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On local connectivity for the Julia set of
rational maps: Newton’s famous example

By P. Roesch

Abstract

We show that Newton’s cubic methods (famous rational maps) have a lo-
cally connected Julia set except in some very specific cases. In particular, when
those maps are infinitely renormalizable their Julia set is locally connected and
contains small copies of nonlocally connected quadratic Julia sets. This also
holds when Newton’s method is renormalizable and has Cremer points, unlike
the polynomial case. After a dynamical description we show the necessity of
the Brjuno condition within this family.

1. Introduction

In this article we are interested in the local connectedness of the Julia
set of rational maps acting on the Riemann sphere Ĉ. This problem is cen-
tral in holomorphic dynamics, notably in order to obtain topological models
and to approach the famous MLC conjecture ; it has been studied a lot in the
case of polynomials (see [D-H1], [F], [G-Sm], [G-Sw], [K], [L-vS], [Ly], [McM1],
[Pe1], [Ra], [Ri], [So1], [So2], [T-Y],...), and mostly in degree two — but hard
questions still remain. Important progress was made by Yoccoz who proved
that if a quadratic polynomial has only repelling periodic points (in C) and is
not infinitely renormalizable, then its Julia set is locally connected (see [Hu],
[M2]). Douady exhibited then striking examples of infinitely renormalizable
polynomials having a nonlocally connected Julia set (see [M2] and also [So2]).
Several years before, Sullivan had given the first examples of such pathological
Julia sets by showing that every polynomial with a Cremer point has a non-
locally connected Julia set (see [M1]). A Cremer point is a periodic point in
the Julia set whose first return map is tangent to an irrational rotation. As we
will see here, rational maps may behave in a completely different way:

Theorem 1. There exist rational maps which have a locally connected
Julia set and Cremer points; cubic Newton maps provide such examples.

The question is whether all cubic Newton maps with a Cremer point have
a locally connected Julia set is still open (see Question 8.5 and Conjecture 8.6).
On the other hand,
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Theorem 2. Every infinitely renormalizable1 genuine cubic Newton map
has a locally connected Julia set.

A genuine Newton map will be a Newton map that is not quasi-conformally
conjugated to a polynomial in a neighborhood of its Julia set.

Cubic Newton maps arise as natural examples to look at: besides quadratic,
they are the only rational maps with simple critical points which are all fixed
except one which is “free” (see Lemma 2.1) ; moreover they form a family of
dynamical systems in which this critical point displays all possible behaviors.

Corollary 3. There exist rational maps with locally connected Julia sets
containing a wandering nontrivial continuum (and having only repelling peri-
odic points).

This corollary contrasts with the following result of Levin: for polynomials
of the form zl + c, whose periodic points are all repelling and which have a
connected Julia set, the local connectedness of the Julia set is equivalent to
the nonexistence of wandering continua (see [Le]).

The following theorem strengthens the dictionary between rational maps
and Kleinian groups established by D. Sullivan (see [McM2]). Indeed, every
known example of finitely generated Kleinian group possesses a locally con-
nected limit set (if it is connected). So, one conjectures that the Julia set
of a genuine cubic Newton map is always locally connected. The most com-
plete (but also more technical) result we obtain on this question is given in
Proposition 8.3.

Theorem 4. A genuine cubic Newton map, without Siegel points, has a
locally connected Julia set provided the orbit of the nonfixed critical point does
not accumulate on the boundary of any invariant immediate basin of attraction.

A Siegel point of a rational map R is a periodic point in the neighborhood
of which R is conjugated to an irrational rotation (linearizable) ; the maximal
domain of linearization is called a Siegel disc.

A. Douady has conjectured that for any rational map, whenever it is
linearizable near a fixed point of multiplier λ = e2iπα then α has to be a
Brjuno number (see [D]). It is also conjectured that the nonlinearizability is
related to the presence of small cycles (see [PM2]). In our setting we have:

Theorem 5. If N possesses a periodic point x of multiplier λ = e2iπα

with α ∈ R then

1See Definition 6.1.
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(1) N is renormalizable at x0 ;

(2) α ∈ B if and only if N is linearizable near x ;

(3) if α /∈ (B∪Q) there exist periodic cycles (�= x) in any neighborhood of x.

An irrational α of convergents pn/qn (rational approximations obtained
by the continued fraction development) is a Brjuno number, i.e. α ∈ B, if∑∞

n=1(log qn+1)/qn is finite.

All the results above are consequences of the following fundamental brick:

Theorem 6. For every genuine cubic Newton map, without Siegel points,
the connected components of the Fatou set are Jordan domains.

Theorem 6 implies Theorem 4 and, subsequently, Theorem 1, Theorem 2
and their corollaries. The proof of Theorem 1 and Theorem 2 is based on the
fact that N is renormalizable at x0 (from Theorem 5) and that the “small” Julia
set touches the boundary of the basin of attraction at exactly one point which is
repelling. Theorem 5 follows from the existence of puzzles with nondegenerate
annuli around the critical point.

The proofs use intensively the technique of puzzles introduced by Branner
and Hubbard [B-H] and developed by Yoccoz. The basic idea is to construct
invariant connected graphs that divide the Julia set into connected subsets, and
then to show that the iterated inverse images of these subsets shrink to points.
In the case of quadratic polynomials, the graphs constructed by Yoccoz are
closures of a finite number of arcs in the unbounded component of the Fatou
set. In our case, instead, some edges of the graphs will have to visit infinitely
many components of the basins of attraction.

The paper is organized as follows:
Section 2 gives a rough dynamical description of cubic Newton maps and

then reviews the results of Yoccoz on puzzles in the context of rational-like
maps.

Section 3 is devoted to finding “cut rays” which will serve as basic bricks
in the construction of the puzzles.

Section 4 introduces the “articulated rays” (the main new tool in this
paper) which provide nice access to points of the Julia set; periodic articulated
rays are also constructed.

Section 5 yields candidates for puzzles.
Section 6 studies the renormalizations of N via puzzle pieces and gives

the proof of Theorem 5.
Section 7 gives the proof of Theorem 6 with a new strategy for the renor-

malizable case (case 2 of Theorem 2.15).
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Section 8 describes all the known cases where the Julia set is locally con-
nected.

Acknowledgments. I would like to thank Tan Lei for her constant support
and for inspiring discussions during the preparation of this work. I would also
like to thank the referees for many pertinent comments.

2. Newton maps and Yoccoz puzzles

2.1. Newton maps. When one considers the dynamical system induced
by a rational map f on the Riemann sphere Ĉ, the interesting object is the
Julia set J(f), which is the minimal compact subset, invariant by f and f−1,
and containing at least three points. The topological properties of J(f) give
information on the dynamics of f (see [M1], [D-H1]). In particular, because
of Caratheodory’s Theorem on extension of conformal representations, local
connectivity deserves special attention (see Remark 2.4). The difficulty of the
problem depends on the behavior of critical points, and subsequently on their
number.

A “simple case”, usually called the geometrically finite case, occurs when
the post-critical set P (f), i.e. the closure of the critical orbits of f , meets J(f)
in a finite set. In this case, the Julia set is locally connected provided it is
connected (see [D-H1, M2, T-Y]). To catch more interesting critical behaviors
with still a tame complexity, we consider rational maps with exactly one “free”
critical point. More precisely, we suppose that all critical points are simple (i.e.
of local degree two) and that all are fixed (by f) except one.

Lemma 2.1. Let f : Ĉ → Ĉ be a rational map of degree d having all its
critical points simple, and fixed except one. Then d ≤ 3 and f is analytically
conjugate to either a quadratic polynomial or to a cubic Newton map, i.e., a
map of the form

N(z) = z − P (z)
P ′(z)

where P is a polynomial of degree 3 with distinct roots.

Proof. A rational map of degree d possesses 2d−2 critical points and d+1
fixed points. Since the critical points are simple and only one is not fixed, there
are 2d − 3 distinct fixed points so that d ≤ 4. If d = 4, every fixed point is
critical which contradicts the holomorphic fixed point formula (see [M1]).

We now determine f up to conjugation by a Möbius transformation. If
d = 2, we can assume that the fixed critical point is at infinity, so that f is
a quadratic polynomial. Now, if d = 3 and if there are three distinct fixed
critical points b1, b2 and b3 (the labelling will be fixed in Notation 2.7), we can
assume that the fourth fixed point of f is at infinity. We write f as follows

f(z) = z − P (z)
Q(z)

=
zQ(z) − P (z)

Q(z)
,
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where P and Q are relatively prime polynomials. Since f fixes infinity, deg(Q)
< deg(zQ − P ) ≤ 3 so Q has degree at most 2 and P at most 3. Moreover,
f(bi) = bi, so P (bi) = 0 for i ∈ {1, 2, 3}. Finally the condition f ′(bi) = 0
implies that P ′(bi)/Q(bi) = 1 so Q = P ′ for degree reasons. Thus, f is a cubic
Newton map.

The dynamics of a cubic Newton map N can be described as follows.
One can always assume (up to affine conjugacy) that N is associated to a
polynomial of the form P (z) = z3 + pz + 1 with p ∈ C; i.e.,

N(z) = NP (z) = z − P (z)
P ′(z)

=
2z3 − 1
3z2 + p

.

It is a degree 3 rational mapping, fixing ∞ which is repelling.2 It has four
critical points, one at each of the roots bi of the polynomial P , which is a super-
attracting fixed point of N , and one called x0 at 0 (which is the root of P ′′).
Each of the roots bi has a basin of attraction B̃i =

{
x ∈ Ĉ | Nn(x) −−−→

n→∞
bi

}
.

We denote by Bi the immediate basin of bi, i.e., the connected component of
B̃i containing bi.

The Julia set J(N) is always connected, according to results of Shishikura
[Sh] (see also [T1, He]). Hence, the connected components of the Fatou set
F (N) = Ĉ \ J(N) are simply connected. They are of two types, the compo-
nents of the basins B̃i and additional (possibly empty) components due to the
presence of the fourth (free) critical point x0. Very special situations appear
when the different kinds of Fatou components mix, i.e., when x0 belongs to
some component of B̃i. In this case N is geometrically finite and therefore
J(N) is locally connected.

The following two remarks describe in detail two particular cases where
N is geometrically finite. We get rid of them through Assumption 1 for the
discussion afterward.

Remark 2.2. If the critical point x0 belongs to B1, B2 or B3, N is quasi-
conformally conjugated in a neighborhood of the Julia set to the cubic poly-
nomial Q(z) = z3 + 3

2z (which is geometrically finite).

Proof. Assume that x0 belongs to Bj for some j ∈ {1, 2, 3}. By a classical
surgery process (see [CG, Ch. 6]) one conjugates N , in a neighborhood of the
Julia set, to a rational map f of degree 3 possessing three fixed critical points,
two of multiplicity 1 and one of multiplicity 2 (corresponding to bj collapsed
with x0). Since the critical point of multiplicity 2, it is also backward invariant,
f is conjugated (by a Möbius transformation) to a polynomial with two fixed

2A point x of period p is repelling, attracting or parabolic, respectively, if |(fp)′(x)| > 1,
|(fp)′(x)| < 1 or (fp)′(x) = e2iπθ, θ ∈ Q/Z.
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critical points in C of multiplicity 1. Now, up to affine conjugacy, one can
assume that the polynomial is monic and centered. Hence it can be written
P (z) = z3 + az. Since the two finite critical points are fixed a = 3

2 .

Remark 2.3. If the critical point x0 is mapped to ∞ (i.e. N(x0) = ∞), N

is conformally conjugated to the Newton map NS of the polynomial S(z) =
z3−1. It is called the “symmetric case” because NS is invariant by z → e2iπ/3z.

Proof. Let P denote the polynomial associated to N (i.e. N = Np).
Up to affine conjugacy one can assume that P (z) = az3 − a. Indeed, using a
translation one can assume that x0 = 0, so that N(0) = ∞ and P (z) = az3 +b;
now, using a dilatation one can assume that P (z) = az3 − a. In particular,
NP = NS where S(z) = z3 − 1.

The cubic polynomial Q(z) = z3+ 3
2z is studied in [F, Ro] and so through-

out the paper we will only work with genuine Newton maps. We take away
the symmetric case just for technical reasons but we will dare some comments
about it.

Assumption 1. From now on, we assume that the critical point x0 does
not belong to the immediate basins Bi, i ∈ {1, 2, 3} and that N(x0) �= ∞.

Then the classical Böttcher Theorem [B] provides a unique conformal rep-
resentation φj : D → Bj — where D is the open unit disc — which conjugates
N to the map z �→ z2. Each φj induces polar coordinates on Bj . The ray of
angle t ∈ R/Z, denoted by Rj(t), is the arc φj([0, 1[e2iπt) and the equipotential
of level v > 0 is defined as Ej(v) = φj(e−vS1). These objects can be lifted to
the other components of B̃j as long as they don’t contain the critical point x0

(see Notation 2.9 below).

Remark 2.4. Once Theorem 6 has been proved, the local connectedness of
∂Bj will give that the map φj extends continuously to D so that ∂Bj is a curve,
by Carathéodory’s Theorem. Then Lemma 3.8 will give the injectivity of this
extension. Hence ∂Bj is a Jordan curve on which N

∣∣
∂Bj

will be conjugated
to the map θ �→ 2θ on S1 (by the extension φ−1

j ).

Recall that a ray Rj(t) is said to converge (or to land) if the quantity
φj(e−v+2iπt) has a limit when v tends to 0. Douady, Hubbard and Sullivan
proved that for every rational angle t, the ray Rj(t) converges to an eventually
periodic point in ∂Bj , which is repelling or parabolic, with period dividing p

where t is written in the form t = r/(2m(2p − 1)) (see [D-H1, M1]).
The following lemma shows a dis-symmetry of the Julia set of N :

Lemma 2.5. The three rays R1(0), R2(0) and R3(0) converge to ∞. On
the contrary, only two of the rays of angle 1/2 do converge to the same preimage



ON LOCAL CONNECTIVITY FOR THE JULIA SET 133

∞

B3

B3

B1 B2

R3(0)

R2(0)R1(0)

Figure 1: On the left B1, B2, B3 and on the right the rays Ri(0).

of ∞ (when N(x0) �= ∞, i.e. in the general case). We denote this preimage
by ξ. The other ray of angle 1/2 converges to −ξ.

Note that in the particular case where N(x0) = ∞ (avoided by assump-
tion 1), all the rays of angle 1/2 converge to the preimage of ∞ which is x0.

