and

K ′M =

{
v ∈ V : max

i=1,...,D
ν=1,...,N

|〈v − xν0 , eνi 〉| ≤M, λ1(v) = b1, . . . , λL(v) = bL

}
for M ≥ maxν=1,...,N

√
bν . Then by (4′), (5) and easy algebra, the blob K′

is 2
√
D-equivalent to K1 ∩ . . . ∩ KN . Next, we will use Megiddo’s linear pro-

gramming algorithm [27] to compute the minimal M such that K ′M 6= ∅, to
be denoted by M∗. Using the same linear programming algorithm, we may
also compute a point x0 ∈ V such that x0 ∈ K ′M∗ . The number of opera-
tions required is CN . Let K′′ = (K ′′M )M>0 be the blob such that K ′′M = ∅ for
M < M∗, while for M ≥M∗,

K ′′M =

{
v ∈ V : max

i=1,...,D
ν=1,...,N

|〈v − x0, e
ν
i 〉| ≤M, λ1(v) = b1, . . . , λL(v) = bL

}
(we replaced xν0 with x0). It is easy to verify that K′′ is 2-equivalent to K′ and
hence K′′ is 4

√
D-equivalent to K1 ∩ . . . ∩ KN . Let T ⊂ V denote the convex

hull of {±eνi ; ν = 1, . . . , N, i = 1, . . . , D}. Next, we will compute the Löwner-
John ellipsoid of T , which is the ellipsoid of minimal volume that contains
T . In [12] an algorithm for that purpose is described, based on Megiddo’s
algorithm [27]. Denote by W the subspace spanned by the vectors eνi (ν =
1, . . . , N, i = 1, . . . , D), and let πW : V → W be the orthogonal projection
onto W , to be computed within CN operations. The algorithm in [12] finds in
C ′N operations, the unique positive definite linear operator A : W →W that
maximizes det(A) under the linear constraints

{〈Aeνi , eνi 〉 ≤ 1 : i = 1, .., D, ν = 1, . . . , N}.
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We now define a nonnegative quadratic form q : V → [0,∞) by setting q(v) =
〈A−1πW v, v〉. According to a well-known theorem of John [24], for any v ∈ V ,

(6) max
i=1,...,D
ν=1,...,N

〈v, eνi 〉2 ≤ q(v) ≤ D max
i=1,...,D
ν=1,...,N

〈v, eνi 〉2.

We now define the ellipsoidal blob K = (KM )M>0, by setting

KM =
{
v ∈ V : q(v − x0) + b ≤M2, λ1(v) = b1, . . . , λL(v) = bL

}
where b is chosen so that onset K = M∗. By (6), the ellipsoidal blob K is 2

√
D-

equivalent to K′′, and hence K is 8D-equivalent to K1 ∩ · · · ∩ KN . Thus, we
have described an algorithm that computes, in CN operations, an ellipsoidal
blob K which is 8D-equivalent to K1 ∩ · · · ∩ KN .

The second operation we need is the computation of the Minkowski sum.
Recall that for A,B ⊂ V , the Minkowski sum of A and B is defined as

A+B = {a+ b : a ∈ A, b ∈ B} .

Suppose that Kν = (Kν
M )M>0 is a blob in V , for ν = 1, 2. We define the

Minkowski sum K1 +K2 as

K1 +K2 = (K1
M +K2

M )M>0 .

Suppose now that K1,K2 are ellipsoidal blobs in V . The ellipsoidal blob
Kν is specified by 0 ≤ Lν ≤ D, linear functionals λν1 , . . . , λ

ν
Lν

, real numbers
bν , bν1 , . . . , b

ν
L, a vector xν0 ∈ V and a nonnegative quadratic form qν . Then,

K1
M +K2

M = {v1+v2 : v1, v2 ∈ V, max{q1(v1−x1
0)+b1, q2(v2−x2

0)+b2} ≤M2,

λνi (vν) = bνi for ν = 1, 2 and 1 ≤ i ≤ Lν}.

We define a blob K′ = (K ′M )M>0 by

(7) K ′M = {v1 + v2 : v1, v2 ∈ V, q1(v1 − x1
0) + q2(v2 − x2

0) + b1 + b2 ≤M2,

λνi (vν) = bνi for ν = 1, 2 and 1 ≤ i ≤ Lν};

i.e. we replace the maximum with a sum. The blob K′ is
√

2-equivalent to
K1 + K2. Furthermore, K′ is actually an ellipsoidal blob, although (7) is not
its standard description as such. The linear functionals, real parameters and
nonnegative quadratic form needed for the standard representation of K′ as
an ellipsoidal blob, may be computed in C operations using straightforward
linear algebra. We omit the details.

This completes our discussion on the implementation of ellipsoidal blobs.
Note that the above operations on blobs behave well with respect to C-equiv-
alence. In fact, assume that K1, . . . ,KN are blobs in V which are C-equivalent
to K′1, . . . ,K′N , respectively. Then trivially K1 ∩ · · · ∩ KN is C-equivalent to
K′1 ∩ · · · ∩ K′N and K1 +K2 is C-equivalent to K′1 +K′2.
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4. A pedagogical algorithm

In this section we will sketch a simpler, nonoptimal, algorithm for comput-
ing ‖f‖Cm(E,σ), that arises from the induction (3), (4) in Section 2. We start
with reformulating (3), (4) from Section 2 in the language of blobs. Denote
D = dim(P). For x ∈ E, the blob Σ(x, 1) is

√
D + 1-equivalent to the blob

A′x,1 = (A′x,1,M )M>0, defined by

A′x,1,M =

{
P ∈ P : Σ|α|≤m−1|∂αP (x)|2 +

(
|P (x)− f(x)|

σ(x)

)2

≤M2

}
in the case σ(x) 6= 0, and

A′x,1,M =
{
P ∈ P : Σ|α|≤m−1|∂αP (x)|2 ≤M2, P (x) = f(x)

}
in the case σ(x) = 0. In both cases, the blob A′x,1 is clearly an ellipsoidal blob
in P.

We will make frequent use of the following blobs: For any x ∈ Rn, δ ≥ 0
we set B(x, δ) = (B(x, δ,M))M>0, where

(1) B(x, δ,M) =
{
P ∈ P : |∂αP (x)| ≤Mδm−|α| for |α| ≤ m− 1

}
.

We will approximate B(x, δ) with an ellipsoidal blob B′(x, δ)=(B′(x, δ,M))M>0,
defined as

(2) B′(x, δ,M) =

{
P ∈ P : Σ|α|≤m−1

(
|∂αP (x)|
δm−|α|

)2

≤M2

}
.

