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Boundary regularity for the Monge-Ampère
and affine maximal surface equations

By Neil S. Trudinger and Xu-Jia Wang*

Abstract

In this paper, we prove global second derivative estimates for solutions
of the Dirichlet problem for the Monge-Ampère equation when the inhomoge-
neous term is only assumed to be Hölder continuous. As a consequence of our
approach, we also establish the existence and uniqueness of globally smooth
solutions to the second boundary value problem for the affine maximal surface
equation and affine mean curvature equation.

1. Introduction

In a landmark paper [4], Caffarelli established interior W 2,p and C2,α

estimates for solutions of the Monge-Ampère equation

detD2u = f(1.1)

in a domain Ω in Euclidean n-space, Rn, under minimal hypotheses on the
function f . His approach in [3] and [4] pioneered the use of affine invariance
in obtaining estimates, which hitherto depended on uniform ellipticity, [2] and
[19], or stronger hypotheses on the function f , [9], [13], [18]. If the function
f is only assumed positive and Hölder continuous in Ω, that is f ∈ Cα(Ω) for
some α ∈ (0, 1), then one has interior estimates for convex solutions of (1.1)
in C2,α(Ω) in terms of their strict convexity. When f is sufficiently smooth,
such estimates go back to Calabi and Pogorelov [9] and [18]. The estimates
are not genuine interior estimates as assumptions on Dirichlet boundary data
are needed to control the strict convexity of solutions [4] and [18].

Our first main theorem in this paper provides the corresponding global
estimate for solutions of the Dirichlet problem,

u = ϕ on ∂Ω.(1.2)

*Supported by the Australian Research Council.



994 NEIL S. TRUDINGER AND XU-JIA WANG

Theorem 1.1. Let Ω be a uniformly convex domain in Rn, with boundary
∂Ω ∈ C3, ϕ ∈ C3(Ω) and f ∈ Cα(Ω), for some α ∈ (0, 1), satisfying inf f > 0.
Then any convex solution u of the Dirichlet problem (1.1), (1.2) satisfies the
a priori estimate

‖u‖C2,α(Ω) ≤ C,(1.3)

where C is a constant depending on n, α, inf f , ‖f‖Cα(Ω), ∂Ω and ϕ.

The notion of solution in Theorem 1.1, as in [4], may be interpreted in
the generalized sense of Aleksandrov [18], with u = ϕ on ∂Ω meaning that
u ∈ C0(Ω). However by uniqueness, it is enough to assume at the outset that
u is smooth. In [22], it is shown that the solution to the Dirichlet problem, for
constant f > 0, may not be C2 smooth or even in W 2,p(Ω) for large enough
p, if either the boundary ∂Ω or the boundary trace ϕ is only C2,1. But the
solution is C2 smooth up to the boundary (for sufficiently smooth f > 0) if
both ∂Ω and ϕ are C3 [22]. Consequently the conditions on ∂Ω, ϕ and f in
Theorem 1.1 are optimal.

As an application of our method, we also derive global second derivative
estimates for the second boundary value problem of the affine maximal surface
equation and, more generally, its inhomogeneous form which is the equation of
prescribed affine mean curvature. We may write this equation in the form

L[u] := U ijDijw = f in Ω,(1.4)

where [U ij ] is the cofactor matrix of the Hessian matrix D2u of the convex
function u and

w = [detD2u]−(n+1)/(n+2).(1.5)

The second boundary value problem for (1.4) (as introduced in [21]), is the
Dirichlet problem for the system (1.4), (1.5), that is to prescribe

u = ϕ, w = ψ on ∂Ω.(1.6)

We will prove

Theorem 1.2. Let Ω be a uniformly convex domain in Rn, with ∂Ω ∈
C3,1, ϕ ∈ C3,1(Ω), ψ ∈ C3,1(Ω), infΩ ψ > 0 and f ≤ 0,∈ L∞(Ω). Then there
is a unique uniformly convex solution u ∈ W 4,p(Ω) (for all 1 < p < ∞) to the
boundary value problem (1.4)–(1.6). If furthermore f ∈ Cα(Ω), ϕ ∈ C4,α(Ω),
ψ ∈ C4,α(Ω), and ∂Ω ∈ C4,α for some α ∈ (0, 1), then the solution u ∈ C4,α(Ω).