The following fact will be useful for the proof of Lemma 2.5 and several
times later also:

Trivial fact 2.6. If two distinct rays converge to the same point p and
have the same image under N then p is a critical point of N .

Indeed, N is not injective near p.

Proof of Lemma 2.5. Each ray Rj(0) is fixed by N , and so it converges
to a fixed point on ∂Bj that can only be ∞. Each ray of angle 1/2 lands at a
preimage of ∞, distinct from ∞ by the above remark.

If N(x0) = ∞, the map near x0 is a double cover over a neighborhood
of ∞, so that there are two preimages of each ray Ri(0) near x0. Hence each
ray of angle 1/2 lands at x0.

If N(x0) �= ∞, we assume by contradiction that the three rays R1(1/2),
R2(1/2), R3(1/2) land at the same inverse image of ∞, denoted by x. Their
cyclic order at x is different from the cyclic order of their images R1(0), R2(0),
R3(0) at ∞. This contradicts the conformality of N at x.

We will use the following convention for labelling basins (see Figure 1):
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Notation 2.7. In the general case, i.e. if N(x0) �= ∞, the basins are la-
belled B1, B2, B3 in such a way that:

• the two rays of angle 1/2 landing at the same preimage ξ of N−1(∞)
are in B1 and B2;

• the rays of angle 0 of B1, B2, B3 land at ∞ in positive cyclic order.

In the symmetric case, i.e. if N(x0) = ∞, the labelling B1, B2, B3 of the
basins is without importance because of the symmetry.

Remark 2.8. Under assumption 1, the restriction N : Bj → Bj is a de-
gree two ramified covering. So N−1(Bj) consists of Bj and another connected
component which is a topological disc since N can only induce a nonramified
covering of degree one on it.

Notation 2.9. We denote by B′
j the connected component of N−1(Bj)

disjoint from Bj .
If U is a disc such that Np : U → Bj is a homeomorphism, we denote by

RU (t) (resp. EU (v)) the ray of angle t in U , i.e. , (Np
|U )−1(Rj(t)), (resp. the

equipotential of level v in U , i.e. , (Np
|U )−1(Ej(v))). More quickly for B′

j we
adopt the notation R′

j(t) and E′
j(v) respectively.

Remark 2.10. For j = 1, 2 the rays R′
j(0) and R3(1/2) land at the same

inverse image ξ′ (possibly x0) of ∞. This follows from Lemma 2.5 and the
fact that R′

k(0) and Rk(1/2) (or Rk(0)) k = 1, 2, 3, cannot land at a common
noncritical point because they are all mapped to Rk(0) (trivial fact).

2.2. Yoccoz Puzzles. We now describe the technique of puzzles in the
convenient framework of rational-like maps.

Definition 2.11. Let X, X ′ be connected open subsets of Ĉ with finitely
many smooth boundary components and such that X ′ ⊂ X. A holomorphic
map f : X ′ → X is called a rational-like map (resp. a simple rational-like map)
if it is proper and has finitely many critical points in X (resp. a single critical
point with multiplicity one). We denote by degree(f) the topological degree
of f and by K(f) = {x ∈ X ′ | ∀n ≥ 0, fn(x) ∈ X ′} =

⋂
n≥0

f−n(X), the

associated filled Julia set.

For simply connected domains this is the standard definition of polynomial-
like maps ([D-H2]).

Example 2.12. Any genuine cubic Newton map N induces a simple rational-
like map N : X ′ → X (see Figure 2) for any potential v, where

X = Ĉ \
⋃

i=1,2,3

φi(e−vD) and X ′ = N−1(X).
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XX ′ N

Figure 2: N viewed as a rational like map from X ′ on the left to X on the
right.

Definition 2.13. A finite, connected, graph Γ in X is called a puzzle if it
satisfies the conditions: ∂X ⊂ Γ, f(Γ∩X ′) ⊂ Γ, and the orbit of each critical
point avoids Γ.

The puzzle pieces of depth n are the connected components of f−n(X \Γ)
and the one containing a point x is denoted by Pn(x). If a point x is contained
in a puzzle piece at each depth, i.e. if the orbit of x avoids Γ, the sequence Pn(x)
is decreasing and the impression of x is defined to be the set Imp(x) = ∩Pn(x).
A puzzle is said to be k-periodic at x if fk

(
Pn+k(x)

)
= Pn(x) for any sufficiently

large n.
Every difference set An = Pn \ Pn+1 between two nested puzzle pieces

Pn, Pn+1 of consecutive depths is called a puzzle annulus of depth n. This
“annulus” actually degenerates to a disc if ∂Pn meets ∂Pn+1. A point x ∈ K(f)
is said to be surrounded at depth n if fn+1(x) /∈ Γ and Pn(x) \ Pn+1(x) is a
nondegenerate (i.e. genuine) annulus. A point is infinitely surrounded if it is
surrounded at infinitely many depths.

Remark 2.14. One can also consider closed annuli Pn \Pn+1. When such
closed annuli degenerate, they still surround the points of Pn+1 since the closed
annuli still have the homotopy type of the circle.

The following theorem is a rewording (see [Ro] for the proof) of Yoccoz’
Theorem (see [Hu, M2, Y]). The introduction of different puzzles Γi is natural
since it is difficult to surround every point of the Julia set with just one puzzle.
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Theorem 2.15. Let f : X ′ → X be a simple rational-like map, C a subset
of K(f) such that f(C) ⊂ C and let Γ0, . . . ,Γr be puzzles all surrounding the
unique critical point x0. If every point of C is surrounded by some Γj at a
uniformly bounded depth, then for every point x ∈ C there exists i ∈ {0, . . . , r}
such that x is infinitely surrounded by Γi and the following dichotomy holds:

1) If the puzzle Γi is not periodic at x0 then the impression Impi for Γi

satisfies Impi(x) = {x};
2) If the puzzle Γi is k-periodic at x0 then fk : P i

n+k(x0) → P i
n(x0) defines a

polynomial-like map of degree 2 for some large n and its filled Julia set is
Impi(x0); moreover, depending on whether the orbit of x meets Impi(x0)
or not, Impi(x) is either a conformal copy of Impi(x0) or {x}.

We will apply Theorem 2.15 to C = ∂Bi with the puzzles Γ0, . . . ,Γr

constructed in Section 5 and 7, consisting of rays, articulated rays and equipo-
tentials. For any point x ∈ C such that Imp(x) = {x}, the sets Pn(x) ∩ C

form a basis of neighborhoods of x in C so that, if they are all connected, C is
locally connected at x.

A useful trick for finding points surrounded by the puzzles is contained in
the following remark. It occurs in the proof of our version of Yoccoz’ Theorem
(Theorem 2.15) and will be crucial in Proposition 5.4 (see [Ro]).

Remark 2.16. If an iterated image fk(x) of a point x is surrounded by a
nondegenerate annulus P0(fk(x)) \P1(fk(x)) (for some puzzle Γ) then x itself
is surrounded by Γ at depth k and, more precisely, by the nondegenerated
annulus Pk(x) \ Pk+1(x). This follows from the fact that fk induces a proper
map Pk(x) → P0(fk(x)) taking Pk+1(x) to P1(fk(x)).

3. Cut angles and localization of x0

Here and below, we identify S1 with R/Z, so that −t and 1 − t coincide.
We write t1 ≤ t ≤ t2 to mean that t1, t, t2 are in trigonometric order. To
compare only two angles, we use their representatives in (0, 1].

A preliminary step for proving that ∂Bi is locally connected is to find
small connected subsets in ∂Bi. The following basic examples will be used
throughout the paper.

Example 3.1. Let Q ⊂ Bk denote the closure of the sector between two
converging rays R(t1), R(t2), namely,

Q = {φk(r e2iπt), r ∈ [0, 1), t1 ≤ t ≤ t2}.
Then Q ∩ ∂Bk is a connected subset of ∂Bk. Indeed it is the decreasing inter-
section of the compact connected sets Sn, where

Sn =
{
φk(r e2iπt), r ∈ [1 − 1/n, 1), t1 ≤ t ≤ t2

}
for n ≥ 1.
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To construct puzzles, we will use rays of different basins converging to the
same point in the Julia set:

Definition 3.2. We say that a ray Ri(t) ⊂ Bi is a cut ray if it converges
to the landing point of another ray Rj(t′) where j �= i. The angle t ∈ S1 of
such a ray is called a cut angle in Bi.

The goal of this section is to determine the set of cut angles. Most prop-
erties we establish are proved in [He] and [T1] but under the assumption that
J(N) is locally connected. For this reason, detailed arguments are provided
here, though most of them are identical. The essential difference resides in
Proposition 3.12 and Lemma 3.15.

3.1. Rays landing at the same point.

Proposition 3.3. The only cut angle in B3 is 0. Furthermore, t is a cut
angle in B1 if and only if 1−t is a cut angle in B2 and, if so, the corresponding
cut rays R1(t) and R2(1 − t) land at the same point.

Let G denote the set of angles t ∈ S1 such that R1(t) and R2(1−t) land at
the same point. The above proposition asserts that G is the set of cut angles
in B1 and that the set of cut angles in B2 is {1 − t, t ∈ G}.

Remark 3.4. G contains 0 and 1/2 by Lemma 2.5.

Lemma 3.5. For i ∈ {1, 2, 3}, the only ray in Bi converging to ∞ is Ri(0).

Proof. Assume that Ri(θ) converges to ∞ for some i and some θ ∈
(1/4, 1/2). Then the rays Ri(θ + 1/2), Ri(1/2) and Ri(2θ − 1/2) all land
at points of N−1(∞) \ {∞} (see Trivial Fact 2.6). But 0 < 2θ− 1/2 < θ < 1/2
and 1/2 < 2θ < θ+1/2 < 1 for the cyclic order, so each of the three connected
components of Ĉ \ δi, where δi = Ri(0) ∪ Ri(θ) ∪ Ri(2θ), contains the landing
point of exactly one of those rays. This contradicts the fact that only two
preimages of ∞ lie outside of δi. Now, if Ri(θ) lands at ∞ with θ /∈ (1/4, 1/2)
and θ nondyadic, some 2nθ mod 1 is in (1/4, 1/2) and the above applies. Finally
no rays of nonzero dyadic angle converge to ∞ by Trivial Fact 2.6.

Lemma 3.6. Let θ ∈ S1 be such that 2θ ∈ G. If θ /∈ G then the rays
R1(θ) and R′

2(1 − 2θ) converge to the same point, as well as R2(1 − θ) and
R′

1(2θ). Moreover, the two landing points are distinct. On the other hand, if
θ ∈ (0, 1/2) belongs to G, the rays R′

1(2θ) and R′
2(1 − 2θ) land at the same

point.

Proof. We assume that θ �= 0 and 1/2, the special case θ = 1/2 follows
from the definition of B1 and B2. Since 2θ ∈ G, the rays R1(2θ) and R2(1−2θ)
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converge to the same point, denoted x. Hence, each of the six rays R1(θ),
R1(θ + 1/2), R′

1(2θ), R2(1 − θ), R2(1/2 − θ), R′
2(1 − 2θ) lands at a preimage

of x. Opposite rays Ri(t) and Ri(t + 1/2) are separated by the Jordan curve
γ = R1(0)∪R1(1/2)∪R2(0)∪R2(1/2). Since no preimage of x is on this curve
(Lemma 3.5), γ separates the six closed rays into two groups. If x = N(x0),
then x has only two preimages and all the rays in each group converge to the
same point. If x �= N(x0), then x has three preimages and only one preimage
of R1(2θ) (resp. of R2(1 − 2θ)) lands at each of them (Trivial Fact 2.6). Thus
if θ /∈ G, the only possibility is that R1(θ) and R′

2(1 − 2θ) land at the same
point, as well as R2(1− θ) and R′

1(2θ). In the case where θ ∈ G let us assume
that θ ∈ (0, 1/2) (else θ + 1/2 ∈ (0, 1/2)). Then R1(θ + 1/2) and R2(1/2 − θ)
are separated from the four other rays by γ (by Remark 2.10 B′

1 and B′
2 are

in the other component of C \ γ). Hence they converge to the same point, as
well as R′

1(2θ) and R′
2(1 − 2θ).

Corollary 3.7. For every n ∈ N, the angle 1 − 1/2n belongs to G but
there exists a smallest n0 so that 1/2n0 is not in G.

Proof. An easy induction using Lemma 3.6 shows that R1(1 − 1/2n) and
R2(1/2n) land at the same point since the curve γ = R1(0)∪R1(1/2)∪R2(0)∪
R2(1/2) separates B

′
2 and R1(1 − 1/2n) for n ≥ 2 .

Assume now that 1/2n ∈ G for all n ∈ N. Let Dn be the unbounded
connected component of Ĉ\

(
R1(±1/2n) ∪ R2(±1/2n) ∪ E1(2n) ∪ E2(2n)

)
and

An = Dn \ Dn+1. It is easy to check that N induces a homeomorphism from
An to An−1, so that the annuli An have equal moduli. Therefore,

⋂
Dn = {∞}

(see [A]) which contradicts the fact that B3 ⊂ Dn.

Lemma 3.8. Two different rays in the same basin Bi cannot converge to
the same point.

Proof. Given θ, θ′ ∈ [0, 1) with θ < θ′, there is some n ∈ N such that 2nθ

and 2nθ′ are distinct and belong to [0, 1/2] and [1/2, 1] respectively. If Ri(θ)
and Ri(θ′) land at the same point, then Ri(2nθ) and Ri(2nθ′) converge to ∞
or ζ ∈ f−1(∞). Indeed, Ri(2nθ) and Ri(2nθ′) lie in different components of
Ĉ \ γi where γ1 = γ2 =

⋃
j=1,2

Rj(0) ∪ Rj(1/2). Using the integer n0 given by

Corollary 3.7, we have

γ3 = R1(0) ∪ R1(1/2n0−1) ∪ R
′
2(1 − 1/2n0) ∪ R

′
2(0) ∪ R3(1/2) ∪ R3(0)

(γ3 is a curve by Lemma 3.6). By the Trivial Fact 2.6, a nonzero dyadic
angle cannot land at ∞, and so, after iterations, the result follows from
Lemma 3.5.
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R′
2(1 − 1

2n0 )

R1(
1

2n0−1 )

R3(0)

γ3

R1(0)

R′
2(0) R3(1/2)

R1(α)

Figure 3: On the left, the curve γ3 used in Lemma 3.8. On the right Head’s
angle (Definition 3.11)

Corollary 3.9. Fix some i ∈ {1, 2, 3} and m ≥ 0. Let U, V be connected
components of N−m(Bi). If two rays RU (t) and RV (t′) land at the same point
then either U = V and t = t′, or the landing point is an iterated preimage of
the critical point x0.