(If δ = 0, then we just set B′(x, δ,M) = {0}; this yields an ellipsoidal blob.)
The ellipsoidal blob B′(x, δ) is

√
D-equivalent to B(x, δ), for x ∈ Rn, δ ≥ 0.

Recall the definition (4) from Section 2, according to which, P ∈ Σ(x, `+1,M)
if and only if P ∈ Σ(x, `,M), and for each y ∈ Er{x}, there is P ′ ∈ Σ(y, `,M)
with P−P ′ ∈ B(x, |x−y|,M). Therefore, relation (4) from Section 2 translates
to

(3) Σ(x, `+ 1) = Σ(x, `) ∩
⋂

y∈Er{x}

[Σ(y, `) + B(x, |x− y|)] .

We will show by induction on `, that it is possible to compute for each x ∈ E,
an ellipsoidal blob A′x,` that is C`-equivalent to Σ(x, `), for some constant C`
depending only on `,m and n. This holds for ` = 1. Assume validity for `, and
let us prove it for `+ 1. Fix x ∈ E. Using the operations on ellipsoidal blobs
discussed in Section 3, we may compute, in CN operations, an ellipsoidal blob
A′x,`+1 that is 8

√
2D-equivalent to

(4) A′x,` ∩
⋂

y∈Er{x}

[
A′y,` + B′(x, |x− y|)

]
.
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Indeed, (4) involves the computation of N−1 Minkowski sums and the compu-
tation of an intersection of N ellipsoidal blobs. This requires CN operations,
and creates an ellipsoidal blob that is 8

√
2 D-equivalent to the blob (4). Recall

that D = dim(P) depends solely on m and n. By (3) and the induction hy-
pothesis, the ellipsoidal blob A′x,`+1 is C`+1-equivalent to the blob Σ(x, `+ 1),
for some constant C`+1 depending only on `,m and n.

The computation of A′x,`+1 for a single x ∈ E requires CN operations.
Given {A′x,`}x∈E , the computation of {A′x,`+1}x∈E thus requires a total of CN2

operations. We conclude that the total amount of work needed to compute the
ellipsoidal blobs A′x,`∗ for all x ∈ E, is bounded by CN2, where C is a constant
that depends solely on m and n. (Recall that `∗ is the constant, depending
on m and n, from (6) of Section 2.) By computing max{onset A′x,`∗ : x ∈ E},
in CN operations, we obtain a number that has the same order of magnitude
as max{onset Σ(x, `∗) : x ∈ E} which in turn, by (6) of Section 2, has the
same order of magnitude as ‖f‖Cm(E,σ). This gives an inefficient algorithm,
that computes the order of magnitude of ‖f‖Cm(E,σ); we have obtained an
algorithm that requires CN2 operations, rather than CN logN .

Let us carefully examine the algorithm just described. After the `th itera-
tion, for each x ∈ E we have computed an approximation to the blob Σ(x, `),
which represents candidate Taylor polynomials of the desired Cm function at x.
At the next iteration we go over all other Σ(y, `), for y 6= x, and eliminate from
Σ(x, `) the Taylor polynomials which are inconsistent with any of the Σ(y, `).
There is some redundancy here: Suppose that y, z ∈ E are close points that
are far away from x. Suppose also that the blob Σ(y, `) is already consistent
with Σ(z, `), as sometimes happens. Then the information we collect from
Σ(y, `), and the information from Σ(z, `) regarding Taylor polynomials at x,
are roughly the same. Therefore, it is useless to compare Σ(x, `) both with
Σ(y, `) and with Σ(z, `); it is enough to consider only one of them. Savings
may arise if we group the points in some geometric way, and compare only
some of the pairs of the Σ’s rather than all pairs. This idea will enable us to
reduce the running time of the algorithm from CN2 to CN logN .

The basic technique we employ for grouping the points in clusters is the
Callahan-Kosaraju decomposition from computer science (see [11]). In the
next section we summarize the results of Callahan and Kosaraju.

5. Callahan-Kosaraju decomposition

Some notation is needed. For A,B ⊂ Rn and κ > 0, we say that A and B
are “κ-separated” if

max {diameter(A), diameter(B)} < κ distance (A,B)

where, of course, diameter(A) = supx,y∈A |x − y| and distance(A,B) =
infx∈A,y∈B |x− y|.



328 CHARLES FEFFERMAN AND BO’AZ KLARTAG

A “proper box” in Rn is a Cartesian product of intervals Q = I1×· · ·× In
⊂ Rn. Here, each Ij may be open, closed, half-open, or a single point, but it
must be bounded and nonempty. For each of the Ij of nonzero length, we may
“bisect” Q into two proper boxes QL and QR in an obvious way, by bisecting
Ij into a left half ILj and a right half IRj . (To avoid ambiguity, we place the
midpoint of Ij in IRj .) We say that {QL, QR} forms a “proper bisection” of Q.
There are at most n proper bisections of a given proper box in Rn.

A “cell” will be a nonempty subset of E of the form

A = E ∩ Q

for some proper box Q ⊂ Rn. Recall that E is our set of input points. If A is
a cell, then we denote by Q(A) the smallest proper box that contains A, i.e.,
the intersection of all the proper boxes that contain A.

Let T be a collection of subsets of E. For Λ ⊂ T we write

∪Λ =
⋃
A∈Λ

A = {x : x ∈ A for some A ∈ Λ} .

Let L be a list of pairs (Λ1,Λ2) where Λ1,Λ2 are families of subsets of E that
belong to T , i.e., Λ1,Λ2 ⊂ T . For κ > 0, we say that (T ,L) is a “Callahan-
Kosaraju decomposition of E with constant κ”, or a “κ-CK decomposition”
for short, if the following hold:

(1)
⋃

(Λ1,Λ2)∈L(∪Λ1)× (∪Λ2) = {(x, y) : x, y ∈ E, x 6= y}.

(2) If (Λ1,Λ2) and (Λ′1,Λ
′
2) are distinct pairs in L, then

[(∪Λ1)× (∪Λ2)] ∩
[
(∪Λ′1)× (∪Λ′2)

]
= ∅.

(3) ∪Λ1 and ∪Λ2 are κ-separated for any (Λ1,Λ2) ∈ L.

(4) #(T ) < CN and #(L) < CN where C is a constant depending solely on
κ and n.

In the computer science literature a CK decomposition is called a “Well-
Separated Pairs Decomposition” or “WSPD”. A κ-CK decomposition as de-
fined above is a pure mathematical object. A κ-CK decomposition (T ,L)
will be implemented in the computer, using a data structure that satisfies the
following properties (in these properties the letter C stands for a constant
depending only on n and κ):

(5) The amount of storage needed to hold the data structure is bounded by
CN .

