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A generic property of families
of Lagrangian systems

By Patrick Bernard
∗ and Gonzalo Contreras∗*

Abstract

We prove that a generic Lagrangian has finitely many minimizing measures
for every cohomology class.

1. Introduction

Let M be a compact boundaryless smooth manifold.
Let T be either the group (R/Z,+) or the trivial group ({0},+).
A Tonelli Lagrangian is a C2 function L : T × TM → R such that

• The restriction to each fiber of T × TM → T × M is a convex function.

• It is fiberwise superlinear :

lim
|θ|→+∞

L(t, θ)/|θ| = +∞, (t, θ) ∈ T × TM.

• The Euler-Lagrange equation

d
dtLv = Lx

defines a complete flow ϕ : R × (T × TM) −→ T × TM .

We say that a Tonelli Lagrangian L is strong Tonelli if L + u is a Tonelli
Lagrangian for each u ∈ C∞(T × M, R). When T = {0} we say that the
lagrangian is autonomous.

Let P(L) be the set of Borel probability measures on T × TM which are
invariant under the Euler-Lagrange flow ϕ. The action functional AL : P(L) →
R ∪ {+∞} is defined as

AL(μ) := 〈L, μ〉 :=
∫

T×TM
L dμ.
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The functional AL is lower semi-continuous and the minimizers of AL on P(L)
are called minimizing measures. The ergodic components of a minimizing mea-
sure are also minimizing, and they are mutually singular, so that the set M(L)
of minimizing measures is a simplex whose extremal points are the ergodic
minimizing measures.

In general, the simplex M(L) may be of infinite dimension. The goal of
the present paper is to prove that this is a very exceptional phenomenon. The
first results in that direction were obtained by Mañé in [4]. His paper has been
very influential to our work.

We say that a property is generic in the sense of Mañé if, for each strong
Tonelli Lagrangian L, there exists a residual subset O ⊂ C∞(T × M, R) such
that the property holds for all the Lagrangians L − u, u ∈ O. A set is called
residual if it is a countable intersection of open and dense sets. We recall
which topology is used on C∞(T × M, R). Denoting by ‖u‖k the Ck-norm of
a function u : T × M −→ R, define

‖u‖∞ :=
∑
k∈N

arctan(‖u‖k)
2k

.

Note that ‖.‖∞ is not a norm. Endow the space C∞(T × M, R) with the
translation-invariant metric ‖u − v‖∞. This metric is complete, hence the
Baire property holds: any residual subset of C∞(T × M, R) is dense.

Theorem 1. Let A be a finite-dimensional convex family of strong Tonelli
Lagrangians. Then there exists a residual subset O of C∞(T × M, R) such that,

u ∈ O, L ∈ A =⇒ dim M(L − u) � dimA.

In other words, there exist at most 1 + dimA ergodic minimizing measures of
L − u.

The main result of Mañé in [4] is that having a unique minimizing measure
is a generic property. This corresponds to the case where A is a point in our
statement. Our generalization of Mañé’s result is motivated by the following
construction due to John Mather:

We can view a 1-form on M as a function on TM which is linear on the
fibers. If λ is closed, the Euler-Lagrange equation of the Lagrangian L − λ is
the same as that of L. However, the minimizing measures of L − λ, are not
the same as the minimizing measures of L. Mather proves in [5] that the set
M(L−λ) of minimizing measures of the lagrangian L−λ depends only on the
cohomology class c of λ. If c ∈ H1(M, R) we write M(L − c) := M(L − λ),
where λ is a closed form of cohomology c.

It turns out that important applications of Mather theory, such as the
existence of orbits wandering in phase space, require understanding not only of
the set M(L) of minimizing measures for a fixed or generic cohomology classes
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but of the set of all Mather minimizing measures for every c ∈ H1(M, L). The
following corollaries are crucial for these applications.