Proof. The rays Nm(RU (t)) and Nm(RV (t′)) both lie in Bi and coincide
because they land at the same point (Lemma 3.8). Let k ≤ m be the smallest
integer such that Nk(RU (t)) is equal to Nk(RV (t′)). If t �= t′ or U �= V then
k ≥ 1 and the common landing point of Nk−1(RU (t)) and Nk−1(RV (t′)) is x0

by the Trivial Fact 2.6.

Remark 3.10. The proofs of Lemmas 3.5, 3.6, 3.8 and the corollaries 3.7, 3.9
still work in the case where N(x0) = ∞ (with n0 = 2), but not the proof of
Proposition 3.3.

Proof of Proposition 3.3. The idea is to study the position of the rays
relative to the curve γ = R1(0) ∪ R2(0) ∪ R1(1/2) ∪ R2(1/2).

Assume first that R1(θ) and R2(θ′) land at the same point x. As long as
Nn(x) avoids γ, the iterated images of the two rays lie in the same connected
component of Ĉ \ γ. Hence θ′ and 1 − θ have the same dyadic expansion. If
the point Nn(x) falls in γ for some n then 2nθ = 2nθ′ = 0 or 1/2 (Lemma 3.8)
and equality θ′ = 1−θ follows since all previous terms in the dyadic expansion
coincide.

Assume now that the rays R3(θ) and R1(θ′) land at the same point, with
(θ, θ′) �= (0, 0). If 2nθ′ = 1/2 for some n ≥ 0, the rays R3(2nθ), R2(1/2),
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R1(1/2) land at the same preimage ξ of ∞ in a cyclic order different from
that of their images R3(2n+1θ), R2(0), R1(0) — observe that R3(2nθ) and
R3(2n+1θ) are in the same connected component of Ĉ \ γ. This contradicts
assumption 1 so there exists n ≥ 0 such that 2nθ′ mod 1 ∈ (1/2, 1). The ray
R1(2nθ′) is separated from B3 by γ (look at the cyclic order in B1) and so has
to land at ξ or ∞. But θ′ would be dyadic (Lemma 3.8). The same argument
works for B2 instead of B1.

3.2. Characterization of cut angles and localization of x0.

Definition 3.11. Let α = α(N) be the infimum of G for the order obtained
by identifying S1 = R/Z with (0, 1]. The angle α is called Head ’s angle of N

(see [He], [T1]).

If an angle θ belongs to G then 2nθ is in [α, 1] for every n ≥ 0 because
2nθ ∈ G. This property characterizes rational cut angles:

Proposition 3.12. Let θ ∈ Q/Z. If 2nθ belongs to (α, 1] for all n ≥ 0
then θ is a cut angle in B1, i.e. θ ∈ G.

Lemma 3.13. If θ ∈ (α, 1] and 2θ ∈ G then θ ∈ G.

Proof. Let t < θ be a point in G. The curve R1(0)∪R2(0)∪R1(t)∪R2(1−t)
separates R1(θ) and B′

2, so θ is in G by Lemma 3.6.

To prove Proposition 3.12, we will construct open discs U ⊂ V containing
the landing points x1, x2 of R1(θ), R2(1 − θ) and such that Nk induces a
homeomorphism U → V , where θ is of period k under doubling. We will then
conclude that x1 = x2 by the Schwarz’ Lemma. The following localisation
Lemma will be used to leave the critical point x0 out of U :

Lemma 3.14. Let η ∈ G and let γ(η) = R1(0)∪R1(η)∪R2(0)∪R2(1−η).
The critical points x0 and φ1(]0, η[) are in the same connected component of
Ĉ \ γ(η). More precisely, given κ ∈ S1 \G such that 2κ ∈ G, the set γ(η, κ) =

R1(η) ∪ R2(−η) ∪ R1(κ) ∪ R2(−κ) ∪ R
′
1(2η) ∪ R

′
2(−2η) ∪ R

′
1(2κ) ∪ R

′
2(−2κ)

separates x0 from ∞.

Proof. The first assertion readily follows from the second one. On the other
hand, we may assume η ≤ 1/2 since this just makes the bounded connected
component of Ĉ \ γ(η, κ) smaller. By Lemma 3.6, the curve γ = γ(η, κ) and
its image N(γ) = R1(2η)∪R2(1−2η)∪R1(2κ)∪R2(1−2κ) are Jordan curves.
Therefore, the bounded component B of Ĉ \ γ is a disc and its image N(B)
is also a disc (a component of Ĉ \ N(γ)) because η, κ ≤ 1/2 and the curve
N−1(N(γ)) = γ ∪ γ′ with γ′ = R1(η + 1/2) ∪ R2(1/2 − η) ∪ R1(κ + 1/2) ∪
R2(1/2 − κ) is disjoint from B. Finally x0 ∈ B since N|∂B

has degree two.
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R1(0)
γ(η)

R1(η)
R1(κ)

γ(η, κ)x0

R1(η)

Figure 4: Illustration of Lemma 3.14: on the left, the curve γ(η), on the right
the localization of the critical point x0 in the bounded component of C\γ(η, κ).

Proof of Proposition 3.12. The angle θ ∈ Q/Z is (eventually) periodic by
t → 2t since it can be written in the form r/(2p(2k − 1)). Therefore, using
Lemma 3.13, we now assume that 2nθ belongs to (α, 1) for every n ≥ 0 and
that θ is periodic.

1. We first claim that θ is accumulated on both sides by elements of G.
Indeed, given ε > 0, let n be the first integer such that the interval 2n[θ, θ + ε)
intersects (0, α). Since 2nθ lies in (α, 1) there exists t′ ∈ (θ, θ + ε) so that
2nt′ = 1, and hence t′ belongs to G (Lemma 3.13). The same argument yields
a point t ∈ (θ − ε, θ) ∩ G.

2. Let k be the period of θ and denote by x1, x2 the respective landing
points of R1(θ), R2(1−θ) ; these points are periodic and their period divides k.
Let t, t′ ∈ G be angles surrounding θ (as in point 1.) and let U be the bounded
connected component of C \ R1(t) ∪ R1(t′) ∪ R2(1 − t) ∪ R2(1 − t′). The disc
U contains x1 and x2. Moreover for ε small enough, V = Nk(U) is also a disc
and covers U since multiplication by 2k is expanding and fixes θ = 2kθ. To see
that Nk : U → V is a (conformal) homeomorphism, we need to check that x0 is
in no N i(U) for 0 ≤ i < k. Let η ∈ G be such that η < inf{2iθ mod 1 | i ≤ k}.
Then for ε small enough 2i(t, t′) ⊂ (η, 1) for i ≤ k, so that N i(U) is not in the
component of Ĉ \R1(0)∪R1(η)∪R2(0)∪R2(1− η) containing x0. Injectivity

now follows from Lemma 3.14 and
(
Nk

|U

)−1
has only one fixed point so that

x1 = x2.

Remark. Proposition 3.12 does not show that the Head angle α (assuming
it is rational) belongs to G (the above argument fails). This will however follow
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from the local connectivity of ∂Bi, i ∈ {1, 2} (by continuity of the extended
Böttcher map).

3.3. Examples of periodic cut angles.

Lemma 3.15. The Head angle α belongs to (0, 1/2) (under assumption 1).

Proof. Assuming α = 0, Proposition 3.12 implies that 1/2n is in G for
every n ≥ 0, which contradicts Corollary 3.7. On the other hand, α ≤ 1/2
since 1/2 ∈ G. Suppose now that α = 1/2. The critical point x0 belongs to the
bounded connected component Un of Ĉ\γn, where γn = γ(1/2, 1/2−1/2n) (see
Lemma 3.14). Hence N(x0) belongs to ∩n∈NVn where Vn is the unbounded
connected component of N(Un) \ (E1(2n) ∪ E2(2n)). This is impossible since,
as we will now show, ∩n∈NVn = ∅.

Let ψ be a homeomorphism V 1 → D ∩ {z = x + iy | y ≥ 0} which
is conformal on V1 and maps (R1(0) ∪ R2(0)) ∩ ∂V1 to [−1, 1]. The map N

induces a homeomorphism from V 2 onto V 1 and we set g = ψ ◦ f ◦ ψ−1

where f : V 1 → V 2 denotes the inverse branch of N . Since g preserves [−1, 1],
it extends by reflection to a holomorphic map g̃ : D → D. Now g̃(D) has
compact closure in D, so the intersection of the domains g̃n(D) is reduced to
a point. Similarly, ∩gn(ψ(V 1)) is a point and hence ∩V n = {∞}.

Corollary 3.16. For n large enough (depending on α), the angle 1 −
1

2n−1 belongs to G.

Proof. If θn = 1 − 1
2n−1 , then 2iθn = 1 − 2i

2n−1 is in (1/2, 1) for i < n − 1
and 2n−1θn equals 1

2 − 1
2

1
2n−1 and so is in (α, 1) for n large enough. Hence, by

Proposition 3.12, θn belongs to G.

To construct articulated rays in Section 4 (Proposition 4.3), we will need
the following lemma:

Lemma 3.17. For any ζ ∈ G with ζ < 2α, there exists θ ∈ G dyadic such
that ζ ≤ θ < 2α.

Proof. Let β = sup{t /∈ G | 2t ∈ G}. Note that β ≤ α ≤ 2β. Moreover,
t > β =⇒ t ∈ G or 2t /∈ G.

1. We prove that if β < α then β is dyadic and that θ = 2β works: The
interval 2j(β, α) does not intersect G provided 2i(β, α) ⊂ (β, 1) for 1 ≤ i ≤
j − 1. The first interval 2(β, α) always lies in [α, 1) because α < 1/2 and does
not intersect G by definition of β. The rest follows by induction. Hence, the
first interval 2n(β, α) that meets (0, β) is disjoint from G, and so is included in
[0, α]. Assume that 2nβ �= 0 mod 1. By definition of β, there exists a sequence
βk < β converging to β such that 2βk ∈ G and so 2nβk ∈ G. This contradicts
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the fact that for k large enough 0 < 2nβk < 2nβ ≤ α. Finally, θ = 2β ∈ G by
Proposition 3.12 and 2β ≥ ζ since ζ ∈ G and 2(β, α) does not intersect G.

2. Assume now that β = α and let βk ∈ (0, β) be angles converging to β

such that 2βk ∈ G. Let also n ≥ 1 be the smallest integer such that 2n(βk, β)
intersects (0, α). Then either 2nβk = 0 mod 1 or 1 ∈ (2nβk, 2nβ) (on the circle).
Therefore, G ∩ (2βk, 2β) contains a dyadic angle which, for k large enough, is
arbitrarily close to 2β = 2α.

4. Articulated rays

Cut rays can be used to construct puzzles. Indeed, a typical example of
such a puzzle consists of equipotentials Ei(v) (for any v > 0), the rays Ri(0),
with i in {1, 2, 3} and some properly chosen periodic cycle of cut rays (see
Section 5). However, these graphs all contain the point ∞ and therefore, even
taking different cut angles, it seems difficult to surround points close to ∞ in
order to apply Theorem 2.15.

The articulated rays considered in this section avoid the point ∞. They
are arcs (connecting B1, B2 to B3 away from the rays Ri(0)) whose behavior
under the dynamics is similar to that of rays. “Periodic” articulated rays will
be especially useful to build puzzles. Articulated rays will also reappear in
Section 7.

Definition 4.1. An articulated ray stemming from Bi with angle θ is a
curve L satisfying the following properties:

• L =
⋃

k≥0

lk where lk is the closure of a converging ray lk ;

• l0 = Ri(θ) and the depth of l1 is greater than that of l0 (i.e. is at least 1) ;

• lk and lk+1 intersect in exactly one point ;

• lk+2 is of depth greater than lk.

A curve L =
⋃

0≤k≤m

lk with the same properties will be called a finite articu-

lated ray. Articulated rays stemming from any preimage U of Bi are defined
similarly, just by replacement of Ri(θ) by RU (θ) in the second item.

Recall that the depth of a ray RU (θ) is the smallest integer p such that
Np(U) = Bj for some j ∈ {1, 2, 3}.

Each articulated ray L =
⋃

k≥0

lk has a natural parametrization ρ : [0,+∞)

→ Ĉ: for every k ≥ 0 and every t ∈ [0, 1], the points ρ(2k + t) and
ρ(2k + 2 − t) belong to l2k and l2k+1 respectively, and their Böttcher coor-
dinates have modulus t. We say that L converges to a point y if ρ(t) has limit
y as t goes to ∞.
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L = L0

L1
L2

Figure 5: The articulated rays L0, L1, L2 and the image N3(L) which is L

union the dashed rays.

Remark 4.2. Two rays li, lj of an articulated ray L lie in the same Fatou
component if and only if {i, j} = {2k−1, 2k} for some k ≥ 1. Moreover, L has
no self-intersection unless it contains some iterated preimage of x0 (Lemma 3.8
and Corollary 3.9).

Corollary 3.16 gives a lot of nondyadic angles in G∩ (α, 2α). We use them
now to construct a “3-periodic” articulated ray, meaning that N3(L) differs
from L only from a finite number of rays of depth 0.

Proposition 4.3. Let ζ ∈ G ∩ (α, 2α) be a nondyadic rational angle
and y the landing point of the ray R3(1/7). There exists a unique articulated
ray L stemming from B2 with angle −ζ/4, converging to y and satisfying the
3-periodicity condition :

N3(L) = L ∪
(
R1(ζ) ∪ R2(−ζ) ∪ R1(2ζ) ∪ R2(−2ζ)

)
.

The method developed below can actually be used to obtain periodic
articulated rays converging to any periodic point of ∂B3, precisely; given a
k-periodic point y on ∂B3, there exists a unique articulated ray L stemming
from B1 ∪ B2, landing at y and satisfying L ⊂ Nk(L) ⊂ L ∪ ⋃

i≥0
(R1(2iζ) ∪

R2(−2iζ)). The general argument, however, is more tricky and is unnecessary
for Theorems 1 and 6, so we will not make it here. The basic idea is to trace
the itinerary of the periodic point and to build the articulated ray backward.