(6) The following tasks require CN logN operations and CN storage:

(6a) Go over all A ∈ T , and for each A produce the list of elements of A.
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(6b) Go over all (Λ1,Λ2) ∈ L, and for each (Λ1,Λ2) produce the elements
(in T ) of Λ1 and of Λ2.

(6c) Go over all A ∈ T , and for each A produce the list of all (Λ1,Λ2) ∈ L
such that A ∈ Λ1.

(6d) Go over all x ∈ E, and for each x ∈ E produce the list of A ∈ T
such that x ∈ A.

Producing a list of elements in L, T or E, means outputting a list of indices
or pointers to the corresponding elements. The algorithms in (6) will have the
following interface: The first time we invoke one of them, say (6a), the output
will be some node A ∈ T together with a list of its elements. The next time
we call (6a), the output will be another A′ ∈ T , together with the elements of
A′, and so on, until the algorithm in (6a) signals that the entire collection T
was exhausted. We are guaranteed that the algorithm will go over all T , and
exactly once over each A ∈ T . The total amount of time that the algorithm in
(6a) requires, to go over the whole collection T , is CN logN . The amount of
storage that the algorithm requires does not exceed CN at any given moment,
i.e., when computing the elements of a set A ∈ T , we do not need more than
CN storage.

The algorithms in (6) use no more than CN logN computer operations.
This includes, of course, the time needed to prepare the output. In particular,
it follows from (6) that

(7)
∑

(Λ1,Λ2)∈L

(#(Λ1) + #(Λ2)) < CN logN,
∑
A∈T

#(A) < CN logN.

For a subset A ⊂ Rn, set

diam∞(A) =
√
n sup
x,y∈A

max
1≤i≤n

|xi − yi|,

the `∞-diameter of A. (Here of course, xi and yi denote the ith coordinates
of x and y, respectively.) Note that diam∞(A) ≥ diameter(A) ≥ diam∞(A)√

n
for any A ⊂ Rn. We will implement the data structure that holds the CK-
decomposition of E such that,

(8) Given A ∈ T we can compute diam∞(A) within C operations.
Given (Λ1,Λ2) we compute diam∞(∪Λ1) and diam∞(∪Λ2) in C opera-
tions.

The following theorem is an adaptation of [11, Th. 4.2], and is basically
an expansion of the remark after Theorem 5.3 in [11].

Theorem 5. There exists an algorithm, whose inputs are a parame-
ter κ > 0 and a subset E ⊂ Rn with #(E) = N , and that outputs a κ-CK
decomposition (T ,L) of E such that conditions (1), . . . , (8) are fulfilled. The
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algorithm performs no more than CN logN operations and uses no more than
CN storage, where C is a constant that depends solely on the dimension n and
on the parameter κ.

Theorem 5 follows from the considerations in [11], together with some
elementary computer programming tricks. We devote the rest of this section
to the proof of Theorem 5, along the lines of [11].

Theorem 3.1 in [11] is the following result, which one might view as a
Calderón-Zygmund type decomposition of E.

Lemma 1. There exists an algorithm, whose input consists of the set
E ⊂ Rn, and that outputs a tree T with the following properties:

(a) The tree T is a binary tree. A node in T has either two children (“an
internal node”) or no children at all (“a leaf ”).

(b) Each node of T corresponds to a cell. We do not distinguish here between
a node of T and the cell A ⊂ E to which it corresponds.

(c) The leaves of T are cells which are singletons. For each x ∈ E there is a
unique leaf in T which is the cell {x}.

(d) The root of T is the entire set E.

(e) Let A be an internal node. Then there exists a proper bisection of Q(A),
to be denoted {QL, QR}, such that the children of A are

AL = E ∩QL and AR = E ∩QR .

The running time of the algorithm is no more than CN logN , and the storage
is no more than CN , where C depends only on the dimension n.

The proof of Lemma 1 appears in [11]. Note that the tree constructed in
Lemma 1 is not balanced, i.e. it might have branches whose length is much
larger than logN . Next, we quote the remarkable Theorem 4.2 from [11].

Theorem 6. Given a set E ⊂ Rn with #(E) = N , a parameter κ > 0,
and a tree T that satisfies (a)–(e), there is an algorithm that constructs a set
L with the following properties:

(1′) The elements of L are pairs (A,B) where A,B are nodes of T .

(2′)
⋃

(A,B)∈LA×B = {(x, y) : x, y ∈ E, x 6= y}.

(3′) If (A1, B1) and (A2, B2) are distinct elements of L then (A1 × B1) ∩
(A2 ×B2) = ∅.

(4′) A and B are κ-separated for any (A,B) ∈ L.
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(5′) #(L) < CN where C depends solely on n and κ.

The algorithm terminates after no more than CN operations, where C depends
only on the dimension n and the parameter κ. Obviously, the storage needed
is just CN .

Proof of Theorem 5. Let T be the tree computed in Lemma 1. Assume
that for any internal node A of T , the two children of A are labeled. One of
them, denoted by AL is the left child, and the other, AR, is the right child.
Recall that the leaves of T are the N singletons {x} for x ∈ E. The tree T
induces an order relation, called “inorder”, on the leaves (see [25, §2.3.1]). Let
us describe it briefly.

Given x, y ∈ E, x 6= y, consider the node A in the tree which is the least
common ancestor of the leaves {x} and {y} in the tree. If {x} is a descendant
of AL (and then {y} is a descendant of AR), we say that

x ≺ y.

Otherwise, y ≺ x. Then ≺ is an order relation. We order the N points of
E according to ≺, and denote the resulting permutation by y1 ≺ y2 ≺ . . . ≺
yN . This permutation may be computed in no more than CN operations and
storage (see [25, §2.3.1]). We will store the permutation in memory; i.e.,

• In the data structure for holding the CK-decomposition of E, we will
store an ordered list y1, . . . , yN of the elements of E.

Observe that any node in T is a cell of the form {yµ, yµ+1, . . . , yν} for
µ ≤ ν. Let T denote the set of nodes of a completely balanced binary tree on
{y1, . . . , yN}, defined recursively as follows:

(i) The root of T is the set {y1, . . . , yN}.
(ii) For any node A = {yµ, yµ+1, . . . , yν}, if µ = ν then A will be a leaf. If

µ < ν, then the children of A are

AL =
{
yµ, . . . , ybµ+ν

2
c

}
, AR =

{
ybµ+ν

2
c+1, . . . , yν

}
.

Then #(T ) ≤ 2N−1. Our data structure for holding the CK-decomposition
of E will store in memory the following items.

• The tree T .

• For each node A = {yµ, yµ+1, . . . , yν} of T , we will store the indices µ
and ν.

