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Stable manifolds for an orbitally
unstable nonlinear Schrödinger equation

By W. Schlag*

1. Introduction

We consider the cubic nonlinear Schrödinger equation in R3

(1) i∂tψ +4ψ = −|ψ|2ψ.

This equation is locally well-posed in H1(R3) = W 1,2(R3). Let φ = φ(·, α) be
the ground state of

(2) −4φ+ α2φ = φ3.

By this we mean that φ > 0 and that φ ∈ C2(R3). It is a classical fact (see
Coffman [10]) that such solutions exist and are unique for the cubic nonlinear-
ity. Moreover, they are radial and smooth. Similar facts are known for more
general nonlinearities; see e.g., Strauss [45] and Berestycki and Lions [5] for
existence and Kwon [30] for uniqueness in greater generality.

Clearly, ψ = eitα
2
φ solves (1). We seek an H1-solution ψ of the form

ψ = W +R where

W (t, x) = eiθ(t,x)φ(x− y(t), α(t)),(3)

θ(t, x) = v(t) · x−
∫ t

0
(|v(s)|2 − α2(s)) ds+ γ(t),(4)

y(t) = 2
∫ t

0
v(s) ds+D(t),(5)

is the usual soliton with a moving set of parameters π(t) := (γ(t), v(t), D(t),
α(t)), and R is a small perturbation. Performing a Galilei transform, we may
assume that W (0, x) = φ(x, α) = αφ(αx, 1) for some α > 0. The final equality
holds because of the cubic nonlinearity.
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140 W. SCHLAG

With each α > 0 we associate the matrix operator

(6) H = H(α) =
(
−4+ α2 − 2φ2(·, α) −φ2(·, α)

φ2(·, α) 4− α2 + 2φ2(·, α)

)
.

This operator is closed on the domain W 2,2(R3) × W 2,2(R3) and its spec-
trum is known to be located on R ∪ iR with essential spectrum equal to
(−∞,−α2] ∪ [α2,∞). As proved by Weinstein [49] and [50], H(α) has a
rootspace of dimension eight at zero, and ker(H3) = ker(H2) 6= ker(H). In
fact, dim ker(H) = 4. On the other hand, any discrete spectrum different from
zero is known to consist entirely of eigenvalues whose geometric and algebraic
multiplicities coincide. Due to the L2 supercritical nature of the problem, H(α)
does have purely imaginary eigenvalues; see Grillakis, Shatah, Strauss [24] as
well as Section 4 below. Moreover, due to the standard symmetries of the
spectrum (which follow from the commutation properties of H with the Pauli
matrices) we know that these purely imaginary eigenvalues are symmetric with
respect to the real axis, together with their multiplicities.

The orbital stability question (for Klein-Gordon, NLS, as well as many
other classes of PDE) was addressed by Shatah [40], Shatah, Strauss [41], We-
instein [49], [50], Grillakis, Shatah, Strauss [24], [25] (who developed an ”ab-
stract” theory of orbital stability), Grillakis [22], [23], Comech, Pelinovsky [11].
As for the question of asymptotic stability (which is much closer to the present
paper), see Soffer, Weinstein [43], [44], Buslaev, Perelman [6], [7], Cuccagna [13],
Rodnianski, Schlag, Soffer [38], [39], Perelman [32], [33],[34], Fröhlich, Jons-
son, Gustafson, Sigal [18], Fröhlich, Tsai, Yau [19]. For surveys of some of this
material, see Strauss [46], and C. Sulem and P.-L. Sulem [47].

It is well-known that the supercritical equation (1) is orbitally unstable;
see Berestycki and Cazenave [4]. This is in contrast to the orbital stability
of the subcritical equations that was proved by Cazenave and Lions [8] and
Weinstein [49], [50].

For our main theorem we need to impose the following spectral condition:

H(α) does not have any embedded eigenvalues in the essential spectrum.

Then we prove the following:

Theorem 1. Impose1 the spectral conditions for all α > 0 and fix any
α0 > 0. Then there exist a real-linear subspace S ⊂ W 1,2(R3) ∩W 1,1(R3) of
co-dimension nine and a small δ > 0 with the following properties: Let

(7) B :=
{
R0 ∈ L2(R3) | |||R0||| := ‖R0‖W 1,2∩W 1,1 < δ

}

1By scaling invariance, if they hold for one α > 0, then they hold for all α > 0. This is
due to the monomial nonlinearity.
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and let Σ := {f ∈ L2(R3) | |||f ||| <∞}. Then there exists a map Φ : B ∩ S → Σ
with the properties

|||Φ(R0)||| . |||R0|||2 ∀R0 ∈ B ∩ S,(8)

|||Φ(R0)− Φ(R̃0)||| . δ|||R0 − R̃0||| ∀R0, R̃0 ∈ B ∩ S,(9)

and so for any R0 ∈ B∩S the nonlinear Schrödinger equation (1) has a global
H1 solution ψ(t) for t ≥ 0 with initial condition ψ(0) = φ(·, α0) +R0 + Φ(R0).
Moreover,

ψ(t) = W (t, ·) +R(t)

where W as in (3) is governed by a path π(t), of parameters, which converges to
some terminal vector π(∞) such that supt≥0 |π(t)− π(∞)| . δ2 and so that

‖R(t)‖W 1,2 . δ, ‖R(t)‖∞ . δt−
3
2

for all t > 0. Finally, there is scattering :

R(t) = eit4f0 + oL2(1) as t→∞

for some f0 ∈ L2(R3).

Concerning the spectral condition, it is well-known that imbedded eigen-
values are unstable under perturbations. See Grillakis [23], as well as the recent
work by Cuccagna, Pelinovsky, and Vougalter [15], [14] for precise statements
to this effect for matrix Schrödinger operators, as well as Costin, Soffer [12]
for the scalar case. The proof of Theorem 1 does not rely too heavily on the
specific structure of the cubic nonlinearity and applies to other supercritical
nonlinearities as well.2 Hence it is possible to formulate Theorem 1 without
any spectral conditions for a ”generic perturbation” (in a suitable sense) of the
cubic nonlinearity. However, we have chosen to present Theorem 1 as stated in
order not to obscure the main ideas. We plan to return to the issue of generic
perturbations elsewhere.

On the other hand, it is to be expected that there are no imbedded eigen-
values in the essential spectrum, at least for the linearization around a ground
state soliton. Indeed, in [29] Krieger and the author prove the analogue of
Theorem 1 in one dimension without any spectral condition for supercritical
monomial nonlinearities. Rather, in that case the absence of imbedded eigen-
values can be proved by adapting some arguments of Perelman [33]. It is to
be expected that the same property also holds in R3, although this yet needs
to be proved.

2In contrast to the one-dimensional case [29], however, we cannot cover the entire L2-
supercritical range here. This has to do with the numerical work [16] where it was found
that one needs to be close to the cubic NLS to guarantee some crucial spectral property.



142 W. SCHLAG

The method of proof of Theorem 1 also extends to the case of more deriva-
tives, i.e., R0 ∈ W k,1 ∩W k,2, for k ≥ 2, but we do not elaborate on this here.
We will refer to the fact that R0 needs to satisfy

(10) ‖R0‖W 1,2 + ‖R0‖W 1,1 < δ

as the smallness condition. It is not hard to see from a close inspection of
our proof that W 1,1 can be improved to some W 1,p, with p close to 1, but we
choose p = 1 for simplicity.

To understand the origin of S, we need to introduce the Riesz projections
Ps(α) and Id − Ps(α) (the index s here stands for stable). They are invariant
under H(α) and

spec(H(α)Ps(α)) = (−∞,−α2] ∪ [α2,∞),

spec(H(α)(Id− Ps(α)) = {±iσ} ∪ {0}.

Here ±iσ are precisely the unique pair of simple, purely imaginary eigenvalues
of H(α), σ > 0. Finally, let P+

u (α) be the Riesz projection such that

spec(H(α)P+
u (α)) = {0} ∪ {iσ}.

The notation P+
u is meant to indicate the unstable modes as t → +∞. The

real-linear, finite-codimensional subspace S above is precisely the set of R0 so
that

(11) P+
u (α0)

(
R0

R̄0

)
= 0.

The codimension of S is simply the number of unstable (or non-decaying)
modes of the linearization: eight in the root space and one exponentially unsta-
ble mode. The stable manifoldM is the surface described by the parametriza-
tion R0 7→ R0 + Φ(R0) where R0 belongs to a small ball B∩S inside of S. The
inequality (8) means that S is the tangent space to M at zero, whereas (9)
expresses that M is given in terms of a Lipschitz parametrization. It is easy
to see that it is also the graph of a Lipschitz map Φ̃ : S ∩ B → Σ. Indeed,
define Φ̃ as

R0 + PSΦ(R0) 7→ R0 + Φ(R0),

where PS is the projection onto S which is induced by the Riesz-projection
I − P+

u (α0) (the latter operates on L2 × L2, whereas we need only the first
coordinate of this projection; see Remark 14 below for the details of this). The
left-hand side is clearly in S. Moreover, to see that this map is well-defined as
well as Lipschitz, note that (9) implies that

(1− Cδ)|||R1 −R0||| ≤ |||R1−R0 + Φ(R1)−Φ(R0)|||≤(1 + Cδ)|||R1−R0|||,
(1− Cδ)|||R1 −R0||| ≤ |||R1−R0 + PSΦ(R1)−PSΦ(R0)|||≤(1 + Cδ)|||R1−R0|||.
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Theorem 1 should be understood as follows: The instability result of
Berestycki and Cazenave [4] shows that one can have finite time blow-up for
initial data ψ0 = φ(·, α) + R0 where R0 can be made arbitrarily small in any
reasonable norm. On the other hand, one may ask what the obstruction for
global existence and even stronger, for asymptotic stability, is in the orbitally
unstable case. Naturally, the first guess is the unstable subspace of the lin-
earized evolution e−itH with H as in (6). This refers to the finite-dimensional
subspaces of those f ∈ L2(R3)×L2(R3) for which e−itHf does not decay locally
as t → ∞. Clearly, this subspace contains all the (generalized) eigenspaces of
all eigenvalues of H(α) that lie on iR+ ∪ {0}. Conversely, Erdogan and the
author [17] proved that (for much more general systems than (6))

(12) sup
t≥0

∥∥e−itH(α)(I − P+
u (α))

∥∥
2→2

<∞.

While this bound was proved by Weinstein [49] and [50] in the subcritical case,
in which I−P+

u = Ps only projects out the rootspace at zero, we are not aware
of a reference for (12). Moreover, adapting the method of proof ([21]) from the
scalar case considered there to the matrix case needed here, we show that

(13)
∥∥e−itH(α)(I − P+

u (α))
∥∥

1→∞ . t−
3
2

for all t > 0. In view of (12) and (13), it is conceivable that at least to first
approximation, the condition (11) should ensure stability. On the other hand,
since it is based on linearization one expects quadratic corrections. This is
precisely the content of (8). So the statement of the theorem is that after
quadratic corrections, (11) gives the desired asymptotic stability.

In the subcritical (monomial, say) case the linearized operator (6) has a
root space of dimension eight and no imaginary eigenvalues. Since there is
asymptotic stability in this case, one would naturally expect that the root
space should not contribute to the ”bad directions” in the supercritical case,
i.e., that the codimension of the true stable manifold should really be one
for (1). This can indeed be achieved by letting all symmetries of the NLS
equation act on the manifoldM from Theorem 1. In this way we regain eight
dimensions (six from the Galilei transforms, one from modulation, and one
from scaling) provided we show that these symmetries act transversally toM.
This is done in the following theorem.

Theorem 2. Impose the spectral conditions for all α > 0 and fix any
α0 > 0. Then there exist a small δ > 0 and a Lipschitz manifold N of size3

δ inside of Σ and codimension one so that φ(·, α0) ∈ N with the following
property : for any choice of initial data ψ(0) ∈ N the nonlinear Schrödinger

3This means that N is the graph of a Lipschitz map Ψ with domain B ∩ S̃ where S̃ is a
subspace of codimension one, with B as in (7).
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equation (1) has a global H1 solution ψ(t) for t ≥ 0. Moreover,

ψ(t) = W (t, ·) +R(t)

where W as in (3) is governed by a path π(t) of parameters so that

|π(0)− (0, 0, 0, α0)| . δ.

Also, π(t) converges to some terminal vector π(∞) such that

sup
t≥0
|π(t)− π(∞)| . δ.

Finally,
‖R(t)‖W 1,2 . δ, ‖R(t)‖∞ . δt−

3
2

for all t > 0 and there is scattering :

R(t) = eit4f0 + oL2(1) as t→∞
for some f0 ∈ L2(R3).

This result raises the question of deciding the behavior of solutions with
initial data φ(0) ∈ B \N . One reasonable possibility would be that data from
one half of B \ N yield scattering solutions, whereas data from the other half
lead to blow-up in finite time. Such a dichotomy was obtained by Kenig and
Merle [28] for the H1 critical focusing nonlinear Schrödinger equation.

The motivation for studying these questions was two-fold. First, it is
natural to seek stable manifolds for unstable problems. There is a substantial
ODE literature in this context, but the PDE case is much less studied although
partial results exist. Bates and Jones [3] studied the questions of stable man-
ifolds for evolution equations in great generality by means of the method of
invariant cones. They proved the existence of stable, unstable, and center sta-
ble manifolds (which are also Lipschitz) for abstract evolution equations under
certain conditions on the linear part of the evolution. Later Gesztesy, Jones,
Latushkin, and Stanislavova [20] verified these conditions for a class of nonlin-
ear Schrödinger equations which are obtained by linearizing around standing
waves. Thus, they obtain the existence of such a dynamical splitting of the
space of initial data close to a standing wave. However, in contrast to our the-
orems, no asymptotic convergence or scattering statements are made. In fact,
the method of proof of [3] does not seem to yield global solutions. On the other
hand, their manifolds in [3] are locally invariant in time. This property cannot
be addressed in the context of our methods since the underlying topology is
not locally invariant in time (due to the L1 component).

For yet more related results, see the paper by Pillet and Wayne, as well as
the book by Li and Wiggins [31]. Tsai and Yau [48] investigated the question
of stable manifolds for NLS equations, with a potential, which admit excited
states. These are standing waves which are generated by bifurcations off bound
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states of the linear Schrödinger operator. Such excited states are unstable as
they will tend to collapse to the ground state. Tsai and Yau obtain conditional
stability of these excited states.

Second, there is a large literature concerning asymptotic stability questions
for subcritical equations; see the papers by Soffer, Weinstein [43], [44], Pillet,
Wayne [35], and Buslaev, Perelman [6], [7], as well as Cuccagna [13]. Recently,
there has also been some work on the multi-soliton case; see Rodnianski, Soffer,
and the author [38], [39], as well as Perelman [34]. Most of these papers are
based on a Lyapunov-Schmidt reduction, i.e., on splitting the evolution into
a finite dimensional part and a complementary part on which the linearized
evolution needs to be dispersive. In the subcritical case the finite dimensional
part is exactly the root space, assuming as one usually does, that there are no
other eigenvalues than zero. The dimension of this finite dimensional part then
coincides with the number of parameters in our soliton (namely eight). This
is natural, since both are intimately related to the family of symmetries of the
nonlinear Schrödinger equation (1); see [49]. This fact allows one to write down
a system of ODEs for the parameter paths called the modulation equations
which ensure that the finite dimensional part is not present at all. In the
context of asymptotic stability of solitons this method was first implemented
by Soffer and Weinstein [43], [44]. Our second motivation for Theorem 1 was
the question to what extent these asymptotic stability methods also apply to
the L2 supercritical case, which is orbitally unstable. As explained before,
for the case of supercritical monomial nonlinearities the time evolution of the
linearized problem has exponentially growing solutions. Needless to say, these
modes cannot be controlled by the modulation equations. Rather, they need
to be eliminated by a different mechanism. To first order, the unstable modes
of the linearization need to be removed from the initial conditions. This is
the origin of (11). However, this is only an approximation and quadratic
corrections need to be made.

2. The linearization, Galilei transforms, and J -invariance

As in [39] we require the soliton paths in (3) to be admissible. The constant
δ which appears in the following definition is the same small constant as in
Theorem 1. It will be specified later.

Definition 3. We say that a path π : [0,∞)→ R8 with π(t) := (γ(t), v(t),
D(t), α(t)) is admissible provided it belongs to Lip([0,∞),R8), the limit

lim
t→∞

(γ(t), v(t), D(t), α(t)) =: (γ(∞), v(∞), D(∞), α(∞))

exists, and is such that the entire path lies within a δ-neighborhood of those
limiting values for all times t ≥ 0. Moreover, we assume that
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|v(t)− v(∞)| = o(t−1) as t→∞,∫ ∞

0

∫ ∞

s
(|v̇(σ)|+ |α̇(σ)|) dσ ds <∞.

Under these conditions, define a constant parameter vector π∞ = (γ∞, v∞, D∞, α∞)
as

γ∞ := γ(∞) + 2
∫ ∞

0

∫ ∞

s
(v(σ) · v̇(σ)− α(σ)α̇(σ)) dσ ds,

v∞ := v(∞),

D∞ := D(∞)− 2
∫ ∞

0

∫ ∞

s
v̇(σ) dσ ds,

α∞ := α(∞).

With these parameters, define the usual Galilei transform to be

(14) g∞(t) = ei(γ∞+v∞·x−t|v∞|2) e−i(2tv∞+D∞)·~p,

where ~p := −i∇.

The action of g∞(t) on functions is

( g∞(t)f)(x) = ei(γ∞+v∞·x−t|v∞|2)f(x− 2tv∞ −D∞),

they are unitary on L2, isometries on all Lp, and the commutation property
eit4 g∞(0) = g∞(t)eit4 holds. The inverse of g∞(t) is

g∞(t)−1 = ei(2tv∞+D∞)·~p e−i(γ∞+v∞·x−t|v∞|2)

= e−i(γ∞+v∞·D∞+v∞·x+t|v∞|2) ei(2tv∞+D∞)·~p.

Moreover, the Galilei transform (14) generates an eight-parameter family of
solitons: Let φ(·, α∞) be the ground state of (2) with α = α∞. Then

(15) W∞(t, ·) = g∞(t)[eitα
2
∞φ(·, α∞)]

solves (1), where W∞ is a soliton as introduced in (3) but with the constant
parameter path π∞. For future reference, let

(16) y∞(t) := 2tv∞ +D∞, θ∞(t, x) := v∞ · x− t(|v∞|2 − α2
∞) + γ∞.

We will use repeatedly that

(17) θ∞(t, x+ y∞) = t(|v∞|2 + α2
∞) + v∞ · (x+D∞) + γ∞.

With this notation, W∞ in (15) takes the form

W∞(t, x) = eiθ∞(t,x)φ(x− y∞(t), α∞).
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Lemma 4. Suppose π is an admissible path and let θ, y and θ∞, y∞ be as
in (4), (5), and (16), respectively. Define

(18) ρ∞(t, x) := θ(t, x+ y∞)− θ∞(t, x+ y∞).

Then

ρ∞(t, x) = (1 + |x|)o(1), y(t)− y∞(t) = o(1)

as t→∞.

Proof. In view of the definition of π∞,

θ(t, x+ y∞)− θ∞(t, x+ y∞)(19)

= v(t) · (x+ 2tv∞ +D∞)−
∫ t

0
(|v(s)|2 − α2(s)) ds+ γ(t)

− v∞ · (x+ 2tv∞ +D∞) + t(|v∞|2 − α2
∞)− γ∞

= (v(t)− v∞) · (x+ 2tv∞ +D∞) + 2
∫ ∞

0

∫ ∞

s
(v · v̇ − αα̇)(σ) dσds

− γ∞ + γ(t)− 2
∫ ∞

t

∫ ∞

s
(v · v̇ − αα̇)(σ) dσds

= (v(t)− v∞) · (x+ 2tv∞ +D∞)− 2
∫ ∞

t

∫ ∞

s
(v · v̇ − αα̇)(σ) dσds

− γ(∞) + γ(t).

Definition 3 implies the desired bound on ρ∞. As for y(t)−y∞(t), the definition
of D∞ implies that

y∞(t)− y(t) = 2tv∞ +D∞ − 2
∫ t

0
v(s) ds−D(t)(20)

=D(∞)−D(t)− 2
∫ ∞

t

∫ ∞

s
v̇(σ) dσ ds,

which goes to zero as t→∞.

Recall from Section 1 that we seek an H1 solution ψ(t) of the cubic nonlin-
ear Schrödinger equation (1) of the form ψ = W +R. The following standard
lemma derives the equation for R, or rather for the vector

(
R
R̄

)
.

Lemma 5. Assume that π(t) = (γ(t), v(t), D(t), α(t)) is admissible; see
Definition 3, and let W = W (t, x) be as in (3). Let 0 < T ≤ ∞. Then
ψ ∈ C([0, T ), H1(R3))∩C1([0, T ), H−1(R3)) solves (1) with ψ = W +R if and
only if Z =

(
R
R̄

)
solves the equation
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i∂tZ+
(
4+ 2|W |2 W 2

−W̄ 2 −4− 2|W |2
)
Z(21)

= v̇

(−xeiθφ(· − y, α)
xe−iθφ(· − y, α)

)
+ γ̇

(−eiθφ(· − y, α)
e−iθφ(· − y, α)

)

+ iα̇

(
eiθ∂αφ(· − y, α)
e−iθ∂αφ(· − y, α)

)
+ iḊ

( −eiθ∇φ(· − y, α)
−e−iθ∇φ(· − y, α)

)

+
(−2|R|2W − W̄R2 − |R|2R

2|R|2W̄ +WR̄2 + |R|2R̄

)

in the sense of C([0, T ), H1(R3)×H1(R3)) ∩ C1([0, T ), H−1(R3)×H−1(R3)).
Here y and θ are the functions from (5) and (4), and α = α(t). For fu-
ture reference, we denote the matrix operator on the left-hand side of (21) by
−H(π(t)), i.e.,

(22) H(π(t)) :=
(
−4− 2|W |2 −W 2

W̄ 2 4+ 2|W |2
)
.

Proof. Let φ = φ(·, α(t)) for ease of notation. Direct differentiation
shows that W (t, x) satisfies

i∂tW +4W = −|W |2W −W (v̇x+ γ̇)− ieiθ∇φ · Ḋ + ieiθα̇∂αφ.

Hence W +R is a solution of (1) if and only if

i∂tR+4R=−2|W |2R− 2|R|2W − |R|2R−W 2R̄− W̄R2

−eiθφ(v̇x+ γ̇)− ieiθ∇φ · Ḋ + ieiθα̇∂αφ.

Joining this equation with its conjugate leads to the system (21). Conversely,
if Z(0) is of the form

Z(0) =
(
Z1(0)
Z1(0)

)
,

and Z(t) solves (21), then Z(t) remains of this form for all times. This is simply
the statement that the system (21) is invariant under the transformation

(23) J : f 7→ Jf, J =
(

0 1
1 0

)
, f =

(
f1

f1

)
,

which can be checked by direct verification. This fact allows us to go back
from the system to the scalar equation.

The issue of J -invariance is of great importance. The J -invariant vectors
in L2(R3)× L2(R3) form a real-linear subspace, namely

{(f
f̄

) ∣∣∣ f ∈ L2(R3)
}
.
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Writing f = f1 + if2 it can be seen to be isomorphic to the subspace
{(f1

f2

) ∣∣∣ f1, f2 ∈ L2(R3), f1, f2 are real-valued
}
,

which is clearly linear, but only over R. We need to insure that all vectorial
solutions we construct belong to this subspace. Only then is it possible to
revert to the scalar nonlinear Schrödinger equation (1).

As usual, it will be convenient to transform (21) to a stationary frame. In
addition, a modulation will be performed. The details are as follows.

Lemma 6. Let π(t) be an admissible path and let π∞ be the constant vector
associated with it as in Definition 3. Given a vector Z =

(
Z1

Z2

)
, introduce U , as

well as M(t),G∞(t) by means of

(24) U(t) =
(
eiω(t) 0

0 e−iω(t)

)(
g∞(t)−1Z1(t)

g∞(t)−1Z2(t)

)
= M(t)G∞(t)Z(t),

where ω(t) = −tα2
∞. Then Z(t) solves (21) in the H1 sense if and only if

U =
(
U1

U2

)
as in (24) satisfies the following PDE in the H1 sense (with φ∞ =

φ(·, α∞)):

(25) iU̇(t) +
(
4+ 2φ2

∞ − α2
∞ φ2

∞
−φ2
∞ −4− 2φ2

∞ + α2
∞

)
U

= −iπ̇∂πW̃ (π) +N(U, π) + V U

where we use the formal notation

V = V (t)

(26)

:=
(

2(φ2
∞(x)− φ2(x+ y∞ − y)) φ2

∞(x)− e2iρ∞φ2(x+ y∞ − y)
−φ2
∞(x) + e−2iρ∞φ2(x+ y∞ − y) −2(φ2

∞(x)− φ2(x+ y∞ − y))

)
,

−π̇∂πW̃ (π) := v̇

(−(x+ y∞)eiρ∞φ(x+ y∞ − y)
(x+ y∞)e−iρ∞φ(x+ y∞ − y)

)
+ γ̇

(−eiρ∞φ(x+ y∞ − y)
e−iρ∞φ(x+ y∞ − y)

)(27)

+ iα̇

(
eiρ∞∂αφ(x+ y∞ − y)
e−iρ∞∂αφ(x+ y∞ − y)

)
+ iḊ

( −eiρ∞∇φ(x+ y∞ − y)
−e−iρ∞∇φ(x+ y∞ − y)

)
,

(28)

N(U, π) :=
(−2|U1|2eiρ∞φ(x+ y∞ − y)− e−iρ∞φ(x+ y∞ − y)U2

1 − |U1|2U1

2|U2|2e−iρ∞φ(x+ y∞ − y) + eiρ∞φ(x+ y∞ − y)U2
2 + |U2|2U2

)
.

Here ρ∞ = ρ∞(t, x) is as in Lemma 4, φ(x+y∞−y) = φ(x+y∞(t)−y(t), α(t)),
and ω = ω(t) is as in (24). Finally, Z is J -invariant if and only if U is
J -invariant, and U is J -invariant if and only if U(0) is J -invariant.
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Proof. Throughout this proof we will adhere to the convention that
φ = φ(·, α(t)) whereas φ∞ = φ(·, α∞)). Write the equation (21) for Z in the
form

(29) i∂tZ −H∞Z = F + (H(π(t))−H∞)Z

where

(30) H∞ =
(
−4− 2|W∞|2 −W 2

∞
W̄ 2
∞ 4+ 2|W∞|2

)
;

see (15) and (16). With G∞(t) defined as in (24), and with p = −i∇,

i
d

dt
G∞(t)f =

(
i ġ∞(t)−1f1

i ġ∞(t)−1f2

)
=
( −(2v∞ · p+ |v∞|2) g∞(t)−1f1

−(2v∞ · p− |v∞|2) g∞(t)−1f2(t)

)
(31)

=
(
−(2v∞ · p+ |v∞|2) 0

0 −(2v∞ · p− |v∞|2)

)
G∞(t)f

for any f =
(
f1
f2

)
. Furthermore,

M(t)G∞(t)H∞
(
f1

f2

)
(32)

=
(
eiω(t) 0

0 e−iω(t)

)(−(4+ 2φ2
∞) g∞(t)−1f1 − φ2

∞e
2iθ∞(t,x+y∞) g∞(t)−1f2

φ2∞e−2iθ∞(t,x+y∞) g∞(t)−1f1 + (4+ 2φ2∞) g∞(t)−1f2

)

−
(
eiω(t) 0

0 e−iω(t)

)(
−|v∞|2 + 2iv∞ · ∇ 0

0 |v∞|2 + 2iv∞ · ∇

)
G∞(t)

(
f1

f2

)

=
(
eiω(t) 0

0 e−iω(t)

)

×
(−(4+2φ2

∞) g∞(t)−1f1−φ2
∞e

2i[θ∞(t,x+y∞)−(t|v∞|2+v∞·(x+D∞)+γ∞)] g∞(t)−1f2

φ2∞e−2i[θ∞(t,x+y∞)−(t|v∞|2+v∞·(x+D∞)+γ∞)] g∞(t)−1f1+(4+2φ2∞) g∞(t)−1f2

)

−
(
eiω(t) 0

0 e−iω(t)

)(
−|v∞|2 + 2iv∞ · ∇ 0

0 |v∞|2 + 2iv∞ · ∇

)
G∞(t)

(
f1

f2

)
.

Now
θ∞(t, x+ y∞)− (t|v∞|2 + v∞ · (x+D∞) + γ∞) = tα2

∞;

see (17). Hence, by the definition of ω(t) (and dropping the argument t from
M and G∞ for simplicity),

(32) =
(
eiω(t) 0

0 e−iω(t)

)(
−(4+ 2φ2

∞) −φ2
∞e

2itα2
∞

φ2
∞e
−2itα2

∞ 4+ 2φ2
∞

)
G∞f

(33)

−
(
eiω(t) 0

0 e−iω(t)

)(
−|v∞|2 − 2v∞ · p 0

0 |v∞|2 − 2v∞ · p

)
G∞f
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=
(
−4− 2φ2

∞ −φ2
∞

φ2
∞ 4+ 2φ2

∞

)
MG∞f

−
(
−|v∞|2 − 2v∞ · p 0

0 |v∞|2 − 2v∞ · p

)
G∞f.