Corollary 2. The following property is generic in the sense of Mañé:
For all c ∈ H1(M, R), there are at most 1 + dimH1(M, R) ergodic minimizing
measures of L − c.

We say that a property is of infinite codimension if, for each finite-dimen-
sional convex family A of strong Tonelli Lagrangians, there exists a residual
subset O in C∞(T × M, R) such that none of the Lagrangians L − u, L ∈ A,
u ∈ O satisfy the property.

Corollary 3. The following property is of infinite codimension: There
exists c ∈ H1(M, R), such that L − c has infinitely many ergodic minimizing
measures.

Another important issue concerning variational methods for Arnold diffu-
sion questions is the total disconnectedness of the quotient Aubry set. John
Mather proves in [7, § 3] that the quotient Aubry set A of any Tonelli
Lagrangian on T × TM with T = R/Z and dimM � 2 (or with T = {0}
and dimM � 3) is totally disconnected. See [7] for its definition.

The elements of the quotient Aubry set are called static classes. They are
disjoint subsets of T × TM and each static class supports at least one ergodic
minimizing measure. We then get

Corollary 4. The following property is generic in the sense of Mañé:
For all c ∈ H1(M, R) the quotient Aubry set Ac of L − c has at most 1 +
dimH1(M, R) elements.

2. Abstract results

Assume that we are given

• Three topological vector spaces E, F , G.

• A continuous linear map π : F → G.

• A bilinear pairing 〈u, ν〉 : E × G → R.

• Two metrizable convex compact subsets H ⊂ F and K ⊂ G such that
π(H) ⊂ K.

Suppose that

(i) The map
E × K � (u, ν) 
−→ 〈u, ν〉

is continuous.
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We will also denote 〈u, π(μ)〉 by 〈u, μ〉 when μ ∈ H. Observe that each
element u ∈ E gives rise to a linear functional on F

F � μ 
−→ 〈u, μ〉

which is continuous on H. We shall denote by H∗ the set of affine and
continuous functions on H and use the same symbol u for an element of
E and for the element μ 
−→ 〈u, μ〉 of H∗ which is associated to it.

(ii) The compact K is separated by E. This means that, if η and ν are
two different points of K, then there exists a point u in E such that
〈u, η〉 �= 〈u, ν〉 �= 0.

Note that the topology on K is then the weak topology associated to E.
A sequence ηn of elements of K converges to η if and only if we have
〈u, ηn〉 −→ 〈u, η〉 for each u ∈ E. We shall, for notational conveniences,
fix once and for all a metric d on K.

(iii) E is a Frechet space. It means that E is a topological vector space
whose topology is defined by a translation-invariant metric, and that E

is complete for this metric.

Note then that E has the Baire property. We say that a subset is residual
if it is a countable intersection of open and dense sets. The Baire property
says that any residual subset of E is dense.

Given L ∈ H∗ denote by

MH(L) := arg min
H

L

the set of points μ ∈ H which minimize L|H , and by MK(L) the image
π(MH(L)). These are compact convex subsets of H and K.

Our main abstract result is:

Theorem 5. For every finite-dimensional affine subspace A of H∗, there
exists a residual subset O(A) ⊂ E such that, for all u ∈ O(A) and all L ∈ A,
we have

dimMK(L − u) ≤ dimA.(1)

Proof. We define the ε-neighborhood Vε of a subset V of K as the union
of all the open balls in K which have radius ε and are centered in V . Given
a subset D ⊂ A, a positive number ε, and a positive integer k, denote by
O(D, ε, k) ⊂ E the set of points u ∈ E such that, for each L ∈ D, the convex
set MK(L−u) is contained in the ε-neighborhood of some k-dimensional convex
subset of K.
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We shall prove that the theorem holds with

O(A) =
⋂
ε>0

O(A, ε, dimA).

If u belongs to O(A), then (1) holds for every L ∈ A. Otherwise, for some
L ∈ A, the convex set MK(L−u) would contain a ball of dimension dimA+1,
and, if ε is small enough, such a ball is not contained in the ε-neighborhood of
any convex set of dimension dimA.