For each A ∈ T and 1 ≤ i ≤ n, we will calculate the numbers

mi(A) = min
x∈A

xi, Mi(A) = max
x∈A

xi,
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that may be computed in CN operations in a standard, recursive manner. The
computation of T requires no more than CN storage and operations, excluding
the work needed for the creation of T in Lemma 1. Note also that the height
of T is no greater than dlog2Ne+ 1, and that for any x ∈ E, there are at most
dlog2Ne+ 1 nodes of T that contain x. The implementation of the task (6a)
is very easy, and to implement (6d) we simply climb down the tree. We omit
the details.

The next observation, is that any interval I = {yµ, yµ+1, . . . , yν} may
be expressed as the union of at most 2 (dlog2Ne+ 1) nodes of T : These are
exactly the nodes B ∈ T such that B is contained in the interval I, but the
parent of B is not contained in the interval I. Given indices µ < ν, such a
union may be computed in less than C logN operations, as follows: Compute
A, the least common ancestor of {yµ} and {yν} in T (in C logN operations).
If A = I = {yµ, . . . , yν} then we are done. Otherwise, go over the path from
{yµ} to A in T , starting from {yµ} and excluding A. Let A′ be the first node
in the path which is not a left child of another node in the path. Note that
A′ ⊂ I = {yµ, . . . , yν}, but the parent of A′ is not contained in I. We mark
the node A′.

Next, we go over the path from A′ to A, excluding A′ and A. For each
node B in the path, if its right child BR is not in the path, mark the child
BR. Note that the marked nodes are contained in I, yet their parents are not
contained in I. Similarly, we go over the path from {yν} to A excluding A, and
mark A′′, the first node in the path which is not a right child of another node
in the path. We then go over the nodes in the path from A′′ to A excluding A′′

and A, and for each node, we mark its left child if the left child is not in the
path. It is straightforward to verify that I = {yµ, yµ+1, . . . , yν} is the disjoint
union of the marked nodes; see Figure 2.

A

µ

A''

y
ν

A'

y

Figure 2
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We invoke now the algorithm from Theorem 6, with the set E, the tree
T and κ as inputs. The outputted list is denoted by L. We will construct
a modified list L as follows: For every (A,B) ∈ L, we let Λ1 and Λ2 be the
subsets of T whose unions equal A and B respectively, described in the previous
paragraph. The list of all pairs (Λ1,Λ2) obtained that way is the desired set
L. Thus #(L) < CN and #(Λ1),#(Λ2) < C logN for any (Λ1,Λ2) ∈ L. Note
that properties (1), ..., (4) follow from the corresponding properties of L. We
will represent L in the data structure by storing the following items:

• Two lists of the elements of L, one sorted according to the left endpoint
of the interval ∪Λ1, and one sorted according to the right endpoint of
the interval ∪Λ1.

• For each (Λ1,Λ2) ∈ L we store the indices of the endpoints of the intervals
∪Λ1,∪Λ2.

Given (Λ1,Λ2) ∈ L, we may compute in C logN time, the actual nodes of T
that correspond to Λ1,Λ2, and also the numbers diam∞(∪Λ1), diam∞(∪Λ2)
(using mi(A),Mi(A) that were computed before). This completes the imple-
mentation of (6b). We will also store in our data structure implementing the
CK-decomposition the following data, to be computed within CN logN oper-
ations:

• For each (Λ1,Λ2) ∈ L, we store diam∞(∪Λ1),diam∞(∪Λ2).

• For each A ∈ T we store diam∞(A).

Thus, the task (8) is easily implemented. Clearly, our data structure uses CN
storage and (5) is satisfied. Thus, it only remains to implement (6c). To that
end, we go over all A ∈ T , except for the root (which is not contained in
any Λ1). Fix this A ∈ T . Say A is the child of the node B ∈ T . Without loss
of generality, we may suppose that A = BR, the right child of B. We will use
also BL, the left child of B. We want to list all the (Λ1,Λ2) ∈ L such that
A ∈ Λ1.

Let (Λ1,Λ2) ∈ L be given. Recall that A,BL and ∪Λ1 are all identified
with intervals. Call these intervals [y−A , y

+
A ], [y−BL

, y+
BL

] and [y−Λ1
, y+

Λ1
], respec-

tively. Then it is straightforward to check that A ∈ Λ1 if and only if

(i) [y−A , y
+
A ] ⊂ [y−Λ1

, y+
Λ1

], and

(ii) y−BL
≺ y−Λ1

, in the order defined above

(because (i) and (ii) are equivalent to (i′) A ⊂ ∪Λ1 and (ii′) B 6⊂ ∪Λ1). There-
fore, we may proceed as follows: Using binary search, we find all (Λ1,Λ2) ∈ T
such that y−Λ1

∈ (y−BL
, y−A ]. Among all these (Λ1,Λ2), we output only the

(Λ1,Λ2) ∈ T such that y+
Λ1

is greater than or equal to y+
A . Note that the
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(Λ1,Λ2) ∈ L we output, are precisely those that satisfy (i) and (ii). Hence
we produced all (Λ1,Λ2) ∈ L such that A ∈ Λ1. The algorithm repeats this
procedure for all nodes A ∈ T other than the root. Each (Λ1,Λ2) ∈ L was ac-
cessed at most C log2N times in the algorithm, as the number of nodes B ∈ T
such that y−Λ1

∈ B or y+
Λ1
∈ B is at most 2(dlog2Ne+ 1). Including the binary

searches, the total amount of work of the algorithm for (6c) is CN logN , and
the storage is CN . This completes the proof.

6. The algorithm

In this section we describe the algorithm promised in Theorem 1. We are
given a set E ⊂ Rn of size N , and functions f : E → R, σ : E → [0,∞). We
start by applying the algorithm from Theorem 5 to the set E with constant
κ = 1

2 . The resulting κ-CK decomposition is denoted by (T ,L). For each
node A ∈ T we pick a representative, a point xA ∈ A. We also select, for
each (Λ1,Λ2) ∈ L, points xΛ1 ∈ ∪Λ1, xΛ2 ∈ ∪Λ2. This is done within CN

operations.
Rather than computing the blobs Σ(x, `), we will work with a priori dif-

ferent blobs, to be denoted by Γ(x, `) = (Γ(x, `,M))M>0. For ` = 1 we set

Γ(x, 1,M) = Σ(x, 1,M) = {P ∈ P : |∂αP (x)| ≤ M

for |α| ≤ m− 1, and |P (x)− f(x)| ≤Mσ(x)}

for x ∈ E and M > 0. Recall the definition of the blob B(x, δ) defined in (1)
of Section 4. Having defined {Γ(x, `)}x∈E , we will now define Γ(x, `+1) in five
simple steps.