Denote the first matrix operator in (33) by Hφ. Hence, in combination with
(31) one concludes from (29) that

iU̇ = iṀG∞Z + iM Ġ∞Z +MG∞H∞ +MG∞(F + (H(π(t))−H∞)Z)

=
(
−ω̇ 0
0 ω̇

)
MG∞Z

+
(
−(2v∞ · p+ |v∞|2) 0

0 −(2v∞ · p− |v∞|2)

)
MG∞Z +HφMG∞Z

+
(
|v∞|2 + 2v∞ · p 0

0 −|v∞|2 + 2v∞ · p

)
MG∞Z

+MG∞(F + (H(π(t))−H∞)Z)

=
(
−4+ α2

∞ − 2φ2
∞ −φ2

∞
φ2
∞ 4− α2

∞ + 2φ2
∞

)
U(t)

+MG∞(F + (H(π(t))−H∞)G−1
∞ M−1U).

It remains to compute the terms

π̇∂πW̃ (π) +N(U, π) = M(t)G∞(t)F (t),(34)

V = M(t)G∞(t)(H(π(t))−H∞)G∞(t)−1M(t)−1(35)

In view of (21), one has

F = v̇

(−xeiθφ(x− y)
xe−iθφ(x− y)

)
+ γ̇

(−eiθφ(x− y)
e−iθφ(x− y)

)

+ iα̇

(
eiθ∂αφ(x− y)
e−iθ∂αφ(x− y)

)
+ iḊ

( −eiθ∇φ(x− y)
−e−iθ∇φ(x− y)

)

+
(−2|R|2W − W̄R2 − |R|2R

2|R|2W̄ +WR̄2 + |R|2R̄

)
.

Now

θ(t, x+ y∞)− (α2
∞t+ v∞ · (x+D∞) + t|v∞|2 + γ∞)

= θ(t, x+ y∞)− θ∞(t, x+ y∞) = ρ∞(t, x);

see (17) and Lemma 4. Thus, the first term of MGF is

v̇

(
eiω 0
0 e−iω

)(−(x+ y∞)eiθ(t,x+y∞) e−i(t|v∞|
2+v∞·(x+D∞)+γ∞)φ(x+ y∞ − y)

(x+ y∞)e−iθ(t,x+y∞) ei(t|v∞|2+v∞·(x+D∞)+γ∞)φ(x+ y∞ − y)

)

= v̇

(−(x+ y∞)eiρ∞(t,x)φ(x+ y∞ − y)
(x+ y∞)e−iρ∞(t,x)φ(x+ y∞ − y)

)
.
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This gives the v̇ term in (27). The other terms involving α̇, γ̇, and Ḋ are
treated similarly, and we skip the details. The cubic term in (21) is also easily
transformed, and it leads to the nonlinear term N(U, π) in (28). We skip that
calculation as well. Finally, it remains to transform H(π(t))−H∞:

H(π(t))−H∞

=
(

2(φ2
∞(· − y∞)− φ2(· − y)) e2iθ∞φ2

∞(· − y∞)− e2iθφ2(· − y)
e−2iθφ2(· − y)− e−2iθ∞φ2

∞(· − y∞) −2(φ2
∞(· − y∞)− φ2(· − y))

)

where φ∞ = φ(· − y∞(t), α∞), φ = φ(· − y(t), α(t)) for simplicity. It is easy to
check that

G∞(t)(H(π(t))−H∞)

=
(

2(φ2
∞(x)− φ2(x+ y∞ − y)) ∗

−e−2itα2
∞(φ2

∞(x)− e−2iρ∞φ2(·+ y∞ − y)) ∗

)
G∞(t).

After conjugation by the matrix M(t) this takes the desired form (26) and
we are done. For the final statements concerning J -invariance, observe first
that the transformation (24) from Z to U preserves J -invariance. Second,
the equation (25) is J -invariant, which shows that it suffices to assume the
J -invariance of U(0) to guarantee it for all t ≥ 0. To check the J -invariance
of (25), note that the right-hand side of (25) transforms like

J [−iπ̇∂πW̃ (π) +N(U, π) + V U ] = −[−iπ̇∂πW̃ (π) +N(JU, π) + V JU ],

while the left-hand side transforms as follows:

J [iU̇(t) +
(
4+ 2φ2

∞ − α2
∞ φ2

∞
−φ2
∞ −4− 2φ2

∞ + α2
∞

)
U ]

= −i ˙JU(t)−
(
4+ 2φ2

∞ − α2
∞ φ2

∞
−φ2
∞ −4− 2φ2

∞ + α2
∞

)
JU.

Combining these statements yields the desired J -invariance of (25).

In what follows, we will need to bound the nonlinear term N(U, π) in
various norms. For future reference we therefore include the following lemma.

Lemma 7. Let π be an admissible path and let N(U, π) be as in (28).
Then

‖N(U, π)‖1 . min(‖U‖2∞, ‖U‖22) + ‖U‖33,(36)

‖N(U, π)‖2 . min(‖U‖2∞, ‖U‖24) + ‖U‖36,(37)

‖∇N(U, π)‖2 . min(‖U‖2∞, ‖U‖24) + ‖U∇U‖2 + ‖|U |2∇U‖2,(38)

‖∇N(U, π)‖1 . min(‖U‖2∞, ‖U‖22) + ‖U∇U‖1 + ‖|U |2∇U‖1.(39)

Proof. Direct estimation of the terms of the matrix on the right-hand
side of (28).
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3. The linearized problem and the root spaces at zero

Recall that φ = φ(·, α) is the ground state of −4φ+ α2φ = φ3. Define

(40) H(α) :=
(
−4− 2φ2 + α2 −φ2

φ2 4+ 2φ2 − α2

)
.

Hence the matrix operator on the left-hand side of (25) is equal to −H(α∞);
i.e., (25) can be rewritten as

i∂tU −H(α∞)U =−iπ̇∂πW̃ (π) +N(U, π) + V U

or
i∂tU −H(t)U =−iπ̇∂πW̃ (π) +N(U, π),

where H(t) := H(α∞) + V (t). The main goal of this section and the following
one is to characterize the entire discrete spectrum of H(α). Fix some α > 0.
One has the representation (see for example [6], [38], [17])

L2(R3)× L2(R3) = N + L+ (N ∗ + L∗)⊥

where L,L∗ are the sum of the eigenspaces corresponding to the purely imag-
inary eigenvalues of H(α) and H(α)∗, respectively, and N ,N ∗ are the root
spaces of H(α) and H(α)∗, respectively, i.e.,

N =
∞⋃

n=1

ker(H(α)n), N ∗ =
∞⋃

n=1

ker((H(α)∗)n).

The sum here is direct but not orthogonal. In particular, this representation
shows that

(41) Ran(Ps(α)) = (N ∗ + L∗)⊥

where I−Ps(α) is the Riesz projection corresponding to the discrete spectrum
of H(α). In [49], Weinstein showed that the root spaces N (α) and N ∗(α) of
H(α) and H∗(α), respectively, are (with φ = φ(·, α))

N = N (α) = span
{( iφ

−iφ

)
,

(
∂αφ

∂αφ

)
,

(
∂jφ

∂jφ

)
,

(
ixjφ

−ixjφ

) ∣∣∣ 1 ≤ j ≤ 3
}
,(42)

N ∗ = N (α)∗ = span
{(φ

φ

)
,

(
i∂αφ

−i∂αφ

)
,

(
i∂jφ

−i∂jφ

)
,

(
xjφ

xjφ

) ∣∣∣ 1 ≤ j ≤ 3
}
.(43)

Showing that the root spaces contain the sets on the right-hand side is just
a matter of direct computation. The difficulty lies with showing the equality.
Moreover, Weinstein showed that ker(H2(α)) = ker(H3(α)) (his argument only
applies to certain nonlinearities, which include the cubic nonlinear Schrödinger
equation in R3).

In order to apply the linear dispersive L1(R3) → L∞(R3) estimates from
Section 7 to (25), one needs to project U onto Ran(Ps). Following common
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practice, see Soffer, Weinstein [43], [44], and Buslaev, Perelman [6], we will
make an appropriate choice of the path π(t) in order to insure that U(t) is
perpendicular to N ∗. However, for technical reasons it is advantageous to
impose an orthogonality condition onto a time-dependent family of functions
rather than N ∗ itself. We introduce this family in the following definition. In
view of Lemma 4, it approaches N ∗ in the limit t→∞.

Definition 8. Assume that π is an admissible path and let y, θ be as in (5),
(4), y∞, θ∞ as in (16), and ρ∞ as in (18). With these functions, define

ξ1(t) :=
(
eiρ∞φ(·+ y∞ − y, α(t))
e−iρ∞φ(·+ y∞ − y, α(t))

)
,

ξ2(t) :=
(

ieiρ∞∂αφ(·+ y∞ − y, α(t))
−ie−iρ∞∂αφ(·+ y∞ − y, α(t))

)
,

ξ2+`(t) :=
(
eiρ∞(x` + y∞ − y)φ(·+ y∞ − y, α(t))
e−iρ∞(x` + y∞ − y)φ(·+ y∞ − y, α(t))

)
,

ξ5+`(t) :=
(

ieiρ∞∂`φ(·+ y∞ − y, α(t))
−ie−iρ∞∂`φ(·+ y∞ − y, α(t))

)

for ` = 1, 2, 3. We also introduce another family {ηj}8j=1 by

(44) ηj =
(
−i 0
0 i

)
ξj for any 1 ≤ j ≤ 8.

By inspection, J ξj = ξj for 1 ≤ j ≤ 8 and we chose ηj in such a way that
J ηj = ηj for each j. Clearly, while the ξj correspond to H∗, the ηj correspond
to H, cf. (42) and (43). Let U be as in Lemma 6. We refer to the condition
that

(45) 〈U(t), ξj(t)〉 = 0

for all t ≥ 0, 1 ≤ j ≤ 8 as the orthogonality condition. As usual, the orthog-
onality condition (45) leads to an ODE for the path π(t). Following [13], we
first modify the γ parameter.

Lemma 9. Let π(t) be an admissible path as in Definition 3. Set

(46) ˙̃γ(t) := γ̇(t) + v̇(t) · y(t)

and γ̃(∞) := 0; i.e.,

γ̃(t) := −
∫ ∞

t

[
γ̇(s) + v̇(s) · y(s)

]
ds.

Then the function π̇∂πW̃ (π) on the right-hand side of (25) satisfies

π̇∂πW̃ (π) =
3∑

`=1

(Ḋ`η5+` + v̇`η2+`)− α̇η2 + ˙̃γη1

where the functions {ηj}8j=1 are as in (44).



STABLE MANIFOLDS 155

Proof. By inspection.

The following lemma records some useful facts about the two families in
Definition 8.

Lemma 10. Let φ = φ(·, α(t)) be the ground state of (2) and let {ξj}8j=1

and {ηj}8j=1 be as in Definition 8. Then

〈ξ1, ηj〉 = 2〈∂αφ, φ〉 if j = 2 and = 0 else,

〈ξ2, ηj〉 = −2〈∂αφ, φ〉 if j = 1 and = 0 else,

〈ξ2+`, ηj〉 = −2〈φ, φ〉 if j = 5 + ` and = 0 else,

〈ξ5+`, ηj〉 = 2〈φ, φ〉 if j = 2 + ` and = 0 else.

Here ∂α〈φ, φ〉 = 2〈∂αφ, φ〉 = −α−1‖φ‖22. Moreover, let σ3 =
(

1 0
0 −1

)
and

(47) E := [−|v(t)− v∞|2 − 2i(v(t)− v∞) · ∇+ α2
∞ − α(t)2]σ3.

Also, H(t) = H(α∞) + V (t), see (40) and (26). Then

H(t)∗ξ1 = Eξ1,

H(t)∗ξ2 = −2iα(t)ξ1 + Eξ2,

H(t)∗ξ2+` = −2iξ5+` + Eξ2+`,

H(t)∗ξ5+` = Eξ5+`

for any ` = 1, 2, 3.

Proof. The statements about the scalar products are checked by direct
verification. That ∂α〈φ, φ〉 = −α−1‖φ‖22 follows from the fact that the ground
states φ(·, α) of (2) satisfy φ(·, α) = αφ(αx, 1). The matrix H(t)∗ is explicitly
given by

H(t)∗=
(
−4+α2

∞−2φ2(·+y∞(t)−y(t), α(t)) e2iρ∞φ2(·+y∞(t)−y(t), α(t))
−e−2iρ∞φ2(·+y∞(t)−y(t), α(t)) 4−α2

∞+2φ2(x+y∞(t)−y(t), α(t))

)
.

Therefore,

H(t)∗ξ1(t)

=
(
−4+α(t)2 − 2φ2(·+y∞(t)−y(t), α(t)) e2iρ∞φ2(·+y∞(t)−y(t), α(t))
−e−2iρ∞φ2(·+y∞(t)−y(t), α(t)) 4−α(t)2+2φ2(x+y∞(t)−y(t), α(t))

)
ξ1

+ σ3(α2
∞ − α(t)2)ξ1(t)

= σ3(α2
∞ − α(t)2)ξ1(t)

+
( −4

(
eiρ∞φ(·+ y∞(t)− y(t), α(t))

)
+ eiρ∞4φ(·+ y∞(t)− y(t), α(t))

4
(
e−iρ∞φ(·+ y∞(t)− y(t), α(t))

)
− e−iρ∞4φ(·+ y∞(t)− y(t), α(t))

)
.
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Here we used that

(−4+ α(t)2 − φ2(·+ y∞(t)− y(t), α(t)))φ(·+ y∞(t)− y(t), α(t)) = 0,

which is the ground state equation. An explicit calculation shows that

(−4
(
eiρ∞φ(·+ y∞(t)− y(t), α(t))

)
+ eiρ∞4φ(·+ y∞(t)− y(t), α(t))

4
(
e−iρ∞φ(·+ y∞(t)− y(t), α(t))

)
− e−iρ∞4φ(·+ y∞(t)− y(t), α(t))

)

=
(
−i4ρ∞ − |∇ρ∞|2 − 2i∇ρ∞ · ∇ 0

0 −i4ρ∞ + |∇ρ∞|2 − 2i∇ρ∞ · ∇

)
ξ1.

The conclusion is that (see (19))

H(t)∗ξ1 = σ3(α2
∞ − α(t)2)ξ1

+
(
−i4ρ∞ − |∇ρ∞|2 − 2i∇ρ∞ · ∇ 0

0 −i4ρ∞ + |∇ρ∞|2 − 2i∇ρ∞ · ∇

)
ξ1

= Eξ1,

as claimed. The calculation for ξ`, 2 ≤ ` ≤ 8 is analogous, and we skip it.

We can now derive the usual modulation equations for the admissible path
π under the orthogonality assumption (45).

Lemma 11. Assume that π is an admissible path and that U is an H1

solution of (25) with an initial condition U(0) which satisfies the orthogonality
assumptions (45) at time t = 0. Then U satisfies the orthogonality assump-
tions (45) for all times if and only if π satisfies the modulation equations (with
E as in (47) and with φ = φ(·, α(t)))

α̇α−1‖φ‖22 = 〈U, ξ̇1〉 − i〈U,Eξ1〉 − i〈N(U, π), ξ1〉,
˙̃γα−1‖φ‖22 = 〈U, ξ̇2〉 − i〈U,Eξ2〉 − i〈N(U, π), ξ2〉,
2Ḋ`‖φ‖22 = 〈U, ξ̇2+`〉 − i〈U,Eξ2+`〉 − i〈N(U, π), ξ2+`〉,
2v̇`‖φ‖22 = 〈U, ξ̇5+`〉 − i〈U,Eξ5+`〉 − i〈N(U, π), ξ5+`〉

for all 1 ≤ ` ≤ 3.

Proof. Clearly, for any 1 ≤ j ≤ 8,

〈U(t), ξj(t)〉 = 0 for all t ≥ 0

is equivalent to

〈U(0), ξj(0)〉 = 0 and 〈∂tU, ξj〉 = −〈U, ξ̇j〉 for all t ≥ 0.

Starting from
i∂tU −H(t)U = −iπ̇∂πW̃ (π) +N(U, π),

the modulation equations now follow from the previous two lemmas.
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Later it will be important to have a family of functions that plays the
same role for Z(t) as {ξj}8j=1 does for U(t). The following lemma introduces
this family and establishes some statements for it analogous to the ones we
just obtained for {ξj}8j=1.

Lemma 12. Fix an admissible path π and let θ, y be as in (4) and (5),
respectively. Define

ξ̃1(t, x) :=
(
eiθ(t,x)φ(x− y(t), α(t))
e−iθ(t,x)φ(x− y(t), α(t))

)
,

ξ̃2(t, x) :=
(

ieiθ(t,x)∂αφ(x− y(t), α(t))
−ie−iθ(t,x)∂αφ(x− y(t), α(t))

)
,

ξ̃2+`(t) :=
(
eiθ(t,x)(x` − y`(t))φ(x− y(t), α(t))
e−iθ(t,x)(x` − y`(t))φ(x− y(t), α(t))

)
,

ξ̃5+`(t) :=
(

ieiθ(t,x)∂`φ(x− y(t), α(t))
−ie−iθ(t,x)∂`φ(x− y(t), α(t))

)

for ` = 1, 2, 3. Then

ξj(t) = M(t)G∞(t)ξ̃j(t) for all 1 ≤ j ≤ 8.

Also, let U and Z be related by (24). Then U satisfies the orthogonality con-
dition (45) if and only if Z(t) satisfies

〈Z(t), ξ̃j(t)〉 = 0 for all 1 ≤ j ≤ 8, t ≥ 0.

Finally, introduce {η̃j(t)}8j=1 as in (44), i.e.,

η̃j =
(
−i 0
0 i

)
ξ̃j for any 1 ≤ j ≤ 8.

Then the same scalar product relations hold as in Lemma 10. Indeed,

〈ξ̃1, η̃j〉 = 2〈∂αφ, φ〉 if j = 2 and = 0 else,

〈ξ̃2, η̃j〉 = −2〈∂αφ, φ〉 if j = 1 and = 0 else,

〈ξ̃2+`, η̃j〉 = −2〈φ, φ〉 if j = 5 + ` and = 0 else,

〈ξ̃5+`, η̃j〉 = 2〈φ, φ〉 if j = 2 + ` and = 0 else.

Finally, with H(π(t)) as in (22) we have the relations (with ∂α acting on φ but
not on θ):

i∂tξ̃1(t)−H∗(π(t))ξ̃1(t) = −i
(

˙̃γη̃1 +
3∑

`=1

(Ḋ`η̃5+` + v̇`η̃2+`

)
− α̇η̃2) =: i ˙̃πS1(t),

(48)
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i∂tξ̃2(t)−H∗(π(t))ξ̃2(t) = 2iαξ̃1 + ∂α

(
˙̃γη̃1 +

3∑

`=1

(Ḋ`η̃5+` + v̇`η̃2+`)− α̇η̃2

)

=: 2iαξ̃1 + i ˙̃πS2(t),

as well as for all 1 ≤ ` ≤ 3,

i∂tξ̃2+`(t)−H∗(π(t))ξ̃2+`(t)

= 2ξ̃5+` + (x` − y`(t))
(

˙̃γη̃1 +
3∑

k=1

(Ḋkη̃5+k + v̇kη̃2+k)− α̇η̃2

)

=: 2ξ̃5+` + i ˙̃πS2+`(t),

i∂tξ̃5+`(t)−H∗(π(t))ξ̃5+`(t)

= ∂x

(
˙̃γη̃1 +

3∑

k=1

(Ḋkη̃5+k + v̇kη̃2+k)− α̇η̃2

)
− v` ˙̃γξ̃1

− v`
3∑

k=1

(Ḋkξ̃5+k + v̇kξ̃2+k) + α̇v`ξ̃2 + iv̇`ξ̃1 =: i ˙̃πS5+`(t),

where the matrices Sj are defined via these relations.

Proof. This can be read off from the definitions of M(t), G∞(t).

We now make two remarks. The first one concerns how to insure the
orthogonality condition for the transformed solution U(t) (which depends on
some path) at time t = 0 by a condition which is path independent. The
second one concerns the J -invariance of eigenfunctions.

Remark 13. Let R0 ∈ L2(R3) be such that Z0 =
(R0

R̄0

)
satisfies Z0 ∈ N ∗⊥.

According to Lemma (25) the transformed initial condition is

U(0) = M(0)G∞(0)Z0.

We claim that then 〈U(0), ξj(0)〉 = 0 for all 1 ≤ j ≤ 8, which is precisely
the condition of the previous lemma. Here {ξj}8j=1 are the functions from
Definition 8 defined relative to any admissible path π as long as it starts at
π(0) = (α0, 0, 0, 0) as required by Theorem 1 (this is of course no restriction,
since the initial soliton in the theorem is as good as any other modulo a Galilei
transform). We verify this claim for ξ1(0), the other cases being similar. First,
since π(0) = (α0, 0, 0, 0), one checks directly from the definitions that

ξ1(0) =
(
e−i(v∞·(x+D∞)+γ∞)φ(·+D∞, α0)
ei(v∞·(x+D∞)+γ∞)φ(·+D∞, α0)

)

= G∞(0)
(
φ(·, α0)
φ(·, α0)

)
.
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Also since M(0) = Id, it therefore follows that

〈U(0), ξ1(0)〉 =
〈
G∞(0)M(0)Z0,G∞(0)

(
φ(·, α0)
φ(·, α0)

)〉
=
〈
Z0,

(
φ(·, α0)
φ(·, α0)

)〉
= 0,

by unitarity of G∞(0) and the assumption on Z0.

Remark 14. By inspection, all root spaces in this section are J -invariant.
This is a general fact. Indeed, one checks easily that JH(α)J = −H(α).
Therefore, if H(α)f = iσf with σ ∈ R, it follows that H(α)Jf = −iσJf where

as usual J =
(

0 1
1 0

)
. Hence

J ker(H− iσI) = Jker(H− iσI) = ker(H− iσI)

for any σ ∈ R. A similar argument shows that the root spaces at zero are also
J -invariant. In particular, one concludes from this that the Riesz projections
Ps, Proot, Pim preserve the space of J -invariant functions in L2(R3) × L2(R3).
This can also easily be seen directly: Let P be any Riesz projection corre-
sponding to an eigenvalue of H(α) on iR, i.e.,

P =
1

2πi

∮

γ
(zI −H(α))−1 dz

where γ is a small positively oriented circle centered at that eigenvalue. Since
JH(α)J = −H(α), one concludes that

JPJ =
1

2πi

∮

γ
J(zI −H(α))−1J dz =

1
2πi

∮

γ
(H(α) + zI)−1 dz.

Thus, if F =
(
F1

F2

)
, then −γ̄ = γ (in the sense of oriented curves) implies that

JPF = − 1
2πi

∮

γ
(H(α) + z̄I)−1 dz̄ JF =

1
2πi

∮

γ
(zI −H(α))−1 dz JF = PJF,

so that J ◦ P = P ◦ J , as claimed.
Another important issue related to J -invariance is whether or not a so-

lution π(t) of the system of modulation equations is real-valued. This is of
course crucial, and is indeed the case if U(t) is J -invariant for all t ≥ 0 and if
π(0) ∈ R8. However, we will not take up this issue here, but rather when we
start solving the modulation equations by means of a contraction scheme; see
Lemma 22 below.

4. The linearized problem and the discrete spectrum

In this section we describe the entire discrete spectrum of the linearized
Hamiltonian obtained from the cubic nonlinear Schrödinger equation (1). Re-
call that the nonlinearity |ψ|2βψ has two scalar elliptic operators associated
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with it, namely,

L− := −4+ α2 − φ(·, α)2β, L+ := −4+ α2 − (2β + 1)φ(·, α)2β

where φ(·, α) is a ground state of the equation

−4φ+ α2φ = φ2β.

The meaning of L−, L+ is that the linearized operator of the nonlinear Schrödinger
equation

i∂tψ +4ψ + |ψ|2βψ = 0

takes the form (
0 iL−
−iL+ 0

)

provided the perturbation is written as R = u + iv and this matrix acts on(
u
v

)
(in contrast, (40) acts on

(
R
R̄

)
). We are interested in the range 2

3 < β ≤
1, which is supercritical. The restriction β ≤ 1 has to do with Weinstein’s
work [49], where it is imposed. We recall that it is known that L− has zero as
lowest eigenvalue (with φ as ground state), whereas L+ has a unique negative
eigenvalue E0, and a kernel spanned by ∂jφ, 1 ≤ j ≤ 3. In one dimension, it is
known that L− and L+ do not have eigenvalues in (0, α2] and no resonance at
the edge α2; see [29]. These properties hold in the entire supercritical range. In
dimension three it can be checked numerically that L+ and L− also do not have
eigenvalues in (0, α2] and no resonance at the edge α2. This is accomplished
by showing that the associated Birman-Schwinger kernels

K−(x, y) :=
φ(x)βφ(y)β

4π|x− y| for the case of L−,

K+(x, y) :=
(2β + 1)φ(x)βφ(y)β

4π|x− y| for the case of L+,

have the corresponding number of eigenvalues in (1− ε,∞): One for K− and
four for K+. The details of this work can be found in the paper of Demanet
and the author [16]. In contrast to the one-dimensional case it is shown there
that a restriction β∗ < β is needed where 2

3 < β∗ < 1. Hence, the method of
proof of this section does not apply to the entire super-critical range β > 2/3.

We start by showing that zero is the only point of the discrete spectrum
of the matrix operator on the real axis. Since any such point would have to
be an eigenvalue, we just need to show that zero is the only eigenvalue in
the interval (−α2, α2). The following lemma is somewhat stronger, since it
proves this for the closed interval [−α2, α2]. The argument is an adaptation of
Proposition 2.1.2 in Perelman [33]. It is based on the fact that L+ does not
have any eigenvalues in (0, α2).

Lemma 15. The only eigenvalue of H(α) in the interval [−α2, α2] is zero.
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Proof. Suppose not. Then H(α)2 has an eigenvalue E ∈ (0, α4]. For
simplicity and without loss of generality, let us choose α = 1. Then there is
ψ ∈ L2(R3), ψ 6= 0, such that

L−L+ψ = Eψ

with 0 < E ≤ 1. Clearly, ψ ⊥ φ and ψ ∈ H4
loc(R3) by elliptic regularity. Define

A := PL+P where P is the projection orthogonal to φ. Since

ker(L+) = span{∂jφ | 1 ≤ j ≤ 3},
and 〈φ, ∂αφ〉 6= 0, we conclude that

ker(A) = span{∂jφ, φ | 1 ≤ j ≤ 3}.
Moreover, let E0 < 0 be the unique negative eigenvalue of L+. Then consider
(as before) the function

g(λ) := 〈(L+ − λ)−1φ, φ〉
which is differentiable on the interval (E0, 1) due to the orthogonality of φ to
the kernel of L+. Moreover,

g′(λ) = 〈(L+ − λ)−2φ, φ〉 > 0, g(0) = −1
2
〈φ, ∂αφ〉 > 0.

The final inequality here is due to the supercritical nature of our problem. Since
also g(λ) → −∞ as λ → E0, it follows that g(λ1) = 0 for some E0 < λ1 < 0.
Moreover, this is the only zero of g(λ) with E0 < λ < 1. If we set

η := (L+ − λ1)−1φ,

then
Aη = λ1η, 〈η, φ〉 = 0.

Conversely, if
Af = λf

for some −∞ < λ < 1, λ 6= 0, and f ∈ L2(R3), then f ⊥ φ and

(PL+P − λ)f = (A− λ)f = 0.

Since also
E0〈f, f〉 ≤ 〈L+f, f〉 = λ〈f, f〉

it follows that λ ≥ E0. If λ = E0, then f would necessarily have to be the
ground state of L+ and thus of definite sign. But then 〈f, φ〉 6= 0, which is
impossible. Hence E0 < λ < 1. But then g(λ) = 0 implies that λ = λ1 is
unique. In summary, A has eigenvalues λ1 and 0 in (−∞, 1), with λ1 being a
simple eigenvalue and 0 being an eigenvalue of multiplicity four. Now define

F := span{ψ, η, ∂jφ, φ | 1 ≤ j ≤ 3}.
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We claim that

(49) dim(F) = 6.

Since φ is perpendicular to the other functions, it suffices to show that

c1ψ + c2η +
5∑

j=3

cj∂jφ = 0

can only be the trivial linear combination. Apply L+. Then

c1L+ψ + c2L+η = 0

and therefore

c1〈L+ψ,ψ〉+ c2〈L+η, ψ〉 = 0,

c1〈L+ψ, η〉+ c2〈L+η, η〉 = 0.

This is the same as

c1E〈L−1
− ψ,ψ〉+ c2λ1〈η, ψ〉 = 0,

c1λ1〈ψ, η〉+ c2λ1〈η, η〉 = 0.