So we have to prove that O(A) is residual. In view of the Baire property,
it is enough to check that, for any compact subset D ⊂ A and any positive ε,
the set O(D, ε,dimA) is open and dense. We shall prove in 2.1 that it is open,
and in 2.2 that it is dense.

2.1. Open. We prove that, for any k ∈ Z
+, ε > 0 and any compact D ⊂ A,

the set O(D, ε, k) ⊂ E is open. We need a Lemma.

Lemma 6. The set-valued map (L, u) 
−→ MH(L − u) is upper semi-
continuous on A × E. This means that for any open subset U of H, the
set

{(L, u) ∈ A × E : MH(L − u) ⊂ U} ⊂ A × E

is open in A × E. Consequently, the set-valued map (L, u) 
−→ MK(L − u) is
also upper semi-continuous.

Proof. This is a standard consequence of the continuity of the map

A × E × H � (L, u, μ) 
−→ (L − u)(μ) = L(μ) − 〈u, μ〉.

Now let u0 be a point of O(D, ε, k). For each L ∈ D, there exists a
k-dimensional convex set V ⊂ K such that MK(L− u0) ⊂ Vε. In other words,
the open sets of the form

{(L, u) ∈ D × E : MH(L − u) ⊂ Vε} ⊂ D × E,

where V is some k-dimensional convex subset of K, cover the compact set
D × {u0}. So there exists a finite subcovering of D × {u0} by open sets of the
form Ωi × Ui, where Ωi is an open set in A and Ui ⊂ O(Ωi, ε, k) is an open
set in E containing u0. We conclude that the open set ∩Ui is contained in
O(D, ε, k), and contains u0. This ends the proof.

2.2. Dense. We prove the density of O(A, ε, dimA) in E for ε > 0. Let
w be a point in E. We want to prove that w is in the closure of O(A, ε, dimA).

Lemma 7. There exists an integer m and a continuous map

Tm = (w1, . . . , wm) : K −→ R
m,
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with wi ∈ E such that

∀ x ∈ R
m diamT−1

m (x) < ε,(2)

where the diameter is taken for the distance d on K.

Proof. In K × K, to each element w ∈ E we associate the open set

Uw = {(η, μ) ∈ K × K : 〈w, η − μ〉 �= 0}.
Since E separates K, the open sets Uw, w ∈ E cover the complement of the
diagonal in K ×K. Since this complement is open in the separable metrizable
set K × K, we can extract a countable subcovering from this covering. So
we have a sequence Uwk

, with wk ∈ E, which covers the complement of the
diagonal in K × K. This amounts to say that the sequence wk separates K.
Defining Tm = (w1, . . . , wm), we have to prove that (2) holds for m large
enough. Otherwise, we would have two sequences ηm and μm in K such that

Tm(μm) = Tm(ηm) and d(μm, ηm) � ε.

By extracting a subsequence, we can assume that the sequences μm and ηm

have different limits μ and η, which satisfy d(η, μ) � ε. Take m large enough,
so that Tm(η) �= Tm(μ). Such a value of m exists because the linear forms wk

separate K. We have that

Tm(μk) = Tm(ηk) for k ≥ m.

Hence at the limit Tm(η) = Tm(μ). This is a contradiction.

Define the function Fm : A × R
m → R ∪ {+∞} as

Fm(L, x) := min
μ∈H

Tm◦π(μ)=x

(L − w)(μ),

when x ∈ Tm(π(H)) and Fm(L, x) = +∞ if x ∈ R
m \ Tm(π(H)). For y =

(y1, . . . , ym) ∈ R
m, let

Mm(L, y) := arg min
x∈Rm

[
Fm(L, x) − y · x

]
⊂ R

m

be the set of points which minimize the function x 
−→ Fm(L, x) − y · x. We
have that

MK

(
L − w − y1w1 − · · · − ymwm

)
⊂ T−1

m (Mm(L, y)).