The condition f ≤ 0, corresponding to nonnegative prescribed affine mean
curvature [1] and [17], is only used to bound the solution u. It can be relaxed
to f ≤ δ for some δ > 0, but it cannot be removed completely.
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The affine mean curvature equation (1.4) is the Euler equation of the
functional

J [u] = A(u) −
∫

Ω
fu,(1.7)

where

A(u) =
∫

Ω
[detD2u]1/(n+2)(1.8)

is the affine surface area functional. The natural or variational boundary value
problem for (1.4), (1.7) is to prescribe u and ∇u on ∂Ω and is treated in [21].
Regularity at the boundary is a major open problem in this case.

Note that the operator L in (1.4) possesses much stronger invariance prop-
erties than its Monge-Ampère counterpart (1.1) in that L is invariant under
unimodular affine transformations in Rn+1 (of the dependent and independent
variables).

Although the statement of Theorem 1.1 is reasonably succinct, its proof
is technically very complicated. For interior estimates one may assume by
affine transformation that a section of a convex solution is of good shape; that
is, it lies between two concentric balls whose radii ratio is controlled. This
is not possible for sections centered on the boundary and most of our proof
is directed towards showing that such sections are of good shape. After that
we may apply a similar perturbation argument to the interior case [4]. To
show sections at the boundary are of good shape we employ a different type
of perturbation which proceeds through approximation and extension of the
trace of the inhomogeneous term f . The technical realization of this approach
constitutes the core of our proof. Theorem 1.1 may also be seen as a companion
result to the global regularity result of Caffarelli [6] for the natural boundary
value problem for the Monge-Ampère equation, that is the prescription of the
image of the gradient of the solution, but again the perturbation arguments
are substantially different.

The organization of the paper is as follows. In the next section, we in-
troduce our perturbation of the inhomogeneous term f and prove some pre-
liminary second derivative estimates for the approximating problems. We also
show that the shape of a section of a solution at the boundary can be controlled
by its mixed tangential-normal second derivatives. In Section 3, we establish
a partial control on the shape of sections, which yields C1,α estimates at the
boundary for any α ∈ (0, 1) (Theorem 3.1). In order to proceed further, we
need a modulus of continuity estimate for second derivatives for smooth data
and here it is convenient to employ a lemma from [8], which we formulate in
Section 4. In Section 5, we conclude our proof that sections at the boundary
are of good shape, thereby reducing the proof of Theorem 1.1 to analogous
perturbation considerations to the interior case [4], which we supply in Sec-
tion 6 (Theorem 6.1). Finally in Section 7, we consider the application of our
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preceding arguments to the affine maximal surface and affine mean curvature
equations, (1.4). In these cases, the global second derivative estimates follow
from a variant of the condition f ∈ Cα(Ω) at the boundary, namely

|f(x) − f(y)| ≤ C|x − y|,(1.9)

for all x ∈ Ω, y ∈ ∂Ω. This is satisfied by the function w in (1.5). The
uniqueness part of Theorem 1.2 is proved directly (by an argument based on
concavity), and the existence part follows from our estimates and a degree
argument. The solvability of (1.4)–(1.6) without boundary regularity was al-
ready proved in [21] where it was used to prove interior regularity for the first
boundary value problem for (1.4).

2. Preliminary estimates

Let Ω be a uniformly convex domain in Rn with C3 boundary, and ϕ be
a C3 smooth function on Ω. For small positive constant t > 0, we denote
Ωt = {x ∈ Ω | dist(x, ∂Ω) > t} and Dt = Ω − Ωt. For any point x ∈ Ω, we
will use ξ to denote a unit tangential vector of ∂Ωδ and γ to denote the unit
outward normal of ∂Ωδ at x, where δ = dist(x, ∂Ω).