The determinant of this system is

Eλ1〈L−1
− ψ,ψ〉〈η, η〉 − λ2

1|〈η, ψ〉|2 < 0.

Hence c1 = c2 = 0 and therefore also c3 = c4 = c5 = 0, as desired. Thus, (49)
holds. Finally, we claim that

(50) sup
‖f‖2=1, f∈F

〈Af, f〉 < 1.

If this is true, then by the min-max principle and (49) we would obtain that the
number of eigenvalues of A in the interval (−∞, 1) (counted with multiplicity)
would have to be at least six. On the other hand, we showed before that this
number is exactly five, leading to a contradiction. Hence, the lemma will follow
once we verify (50). Since 〈PL−1

− Pf, f〉 < 〈f, f〉 for all f 6= 0, and since E ≤ 1
by assumption, this in turn follows from the stronger claim that

(51) 〈Af, f〉 ≤ E〈PL−1
− Pf, f〉

for all f = aψ+bφ+~c ·∇φ+dη. Clearly, we can take b = 0. Then the left-hand
side of (51) is equal to

〈L+(aψ), aψ + ~c · ∇φ+ dη〉+ 〈L+(~c · ∇φ+ dη), aψ + ~c · ∇φ+ dη〉
(52)

= E〈L−1
− (aψ), aψ + ~c · ∇φ+ dη〉+ E〈~c · ∇φ+ dη, L−1

− (aψ)〉+ 〈L+(dη), dη〉
= E〈L−1

− (aψ), aψ + ~c · ∇φ+ dη〉+ E〈~c · ∇φ+ dη, L−1
− (aψ)〉+ λ1‖dη‖22,
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whereas the right-hand side of (51) is

=E〈L−1
− (aψ), aψ + ~c · ∇φ+ dη〉(53)

+E〈~c · ∇φ+ dη, L−1
− (aψ)〉+ E〈L−1

− (~c · ∇φ+ dη),~c · ∇φ+ dη〉.

Since
λ1‖dη‖22 ≤ 0, E〈L−1

− (~c · ∇φ+ dη),~c · ∇φ+ dη〉 ≥ 0,

we see that (53) does indeed dominate (52), and (51) follows.

Next, we turn to the issue of resonances of H(α) at the edges of the
essential spectrum. A “resonance” at α2 (or −α2) here refers to the existence
of a solution f to H(α)f = α2f (or = −α2f) so that f 6∈ L2(R3), but such
that

(54)
∫

R3

|f(x)|2(1 + |x|)−2γ dx <∞

for all γ > 1
2 . If ±α2 are neither resonances nor eigenvalues (we have already

excluded the latter), then (H(α) ∓ α2)−1 is bounded on suitable weighted L2

spaces; see [17]. This will be important in order to establish the dispersive
estimates for eitH(α). The proof of the following lemma is similar to that of
Lemma 15, and is an adaptation of the argument in Appendix 1 of Perelman’s
paper [33]. It shows that if the scalar operator L− does not have a resonance at
α2 (the edge of its continuous spectrum), then the matrix operator H(α) does
not have a resonance at ±α2. As already mentioned, one can verify numerically
that L− has this property; see [16].

Lemma 16. Suppose that L− has neither an eigenvalue nor a resonance
at α2. Then the edges ±α2 are not resonances of H(α), i.e., there do not exist
solutions f of H(α)f = ±α2f which satisfy (54) but are not in L2.

Proof. We again set α = 1. By symmetry, it suffices to consider the
right edge α2. Suppose then there is such a solution f with H(α)f = f . Write
f =

(ψ
ψ̃

)
. Then iL−ψ̃ = ψ and −iL+ψ = ψ̃. In particular, L−L+ψ = ψ and

∫

R3

|ψ(x)|2 dx =∞,
∫

R3

|ψ(x)|2(1 + |x|)−2γ dx <∞

for all γ > 1
2 . Clearly, 〈ψ, φ〉 = 0, the latter inner product being well-defined

because of the rapid decay of φ and (54). Furthermore, ψ ∈ H4
loc(R3) by elliptic

regularity. Pick a smooth cut-off χ ≥ 0 which is a constant = 1 around zero,
and compactly supported. Define for any 0 < ε < 1

ψε := ψχ(ε·) + µ(ε)φ, µ(ε) := −〈ψχ(ε·), φ〉
〈φ, φ〉 .
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Clearly, 〈ψε, φ〉 = 0 and |µ(ε)| = o(1) as ε→ 0 (in fact, like e−C/ε). It follows
that

‖ψε‖22 = M0(ε) + o(1), M0(ε) :=
∫

R3

|ψ(x)|2χ(εx)2 dx

with M0(ε)→∞ as ε→ 0. We now claim that

(55) 〈L+ψ
ε, ψε〉 = ‖ψε‖22 + 〈(L+ − 1)ψ,ψ〉+ o(1)

as ε→ 0. We will need to justify that

M := 〈(L+ − 1)ψ,ψ〉
is a finite expression. We first show that this justification, as well as (55)
can be reduced to showing that ∇ψ ∈ L2(R3). Write L− = −4+ 1 + V1 and
L+ = −4+1+V2, with Schwartz functions V1, V2 (they are of course explicitly
given in terms of φ, but we are not going to use that now). We start from the
evident expression

〈L+ψ
ε, ψε〉 = ‖ψε‖22 + 〈(L+ − 1)ψε, ψε〉 = ‖ψε‖22 + 〈(−4+ V2)ψε, ψε〉.

By the rapid decay of V2 and (54),

〈(−4+ V2)ψε, ψε〉 =
∫

R3

|∇ψε(x)|2 dx+
∫

R3

V2(x)|ψ(x)|2 dx+ o(1).

Assuming ∇ψ ∈ L2, we calculate further that
∫

R3

|∇ψε(x)|2 dx =
∫

R3

∣∣∣∇ψ(x)χ(εx) + εψ(x)∇χ(εx)
∣∣∣
2
dx

=
∫

R3

|∇ψ(x)|2 dx+
∫

R3

|∇ψ(x)|2(χ(εx)2 − 1) dx

+ 2ε
∫

R3

ψ(x)χ(εx)∇ψ(x) · ∇χ(εx) dx

+ ε2

∫

R3

ψ(x)2|∇χ(εx)|2 dx

=
∫

R3

|∇ψ(x)|2 dx+ o(1).

To pass to the last line, estimate the error terms using ∇ψ ∈ L2 and (54) (any
γ < 1 works here). This proves (55) provided we interpret 〈(L+ − 1)ψ,ψ〉 as

∫

R3

[|∇ψ(x)|2 + V2(x)|ψ(x)|2] dx.

To prove ∇ψ ∈ L2, we start from the definition, i.e.,

(−4+ 1 + V1)(−4+ 1 + V2)ψ = ψ

which can be written as

(56) (42 − 24)ψ + (−4+ 1)V2ψ + V1(−4+ 1)ψ + V1V2ψ = 0.
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At least formally, integrating by parts against ψ yields that

‖4ψ‖22+2‖∇ψ‖22≤
∫

(|V1|+|V2|+|V1V2|)|ψ(x)|2 dx+‖V2ψ‖22+‖V1ψ‖22+
1
2
‖4ψ‖22,

and thus, in particular, ∇ψ ∈ L2. To make this precise, we write the defining
equations as −iL+ψ = ψ̃ and iL−ψ̃ = ψ. Then

−4ψ = iψ̃ − ψ − V2ψ

which implies that (via (54))

(57)
∫

R3

|4ψ(x)|2〈x〉−2γ dx <∞ ∀ γ > 1
2
.

It is now a simple matter to deduce from this and (54) that

(58)
∫

R3

|∇ψ(x)|2〈x〉−2γ dx <∞ ∀ γ > 1
2
.

This can be done in various ways. For example, it follow from Gauss’ integral
theorem applied to div(u∇u〈x〉−2γ) that for all u ∈ H2 with compact support

∫

R3

|∇u(x)|2〈x〉−2γ dx ≤ C
∫

R3

(|u(x)|2 + |4u(x)|2)〈x〉−2γ dx.

Setting u = ψε, and letting ε → 0 yields the desired inequality (58) for ∇u.
To make our heuristic argument leading to ∇ψ ∈ L2 precise, we pair (56) with
χ(εx)4ψ and integrate by parts. This yields

〈4ψ,4(χ(ε·)4ψ)〉+ 2〈∇ψ,∇(χ(ε·)4ψ)〉
= −〈V2ψ, (−4+ 1)χ(ε·)4ψ〉 − 〈(−4+ 1)ψ, V1χ(ε·)4ψ〉 − 〈V1V2ψ, χ(ε·)4ψ〉.

The terms on the right-hand side are uniformly bounded as ε→ 0 due to (54),
(57) and (58) and the rapid decay of V1, V2 and their derivatives. The second
term on the left-hand side satisfies

∫

R3

∇ψ(x)(4ε∇χ(εx)χ(εx)3ψ(x) + χ(εx)4∇ψ(x)) dx

≥ 1
2

∫

R3

|∇ψ(x)|2χ(εx)4 dx− Cε2

∫

R3

|ψ(x)|2|∇χ(εx)|2χ(εx)2 dx

≥ 1
2

∫

R3

|∇ψ(x)|2χ(εx)4 dx−O(1)

by (54). Similarly,

〈4ψ,4(χ(ε·)4ψ)〉

=
∫

R3

4ψ(x)
(

(4ε24χ(εx)χ(εx)3 + 12ε2|∇χ(εx)|2χ(εx)2)ψ(x)

+ 8ε∇χ(εx) · ∇ψ(x)χ(εx)3 + χ(εx)44ψ(x)
)
dx
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≥ 1
2

∫

R3

|4ψ(x)|2χ(εx)4 dx− Cε2

∫

R3

|∇ψ(x)|2χ(εx)2 dx

− Cε4

∫

R3

|ψ(x)|2[|∇χ(εx)|4 + χ(εx)2] dx

≥ 1
2

∫

R3

|4ψ(x)|2χ(εx)4 dx−O(1)

by (54) and (58). Combining these estimates and invoking the monotone con-
vergence theorem yields 4ψ ∈ L2 and ∇ψ ∈ L2. It is easy to see that the pre-
vious argument allows a better conclusion than L2, namely that 〈x〉b4ψ ∈ L2

for any b < 1
2 and similarly for ∇ψ. In fact, a much stronger conclusion is

possible for 4ψ: recall that g1 := ψ + iψ̃ and g2 := ψ − iψ̃ satisfy
(
−4+ 1 +W1 W2

−W2 4− 1−W1

)(
g1

g2

)
=
(
g1

g2

)

where W1,W2 are again exponentially decaying potentials. This implies that

4g1 = W1g1 +W2g2 and 4g2 = 2g2 +W1g2 +W2g1.

Hence 〈x〉b4g1 ∈ L2 for all b > 0. Similarly,

g2 = (4− 2)−1[W1g2 +W2g1]

is exponentially decaying, which implies that 〈x〉b4g2 ∈ L2 for all b > 0. Con-
sequently, the same estimate holds for4ψ as well as for f := (L+−1)ψ. Hence
〈(L+ − 1)ψ,ψ〉 = 〈f, ψ〉 is well-defined as a usual scalar product. Moreover,
one has

L−f = −(L− − 1)ψ or ψ = −(L− − 1)−1L−f = −f − (L− − 1)−1f.

We conclude that

(59) 〈f + ψ, f〉 = −〈(L− − 1)−1f, f〉 < 0,

where the final inequality follows from L− ≥ 1 on {φ}⊥, as well as our assump-
tion that L− has neither an eigenvalue nor a resonance at α2 = 1. Recall that
this insures that for any τ > 0

‖〈x〉−1−τ (L− − 1)−1h‖2 ≤ C‖〈x〉1+τh‖2
for all h for which the right-hand side is finite, in particular for h = f . The
inequality (59) will play a crucial role in estimating a quadratic form as in
Lemma 15. To see this, let

Fε := span{ψε, ∂1φ, ∂2φ, ∂3φ, η, φ}.
As in the proof of Lemma 15 one shows that dimFε = 6, as least if ε > 0 is
sufficiently small (use that 〈L+ψ

ε, ψε〉 → ∞ as ε → 0). It remains to show
that for small ε > 0

(60) max
f∈Fε

〈PL+Pf, f〉
〈f, f〉 < 1
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where P is the projection orthogonal to φ. If so, then this would imply that A =
PL+P has at least six eigenvalues (with multiplicity) in (−∞, 1). However,
we have shown in the proof of Lemma 15 that there are exactly five such
eigenvalues. To prove (60), it suffices to consider the case f ⊥ φ. Compute

〈L+(aψε + v · ∇φ+ dη), aψε + v · ∇φ+ dη〉
‖aψε + v · ∇φ+ dη‖2

=
|a|2(‖ψε‖22 +M + o(1)) + 2<λ1〈aψε, dη〉+ λ1‖dη‖22
|a|2‖ψε‖22 + 2<〈aψε, v · ∇φ+ dη〉+ ‖v · ∇φ+ dη‖22

≤ max
x∈C5

|x1|2(1 + δ2M + o(δ2)) + 2δλ1<〈x1ψ
ε, x5e4〉+ λ1|x5|2

|x1|2+2δ<〈x1ψε, x2e1 + x3e2 + x4e3 + x5e4〉+ ‖x2e1 + x3e2 + x4e3 + x5e4‖22
where we have set δ2 := ‖ψε‖22 and

e1 =
∂1φ

‖∂1φ‖2
, e2 =

∂2φ

‖∂2φ‖2
, e3 =

∂3φ

‖∂3φ‖2
, e4 =

η

‖η‖2
.

Note that η is a radial function, since it is given by (L+ − λ1)−1φ and both φ

and the kernel of (L+ − 1)−1 are radial. Hence ej ⊥ e4 for 1 ≤ j ≤ 3. Set

bεj := 〈ψε, ej〉 for 1 ≤ j ≤ 4.

Then bεj → b0j := 〈ψ, ej〉 as ε → 0 by the exponential decay of the ej . Let
Bε, Cε (which depend on ε) be 5× 5 Hermitian matrices so that

Cε11 := 1 + δ2M + o(δ2), Cε15 = Cε51 := λ1δb
ε
4, C

ε
55 := λ1

and Cεij = 0 else,
Bε

1j = Bε
j1 := δbεj−1 for 2 ≤ j ≤ 5

and Bε
ij = 0 else. In view of the preceding,

max
f∈Fε

〈PL+Pf, f〉
〈f, f〉 ≤ max

x∈C5

〈Cx, x〉
〈(I +B)x, x〉 .

Clearly, the right-hand side equals the largest eigenvalue of the Hermitian
matrix

(I+Bε)−
1
2Cε(I+Bε)−

1
2 = C− 1

2
(BC+CB)+

3
8

(B2C+CB2)+
1
4
BCB+O(δ3),

where we have dropped the ε in the notation on the right-hand side. With
some patience one can check that the right-hand side equals the matrix D

which is given by (dropping ε from the notation)




1 + δ2M1 − δ
2
b1 − δ

2
b2 − δ

2
b3

δ
2
(λ1 − 1)b4

− δ
2 b1

δ2

4 b2
1

δ2

4 b1b2
δ2

4 b1b3
δ2

4 (1 − 1
2λ1)b1b4

− δ
2
b2

δ2

4
b1b2

δ2

4
b2
2

δ2

4
b2b3

δ2

4
(1 − 1

2
λ1)b2b4

− δ
2
b3

δ2

4
b1b3

δ2

4
b2b3

δ2

4
b2
3

δ2

4
(1 − 1

2
λ1)b3b4

δ
2 (λ1 − 1)b4

δ2

4 (1 − 1
2λ1)b1b4

δ2

4 (1 − 1
2λ1)b2b4

δ2

4 (1 − 1
2λ1)b3b4 λ1 + δ2

4 (1 − λ1)b2
4




+o(δ2)



168 W. SCHLAG

where M1 := M − 3
4λ1b

2
4 + 3

4(b21 + b22 + b23 + b24). When δ = 0, this matrix has
eigenvalues 1, 0, λ1 < 0, and 0 has multiplicity three. When δ 6= 0 but very
small, the largest eigenvalue will be close to one, of the form 1+x with x small.
We need to see that x < 0. Collecting powers4 of x in det(D − (1 + x)I) we
arrive at the condition

(1− λ1)x = δ2[M(1− λ1) + (b21 + b22 + b23)(1− λ1) + b24(1− λ1)2] + o(δ2)

= δ2[M(1− λ1) + ((b01)2 + (b02)2 + (b03)2)(1− λ1) + (b04)2(1− λ1)2] + o(δ2).

Now,
b0j = 〈ψ, ej〉 = −〈(L+ − 1)ψ, ej〉 = −〈f, ej〉 for 1 ≤ j ≤ 3.

On the other hand,

b04 = 〈ψ, e4〉 = −〈f, e4〉+ 〈ψ,L+e4〉 = −〈f, e4〉+ λ1b
0
4

and thus,
b04 = −(1− λ1)−1〈f, e4〉.

Since λ1 < 0 in the supercritical case, we obtain that

(1− λ1)x≤(1−λ1)δ2[M+
4∑

j=1

〈f, ej〉2]+o(δ2)≤(1−λ1)δ2[M+〈f, f〉]+o(δ2)

=(1−λ1)δ2〈f+ψ, f〉+o(δ2)=−(1−λ1)δ2〈(L−−1)−1f, f〉+o(δ2)

which yields that x < 0 for δ small. But ε > 0 small implies that δ is small
and we are done.

In the subcritical case the proof of Lemma 15 breaks down. In fact, the
statement is false: there has to be at least one pair ±λ of real eigenvalues with
0 < λ < α2 in the subcritical case. It is reasonable to expect that there should
be exactly one such pair, but we do not address that here.

Lemma 17. The discrete spectrum of the linearized operator H(α) consists
of zero and a single pair of imaginary eigenvalues ±iσ, σ > 0, each of which
is simple. Moreover,

H(α)f±(α) = ±iσ(α)f±(α)

where f±(α) are exponentially decreasing, C∞ functions with ‖f±(α)‖2 = 1.

Proof. It was shown above that there is no other real discrete spectrum
than zero. As for the existence of an imaginary discrete spectrum, which then
necessarily has to consist of eigenvalues, we refer the reader to the works of
Grillakis, Shatah, Strauss [24], and Grillakis [22], [23]. The general results

4this was done by means of Maple
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of these papers imply that there is exactly one such pair ±iσ counted with
multiplicity for the cubic NLS. In fact, it is relatively easy to see by means
of variational arguments that there needs to be at least one such pair – such
arguments hinge on the orbital instability condition ∂α‖φ(·, α)‖2 < 0 which
is of course satisfied for all focusing nonlinearities |ψ|βψ with β > 2

3 . Then
one observes that the imaginary spectrum needs to move continuously into the
root-space as β → 2

3+. Since the latter was shown by M. Weinstein to have
dimension exactly eight for the range 2

3 < β ≤ 1, and exactly ten for the critical
case β = 2

3 it follows that there has to be exactly one such pair ±iσ(β) for each
1 ≥ β > 2

3 as claimed. The symmetry ±iσ is a well-known consequence of the
commutation properties of H(α) with the Pauli matrices. That the associated
eigenfunctions decay exponentially was proved by Hundertmark and Lee [27]
by a variation of Agmon’s technique [2], whereas the smoothness follows by
elliptic regularity since the potential is smooth.

We now present a simple continuity statement which will be important in
the following two sections.

Corollary 18. We can choose the f±(α) in the previous lemma to be
J -invariant, i.e., J f±(α) = f±(α). Since ‖f±(α)‖2 = 1, they are therefore
unique up to a sign. Choose this sign consistently, i.e., so that f±(α) varies
continuously with α. In that case there is the bound

(61) |σ(α1)− σ(α2)|+ ‖f±(α1)− f±(α2)‖2 ≤ C(α1)|α1 − α2|
for all α1, α2 > 0 which are sufficiently close. Let P±im(α) denote the Riesz
projection onto f±(α), respectively. Then one has, relative to the operator
norm on L2 × L2,

(62) ‖P±im(α1)− P±im(α2)‖ ≤ C(α1)|α1 − α2|
for all α1, α2 as above. Moreover, the Riesz projections admit the explicit
representation

(63) P±im(α) = f±(α)〈·, f̃±(α)〉,
where H(α)∗f̃±(α) = ∓iσf̃±(α), and ‖f̃±(α)‖2 = 1.

Proof. By Remark 14, ker(H(α) ∓ iσ) is J -invariant. Thus, J f±(α) =
λf±(α) for some λ ∈ C. It is easy to see that this requires that |λ|2 = 1. Let
e2iβ = λ. It follows that J (eiβf±(α)) = eiβf±(α), leading to our choice of the
J -invariant eigenfunction. Using the well-known fact that

ker[H(α)∓ iσ(α)] = ker[(H(α)∓ iσ(α))2],

see [6] and [17], one easily obtains (by means of the Riesz projections) that

‖(H(α)− z)−1‖ . |z ∓ iσ(α)|−1 provided |z ∓ iσ(α)| < r0(α).
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In conjunction with the resolvent identity, this yields

|σ(α1)− σ(α2)| ≤ C(α1)|α1 − α2|,
as well as (62). However, the latter clearly implies the remaining bound in (61).
Finally, by the Riesz representation theorem, we necessarily have that (63)
holds with some choice of f̃±(α) ∈ L2 × L2. Since P±im(α)2 = P±im(α), one
checks that

P±im(α)∗f̃±(α) = f̃±(α).

However, writing down P±im(α) explicitly shows that

P+
im(α)∗ =

( 1
2πi

∮

γ
(−H(α) + zI)−1 dz

)∗
= − 1

2πi

∮

γ
(−H(α)∗ + z̄I)−1 dz̄

=
1

2πi

∮

−γ̄
(−H(α)∗ + zI)−1 dz

which is equal to the Riesz projection corresponding to the eigenvalue −iσ
of H(α)∗. Here γ is a small, positively oriented, circle around iσ. A similar
calculation applies to P−im(α). Hence H(α)∗f̃±(α) = ∓iσ(α)f̃±(α), as claimed.
In view of (63),

‖f̃±(α)‖22 = ‖P+
im(α)f̃±(α)‖2 ≤ ‖f̃±(α)‖2.

which implies that ‖f̃±(α)‖2 ≤ 1. On the other hand,

1 = ‖f±(α)‖2 = ‖P+
im(α)f±(α)‖2 ≤ ‖f±(α)‖2‖f̃±(α)‖2 = ‖f̃±(α)‖2,

and we are done.

5. The contraction scheme: Part I

We now set up the contraction map that will lead to a proof of Theorem 1.
According to Lemmas 5 and 6, in order to solve the cubic nonlinear Schrödinger
equation (1) with ψ(t) = W (t) +R(t), we need to find an admissible path π(t)
as well as a function

Z ∈ C([0,∞), H1(R3)×H1(R3)) ∩ C1([0,∞), H−1(R3)×H−1(R3))

so that Z(t) is J -invariant and such that (π(t), Z(t)) together satisfy (21). As
initial conditions we will choose, with R0 satisfying (10) and (11) as well as
with some α = α(R0),

(64) π(0) := (α0, 0, 0, 0), Z(0) :=
(
R0

R̄0

)
+ hf+(α) +

8∑

j=1

ajηj(α)

where h ∈ R, f+(α) is an eigenvector of H(α) with eigenvalue iσ, aj ∈ R, and
N (α) = {ηj(α)}8j=1 is the rootspace of H(α)∗. The contraction argument will
be set in the following space. The parameter α0 > 0 is fixed.
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Definition 19. Let q > 2 be large and fixed. For any sufficiently small
δ > 0 define

Xδ :=
{

(π, Z) ∈ Lip([0,∞),R8)

×
[
L∞((0,∞), (H1(R3))2) ∩ L∞loc((0,∞), (Yq(R3))2)

] ∣∣

conditions (65)–(68) are valid
}

where Yq = {f ∈ H1(R3) | ∇f ∈ L4 + Lq} and for a.e. t ≥ 0,

|α̇(t)|+ |v̇(t)|+ | ˙̃γ(t)|+ |Ḋ(t)| ≤ δ2〈t〉−3(65)

‖Z(t)‖2 + ‖∇Z(t)‖2 ≤ c0 δ(66)

t
3
2 ‖Z(t)‖∞ ≤ c0 δ(67)

t
3
4 ‖∇Z(t)‖L4+Lq ≤ δ.(68)

Here 〈t〉 = (1 + t2)
1
2 . We also require that π(0) = (α0, 0, 0, 0). Here c0 is a

sufficiently small constant and γ̃ is defined as in Lemma 9. Finally, we require
that for a.e. t ≥ 0

(69) Z(t) = JZ(t) = JZ(t)

where J =
(

0 1
1 0

)
.

Note that any path in Xδ is admissible for small δ. In (68) one would like
to take q = ∞, but for technical reasons it is better to take finite but very
large q. We assume that some such large q was chosen and it will be kept fixed.
Note that Yq ↪→ L∞(R3), so that (67) is meaningful.

In what follows, we will need to deal with several paths simultaneously.
Therefore, our notation will need to indicate which paths Galilei transforms,
root spaces, etc. are defined. For example, G∞(π)(t) will mean the (vector)
Galilei transform from (24) defined in terms of π, and {ξj(π)(t)}8j=1 will be the
set of functions from Definition 8 which are obtained from π.

The contraction scheme is based on the linearized equation (21). Indeed,
given (π(0), Z(0)) ∈ Xδ with Z(0) =

(
R(0)

R̄(0)

)
, we solve for

i∂tZ(t) +
(
4+ 2|W (π(0))|2 W 2(π(0))
−W̄ 2(π(0)) −4− 2|W (π(0))|2

)
Z(t)(70)

= v̇

(−xeiθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))
xe−iθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))

)

+ γ̇

(−eiθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))
e−iθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))

)
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+ iα̇

(
eiθ(π

(0))(t)∂αφ(· − y(π(0))(t), α(0)(t))
e−iθ(π(0))(t)∂αφ(· − y(π(0))(t), α(0)(t))

)

+ iḊ

( −eiθ(π(0))(t)∇φ(· − y(π(0))(t), α(0)(t))
−e−iθ(π(0))(t)∇φ(· − y(π(0))(t), α(0)(t))

)

+
(−2|R(0)|2W (π(0))(t)− W̄ (π(0))(t)(R(0))2 − |R(0)|2R(0)

2|R(0)|2W̄ (π(0))(t) +W (π(0))(t)(R̄(0))2 + |R(0)|2R̄(0)

)

with initial condition (64). The vector π̇ here will be determined by means
of the orthogonality condition 〈Z(t), ˙̃

ξj〉 = 0 for all 1 ≤ j ≤ 8, t ≥ 0;
cf. Lemma 12. In this section it will be convenient to work on the level of
the transformed solutions U (0), U and the following definition makes this pre-
cise. The reader should note that (71)–(72) are the same as (70), whereas (73)
is related to the aforementioned orthogonality condition on Z(t).

Definition 20. Suppose (π(0), Z(0)) ∈ Xδ and set

U (0)(t) := M(π(0))(t)G∞(π(0))(t)Z(0)(t);

cf. (24). Let π(0)
∞ be the constant vector associated with

π(0)(t) = (α(0)(t), v(0)(t), D(0)(t), γ(0)(t))

as in Definition 3. Let (π, Z) be defined as the solutions of the linear problems

Z(t) := G∞(π(0))(t)−1M(π(0))(t)−1U(t)(71)

i∂tU −H(α(0)
∞ )U = −iπ̇∂πW̃ (π(0)) +N(U (0), π(0)) + V (π(0))U(72)

i〈π̇∂πW̃ (π(0)), ξj(π(0))〉 = i〈U, ξ̇j(π(0))〉+ 〈U,E(π(0))ξj(π(0))〉(73)

+ 〈N(U (0), π(0)), ξj(π(0))〉

for 1 ≤ j ≤ 8. The notation on the right-hand side of (72) is analogous to that
in (26), (27), (28), and the matrix operators E(π(0)) are those from (47). The
initial conditions are, with R0 satisfying the smallness condition (10),

U(0) = G∞(π(0))(0)Z(0) = G∞(π(0))(0)



(
R0

R̄0

)
+ hf+(α(0)

∞ ) +
8∑

j=1

ajηj(α(0)
∞ )




(74)

π(0) = (α0, 0, 0, 0)(75)

where h, {aj}8j=1 ∈ C are constants (later we will make a unique choice of these
constants in terms of the data (π(0), U (0)), and in fact they will be chosen real-
valued). Here, for any α > 0 we set N (α) = {ηj(α)}8j=1, and we define f±(α)
via

H(α)f±(α) = ±iσf±(α), σ > 0.



STABLE MANIFOLDS 173

We are assuming for simplicity that there is a unique pair {f±(α)} of simple
eigenvectors of H(α) with imaginary eigenvalues.