Proof of Proposition 4.3. Let θ ∈ G be a dyadic angle with ζ ≤ θ < 2α

(Lemma 3.17 provides some) and denote by V the connected component of
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Ĉ \
(
R1(0) ∪ R2(0) ∪ R1(θ) ∪ R2(−θ) ∪ R3(0) ∪ E3(v)

)
(v > 0) which does not

contain the critical value N(x0) (see Lemma 3.14 and Figure 6). Since V is a
disc, N−1(V ) has three connected components and, for i ∈ {1, 2}, only one of
them intersects both B3 and Bi ; we denote it by Ui (see Figure 6) and proceed
in four steps.

VU1
g1

g2
U2

α
ζ

θ

Figure 6: The domains U1, U2 and V .

1. Uniqueness. Since ζ/2 /∈ G, the curve N(L) is an articulated ray (stem-
ming from B2 with angle −ζ/2) but N2(L) is not. Indeed, the announced form
of N3(L) shows that the second ray in N2(L) lies in B′

1 or in B1 but B′
1 is

ruled out for the following reason: ζ > α, so that there exists θ′ ∈ G ∩ [α, ζ)

and the curve R1(0) ∪ R2(0) ∪ R1(θ′) ∪ R2(−θ′) separates R2(−ζ) from B
′
1

(Remark 2.10 and the cyclic ordering of angles). Hence, the image N2(L)
equals R1(ζ)∪R2(−ζ)∪L2 where L2 is an articulated ray stemming from B1,
and N(L2) =

(
R1(ζ) ∪ R2(−ζ)

)
∪ L by the periodicity condition. Set L0 = L,

L1 = N(L) and Li = ∪k≥0 l
i
k for i ∈ {0, 1, 2} (L2 is as defined before). The

relations N(l10) = N(l21) = R2(−ζ) and also N(l11) = N(l20) = R1(ζ) determine
the first rays of L1 and L2: l20 = R1(ζ/2), l10 = R2(−ζ/2), l21 = R′

2(−ζ), l11 =
R′

1(ζ). The similar identities N(l0k) = l1k = N(l1k+2) and N(l2k+2) = l0k will
guarantee uniqueness provided we have inverse branches for N and know which
one to choose. This will be shown in the next step by proving that L0 ∪ L1

and L2 are contained in U2∪N−1({b1, b2}) and U1∪N−1({b1, b2}) respectively,
and by observing that N is univalent on those sets.

2. Localization. First, the articulated rays Li all lie in V ∪{b1, b2}. Indeed,
by step 1, each articulated ray starts with l

i
0 in V ∪ {b1, b2}. Moreover, if Li

crosses ∂V , there exists j so that 2jθ = ζ or 2jζ = 0 (recall that Li consists
only of preimages of R1(ζ) and R2(−ζ), and that two rays in Bk cannot land
at the same point). This is impossible since θ is dyadic but not ζ.
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The following relations N(L0) = L1, N(L1) = L2 ∪ R1(ζ) ∪ R2(−ζ) and
N(L2) = L∪R1(ζ)∪R2(−ζ) imply that N(Li) all lie in V ∪{b1, b2}. Therefore
L0 and L1 lie in U2 ∪ N−1({b1, b2}) (just because they start there by step 1)
while L2 lies in U1 ∪ N−1({b1, b2}).

3. Existence. Let gi : V → Ui denote the inverse of the homeomorphism
Ui → V induced by N . The articulated rays Li are constructed as follow. Their
rays of depth 0 and 1 are determined in point 1. The other rays are obtained
inductively by applying the relevant inverse branch to each additional relation
of step 1: l2k+2 = g1(l1k), l0k = g2(l1k), l0k+2 = g2(l2k). The curves L0, L1 and L2

constructed this way are clearly articulated rays.
We will now prove that L0 converges to y. For this, we rewrite the above

relations as lik+2 = hi(lik) where h0 = g2g1g2, h1 = g2
2g1 and h2 = g1g

2
2 are as

defined on V . We claim that hi(V ) ⊂ V . Indeed, hi(V ) is included in g1(U2)
or g2(U1). Moreover, ∂g1(U2)∩∂V ⊂ R1(0)∪R3(0) because g1(U2) ⊂ U1. But
R1(0) is disjoint from ∂U2 and hence also from ∂g1(U2). On the other hand,
R3(0) cannot meet ∂g1(U2); otherwise the latter would not be connected (the
only rays converging to ∞ are the Ri(0)). Hence, g1(U2) ⊂ V and similarly
g2(U1) ⊂ V .

The map h0 : V → V contracts the hyperbolic metric by a bounded factor,
so that the hyperbolic lengths of the rays l0k decrease geometrically and L0

converges. Moreover, the limit point is a fixed point of h0 in U2. Now, h0 has
at most one fixed point and, considering the action of h0 on the rays of B3∩V ,
we see that h0(y) = y. Therefore, L converges to y.

Corollary 4.4. Let L be the articulated ray of Proposition 4.3. Then
L, N(L) and N2(L) do not intersect outside {b2}.

Proof. In the previous proof (Proposition 4.3 point 2.) it is shown that
L0 and L1 lie in U2 ∪N−1({b1, b2}) while L2 lies in U1 ∪N−1({b1, b2}). Hence
L1 and L2, as well as L0 and L2, do not intersect. If L0 and L1 intersect, their
images L1 and R1(ζ) ∪R2(−ζ) ∪L2 also do. However, this is not possible out
of b2. Hence L0 and L1 can intersect only at depth 1, i.e. at N−1({b2}). But
l01, l

0
2 are not in B′

2, so that L0 and L1 only intersect at b2.

Remark 4.5. The orbit of the articulated ray L avoids the critical point x0.

This is just by construction: L, L1, L2 belong to U1 ∪ U2 and the orbit of
R1(ζ) ∪ R2(−ζ) avoids x0.

5. Graphs defining puzzles

In this section we define graphs in X = Ĉ \ ∪i=1,2,3φi(e−vD) (for any
v > 0) that turn out to be useful puzzles for well chosen angles. At the end
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of the section we establish that the closure of the puzzle pieces intersect ∂Bi

under a connected set.

5.1. Puzzles.

Definition 5.1. Let ζ ∈ G ∩ [α, 2α) be a nondyadic rational angle and
L the articulated ray constructed in Proposition 4.3 stemming from B2 with
angle −ζ/4. Given θ, η in G ∩Q/Z, we define two graphs I(θ) and II(ζ, η) as
follows:

I(θ) = ∂X ∪

⎛
⎝X ∩

⎛
⎝R1(0) ∪ R2(0) ∪ R3(0) ∪

⋃
j≥0

(
R1(2jθ) ∪ R2(−2jθ)

)⎞⎠
⎞
⎠ ;

II(ζ, η) = ∂X ∪

⎛
⎝X ∩

⎛
⎝⋃

j≥0

(
N j(L) ∪ R1(2jη) ∪ R2(−2jη) ∪ R3(2j/7)

)⎞⎠
⎞
⎠ .

1
7

θ

0
η

ζ
2 L

Figure 7: On the left the graph I(θ), on the right II(ζ, η).

Remark 5.2. The cycle of cut rays generated by R1(η)∪R2(−η) is added
in order to (clearly) surround the critical point for the graph II (see Proposi-
tion 5.4).

Remark 5.3. The graphs considered in Definition 5.1 are connected and
do not have terminal edges since θ, η ∈ G (see Figure 7).

For the purpose of the proof of Proposition 5.4 below, we recall some
notation:
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Qi(t1, t2) = {φi(r e2iπt), r ∈ [0, 1), t1 ≤ t ≤ t2} (see example 3.1) ;

for 2κ ∈ G, with κ /∈ G (resp. κ ∈ G), γ(η, κ) is the curve (resp. the two
curves)

R1(η) ∪ R2(−η) ∪ R1(κ) ∪ R2(−κ) ∪ R
′
1(2η) ∪ R

′
2(−2η) ∪ R

′
1(2κ) ∪ R

′
2(−2κ)

(see Lemma 3.14 and Figure 4) ; and γ(θ) = R1(θ) ∪ R2(−θ) ∪ R1(0) ∪ R2(0)
for θ ∈ G.

Proposition 5.4. Let θ = 1 − 1
2n−1 , η = 1 − 1

2m−1 and ζ = 1
2i (1 − 1

2r−1).
For n, m, r large enough θ, η, 2iζ are in G; and for i properly chosen, the graphs
I(θ) and II(ζ, η) are puzzles surrounding the critical point x0. Moreover, for
n > m > r large enough, every point of ∂B1 ∪ ∂B2 is surrounded by I(θ) or
II(ζ, η) at a uniformly bounded depth.

Proof. We focus here on ∂B1 (the argument is similar for ∂B2).

Step 1. For n, m, r large enough θ, η, 2iζ are in G, and for i properly
chosen, I(θ) and II(ζ, η) are puzzles. Indeed, for n, m, r large enough, θ, η

and 1 − 1/(2r − 1) belong to G by Corollary 3.16 and, for some i (depending
on r) ζ = 1/2i(1 − 1/(2r − 1)) lies in (α, 2α). By definition the graphs satisfy
the condition Γ ∩ X ′ ⊂ f−1(Γ). Moreover, if the orbit of the critical point
meets one of the graphs, it must necessarily be at the landing point of a ray.
The critical point would then follows this periodic ray but this is avoided by
changing n, m, r to larger values.

Step 2. Every point of X ′ \ N−1(I(θ)) sitting in Q1(θ/4, θ + 1/2) is sur-
rounded by I(θ) at depth 0. Let x be such a point. The piece P0(x) is the con-
nected component of X \γ(θ/2) intersecting R1(1/4) and P1(x) is included in a
bounded connected component of X ′\γ(θ+1/2, θ/4) since x ∈ Q1(θ/4, θ+1/2)
(see Figure 8 below).

Hence P 1(x) ⊂ P0(x) since any point of γ(θ + 1/2, θ/4) which is also
on ∂P0(x) would be critical (Lemma 3.8 and trivial fact 2.6) but there is no
periodic critical point on J(N).

Step 3. For n large enough the critical point x0 is surrounded by I(θ). By
Remark 2.16 and Step 2 above, it suffices to show that Nk(x0) is for some k in D

the bounded connected component of C\γ(θ+1/2, θ/4). Let k be the smallest
integer such that 2kα ∈ [1/4, 1/2). For n large, 2kα < θ + 1/2 < θ/2 < 1/2.
Hence, α < (θ + 1/2)/2k < θ/2k+1 ≤ 2α and Lemma 3.14 insures that x0

belongs to the bounded component Dk of Ĉ \ γ( θ+1/2
2k , θ

2k+2 ). Now, looking at
the image of the rays in B1, one sees that Nk maps Dk inside D.

Step 4. Every point of X ′ \ N−1(II(ζ, η)) sitting in Q1(ε/2 + 1/2, ζ/4) is
surrounded by II(ζ, η) at depth 0, where ε = supi≥0{2iζ mod 1, 2iη mod 1}. Let
x be such a point. The piece P0(x) is the unbounded connected component of
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θ
4

Figure 8: The graph N−1(I(θ)) dashed.

Ĉ\II(ζ, η). It is very easy to see that ∂P1(x)∩∂P0(x) is empty. Indeed, P1(x)
is the unbounded connected component of N−1(P0(x)). Hence its boundary
consists of the rays R1(1/2+ε/2), R2(1/2−ε/2), R3(1/14), R3(11/14) and the
preimage of L stemming from B2 with angle −ζ/8 together with the preimage
of L2 stemming from B1 with angle ζ/4 (L2 is the articulated ray in N(L) and
stems from B1; see Figure 5).

Step 5. The critical point x0 is surrounded by II(ζ, η) provided m > r.
Let ζ1 = 1 − 1

2r−1 . If m > r then ζ1 < η < 1, so that ζ1/4 < η/4 <

ζ+1/2 < ζ1/2. Hence the piece P1(x0) is included in D′ the bounded connected
component of X ′ \ γ(η/4, ζ +1/2). It is easy to see that D′ ∩ II(ζ, η) is empty.
The end of the argument goes as in Step 3: if k denotes the smallest integer
such that 2kα ∈ [1/4, 1/2), for m, r large enough Nk(x0) ∈ D′.

Step 6. For n, m, r, i such that Steps 1–5 hold, every point of ∂B1 is
surrounded by I(θ) or II(ζ, η) at a uniformly bounded depth. The points of
∂B1∩I(θ) are mapped to the landing point z of R1(θ). For n large, ε/2+1/2<θ,
so z belongs to Q1(ε/2 + 1/2, ζ/4) and by Step 4 and Remark 2.16 the points
of ∂B1 ∩ I(θ) are surrounded by II(ζ, η) at uniformly bounded depth .

To conclude, we now show that ∂B1 is covered, for some p, by the subsets
N−i(Δ), 0 ≤ i ≤ p, where Δ = Q1(θ/4, θ+1/2)∪Q1(ε/2+1/2, ζ/4). First, for n

large enough, ε/4 + 1/4 < θ + 1/2 < 1/2, so Δ ∪N−1(Δ) covers Q1(θ/4, 1/2).
Let p0 be such that 0 < θ/(4.2p0) < ζ/4 ; then the sets Q1(ε/2 + 1/2, ζ/4)
and N−i(Q1(θ/4, 1/2)), 0 ≤ i ≤ p0, cover Q1(ε/2 + 1/2, 1/2). Finally for
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ζ
ζ
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P1(x)

Figure 9: The graph N−1(II(ζ, η)) dashed, with the piece P1(x) of step 4 .

p1 satisfying ε/2 + 1/2 < 1 − 1/2p1 < 1, the sets N−i(Q1(ε/2 + 1/2, 1/2)),
0 ≤ i ≤ p1, cover ∂B1 entirely.

5.2. Connectivity of the neighborhoods. We establish now the connectivity
of Pn(x) ∩ ∂Bi, where Pn is any depth n puzzle piece for I(ζ) or II(ζ, η).

We prove inductively that for x in ∂Bi, any puzzle piece Pn(x) cuts ∂Bi

along some ∂Bi ∩ Qi(t1, t2). This intersection is connected, as seen in Exam-
ple 3.1 (where Qi(t1, t2) is defined).

Lemma 5.5. Let P be an open disc, R any connected component of N−1(P )
intersecting Bi, i ∈ {1, 2, 3}. Under condition (∗) or (∗∗), P ∩Bi = Qi(θ1, θ2)
implies that also R ∩ Bi = Qi(η1, η2) for {η1, η2} = {θ1/2, θ2/2} or {θ1/2 +
1/2, θ2/2 + 1/2}.