Let u be a solution of (1.1), (1.2). By constructing proper sub-barriers we
have the gradient estimate

sup
x∈Ω

|Du(x)| ≤ C.(2.1)

We also have the second order tangential derivative estimates

C−1 ≤ uξξ(x) ≤ C(2.2)

for any x ∈ ∂Ω. The upper bound in (2.2) follows directly from (2.1) and the
boundary condition (1.2). For the lower bound, one requires that ϕ be C3

smooth, and ∂Ω be C3 and uniformly convex [22]. For (2.1) and (2.2) we only
need f to be a bounded positive function.

In the following we will assume that f is positive and f ∈ Cα(Ω) for some
α ∈ (0, 1). Let fτ be the mollification of f on ∂Ω, namely fτ = ητ ∗ f , where
η is a mollifier on ∂Ω. If t > 0 is small, then for any point x ∈ Dt, there is a
unique point x̂ ∈ ∂Ω such that dist(x, ∂Ω) = |x − x̂| and γ = (x̂ − x)/|x̂ − x|.
Let

ft(x) =

{
f(x) in Ω2t,

fτ (x̂) − Cτα in Dt,
(2.3)

where
τ = tε0 , ε0 = 1/4n.
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We define ft properly in the remaining part Ωt −Ω2t such that, with a proper
choice of the constant C = Ct > 0, ft ≤ f in Ω and ft is Hölder continuous in
Ω with Hölder exponent α′ = ε0α,

|ft − f | ≤ Cτα =Ctα
′

in Ω,

‖ft‖Cα′ (Ω) ≤C‖f‖Cα(Ω)

for some C > 0 independent of t. From (2.3), ft is smooth in Dt,

|Dft| ≤ Cτα−1, |D2ft| ≤ Cτα−2, and |∂γft| = 0 in Dt.(2.4)

Let ut be the solution of the Dirichlet problem,

detD2u = ft in Ω,(2.5)

u = ϕ on ∂Ω.

First we establish some a priori estimates for ut in Dt. Note that by the local
strict convexity [3] and the a priori estimates for the Monge-Ampère equation
[18], ut is smooth in Dt.

For any given boundary point, we may suppose it is the origin such that
Ω ⊂ {xn > 0}, and locally ∂Ω is given by

xn = ρ(x′)(2.6)

for some C3 smooth, uniformly convex function ρ satisfying ρ(0)=0, Dρ(0)=0,
where x′ = (x1, · · · , xn−1). By subtracting a linear function we may also
suppose that

ut(0) = 0, Dut(0) = 0.(2.7)

We make the linear transformation T : x → y such that

yi = xi/
√

t, i = 1, · · · , n − 1,(2.8)

yn = xn/t,

v = ut/t.

Then v satisfies the equation

detD2v = tft in T (Ω).(2.9)

Let G = T (Ω) ∩ {yn < 1}. In G we have 0 ≤ v ≤ C since v is bounded on
∂G ∩ {yn < 1}. Observe that the boundary of G in {yn < 1} is smooth and
uniformly convex. Hence

|vγ | ≤ C in ∂G ∩
{

yn <
7
8

}
.

From (2.2) we have

C−1 ≤ vξξ ≤ C on ∂G ∩
{

yn <
7
8

}
.
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The mixed derivative estimate

|vγξ| ≤ C on ∂G ∩
{

yn <
3
4

}
,

where vξγ =
∑

ξiγjvyiyj
, is found for example in [8] and [13]. For the mixed

derivative estimate we need ft ∈ C0,1, with

|Dft| ≤ Cτα−1t1/2 ≤ C.

From (2.2) and equation (2.9) we have also

vγγ ≤ C on ∂G ∩
{

yn <
3
4

}
.

Next we derive an interior estimate for v.

Lemma 2.1. Let v be as above. Then

|D2v| ≤ C(1 + M) in G ∩
{

yn <
1
2

}
,(2.10)

where M = sup{yn<7/8} |Dv|2, C > 0 is independent of M .