The main point of this section as well as the next is to show that the map

(76) Ψ : (π(0), Z(0)) 7→ (π, Z),

as given by (71)–(73), defines a contraction on Xδ relative to a suitable norm
provided the parameters h, {aj}8j=1 are chosen correctly. As a first step, we
show in this section that Ψ : Xδ → Xδ for δ > 0 small provided h is chosen
properly. Before doing so, we add some clarifying remarks on Definition 20.
In particular, we need to prove the existence of solutions to (72), (73).

We start with a simple technical statement that improves on Lemma 4 by
means of the stronger assumptions (65).

Lemma 21. Let θ, y and θ∞, y∞ be as in (4), (5), and (16), respectively.
Let ρ∞ be as in Lemma 4. Under the conditions of Definition 19 the bounds

|ρ∞(t, x)| . δ2(1 + |x|)〈t〉−1, |y(t)− y∞(t)| . δ2〈t〉−1

hold for all t ≥ 0. Moreover,

(77) |ρ̇∞(t, x)| . δ2(1 + |x|)〈t〉−2, |ẏ(t)− ẏ∞(t)| . δ2〈t〉−2

for all t ≥ 0. In particular, one has the bounds

‖V (t)‖L1∩L∞ . δ2〈t〉−1, ‖ξ̇j(t)‖L1∩L∞ . δ2〈t〉−2,

‖E(t)ξj(t)‖L1∩L∞ . δ2〈t〉−2,

where V (t) is the matrix from (26), and E(t) is the matrix operator from (47).

Proof. In view of the definitions,

θ(t, x+ y∞)− θ∞(t, x+ y∞) = (v(t)− v∞) · (x+ 2tv∞ +D∞) + γ(t)− γ(∞)

− 2
∫ ∞

t

∫ ∞

s
(v · v̇ − αα̇)(σ) dσds.

Now |γ̇(t)| ≤ δ2〈t〉−2 because of (46). Definition 19 therefore implies the
desired bound on ρ∞. As for y(t)− y∞(t), the definition of D∞ implies that

y∞(t)− y(t) = 2tv∞ +D∞ − 2
∫ t

0
v(s) ds−D(t)

= D(∞)−D(t)− 2
∫ ∞

t

∫ ∞

s
v̇(σ) dσ ds,

which is no larger than Cδ2〈t〉−1, as claimed.

We will make frequent use of the following simple observation: If U(t) and
Z(t) are related by (71), then U(t) satisfies (66)–(68) if and only if Z(t) does
(possibly at the loss of a small multiplicative constant).
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Lemma 22. Let R0 ∈ H1(R3) satisfy
(R0

R̄0

)
⊥ N (α0)∗. Given (π(0), Z(0)) ∈

Xδ and any h, {aj}8j=1 ∈ C, there exist unique solutions

(π, Z)∈Lip([0,∞),C8)

×
[
C([0,∞), H1(R3)×H1(R3)) ∩ C1([0,∞), H−1(R3)×H−1(R3))

]

of (71)–(73) with initial conditions (74), (75). Moreover, if δ > 0 is sufficiently
small, then for any value of h ∈ C, there is a unique choice of {aj}8j=1 =
{aj(h)}8j=1 ∈ C8 so that U(t) satisfies the orthogonality conditions

(78) 〈U(t), ξj(π(0))(t)〉 = 0 for all t ≥ 0, 1 ≤ j ≤ 8;

cf. (45). Moreover, if h ∈ R then also {aj(h)}8j=1 ∈ R8 and in that case U(t),
and therefore also Z(t), is J -invariant and π(t) ∈ R8 for all t ≥ 0.

Proof. For the existence statement, solve (73) for π̇, which can be done
as in Lemma 11. Plugging the result into (72) leads to a linear equation for
U , which takes the following form:

(79) i∂tU −H(α(0)
∞ )U = L(U, π(0)) + Ñ(U (0), π(0)) + V (π(0))U.

Here L(U, π(0)) is the linear term which is obtained by replacing π̇∂πW̃ (π(0))
on the right-hand side of (72) with the expressions that result by solving (73)
for π̇. See Lemmas 9 and 11 for the details of this process. Moreover, in this
way one picks up the final term in (73) which leads to the modified nonlinear
term Ñ(U (0), π(0)) in (79). We will need to bound this nonlinear term. For
this purpose, we record the estimate

‖Ñ(U (0), π(0))‖W k,p . ‖N(U (0), π(0))‖W k,p(80)

+ min(‖N(U (0), π(0))‖1, ‖N(U (0), π(0))‖2).

Viewed as a linear operator in U , L(·, π(0)) has finite rank and co-rank. In fact,
both its range and co-kernel are spanned by eight exponentially decreasing,
smooth functions (which depend on time). Moreover, by Lemma 21 it satisfies
the bound

(81) ‖L(U, π(0))‖W k,p ≤ Ck,p δ2〈t〉−2‖U‖2

for any integer k ≥ 0, and 1 ≤ p ≤ ∞. The equations (73) are chosen precisely
in order to ensure that

d

dt
〈U(t), ξj(π(0))(t)〉 = 0 for all t ≥ 0, 1 ≤ j ≤ 8.

On the other hand, in Remark 13 we showed that

〈U(0), ξ1(π(0))(0)〉 = 0
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is the same as (with N (α0)∗ = {ξj(α0)}8j=1, see (43)),

0 =
〈
G∞(π(0))(0)

[(R0

R̄0

)
+hf+(α(0)

∞ )+
8∑

j=1

ajηj(α(0)
∞ )
]
,G∞(π(0))(0)

(
φ(·, α0)
φ(·, α0)

)〉

=
〈(R0

R̄0

)
,

(
φ(·, α0)
φ(·, α0)

)〉
+
〈
hf+(α(0)

∞ )+
8∑

j=1

ajηj(α(0)
∞ ),

(
φ(·, α0)
φ(·, α0)

)〉

= h〈f+(α(0)
∞ ), ξ1(α0)〉+

8∑

j=1

aj〈ηj(α(0)
∞ ), ξ1(α0)〉

and similarly for {ξk(π(0))(0)}8k=2. Here we used that
(R0

R̄0

)
∈ N ∗(α0)⊥ by

assumption, as well as that G∞(π(0))(0) is unitary. Hence (78) holds for all
times if and only if for any h ∈ C we can find {aj}8j=1 ∈ C8 such that

(82) 0 = h〈f+(α(0)
∞ ), ξ`(α0)〉+

8∑

j=1

aj〈ηj(α(0)
∞ ), ξ`(α0)〉 for all 1 ≤ ` ≤ 8.

However, ‖ηj(α(0)
∞ ) − ηj(α0)‖ . δ2 because |α(0)

∞ − α0| . δ2. Together with
Lemma 10 this implies that the matrix

M := {〈ηj(α(0)
∞ ), ξ`(α0)〉}8j,`=1

is invertible with norm . 1. Hence {aj}8j=1 = {aj(h)}8j=1 ∈ C8 is uniquely
determined for any h ∈ C. For future reference, we note the estimate

(83)
8∑

j=1

|aj(h)| . δ2 |h|,

which follows from the fact that 〈f+(α(0)
∞ ), ξ`(α

(0)
∞ )〉 = 0 and thus

|〈f+(α(0)
∞ ), ξ`(α0)〉| = |〈f+(α(0)

∞ ), ξ`(α0)− ξ`(α(0)
∞ )〉| . δ2.

It is important to realize that the assumption
(R0

R̄0

)
⊥ N (α0)∗ is precisely used

in (83); if we drop this assumption, then aj(h) 6→ 0 as h→ 0. Finally, we note
that for any J -invariant functions f, g one has 〈f, g〉 ∈ R. Hence for h ∈ R
both the matrix M as well as the vector

{h〈f+(α(0)
∞ ), ξ`(α0)〉}8`=1

are real-valued so that in fact {aj(h)}8j=1 ∈ R8 (recall that G∞(π(0))(0) pre-
serves J -invariance). In view of the preceding, any solution of (79) with initial
condition (74) and this choice of aj(h) will satisfy the orthogonality condi-
tion (78) on its interval of existence.

To prove global existence of solutions to the linear problem (79), we per-
form a contraction argument in C([0, T ], L2) on some finite time interval [0, T ]
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(one can take T = 1). Given any initial condition U(0) ∈ H1 ×H1, and any
Ũ ∈ C([0, T ], H1(R3)), we solve

i∂tU −H(α(0)
∞ )U = L(Ũ , π(0)) + Ñ(U (0), π(0)) + V (π(0))Ũ

via the evolution e−itH(α
(0)
∞ ); i.e., write the solution as

U(t) = e−itH(α
(0)
∞ )U(0)(84)

−i
∫ t

0
e−i(t−s)H(α

(0)
∞ )[L(Ũ , π(0)) + Ñ(U (0), π(0)) + V (π(0))Ũ ](s) ds

for all times t ≥ 0. In addition to the bounds in (81), we note the following
two bounds: First,

(85) sup
s≥0
‖Ñ(U (0), π(0))(s)‖L2 . δ2,

which follows from (80), (37) of Lemma 7, and (66) applied to U (0), and second

(86) sup
s≥0
‖V (π(0))(t)Ũ(s)‖H1 . δ3,

which follows from Lemma 21 and again (66). Apply the linear estimate on
the evolution e−itH(α

(0)
∞ ) given by Theorem 34. Note that in contrast to these

estimates, here we are including the entire discrete spectrum, which possibly
leads to exponential growth. However, on a time interval of length T = 1,
say, we can always see that the map Ũ 7→ U is a contraction in the norm of
C([0, T ], L2 × L2) for small δ. Since the size of this δ does not depend on
the size of the initial condition, we can restart this procedure and thus obtain
a global solution of (84) that belongs to C([0,∞), L2 × L2). Typically, this
solution will grow exponentially.

Next, we wish to estimate the first derivative of (84) by means of the L2

bound in Theorems 34 which will lead to the improved statement that

U ∈ C([0,∞), H1(R3)×H1(R3)) ∩ C1([0,∞), H−1(R3)×H−1(R3))

solves (79) in the strong sense. Inserting this solution U into equation (73)
then yields the path π. Indeed, simply integrate in time using the initial
condition (75). It remains to show that for T = 1,

(87) sup
0≤t≤T

∥∥∥∇
∫ t

0
e−i(t−s)H(α

(0)
∞ ) Ñ(U (0), π(0)) ds

∥∥∥
2

. δ2.

Here we omitted the other terms on the right-hand side of (79), i.e., L(U, π(0))
and V (π(0))Ũ , since they satisfy the bounds (81) and (86), respectively, and
thus yield the desired L2 estimate on the derivative (for the issue of interchang-
ing the evolution with a gradient, see Corollary 39 below). In view of (80)
and (38) one has
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‖∇Ñ(U (0), π(0))(t)‖2
(88)

. min(‖U (0)(t)‖2∞, ‖U (0)(t)‖24) + ‖U (0)∇U (0)(t)‖2 + ‖|U (0)|2∇U (0)(t)‖2

. δ2 + ‖U (0)(t)‖
L4∩L

2q
q−2
‖∇U (0)(t)‖4+q + ‖ |U (0)|2∇U (0)(t)‖2

. δ2 + δ2t−
3
4 + ‖ |U (0)|2∇U (0)(t)‖2.

The first two terms in (88) contribute a finite amount to (87), as desired. The
final term in (88), however, is too singular at t = 0 and we therefore need to
invoke the Strichartz estimates from Corollary 39 to control it. More precisely,
we split |U |2U(s) into Ps(α

(0)
∞ )|U |2U(s) and (I−Ps(α

(0)
∞ ))|U |2U(s). The latter

does not present a problem, since the range of I−Ps(α
(0)
∞ ) is spanned by finitely

many Schwartz functions. Thus,

sup
0≤t≤T

∥∥∥∇
∫ t

0
e−i(t−s)H(α

(0)
∞ )(I − Ps(α(0)

∞ ))|U (0)|2(s)U (0)(s) ds
∥∥∥

2

. eCT sup
s≥0
‖∇(I − Ps(α(0)

∞ ))|U (0)|2(s)U (0)(s)‖2 . eCT sup
s≥0
‖U (0)(s)‖33 . eCT δ3,

as desired. For Ps(α
(0)
∞ )|U |2U(s) we use the following Strichartz estimate:

sup
0≤t≤T

∥∥∥∇
∫ t

0
e−i(t−s)H(α

(0)
∞ ) Ps(α(0)

∞ )|U (0)|2U (0)(s) ds
∥∥∥

2

.
(∫ T

0
‖ |U (0)|2U (0)(s)‖

8
5

L
4
3 (R3)

ds
) 5

8 +
(∫ T

0
‖ |U (0)|2∇U (0)(s)‖

8
5

L
4
3 (R3)

ds
) 5

8
.

It will suffice to deal with the term on the right-hand side containing ∇U (0),
since the one without any derivatives is easier. The corresponding integrand
is estimated in terms of (66) and (68) as follows: For all 0 < s ≤ T ,

‖|U (0)|2∇U (0)(s)‖
L

4
3 (R3)

. ‖∇U (0)(s)‖2‖U (0)(s)‖28 . δ‖U (0)(s)‖
3
2
6 ‖U (0)‖

1
2∞

(89)

. δ δ
3
2 (δs−

3
4 + δ)

1
2 ≤ C(T )δ3s−

3
8 ,

where we used the Sobolev embedding bound

‖U (0)(s)‖∞ . ‖∇U (0)(s)‖4+q + ‖U (0)(s)‖2 . δs−
3
4 + δ.

Since s−
3
8 ∈ L 8

5 (0, T ) we are done. The conclusion is that U ∈ L∞([0, T ], H1(R3)
×H1(R3)). The continuity in t relative to the H1 norm is implicit in the above
argument, and we skip it. Finally, time-stepping extends the H1-statement to
all times.

Finally, if h ∈ R and aj(h) ∈ R are as above, then the initial condition (74)
is J -invariant by Remark 14. Also, we assume that π(0) ∈ R8. It remains to
derive the system of equations which (π̄,JU)(t) obeys. By the assumption
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that π(0)(t) ∈ R8 and JU (0)(t) = U (0)(t) for all t ≥ 0, one checks that (72)
implies that

(90) i∂tJU −H(α(0)
∞ )JU = −i ˙̄π∂πW̃ (π(0)) +N(U (0), π(0)) + V (π(0))U (0);

see the proof of Lemma 6 for more details here. On the other hand, as in
Lemma 11, one obtains the following system which is equivalent to (73), with
E(t) as in (47) and with φ = φ(·, α(0)(t)):

(91)
α̇α−1‖φ‖22 = 〈U, ξ̇1(π(0))〉−i〈U,E(π(0))ξ1(π(0))〉−i〈N(U (0), π(0)), ξ1(π(0))〉
˙̃γα−1‖φ‖22 = 〈U, ξ̇2(π(0))〉−i〈U,E(π(0))ξ2(π(0))〉−i〈N(U (0), π(0)), ξ2(π(0))〉
2Ḋ`‖φ‖22 = 〈U, ξ̇2+`(π(0))〉−i〈U,E(π(0))ξ2+`(π(0))〉−i〈N(U (0), π(0)), ξ2+`(π(0))〉
2v̇`‖φ‖22 = 〈U, ξ̇5+`(π(0))〉−i〈U,E(π(0))ξ5+`(π(0))〉−i〈N(U (0), π(0)), ξ5+`(π(0))〉

for all 1 ≤ ` ≤ 3. This is based on the observation of Lemma 9, namely that

π̇∂πW̃ (π(0)) =
3∑

`=1

(Ḋ` η5+`(π(0)) + v̇` η2+`(π(0)))− α̇ η2(π(0)) + ˙̃γ η1(π(0)).

Note that JE(π(0))J = −E(π(0)); see (47). Taking complex conjugates of the
α̇ equation (91) yields

˙̄αᾱ−1‖φ‖22 = 〈JU, Jξ̇1(π(0))〉
+ i 〈JU, JE(π(0))JJξ1(π(0))〉+ i 〈JN(U (0), π(0)), Jξ1(π(0))〉

= 〈JU, Jξ̇1(π(0))〉
+ i〈JU, JE(π(0))JJξ1(π(0))〉+ i〈JN(U (0), π(0)), Jξ1(π(0))〉

= 〈JU, ξ̇1(π(0))〉−i〈JU,E(π(0))ξ1(π(0))〉−i〈N(U (0), π(0)), ξ1(π(0))〉.
Taking complex conjugates one therefore derives the following system from the
preceding one; see (91),

˙̄αᾱ−1‖φ‖22 = 〈JU, ξ̇1(π(0))〉−i〈JU,E(π(0))ξ1(π(0))〉−i〈N(U (0), π(0)), ξ1(π(0))〉,
˙̄̃γᾱ−1‖φ‖22 = 〈JU, ξ̇2(π(0))〉−i〈JU,E(π(0))ξ2(π(0))〉−i〈N(U (0), π(0)), ξ2(π(0))〉,
2 ˙̄D`‖φ‖22 = 〈JU, ξ̇2+`(π(0))〉−i〈JU,E(π(0))ξ2+`(π(0))〉−i〈N(U (0), π(0)), ξ2+`(π(0))〉,
2 ˙̄v`‖φ‖22 = 〈JU, ξ̇5+`(π(0))〉−i〈JU,E(π(0))ξ5+`(π(0))〉−i〈N(U (0), π(0)), ξ5+`(π(0))〉

for all 1 ≤ ` ≤ 3. Combining this system with (90) shows that (π̄,JU) solves
the same equations as (π, U), namely (72), (73). Since their initial conditions
agree if h ∈ R, we conclude that they agree for all times.

Next we present a rather simple lemma about bounded solutions to hy-
perbolic ODE. This will be the mechanism to determine the unique value of h
in (74) so that the solution U(t) constructed in Lemma 22 remains bounded
in L2 for all times.
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Lemma 23. Consider the two-dimensional ODE

ẋ(t)−A0x(t) = f(t), x(0) =
(
x1(0)
x2(0)

)

where f =
(
f1
f2

)
∈ L∞([0,∞),C2) and A0 =

(
σ 0
0 −σ

)
where σ > 0. Then

x(t) =
(x1(t)
x2(t)

)
remains bounded for all times if and only if

(92) 0 = x1(0) +
∫ ∞

0
e−σtf1(t) dt.

Moreover, in that case
(93)

x1(t) = −
∫ ∞

t
e−(s−t)σf1(s) ds, x2(t) = e−tσx2(0) +

∫ t

0
e−(t−s)σf2(s) ds

for all t ≥ 0.

Proof. Clearly, x1(t) = etσx1(0) +
∫ t

0 e
(t−s)σf1(s) ds and x2(t) = e−tσx2(0)

+
∫ t

0 e
−(t−s)σf2(s) ds. If limt→∞ e−tσx1(t) = 0, then 0 = x1(0)+

∫∞
0 e−sσf1(s) ds,

which is (92). Conversely, if this holds, then x1(t) = −etσ
∫∞
t e−sσf1(s) ds, and

the lemma is proved.

Lemma 24. There exists a small constant c1 (depending on the constant
c0 in (66), (67)) so that the following holds: With δ > 0 small, let R0 ∈
W 1,1(R3) ∩W 1,2(R3) satisfy P+

u (α0)
(R0

R̄0

)
= 0 and

(94) ‖R0‖W 1,1∩W 1,2 ≤ c1δ.

Furthermore, let (π, Z) be the solution from Lemma 22 for a given (π(0), Z(0))
∈ Xδ and h ∈ C, aj = aj(h). Then there exists a unique value of h ∈ R
so that (π, Z) ∈ Xδ. In other words, under the assumption (94), there exists
the map Ψ : Xδ → Xδ; see (76). Moreover, as a function of (R0, π

(0), Z(0)),
h = h(R0, π

(0), Z(0)) satisfies

(95) |h(R0, π
(0), Z(0))| ≤ C0 ‖R0‖2W 1,1∩W 1,2

with a universal constant C0 as well as

(96) |h(R0, π
(0), Z(0))− h(R1, π

(0), Z(0))| ≤ ‖R0 −R1‖2
for any R0, R1 as above.

Proof. Let (π(0), U (0)) ∈ Xδ be fixed and let (π, U) be the solutions con-
structed in Lemma 22, with h ∈ R arbitrary and {aj(h)}8j=1 ∈ R8 the unique
choice that guarantees the orthogonality condition (78). Moreover, π is real-
valued, and JU = U . We start by decomposing the function U(t) into three
pieces U(t) = Udis(t) + Uroot(t) + Uhyp(t) where

Udis(t) = Ps(α(0)
∞ )U(t), Uroot(t) = Proot(α(0)

∞ )U(t), Uhyp(t) = Pim(α(0)
∞ )U(t).
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Here Proot(α) and Pim(α) are the Riesz projections corresponding to the spec-
trum at {0}, and {±iσ} of H(α), respectively. For ease of notation, let the
elements of the rootspaces of H(α(0)

∞ ) and H(α(0)
∞ )∗ be

N (α(0)
∞ ) = {η(0)

j }8j=1, N (α(0)
∞ )∗ = {ξ(0)

j }8j=1,

respectively, and write accordingly

(97) Uroot(t) =
8∑

j=1

ãj(t)η
(0)
j , Uhyp(t) = b+(t)f+(α(0)

∞ ) + b−(t)f−(α(0)
∞ ).

Since Uroot and Uhyp are J -invariant, see Remark 14, it follows that {ãj}8j=1

and b+, b− are real. Moreover, because of the orthogonality condition (78), for
all 1 ≤ k ≤ 8,

0 =
8∑

j=1

ãj(t)〈η(0)
j , ξk(π(0))(t)〉+ b+(t)〈f+(α(0)

∞ ), ξk(π(0))(t)〉(98)

+ b−(t)〈f−(α(0)
∞ ), ξk(π(0))(t)〉+ 〈Udis(t), ξk(π(0))(t)〉

for all times t ≥ 0. For small δ this allows one to solve for ãj(t). Indeed, by
Definition 8 and Lemma 21,

sup
t≥0

max
1≤k≤8

‖ξ(0)
k − ξk(π(0))(t)‖2 . δ2〈t〉−1.

Also, by Lemma 10, for each j there is k(j) so that |〈ηj(π(0))(t), ξk(π(0))(t)〉|
� 1 if k = k(j) and = 0 otherwise. Hence, |〈η(0)

j , ξk(π(0))(t)〉| � 1 if k = k(j),

but |〈η(0)
j , ξk(π(0))(t)〉| . δ2 if k 6= k(j). Since j → k(j) is a permutation,

it follows that the matrix {〈η(0)
j , ξk(π(0))(t)〉}8j,k=1 is invertible with norm of

the inverse . 1. Consequently, there exist uniformly bounded functions c±(t),
cjk(t) and djk(t) so that for all t ≥ 0,

ãj(t) = b+(t)c+
j (t) + b−(t)c−j (t) +

8∑

k=1

djk(t)〈Udis(t), ξk(π(0))(t)〉(99)

=
8∑

k=1

cjk(t)〈Uhyp(t), ξk(π(0))(t)〉+
8∑

k=1

djk(t)〈Udis(t), ξk(π(0))(t)〉

and therefore, in particular,

(100) ‖Uroot(t)‖1∩∞ ≤ C(‖Udis(t)‖1+∞ + ‖Uhyp(t)‖1+∞),

for all t ≥ 0 with a constant C that does not depend on time t. Hence, the
solution U(t) is completely determined by Udis(t) and Uhyp(t), and in fact, for
all t ≥ 0,

(101) ‖U‖2 ≤ C(‖Udis(t)‖2 + ‖Uhyp(t)‖2),
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with a constant C that does not depend on time t. Clearly, (100) remains
correct with derivatives on the left-hand side (without derivatives on the right-
hand side), and (101) therefore remains true with derivatives and/or other
Lp-norms. For example, it follows that

(102) ‖U‖2+∞ ≤ C(‖Udis(t)‖2+∞ + ‖Uhyp(t)‖2+∞).

In Lemma 22 we showed that the system (72), (73) is equivalent to the single
equation

i∂tU −H(α(0)
∞ )U = L(U, π(0)) + Ñ(U (0), π(0)) + V (π(0))U ;

see (79). This equation is J -invariant in the sense that JU satisfies the iden-
tical equation. We now split this equation into two equations, one for Udis and
the other for Uhyp. This yields (with Ps = Ps(α

(0)
∞ ) and Pim = Pim(α(0)

∞ )),

i∂tUdis −H(α(0)
∞ )Udis =Ps

[
L1(Udis, π

(0)) + L2(Uhyp, π
(0))(103)

+Ñ(U (0), π(0)) + V (π(0))Udis + V (π(0))Uhyp

]

i∂tUhyp −H(α(0)
∞ )Uhyp =Pim

[
L1(Udis, π

(0)) + L2(Uhyp, π
(0))

+Ñ(U (0), π(0)) + V (π(0))Udis + V (π(0))Udis

]
,

with initial conditions Udis(0) = Ps(α
(0)
∞ )U(0) and Uhyp(0) = Pim(α(0)

∞ )U(0);
see (74). Here the linear terms L1 and L2 are derived from L by expressing
Uroot as a linear combination of (projections of) Udis and Uhyp; see (98). More
precisely, write

L(U, π(0)) + V (π(0))U

= L(Udis, π
(0)) + L(Uhyp, π

(0))

+
8∑

j=1

ãj(t)[L(η(0)
j , π(0)) + V (π(0))η(0)

j ] + V (π(0))Udis + V (π(0))Uhyp

=: L1(Udis, π
(0)) + L2(Uhyp, π

(0)) + V (π(0))Udis + V (π(0))Uhyp,

where the second line follows from the first by means of (99). Since the func-
tions ãj(t) have the explicit expression in (99), L1,L2 satisfy the following
estimates as linear operators in the variable U ,

(104) ‖L1(U, π(0))‖2 + ‖L2(U, π(0))‖2 . δ2〈t〉−1‖U‖2;

see (81). Moreover, they are small as well as of finite rank and co-rank with
ranges spanned by smooth, exponentially decreasing functions. Hence, the
estimate (104) holds with any number of derivatives. In particular, we record
the estimate

(105) ‖∇L1(U, π(0))‖1∩∞ + ‖∇L2(U, π(0))‖1∩∞ . δ2〈t〉−1‖U‖1+∞
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for future use. Because of the small parameter δ2 in (104), we shall solve
for Udis, Uhyp by means of a contraction. However, recall that we yet need to
determine the value of h. Thus, fix Ũdis, Ũhyp ∈ C([0,∞), L2(R3) + L∞(R3)),
with

(106) sup
t≥0
〈t〉 32

[
‖Ũdis(t)‖2+∞ + ‖Ũhyp(t)‖2+∞

]
≤ δ

and so that J Ũdis = Ũdis and J Ũhyp = Ũhyp, and set

(107) F1(Ũdis, Ũhyp) := Ps

[
L1(Ũdis, π

(0)) + L2(Ũhyp, π
(0)) + Ñ(U (0), π(0))

+ V (π(0))Ũdis + V (π(0))Ũhyp

]

(108) F2(Ũdis, Ũhyp) := Pim

[
L1(Ũdis, π

(0)) + L2(Ũhyp, π
(0)) + Ñ(U (0), π(0))

+ V (π(0))Ũdis + V (π(0))Ũhyp

]
.

In view of the definition (28), (80) and Lemma 7, the assumptions on (U (0), π(0))
in Definition 19, as well as Lemma 21, the following bounds hold: If t > 1,
then

‖Ñ(U (0), π(0))(t)‖1∩2 . ‖U (0)(t)‖2∞ + ‖ |U (0)|2U (0)(t) ‖1∩2(109)

. δ2〈t〉−3 + δ2〈t〉− 3
2 ‖U (0)(t)‖2 . δ2〈t〉− 3

2 .

On the other hand, if 0 < t < 1, then by Sobolev embedding,

‖Ñ(U (0), π(0))(t)‖1∩2 . ‖U (0)(t)‖24 + ‖ |U (0)|2U (0)(t) ‖2
. ‖U (0)(t)‖2H1 + ‖U (0)(t)‖3H1 . δ2,

so that the bound in (109) holds for all t ≥ 0. We therefore conclude from (106),
(104) that for all t ≥ 0

max
j=1,2

‖Fj(Ũdis, Ũhyp)(t)‖1∩2 . δ2〈t〉− 3
2 + δ2〈t〉−1

[
‖Ũdis(t)‖2+∞ + ‖Ũhyp(t)‖2+∞

]
,

(110)

max
j=1,2

‖Fj(Ũ (1)
dis , Ũ

(1)
hyp)(t)− Fj(Ũ (2)

dis , Ũ
(2)
hyp)(t)‖1∩2

(111)

. δ2〈t〉−1(‖(Ũ (1)
dis − Ũ

(2)
dis )(t)‖2+∞ + ‖(Ũ (1)

hyp − Ũ
(2)
hyp)(t)‖2+∞).

Since the system (103) is J -invariant in the usual sense, it follows that

JF1(Ũdis, Ũhyp) = −F1(Ũdis, Ũhyp), JF2(Ũdis, Ũhyp) = −F2(Ũdis, Ũhyp).