Condition (∗) respectively (∗∗) is that no critical point belongs to R, re-
spectively that R ∩ Bi ⊂ Qi(t, t′) with |t − t′| ≤ 1/2.

Proof. By assumption P ∩ Bi = Qi(θ1, θ2), and so the set R ∩ Bi ⊂
N−1(P ) ∩ Bi lies in N−1(Qi(θ1, θ2)) ∩ Bi. But N−1(Qi(θ1, θ2)) intersects Bi

under the set Δ1 = Qi(θ1/2, θ2/2) and Δ2 = Qi(θ1/2 + 1/2, θ2/2 + 1/2) since
N is conjugated on Bi to z �→ z2. So R ∩ Bi ⊂ Δ1 ∪ Δ2 and R intersects Δ1

or Δ2. If R intersects Δj it contains IntΔj since N induces a covering R → P

and IntΔj ⊂ N−1(P ). But R cannot contain Δ1 and Δ2 because of condition
(∗) or (∗∗). Indeed, under condition (∗∗) Δ1 and Δ2 are opposite and under
condition (∗) N : R → P would be (at least) a double cover over a disc and so
ramified in R. Hence R∩Bi = IntΔ1 or IntΔ2 so that R∩ ∂Bi = Δ1 ∩ ∂Bi or
Δ2 ∩ ∂Bi.
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Corollary 5.6. For any depth n piece Pn(x) (of the puzzles I(θ) or
II(η, ζ) and x ∈ ∂Bi), Pn ∩ ∂Bi is connected ; more precisely Pn ∩ Bi =
Qi(θn, θ′n) ∩ Xn for i = 1, 2 and some θn, θ′n.

Proof. Every piece Pn(x) satisfies the assumption of Lemma 5.5 under
condition (∗∗). Indeed, the pieces Pn(x) are discs and intersect Bi; they are
all included in P0(x) which satisfies condition (∗∗) by choice of θ, η and ζ.

6. Renormalizations

Definition 6.1. Let f : Ĉ → Ĉ be a rational map and x0 a critical point
of f . Let k > 1. The map f is k-renormalizable at x0, if fk induces, between
some discs Y ′ and Y containing x0, a quadratic-like map (i.e. a polynomial-
like map of degree two) whose filled Julia set K(fk) is connected (see Defini-
tion 2.11). The map fk : Y ′ → Y is called a k-renormalization of f in x0. The
smallest integer k for which f is k-renormalizable at x0 is called the minimal
renormalization level.

Notation 6.2. If fk : Y ′ → Y is a k-renormalization of f in x0, the straight-
ening Theorem (see [D-H2]) shows that fk is conjugated, by a quasi-conformal
map σ, to a unique quadratic polynomial fc(z) = z2 +c (c ∈ C) on a neighbor-
hood of K = K(fk). The filled Julia set of fc will be denoted by K(fc), and
K = σ−1

(
K(fc)

)
(= Kc if there is some ambiguity). If c �= 1/4, the polynomial

fc has exactly one repelling fixed point β(fc) that does not disconnect K(fc)
(see [McM1]), in the terminology of [D-H1] it is the point of external argument
0. Let α(fc) be the other fixed point (β(f1/4) = α(f1/4)) and β′(fc) �= β(fc)
the other preimage of β(fc). Similarly we note β = βc = σ−1(β(fc)).

6.1. Linearizability question.

Theorem 5. If N possesses a periodic point x of multiplier λ = e2iπα

with α ∈ R then

(1) N is renormalizable ;

(2) α ∈ B if and only if N is linearizable near x ;

(3) if α /∈ B ∪ Q there exist periodic cycles in any neighborhood of x.

Proof. Let k be the period of x. We first prove that N is k-renormalizable
and then that the renormalized polynomial has the desired properties.

For any puzzle Γ of Definition 5.1, the puzzle pieces Pn(x) are well defined
since x is not repelling (and so x /∈ Γn = N−n(Γ) for all n ≥ 0). There is some
point x′ in the orbit of x such that the puzzle pieces Pn(x′) contain a critical
point x0, i.e. Pn(x′) = Pn(x0) for n ≥ 0. Indeed, if for all x′ in the orbit
of x, the piece Pn(x′) is not critical, the restriction Nk : Pn+k(x) → Pn(x)
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would be invertible, and by Schwarz’ lemma, x would be an attracting fixed
point of the inverse (since for some n, Pn+1(x) �= Pn(x)). Let p be such
that P p+1(x0) ⊂ Pp(x0) (Proposition 5.4 provides graphs satisfying this) ; the
restriction Nk : Pp+k(x) → Pp(x) is then a quadratic like map.

Let σ be the straigthening map and fc(z) = z2+c the quadratic polynomial
conjugated to Nk by σ (see Notation 6.2). The point σ(x) is fixed by fc

of multiplier λ since the multiplier of an indifferent fixed point is a quasi-
conformal invariant (see [N]). Finally by Yoccoz’ result (see [Y]) we obtain
that α ∈ B if and only if N is linearizable near x and, if α /∈ B there exist
small cycles near x.

6.2. Renormalization via puzzle pieces. More generally we prove here
(Lemma 6.5) that if N is renormalizable we can take puzzles pieces as sets of
renormalization.

Lemma 6.3. Let N be k-renormalizable at x0 with filled Julia set K =
K(Nk). If K intersects B1 (resp. B2) then there exists exactly one ray in
B1 (resp. B2) accumulating on K. It has angle p/(2k − 1) with p = p(N) <

(2k − 1)/2 (resp. angle 1 − q(N)/(2k − 1) > 1/2) and converges to the fixed
point βc of K = Kc.

Proof. We consider the situation where K ∩ B1 �= ∅. Let V0 be the
connected component of Ĉ\(R1(0)∪R1(1/2)∪R2(0)∪R2(1/2)) containing x0.
Then K is included in V0 since it contains x0 and cannot cross the eventually
fixed ∂V0. Since Nk(K) = K, one can consider for every n ≥ 0 the connected
component Vn of N−k(Vn−1) containing K. They form a decreasing sequence
of open sets: Nk(∂V0)∩V0 = ∅; hence ∂V0∩V1 = ∅ so that V1 is included in V0

and then Vn+1 ⊂ Vn. After Lemma 5.5 under the condition (∗∗), V n ∩ B1 =
Q1(θn, θ′n) for some θn < θ′n such that |θ′n+1 − θn+1| = 1/2k|θ′n − θn|. The
common limit κ = lim θn = lim θ′n is of the type p/(2k − 1). Indeed, since
Nk(Vn+1) = Vn for every n, necessarily θn ≤ {2kκ} ≤ θ′n (where {t} is the
fractional part of t), so that {2kκ} = κ. Hence, the ray of angle κ lands at
a point which is fixed by Nk. Necessarily this point is βc for K = Kc since
β(fc) is the unique fixed point of fc where there is an external fixed access
(Theorem A of [Pe2]).

The unicity of κ follows from the remark that any ray R1(θ) accumulating
Kc should belong to Vn so that θ is between θn and θ′n for every n. Hence
θ = κ.

Corollary 6.4. If N is k-renormalizable at x0 and if K = K(Nk) in-
tersects B1 and also B2 then the unique rays accumulating on K are R1(α)
and R2(−α) where α is the Head angle.



ON LOCAL CONNECTIVITY FOR THE JULIA SET 153

Proof. If R1(θ1) and R2(θ2) accumulate on K = Kc, they both converge
to βc (Lemma 6.3) so that θ1 = 1−θ2 ∈ G. If there exists θ < θ1 in G, K lies in
the bounded component of Ĉ \ (R1(1/2)∪R2(1/2)∪R1(θ)∪R2(−θ)). Indeed,
it contains R1(θ1) and the curve cannot accumulate on K after Lemma 6.3.
This contradicts Lemma 3.14 which asserts that the critical point x0 is in the
unbounded component (see Figure 4).

Lemma 6.5. If N is k-renormalizable at x0 then for any puzzle Γ of the
form I(θ) or II(η, ζ) satisfying Proposition 5.4 the following holds (where
Pn(x0) denote the critical puzzle pieces):

(1) For l sufficiently large Nk(Pl+k(x0)) = Pl(x0) and Imp(x0) ⊃ K(Nk) ;

(2) There exists j dividing k such that, for l large, N j : Pl+j(x0) → Pl(x0)
is a renormalization of N (in x0) and Imp(x0) = K(N j). The level j is
the minimal renormalization level.

Proof. 1. The filled Julia set K(Nk) is included in Pn(x0). Else the
boundary ∂Pn(x0) would disconnect K(Nk). Then after iterations, two rays
of Γ in B1 ∪ B2 would land at the same point of K(Nk) (∂B3 ∩ K(Nk)
= ∅ after Lemma 3.14) and their closure would also disconnect K(Nk) (after
Corollary 3.9 and since the critical orbit is disjoint from Γ). But Lemma 6.3
insures that those rays are fixed by Nk and have to land at βc. Taking the
image by the local homeomorphism σ would imply that β(fc) disconnects the
quadratic Julia set K(fc) which is impossible (see [McM1, Thm 6.10]). Hence
K(Nk) ⊂ Pn(x0) and therefore K(Nk) ⊂ Imp(x0). Moreover Nk(Pl+k(x0)) is
a piece containing Nk(K) = K, of depth l; so it is Pl(x0).

2. Proposition 5.4 gives an l0 such that P l0+1(x0) ⊂ Pl0(x0). Let j be
the first integer in [0, k] such that N j(Pl0+j(x0)) = Pl0(x0), then the map
N j : Pl0+j(x0) → Pl0(x0) is a renormalization of N (in x0). Taking the in-
verse images by N , P l+j(x0) ⊂ Pl(x0) for all l ≥ l0(see Remark 2.16) so that
N j : Pl+j(x0) → Pl(x0) is also a renormalization of N for l large enough. Fi-
nally Imp(x0) = K(N j) by definition of K(N j).

Assume that j is not the minimal renormalization level. Then, there
exists r < j such that N r(K(N r)) = K(N r). From 1, K(N r) is included in
Imp(x0) ⊂ P l(x0). But this contradicts the minimality in the definition of j

since N r(Pl+r(x0)) contains x0.
If j does not divide k, there exists m such that k = ij+m with 0 < m < j.

Then Nm : Pl+m(x0) → Pl(x0) would be a renormalization of N in x0. This
contradicts the minimality of j.

Corollary 6.6. If N is k-renormalizable at x0 and if k is the minimal
level of renormalization, then the images N i(K(Nk)) are disjoint for 0 ≤ i ≤
k − 1.
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Proof. Let Γ be a puzzle of the form I(θ), II(η, ζ) satisfying Proposi-
tion 5.4. For some large l, P l(x0) ⊂ Pl−1(x0). Let i ≤ k − 1 be the first
integer such that N i(K(Nk)) intersects K(Nk) ; then N i(Pl(x0)) = Pl−i(x0)
and the restriction N i : Pl(x0) → Pl−i(x0) is an i-renormalization of N . This
contradicts the minimality of k.

7. The boundaries ∂Bi are Jordan curves

In this section we prove that ∂Bi is locally connected. We will use the
previous sections. The case of B3 is really simpler and treated separately
(Section 7.1). We distinguish when N is renormalizable around x0 or not.

As pointed out in Remark 2.4 (using Remarks 2.2 and 3.10 and Lemma 3.8),
the local connectedness of ∂Bi has for consequence that ∂Bi = φi(S1) (where
φi denotes also the extension) is a Jordan curve formed by the landing points of
the rays, whenever it is not conjugated to the polynomial z3 +3i/

√
2z2. Hence

in this section we prove that ∂Bi is locally connected for a genuine Newton
map.

7.1. The boundary ∂B3 is a Jordan curve. The orbit of the critical point x0

is “far from” B3 (Lemma 3.14), so it is rather easy to prove by hand (without
Yoccoz’ Theorem) the following:

Proposition 7.1. The boundary of B3 is a Jordan curve.

Proof. There exists j such that t = 1
2j ∈ [α, 2α). Denote by C the curve

R3(1/2) ∪ ⋃
i=1,2

Ri(±t/2) ∪ R
′
i((−1)i+1t) ∪ R

′
i(0) and recall that

X = Ĉ \
⋃

i=1,2,3

φi(e−vD) (for any v > 0).

1) a) Local connectivity of ∂B3 at ∞: The unbounded connected compo-
nent P0 of X \ C is a disc (by choice of t). It is easy to check that P1, the
connected component of N−1(P0) containing ∞, satisfies P 1 ⊂ P0 and that
N induces a homeomorphism P1 → P0 (Lemma 3.14) ; let g : P0 → P1 be its
inverse. Since Pn = gn(P0) reduces to ∞ (Schwarz Lemma), so does Pn∩∂B3.
Since Pn ⊂ P1, no critical point belongs to Pn (by Lemma 3.14) so the sequence
Pn ∩ ∂B3 forms a basis of connected neighborhoods of ∞ and condition (∗) of
Lemma 5.5 is satisfied (the proof is the same as in corollary 5.6 even if Pn is
not a puzzle piece).

b) Local connectivity of ∂B3 at the preimages of ∞: For x ∈ N−k(∞),
let Rn be the connected component of N−k(Pn) containing x, where Pn is
as defined in a). For large enough n, the piece Pn satisfies the condition
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(∗∗) of Lemma 5.5; therefore the sequence Rn ∩ ∂B3 is a basis of connected
neighborhoods of x (if n ≥ k + 1).

P2

P0
P1

N(C)

P0
P1

C

Figure 10: On the left illustration of 1a), on the right of case 2

2) Local connectivity of ∂B3 outside the preimages of ∞: Now we denote
by P0 the connected component of X\N(C) intersecting B3. It is easy to check
that any connected component Pn of N−n(P0) intersecting B3 lies in N−1(P0)
by the fact that ∂N−1(P0) ∩ Pn = ∅ (or equivalently that Nn−1(C) ∩ P0 = ∅)
and that N−1(P0) intersects Pn since N−1(P0) ⊃ B3 ∩ X1. Therefore Nn

induces a homeomorphism Pn → P0 since there is no critical point in N−1(P0)
(Lemma 3.14).