Proof. First we show vii ≤ C for i = 1, · · · , n − 1. Let

w(y) = ρ4η

(
1
2
v2
1

)
v11,

where v1 = vy1 , v11 = vy1y1 , and ρ(y) = 2 − 3yn is a cut-off function, η(t) =
(1 − t

M )−1/8. If w attains its maximum at a boundary point, by the above
boundary estimates we have w ≤ C. If w attains its maximum at an interior
point y0, by the linear transformation

ỹi = yi, i = 2, · · · , n,

ỹ1 = y1 −
v1i(y0)
v11(y0)

yi,

which leaves w unchanged, one may suppose D2v(y0) is diagonal. Then at y0

we have

0 = (log w)i = 4
ρi

ρ
+

ηi

η
+

v11i

u11
,(2.11)

0≥ (log w)ii = 4
(

ρii

ρ
− ρ2

i

ρ2

)
+

(
ηii

η
− η2

i

η2

)
+

(
v11ii

v11
− v2

11i

v2
11

)
.(2.12)

Inserting (2.11) into (2.12) in the form ρi

ρ = −1
4

(
ηi

η + v11i

v11

)
for i = 2, · · · , n

and v11i

v11
= −(4ρi

ρ + ηi

η ) for i = 1, we obtain

0≥ vii(log w)ii(2.13)

≥ vii

(
ηii

η
− 3

η2
i

η2

)
− 36v11 ρ2

1

ρ2
+ vii v11ii

v11
− 3

2

n∑
i=2

vii v
2
11i

v2
11

,

where (vij) is the inverse matrix of (vij).
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It is easy to verify that

vii

(
ηii

η
− 3

η2
i

η2

)
≥ C

M
v11 −

C

M
,

where C > 0 is independent of M . Differentiating the equation

log detD2v = log(tft)

twice with respect to y1, and observing that |∂1ft| ≤ Cτα−1t1/2 ≤ C and
|∂2

1ft| ≤ Cτα−2t ≤ C after the transformation (2.8), we see the last two terms
in (2.13) satisfy

vii v11ii

v11
− 3

2

n∑
i=2

vii v
2
11i

v2
11

≥ − 1
v11

(log ft)11 ≥ −C.

We obtain
ρ4v11 ≤ C(1 + M).

Hence vii ≤ C for i = 1, · · · , n − 1 in G ∩ {yn < 1
2}.

Next we show that vnn ≤ C. Let w(y) = ρ4η
(

1
2v2

n

)
vnn with the same

ρ and η as above. If w attains its maximum at a boundary point, we have
vnn ≤ C by the boundary estimates. Suppose w attains its maximum at an
interior point y0. As above we introduce a linear transformation

ỹi = yi, i = 1, · · · , n − 1,

ỹn = yn − vin(y0)
vnn(y0)

yi,

which leaves w unchanged. Then

w(y) = (2 − αiyi)4η
(

1
2
v2
n

)
vnn

and D2v(y0) is diagonal. By the estimates for vii, i = 1, · · · , n−1, the constants
αi are uniformly bounded. Therefore the above argument applies.

Scaling back to the coordinates x, we therefore obtain

∂2
ξ ut(x) ≤ C in Dt/2,(2.14a)

|∂ξ∂γut(x)| ≤ C/
√

t in Dt/2,(2.14b)

∂2
γut(x) ≤ C/t in Dt/2,(2.14c)

where C is independent of t, ξ is any unit tangential vector to ∂Ωδ and γ is
the unit normal to ∂Ωδ (δ = dist(x, ∂Ω)), and ∂ξ∂γu =

∑
ξiγjuxixj

.
The proof of Lemma 2.1 is essentially due to Pogorelov [18]. Here we used

a different auxiliary function, from which we obtain a linear dependence of
sup |D2v| on M , which will be used in the next section. The linear dependence
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can also be derived from Pogorelov’s estimate by proper coordinate changes.
Taking ρ = −u in the auxiliary function w, we have the following estimate.