We now solve

i∂tUdis −H(α(0)
∞ )Udis = F1(Ũdis, Ũhyp), Udis(0) = Ps(α(0)

∞ )U(0),(112)

i∂tUhyp −H(α(0)
∞ )Uhyp = F2(Ũdis, Ũhyp), Uhyp(0) = Pim(α(0)

∞ )U(0).(113)
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We can rewrite (113) in the equivalent form (using the basis f±(α(0)
∞ ))

d

dt

(
b+

b−

)
+

(
−σ(α(0)

∞ ) 0
0 σ(α(0)

∞ )

)(
b+

b−

)
=
(
g+

g−

)

where g± ∈ R satisfy
sup
t≥0
〈t〉 32 |g±(t)| . δ2;

see (110) and (106). We impose the stability condition from Lemma 23; i.e.,

(114) 0 = b+(0) +
∫ ∞

0
e−σ(α

(0)
∞ )sg+(s) ds.

We conclude from the bound on g+ and (114) that

(115) |b+(0)| . δ2.

Recall that b+(0) is the coefficient of f±(α(0)
∞ ) in (97). Hence, in view of (74),

we need to choose h = h(Ũdis, Ũhyp) so that

b+(0)f±(α(0)
∞ ) = P+

im(α(0)
∞ )U(0)

(116)

= P+
im(α(0)

∞ )G∞(π(0))(0)
[(R0

R̄0

)
+ hf+(α(0)

∞ ) +
8∑

j=1

ajηj(α(0)
∞ )
]
.(117)

We claim that (115) implies that |h| . δ2. To see this, we of course need to use
the assumption that P+

im(α0)
(R0

R̄0

)
= 0. Thus, using the notation and estimates

of Corollary 18 we conclude that
∥∥∥P+

im(α(0)
∞ )G∞(π(0))(0)

(
R0

R̄0

)∥∥∥
1∩2

=
∥∥∥P+

im(α0)
(
R0

R̄0

)
− P+

im(α(0)
∞ )G∞(π(0))(0)

(
R0

R̄0

)∥∥∥
1∩2

=
∥∥∥f+(α0)

〈(R0

R̄0

)
, f̃+(α0)

〉
− f+(α(0)

∞ )
〈(R0

R̄0

)
,G∞(π(0))(0)∗f̃+(α(0)

∞ )
〉∥∥∥

1∩2

. ‖f+(α0)− f+(α(0)
∞ )‖2‖R0‖2

+ ‖R0‖2
∥∥G∞(π(0))(0)∗f̃+(α0)− f̃+(α0)

∥∥
2

. δ3.

To pass to the final inequality, we invoke the bound

‖G∞(π(0))(0)∗f − f‖2 . δ2(‖f‖H1 + ‖〈x〉f‖2).

The appearance of the weight here is the reason we did not estimate the dif-
ference between G∞(π(0))(0)

(R0

R̄0

)
and

(R0

R̄0

)
. We conclude from (116), (115),

and (83) that

(118) |h| . δ2,

8∑

j=1

|aj(h)| . δ4.
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Note that this estimate requires the full strength of the assumption P+
u (α0)

(R0

R̄0

)

= 0. In particular, (95) holds. It is now easy to prove the Lipschitz bound (96).
Indeed, if h(1), h(0) are associated with R0, R1, respectively, then

(h(1) − h(0))P+
im(α(0)

∞ )G∞(π(0))(0)f+(α(0)
∞ )

= P+
im(α(0)

∞ )G∞(π(0))(0)
[(R0

R̄0

)
−
(
R1

R̄1

)]

+ P+
im(α(0)

∞ )G∞(π(0))(0)
8∑

j=1

[aj(h(1))− aj(h(0))]η̃j(α(0)
∞ ),

where we used (82) to write aj = aj(h). Moreover,

|aj(h(0))− aj(h(1))| . δ2|h(1) − h(0)|,
and (96) follows by taking L2-norms. For simplicity, let aj(Ũdis, Ũhyp) :=
aj(h(Ũdis, Ũhyp)). Define the map Ψ0 : (Ũdis, Ũhyp) 7→ (Udis, Uhyp) by means of

Udis(t) = e−itH(α
(0)
∞ )Udis(0)− i

∫ t

0
e−i(t−s)H(α

(0)
∞ )F1(Ũdis, Ũhyp)(s) ds,

(119)

Udis(0) = Ps(α(0)
∞ )G∞(π(0))(0)

×
[(R0

R̄0

)
+ h(Ũdis, Ũhyp)f+(α(0)

∞ ) +
8∑

j=1

aj(Ũdis, Ũhyp)ηj(α(0)
∞ )
]
,

Uhyp(t) = e−itH(α
(0)
∞ )Uhyp(0)− i

∫ t

0
e−i(t−s)H(α

(0)
∞ )F2(Ũdis, Ũhyp)(s) ds,

(120)

Uhyp(0) = Pim(α(0)
∞ )G∞(π(0))(0)

×
[(R0

R̄0

)
+ h(Ũdis, Ũhyp)f+(α(0)

∞ ) +
8∑

j=1

aj(Ũdis, Ũhyp)ηj(α(0)
∞ )
]
.

By (118) and (94),

‖Udis(0)‖1∩2 + ‖Uhyp(0)‖1∩2 . δ0 + δ2,

where δ0 := c1δ. We claim that, with c0 being the small constant from (66),
(67),

(121) sup
t≥0
〈t〉 32

[
‖Udis(t)‖2+∞ + ‖Uhyp(t)‖2+∞

]
≤ c0δ.

To verify this claim, we use the linear bound of Theorem 34 and 35 on Udis.
Because of (110) this leads to

‖Udis(t)‖2+∞ . 〈t〉− 3
2 (δ0 + δ2) +

∫ t

0
δ2〈t− s〉− 3

2 〈s〉− 3
2 ds

. 〈t〉− 3
2 (c1δ + δ2) ≤ c0

δ

2
〈t〉− 3

2
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for all t ≥ 0 provided c1 was chosen small enough. Similarly, because of our
choice of h, see (93), we obtain that for all t ≥ 0

‖Uhyp(t)‖2 .
∫ ∞

t
e−σ(α

(0)
∞ )(s−t)δ2〈s〉− 3

2 ds

+e−σ(α
(0)
∞ )t(δ0 + δ2) +

∫ t

0
e−σ(α

(0)
∞ )(t−s)δ2〈s〉− 3

2 ds ≤ c0
δ

2
,

and (121) follows. Next, we claim that the map Ψ0 is a contraction in the
space of J -invariant functions satisfying (106). To see this, we first remark
that there is the Lipschitz bound

(122) |h(Ũ (1)
dis , Ũ

(1)
hyp)− h(Ũ (2)

dis , Ũ
(2)
hyp)|

. δ2 sup
t≥0
〈t〉 32 (‖(Ũ (1)

dis − Ũ
(2)
dis )(t)‖2+∞ + ‖(Ũ (1)

hyp − Ũ
(2)
hyp)(t)‖2+∞).

This is a consequence of (111) and the explicit expressions for b+(0) and h

in (114) and (116). Since the coefficients aj are linear in h, they satisfy the
exact same bounds. Let (U (j)

dis , U
(j)
hyp) = Ψ0(Ũ (j)

dis , Ũ
(j)
hyp) for j = 1, 2. Subtracting

the two equations in (119) for j = 1, 2 with the corresponding difference of
initial conditions, and applying Theorems 34, 35 lead to

sup
t≥0
〈t〉 32 ‖U (1)

dis (t)− U (2)
dis (t)‖2+∞

. δ2 sup
s≥0
〈s〉 32 (‖(Ũ (1)

dis − Ũ
(2)
dis )(s)‖2+∞ + ‖(Ũ (1)

hyp − Ũ
(2)
hyp)(s)‖2+∞).

Note that the difference (U (1)
hyp − U

(2)
hyp)(t) is potentially dangerous, since we

cannot adjust the initial condition to make sure that the stability condition
holds. The point is, however, that this condition holds automatically since

sup
t≥0
‖(U (1)

hyp − U
(2)
hyp)(t)‖2 <∞.

Lemma 23 therefore guarantees that both (92) and (93) hold for U (1)
hyp − U

(2)
hyp.

In particular, one concludes that in this case as well

sup
t≥0
〈t〉 32 ‖(U (1)

hyp − U
(2)
hyp)(t)‖2

. δ2 sup
s≥0
〈s〉 32 (‖(Ũ (1)

dis − Ũ
(2)
dis )(s)‖2+∞ + ‖(Ũ (1)

hyp − Ũ
(2)
hyp)(s)‖2+∞),

and we have shown that Ψ0 is indeed a contraction. The conclusion is that
there exist J -invariant functions (Udis, Uhyp) satisfying (121) as well the sys-
tem (103). In addition, there exist h, aj(h) ∈ R as in (118) determining the
initial conditions (74).
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Next, observe that the solution (Udis, Uhyp) which we just constructed also
satisfies the bound

(123) sup
t≥0

(‖Udis(t)‖2 + ‖Uhyp(t)‖2) ≤ c0 δ.

To see this, it suffices to deal with Udis(t). Applying Theorem 34 to (119)
yields

sup
t≥0
‖Udis(t)‖2 . ‖Udis(0)‖2

+
∫ ∞

0

[
δ2〈s〉−1(‖Udis(s)‖2+∞ + ‖Uhyp(s)‖2+∞) + δ2〈s〉− 3

2

+ ‖V (π(0))(s)‖2∩∞‖(Udis + Uhyp)(s)‖2+∞
]
ds

. (δ0 + δ2) +
∫ ∞

0

[
δ3〈s〉− 5

2 + δ2〈s〉− 3
2 + δ2〈s〉− 5

2
]
ds

� c0δ,

as desired. Retracing our steps we now reintroduce Uroot via (98) which leads
to a (weak, i.e., Duhamel) solution (π(t), U(t)) of the system (72), (73) with
initial conditions (74), (75). Moreover, U(t) is J -invariant, and π(t) ∈ R8 for
all t ≥ 0, and the orthogonality condition (78) holds.

Note that (121) insures that

sup
t≥0
〈t〉− 3

2 ‖U(t)‖2+∞ ≤ c0δ, sup
t≥0
‖U(t)‖ ≤ c0δ.

Estimating the two terms involving U on the right-hand side of (73) by means
of this bound and the bounds from Lemma 21 leads to the estimate

|α̇(t)|+ |v̇(t)|+ | ˙̃γ(t)|+ |Ḋ(t)| ≤ δ2〈t〉−3

for all t ≥ 0 (this is where we need to use the small c0 in (66), (67)). This
is precisely (65). Strictly speaking, (65) can be improved by a small factor of
� c2

0 on the right-hand side. However, here and in what follows we ignore this
improvement.

It remains to show that our solution U(t) satisfies the other bounds in
(66)–(68). Moreover, we have only shown that (Udis, Uhyp) satisfies the sys-
tem (103) in the weak (i.e., Duhamel) sense. However, once we prove

sup
t≥0

[
‖∇Udis(t)‖2 + ‖∇Uhyp(t)‖2

]
≤ c0δ(124)

it will follow that (66) holds and that (Udis, Uhyp) solves (103) in the strong
sense, i.e., in

(125) C([0,∞), H1(R3)×H1(R3)) ∩ C1([0,∞), H−1(R3)×H−1(R3)).

The details of (124) are as follows: Clearly, we need to show that the
conditions (66)–(68) are consistent with our contraction scheme. Thus, in
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addition to (106) we assume that Ũdis, Ũhyp satisfy these assumptions and then
check that Udis, Uhyp satisfy them as well First, by the nature of Ran(Pim), see
Lemma 17,

‖Uhyp(t)‖H1 . ‖Uhyp(t)‖L2 for all t ≥ 0,

so that it suffices to deal with Udis. Second, by the Strichartz estimates of
Corollary 39, as well as (80) and Lemma 7 we obtain

(126)

sup
0≤t

∥∥∥∇
∫ t

0
e−i(t−s)H(α

(0)
∞ ) F1(Ũdis, Ũhyp)(s) ds

∥∥∥
2

.
∫ ∞

0

(
‖L1(Ũdis, π

(0))(s)‖H1

+ ‖L2(Ũhyp, π
(0))(s)‖H1 + ‖V (π(0))Ũhyp(s)‖H1

)
ds

+
∫ ∞

0

(
‖N(U (0), π(0))(s)‖1 + ‖U (0)(s)‖24

(127)

+ ‖U (0)∇U (0)(s)‖2 + ‖V (π(0))Ũdis(s)‖H1

)
ds

+
(∫ ∞

0
‖ |U (0)|2U (0)(s)‖

8
5

L
4
3 (R3)

ds
) 5

8 +
(∫ ∞

0
‖ |U (0)|2∇U (0)(s)‖

8
5

L
4
3 (R3)

ds
) 5

8
.

(128)

In view of (105) and (106), the contribution of (126) is

.
∫ ∞

0
δ2〈s〉−1(‖Ũdis(s)‖2+∞ + ‖Ũhyp(s)‖2+∞) ds . δ3.

By (36), (66) and (67),

‖N(U (0), π(0))(s)‖1 . min(‖U (0)(s)‖2∞, ‖U (0)(s)‖22) + ‖U (0)(s)‖33
. δ2〈s〉−3 + δ2〈s〉− 3

2 . δ2〈s〉− 3
2 .

Furthermore, if 0 < s < 1, then we estimate

‖U (0)(s)‖24 + ‖U (0)∇U (0)(s)‖2 . ‖U (0)(s)‖2H1 + ‖U (0)(s)‖
L4∩L

2q
q−2
‖∇U (0)(s)‖4+q

. δ2 + δ2s−
3
4 . δ2s−

3
4 ,

whereas for s > 1 we have

‖U (0)(s)‖24+‖U (0)∇U (0)(s)‖2 .‖U (0)(s)‖2‖U (0)(s)‖∞+‖U (0)(s)‖∞‖∇U (0)(s)‖2
.δ2s−

3
2 +δ2s−

3
2 .δ2s−

3
2 .

Hence the first three terms in (127) are integrable and their contribution is
. δ2. As far as the final term in (127) is concerned, note that

‖V (π(0))Ũdis(s)‖H1 . ‖V (π(0))Ũdis(s)‖2
+ ‖(∇V )(π(0))Ũdis(s)‖2 + ‖V (π(0))∇Ũdis(s)‖2
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. δ3〈s〉− 5
2 + ‖V (π(0))‖

L4∩L
2q
q−2
‖∇Ũdis(s)‖4+q

. δ3〈s〉− 5
2 + δ2〈s〉−1δs−

3
4 ,

which contributes . δ2 to (127). Here we used (66)-(68), as well as the bound
from Lemma 21. Previously, we derived the bound

‖ |U (0)|2∇U (0)(s)‖
L

4
3 (R3)

. δ3s−
3
8 ,

for 0 < s < 1; see (89). On the other hand, if s > 1, then

‖ |U (0)|2∇U (0)(s)‖
L

4
3 (R3)

. ‖∇U (0)(s)‖2‖U (0)(s)‖28

. δ‖U (0)(s)‖
3
2∞‖U (0)(s)‖

1
2
2 . δ3s−

9
4 .

Hence, (∫ ∞

0
‖ |U (0)|2∇U (0)(s)‖

8
5

L
4
3 (R3)

ds
) 5

8
. δ3,

and similarly for the term without a gradient in (128). We have proved (124)
and therefore also the gradient part of (66).

For the remainder of the proof we will subscribe to the somewhat imprecise
practice of replacing the term V (π(0))U(t) with V (π(0))U (0)(t) in (72). This will
allow us to avoid working with Ũdis, Ũhyp and instead will make it possible to
estimate U(t) directly. The logic here is that we will only use the bounds (66)–
(68) to estimate U (0), just as we would in order to show that the contraction
scheme is consistent with the remaining conditions (67), (68).

Thus we turn to proving ‖PsU(t)‖∞ ≤ δt−
3
2 for t > 0. It will be necessary

to bound various terms in L1(R3). One such term is, see (36) and (65),

‖ − iπ̇∂πW̃ (π(0)) + Ñ(U (0), π(0))‖1
. |α̇(s)|+ |v̇(s)|+ | ˙̃γ(s)|+ |Ḋ(s)|+ ‖U (0)(s)‖2∞ + ‖U (0)(s)‖33
. δ2s−3 + ‖U (0)(s)‖2∞ + ‖U (0)(s)‖22‖U (0)(s)‖∞ . δ2s−

3
2 ,

provided s ≥ 1. If 0 ≤ s ≤ 1, then one argues similarly. More precisely, using
(66) and Sobolev embedding instead of (67), we obtain

‖ − iπ̇∂πW̃ (π(0))(s) + Ñ(U (0), π(0))(s)‖1 . δ2.

Another term is
‖V (π(0))U (0)(s)‖1 . δ2〈s〉− 5

2 ,

valid for all s ≥ 0. This follows from Lemma 21, and (66), (67). We now
rewrite (72) via the Duhamel formula. Let us first consider the case t ≥ 1.
Then, by the embedding W 1,4 ↪→ L∞,

‖PsU(t)‖∞≤‖e−itH(α
(0)
∞ )PsU(0)‖∞

+
∫ t

0
‖e−i(t−s)H(α

(0)
∞ )Ps(−iπ̇(s)∂πW̃ (π(0))(s) + Ñ(U (0), π(0))(s)



STABLE MANIFOLDS 189

+V (π(0))U (0)(s))‖∞ ds

. t−
3
2 ‖U(0)‖1 +

∫ t− 1
2

0
(t− s)− 3

2 (‖ − iπ̇(s)∂πW̃ (π(0))(s)

+Ñ(U (0), π(0))(s)‖1 + ‖V (π(0))U (0)(s)‖1) ds

+
∫ t

t− 1
2

‖e−i(t−s)H(α
(0)
∞ )Ps(−iπ̇(s)∂πW̃ (π(0))(s)

+Ñ(U (0), π(0))(s) + V (π(0))U (0))(s))‖W 1,4 ds.

Invoking the L1 bounds which we just derived on the right-hand side yields

(129)

‖PsU(t)‖∞. t−
3
2 ‖U(0)‖1 +

∫ t− 1
2

0

(t− s)− 3
2 δ2〈s〉− 3

2 ds

+
∫ t

t− 1
2

(t− s)− 3
4 ‖ − iπ̇(s)∂πW̃ (π(0))(s)

+Ñ(U (0), π(0))(s) + V (π(0))U (0))(s)‖
W 1, 43

ds

. t−
3
2 ‖U(0)‖1 + δ2t−

3
2

+
∫ t

t− 1
2

(t− s)− 3
4

[
‖π̇∂πW̃ (π(0))‖

W 1, 43
+ ‖|U (0)|2φ‖ 4

3
+ ‖U (0)∇U (0)φ‖ 4

3

+‖|U (0)|2∇φ‖ 4
3

+ ‖ |U (0)|2U (0)‖ 4
3

+ ‖ |U (0)|2∇U (0)‖ 4
3

+‖V (π(0))U (0)(s)‖ 4
3

+ ‖U (0)∇V (π(0))‖ 4
3

+ ‖V (π(0))∇U (0)‖ 4
3

]
(s) ds.

Here we have used the slightly formal notation |U (0)|2φ for the quadratic part
of the nonlinearity N(U (0), π(0)). In view of our assumptions (65)-(67) on U (0),

‖π̇∂πW̃ (π(0))(s)‖
W 1, 43

+ ‖|U (0)|2(s)φ‖ 4
3

+ ‖|U (0)|2(s)∇φ‖ 4
3

. δ2〈s〉−3,

‖U (0)∇U (0)(s)φ‖ 4
3

. ‖U (0)(s)‖∞‖∇U (0)(s)‖2 . δ2s−
3
2 provided s ≥ 1,

‖U (0)∇U (0)(s)φ‖ 4
3

. ‖U (0)(s)‖4‖∇U (0)(s)‖2 . δ2 provided 0 < s ≤ 1,

‖ |U (0)|2U (0)(s)‖ 4
3

. ‖U (0)(s)‖
3
2
2 ‖U (0)(s)‖

3
2∞ . δ3s−

9
4 if s ≥ 1,

‖ |U (0)|2U (0)(s)‖ 4
3

= ‖U (0)(s)‖34 . δ3 if 0 < s < 1.

Furthermore,

‖ |U (0)|2∇U (0)(s)‖ 4
3
≤‖U (0)(s)‖28‖∇U (0)(s)‖2 . δ3s−

9
4 if s ≥ 1

2
,

‖ |U (0)|2∇U (0)(s)‖ 4
3
≤‖U (0)(s)‖

3
2
6 ‖U (0)(s)‖

1
2∞‖∇U (0)(s)‖2

. δ3s−
3
4 if 0 < s <

1
2
,

‖V (π(0))U (0)(s)‖ 4
3

+ ‖U (0)(s)∇V (π(0))(s)‖ 4
3

. δ3〈s〉− 5
2 .
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It remains to consider the bounds on ‖V (π(0))∇U (0)(s)‖ 4
3

for all s > 0.
Note that the latter is always . δ3〈s〉−1, by (65) and (66), but this is insuffi-
cient. At this point we need to use (68) to generate more decay. Indeed,

‖V (π(0))∇U (0)(s)‖ 4
3

. ‖V (π(0))‖
L2∩L

4q
3q−4
‖∇U (0)(s)‖L4+Lq . δ3〈s〉−1s−

3
4 .

Inserting these bounds into (129) leads to (recall t ≥ 1),

‖PsU(t)‖∞ . (δ0 + δ2)t−
3
2 + δ2t−

3
2 +

∫ t

t− 1
2

(t− s)− 3
4 δ2s−

3
2 ds ≤ c0

δ

2
t−

3
2 ,

provided c1 � c0 and δ are sufficiently small. To deal with the range 0 < t < 1,
we perform a similar estimate, using now the small time cases of the previous
bounds:

(130)

‖PsU(t)‖∞ . ‖e−itH(α
(0)
∞ )PsU(0)‖∞

+
∫ t

0
‖∇e−i(t−s)H(α

(0)
∞ )Ps(−iπ̇∂πW̃ (π(0))+Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖4 ds

+
∫ t

0
‖e−i(t−s)H(α

(0)
∞ )Ps(−iπ̇∂πW̃ (π(0))+Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖2 ds

(131)

. t−
3
2 ‖U(0)‖1+δ2 +

∫ t

0
(t− s)− 3

4

[
‖π̇∂πW̃ (π(0))‖

W 1, 43
+‖|U (0)|2φ‖ 4

3

+‖U (0)∇U (0)φ‖ 4
3
+‖ |U (0)|2U (0)‖ 4

3
+‖ |U (0)|2∇U (0)‖ 4

3
+‖V (π(0))U (0)(s)‖ 4

3

+‖U (0)∇V (π(0))‖ 4
3
+‖V (π(0))∇U (0)‖ 4

3

]
(s) ds

. t−
3
2 ‖U(0)‖1+δ2

∫ t

0
(t− s)− 3

4 s−
3
4 ds . t−

3
2 (δ0 + δ2)+δ2t−

1
2 ≤ c0

δ

2
t−

3
2 ,

provided c1, δ are small. Here (130) comes about because of the Sobolev em-
bedding bound

‖f‖L∞ . ‖∇f‖4 + ‖f‖2.

Since t < 1 it makes the harmless contribution δ2 to the following line.
The only remaining bound on the infinite dimensional evolution PsU(t)

is (68). Here q is chosen very large so that the dispersive Lq
′
(R3) → Lq(R3)

decay is t−
3
2
+. The reason we do not take q =∞ can be found in Corollary 38

below. Thus, with (t− 1
2)+ = max(t− 1

2 , 0),
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‖∇PsU(t)‖L4+Lq ≤‖∇e−itH(α
(0)
∞ )PsU(0)‖L4

+
∫ (t− 1

2
)+

0

∥∥∇e−i(t−s)H(α
(0)
∞ )Ps(−iπ̇∂πW̃ (π(0))

+Ñ(U (0), π(0)) + V (π(0))U (0))(s)
∥∥
q
ds

+
∫ t

t− 1
2

∥∥∇e−i(t−s)H(α
(0)
∞ )Ps(−iπ̇∂πW̃ (π(0))

+Ñ(U (0), π(0)) + V (π(0))U (0))(s)
∥∥

4
ds χ[t≥1]

+
∫ t

0

∥∥∇e−i(t−s)H(α
(0)
∞ )Ps(−iπ̇∂πW̃ (π(0))

+Ñ(U (0), π(0)) + V (π(0))U (0))(s)
∥∥

4
ds χ[0<t<1].

Interchanging ∇ with the evolution as before, and invoking the dispersive es-
timate yield

(132)
‖∇PsU(t)‖L4+Lq . t−

3
4 ‖U(0)‖

W 1, 43

+
∫ (t− 1

2 )+

0

(t− s)− 3
2+‖(−iπ̇∂πW̃ (π(0)) + Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖W 1,q′ ds

+
∫ t

t− 1
2

(t− s)− 3
4 ‖(−iπ̇∂πW̃ (π(0)) + Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖

W 1, 43
ds χ[t≥1]

+
∫ t

0

(t− s)− 3
4 ‖(−iπ̇∂πW̃ (π(0)) + Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖

W 1, 43
ds χ[0<t<1].

The terms involving the W 1, 4
3 arose already in (129) and (131) above. Invoking

these terms shows that the two final integrals in (132) contribute

.
∫ t

t− 1
2

(t− s)− 3
4 δ2〈s〉− 3

2 ds χ[t≥1] +
∫ t

0
(t− s)− 3

4 δ2s−
3
4 ds χ[0<t<1](133)

. δ2t−
3
2 χ[t≥1] + δ2t−

1
2 χ[0<t<1] . δ2t−

3
4 ,

as desired. It remains to bound the integral involving the W 1,q′ norm in (132).
First, we have

‖(−iπ̇∂πW̃ (π(0)) + Ñ(U (0), π(0)) + V (π(0))U (0))(s)‖Lq′
. δ2〈s〉−3 + ‖U (0)‖33q′ . δ2〈s〉− 3

2 .

This bound is a small variation of previous ones, and we skip the details.
Second, we derive the following variant of the L

4
3 bounds obtained above: In

view of our assumptions (65)-(68) on U (0),

‖π̇∂πW̃ (π(0))(s)‖W 1,1 + ‖|U (0)|2(s)φ‖1 + ‖|U (0)|2(s)∇φ‖1 . δ2〈s〉−3,

‖U (0)∇U (0)(s)φ‖1 . ‖U (0)(s)‖∞‖∇U (0)(s)‖2 . δ2s−
3
2 provided s ≥ 1,

‖U (0)∇U (0)(s)φ‖1 . ‖U (0)(s)‖2‖∇U (0)(s)‖2 . δ2 provided 0 < s ≤ 1,
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‖ |U (0)|2U (0)(s)‖1 . ‖U (0)(s)‖22‖U (0)(s)‖∞ . δ3s−
3
2 if s ≥ 1,

‖ |U (0)|2U (0)(s)‖1 = ‖U (0)(s)‖33 . δ3 if 0 < s < 1.

Furthermore,

‖ |U (0)|2∇U (0)(s)‖1 ≤ ‖U (0)(s)‖24‖∇U (0)(s)‖2 . δ3s−
3
2 if s ≥ 1

2
,

‖ |U (0)|2∇U (0)(s)‖1 ≤ ‖U (0)(s)‖24‖∇U (0)(s)‖2 . δ3 if 0 < s <
1
2
,

‖V (π(0))U (0)(s)‖1 + ‖U (0)(s)∇V (π(0))(s)‖1 . δ3〈s〉− 5
2 ,

‖V (π(0))∇U (0)(s)‖1 . ‖V (π(0))‖
L

4
3 ∩Lq′‖∇U

(0)(s)‖L4+Lq . δ3〈s〉−1s−
3
4 .

We performed these estimates on L1 rather than Lq
′

for simplicity. However,
the Lq

′
case is an interpolation of the L

4
3 bounds above and the L1 bounds

which we just derived. Thus, the first integral in (132) which involves the W 1,q′

norm is no larger than

.
∫ (t− 1

2
)+

0
(t− s)− 3

2
+δ2 〈s〉− 3

2 ds.

In conjunction with (133) we finally arrive at

‖∇PsU(t)‖L4+Lq

. t−
3
4 ‖U(0)‖

W 1, 43
+
∫ (t− 1

2
)+

0
(t− s)− 3

2
+δ2〈s〉− 3

2
+ ds

+
∫ t

t− 1
2

(t− s)− 3
4 δ2〈s〉− 3

2 ds χ[t≥1] +
∫ t

0
(t− s)− 3

4 δ2s−
3
4 ds χ[0<t<1]

. t−
3
4 (δ0 + δ2) ≤ δ

2
t−

3
4 ,

provided c1, δ are small.
The conclusion is that PsU(t) satisfies (67) and (68). As far as PimU(t) is

concerned, we claim that it satisfies the stronger estimate

(134) ‖PimU(t)‖∞ + ‖∇PimU(t)‖∞ � δ〈t〉− 3
2

for all t ≥ 0. To see this, return to the equation

i∂tUhyp −H(α(0)
∞ )Uhyp = F2(Udis, Uhyp),

see (103), which governs the evolution of PimU(t). Here F2 satisfies (110), i.e.,

‖F2(Udis, Uhyp)(t)‖2
. δ2〈t〉− 3

2 + δ2〈t〉−1(‖Udis(t)‖2+∞ + ‖Uhyp(t)‖2+∞) . δ2〈t〉− 3
2 .