Let P1 be the connected component of N−1(P0) intersecting R3(3/4). The
connected component P2 of N−1(P1) intersecting R3(3/8) is then compactly
contained in P0 since ∂P2 ∩ (B1 ∪ B2) = ∅. Therefore, if we denote by Pn(x)
(resp. Pn+2(x)) the connected component of N−n(P0) (resp. N−n(P2)) contain-
ing x, An(x) = Pn(x)\Pn+2(x) is conformally equivalent to P0\P 2. Assuming
that there exists a sequence nj diverging to ∞ such that Nnj (x) ∈ Q = B3∩P2,
we see that the annuli Anj

(x) form a sequence surrounding x and with the same
modulus (as P0 \P 2) ; one extracts a subsequence to obtain disjoint annuli and
by Grötszch inequality mod(P0 \ Pnkj

) → ∞, so that ∩Pn reduces to a point.
Now we find the sequence nj . For x ∈ ∂B3 and n ≥ 0, x belongs to some

Q3(θn, θ′n) with θn, θ′n of the form kn/2n, (kn+1)/2n, since x is not a preimage of
∞. Hence the common limit θ = lim θn = lim θ′n satisfies θn < θ < θ′n for every
n ≥ 0, and so is not dyadic. Moreover Nn(x) and Nn(R3(θ)) belongs, or avoid,
simultaneously, P2. Since a nondyadic angle θ has infinitely many occurrences
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of 0, 1 in its dyadic expansion there exists nj such that Nnj (x) ∈ Q3(1/4, 1/2)
and so nj is in P2.

7.2. The boundary of B1 and B2 in the nonrenormalizable case.

Proposition 7.2. If the cubic Newton map N is not renormalizable at
x0, the boundaries ∂B1 and ∂B2 are Jordan curves.

Proof. Proposition 5.4 provides graphs I(θ) and II(η, ζ) satisfying the
hypothesis of Yoccoz’ Theorem for the set C = ∂B1∪∂B2 (see Theorem 2.15).
Since N is not renormalizable at x0, the second conclusion of the Theorem
does not take place so that Imp(x0) =

⋂
n≥0

Pn(x0) = {x0} and Imp(y) =⋂
n≥0

Pn(y) = {y} for every y ∈ ∂B1 ∪ ∂B2 (where Pn(x) designs a piece of

depth n for one of the previous graphs). Hence Pn(y) ∩ ∂Bi form a basis of
connected neighborhoods of y in ∂Bi by Corollary 5.6.

7.3. The boundary of B1 and B2 in the renormalizable case. We assume
now that N is renormalizable at x0 with minimal renormalization level k. We
denote by Nk : Y ′ → Y a k-renormalization of N in x0, by K = K(Nk) the
connected filled Julia set of this renormalization and by σ the straightening
map and by β the fixed point of Nk not disconnecting K (see Notation 6.2).
By Lemma 6.5 we assume that Y and Y ′ are puzzle pieces.

Remark 7.3. If the boundary ∂B1, or ∂B2, does not intersect K, it is
locally connected.

Proof. From Lemma 6.5 Imp(x0) = K(Nk) = K. Hence, the orbit of
any point x ∈ ∂Bi will never meet Imp(x0) since it stays on ∂Bi. So by
Theorem 2.15 Imp(x) reduces to x.

For this reason we assume in this section that B1 ∩K �= ∅, the case of B2

is analogous.
We define “sides” of K as follows. Let R1(κ) be the unique ray accumu-

lating on K (Lemma 6.3). Its preimage R′
1(2κ) converges to β′ ∈ K ∩N−1(β)

since the other preimage R1(κ+1/2) cannot accumulate K (by unicity in B1).

Definition 7.4. Let Δ1 (resp. Δ2) be the connected component of Ĉ \ K̃

containing B2 (resp. B′
2), where

K̃ = K ∪ R1(0) ∪ R3(0) ∪ R3(1/2) ∪ R
′
1(0) ∪ R

′
1(2κ) ∪ R1(κ).

Lemma 7.5. The connected components Δ1 and Δ2 are discs.
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Figure 11: On the left Δ1,Δ2. On the right
⋃
i

N i(K ∪ R1(9/31)) for N with

Head angle 1/3 for the proof of Proposition 7.6.

Proof. This is a corollary of the following topological Lemma with the open
disc U = Ĉ \ (R1(0) ∪ R3(0) ∪ R3(1/2)) and the curves a1 = R

′
1(0) ∪ R

′
1(2κ),

a2 = R1(κ).

Topological Lemma. Let K be a connected, full compact set in a
topological open disc U and a1, . . . , an simple disjoint closed arcs crossing K,
as well as ∂U , only at one endpoint. Then the open set U \ (K ∪ a1 ∪ · · · ∪ an)
is the union of exactly n topological discs.

Proof. Since K ⊂ U is a connected, full compact set and U is a disc,
there exists a homeomorphism ϕ : U \ K → C \ {0}. The compacts bi =
ϕ(ai ∩ (U \ K)) are arcs of disjoint interior joining 0 to ∞ in Ĉ. The open set
Ĉ \ ∪ibi is then the union of n disjoint topological discs (Jordan’s theorem)
and is homeomorphic to U \ (K ∪ a0 ∪ · · · ∪ an).

The aim of this section is to prove:

Proposition 7.6. For i ∈ {1, 2} there exists an articulated ray Ti ⊂ Δi

stemming from B′
i and converging to β.

Corollary 7.7. For any renormalization N j : Z ′ → Z of N near x0, if
K(N j) intersects ∂Bi, it is in exactly one point.

Proof. By Lemma 6.5, K(N j) ⊂ K so it is enough to prove that K

intersects ∂Bi in one point. Recall that there is an angle κ such that the ray
R1(κ) converges to the fixed point β of Nk

|K (Lemma 6.3). The two articulated
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B1

B2 B′
1

B′
2

Figure 12: Fixed articulated rays converging to β.

rays Ti, constructed in Proposition 7.6, also land at β. Hence T = T1 ∪ T2 ∪
R

′
1(0) ∪ R

′
2(0) is a Jordan curve separating K \ {β} from B1 ∪ B2. Indeed, Ti

are stemming from B′
i, they are disjoint and stay in Δi. Finally, (B1∪B2)∩K

is reduced to β.

Corollary 7.8. The boundaries ∂B1 and ∂B2 are Jordan curves.

Proof. Proposition 5.4 provides graphs I(θ) and II(η, ζ) satisfying the
hypothesis of Yoccoz’ Theorem (Theorem 2.15). Since N is renormalizable
at x0 by Lemma 6.5, we are in the second case of the conclusion of Yoccoz’
Theorem for the graphs provided by Proposition 5.4; i.e. Nk : Pn+k(x0) →
Pn(x0) is a renormalization of N . By Corollary 7.7, ∂Bi∩K(Nk) is at most one
point. Hence for any point y ∈ ∂Bi whose orbit meets K(Nk), the sequence
Pn(y) ∩ ∂Bi forms in ∂Bi a basis of connected neighborhoods of y. Indeed
their intersection reduces to preimages of K(Nk) ∩ ∂Bi, i.e. to points, and
the connectedness follows from Corollary 5.6. On the other hand, if the orbit
of y ∈ ∂Bi does not meet K(Nk) = Imp(x0), Yoccoz’ Theorem implies that
Imp(y) = {y}. In both cases ∂Bi is locally connected at y.

Proof of Proposition 7.6. Let U be the connected component of Ĉ \
(R3(0)∪γ(1/2)) intersecting B3. It is a topological disc. Now applying k times
the Topological Lemma to N j(K) and to the arcs N j(R1(κ)) (for 0 ≤ j ≤ k−1)
one obtains that V = U \ ⋃

0≤j≤k

N j(K ∪ R1(κ)) is a topological disc.
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The proof of the proposition is organized as follows.

(1) Step 1 provides an inverse branch gi of the renormalization Nk : Y ′ → Y ,
which is defined on Δi∩Y , but extends to V and satisfies gi(V ) ⊂ V ∩Δi.

(2) In Step 2 we construct a finite articulated ray Ci, joining b′i = N−1(bi)∩B′
i

to gi(b′i) and included in Δi ∩ V .

(3) In Step 3 we define the articulated ray Ti as the union for n ≥ 0 of
gn
i (Ci); then gi(Ti) ⊂ Ti and Ti has finite length since gi is a contraction

in Y ∩ Δi.

Ω

f1
0

N−1(Ω)
κ

f2
0

2κ

Figure 13: Inverse branches

Step 1. There exists gi : V → V ∩ Δi an inverse branch of Nk, such
that the sequence (gn

i )n∈N converges for the open-compact topology of V to a
constant zi ∈ K.

To define an inverse branch of the renormalization Nk, we first define
inverse branches of N on domains containing the orbit of K. There is no
critical value of N in the disc Ω = Ĉ\

(
N(K ∪ R1(κ)) ∪i=1,2,3 Ri(0)

)
and since

N(N j(K)) ⊂ Ω for 1 ≤ j ≤ k − 1, let Ωj be the connected component of
N−1(Ω) containing N j(K), where N : Ωj → Ω admits an inverse branch called
fj . The case j = 0 requires more caution since N(K) is not in Ω. There
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are exactly three components forming N−1(Ω), two are stuck to K, we denote
by Ωi

0 the one contained in Δi (i = 1, 2) and by f i
0 the corresponding inverse

branch. The maps fi cannot be composed on Ω (since fi(Ω) � Ω) but on
Ĉ \ K ′ where K ′ = ∪j≥0N

j(K) ∪ R1(0) ∪ R2(0) ∪ R3(0) (and in particular on
V ⊂ Ĉ \ K ′) since Ĉ \ K ′ ⊂ Ω and fi(Ĉ \ K ′) ⊂ Ĉ \ K ′, the second inclusion
follows from the stability of K ′: N(K ′) ⊂ K ′ and moreover f i

0(Ĉ\K ′) ⊂ Ĉ\K ′.
Now we can define gi as the composition gi = f i

0 ◦ f1 ◦ · · · ◦ fk−1 : V → Δi;
it is an inverse branch of Nk. By construction gi(V ) ⊂ Ĉ \ C ′ avoids γ(1/2)
since f i

0(Ω) ⊂ N−1(Ω) ⊂ Ĉ \ γ(1/2), so that gi(V ) ⊂ V (since it is stuck to
K ⊂ V ).

Moreover, if Nk : Y ′ → Y is the k-renormalization in x0, with Y ′ small
enough, then gi(Y ∩ V ) ⊂ Y ′. Indeed, N j(Y ′) is included in Ω for 2 ≤ j ≤ k

and the image fj ◦ · · · ◦fk−1(Y ) is exactly N j(Y ′). Finally, since Y ′ is the only
component of N−1(N(Y ′)) stuck to K, f i

0(N(Y ′)∩Ω) is included in Y ′ so that
gi(V ∩ Y ′) ⊂ Y ′ ⊂ Y .

Since gi : V → V is not surjective (V ∩ Δi �= V ) , the sequence of iterates
(gn

i )n converges uniformly on every compact set of V to a constant zi ∈ ∂V

after the Denjoy-Wolff Lemma. The fact that gi(Y ∩ V ) ⊂ Y ′ forces the limit
zi to be in K.

Step 2. There exists a finite articulated ray Ci ⊂ V ∩ Δi joining b′i and
gi(b′i), for i = 1, 2.

The articulated ray C1 is C1 = f1
0 (Rk−1) where (Rj)j∈N is a sequence of

finite articulated rays stemming from B1 or B3 defined as follows (the construc-
tion is similar for C2 with B2 and B3). Let R0 = R3(1/2)∪R

′
1(0) and, for j ≥ 0,

if fk−1−j(Rj) stems from B1 ∪ B3, let Rj+1 be fk−1−j(Rj). Otherwise take
Rj+1 = fk−1−j(Rj)∪R

′
1(0)∪R3(1/2) or Rj+1 = fk−1−j(Rj)∪R

′
3(0)∪R1(1/2)

depending on whether fk−1−j(Rj) stems from B′
1 or B′

3. The sequence Rj is
well defined since Rj ⊂ Ω and consists of finite articulated rays. Moreover, C1

contains g1(b′1) by construction and is located in V ∩ Δ1 since it cannot cross
the boundary of V nor Δ1 (after Lemma 3.8 and Lemma 6.3).

To prove that C1 stems from B′
1, it is enough to show that Rk−1 stems from

B1 with an angle θ < 2κ since C1 is in Δ1. Let r < k be the largest integer
such that fk−1−(r−1)(Rr−1) = Rr stems from B3. Then for r < j < k − 1,
fk−1−j(Rj) stems from B1, and precisely Rr+1 stems from B1 with R1(1/2)
so that 2k−r−2θ = 1/2 since Nk−r−2(Rk−1) = Rr+1. By definition of fk−1−r,
the curve γ(1/2) does not separate Nk−1−r(K) from fk−1−r(Rr). Therefore
1/2 < 2k−r−1κ < 1 and θ < 2κ.

Step 3. The union Ti =
⋃

n≥0
gn
i (Ci) is an articulated ray located in V ∩Δi.

Moreover, Ti stems from b′i, Nk(Ti) ⊃ Ti and Ti converges to β.
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By construction Nk(Ti) = Ti ∪ Nk(Ci) ⊃ Ti. After Step 1 and Step 2,
Ti ⊂ V ∩Δi and Ti is an articulated ray stemming from b′i; it remains to show
that Ti converges to β.

By Step 2, the sequence (gn
i )n converges uniformly on any compact of V

to a point zi ∈ K. Since Ci ⊂ V , the articulated ray Ti converges to zi (since
any accumulation point of Ti is zi), and Nk(zi) = zi.

Let yi = σ(zi) be the corresponding point in the model fc, where σ (defined
on Y ) is the conjugacy between Nk and fc. The arc σ(Ti) (or at least a
neighborhood of yi) is a ”fixed” access landing at yi ∈ K(fc) (since fc(σ(Ti)) ⊃
σ(Ti)). But only β(fc) can be the landing point of a fixed external access to a
periodic point of K, so that Ti lands at β.

7.4. Corollaries of the local connectivity of ∂Bi. Recall that we consider
only genuine Newton maps.

Lemma 7.9. If N has no Siegel point, its Fatou set is B̃1∪ B̃2∪ B̃3 unless
it is geometrically finite.

Proof. Sullivan’s classification theorem gives us that, besides B̃i, there
can only be attracting or parabolic components in the Fatou set. Indeed,
there is no Herman ring for J(N) is connected (see [Sh]). Moreover, the cycle
defined by a component contains a critical point which is either x0 or one of
the roots b1, b2, b3. In the first case N is geometrically finite, in the second the
components are in B̃i.