Let

Om(A,dimA) := {y ∈ R
m | ∀ L ∈ A : dimMm(L, y) � dimA}.

From Lemma 7 it follows that

y ∈ Om(A,dimA) =⇒ w + y1w1 + · · · + ymwm ∈ O(A, ε, dimA).
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Therefore, in order to prove that w is in the closure of O(A, ε, dimA), it is
enough to prove that 0 is in the closure of Om(A,dimA), which follows from
the next proposition.

Proposition 8. The set Om(A,dimA) is dense in R
m.

Proof. Consider the Legendre transform of Fm with respect to the second
variable,

Gm(L, y) = max
x∈Rm

y · x − Fm(L, x)

= max
μ∈H

〈w + y1w1 + · · · + ymwm, μ〉 − L(μ).

It follows from this second expression that the function Gm is convex and
finite-valued, hence continuous on A × R

m.
Consider the set Σ̃ ⊂ A × R

m of points (L, y) such that dim ∂Gm(L, y) ≥
dimA + 1, where ∂Gm is the subdifferential of Gm. It is known, see the
appendix, that this set has Hausdorff dimension at most

(m + dimA) − (dimA + 1) = m − 1.

Consequently, the projection Σ of the set Σ̃ on the second factor R
m also has

Hausdorff dimension at most m − 1. Therefore, the complement of Σ is dense
in R

m. So it is enough to prove that

y /∈ Σ =⇒ ∀ L ∈ A : dimMm(L, y) ≤ dimA.

Since we know by definition of Σ that dim ∂Gm(L, y) ≤ dimA, it is enough to
observe that

dimMm(L, y) ≤ dim ∂Gm(L, y).

The last inequality follows from the fact that the set Mm(L, y) is the subdif-
ferential of the convex function

R
m � z 
−→ Gm(L, z)

at the point y.

3. Application to Lagrangian dynamics

Let C be the set of continuous functions f : T × TM → R with linear
growth, i.e.

‖f‖� := sup
(t,θ)∈T×TM

|f(t, θ)|
1 + |θ| < +∞,

endowed with the norm ‖·‖�.
We apply Theorem 5 to the following setting:
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• F = C∗ is the vector space of continuous linear functionals μ : C → R

provided with the weak-
 topology. Recall that

lim
n

μn = μ ⇐⇒ lim
n

μn(f) = μ(f), ∀ f ∈ C.

• E = C∞(T × M, R) provided with the C∞ topology.

• G is the vector space of finite Borel signed measures on T×M , or equiva-
lently the set of continuous linear forms on C0(T × M, R), provided with
the weak-
 topology.

• The pairing E × G → R is given by integration:

〈u, ν〉 =
∫

T×M
u dν.

• The continuous linear map π : F −→ G is induced by the projection
T × TM −→ T × M .

• The compact K ⊂ G is the set of Borel probability measures on T × M ,
provided with the weak-
 topology. Observe that K is separated by E.

• The compact Hn ⊂ F is the set of holonomic probability measures which
are supported on

Bn := {(t, θ) ∈ T × TM | |θ| � n}.

Holonomic probabilities are defined as follows: Given a C1curve γ : R→M

of period T ∈ N define the element μγ of F by

〈f, μγ〉 =
1
T

∫ T

0
f(s, γ(s), γ̇(s)) ds

for each f ∈ C. Let

Γ := {μγ | γ ∈ C1(R, M) is periodic of integral period} ⊂ F.

The set H of holonomic probabilities is the closure of Γ in F . One can see that
H is convex (cf. Mañé [4, Prop. 1.1(a)]). The elements μ of H satisfy 〈1, μ〉 = 1
therefore we have π(H) ⊂ K.

Note that each Tonelli Lagrangian L gives rise to an element of H∗
n.