Writing Uhyp(t) = b+(t)f+(α(0)
∞ ) + b−(t)f−(α(0)

∞ ), see (97), we conclude from
Lemma 23 that in fact

|b+(t)| . δ3〈t〉− 3
2 , |b−(t)| . e−σ(α

(0)
∞ )tδ0 + δ3〈t〉− 3

2 ,
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which implies that
‖Uhyp(t)‖W k,p � δ〈t〉− 3

2

since the functions f±(α(0)
∞ ) are smooth and decay at infinity. In particular,

(134) holds. Finally, inserting the bounds on Udis and Uhyp into (99) yields

‖ProotU(t)‖∞ + ‖∇ProotU(t)‖∞ � δ〈t〉− 3
2 ,

and the lemma is proved.

6. The contraction scheme: Part II

It remains to check that Ψ is a contraction. One guess would be to prove
this property in the norm

‖(π, U)‖ = ‖π‖+ ‖U‖L∞([0,∞),L2),
where

‖π‖ := sup
t≥0
〈t〉3(|α̇(t)|+ |v̇(t)|+ | ˙̃γ(t)|+ |Ḋ(t)|).

Since the paths are all required to start at the same point (α0, 0, 0, 0), it suffices
to control their derivatives, which is what this norm does. Moreover, it is easy
to check that the set Xδ is a complete metric space in this norm. Unfortu-
nately, Ψ does not contract here. To see this, suppose we are given two different
data (π(0), Z(0)) ∈ Xδ and (π(1), Z(1)) ∈ Xδ. Set (π(2), Z(2)) := Ψ(π(0), Z(0)),
(π(3), Z(3)) := Ψ(π(1), Z(1)). Then the evolutions of Z(2) and Z(3) are gov-
erned by the reference Hamiltonians H(α(0)

∞ ) and H(α(1)
∞ ), respectively. These

Hamiltonians have different spectra, namely their thresholds are ±(α(0)
∞ )2 and

±(α(1)
∞ )2, respectively. For this reason one cannot hope to obtain a favorable

estimate for ‖Z(2)(t)−Z(3)(t)‖2, at least for long times. As a model problem,
consider the ODEs

iu̇− α2
1u = 0, iv̇ − α2

2v = 0, u(0) = v(0) 6= 0

with α1 6= α2. Evidently, |u(t) − v(t)| will be as large as |u(0)| infinitely
often for large t. In contrast to this example, our solutions do disperse at the
rate t−

3
2 . Hence, we need to contract in a dispersive norm and the best decay

we can hope for is t−
1
2 , as can be seen from

|eitα2
1 − eitα2

2 |t− 3
2 . t−

1
2 |α1 − α2|.

Since we incur this loss of t in the Z-norm, we also end up losing t over the
decay of π̇. The actual norm is a bit technical, and we introduce it now.

Definition 25. For any (π, Z) ∈ Xδ set

‖(π, Z)‖ := sup
0<t≤1

t
3
4 | ˙̃π(t)|(135)

+ sup
t≥1

t2| ˙̃π(t)|+ sup
0<t≤1

t
3
4 ‖Z(t)‖L4(R3) + sup

t≥1
t

1
2 ‖Z(t)‖L4+L∞ .

The suprema here are essential suprema.
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The appearance of L4 rather than the perhaps more natural L2 has to do
with the cubic nonlinearity. We first make a routine check that Xδ is indeed
complete in this metric.

Lemma 26. If (π, Z) ∈ Xδ, then ‖(π, Z)‖ . δ. For any fixed δ > 0 the
space Xδ is a complete metric space in the norm (135).

Proof. Suppose ‖(πn, Zn)−(πm, Zm)‖ → 0 as n,m→∞ where (πn, Zn) ∈
Xδ. Recall that we are requiring that πn(0) = (α0, 0, 0, 0). Thus,

sup
t≥0

[|αn(t)− αm(t)|+ |vn(t)− vm(t)|+ |Dn(t)−Dm(t)|]

≤ ‖(πn, Zn)− (πm, Zm)‖
∫ ∞

0
(s−

3
4χ[0<s<1] + s−2χ[s>1]) ds

≤ C ‖(πn, Zn)− (πm, Zm)‖.

Define (α,D, v) := limn→∞(αn, Dn, vn) in the uniform sense. Then by (65)

|(α,D, v)(t1)− (α,D, v)(t2)|= lim
n→∞

|(αn, Dn, vn)(t1)− (αn, Dn, vn)(t2)|

≤
∫ t2

t1

δ2〈s〉−3 ds

for all 0 ≤ t1 < t2. This implies that (α,D, v) ∈ Lip([0,∞),R5) and that (65)
also holds for (α,D, v). Let γ̇ be the limit of γ̇n = ˙̃γn − v̇n · yn. Then define
˙̃γ := γ̇+ v̇ · y = limn→∞ ˙̃γn. Since each ˙̃γn satisfies (65), the same argument as
before shows that ˙̃γ does, too. Since

|γ̇(t)| ≤ | ˙̃γ(t)|+ |v̇(t)|C(1 + t) . 〈t〉−2,

it follows that γ is also Lipschitz and hence π ∈ Lip([0,∞),R8), as required in
Definition 19.

For a.e. t > 0 let Z(t) := limn→∞ Zn(t), where the convergence takes place
in L4 + L∞. Since Zn satisfy (66), for any Schwartz function ψ

|〈Z(t), ψ〉|+ |〈Z(t),∇ψ〉| = lim
n→∞

(|〈Zn(t), ψ〉|+ |〈Zn(t),∇ψ〉|)

≤ lim
n→∞

(|〈Zn(t), ψ〉|+ |〈∇Zn(t), ψ〉|)

≤ c0δ‖ψ‖2.

It follows by the usual Hahn-Banach, Riesz-Fischer argument that (66) holds
for Z(t) and a.e. t > 0. For the same reason, the other estimates (67), (68)
also persist in the limit. Finally, the J invariance clearly survives in the limit,
and we are done.

Next, we prove a simple technical lemma which will control the variation
of various quantities in the path.
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Lemma 27. Define P := {π ∈ C1([0,∞),R8) | π(0) = (α0, 0, 0, 0),
‖π‖ ≤ 1}, where ‖π‖ is the π-part of (135); i.e.,

(136) ‖π‖ = sup
0<t≤1

t
3
4 | ˙̃π(t)|+ sup

t≥1
t2| ˙̃π(t)|.

Then, with y(0) = y(π(0)) and θ(0) = θ(π(0)) as in (5), (4), and similarly for
y(1), θ(1),

|α(0)
∞ − α(1)

∞ |+ |v(0)
∞ − v(1)

∞ | . ‖π(0) − π(1)‖,(137)

‖eiθ(0)(t)φ(· − y(0)(t), α(0)(t))−eiθ(1)(t)φ(· − y(1)(t), α(1)(t))‖L1∩L∞(138)

. 〈t〉‖π(1) − π(0)‖,
‖ξ̃j(π(0))(t)− ξ̃j(π(1))(t)‖L1∩L∞ . 〈t〉‖π(0) − π(1)‖,(139)

‖η̃j(π(0))(t)− η̃j(π(1))(t)‖L1∩L∞ . 〈t〉‖π(0) − π(1)‖,(140)

‖Sj(π(0))(t)− Sj(π(1))(t)‖L1∩L∞ . 〈t〉‖π(0) − π(1)‖,(141)

for all π(0), π(1) ∈ P. For the definitions of the various quantities on the left-
hand sides see Lemma 12. The implicit constants here depend on α0 but are
otherwise absolute.

Proof. In view of the definitions of π(0)
∞ , π

(1)
∞ in Definition 3 we have the

following bounds:

sup
t≥0

[|α(0)(t)− α(1)(t)|+ |v(0)(t)− v(1)(t)|+ |D(0)(t)−D(1)(t)|]

≤
∫ ∞

0
(|α̇(0)(s)− α̇(1)(s)|+ |v̇(0)(s)− v̇(1)(s)|+ |Ḋ(0)(s)− Ḋ(1)(s)|) ds

. ‖π(0) − π(1)‖
∫ ∞

0
(s−

3
4χ[0<s<1] + s−2χ[s>1]) ds . ‖π(0) − π(1)‖.

In particular,

|α(0)
∞ − α(1)

∞ |+ |v(0)
∞ − v(1)

∞ | . ‖π(1) − π(0)‖,
which is (137). Moreover (recall that π(0)(0) = π(1)(0) = (α0, 0, 0, 0)),

|y(0)(t)− y(1)(t)| .
∫ t

0
|v(0)(s)− v(1)(s)| ds+ |D(0)(t)−D(1)(t)|

.
[ ∫ t

0

∫ s

0
〈σ〉−2 dσds+

∫ t

0
〈s〉−2 ds

]
‖π(0) − π(1)‖

. 〈t〉‖π(0) − π(1)‖.
and

|γ(0)(t)− γ(1)(t)| ≤
∫ t

0
| ˙̃γ(0)(s)− ˙̃γ(1)(s)| ds

+
∫ t

0
|v̇(0)(s) · y(0)(s)− v̇(1)(s) · y(1)(s)| ds



196 W. SCHLAG

.
∫ t

0
〈s〉−2 ds ‖π(0) − π(1)‖+

∫ t

0
|v̇(0)(s)− v̇(1)(s)|〈s〉 ds

+
∫ t

0
|v̇(0)(s)〈s〉 ds ‖π(0) − π(1)‖

. log(2 + t)‖π(0) − π(1)‖ . 〈t〉‖π(0) − π(1)‖.
Let θ be as in (4). Then

|θ(0)(t, x)− θ(1)(t, x)| . |v(0)(t)− v(1)(t)||x|

+
∫ t

0
(|v(0)(s)− v(1)(s)|+ |α(0)(s)− α(1)(s)|) ds

+ |γ(0)(t)− γ(1)(t)| . (|x|+ 〈t〉)‖π(0) − π(1)‖.
The estimate (138) now follows easily. Indeed, observe that |x| behaves like t
in this context. The other estimates (139), (140), and (141) are easily deduced
from (138).

We will use the following simple extension of the contraction principle. Of
course it is well-known, but we still record it here.

Lemma 28. Let S ⊂ X be a closed subset of a Banach space X and T ⊂ Y
an arbitrary subset of some normed space Y . Suppose that A : S × T → S so
that with some 0 < γ < 1

sup
t∈T
‖A(x, t)−A(y, t)‖X ≤ γ‖x− y‖X for all x, y ∈ S,

sup
x∈S
‖A(x, t1)−A(x, t2)‖ ≤C0‖t1 − t2‖Y for all t1, t2 ∈ T.

Then for every t ∈ T there exists a unique fixed-point x(t) ∈ S such that
A(x(t), t) = x(t). Moreover, these points satisfy the bounds

‖x(t1)− x(t2)‖X ≤
C0

1− γ ‖t1 − t2‖Y
for all t1, t2 ∈ T .

Proof. Clearly, x(t) = limn→∞A(xn(t), t) where for some fixed (i.e., inde-
pendent of t) x0

x0(t) := x0, xn+1(t) = A(xn(t), t).

Then inductively,

‖xn+1(t1)− xn+1(t2)‖X ≤ ‖A(xn(t1), t1)−A(xn(t2), t1)‖X
+ ‖A(xn(t2), t1)−A(xn(t2), t2)‖X
≤ γ‖xn(t1)− xn(t2)‖X + C0‖t1 − t2‖Y

≤ C0

n∑

k=0

γk ‖t1 − t2‖Y

for all n ≥ 0. Passing to the limit n→∞ proves the lemma.
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We are now ready to state the contraction property of Ψ.

Lemma 29. Under the hypotheses of Theorem 1 the map Ψ : Xδ → Xδ

is a contraction in the norm (135). Thus Ψ has a fixed point (π, Z) ∈ Xδ,
which is completely determined by R0. Hence, the function h(R0, π

(0), Z(0))
now becomes a function h = h(R0) of R0 alone. It satisfies (95) as well as the
Lipschitz bound

(142) |h(R0)− h(R1)| . δ|||R0 −R1|||

for any R0, R1 satisfying P+
u (α0)

(Rj
R̄j

)
= 0, and |||Rj ||| ≤ c1δ, j = 0, 1.

Proof. Let (π(0), Z(0)), (π(1), Z(1)) ∈ Xδ and set

(π(2), Z(2)) := Ψ(π(0), Z(0)), (π(3), Z(3)) := Ψ(π(1), Z(1)),

as well as

U (0)(t) := M(π(0))(t)G∞(π(0))(t)Z(0)(t),

U (2)(t) := M(π(0))(t)G∞(π(0))(t)Z(2)(t),

U (1)(t) := M(π(1))(t)G∞(π(1))(t)Z(1)(t),

U (3)(t) := M(π(1))(t)G∞(π(1))(t)Z(3)(t).

Hence, by definition of Ψ we have the linear problems

i∂tU
(2)−H(α(0)

∞ )U (2) = −iπ̇(2)∂πW̃ (π(0))+N(U (0), π(0))+V (π(0))U (0),(143)

〈π̇(2)∂πW̃ (π(0)), ξj(π(0))〉 = i〈U (2), ξ̇j(π(0))〉+〈U (2), E(π(0))ξj(π(0))〉
+〈N(U (0), π(0)), ξj(π(0))〉

for 1 ≤ j ≤ 8 and

(144)

i∂tU
(3)−H(α(1)

∞ )U (3) = −iπ̇(3)∂πW̃ (π(1))+N(U (1), π(1)) + V (π(1))U (1),

i〈π̇(3)∂πW̃ (π(1)), ξj(π(1))〉 = i〈U (3), ξ̇j(π(1))〉+〈U (3), E(π(1))ξj(π(1))〉
+〈N(U (1), π(1)), ξj(π(1))〉

for 1 ≤ j ≤ 8. The initial conditions are

U (2)(0) = G∞(π(0))(0)
[(R0

R̄0

)
+ h(0)f+(α(0)

∞ ) +
8∑

j=1

a
(0)
j ηj(α(0)

∞ )
]

(145)

U (3)(0) = G∞(π(1))(0)
[(R0

R̄0

)
+ h(1)f+(α(1)

∞ ) +
8∑

j=1

a
(1)
j ηj(α(1)

∞ )
]

(146)

π(2)(0) = π(3)(0) = (α0, 0, 0, 0),(147)
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where we have set

h(0) := h(R0, π
(0), Z(0)), h(1) := h(R0, π

(1), Z(1))

for simplicity, and similarly for aj = aj(h). We cannot compare U (2) and U (3)

because they are given in terms of reference Hamiltonians which involve the
vectors π(0)

∞ and π
(1)
∞ and the latter cannot be compared. Indeed, since we

only know that |π̇(0)(t)− π̇(1)(t)| ≤ 〈t〉−2‖π(0)−π(1)‖, the best estimate on the
“terminal translation” D∞ here would be

|D(0)
∞ −D(1)

∞ | . ‖π(0) − π(1)‖ log ‖π(0) − π(1)‖−1,

which is too weak for the contraction. Therefore, we return to the system (21),
(70). More precisely, with Z(0) =

(
R(0)

R̄(0)

)
and Z(1) =

(
R(1)

R̄(1)

)
one has the systems

i∂tZ
(2)(t) +

(
4+ 2|W (π(0))|2 W 2(π(0))
−W̄ 2(π(0)) −4− 2|W (π(0))|2

)
Z(2)(t)

= v̇(2)

(−(x− y(π(0))(t))eiθ(π
(0))(t)φ(· − y(π(0))(t), α(0)(t))

(x− y(π(0))(t))e−iθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))

)

+ ˙̃γ(2)

(−eiθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))
e−iθ(π(0))(t)φ(· − y(π(0))(t), α(0)(t))

)

+ iα̇(2)

(
eiθ(π

(0))(t)∂αφ(· − y(π(0))(t), α(0)(t))
e−iθ(π(0))(t)∂αφ(· − y(π(0))(t), α(0)(t))

)

+ iḊ(2)

( −eiθ(π(0))(t)∇φ(· − y(π(0))(t), α(0)(t))
−e−iθ(π(0))(t)∇φ(· − y(π(0))(t), α(0)(t))

)

+
(−2|R(0)|2W (π(0))(t)− W̄ (π(0))(t)(R(0))2 − |R(0)|2R(0)

2|R(0)|2W̄ (π(0))(t) +W (π(0))(t)(R̄(0))2 + |R(0)|2R̄(0)

)
,

and

i∂tZ
(3)(t) +

(
4+ 2|W (π(1))|2 W 2(π(1))
−W̄ 2(π(1)) −4− 2|W (π(1))|2

)
Z(3)(t)

= v̇(3)

(−(x− y(π(1))(t))eiθ(π
(1))(t)φ(· − y(π(1))(t), α(1)(t))

(x− y(π(1))(t))e−iθ(π(1))(t)φ(· − y(π(1))(t), α(1)(t))

)

+ ˙̃γ(3)

(−eiθ(π(1))(t)φ(· − y(π(1))(t), α(1)(t))
e−iθ(π(1))(t)φ(· − y(π(1))(t), α(1)(t))

)

+ iα̇(3)

(
eiθ(π

(1))(t)∂αφ(· − y(π(1))(t), α(1)(t))
e−iθ(π(1))(t)∂αφ(· − y(π(1))(t), α(1)(t))

)

+ iḊ(3)

( −eiθ(π(1))(t)∇φ(· − y(π(1))(t), α(1)(t))
−e−iθ(π(1))(t)∇φ(· − y(π(1))(t), α(1)(t))

)

+
(−2|R(1)|2W (π(1))(t)− W̄ (π(1))(t)(R(1))2 − |R(1)|2R(1)

2|R(1)|2W̄ (π(1))(t) +W (π(1))(t)(R̄(1))2 + |R(1)|2R̄(1)

)
.
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Using the notations from Lemma 12 we rewrite these systems in the form

i∂tZ
(2) −H(π(0)(t))Z(2)(148)

= i
[ 3∑

`=1

(Ḋ(2)
` η̃

(0)
5+` − v̇

(2)
` η̃

(0)
2+`) + α̇(2)η̃

(0)
2 − ˙̃γ(2)η̃

(0)
1

]
+N∗(Z(0), π(0)),

=: − i ˙̃π(2)∂πW (π(0)) +N∗(Z(0), π(0)),

i∂tZ
(3) −H(π(1)(t))Z(3)(149)

= i
[ 3∑

`=1

(Ḋ(3)
` η̃

(1)
5+` − v̇

(3)
` η̃

(1)
2+`) + α̇(3)η̃

(1)
2 − ˙̃γ(3)η̃

(1)
1

]
+N∗(Z(1), π(1))

=: − i ˙̃π(3)∂πW (π(1)) +N∗(Z(1), π(1)),

where η̃(0)
j := η̃j(π(0)), η̃(1)

j := η̃j(π(1)), and N∗ are defined in the obvious way.
By construction, U (3), U (2) satisfy the orthogonality conditions

〈U (2)(t), ξj(π(0))(t)〉 = 〈U (3), ξj(π(1))(t)〉 = 0

for all 1 ≤ j ≤ 8 and t ≥ 0. By Lemma 12 these are equivalent to

〈Z(2)(t), ξ̃j(π(0))(t)〉 = 〈Z(3), ξ̃j(π(1))(t)〉 = 0.

Taking the scalar products of (148) and (149) with ξ̃j(π(0)) and ξ̃j(π(1)), re-
spectively, leads to the following modulation equations on the level of Z(t):

−i〈 ˙̃π(2)∂πW (π(0)), ξ̃j(π(0))〉 = 〈Z(2), ˙̃π(0)Sj(π(0))〉 − 〈N∗(Z(0), π(0)), ξ̃j(π(0))〉,
(150)

−i〈 ˙̃π(3)∂πW (π(1)), ξ̃j(π(1))〉 = 〈Z(3), ˙̃π(1)Sj(π(1))〉 − 〈N∗(Z(1), π(1)), ξ̃j(π(1))〉.
(151)

Here we used the notation from (48). Subtracting (148), (149), and (150),
(151), respectively, we obtain the equations that will provide the estimates for
the contraction step:

i∂t(Z(3) − Z(2))−H(π(0)(t))(Z(3) − Z(2))(152)

= −i( ˙̃π(3) − ˙̃π(2))∂πW (π(0)) + V (π(0), π(1))Z(3)

+N∗(Z(1), π(1))−N∗(Z(0), π(0)) + ˙̃π(3)(∂πW (π(1))− ∂πW (π(0)));

(153)

(Z(3) − Z(2))(0) =h(1)f+(α(1)
∞ )

+
8∑

j=1

a
(1)
j ηj(α(1)

∞ )− [h(0)f+(α(0)
∞ ) +

8∑

j=1

a
(0)
j ηj(α(0)

∞ )]

−i〈( ˙̃π(3) − ˙̃π(2))∂πW (π(0)), ξ̃j(π(0))〉
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= 〈Z(3) − Z(2), ˙̃π(0)Sj(π(0))〉(154)

+〈Z(3), ˙̃π(1)Sj(π(1))− ˙̃π(0)Sj(π(0))〉
+〈N∗(Z(1), π(1))−N∗(Z(0), π(0)), ξ̃j(π(1))〉
+〈N∗(Z(0), π(0)), ξ̃j(π(1))− ξ̃j(π(0))〉
+〈 ˙̃π(3)(∂πW (π(0))− ∂πW (π(1))), ξ̃j(π(0))〉
+〈 ˙̃π(3)∂πW (π(0)), ξ̃j(π(0))− ξ̃j(π(1))〉.

Here
Ṽ (π(0)֒ π(1)) := H(π(1)) −H(π(0))

=

(
2(φ2(· − y(0)֒ α(0)) − φ2(· − y(1)֒ α(1))) e2iθ(0)

φ2(· − y(0)֒ α(0)) − e2iθ(1)
φ2(· − y(1)֒ α(1))

−e−2iθ(0)
φ2(· − y(0)֒ α(0)) + e−2iθ(1)

φ2(· − y(1)֒ α(1)) −2(φ2(· − y(0)֒ α(0)) − φ2(· − y(1)֒ α(1)))

)
.

In view of (138),

(155) ‖Ṽ (π(0), π(1))‖L1∩L∞ . 〈t〉‖π(0) − π(1)‖.
Set T (0)(t) := M(π(0))(t)G∞(π(0))(t) and define Ũ (3) := T (0)(t)Z(3)(t). Hence,

(Ũ (3) − U (2))(t) = T (0)(t)(Z(3)(t)− Z(2)(t))

satisfies the transformed equation

i∂t(Ũ (3) − U (2))−H(α(0)
∞ )(Ũ (3) − U (2))(156)

= T (0)(t)[−i( ˙̃π(3) − ˙̃π(2))∂πW (π(0)) + Ṽ (π(0), π(1))Z(3)]

+T (0)(t)[N∗(Z(1), π(1))−N∗(Z(0), π(0))

−i ˙̃π(3)(∂πW (π(1))− ∂πW (π(0)))] + V (π(0))(Ũ (3) − U (2)).

As before, we need to split the evolution into the three pieces

Ũ (3) − U (2) =Ps(α(0)
∞ )(Ũ (3) − U (2)) + Proot(α(0)

∞ )(Ũ (3) − U (2))

+Pim(α(0)
∞ )(Ũ (3) − U (2)).

In view of Lemma 12 and Lemma 27, for all 1 ≤ j ≤ 8,

|〈Ũ (3) − U (2), ξj(π(0))〉| = |〈Z(3) − Z(2), ξ̃j(π(0))〉| = |〈Z(3), ξ̃j(π(0))− ξ̃j(π(1))〉|
≤ ‖Z(3)‖2+∞〈t〉 ‖π(0) − π(1)‖ . δ〈t〉− 1

2 ‖π(0) − π(1)‖.
The conclusion is that

(157) ‖Proot(α(0)
∞ )(Ũ (3) − U (2))(t)‖4+∞

. δ〈t〉− 1
2 ‖π(0) − π(1)‖+ δ2‖Ũ (3)(t)− U (2)(t)‖4+∞〈t〉−1.

Next, we turn to the dispersive piece Ps(α
(0)
∞ )(Ũ (3) − U (2)). This requires

estimating each of the expressions on the right-hand side of (156) in the ap-
propriate norms. It will be convenient to use the notations

µZ(t) := t
1
2χ[t≥1] + t

3
4χ[0<t<1], µπ(t) := t2χ[t≥1] + t

3
4χ[0<t<1].
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Then,

(158) ‖T (0)(t)[−i( ˙̃π(3) − ˙̃π(2))∂πW (π(0)) + V (π(0), π(1))Z(3)]‖1∩2

. ‖π(3) − π(2)‖µπ(t)−1 + δ〈t〉− 1
2 ‖π(0) − π(1)‖.

Moreover, by (155),

‖V (π(0))(Ũ (3)(t)− U (2)(t))‖1∩2 . ‖V (π(0))‖1∩4‖Ũ (3)(t)− U (2)(t)‖4+∞(159)

. δ2‖Ũ (3)(t)− U (2)(t)‖4+∞.

Another easy term is

(160) ‖T (0)(t) ˙̃π(3)(∂πW (π(1))− ∂πW (π(0)))‖1∩∞ . δ2〈t〉−2‖π(0) − π(1)‖.
Next, we turn to the nonlinear terms N∗(Z(1), π(1)) − N∗(Z(0), π(0)). Recall
that

N∗(Z(1), π(1)) =
(−2|R(0)|2W (π(0))(t)− W̄ (π(0))(t)(R(0))2 − |R(0)|2R(0)

2|R(0)|2W̄ (π(0))(t) +W (π(0))(t)(R̄(0))2 + |R(0)|2R̄(0)

)
.

The right-hand side here naturally divides into three columns, which we for-
mally write as

|Z|2W, Z2 W̄ , |Z|2Z,
respectively. Let us start with the third column (we suppress t for the most
part):

‖|Z(0)|2Z(0) − |Z(1)|2Z(1)‖1∩ 4
3

. ‖Z(0) − Z(1)‖4+∞(‖ |Z(0)|2 + |Z(1)|2‖ 4
3
∩1 + ‖ |Z(0)|2 + |Z(1)|2‖2∩ 4

3
)

. δ2‖Z(0) − Z(1)‖4+∞.

This estimate is the reason we do not work on L2 + L∞. Indeed, in the latter
case we would be faced with ‖U(t)‖2∞, which we can only bound by t−

3
2 for

small t; see (68). This bound is nonintegrable at t = 0. The first column
satisfies

‖|Z(0)|2W (π(0))− |Z(1)|2W (π(1))‖1∩ 4
3

. ‖Z(0) − Z(1)‖4+∞
(
‖ |Z(0)W (π(0))|+ |Z(1)W (π(1))| ‖ 4

3
∩1

+ ‖ |Z(0)W (π(0))|+ |Z(1)W (π(1))| ‖2∩ 4
3

)

+ ‖W (π(0))−W (π(1))‖1∩∞‖Z(1)‖22+∞

. δ‖Z(0) − Z(1)‖4+∞ + δ2〈t〉−2‖π(0) − π(1)‖.
An analogous bound holds for the second column. Collecting these bounds
yields

(161) ‖T (0)[N∗(Z(1), π(1))−N∗(Z(0), π(0))]‖1∩ 4
3

. δ‖Z(0) − Z(1)‖4+∞ + δ2〈t〉−2‖π(0) − π(1)‖.
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Combining (158), (159), (160), and (161) leads to

‖right-hand side of (156)‖1∩ 4
3

(162)

. δ〈t〉− 1
2 ‖π(1) − π(0)‖+ δ‖Z(1)(t)− Z(0)(t)‖4+∞

+ δ2‖Ũ (3)(t)− U (2)(t)‖4+∞ + ‖π(3) − π(2)‖µπ(t)−1.

Denote the right-hand side of (156) by F . Estimating the Duhamel version of
(156) therefore leads to the conclusion that

‖Ps(α(0)
∞ )(Ũ (3) − U (2))(t)‖4+∞(163)

≤ ‖e−itH(α
(0)
∞ )Ps(α(0)

∞ )(Ũ (3)(0)− U (2)(0))‖4+∞

+
∫ (t−1)+

0
‖e−i(t−s)H(α

(0)
∞ )Ps(α(0)

∞ )F (s)‖∞ ds

+
∫ t

(t−1)+

‖e−i(t−s)H(α
(0)
∞ )Ps(α(0)

∞ )F (s)‖4 ds

. t−
3
2 ‖Ps(α(0)

∞ )[Ũ (3)(0)− U (2)(0)]‖1χ[t≥1]

+ t−
3
4 ‖Ps(α(0)

∞ )[Ũ (3)(0)− U (2)(0)]‖ 4
3
χ[0<t<1]

+
∫ t

0

(
〈t− s〉− 3

2 + (t− s)− 3
4χ[(t−1)+<s<t]

)

·
(
δ〈s〉− 1

2 ‖π(1) − π(0)‖+ δ2‖(Z(1) − Z(0))(s)‖4+∞

+ δ2‖Ũ (3)(s)− U (2)(s)‖4+∞ + ‖π(3) − π(2)‖µπ(s)−1
)
ds.