Theorem 6. For every cubic Newton map without Siegel disc, the bound-
ary of the connected components of the Fatou set are Jordan curves.

Proof. If N is geometrically finite, the boundary is locally connected (see
[D-H1, M2, T-Y]). Otherwise, the Fatou set is exactly the B̃i (Lemma 7.9).
Let U be any connected component of B̃i. Its boundary is locally connected
since ∂Bi is locally connected and N is a ramified covering.

We prove now that the boundary of a component U of one B̃i is a Jordan
curve. The boundary is a curve since the Böttcher coordinate extends (by
Carathéodory’s Theorem). This curve would not be Jordan if two rays land
at the same point. For U = Bj this is not possible after Remark 3.10 and
Lemma 3.8. For any inverse image of Bj , iterating until Bj , one obtains that
two rays in Bj land at the same point which is not possible.

If N is geometrically finite and U is not a component of B̃i then N is
renormalizable for any of the puzzles given by Proposition 5.4 and U is included
in the sequence of critical puzzle pieces (see the proof of Theorem 5). Then
σ(U) is a Fatou component of a quadratic Julia set, where σ denotes the
straightening map. So two rays in U cannot land at the same point (polynomial
filled Julia sets are full).
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Corollary 7.10. There cannot be a Cremer point on the boundary of a
component of the Fatou set F (N).

Proof. Assume that there is a Cremer point on the boundary of a com-
ponent of F (N). Then N is not geometrically finite so F (N) is exactly the
B̃i (Lemma 7.9) or there is a Siegel point. Assume first that there is no
Siegel point. Since the Cremer point x is a periodic point, it is on ∂Bi and
it is accessible by a ray Ri(θ) (since ∂Bi is locally connected, Theorem 6 and
Remark 2.4). Since two rays in Bi cannot land at the same point, Ri(θ) is
periodic. But the landing point of a periodic ray is necessarily repelling or
parabolic (Snail Lemma [M1]). If there is a Siegel point, then as in the proof
of Theorem 5, N is renormalizable around x0 and quasi-conformally conju-
gated to a quadratic polynomial having a Siegel disc. If there is a Cremer
point on the boundary of the Siegel disc then by Näıhul’s result there is a
Cremer periodic point on the Siegel disc of the quadratic polynomial which is
impossible (see [G-M]).

Corollary 7.11. N is topological conjugated on ∂B1 ∩ ∂B2 to the mul-
tiplication by 2 on:

G = { θ ∈ R | ∀n ≥ 0, 2nθ mod 1 ∈ [α, 1] }.

Moreover, the Head angle α belongs to G.

Proof. This is an immediate consequence from the fact that the Böttcher
map φi extends to a homeomorphism between D and Bi.

8. Local connectivity of the whole Julia set

The aim of this section is to prove Theorem 1, Theorem 2 and Corollary 3,
which provide surprising differences between rational maps and polynomials.
First of all we prove Theorem 4. Then Proposition 8.3 gives a complete descrip-
tion of the situations where J(N) is locally connected. Finally, Sections 8.2
and 8.3 are devoted to the proof of the technical cases (1 and 2) of Proposi-
tion 8.3 that are not used for the previously mentioned results.

8.1. How rational maps differ from polynomials.

Theorem 4. A cubic Newton map, without Siegel point, has a locally
connected Julia set provided the orbit of the nonfixed critical point does not
accumulate on the boundary of any fixed immediate basin of attraction.

To prove this Theorem we use the following characterization of locally
connected sets, see [W, Th. 4.4, p. 113].
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Proposition 8.1. A connected compact set J ⊂ Ĉ is locally connected if
and only if it satisfies the following properties:

• For every ε > 0, only a finite number of connected components of Ĉ \ J

has a spherical diameter greater than ε;

• The boundary of every connected component of Ĉ\J is locally connected.

We obtain the first condition by applying the so-called “shrinking Lemma”.
See [T-Y, Prop. A.3] or [L-M, Shrinking Lemma, p. 86]. This lemma is also an
easy consequence of Mañe’s theorem and Koebe’s distortion theorem. Here the
post-critical set P (f) is the closure of the forward orbit of the critical points
of f .

Proposition 8.2 (Shrinking Lemma). Let f : Ĉ → Ĉ be a rational map
and D a topological disc whose closure D does not cross the post-critical set
of f . Then the following holds:

• Either D is contained in a Siegel disc (i.e. Fatou component containing
a Siegel point) or a Herman ring (i.e. Fatou component which is topo-
logically a ring);

• Or , for every ε > 0, only a finite number of iterated preimages of D have
a spherical diameter greater than ε.

Proof of Theorem 4. Unless N is geometrically finite, in which case J(N)
is locally connected (see [D-H1], [M2], [T-Y]), the Fatou set is only the union of
the B̃i (Lemma 7.9). Hence the second condition of Proposition 8.1 is satisfied
(Theorem 6). Since J(N) is connected (see [Sh]), we can apply Proposition 8.2
to D = B′

i for i ∈ {1, 2, 3} (since the orbit of the x0 does not accumulate on
the boundary of B1, B2, B3 and there is no Siegel point). Hence J(N) fulfills
the two conditions for being locally connected (Proposition 8.1).

Proposition 8.3. Let N be a cubic Newton method without Siegel peri-
odic points. The Julia set of N is locally connected in any of the following
cases:

1) N is not renormalizable;

2) N is renormalizable (in x0) exactly once and has no Cremer point ;

3) N is renormalizable once and the filled Julia set of its renormalization
does not encounter the closure of the immediate basins Bi;

4) N is renormalizable at least twice.
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Remark 8.4. The first case does not follow from Theorem 4 and will be
proved later, as will the second case which is rather technical.

The dichotomy of this proposition is due to the following question 8.5.

Question 8.5. If N is exactly once renormalizable with a Cremer point,
can the positive orbit of x0 accumulate one of the Bi?

This is in fact equivalent to the following conjecture concerning quadratic
polynomials:

Conjecture 8.6. If fc(z) = z2 + c has a Cremer point, can the positive
orbit of 0 accumulate the β fixed point (i.e. β(fc))?

Regarding the Newton method one can hope that the following is true:

Conjecture 8.7. Is the Julia set of a genuine cubic Newton method al-
ways locally connected?

Now we prove points 3 and 4 of Proposition 8.3.

Lemma 8.8. Assume that N is renormalizable with minimal renormaliza-
tion level k. Let fc denotes the quadratic polynomial conjugated to Nk. The
following equivalence holds: N is renormalizable exactly once if and only if fc

is not renormalizable.

Proof. Let Nk : Y ′ → Y be the renormalization of the minimal level of N

and let σ denote the conjugacy between Nk and fc.
Assume that fc is renormalizable. Then there exists i ∈ N and open

sets U ′ ⊂ U ⊂ σ(Y ′) such that f i
c : U ′ → U is quadratic-like. Since N ik

|Y ′ =
σ−1◦f i

c ◦σ, the restriction of (Nk)i on σ−1(U ′) defines a renormalization of Nk.
Conversely if N is j-renormalizable at x0, with j �= k then j = ik by

Lemma 6.5. Hence Nk is i-renormalizable at x0 with filled Julia set K(N j)and
K(N j) ⊂ K(Nk) (Lemma 6.5). So K(N j) ⊂ Y ′ and we can chose an open set
U ′ in Y ′ for the i-renormalization of Nk. Since the conjugacy σ is defined on
Y ′, f i

c : σ(U ′) → σ(N j(U ′)) is a renormalization of fc.

Proof of Point 3 of Proposition 8.3. Case 3) is exactly Theorem 4. Indeed,
the orbit of the free critical point x0 is in the union of N r(Kc) for r ≥ 0. Since
Kc is periodic, if the orbit of x0 accumulates Bi then N r(Kc) ∩ Bi �= ∅ for
some r ≥ 0 and so Kc crosses Bi (by periodicity).

Proof of Point 4 of Proposition 8.3. Case 4) follows from Proposition 8.2
and Proposition 8.1 (as well as Theorem 4). The reasons are that ∂Bi crosses
Kc at most on βc (Corollary 6.4) and since fc is renormalizable (Lemma 8.8)
βc is not accumulated by the orbit of x0. More precisely, if K ′ corresponds to
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the filled Julia set of a renormalization of fc, Theorem 7.10 of [McM1] insures
that K ′ does not contain β(fc). Hence the orbit fn

c (K ′) (for n ≥ 0) also avoid
β(fc) (since β(fc) is fixed and K ′ periodic). Thus using the conjugacy σ, we
see that the point βc is not in the closure of the orbit of Nkn(x0), nor is it in
the closure of the orbit of x0 after Corollary 6.6.

Theorem 1. There exist cubic Newton methods possessing a Cremer
point and having a locally connected Julia set.

Proof. Note that these maps are genuine Newton methods.
The idea is to find a cubic Newton map, at least twice renormalizable, pos-

sessing a Cremer point. By Proposition 8.3 (4) the Julia set will be locally con-
nected. For this, we use the fact that in the parameter plane of cubic Newton
method, there are copies of the Mandelbrot set M = {c | J(fc) is connected}
(here fc(z) = z2 + c). Indeed, considering the family of Newton maps Nλ asso-
ciated to Pλ(z) = (z−1)(z− 1

2 +λ)(z− 1
2 −λ) for λ ∈ C, Douady and Hubbard

([D-H2, Chap. VI]) proved that there exists a subset M0 of C and a surjective
map χ : M0 → M such that for all λ ∈ M0, Nλ is renormalizable at x0 = 0
and the renormalization is quasi-conformally conjugated in a neighborhood of
the Julia set to the quadratic polynomial z2 +χ(λ). Now since Näıshul’s result
(see [N]) asserts that a Cremer point for z2 +χ(λ) will give a Cremer point for
Nλ it is enough to find a quadratic polynomial z2 + c which is renormalizable
and possesses a Cremer point. For this we use the existence of a copy M ′

of M strictly contained in M (see for example Theorem 5 of [D-H2]), i.e. a
surjective map χ′ : M ′ → M which gives the straightening parameter. Then if
c is a parameter for which z2 + c has a Cremer point, (χ′)−1(c) does possess a
Cremer point and is renormalizable.

Theorem 2. Every infinitely renormalizable cubic Newton method has
a locally connected Julia set.

Proof. This is a direct consequence of Proposition 8.3(4). Indeed, the Julia
set of an infinitely renormalizable quadratic polynomial has empty interior
(see [McM1, Th. 8.1]). Hence the Newton method N cannot have a Siegel
point.

Corollary 3. There exist rational maps with locally connected Julia
set and wandering continuum within.

From [Le], a continuum K ⊂ J is called wandering for f if for any n �= m

nonnegative, fn(K)∩fm(K) = ∅. Recall that for polynomials gc = zl + c with
connected Julia set G. Levin proved that J is locally connected if and only if
no continuum K ⊂ J is wandering.
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Proof. There exist quadratic polynomials fc(z) = z2 + c such that fc is
infinitely renormalizable and J(fc) is not locally connected (see [M2]). For this
polynomial, nested Julia sets Ji (containing 0 and obtained by renormalizations
of fc) satisfy J∞ = ∩∞

i=1Ji � {0} (see [Le, McM1]). Since Ji has “periods”
increasing with i, J∞ is wandering. As in the proof (above) of Theorem 1, a
Newton method N such that χ(N) = c provides an example.

8.2. Proof of Case 2) of Proposition 8.3. We recall the notation 6.2:
Nk : Y ′ → Y denotes the (only) renormalization of N , Kc the filled Julia set,
σ the conjugacy to fc and finally the fixed point β(fc) with preimage β′(fc).

After Lemma 7.9 the Fatou components are the iterated preimages of the
Bi (excepted in the geometrically finite case treated by [D-H1, M2, T-Y]). So
using Proposition 8.1 and Theorem 6 it remains to prove that only finitely
many of these components have diameter greater than ε. If Bi ∩Kc = ∅ this is
direct from Proposition 8.2 since the orbit of x0 is in the orbit of Kc (see the
proof of Proposition 8.2.3). This is always the situation of B3.

Hence we assume that B1 ∩ Kc �= ∅ (the proof is similar for B2) and we
show that the set of preimages of B

′
1 has diameters tending to 0. It will then

also be the case with B1 since N−1(B1) = B1 ∪ B
′
1. Recall that in this case

B1 ∩ Kc = βc and B
′
1 ∩ Kc = β′

c (see Lemma 6.3).

Definition 8.9. A set E of connected parts of Ĉ is said to have diameters
tending to 0 if for every ε > 0 only a finite number of elements of E have
diameter greater than ε.

Lemma 8.10. There exists an arbitrarily small neighborhood Q of β′(fc)
such that the set of iterated preimages of Q by fc has diameters tending to 0.

Proof. Since this neighborhood is constructed as a puzzle piece for fc, so we
have to recall some facts. On C\K(fc) the polynomial fc is conjugated to the
map z �→ z2 in C \D. This conjugacy defines external rays and equipotentials
(respectively) as the images of rays and circles of C \ D. The construction of
Yoccoz’ puzzle (see also [M2] and [Hu]) requires the second fixed point α(fc)
also to be repelling (which is the case here by assumption). Then there exists
q external rays, of angles 2ip/(2q − 1), 1 ≤ i ≤ q, converging to it and forming,
with an external equipotential, a graph for fc. Assuming fc is not geometrically
finite, this graph will be admissible (see Definition 2.13 where X is the disc
bounded by the equipotential).

Then to every point z ∈ J(fc) we associate P ∗
r (z) the union of the puzzle

pieces of depth r whose closure contains z. These closed neighborhoods of z

satisfy, after Theorem 2 of [M2, p. 14] (or Theorem 5.7.a of [Hu, p. 483]), that

(∗)
⋂
r≥0

P
∗
r(z) = {z}.
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Hence, since β(fc) is not on the graph, it belongs to a piece, say P , of arbitrarily
large depth and by (∗) of arbitrarily small size.

Assume (by contradiction) that there exists ε > 0 and a sequence Pi of
the iterated preimages of P by fc whose depth increases and diameter stands
greater than ε. Up to extraction, we can find a sequence xi ∈ Pi of preimages
of β(fc) converging to a point x ∈ K(fc). Hence for each depth r, there exists
i large such that the points xi belong to P ∗

r (x). Thus, Pi ⊂ P ∗
r (x) (since the

pieces are disjoint or nested). Finally the preimage of P containing β′(fc) gives
the announced neighborhood which contradicts (∗).