Step 1. For any node A ∈ T we form the blob

Γ(A, `) = (Γ(A, `,M))M > 0 =
⋂
x∈A

[Γ(x, `) + B(x,diam∞(A))] .

Step 2. For any (Λ1,Λ2) ∈ L, i = 1, 2, we form the blob

Γi(Λi, `) = (Γi(Λi, `,M))M > 0 =
⋂
A∈Λi

[Γ(A, `) + B(xA, diam∞(∪Λi))] .

Step 3. For any (Λ1,Λ2) ∈ L, we form the blob

Γ̄(Λ1,Λ2, `) = (Γ̄(Λ1,Λ2, `,M))M > 0

= Γ1(Λ1, `) ∩ [Γ2(Λ2, `) + B(xΛ1 , |xΛ1 − xΛ2 |)] .

Step 4. For any node A ∈ T we form the blob

Γ′(A, `+ 1) = (Γ′(A, `+ 1,M))M > 0 =
⋂
A∈Λ1

(Λ1,Λ2)∈L

Γ̄(Λ1,Λ2, `).
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Step 5. For any x ∈ E, we set

Γ(x, `+ 1) = (Γ(x, `+ 1,M))M > 0 = Γ(x, `) ∩
⋂
x∈A
A∈T

Γ′(A, `+ 1).

This finishes the mathematical definition of the blobs Γ(x, `), for x ∈
E, ` ≥ 1. The five steps above suggest an obvious algorithm for the computa-
tion of ellipsoidal blobs Ax,` that approximate Γ(x, `); i.e. for any x ∈ E, ` ≥ 1,
the ellipsoidal blob Ax,` is C`-equivalent to Γ(x, `), where C` is a constant
that depends solely on `,m and n. Indeed, the blobs Γ(x, 1) and B(x, δ) are
C-equivalent to easily computed ellipsoidal blobs, as was described in Section
4, for C depending only on m and n. Assume ` ≥ 1, and that we have al-
ready computed ellipsoidal blobs Ax,` for x ∈ E, which are C`-equivalent to
the corresponding Γ(x, `). We will follow the five steps above, using the oper-
ations on ellipsoidal blobs discussed in Section 3 (in an analogous way to the
pedagogical algorithm from Section 4), and the operations on the CK decom-
position described in (6) and (8) of Section 5. Thus in five steps we compute
from the ellipsoidal blobs {Ax,`}x∈E the new ellipsoidal blobs {Ax,`+1}x∈E .
The ellipsoidal blobs {Ax,`+1}x∈E are C`+1-equivalent to {Γ(x, `+ 1)}x∈E , for
C`+1 = C · C` depending solely on `,m and n.

Our algorithm computes the ellipsoidal blobs {Ax,`}x∈E for ` = 1, . . . , `∗,
for the same number `∗ as in Section 2, which is a constant that depends solely
on m and n. The algorithm returns the number

(2) max{onset Ax,`∗ : x ∈ E}

which may be easily computed, as was explained in Section 3, and that has
the same order of magnitude as max{onset Γ(x, `∗) : x ∈ E}. This completes
the description of our algorithm.

How many computer operations are involved in the computation of
{Ax,`+1}x∈E from {Ax,`}x∈E? Recall that calculating the Minkowski sum of
two ellipsoidal blobs requires C operations, while computing the intersection
of k ellipsoidal blobs takes Ck operations, for C depending only on m and n.
The amount of work in step 1 and in step 5 is thus bounded by

C ·
∑
A∈T

#(A) < C ′N logN

by (7) from Section 5, where C,C ′ depend only on m and n. We also used
properties (6) and (8) from Section 5, to produce the elements of all A ∈ T
in Step 1, to compute diam∞(A) and to find for all x ∈ E the set of A ∈ T
such that x ∈ A. Step 2 requires no more than CN logN operations, by (7)
from Section 5, where again we also use (6) and (8) of Section 5 to produce
the nodes that belong to Λ1,Λ2 for all (Λ1,Λ2) ∈ L and to find diam∞(∪Λi).
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Step 3 takes CN operations. For step 4, we need no more than

C ·
∑
A∈T

# ({(Λ1,Λ2) ∈ L : A ∈ Λ1}) < C ′N logN

operations, by (6), (7) and (8) of Section 5. In total, the number of operations
for each iteration is no more than CN logN , where C depends solely on m and
n. The algorithm performs `∗ iterations, each taking CN logN operations, and
then computes onset A(x, `∗) for x ∈ E, a task for which CN operations suffice.
Thus the algorithm terminates after no more than C ′N logN operations, where
C ′ depends solely on m and n. The amount of storage needed is bounded by
C ′N .

It remains to prove (6) of Section 2, and also to show that

max{onset Γ(x, `∗) : x ∈ E}

has the same order of magnitude as max{onset Σ(x, `∗) : x ∈ E}. Once we
have established that, Theorem 1 will follow from (7) of Section 2. The relation
between the Σ’s and the Γ’s is the subject of the next section.

7. Equivalence of algorithms

The first lemma describes simple properties of the blob B(x, δ).

Lemma 1. Let x, y ∈ Rn. Then, for any a,M > 0 and δ ≥ 0,

B(x, δ,M)⊂B(y, δ + |x− y|, CM),(1)

B(x, aδ,M)⊂B(x, δ,max{am, a}M).(2)

for some constant C > 0 depending solely on m and n.

Proof. Let P ∈ B(x, δ,M) be a polynomial. Then, for any |α| ≤ m− 1,

|∂αP (x)| ≤Mδm−|α|.

By Taylor’s theorem

|∂αP (y)|=

∣∣∣∣∣∣
∑

|β|≤m−1−|α|

∂α+βP (x)
β!

(y − x)β

∣∣∣∣∣∣
≤C

∑
β

Mδm−|α|−|β||x− y||β| ≤ CM(δ + |x− y|)m−|α|

and (1) is proven. Now, (2) is immediate from the definition of B(x, δ).

Our next lemma shows that ‖f‖Cm(E,σ) is not smaller by an order of
magnitude than max{onset Γ(x, `∗) : x ∈ E}.
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Lemma 2. Let F : Rn → R be a function with ‖F‖Cm(Rn) ≤M , and such
that
|F (x)− f(x)| ≤Mσ(x) for x ∈ E. Then for any integer ` > 0 and x ∈ E,

(1) JxF ∈ Γ(x, `, C`M).

where C` depends solely on `,m and n.