As far as the initial conditions are concerned, we infer from (145), (146), as
well as (137) that

‖Ps(α(0)
∞ )[U (3)(0)− U (2)(0)]‖1∩ 4

3
. |h(1)|‖[Ps(α(0)

∞ )− Ps(α(1)
∞ )]f+(α(0)

∞ )‖2

(164)

+
8∑

k=1

|a(1)
j |‖[Ps(α(0)

∞ )− Ps(α(1)
∞ )]ηk(α(0)

∞ )‖2 . δ2‖π(0) − π(1)‖.

Further simplification of (163) therefore leads to

‖Ps(α(0)
∞ )(Ũ (3) − U (2))(t)‖4+∞(165)

. δµZ(t)−1 ‖π(0) − π(1)‖+ δ2t−
1
2 sup
s≥0

µZ(s)‖Ũ (3)(s)− U (2)(s)‖4+∞

+δ t−
1
2
(
‖π(0) − π(1)‖+ sup

s≥0
µZ(s)‖Z(0)(s)− Z(1)(s)‖4+∞

)

+t−
1
2 ‖π(3) − π(2)‖,

where we used the elementary estimate
∫ t

0 〈t−s〉−
3
2 〈s〉− 1

2 ds . 〈t〉− 1
2 . It remains

to bound
‖Pim(α(0)

∞ )[Ũ (3)(t)− U (2)(t)]‖4+∞.



STABLE MANIFOLDS 203

To this end write

Pim(α(0)
∞ )[Ũ (3)(t)− U (2)(t)] = b+(t)f+(α(0)

∞ ) + b−(t)f−(α(0)
∞ ),

with coefficients that are governed by the hyperbolic ODE

(166)
d

dt

(
b+(t)
b−(t)

)
−
(
σ(α(0)

∞ ) 0
0 −σ(α(0)

∞ )

)(
b+(t)
b−(t)

)
=
(
g+

g−

)
.

Here
Pim(α(0)

∞ )F (t) = g+(t)f+(α(0)
∞ ) + g−(t)f−(α(0)

∞ )

where F stands for the right-hand side of (156). Clearly, g±(t) satisfy the
bound from (162). We need to find b±(0). To this end compute

Pim(α(0)
∞ )[U (3)(0)− U (2)(0)] = b+(0)f+(α(0)

∞ ) + b−(0)f−(α(0)
∞ )

= Pim(α(0)
∞ )G∞(π(0))(0)

[
(h(1) − h(0))f+(α(0)

∞ )− h(1)[f+(α(0)
∞ )− f+(α(1)

∞ )]

+
8∑

j=1

[a(1)
j ηj(α(1)

∞ )− a(1)
j ηj(α(1)

∞ )]
]
.

Thus,

|b+(0)− (h(1) − h(0))| . δ2|h(1) − h(0)|+ δ2‖π(1) − π(0)‖+ δ2
8∑

j=1

|a(1)
j − a

(0)
j |

. δ2|h(1) − h(0)|+ δ2‖π(1) − π(0)‖,

where we used (82) in the final inequality. Moreover,

|b−(0)| . |h(1) − h(0)|+ δ2‖π(1) − π(0)‖.

Since b±(t) is a bounded solution of the ODE (166), it follows from Lemma 23
and (162) that

|b+(0)| .
∫ ∞

0
e−σ(α

(0)
∞ )t(|g+(t)|+ |g−(t)|) dt

.
∫ ∞

0
e−σ(α

(0)
∞ )t
[
δ〈t〉− 1

2 ‖π(1) − π(0)‖+ δ‖Z(1)(t)− Z(0)(t)‖4+∞

+ δ2‖Ũ (3)(t)− U (2)(t)‖4+∞ + ‖π(3) − π(2)‖µπ(t)−1
]
dt

. δ‖(π(0) − π(1), Z(0) − Z(1))‖
+ δ2‖(π(3) − π(2), Z(3) − Z(2))‖+ ‖π(3) − π(2)‖

and thus also

|h(1) − h(0)|+ |b−(0)|. δ‖(π(0) − π(1), Z(0) − Z(1))‖(167)

+δ2‖(π(3) − π(2), Z(3) − Z(2))‖+ ‖π(3) − π(2)‖.
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Furthermore, in view of (93),

‖Pim(α(0)
∞ )[Ũ (3)(t)− U (2)(t)]‖4+∞ . |b+(t)|+ |b−(t)|(168)

.
∫ ∞

t
e−σ(α

(0)
∞ )(s−t)

[
δ〈s〉− 1

2 ‖π(1) − π(0)‖+ δ‖Z(1)(s)− Z(0)(s)‖4+∞

+ δ2‖Ũ (3)(s)− U (2)(s)‖4+∞ + ‖π(3) − π(2)‖µπ(s)−1
]
ds

+ e−σ(α
(0)
∞ )t(δ‖(π(0) − π(1), Z(0) − Z(1))‖

+ δ2‖(π(3) − π(2), Z(3) − Z(2))‖+ ‖π(3) − π(2)‖)

+
∫ t

0
e−σ(α

(0)
∞ )(t−s)

[
δ〈s〉− 1

2 ‖π(1) − π(0)‖+ δ‖Z(1)(s)− Z(0)(s)‖4+∞

+ δ2‖Ũ (3)(s)− U (2)(s)‖4+∞ + ‖π(3) − π(2)‖µπ(s)−1
]
ds

. 〈t〉− 1
2
[
δ‖(π(0) − π(1), Z(0) − Z(1))‖

+ δ2‖(π(3) − π(2), Z(3) − Z(2))‖+ ‖π(3) − π(2)‖].
Now set

ε0 := ‖(π(0) − π(1), Z(0) − Z(1))‖, ε2 := ‖(π(3) − π(2), Z(3) − Z(2))‖.
Combining (157), (165), and (168) leads to the bound

(169) sup
t≥0

µZ(t)‖Z(3)(t)− Z(2)(t)‖4+∞ . δε0 + δ2ε2 + ‖π(3) − π(2)‖

and thus also, in view of (167),

(170) |h(1) − h(0)| . δε0 + δ2ε2 + ‖π(3) − π(2)‖.
We now turn to estimating the difference of the paths π(3), π(2). Indeed,

inserting some of the bounds we derived in (154) yields

|π̇(3)(t)− π̇(2)(t)| . δ2〈t〉−3‖(Z(3) − Z(2))(t)‖4+∞

+ δ〈t〉− 3
2 (〈t〉− 1

2 ‖π(0) − π(1)‖+ δ2〈t〉−2‖π(1) − π(0)‖)
+ δ〈t〉− 3

2 ‖Z(0)(t)− Z(1)(t)‖4+∞

+ δ2〈t〉−2‖π(1) − π(0)‖+ δ2〈t〉−2‖π(1) − π(0)‖
. δ2µπ(t)−1ε2 + δµπ(t)−1ε0,

which implies that

‖π(3) − π(2)‖ = sup
t≥0

µπ(t)|π̇(3)(t)− π̇(2)(t)| . δ2ε2 + δε0.

Combining this bound with (169) yields that ε2 . δε0, which is the same as

‖Ψ(R0, π
(0), Z(0))−Ψ(R1, π

(1), Z(1))‖ . δ‖(π(0), Z(0))− (π(1), Z(1))‖,
where we have included the initial condition R0 in the notation. We have
shown that Ψ is a contraction in Xδ.



STABLE MANIFOLDS 205

Denote the unique fixed-point in Xδ by (π(R0), Z(R0)). We claim that
this fixed-point is Lipschitz in R0 in the following sense:

(171) ‖(π(R0), Z(R0))− (π(R1), Z(R1))‖ . |||R0 −R1|||.

In view of Lemma 28 it suffices to show that

(172) ‖Ψ(R0, π
(0), Z(0))−Ψ(R1, π

(0), Z(0))‖ . |||R0 −R1|||.

To prove this, set

(π(3), Z(3)) = Ψ(R1, π
(0), Z(0)), (π(2), Z(2)) = Ψ(R0, π

(0), Z(0)).

The difference of these functions is controlled by the equations (152), (154)
with π(0) = π(1), Z(0) = Z(1). Hence,

i∂t(Z(3) − Z(2))−H(π(0)(t))(Z(3) − Z(2)) = −i( ˙̃π(3) − ˙̃π(2))∂πW (π(0)),

−i〈( ˙̃π(3) − ˙̃π(2))∂πW (π(0)), ξ̃j(π(0))〉 = 〈Z(3) − Z(2), ˙̃π(0)Sj(π(0))〉,

with initial conditions

(Z(3)−Z(2))(0) =
(
R1

R̄1

)
−
(
R0

R̄0

)
+(h(1)−h(0))f+(α(0)

∞ )+
8∑

j=1

(a(1)
j −a

(0)
j )ηj(α(0)

∞ );

cf. (153). The orthogonality conditions

〈Z(3)(t), ξ̃j(π(0))(t)〉 = 〈Z(2)(t), ξ̃j(π(0))(t)〉 = 0

hold for all t ≥ 0 by construction. Setting

Ũ (3) := T (0)Z(3), U (2) := T (0)Z(2)

as before, we obtain the transformed equations

i∂t(Ũ (3) − U (2))−H(α(0)
∞ )(Ũ (3) − U (2))

= T (0)[−i( ˙̃π(3) − ˙̃π(2))∂πW (π(0))] + V (π(0))(Ũ (3) − U (2)),

(Ũ (3) − U (2))(0) = G∞(0)
[(R1

R̄1

)
−
(
R0

R̄0

)
+ (h(1) − h(0))f+(α(0)

∞ )

+
8∑

j=1

(a(1)
j − a

(0)
j )ηj(α(0)

∞ )
]
.

The orthogonality conditions are 〈Ũ (3)−U (2), ξj(π(0))〉 = 0. The estimate (172)
now follows by using the same techniques we have employed repeatedly in order
to control the solution Ũ (3) − U (2). We skip the details.

Combining (171) with (170) leads to the statement that

|h(R0)− h(R1)| . δ|||R0 −R1|||,

as claimed.
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Proof of Theorem 1. Given R0, the previous lemma establishes the ex-
istence of h = h(R0) ∈ R as well as (π, Z) = (π(R0), Z(R0)) ∈ Xδ where
δ = C0|||R0|||, which solve

i∂tZ(t) +
(
4+ 2|W (π)|2 W 2(π)
−W̄ 2(π) −4− 2|W (π)|2

)
Z(t)

= v̇

(−xeiθ(π)(t)φ(· − y(π)(t), α(t))
xe−iθ(π)(t)φ(· − y(π)(t), α(t))

)
+ γ̇

(−eiθ(π)(t)φ(· − y(π)(t), α(t))
e−iθ(π)(t)φ(· − y(π)(t), α(t))

)

+ iα̇

(
eiθ(π)(t)∂αφ(· − y(π)(t), α(t))
e−iθ(π)(t)∂αφ(· − y(π)(t), α(t))

)
+iḊ

( −eiθ(π)(t)∇φ(· − y(π)(t), α(t))
−e−iθ(π)(t)∇φ(· − y(π)(t), α(t))

)

+
(−2|R|2W (π)(t)− W̄ (π)(t)R2 − |R|2R

2|R|2W̄ (π)(t) +W (π)(t)R̄2 + |R|2R̄

)

with initial conditions

Z(0) =
(
R0

R̄0

)
+ h(R0)f+(α∞) +

8∑

j=1

aj(R0)ηj(α∞),

π(0) = (α0, 0, 0, 0).

Here aj = aj(h(R0)) ∈ R. Define

Φ(R0) := h(R0)f+(α∞) +
8∑

j=1

aj(R0)ηj(α∞).

Since

|h(R0)|+
8∑

j=1

|aj(h(R0))| . δ2 . |||R0|||2,

the estimate (8) follows. Moreover, (9) follows from (142). Since Z =
(R(t)
R̄(t)

)
is

J -invariant, it follows from Lemma 5 that

ψ(t) := W (π(t)) +R(t)

is an H1-solution of the nonlinear Schrödinger equation (1). Finally,

‖R(t)‖W 1,2 . δ, ‖R(t)‖∞ . δt−
3
2

follows from (66) and (67), whereas (65) ensures that the path is admissible
and therefore converges to π(∞) with

sup
t≥0
|π(t)− π(∞)| . δ2.

Finally, we turn to the scattering statement. According to Lemma 6,

i∂tU −H(α∞)U = −iπ̇∂πW̃ (π) +N(U, π) + V (π)U(173)

U(0) = G∞(π)(0)
[(R0

R̄0

)
+
(

Φ(R0)
Φ(R0)

)]
.
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Denoting the right-hand side (173) by F (t), we have

U(t) = e−itH(α∞)U(0)− i
∫ t

0
e−i(t−s)H(α∞)F (s) ds.

The estimates (65)–(67) imply that

‖F (s)‖ 3
2
∩2 . 〈s〉− 5

2 , ‖F (s)‖1∩2 . 〈s〉− 3
2 ,

∫ ∞

0
‖F (s)‖2 ds <∞.

This allows us to define

U1 := PU(0)− i
∫ ∞

0
eisH(α∞)PF (s) ds ∈ L2(R3)

where we have set P := Ps(α∞) + Proot(α∞) = 1 − Pim(α∞). We are using
here that

‖eisH(α∞)PF (s)‖2 . 〈s〉− 3
2 ,

which follows from the fact that growth of eisH(α∞) on the root-space can be
at most s. Clearly, U1 was defined so that

PU(t)− e−itH(α∞)U1 = i

∫ ∞

t
e−i(t−s)H(α∞)PF (s) ds

which implies that

‖PU(t)− e−itH(α∞)U1‖2 . 〈t〉− 1
2 → 0

as t→∞. As far as the hyperbolic part is concerned, we define

U2 := P−im(α∞)U(0)− i
∫ ∞

0
e−sσ(α∞)P−im(α∞)F (s) ds.

Because of Lemma 23,

Pim(α∞)U(t)− e−itH(α∞)U2 = i

∫ ∞

t
e(t−s)σ(α∞)Pim(α∞)F (s) ds.

In conjunction with the P -part this shows that

U(t)− e−itH(α∞)(U1 + U2) = i

∫ ∞

t
e−i(t−s)H(α∞)PF (s) ds(174)

+i
∫ ∞

t
e(t−s)σ(α∞)Pim(α∞)F (s) ds.

Therefore, as t→∞,

(175) U(t) = e−itH(α∞)(U1 + U2) + oL2(1).

Another consequence of (174) is the estimate

(176) ‖e−itH(α∞)(U1 + U2)‖3 . ‖U(t)‖3 +
∫ ∞

t
(t− s)− 1

2 ‖F (s)‖ 3
2
ds . 〈t〉− 1

2 .
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This implies that in fact Proot(U1 + U2) = 0. Seeing this requires some care,
as we do not know that U1 + U2 ∈ L1(R3). However, (176) implies that

‖e−itH(α∞)(U1 + U2)‖L4
t (L

3
x(R3)) <∞.

On the other hand, by the Strichartz estimate (216),

‖e−itH(α∞)Ps(U1 + U2)‖L4
t (L

3
x(R3)) . ‖Ps(U1 + U2)‖2 <∞.

Hence, also
‖e−itH(α∞)Proot(U1 + U2)‖L4

t (L
3
x(R3)) <∞.

However, this is only possible if in fact Proot(U1 +U2) = 0, as claimed. There-
fore,

U1 := PsU(0)− i
∫ ∞

0
eisH(α∞)PsF (s) ds

which in particular implies the dispersive bound
(177)

‖e−itH(α∞)(U1 + U2)‖2+∞ . ‖U(t)‖2+∞ +
∫ ∞

t
〈t− s〉− 3

2 ‖F (s)‖1∩2 ds . 〈t〉− 3
2 .

It remains to show that one has scattering for the evolution of H(α∞). This
is a standard Cook’s method argument. Indeed, write

H(α∞) =
(
−4+ α2

∞ 0
0 4− α2

∞

)
+
(
−2φ2

∞ −φ2
∞

φ2
∞ 2φ2

∞

)
=: H0(α∞) + V,

where φ∞ := φ(·, α∞). Then

e−itH(α∞)(U1 + U2) = e−itH0(α∞)(U1 + U2)

−i
∫ t

0
e−i(t−s)H0(α∞)V e−isH(α∞)(U1 + U2) ds

and thus

(178) U3 := lim
t→∞

eitH0(α∞)e−itH(α∞)(U1 + U2)

exists as a strong L2 limit. Indeed, this follows from
∫ ∞

0
‖eisH0(α∞)V e−isH(α∞)(U1 + U2)‖2 ds

.
∫ ∞

0
‖e−isH(α∞)(U1 + U2)‖2+∞ ds <∞;

see (177). It follows from (175) and (178) that

U(t) = e−itH0(α∞)U3 + oL2(1).

Finally,

Z(t) = G∞(t)−1M(t)−1U(t) = e−itH0G−1
∞ (0)U3 + oL2(1),
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where H0 =
(
−4 0

0 4

)
. Setting G−1

∞ (0)U3 =
(f0
f̄0

)
and Z(t) =

(R(t)
R̄(t)

)
, we

obtain
R(t) = eit4f0 + oL2(1),

and the theorem is proved.

Proof of Theorem 2. The idea is as follows: Given α0, consider the nonlin-
ear Schrödinger equation (1) with initial data φ(·, α0)+R0. Applying the usual
eight-parameter family of symmetries (Galilei giving six parameters, modula-
tion one, and scaling also one — scaling here is the same as the parameter
α), we transform this to W (0, ·) + R1 where W (0, x) is a soliton with a gen-
eral parameter vector π0 which is close to (0, 0, 0, α0). Hence, we can apply
Theorem 1 to conclude that these initial data will give rise to global solutions
with the desired properties as long as W (0, x) +R1 lies on the stable manifold
associated with W (0, x). To prove that we obtain eight dimensions back in
this fashion requires checking that the derivatives of W (0, x) in its parameters
are transverse to the linear space S of Theorem 1. However, these derivatives
are basically the elements of the root space N of H(α0), whereas we know that
S is perpendicular to the root space N ∗ of H(α0)∗. But Lemma 10 implies
that no nonzero vector in N is perpendicular to N ∗, which proves that N is
transverse to S, as desired.

7. The linear analysis: Dispersive theory

We now consider the estimates on the linear evolution eitH where H =
H(α2) is as in (6). It is for the estimates in this section that we will need to
assume the absence of imbedded eigenvalues in the essential spectrum of H.
The reader should consult Section 4 for the spectral properties of H(α). Al-
though the results of this section are abstract and refer to general matrix-valued
Schrödinger operators, see [17], we will use some facts about H established in
that section.

In what follows, we need to bound the resolvents on weighted L2 spaces.
For that purpose, let L2,σ = 〈x〉−σL2 and

Xσ := L2,σ(R3)× L2,σ(R3).

Clearly, X∗σ = X−σ. Recall that we have shown above that the edges ±α2 of
the essential spectrum of H are regular. This means that

(179) I + (H0 − (λ± i0))−1V : X−1− → X−1−

is invertible for λ = ±µ.
The following result, which is proved in [17], see also [15], is a version of

the usual limiting absorption principle for Schrödinger operators, but for the
non-selfadjoint case.
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Proposition 30. For any 0 < µ < α2

(180) sup
|λ|≥µ, 0<ε

|λ| 12 ‖(H− (λ± iε))−1‖ <∞

where the norm is the one from X1+ → X−1−. If the supremum in (180) is
only taken over |λ| ≥ λ0 where λ0 > α2, then (180) also holds in the norms of
X 1

2
+ → X− 1

2
−.

Proof. See [17].

Furthermore, the resolvents attain boundary values that satisfy the same
bounds as in Proposition 30.

Corollary 31. It is possible to define

(181) (H− (λ± i0))−1 := (I + (H0 − (λ± i0))−1V )−1(H0 − (λ± i0))−1

for all |λ| > µ where µ is as in (180). Then as ε→ 0+,

‖(H− (λ± iε))−1 − (H− (λ± i0))−1‖ → 0

in the norm of X1+ → X−1− and one can extend (180) to ε ≥ 0. The same
statements hold with X 1

2
+ → X− 1

2
− provided |λ| ≥ λ0 > α2.

Proof. See [17].

Finally, we will need to differentiate the resolvents in the energy.

Corollary 32. With the same notation as in the previous two results,
for every λ0 > α2,

sup
|λ|≥λ0

∥∥∂λ(H− (λ± i0))−1
∥∥
X 3

2 +→X− 3
2−

. 1,

sup
|λ|≥λ0

∥∥∂2
λ(H− (λ± i0))−1

∥∥
X 5

2 +→X− 5
2−

. 1.

Proof. See [17].

Finally, there is the following representation formula for the evolution;
see [17].

Lemma 33. Assume that there are no embedded eigenvalues in the essen-
tial spectrum. Then there is the representation

(182) eitH =
1

2πi

∫

|λ|≥µ
eitλ [(H−(λ+i0))−1−(H−(λ−i0))−1] dλ+

∑

j

eitHPζj ,

where the sum runs over the entire discrete spectrum {ζj}j and Pζj is the
Riesz projection corresponding to the eigenvalue ζj. The formula (182) and the
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convergence of the integral are to be understood in the following weak sense: If
φ, ψ belong to [W 2,2 ×W 2,2(R3)] ∩X1+, then

〈eitHφ, ψ〉= lim
R→∞

1
2πi

∫

R≥|λ|≥µ
eitλ
〈
[(H− (λ+ i0))−1 − (H− (λ− i0))−1]φ, ψ

〉
dλ

+
∑

j

〈eitHPζjφ, ψ〉

for all t, where the integrand is well-defined by the limiting absorption principle
from above.

Proof. See [17].

As an easy consequence, one can bound the evolution uniformly on L2

provided the discrete spectrum is removed. As ususal, we denote by Ps the
projection I − Pd where Pd is the Riesz projection onto the discrete spectrum
of H.

Theorem 34. Assume as before that there are no embedded eigenvalues.
Then the following stability bound holds:

(183) sup
t∈R
‖eitHPs‖2→2 ≤ C.

Proof. See [17]. We remark that this bound holds irrespective of ±α2

being regular.

We now turn to the dispersive bound. The proof applies to all matrix
potentials V with the decay |V (x)| . 〈x〉−β for all x ∈ R3 with some β > 3.
In addition we again need to assume that there are no embedded eigenvalues
in the essential spectrum and that the thresholds ±α2 are regular.

Theorem 35. There is the dispersive bound

(184) ‖eitHPs‖1→∞ . |t|− 3
2 .

Proof. We will use the method of proof from [21]. We start from
Lemma 33; i.e.,

(185) eitHPs =
1

2πi

∫

|λ|≥µ
eitλ[(H− (λ+ i0))−1 − (H− (λ− i0))−1] dλ.

We distinguish between energies close to the thresholds ±µ and those separated
from these points. Thus let χ+(λ) = 1 if λ − µ > 2λ1 and = 0 if λ − µ ≤ λ1

where λ1 > 0 is some small number. Similarly, χ−(λ) = 1 if λ+µ < −2λ1 and
= 0 if λ+µ ≥ −λ1. We will use the notation χ+(H) and χ−(H) formally with
the obvious meaning. Let R±0 (λ2) and R±V (λ2) be the resolvents of H0, and
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H = H0 + V , respectively. Then, by a finite resolvent expansion and a change
of variables λ→ λ2 + µ,

〈eitHχ+(H)Psf, g〉

(186)

=
eitµ

πi

∫ ∞

0
λeitλ

2
χ+(λ2 + µ)

〈
[R+

V (λ2 + µ)−R−V (λ2 + µ)]f, g
〉
dλ

= eitµ
2m−1∑

`=0

(−1)`

πi

∫ ∞

0
λeitλ

2
χ+(λ2 + µ)

〈
[R+

0 (λ2 + µ)(V R+
0 (λ2 + µ))`

(187)

−R−0 (λ2 + µ)(V R−0 (λ2 + µ))`]f, g
〉
dλ

+
eitµ

πi

∫ ∞

0
λeitλ

2
χ+(λ2+µ)

〈
[(R+

0 (λ2+µ)V )mR+
V (λ2 + µ)(V R+

0 (λ2+µ))m

− (R−0 (λ2 + µ)V )mR−V (λ2 + µ)(V R−0 (λ2 + µ))m]f, g
〉
dλ.

We need to show that each of the 2m terms in the finite (Born) sum is in
absolute value ≤ C(`, V ) |t|− 3

2 ‖f‖1‖g‖1, and similarly for the remaining term
containing RV .

Each of the first 2m terms of the Born series is written out explicitly using
the free scalar resolvent (=z > 0,=√z > 0)

(−4− z)−1(x, y) =
ei
√
z|x−y|

4π|x− y| ,

which implies for the matrix case

(188) R±0 (λ2 + µ)(x, y) =

(
e±iλ|x−y|

4π|x−y| 0

0 e−
√

2µ+λ2|x−y|

4π|x−y|

)
.

Consider the case ` = 0 in (186). Upon recombining the two ± parts the lower
right-hand corner of (188) drops out, and one is lead to proving an oscillatory
integral bound of the form

(189)
∣∣∣∣
∫ ∞

0
eitλ

2
λχ+(λ2 + µ) sin(λ|x− y|) dλ

∣∣∣∣ . t−
3
2 |x− y|,

To prove (189), we argue as follows:
∣∣∣∣
∫ ∞

0
eitλ

2
λχ+(λ2 + µ) sin(λ|x− y|) dλ

∣∣∣∣(190)

=
1
2

∣∣∣∣
∫ ∞

−∞
eitλ

2
λχ+(λ2 + µ) sin(λ|x− y|) dλ

∣∣∣∣

. t−1|x− y|
∣∣∣∣
∫ ∞

−∞
eitλ

2
χ+(λ2 + µ) cos(λ|x− y|) dλ

∣∣∣∣
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+ t−1

∣∣∣∣
∫ ∞

−∞
eitλ

2
λχ′+(λ2 + µ) sin(λ|x− y|) dλ

∣∣∣∣

. t−
3
2 |x− y|

∥∥[χ+(λ2 + µ) cos(λ|x− y|)]∨
∥∥
M

+ t−
3
2

∥∥[λχ′+(λ2 + µ) sin(λ|x− y|)]∨
∥∥
M

. t−
3
2 |x− y|.

Here we used the L1 → L∞ estimate for the one-dimensional Schrödinger
equation, as well as the elementary facts

sup
a∈R

∥∥[χ+(λ2 + µ) cos(λa)]∨
∥∥
M ≤ C,

sup
a∈R
|a|−1

∥∥[λχ′+(λ2 + µ) sin(λa)]∨
∥∥
M ≤ C,

where ‖ · ‖M stands for the total variation norm of measures. The first is
proved by writing it as the convolution of two measures of mass . 1 uniformly
in a. The second is done similarly, but first write

(191) sin(λa) = λ

∫ a

0
cos(λα) dα.

This yields that the ` = 0 in (187) contributes . t−
3
2 ‖f‖1‖g‖1, as desired.

Next, we sketch the argument for the case ` = 1. The argument for larger
` is similar, and we will discuss it later. Writing f =

(
f1
f2

)
, g =

(
g1
g2

)
this

term becomes (we ignore the factor eitµ as well as other constants and write
dx = dx0dx1dx2 for simplicity)

(192)
∫

R9

∫ ∞

0

eitλ
2
λχ+(λ2+µ) sin(λ(|x0 − x1|+|x1 − x2|)) dλ

U(x1)f1(x0)ḡ1(x2)
|x0 − x1||x1 − x2|

dx

(193)

+
∫

R9

∫ ∞

0

eitλ
2
λχ+(λ2 + µ) sin(λ|x0−x1|)e−

√
2µ+λ2|x2−x1| dλ

W (x1)f1(x0)ḡ2(x2)
|x0−x1||x1 − x2|

dx

(194)

−
∫

R9

∫ ∞

0

eitλ
2
λχ+(λ2 + µ) sin(λ|x2 − x1|)e−

√
2µ+λ2|x1−x0| dλ

W (x1)f2(x0)ḡ1(x2)
|x0 − x1||x1 − x2|

dx.

The term (192) can be treated by means of (189). Indeed, using this bound it
reduces to

. t−
3
2 sup
x∈R3

∫

R3

|U(y)|
|x− y| dy‖f‖1‖g‖1.

Hence it is enough to assume that the so-called Kato norm

‖U‖K := sup
x∈R3

∫

R3

|U(y)|
|x− y| dy <∞
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in order to obtain the desired decay for that term. Since we are assuming the
pointwise bound |U(x)| . 〈x〉−3−, the Kato norm is indeed finite. Now consider
the λ-integral in (193). Extending the integral to (−∞,∞) and integrating by
parts yields

2it
∫ ∞

−∞
eitλ

2
λχ+(λ2 + µ) sin(λ|x0 − x1|)e−

√
2µ+λ2|x2−x1| dλ

(195)

= −
∫ ∞

−∞
eitλ

2
2λχ′+(λ2 + µ) sin(λ|x0 − x1|)e−

√
2µ+λ2|x2−x1| dλ

−
∫ ∞

−∞
eitλ

2
χ+(λ2 + µ) cos(λ|x0 − x1|)e−

√
2µ+λ2|x2−x1| dλ |x0 − x1|

(196)

+
∫ ∞

−∞
eitλ

2
χ+(λ2 + µ) sin(λ|x0 − x1|)e−

√
2µ+λ2|x2−x1| 2λ√

µ+ λ2
dλ |x1 − x2|.