Corollary 2.1. Let u be a convex solution of detD2u = f in Ω.
Suppose infΩ u = −1, and either u = 0 or |D2u| ≤ C0(1 + M) on ∂Ω. Then

|D2u|(x) ≤ C(1 + M), ∀ x ∈ {u < −1
2
},(2.15)

where M = sup{u<0} |Du|2, and C is independent of M .

Next we derive some estimates on the level sets of the solution u to (1.1),
(1.2). Denote

S0
h,u(y) = {x ∈ Ω | u(x) < u(y) + Du(y)(x − y) + h},

Sh,u(y) = {x ∈ Ω | u(x) = u(y) + Du(y)(x − y) + h}.
We will write Sh,u = Sh,u(y) and S0

h,u = S0
h,u(y) if no confusion arises. The set

S0
h,u(y) is the section of u at center y and height h [4].

Lemma 2.2. There exist positive constants C2 > C1 independent of h

such that

C1h
n/2 ≤ |S0

h,u(y)| ≤ C2h
n/2(2.16)

for any y ∈ ∂Ω, where |K| denotes the Lebesgue measure of a set K.

Proof. It is known that for any bounded convex set K ⊂ Rn, there is a
unique ellipsoid E containing K which achieves the minimum volume among
all ellipsoids containing K [3]. E is called the minimum ellipsoid of K. It
satisfies 1

n(E − x0) ⊂ K − x0 ⊂ E − x0, where x0 is the center of E.
Suppose the origin is a boundary point of Ω, Ω ⊂ {xn > 0}, and locally ∂Ω

is given by (2.6). By subtracting a linear function we also suppose u satisfies
(2.7). Let E be the minimum ellipsoid of S0

h,u(0). Let v be the solution to
detD2u = infΩ ft in S0

h,u, v = h on ∂S0
h,u. If |E| > Chn/2 for some large C > 1,

we have inf v < 0. By the comparison principle, we obtain inf u ≤ inf v < 0,
which is a contradiction to (2.7). Hence the second inequality of (2.16) holds.

Next we prove the first inequality. Denote

ah = sup{|x′| | x ∈ Sh,u(0)},(2.17)

bh = sup{xn | x ∈ Sh,u(0)}.(2.18)

If the first inequality is not true, |S0
h,u| = o(hn/2) for a sequence h → 0.

By (2.2), we have S0
h,u ⊃ {x ∈ ∂Ω | |x| < Ch1/2} for some C > 0. Hence

bh = o(h1/2). By (2.2) we also have u(x) ≥ C0|x|2 for x ∈ ∂Ω. Hence if
ah ≤ Ch1/2 for some C > 0, the function

v = δ0(|x′|2 +

(
h1/2

bh
xn)2

)
+ εxn
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for some small δ0 > 0, is a sub-solution to the equation detD2u = f in S0
h,u

satisfying v ≤ u on ∂S0
h,u, where ε > 0 can be arbitrarily small. It follows by the

comparison principle that vn(0) ≤ un(0) = 0, which contradicts vn(0) = ε > 0.
Hence, ah/h1/2 → ∞ as h → 0. Let x0 = (x0,1, 0, · · · , 0, x0,n) (after a

rotation of the coordinates x′) be the center of E, where E is the minimum
ellipsoid of S0

h,u. Make the linear transformation

y1 = x1 − (x0,1/x0,n)xn, yi = xi i = 2, · · · , n

such that the center of E is moved to the xn-axis. Let E′={∑n−1
i=1 (xi/ai)2 < 1}

be the projection of E on {xn = 0}. Since the origin 0 ∈ S0
h,u and the center

of E is located on the xn-axis, one easily verifies that a1 · · · an ≤ C|S0
h,u| =

o(hn/2), where an = x0,n. Note that x0,1 ≤ ah and x0,n ≤ bh ≤ 2nx0,n. By the
uniform convexity of ∂Ω,

x0,n

x0,1
≥ C

bh

ah
≥ Cah � h1/2.