Proof. By induction: For ` = 1 we trivially have that JxF ∈ Γ(x, 1, CM).
For the inductive step, suppose Lemma 2 holds for a given `. We will prove
Lemma 2 with ` + 1 instead of `. Note that ‖F‖Cm(Rn) ≤ M implies that for
any x, y ∈ Rn,

(2) JxF − JyF ∈ B(y, |x− y|, CM)

for some constant C that depends solely on m and n. Let x ∈ E, and let
A ∈ T , be such that x ∈ A. For any y ∈ A we have that |x− y| ≤ diam∞(A).
By (2),

JxF ∈ JyF +B(y,diam∞(A), CM) ⊂ Γ(y, `, C`M) +B(y,diam∞(A), CM)

because JyF ∈ Γ(y, `, C`M) by the induction hypothesis. According to Step 1
in our algorithm,

(3) JxF ∈ Γ(A, `,max{C,C`}M)

for all x ∈ E,A ∈ T such that x ∈ A. Move now to Step 2. Let x ∈ E, and let
(Λ1,Λ2) ∈ L, i = 1, 2, be such that x ∈ ∪Λi. For any A ∈ Λi, according to (2),

JxF − JxA(F ) ∈ B(xA, |x− xA|, CM) ⊂ B(xA,diam∞(∪Λi), CM).

By (3) we have that JxA(F ) ∈ Γ(A, `,max{C,C`}M). Hence

JxF ∈ Γ(A, `,max{C,C`}M) +B(xA,diam∞(∪Λi), CM),

and consequently

(4) JxF ∈ Γi(Λi, `,max{C,C`}M)

whenever x ∈ ∪Λi. Next is Step 3. Let (Λ1,Λ2) ∈ L and x ∈ ∪Λ1, y ∈ ∪Λ2.
Since (T ,L) is a 1

2 -CK decomposition, we have that 1
2 |x− y| < |xΛ1 −xΛ2 | and

that |x− xΛ1 | < |xΛ1 − xΛ2 |. Therefore

JxF − JyF ∈ B(x, |x− y|, CM)⊂B(x, |xΛ1 − xΛ2 |, 2mCM)

⊂B(xΛ1 , |xΛ1 − xΛ2 |, C ′M)

for some constant C ′ depending only on m and n, where we used Lemma 1.
By (4) we have that JyF ∈ Γ2(Λ2, `,max{C,C`}M); hence

JxF ∈ Γ2(Λ2, `,max{C,C`}M) +B(xΛ1 , |xΛ1 − xΛ2 |, C ′M).
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Comparing this result and (4) with Step 3, we see that

JxF ∈ Γ̄(Λ1,Λ2, `,max{C ′, C`}M)

for any x ∈ ∪Λ1. Suppose that A ∈ T , x ∈ A. If for (Λ1,Λ2) ∈ L we have
A ∈ Λ1, then x ∈ ∪Λ1. In this case, Step 4 entails that

JxF ∈ Γ′(A, `+ 1,max{C ′, C`}M) =
⋂
A∈Λ1

(Λ1,Λ2)∈L

Γ̄(Λ1,Λ2, `,max{C ′, C`}M).

This, in turn, gives

JxF ∈ Γ(x, `, C`M) ∩
⋂

x∈A∈T
Γ′(A, `+ 1,max{C ′, C`}M)

⊂Γ(x, `+ 1,max{C ′, C`}M) .

The induction step follows, with C`+1 = max{C ′, C`}, and the lemma is proven.
Note that actually we may select C` in (1) to depend only on m and n, and
not on `.

Lemma 3. Let x ∈ E and let ` > 0 be an integer, M > 0. Then,

Γ(x, `,M) ⊂ Σ(x, `, CM)

where C is a constant that depends solely on m and n.

Proof. By induction. The case ` = 1 is easy, as

Σ(x, 1,M) = Γ(x, 1,M).

For the inductive step, suppose Lemma 3 holds for a given `, with some con-
stant C that will be specified later. We will prove Lemma 3 with `+ 1 in place
of `. Let P ∈ Γ(x, ` + 1,M) be a polynomial. Then also P ∈ Γ(x, `,M) ⊂
Σ(x, `, CM) by Step 5 and the induction hypothesis. Let x 6= x′ ∈ E. By (4)
of Section 2, it is enough to show that there exists P ′ ∈ Σ(x′, `, CM) such that

(5) P − P ′ ∈ B(x, |x− x′|, CM)

Since (T ,L) is a 1
2 -CK decomposition, there exists (Λ1,Λ2) ∈ L such that

x ∈ ∪Λ1, x
′ ∈ ∪Λ2. As P ∈ Γ(x, ` + 1,M), inspection of Steps 4 and 5 in the

algorithm shows that P ∈ Γ̄(Λ1,Λ2, `,M). By Step 3, there exists a polynomial
P̃ ∈ P such that

(6) P − P̃ ∈ B(xΛ1 , |xΛ1 − xΛ2 |,M) and P̃ ∈ Γ2(Λ2, `,M).

Let A ∈ Λ2 be such that x′ ∈ A. Clearly |x′ − xA| ≤ diam∞(∪Λ2). Recalling
Step 2, we see that P̃ ∈ Γ2(Λ2, `,M) ⊂ Γ(A, `,M) +B(xA, diam∞(∪Λ2),M)

⊂ Γ(A, `,M) +B(x′, 2diam∞(∪Λ2), C ′M)
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by Lemma 1, for C ′ depending only on m and n. Recalling Step 1, we conclude
that

P̃ ∈ Γ(x′, `,M) +B(x′, 3diam∞(∪Λ2), C ′′M)

for a constant C ′′ that depends only on m and n. Let P ′ ∈ Γ(x′, `,M) be such
that

(7) P̃ − P ′ ∈ B(x′, 3diam∞(∪Λ2), C ′′M)

for a constant C ′′ depending only on m and n. By the induction hypothesis,
P ′ ∈ Σ(x′, `, CM). Recall that, as (T ,L) is a 1

2 -CK decomposition, |xΛ1 −
xΛ2 | < 2|x − x′| and also diam∞(∪Λ2) <

√
n|xΛ1 − xΛ2 |. Lemma 1, together

with (6) and (7), implies that

(8) P − P ′ ∈ B(x, |x− x′|, C̃M)

for C̃ depending only on m and n. Note that C̃ is a constant depending on m
and n, which is independent of ` and of the constant — not specified yet —
from the induction hypothesis. Hence we may select C = C̃. Now (8) gives
(5), and the lemma is proven.

Using (6) of Section 2, we conclude from Lemma 3 that if Γ(x, `∗,M) 6= ∅
for all x ∈ E, then ‖f‖Cm(E,σ) < CM for some constant C that depends solely
on m and n. Together with Lemma 2, this shows that

(9) max{onset Γ(x, `∗) : x ∈ E}

has the same order of magnitude as ‖f‖Cm(E,σ) (and also has the same order
of magnitude as max{onset Σ(x, `∗) : x ∈ E}). The order of magnitude of the
quantity (9) was computed by the algorithm from Section 6, using CN logN
operations and CN storage. This completes the proof of Theorem 1, up to the
proof of (6) from Section 2. This proof will be presented in the next section.