(197)

The integrals in (195) and (196) can be treated by the same type of arguments
which lead up to (190) provided we show that
(198)

sup
b≥0

∥∥
∫ ∞

−∞
e−b
√

2µ+λ2
e−iλu dλ

∥∥
Mu

= sup
µ≥0

∥∥
∫ ∞

−∞
e−
√
µ+λ2

e−iλu dλ
∥∥
Mu

<∞.

Now

∂λe
−√µ+λ2

= − λ√
µ+ λ2

e−
√
µ+λ2

,(199)

∂2
λe
−√µ+λ2

=
(
− µ

(µ+ λ2) 3
2

+
λ2

µ+ λ2

)
e−
√
µ+λ2

are both in L1(R), and their L1 norms are uniformly bounded in µ > 0. It
follows that

sup
µ≥0

(1 + u2)
∣∣∣
∫ ∞

−∞
e−
√
µ+λ2

e−iλu dλ
∣∣∣ . 1

and (198) holds. Therefore, arguing as in (190), we have

|(195)|+ |(196)| . t−
1
2 |x0 − x1|.

To deal with (197), note that because of (191), the same type of argument as
before will yield

|(197)| . t−
1
2 |x0 − x1|

provided we can show that

(200) sup
b>0

∥∥
∫ ∞

−∞
e−iλuλ∂λe

−b√2µ+λ2
dλ
∥∥
Mu

= sup
µ>0

∥∥
∫ ∞

−∞
e−iλuλ∂λe

−√µ+λ2
dλ
∥∥
Mu

<∞.
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We leave it to reader to check that

(201) sup
µ>0

[
‖λ∂λe−

√
µ+λ2‖1 + ‖∂λλ∂λe−

√
µ+λ2‖1 + ‖∂2

λλ∂λe
−√µ+λ2‖1

]
<∞,

which implies that

sup
µ≥0

(1 + u2)
∣∣∣
∫ ∞

−∞
e−iλuλ∂λe

−√µ+λ2
dλ
∣∣∣ . 1

and (200) holds. As a side remark, we note the difference between (199)
and (201). If µ = 0, then the former holds because ∂2

λe
−|λ| contains a δ-measure

at the origin. Hence it is not possible to increase this to three derivatives. On
the other hand, ∂3

λλe
−|λ| is again a measure, which makes (201) hold. Hence,

we conclude that for all t > 0

|(193)|+ |(194)| . t−
3
2 sup
x∈R3

∫

R3

|W (y)|
|x− y| dy‖f‖1‖g‖1 . t−

3
2 ‖f‖1‖g‖1.

Recall that this leads to the desired dispersive bound for the term ` = 1
in (187). The cases ` > 1 are similar. Indeed, the reader will easily check that
in the general case one arrives at oscillatory integrals of the form, cf. (192),
(193), (194),
∫ ∞

−∞
eitλ

2
λχ+(λ2+µ) sin

(
λ
∑

j∈J
|xj+1−xj |

)
exp

(
−
√

2µ+ λ2
∑

k∈J ∗
|xk+1−xk|

)
dλ

where J ∪ J ∗ = {0, 1, . . . , `} is a disjoint partition with J 6= ∅. This integral
is exactly of the type that we have just dealt with. Therefore, it is bounded
by

. t−
3
2

∑

j∈J
|xj+1 − xj |.

Combining the oscillatory integral with the potentials that accompany it, we
are lead to estimating

∫

R3(`+2)

∑

j∈J
|xj+1 − xj |

n∏

k=1

|V (xk)|
|xk+1 − xk|

|f(x0)||g(x`+1)|
|x0 − x1|

dx

. (`+ 1)‖V ‖`K‖f‖1‖g‖1.

To pass to the final inequality we invoke a simple lemma from [37] which says
that for any positive integer `

sup
x0,x`+1∈R3

∫

R3`

∏`
j=1 |V (xj)|

∏`
j=0 |xj − xj+1|

∑̀

`=0

|x` − x`+1| dx1 . . . dx` ≤ (`+ 1)‖V ‖`K.

See Section 2 of [37] for the proof of this. It follows that each of the first 2m
terms in (187) satisfies the desired dispersive bound.
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In order to bound the “remainder” in (186), which is the final summand
containing the perturbed resolvents R±V (λ2 + µ), we need to regard the resol-
vents as operators L2,σ → L2,−σ with σ > 1

2 (this is the limiting absorption
principle from Proposition 30. Note that we only need σ > 1

2 rather than σ > 1
since the energies are separated from the thresholds, although this is not too
important). Moreover, not only are the resolvents bounded L2, 1

2
+ → L2,− 1

2
−,

but their operator norms decay like λ−
1
2 . Note that this makes the com-

position of resolvents and V , which appears in (186), well-defined provided
|V (x)| . (1 + |x|)−1− (recall that we are assuming −3− decay). Set

G±,x(λ2)(x1) :=
(
e∓iλ|x| 0

0 1

)
R±0 (λ2 + µ)(x1, x)

=

(
e±iλ(|x1−x|−|x|)

4π|x1−x| 0

0 e−
√

2µ+λ2|x−x1|

4π|x−x1|

)
.

Let e1 =
(

1
0

)
and e2 =

(
0
1

)
. Removing f, g from (186), we are led to proving

that

(202)
∣∣∣∣
∫ ∞

0
eitλ

2
e±iλ(|x|+|y|) χ(λ)λ

〈
V R±V (λ2)V (R±0 (λ2)V )mG±,y(λ2)e1,

(R∓0 (λ2)V ∗)mG∗±,x(λ2)e1

〉
dλ
∣∣∣ . |t|− 3

2 ,

uniformly in x, y ∈ R3 as well as
∣∣∣∣
∫ ∞

0
eitλ

2
e±iλ|x| χ(λ)λ

〈
V R±V (λ2)V (R±0 (λ2)V )mG±,y(λ2)e2,

(R∓0 (λ2)V ∗)mG∗±,x(λ2)e1

〉
dλ
∣∣∣

+
∣∣∣∣
∫ ∞

0
eitλ

2
e±iλ|y| χ(λ)λ

〈
V R±V (λ2)V (R±0 (λ2)V )mG±,y(λ2)e1

(R∓0 (λ2)V ∗)mG∗±,x(λ2)e2

〉
dλ
∣∣∣

+
∣∣∣∣
∫ ∞

0
eitλ

2
χ(λ)λ

〈
V R±V (λ2)V (R±0 (λ2)V )mG±,y(λ2)e2,

(R∓0 (λ2)V ∗)mG∗±,x(λ2)e2

〉
dλ
∣∣∣ . |t|− 3

2 ,

uniformly in x, y ∈ R3. We first verify (202). It is a simple matter to check
that the derivatives of G+,x(λ2) satisfy the estimates

sup
x∈R3

∥∥∥ d
j

dλj
G+,x(λ2)ek

∥∥∥
L2,−σ

. 〈x〉−1 provided σ >
3
2

+ j,(203)

sup
x∈R3

∥∥∥ d
j

dλj
G+,x(λ2)ek

∥∥∥
L2,−σ

. 1 provided σ >
1
2

+ j
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for all j ≥ 0 and k = 1, 2. Rewrite the integral in (202) in the form

I±(t, x, y) :=
∫ ∞

0
eitλ

2±iλ(|x|+|y|)a±x,y(λ) dλ.

Then in view of the limiting absorption principle of Corollaries 31, 32 and the
estimate (203) one concludes that a±x,y(λ) has two derivatives in λ and

∣∣∣ d
j

dλj
a±x,y(λ)

∣∣∣ . (1 + λ)−2+(〈x〉〈y〉)−1 for j = 0, 1, and all λ > 1(204)
∣∣∣ d

2

dλ2
a±x,y(λ)

∣∣∣ . (1 + λ)−2+ for all λ > 1

which in particular shows that the integral in (202) is absolutely convergent.
This requires that one take m sufficiently large and that |V (x)| . (1 + |x|)−β
for some β > 3. The latter condition arises as follows: Consider, for example,
the case where two derivatives fall one of the G-terms at the ends. Then V

has to compensate for 5
2+ powers because of (203), and also a 1

2+ power from

‖R±0 (λ2)f‖X− 1
2−

. λ−1+‖f‖X 1
2 +
.

Similarly with the other terms.
As far as estimating I+(t, x, y) is concerned, note that on the support

of a±x,y(λ) the phase tλ2 + λ(|x| + |y|) has no critical point. Two integrations
by parts yield the bound |I+(t, x, y)| . t−2. In the case of I−(t, x, y) the
phase tλ2 − λ(|x| + |y|) has a unique critical point at λ0 = (|x| + |y|)/(2t). If
λ0 � λ1, then two integration by parts again yield a bound of t−2. If λ0 & λ1

then the bound max(|x|, |y|) & t is also true, and stationary phase contributes
t−

1
2 (〈x〉〈y〉)−1 . t−

3
2 , as desired. Strictly speaking, these estimates are only

useful when t > 1. On the other hand, when 0 < t < 1 there is nothing to
prove since I±(t, x, y) . 1 by (204).

Now consider the other three terms following (202) which involve one or
more e2. The two integrals involving exactly one e2 can be handled by the
exact same argument as (202), the only difference being that the critical point
is at |x|2t or |y|2t . But since (203) takes the same form for e2 (actually a better
estimate holds here, but we ignore that since it is of no use), no other changes
are needed. Finally, concerning the integral involving two e2’s: It is estimated
by two integrations by parts if t > 1, and by putting absolute values inside it
if 0 < t < 1. Indeed, in this case the critical point is at λ = 0, which falls
outside the support of the integrand. Hence, two integrations by parts give a
decay of t−2.

The conclusion of the preceding is that (187) and (186) satisfy the desired
dispersive bounds. Therefore,

|〈eitHχ+(H)Psf, g〉| . t−
3
2 ‖f‖1‖g‖1,

and the same bound holds for eitHχ−(H)Ps.
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We now deal with the contribution by those λ which are close to ±µ. This
requires showing that

(205) 〈eitH(1− χ+(H))Psf, g〉

=
eitµ

πi

∫ ∞

0
λeitλ

2
(1− χ+)(λ2 + µ)

〈
[R+

V (λ2 + µ)−R−V (λ2 + µ)]f, g
〉
dλ

is . t−
3
2 ‖f‖1‖g‖1 in absolute value, and similarly for χ−. We use the resolvent

identity in the form

(206) R±V (λ2+µ) = R±0 (λ2+µ)−R±0 (λ2+µ)V (I+R±0 (λ2+µ)V )−1R±0 (λ2+µ)

and write R±0 (λ2 + µ) = R±0 (µ) +B±(λ). Then

(207) [I +R±0 (λ2 + µ)V ]−1 = S−1
0 [I +B±(λ)V S−1

0 ]−1,

where S0 = I +R±0 (µ)V . In view of (188)

R±0 (µ)(x, y) =

(
1

4π|x−y| 0

0 e−
√

2µ|x−y|

4π|x−y|

)
.

As far as the invertibility of S0 is concerned, we note the following: First, if
σ, α > 1

2 , and σ + α > 2, then one checks from the explicit form of the scalar,
free resolvent that

sup
λ
‖R±0 (λ2)‖HS(σ,−α) ≤ Cσ,α

where HS(σ,−α) refers to the Hilbert-Schmidt norm of Xσ → X−α. Hence,
if |V (x)| . 〈x〉−β for some β > 3, it follows that the operator R±0 (λ)V is
compact on the weighted space Xσ(R3) for all choices of −5

2 ≤ σ < −1
2 . Thus,

the invertibility of S0 depends only on whether a solution exists in Xσ to the
equation ψ = −R0(µ)V ψ. However, if such a solution ψ satisfies ψ ∈ Xσ for
some σ ≥ −5

2 , then ψ = −R0(µ)V ψ ∈ Xα for any choice of α < −3
2 . Applying

this bootstrapping process again, we see that the solution ψ must lie in Xα for
all α < −1

2 . Evidently, this would contradict (179).
Returning to (207), a simple estimation of the explicit kernel

(208) B±(λ)(x, y) =

(
e±iλ|x−y|−1

4π|x−y| 0

0 e−
√

2µ+λ2|x−y|−e−
√

2µ|x−y|

4π|x−y|

)

shows that if |V (x)| . 〈x〉−β for some choice of β > 3, then

lim
λ→0
‖B±(λ)V S−1

0 ‖HS(σ,σ) = 0

for all σ ∈ (−5
2 ,−1

2). For sufficiently small λ2 < λ1, it is then possible to
expand

B̃±(λ) := [I +B±(λ)V S−1
0 ]−1
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as a Neumann series in the norm ‖ · ‖HS(σ,σ) for all values −5
2 < σ < −1

2 .
Moreover, the symmetry B̃−(λ) = B̃+(−λ) holds. For ease of notation, define
χ0(λ) = (1 − χ+)(λ2 + µ) and extend it as an even function of λ. In view of
(205) and (206) we wish to control the size of

sup
x,y∈R3

∣∣∣∣
∫ ∞

0
eitλ

2
λχ0(λ)

[[
R+

0 (λ2 + µ)−R−0 (λ2 + µ)
]

−
[
R+

0 (λ2 + µ)V S−1
0 B̃+(λ)R+

0 (λ2 + µ)

−R−0 (λ2 + µ)V S−1
0 B̃−(λ)R−0 (λ2 + µ)

]]
(x, y) dλ

∣∣∣∣

which is

. sup
x,y∈R3

∣∣∣
∫ ∞

−∞
eitλ

2
λχ0(λ)

eiλ|x−y|

4π|x− y|dλ
∣∣∣(209)

+ sup
x,y∈R3

∣∣∣
∫ ∞

−∞
eitλ

2
λ

∫∫

R6

U(x4)eiλ|y−x4|

|y − x4|
(210)

· 〈e1,
(
S−1

0 (χ0B̃
+)(λ)(x4, x1)

)
e1〉

eiλ|x−x1|

|x− x1|
dx1dx4dλ

∣∣∣

+ sup
x,y∈R3

∣∣∣
∫ ∞

−∞
eitλ

2
λ

∫∫

R6

W (x4)eiλ|y−x4|

|y − x4|
(211)

· 〈e1,
(
S−1

0 (χ0B̃
+)(λ)(x4, x1)

)
e2〉

e−
√

2µ+λ2|x−x1|

|x− x1|
dx1dx4dλ

∣∣∣

+ sup
x,y∈R3

∣∣∣
∫ ∞

−∞
eitλ

2
λ

∫∫

R6

W (x4)e−
√

2µ+λ2|y−x4|

|y − x4|
(212)

· 〈e2

(
S−1

0 (χ0B̃
+)(λ)(x4, x1)

)
, e1〉

eiλ|x−x1|

|x− x1|
dx1dx4dλ

∣∣∣

+ sup
x,y∈R3

∣∣∣
∫ ∞

−∞
eitλ

2
λ

∫∫

R6

U(x4)e−
√

2µ+λ2|y−x4|

|y − x4|
(213)

· 〈e2,
(
S−1

0 (χ0B̃
+)(λ)(x4, x1)

)
e2〉

e−
√

2µ+λ2|x−x1|

|x− x1|
dx1dx4dλ

∣∣∣.

The first term (209) is simply the low-energy part of the free Schrödinger
evolution, which is known to be dispersive. The second term (210) can be
integrated by parts once, leaving

(214) sup
x,y∈R3

1
2t

∣∣∣
∫ ∞

−∞
eitλ

2
∫∫

R6

d

dλ

[U(x4)eiλ|y−x4|

|y − x4|

·
(
S−1

0 (χ0B̃
+)(λ)(x4, x1)

)eiλ|x−x1|

|x− x1|
]
dx1dx4dλ

∣∣∣
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to be controlled. Note that we have dropped e1 on both sides of the matrix
operator in the middle. This does no harm, as long as the absolute value on
the outside is interpreted entry-wise. The same comment is in effect for the
remainder of the proof. The other terms (211), (212), and (213) are treated
similarly to (210). In fact, we verified in (198) that for a > 0

∫ ∞

−∞
eiτλe−a

√
2µ+λ2

dλ =: νa(dτ)

is a measure with mass supa>0 ‖νa‖ < ∞. This simple fact allows one to use
the same argument which is sketched here for (210) in the other three cases
as well, up to some obvious modifications. We now return to (214), which is
essentially identical to the analogous term arising in the scalar case treated
in [21]. Since we see no reason to repeat the details verbatim, we provide a
sketch and refer the reader to [21] for more details. Consider the term where
d
dλ falls on B̃+(λ). The others will be similar. Using Parseval’s identity, and
the fact that ‖(eit(·)2)∧(u)‖L∞(u) = Ct−1/2, this is less than

sup
x,y∈R3

1
t3/2

∫ ∞

−∞

∣∣∣
∫∫

R6

U(x4)
|y − x4|

S−1
0

[
χ0(B̃+)′

]∨

·
(
u+ |y − x4|+ |x− x1|

)
(x4, x1)

1
|x− x1|

dx1dx4

∣∣∣ du.

If the absolute value is taken inside the inner integral, then Fubini’s theorem
may be used to exchange the order of integration to obtain

sup
x,y∈R3

1
t3/2

∫∫

R6

∫ ∞

−∞

|U(x4)|
|y − x4|

·
∣∣∣S−1

0

[
χ0(B̃+)′

]∨(
u+ |y − x4|+ |x− x1|

)
(x4,x1)

∣∣∣ 1
|x− x1|

du dx1dx4

≤ sup
x,y∈R3

1
t3/2

∥∥∥ |U(·)|
|y − ·|

∥∥∥
L2,2+

·
∥∥∫ |S−1

0 [χ0(B̃+)′]∨(u)|du
∥∥
OP (−1−,−2−)

∥∥|x− ·|−1
∥∥
L2,−1− ,

where OP (−1−,−2−) stands for the operator norm from X−1− → X−2−. The
two norms at the ends of the last line are easily seen to be uniformly bounded
in x, y ∈ R3. It therefore only remains to control the size of

∥∥∫ |S−1
0 [χ0(B̃+)′]∨(u)|du

∥∥
OP (−1−,−2−)

.

Minkowski’s Inequality allows us to bring the norm inside the integral.
Recall that S−1

0 is a bounded operator on L2,−2−. Furthermore, it is an easy
matter to check that the operator |S−1

0 | whose kernel is the absolute value of
the kernel of S−1

0 , is also a bounded operator on L2,−2−. The problem then
reduces to showing that

(215)
∫ ∞

−∞
‖[χ0(B̃+)′]∨(u)‖OP (−1−,−2−) du <∞
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provided the support of χ0 is sufficiently small. The operators B̃+(λ) are
defined by the convergent Neuman series

B̃+(λ) = [I +B+(λ)V S−1
0 ]−1 =

∞∑

n=0

(
−B+(λ)V S−1

0

)n
.

Exploiting the explicit form of the kernel of B+, see (208), it is possible to
control the Fourier transform in λ of each term in this Neuman series in the
appropriate weighted L2 spaces, leading to (215) upon summation. For these
details we refer the reader to the end of the paper [21].

Finally, we discuss Strichartz estimates. The usual derivation for Strichartz
estimates involves TT ∗ arguments where (Tf)(t, x) = (e−itHf)(x). This relies
on the unitarity of the evolution, since one wants

TT ∗F (t, x) =
∫ ∞

−∞
(e−i(t−s)HF (s, ·))(x) ds.

In the system case, this cannot be done. We therefore rely on a different
approach which is perturbative in nature. It uses Kato’s notion of an H0-
smooth and H-smooth operator, and originates in [37]. In addition, we use the
following lemma, which is due to Christ-Kiselev [9]. See also Sogge, Smith [42].

Lemma 36. Let X,Y be Banach spaces and let K(t, s) be the kernel of
the operator

K : Lp([0, T ];X)→ Lq([0, T ];Y ).

Denote by ‖K‖ the operator norm of K. Define the lower diagonal operator

K̃ : Lp([0, T ];X)→ Lq([0, T ];Y )

to be

K̃f(t) =

t∫

0

K(t, s)f(s) ds.

Then the operator K̃ is bounded from Lp([0, T ];X) to Lq([0, T ];Y ) and its
norm ‖K̃‖ ≤ c‖K‖, provided that p < q.

Now we can state the Strichartz estimates.

Corollary 37. Under the same assumptions as in Theorem 35, one has
the Strichartz estimates

‖e−itHPsf‖Lrt (Lpx) ≤ C‖f‖L2 ,(216)
∥∥∥
∫ t

0
e−i(t−s)HPsF (s) ds

∥∥∥
Lrt (L

p
x)
≤ C‖F‖La′t (Lb′x ),(217)

provided (r, p), (a, b) are admissible; i.e., 2 < r ≤ ∞ and 2
r + 3

p = 3
2 and the

same for (a, b).
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Proof. Let (S for “Strichartz”)

(SF )(t, x) =
∫ t

0
(e−i(t−s)HPs F (s, ·))(x) ds.

In this proof it will be understood that all times are ≥ 0. Then by (183),

‖SF‖L∞t (L2
x) . ‖F‖L1

t (L
2
x),

and more generally, by the usual fractional integration argument based on
Theorem 35,

(218) ‖SF‖Lrt (Lpx) . ‖F‖
Lr
′
t (Lp

′
x )

for any admissible pair (r, p). In the unitary case this implies (216) via a TT ∗

argument, but this reasoning does not apply here. Instead, we rely on a Kato
theory type approach as in [37, §4]. Since H = H0 + V , Duhamel’s formula
yields

(219) e−itHPs = e−itH0Ps − i
∫ t

0
e−i(t−s)H0V e−isHPs ds.

Define V = M̃M̃−1V , where M̃ is

M̃ =
(
ρ 0
0 ρ

)

with ρ(x) = 〈x〉−1−. Then observe that
∥∥∥
∫ ∞

0
e−i(t−s)H0M̃g(s) ds

∥∥∥
Lrt (L

p
x)

.
∥∥∥
∫ ∞

0
eisH0M̃g(s) ds

∥∥∥
L2

. ‖g‖L2
s(L

2
x),

where the last inequality is the dual of the smoothing bound
∫ ∞

0

∥∥∥M̃e−isH
∗
0ψ
∥∥∥

2

2
ds . ‖ψ‖22.

Now one applies the Christ-Kiselev lemma to conclude that
∥∥∥
∫ t

0
e−i(t−s)H0M̃g(s) ds

∥∥∥
Lrt (L

p
x)

. ‖g‖L2
s(L

2
x)

for any admissible pair (r, p). Hence, continuing in (219), one obtains (using
that ‖Psf‖2 . ‖f‖2)

‖e−itHPsf‖Lrt (Lpx) . ‖f‖2 +
∥∥∥M̃−1V e−isHPsf

∥∥∥
L2
s(L

2
x)
.

It remains to show that M̃−1V is HPs-smoothing; i.e.,

(220)
∥∥∥M̃−1V e−isHPsf

∥∥∥
L2
s(L

2
x)

. ‖f‖2.
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Taking the Fourier transform in s shows that (220) is equivalent to

(221)
∫ ∞

−∞
‖M̃−1V [Ps(H− λ− i0)Ps]−1Psf‖22 dλ . ‖f‖22.

This is an instance of a Kato smoothing estimate. It is standard that this
holds for H0 instead of H = H0 +V (without any projections), and follows for
H via the resolvent identity

(H− λ− i0)−1 =
[
1− (H0 − λ− i0)−1V

]−1(H0 − λ− i0)−1.

Indeed, since the thresholds ±α2 are not resonances, we obtain that

sup
|λ|>α2/2

∥∥∥
[
1− (H0 − λ− i0)−1V

]−1
∥∥∥
L2→X−1−

<∞

and thus also

sup
|λ|>α2/2

∥∥∥M̃−1V
[
1 + (H0 − λ− i0)−1V

]−1
∥∥∥
L2→L2

<∞.

Therefore,
∫

|λ|>α2/2
‖M̃−1V (H− λ− i0)−1Psf‖22 dλ

.
∫

|λ|>α2/2
‖(H0 − λ− i0)−1f‖22 dλ . ‖f‖22.

On the other hand,

sup
|λ|≤α2/2

∥∥[Ps(H− λ− i0)Ps]−1
∥∥

2→2
<∞

and (221) follows. The conclusion is that

‖e−itHPsf‖Lrt (Lpx) . ‖f‖2
for any admissible (r, p), which is (216). The proof of (217) is now the usual
interpolation argument. Indeed, in view of the preceding one has the following
bounds on S for any admissible pair (r, p):

S : L1
t (L

2
x)→ Lrt (L

p
x),(222)

S : Lr
′

t (Lp
′

x )→ Lrt (L
p
x),(223)

S : Lr
′

t (Lp
′

x )→ L∞t (L2
x).(224)

These estimates arise as follows: (223) is exactly (218), whereas (222) follows
from (216) by means of Minkowski’s inequality. Finally, (224) is dual to the
bound

(225)
∥∥∥
∫ ∞

t
ei(t−s)H

∗
P̃cG(s) ds

∥∥∥
Lrt (L

p
x)

. ‖G‖L1
t (L

2
x).
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Here P̃c corresponds to H∗ in the same way that Ps does to H. In particular,
one has

‖e−itH∗P̃c‖1→∞ . t−
3
2

and therefore, (225) is derived by the same methods as (222). It is important
to notice that P ∗s = P̃s which is essential for the duality argument here. This
can be seen, for example, by writing the Riesz projections onto (generalized)
eigenspaces as contour integrals around circles surrounding the eigenvalues.
Since the (complex) eigenvalues always come in pairs, the adjoints have the de-
sired property. Interpolating between (222) and (223) yields (217) for the range
a′ ≤ r′ or a ≥ r, whereas interpolating between (222) and (223) yields (217)
in the range a ≤ r.

Finally, we introduce derivatives into the estimates of Theorems 34, 35
and Corollary 37.

Corollary 38. Under the same assumptions as in Theorem 35,
∥∥eitHPsf

∥∥
W k,p′ (R3)

. t−
3
2
( 1
p
− 1
p′ )‖f‖W k,p(R3)

for 0 ≤ k ≤ 2 and 1 < p ≤ 2.

Proof. The case k = 0 is obtained by interpolating between Theorems 34
and 35 and holds for the entire range 1 ≤ p ≤ 2. We need to require p > 1
only for the derivatives. If a is sufficiently large, then

(H− ia)−1 : L2 × L2 →W 2,2 ×W 2,2

is an isomorphism. More generally,

(H− ia)−
1
2 : Lp × Lp →W 2,p ×W 2,p

is an isomorphism for 1 < p <∞. This can be seen from the resolvent identity

(H− ia)−1 = (H0 − ia)−1[1 + V (H0 − ia)−1]−1,

since ‖V ‖∞ <∞ implies that

‖V (H0 − ia)−1‖p→p <
1
2

if a is large enough, and because

(H0 − ia)−
1
2 : Lp × Lp →W 2,p ×W 2,p

for any a 6= 0 as an isomorphism. Hence,

‖4eitHPsf‖p′ . ‖(H− ia)eitHf‖p′ = ‖eitH(H− ia)f‖p′
. t−

3
2
( 1
p
− 1
p′ )‖(H− ia)f‖p . t−

3
2
( 1
p
− 1
p′ )‖f‖W 2,p(R3).

This gives the case k = 2 of the lemma, whereas k = 1 follows by interpolation
between k = 0 and k = 2.
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And now the same for the Strichartz estimates.

Corollary 39. Under the same assumptions as in Corollary 37, one has
the Strichartz estimates

‖e−itHPsf‖Lrt (W k,p
x ) ≤ C‖f‖W k,2 ,(226)

∥∥∥
∫ t

0
e−i(t−s)HPsF (s) ds

∥∥∥
Lrt (W

k,p
x )
≤ C‖F‖

La
′
t (W k,b′

x )
,(227)

provided (r, p), (a, b) are admissible; i.e., 2 < r ≤ ∞ and 2
r + 3

p = 3
2 and the

same for (a, b). Here k is an integer, 0 ≤ k ≤ 2.

Proof. The case k = 0 is just Corollary 37. As in the previous proof, we
rely on the fact that (because ‖V ‖∞ <∞),

‖4f‖q . ‖(H− ia)f‖q
for any 1 < q <∞. Hence,

‖e−itHPsf‖Lrt (W 2,p
x ) . ‖(H− ia)e−itHPsf‖Lrt (Lpx) = ‖e−itHPs(H− ia)f‖Lrt (Lpx)

. ‖(H− ia)f‖2 . ‖f‖W 2,2 ,

which is (226) for k = 2. Similarly, one proves (227) for k = 2. The case k = 1
is then obtained by interpolation.
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