Let M(L) be the set of minimizing measures for L and let suppM(L) be
the union of their supports. Recalling that we have defined MHn

(L) as the set
of measures μ ∈ Hn which minimize the action

∫
L dμ on Hn, we have:

Lemma 9. If L is a Tonelli lagrangian then there exists n ∈ N such that

dimπ(MHn
(L)) = dimM(L).
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Proof. Birkhoff theorem implies that M(L) ⊂ H (cf. Mañé [4, Prop.
1.1.(b)]). In [5, Prop. 4, p. 185] Mather proves that suppM(L) is compact,
therefore M(L) ⊂ Hn for some n ∈ N.

In [4, §1] Mañé proves that minimizing measures are also all the minimizers
of the action functional AL(μ) =

∫
L dμ on the set of holonomic measures,

therefore M(L) = MHn
(L) for some n ∈ N.

In [5, Th. 2, p. 186] Mather proves that the restriction suppM(L)→M

of the projection TM →M is injective. Therefore the linear map π : M(L)→G

is injective, so that dimπ(MHn
(L)) = dimπ(M(L)) = dimM(L).

Proof of Theorem 1. Given n ∈ N apply Theorem 5 and obtain a residual
subset On(A) ⊂ E such that

L ∈ A, u ∈ On(A) =⇒ dimπ(MHn
(L − u)) � dimA.

Let O(A) = ∩nOn(A). By the Baire property O(A) is residual. We have that

L ∈ A, u ∈ O(A), n ∈ N =⇒ dimπ(MHn
(L − u)) � dimA.

Then by Lemma 9, dimM(L − u) � dimA for all L ∈ A and all u ∈ O(A).

Appendix A. Convex functions

Given a convex function f : R
n → R and x ∈ R

n, define its subdifferential
as

∂f(x) := {� : R
n → R linear | f(y) � f(x) + �(y − x) , ∀y ∈ R

n}.
Then the sets ∂f(x) ⊂ R

n are convex. If k ∈ N, let

Σk(f) := {x ∈ R
n | dim ∂f(x) � k}.

The following result is standard.

Proposition 10. If f : R
n → R is a convex function then for all 0 �

k � n the Hausdorff dimension HD(Σk(f)) � n − k.

We recall here an elegant proof due to Ambrosio and Alberti; see [1]. Note
that much more can be said on the structure of Σk, see [2], [9] for example.

By adding |x|2 if necessary (which does not change Σk) we can assume
that f is superlinear and that

f(y) � f(x) + �(y − x) + 1
2 |y − x|2 ∀x, y ∈ R

n, ∀� ∈ ∂f(x).(3)

Lemma 11. � ∈ ∂f(x), �′ ∈ ∂f(x′) =⇒ |x − x′| � ‖� − �′‖.

Proof. From inequality (3) we have that

f(x′) � f(x) + �(x′ − x) + 1
2

∣∣x′ − x
∣∣2 ,

f(x) � f(x′) + �′(x − x′) + 1
2

∣∣x − x′∣∣2 .
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Then

0 � (�′ − �)(x − x′) +
∣∣x − x′∣∣2(4) ∥∥� − �′

∥∥ ∣∣x − x′∣∣ � (� − �′)(x − x′) �
∣∣x − x′∣∣2 .(5)

Therefore ‖� − �′‖ � |x − x′|.

Since f is superlinear, the subdifferential ∂f is surjective and we have:

Corollary 12. There exists a Lipschitz function F : R
n → R

n such that

� ∈ ∂f(x) =⇒ x = F (�).

Proof of Proposition 10. Let Ak be a set with HD(Ak) = n− k such that
Ak intersects any convex subset of dimension k. For example,

Ak = {x ∈ R
n |x has at least k rational coordinates}.

Observe that

x ∈ Σk =⇒ ∂f(x) intersects Ak =⇒ x ∈ F (Ak).

Therefore Σk ⊂ F (Ak). Since F is Lipschitz, we have that HD(Σk) �
HD(Ak) = n − k.
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