We choose a neighborhood Q sufficiently small so that Q ⊂ σ(Y ′) and
decompose B′

1 in disjoint parts: B′
1 = Q′

1 � R′
1, where Q′

1 is the connected
component of B′

1 ∩ σ−1(Y ′) whose closure contains β′
c (it is unique since ∂B′

1

is a Jordan curve) and R′
1 = B′

1 \ Q′
1.

Since R
′
1 is disjoint from ∪0≤i≤kN

i(Kc), that contains the post-critical set
of N , the set of its iterated preimages have diameters tending to 0 (Proposi-
tion 8.2).

We now concentrate on Q the set of preimages of Q′
1:

Let Qi (0 ≤ i ≤ k − 1) be the set of iterated preimages of Q′
1 by N whose

closure touches N i(Kc). If U is a connected component of Q not in any Qi,
then for some j ≥ 0, N j(U) belongs to a component of N−1(N i(Y ′)) disjoint
from the post-critical set; that is, U is in

Y −1 = N−1

⎛
⎝ ⋃

0≤i≤k−1

N i(Y ′)

⎞
⎠ \

⋃
0≤i≤k−1

N i(Y ′).

As above Y −1 is disjoint from ∪0≤i≤kN
i(Kc) so its iterated preimages have di-

ameters tending to 0 (Proposition 8.2), and also Q\∪0≤i≤k−1Qi have diameters
tending to 0. Hence it remains to show it for ∪0≤i≤k−1Qi.

Remark 8.11. 1) If g denotes the restriction of Nk : Y ′ → Y then for Y

small enough Q0 coincides with the set of iterated preimages of Q′
1 by g. This

follows directly from the fact that if Y is small enough, the sets (N i(Y ))0≤i≤k−1

are disjoint (Corollary 6.6).
2) Every connected component of Qi is also in (Nk−i)−1(Q0).

After Remark 8.11.1), every preimage of Q by fc is the image by σ of a
component of Q0. Hence, Lemma 8.10 and Lemma 8.12 (below) insure that
Q0 has diameters tending to 0. Finally, Remark 8.11.2) and Lemma 8.12 allow
us to conclude that the Qi also have diameters tending to 0.

Lemma 8.12. Let Z, Z ′ be two open sets of Ĉ, ρ : Z ′ → Z a (topological)
ramified covering map of degree d and E (resp. E ′) the set of the relatively
compact connected open sets of Z (resp. of Z ′). If E has diameters tending to
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0 and if ρ sends every open set of E ′ inside an open set of E , then E ′ also has
diameters tending to 0.

Proof. The proof is by contradiction. We assume that there exists ε > 0
and U ′

i of E ′ with diameter greater than ε. Hence, in each U ′
i , one can find

d + 1 points zj
i , 1 ≤ j ≤ d + 1, at (mutual) distance greater than ε/(d + 1).

One extracts d + 1 subsequences converging to points zj at distances at least
ε/(d + 1). We show now that those d + 1 points have the same image under ρ.

Let Ui be the sequence of images ρ(U ′
i) and take any n > 0. For i large

enough, the diameter of Ui is less than 1/n. Hence, the (mutual) distances
between the points ρ(zj

i ) are less than 1/n. Taking the limit over i, one sees
that the mutual distances between the images ρ(zj) are less than 1/n. Since
this is the case for any n > 0, the points ρ(zj) collapse, which contradicts the
fact that ρ is of degree d.

8.3. Proof of Case 1) of Proposition 8.3. This part is very technical and
deserves only the a priori easiest case: the nonrenormalizable case. We use
the theory of Yoccoz’ puzzle and precisely Theorem 2.15, not only for ∂Bi as
in Section 7 but for the whole Julia set. Therefore we need the construction of
a new kind of graph. In opposition to Section 7, the difficulty here is to satisfy
the hypothesis of Theorem 2.15, since for the conclusion we choose the good
one, namely the nonrenormalizable case.

Definition 8.13. Let η, τ ∈ G∩Q, ζ ∈ G∩ [α, 2α[ be a nondyadic rational
number and L be the articulated ray constructed in Proposition 4.3 stemming
from B2 with angle −ζ/4. We define a new type of graph:

III(ζ, η, τ)

= ∂X ∪

⎛
⎝X ∩

⎛
⎝⋃

j≥0

(N j(L) ∪ R3(2j/7)
⋃

t=η,τ

(R1(2jt) ∪ R2(−2jt)))

⎞
⎠

⎞
⎠ .

The type III graph corresponds to the type II graph with in addition the
orbit of R1(τ) and R2(−τ). For the graph of type II, the points surrounded
by a nondegenerate annulus of depth 0 were limitated by the preimages of L

and of N3(L). Here while taking the preimages of R1(τ), R2(−τ) we enlarge
this zone almost up to N3(L).

Since the type III graphs (as type II) are dis-symmetric, we consider
the symmetric one: III∗(ζ, η, τ) constructed as III(ζ, η, τ) but instead of the
images N j(L) we take the images N j(L∗), L∗ being the articulated ray (sym-
metric to L) defined as follows:

Proposition 8.14. Let y be the landing point of R3(6/7) and ζ ∈ G

∩ ]α, 2α[ be a nondyadic angle. There exists a unique articulated ray L∗ stem-
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ming from B1 with angle ζ/4 such that :

N3(L∗) = L∗ ∪ R1(ζ) ∪ R2(−ζ) ∪ R1(2ζ) ∪ R2(−2ζ)

and L∗ converges to y.

The proof is the same as that of Proposition 4.3.
As in Section 5 we will only consider graphs of type I, III, III∗ with

angles of the form (♦):⎧⎪⎪⎨
⎪⎪⎩

θ = 1 − 1
2p − 1

, η = 1 − 1
2n − 1

, ζ =
1
2l

(
1 − 1

2m − 1

)
, τ =

1
2l

(
1 − 1

2r − 1

)

such that :
1
2

>
η

2
> 2l−1ζ > 2l−1τ > 2lτ +

1
2

> 2l−1α >
1
4

and θ − 1/2 > α.

For this it is enough to take p large, l such that 1/2 > 2l−1α ≥ 1/4 and
n > m > r, with r large enough so that 1

2 > 1
2(1− 1

2r−1) > 2l−1α. In particular
we obtain that τ, ζ ∈]α, 2α[.

Proposition 8.15. There exist an integer δ and a finite number of puz-
zles of type I, III and III∗ such that x0, resp. every point of the Julia set, is
surrounded by each, resp. one, of these puzzles and at depth less than δ.

Proof. We will refer intensively to the proof of Proposition 5.4, in partic-
ular to Remark 5.2 and 5.3 and to the notation namely of the articulated rays
L0 = L, L1 ⊂ N(L) and L2 ⊂ N2(L).

Step1. For ζ, η, τ satisfying (♦) and for r sufficiently large, the graphs
III(ζ, η, τ) and III∗(ζ, η, τ) are puzzles and surround x0.

Such graphs are admissible since the critical orbit cannot have arbitrar-
ily large period (≥ r). Then the argument goes as in Step 5 of Proposi-
tion 5.4. After Lemma 3.14, x0 belongs to the bounded connected component of
Ĉ \ γ(2lτ+1/2

2l−1 , η
2l+1 ) since α < 2lτ+1/2

2l−1 < η/2l < 2α by (♦).

Notation. Let L′, resp. L′′, L′∗ and L′′∗ be the articulated rays stemming
from B1, resp. B′

2, B2 and B′
1 such that N(L′) = L2, resp. N(L′′) = L1,

N(L′∗) = L2∗ and N(L′′∗) = L1∗.

Step 2. The bounded component of

X ′ \
(
L′ ∪ L′′ ∪ R1 (τ/2) ∪ R

′
2 (−τ) ∪ R3 (9/14) ∪ R3 (11/14)

)
,

is a piece of depth 1 of the puzzle III(ζ, η, τ), with angles satisfying (♦) and
its boundary is disjoint from III(ζ, η, τ) (similarly with III∗(ζ, η, τ), L′∗, . . . ).

The image of this connected component is the piece of depth 0 located
between N(L), N2(L), R1(τ), R2(−τ) etc. Its boundary consists at depth 0
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ζ

− ζ
2 − ζ

4

L0

−ζ

L′′∗

L1
L2

ζ
2

τ
2

L′

L′′

U

V

τ

Figure 14: On the left useful parts of the graph III(ζ, η, τ) and some dashed
preimages. On the right U and in dashed V .

and 1 of rays of angles in B1, resp. B′
2, strictly between 0 and ζ/2, resp. between

−ζ and −ζ/4. Moreover, at depth greater than 1, L′′ and L2 cannot cross, else
N(L) and L would cross at depth greater than 0.

Notation. For (θj , ζj , ηj , τj)j=1,2, let Ω(θ1) be the bounded component of
Ĉ\ ⋃

i=1,2
Ri((−1)i+1θ1+1/2)∪Ri((−1)i+1θ2/4)∪R

′
i((−1)i+1θ2/2)∪R

′
i(0) and for

j = 1, 2, let Uj be the unbounded connected component of the complement of

L′′
j ∪ L∗

j
′′ ∪ R3

(±5
14

) ⋃
i=1,2

Ri

(
(−1)i+1ηj+1

2

)
∪ Ri

(
(−1)i+1τj

2

)
∪ R

′
i

(
(−1)i+1τj

)
. (Lj

is the articulated ray constructed with ζj etc... .)

Step 3. For θ1 > θ2 and η > ζ1 > τ1 > ζ2 > τ2 satisfying (♦) with the
same l, the points of J(N) ∩ (U1 ∪ U2 ∪Ω(θ1)) are surrounded by a nondegen-
erated annulus of depth less than 2 for III(ζj , η, τj) or III∗(ζj , η, τj) or I(θj)
with j ∈ {1, 2}.

The unbounded pieces of depth 0 and 1 are the same for the graphs of type
II or III. By Step 4 of Proposition 5.4 the unbounded piece of depth 1 is the
central disc of a nondegenerated annulus of depth 0 (defined by III(ζj , η, τj)
with j ∈ {1, 2}). Using Step 2 and the similar result for III∗(ζj , η, τj) we obtain
the part U1 ∪U2. Indeed, the points which are on J ∩U1 ∩N−1(III(ζ1, η, τ1))
are in U2 \ N−1(III(ζ2, η, τ2) ∪ III∗(ζ2, η, τ2)). Moreover the sets X ′ \ γ(θj +
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1/2, θj/4) and X ′ \ ⋃
i=1,2

R
′
i((−1)i+1θj/2) ∪ R

′
i(0) are unions of depth 1 pieces

for I(θj), compactly contained in a depth 0 piece (proof of Proposition 5.4,
Step 2). Hence by taking two values of the angles θ1 > θ2 we include in the
domain the points of the graph and obtain Ω(θ1).

Step 4. The points of J(N) \ (U1 ∪U2 ∪N−1(U1 ∪U2)) are in the bounded
connected component of Ĉ \ C̃ where C̃ = γ( τ1

2 , 1+η
2 ).

Let Vj be the bounded connected component of N−1(Uj) intersecting ∂B3.
We will prove the statement with Vj instead of N−1(Uj). For this we study the
intersections of the boundary of U1, V1, U2, V2, concentrating on the rays and
articulated rays by depth. As the picture is symmetric, it is enough to study
the boundaries on one side for instance near B2, B

′
1 . . . . At depth 0, the rays

are exactly those involved in C̃. At depth greater than 3 the boundaries do
not cross, else by iteration the articulated rays L∗0 and L2 would also cross at
depth greater than 0. Hence Vj covers ∂Uj at depth greater than 3 since the
articulated ray of the boundary of Vj , resp. Uj , converges to the same points
as R3(9/28), resp. R3(5/14).

At depth 1, U2, resp. V1, contains at least in B′
1 the part between the

angles ζ2/2 and τ2, resp. 0 and τ1/2 so that V1 contains R′
1(ζ2/2) since τ1 > ζ2.

At depth 2 the situation is similar for the rays touching the previous one.
Moreover, U1, resp. V2, contains at least the part between the angles −ζ1/2
and 1, resp. −τ and −ζ2/2 so that V2 covers U1 at least on the ray of angle
−ζ1/2 since ζ1 > ζ2. At depth 3 the situation is identical for the consecutive
rays. Finally, the next rays of depth 3 have angle ζj/2 in ∂Uj and ζj in ∂Vj so
that Uj covers Vj along this ray.

Step 5. There exist θ1 and δ ∈ N such that J(N) ⊂ N−δ(Ω(θ1)∪U1∪U2).

The inverse image of U1 ∪ U2 ∪ V1 ∪ V2 containing R1(1/2) covers the
bounded complement of ∪i=1,2Ri(1/2)∪Ri((1+(−1)i+1η)/4). Choosing θ1 such
that 1/2 > θ1−1/2 > (η+1)/4, we take p large, N−1(U1∪U2∪V1∪V2)∪Ω(θ1)

covers Q1 the bounded connected component of Ĉ \ ∪i=1,2Ri(1/2) ∪Ri(θ1/4).
If Ĉ\γ(1/2, α/2), Q2 denotes by the bounded connected component, then

every point of Q2 is sent by an iterate of N (less than l + 1) into Q1 (to see
this, it is enough to cut the component in “sectors” of angles (2tα/2, 2t+1α/2)).
Moreover, Ω(θ1) contains the bounded complement of ∪i=1,2R

′
i(0)∪R

′
i(1/2) as

well as the rays R
′
i(1/2) (because θ2/2 < 1/2). Hence Q2 ∪ Ω(θ1) ⊃ Q3 the

bounded complement of

∪i=1,2Ri((−1)i+1α/2) ∪ Ri(1/2) ∪ R
′
i((−1)i+1α) ∪ R

′
i(0).

By Step 4 and since τ1 > α, the union Q4 = Ω(θ1) ∪ ∪i=1,2Ui ∪ N−1(Ui) ∪ Qi

contains the unbounded complement of ∪i=1,2Ri((1+η)/2)∪Ri(1/2) (excepted
maybe some points outside J).



172 P. ROESCH

Let q be the first integer such that 1 − 1/2q > (η + 1)/2. Every bounded
connected component of Ĉ \ ⋃

i=1,2
Ri((−1)i1/2t) ∪ Ri((−1)i1/2t+1) is for 1 ≤

t < q sent by N t into Q4.
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