8. Proof of a key estimate

In this section, we complete the proof of Theorem 1 by establishing the key
estimate (6) from Section 2. We will reduce matters to Theorem 3 (from Sec-
tion 1), which is one of the main results in [14]. We will also use an elementary
“clustering lemma” from [15].

Lemma 1. When ` ≥ 1, and S ⊂ Rn, with #(S) = `+1, we can partition
S into subsets S0, S1, . . . , Sνmax , such that

(a) #(Sν) ≤ ` for each ν, and

(b) distance (Sµ, Sν) > c· diameter (S) for µ 6= ν, with c depending only
on `.
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By induction on ` ≥ 1, we will establish the following result.

Lemma 2. Suppose y0 ∈ E, ` ≥ 1, M > 0, and P ∈ Σ(y0, `,M). Then,
for any S ⊆ E, with y0 ∈ S and #(S) ≤ `, there exists a map y 7→ P y from S

into P, such that :

(A) P y0 = P ;

(B) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

(C) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(D) |P y(y)− f(y)| ≤ CMσ(y) for all y ∈ S.

Here, C depends only on m,n, `.

Proof. For ` = 1, we have S = {y0}. We take P y0 = P . Thus, (A) holds
by definition, (B) and (D) hold since P ∈ Σ(y0, 1,M), and (C) holds since
y = y′ = y0 for y, y′ ∈ S. This proves Lemma 2 for ` = 1.

For the inductive step, suppose Lemma 2 holds for a given `. We will
prove Lemma 2 with (`+ 1) in place of `.

Thus, suppose P ∈ Σ(y0, ` + 1,M), and let S ⊆ E, with y0 ∈ S and
#(S) ≤ ` + 1. We must produce a map y 7→ P y satisfying (A),. . ., (D). If
#(S) ≤ `, then the desired map exists, thanks to our induction hypothesis.
Hence, we may suppose that #(S) = ` + 1. Let δ= diameter (S) > 0. We
write c, C,C ′, etc., to denote constants depending only on m,n, and `.

By Lemma 1, we may partition S into nonempty subsets Sν (0 ≤ ν ≤
νmax), with the following properties.

(1) #(Sν) ≤ ` for each ν.

(2) y0 ∈ S0.

(3) distance (Sν , Sν′) ≥ cδ if ν 6= ν ′.

For each ν (1 ≤ ν ≤ νmax), pick yν ∈ Sν . Since P ∈ Σ(y0, `+ 1,M), we know
that, for each ν (including ν = 0), there exists Pν ∈ Σ(yν , `,M) with

(4) |∂α(Pν − P )(y0)| ≤M |yν − y0|m−|α| for |α| ≤ m− 1.

In particular, for ν = 0 we necessarily have

(5) P0 = P.

For each ν, we may apply our induction hypothesis to the point yν , the
set Sν , and the polynomial Pν , thanks to (1). Hence, there is a map y 7→ P y

from Sν into P, satisfying:

(6) P yν = Pν ;
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(7) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ Sν ;

(8) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ Sν ; and

(9) |P y(y)− f(y)| ≤ CMσ(y) for all y ∈ Sν .

Combining the above maps on the Sν into a single map y 7→ P y from S

into P, we obtain the following results from (5),. . .,(9).

• P y0 = P0 = P ;

• |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

• |P y(y)− f(y)| ≤ CMσ(y) for all y ∈ S.

Thus, our map y 7→ P y, from S into P, satisfies properties (A), (B), (D) from
the statement of Lemma 2. Also, (8) shows that property (C) holds, provided
y and y′ belong to the same Sν .

Hence, to complete the proof of Lemma 2, it is enough to prove (C) in the
case y ∈ Sν , y′ ∈ Sν′ , ν 6= ν ′. In view of (3) (with δ = diameter S), this means
that
(10)
|∂α(P y − P y′)(y)| ≤ CMδm−|α| for |α| ≤ m− 1, y ∈ Sν , y′ ∈ Sν′ , ν 6= ν ′.

Thus, the proof of Lemma 2 is reduced to (10). Let y ∈ Sν , y′ ∈ Sν′ , with
ν 6= ν ′. From (6) and (8), we have

|∂α(P y − Pν)(y)| ≤CM |y − yν |m−|α| ≤ CM δm−|α| for |α| ≤ m− 1,(11)

and
|∂α(P y

′ − Pν′)(y′)| ≤CM |y′ − yν′ |m−|α| ≤ CM δm−|α| for |α| ≤ m− 1.(12)

Also, (4) shows that

(13) |∂α(Pν − Pν′)(y0)| ≤M |yν − y0|m−|α| + M |yν′ − y0|m−|α| ≤ CM δm−|α|

for |α| ≤ m − 1. By Lemma 1 from Section 7, the estimates (12) and (13)
imply

|∂α(P y
′ − Pν′)(y)| ≤CM δm−|α| for |α| ≤ m− 1,(14)

and
|∂α(Pν − Pν′)(y)| ≤CM δm−|α| for |α| ≤ m− 1.(15)

From (11), (14), (15), we obtain the desired estimate (10), and the proof of
Lemma 2 is complete. �

We now prove estimate (6) from Section 2. We take `∗ = k as in Theo-
rem 3. Thus, `∗ depends only on m and n. Let M > 0 satisfy the hypothesis
of (6), namely

(16) Σ(x, `∗,M) 6= φ for each x ∈ E.
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We will show that the hypothesis of Theorem 3 holds, for the set E, the
functions f and σ, and the constant CM , for a large enough C depending only
on m and n. To see this, let S ⊂ E, with #(S) ≤ k. If S is empty, there
is nothing to prove. If S is nonempty, then we pick y0 ∈ S and then pick
P ∈ Σ(y0, `∗,M). (We can find such a P , thanks to (16).) Applying Lemma 2,
with ` = `∗ = k, we obtain a map y 7→ P y from S into P, satisfying P y0 = P

and

(17) |∂αP y(y)| ≤ CM for |α| ≤ m− 1, y ∈ S;

(18) |∂α(P y − P y′)(y)| ≤ CM |y − y′|m−|α| for |α| ≤ m− 1, y, y′ ∈ S; and

(19) |P y(y)− f(y)| ≤ CMσ(y) for all y ∈ S.

In (17), (18), (19), the constant C depends only on m,n and `∗. Since `∗
depends only on m and n, it follows that C depends only on m and n. The
existence of a map y 7→ P y satisfying (17), (18), (19) is precisely the hypothesis
of Theorem 3.

Applying Theorem 3, we conclude that ‖f‖Cm(E,σ) ≤ CM , with C depend-
ing only on m and n. This is precisely the conclusion of (6) from Section 2.
This is complete, and with it, the proof of Theorem 1.

9. On the proof of Theorem 2

In this section, we explain a key idea in the proof of Theorem 2. Recall
that we have defined convex sets Γ(x, `,M), starting from a finite set E ⊂ Rn

and functions f : E → R and σ : E → [0,∞). If we keep E and σ unchanged,
but replace f by zero, then in place of Γ(x, `,M), we obtain by the same
construction a new family of convex sets Γ0(x, `,M). An easy induction on `

shows that this new family has the form Γ0(x, `,M) = Mσ(x, `) for a convex,
symmetric set σ(x, `) ⊂ P. The convex sets σ(x, `) play a basic rôle along with
the Γ(x, `,M).

We prepare to state the main properties of the Γ’s and the σ’s, to be used
in the proof of Theorem 2. We write c, C to denote constants depending only
on m,n; and we write C` to denote constants depending only on m,n and `.
For x ∈ Rn and P,Q ∈ P, we write P �x Q to denote the unique S ∈ P such
that, for smooth F and G, Jx(F ) = P and Jx(G) = Q imply Jx(FG) = S.

For convex sets A,B ⊂ P, we write A − B for the Minkowski difference
{P − P ′ : P ∈ A,P ′ ∈ B}.

The basic properties of the Γ’s and σ’s are as follows.

(0) Suppose F ∈ Cm(Rn) and M > 0 with

‖F‖Cm(Rn) ≤M and |F (x)− f(x)| ≤Mσ(x) for all x ∈ E.
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Then
Jx(F ) ∈ Γ(x, `, C`M)

for all x ∈ E, ` ≥ 1.

(1) For x ∈ E, the blob Γ(x, 1) is C-equivalent to the blob K = (KM )M>0

defined as

KM = {P ∈ P : |∂βP (x)| ≤M for |β| ≤ m− 1, |P (x)− f(x)| ≤Mσ(x)}.

(2) For any x, y ∈ E,M > 0,

Γ(x, `+ 1,M) ⊂ Γ(y, `, C`M) +B(y, |x− y|, C`M) .

Similarly,
σ(x, `+ 1) ⊂ C`σ(y, `) +B(y, |x− y|, C`).

(3) Γ(x, `,M) + Mσ(x, `) ⊂ Γ(x, `, C`M), and Γ(x, `,M) − Γ(x, `,M) ⊂
C`Mσ(x, `), for any x ∈ E, ` ≥ 1.

(4) Suppose P ∈ σ(x, `), Q ∈ P and 0 < δ ≤ 1. Assume that |∂βP (x)| ≤
δm−|β| and |∂βQ(x)| ≤ δ−|β| for |β| ≤ m− 1. Then P �x Q ∈ C`σ(x, `).

In fact, we have already proven (0) and (2) in Section 7 (see (8) in the proof
of Lemma 3 in Section 7); and (1), (3) are easy consequences of the definitions.
We will prove (4) in [20]; it is an instance of “Whitney ω-convexity” (see [17]).
Our proof of Theorem 2 will be based on the above properties of the Γ’s and
σ’s. The convex sets Σ(x, `,M) and appropriate σ(x, `) also satisfy (0),. . . ,(4).
On the other hand, the proof of Theorem 3 is based on the study of convex
sets Kf (x, k,M) defined as follows.

(5) A given P ∈ P belongs to Kf (x, k,M) if, for any S ⊂ E of cardinality
at most k, there exists FS ∈ Cm(Rn) with

(a) ‖FS‖Cm(Rn) ≤M ;
(b) |FS(x)− f(x)| ≤Mσ(x) for all x ∈ S; and
(c) Jx(FS) = P .

(See [14], [17].) Suppose we write Γold(x, `,M) := Kf (x, (D + 1)`,M), with
D = dimP. Then the Γold(x, `,M), together with appropriate σold(x, `), also
satisfy (0),. . . ,(4). In particular, (2) follows by applying Helly’s theorem [34]
on convex sets (see Lemma 10.2 in [14]). Thus, properties (0),. . . ,(4) hold for
more than one family of Γ’s and σ’s.

The proof of Theorem 3, as given in [14], makes little use of the exact
definition (5). Instead, it relies almost entirely on properties (0),. . . ,(4) for
the families Γold, σold. Hence, it is natural to guess that there is a version of
Theorem 3 valid for any Γ’s and σ’s that satisfy (0),. . . ,(4). More precisely,
we assert the following:
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(6) Let Γ(x, `,M) ⊂ P be convex sets, defined for x ∈ E, ` ≥ 1,M > 0 (and
increasing in M); and let σ(x, `) ⊂ P be symmetric convex sets, defined
for x ∈ E, ` ≥ 1. Assume that the Γ’s and σ’s satisfy (0),. . . ,(4). Let
M0 > 0 and suppose that Γ(x, `∗,M0) is nonempty for each x ∈ E, where
`∗ is a large constant determined by m and n.

Then, there exists F ∈ Cm(Rn), such that ‖F‖Cm(Rn) ≤ CM0, and
|F (x)− f(x)| ≤ CM0σ(x) for all x ∈ E.

In fact, a sharper version of (6) follows at once from our work in Sections 7
and 8. We have only to observe that our proof that ‖f‖Cm(E,σ) is comparable
to maxx∈E onset Σ(x, `) used only properties (0), (1), (2) of the Σ(x, `,M).
Hence, (6) holds without the need to assume (3) or (4). The main step here is
to quote Theorem 3.

However, if we assume all the key properties (0),. . . ,(4), then we can do
better. By adapting the proof of Theorem 3 rather than quoting the result,
one can construct an F as in (6) rather than merely proving its existence.
This leads to an algorithm to solve Problem 2. To make the algorithm run
efficiently, we have to decide, with logN work, which cube from a relevant
Calderón-Zygmund decomposition contains a given point x ∈ Rn. We achieve
this by bringing in the work of Arya, Mount, Netanyahu, Silverman and Wu
[1], associating a balanced tree to a given finite set E ⊂ Rn. We also make
further use of the Callahan-Kosaraju decomposition. Thus, we are led to the
proof of Theorem 2. Full details will appear in [20].
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Iberoamericana, to appear.

[19] ———Cm extension by linear operators, Ann. of Math. 166 (2007), 779–835.

[20] ———, Fitting a Cm-smooth function to data III, Ann. of Math., to appear, 2009.

[21] C. Fefferman and B. Klartag, Fitting a Cm-smooth function to data II, Revista Matem-
atica Iberoamericana, to appear.
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