Hence after the above transformation, the boundary part ∂Ω ∩ S0
h,u is still

uniformly convex. Also, as above, the function v = δ0
∑n

i=1(
h1/2

ai
yi)2 + εyn is a

sub-solution, and we reach a contradiction.

Next we show that the shape of the level set Sh,u can be controlled by the
mixed derivatives uξγ on ∂Ω.

Lemma 2.3. Let u be the solution of (1.1), (1.2). Suppose as above that
∂Ω is given by (2.6) and u satisfies (2.7). If

|∂ξγu(x)| ≤ K on ∂Ω(2.19)

for some K ≥ 1, then

ah ≤ CKh1/2,(2.20)

bh ≥ Ch1/2/K(2.21)

for some C > 0 independent of u, K and h.

Proof. We need only to prove (2.20) and (2.21) for small h > 0. Suppose
the supremum ah is attained at xh = (ah, 0, · · · , 0, ch) ∈ Sh,u(0). Let  =
Sh,u ∩ {x2 = · · · = xn−1 = 0}. Then  ⊂ Ω and it has an endpoint x̂ =
(x̂1, 0, · · · , 0, x̂n) ∈ ∂Ω with x̂1 > 0 such that u(x̂) = h. If ah = x̂1, by (2.2) we
have x̂1 ≤ Ch1/2, and by the upper bound in (2.16), bh ≥ Ch1/2. Hence (2.20)
and (2.21) hold.

When ah > x̂1, let ξ = (ξ1, 0, · · · , 0, ξn) be the unit tangential vector of
∂Ω at x̂ in the x1xn-plane, and ζ = (ζ1, 0, · · · , 0, ζn) be the unit tangential
vector of the curve  at x̂. Then all ξ1, ξn, ζ1, and ζn > 0. Let θ1 denote the
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angle between ξ and ζ at x̂, and θ2 the angle between ξ and the x1-axis. By
(2.2) and (2.19),

|∂γu(x̂)| ≤ CK|x̂|, |∂ξu(x̂)| ≥ C|x̂|.

Hence
C

K
≤ θ1 < π − C

K
.(2.22)

But since all ξ1, ξn, ζ1, and ζn > 0, we have θ1 + θ2 < π
2 . Note that by (2.2)

and (2.16), ah ≥ Ch1/2 and bh ≤ Ch1/2. We obtain

ah ≤ x̂1 + bh/tg (θ1 + θ2) ≤ CKh1/2, bh ≥ ahtg (θ1 + θ2) ≥ Ch1/2/K.(2.23)

Lemma 2.3 is proved.

Lemma 2.3 shows that the shape of the sections S0
h,u(y) at boundary points

y can be controlled by the mixed second order derivatives of u. If S0
h,u has a

good shape for small h > 0, namely if the inscribed radius r is comparable to
the circumscribed radius R,

R ≤ C0r(2.24)

for some constant C0 under control, the perturbation argument [4] applies and
one infers that |D2u(0)| is bounded. See Section 6. It follows that u ∈ C2,α(Ω)
by [2], [19]. Estimation of the mixed second order derivatives on the boundary
will be the key issue in the rest of the paper.

3. Mixed derivative estimates at the boundary

For t > 0 small let ut be a solution of (2.5) and assume (2.6) (2.7) hold. As
in Section 2 we use ξ and γ to denote tangential (parallel to ∂Ω) and normal
(vertical to ∂Ω) vectors.

Lemma 3.1. Suppose

|∂ξ∂γut| ≤ K on ∂Ω(3.1)

for some 1 ≤ K ≤ Ct−1/2. Then

∂2
i ut ≤ C in Dt ∩ {xn < t/8}, i = 1, · · · , n − 1,(3.2a)

|∂i∂nut| ≤ CK in Dt ∩ {xn < t/8},(3.2b)

∂2
nut ≤ CK2 in Dt ∩ {xn < t/8},(3.2c)

where C > 0 is a constant independent of K and t.

Proof. By (2.14c), estimate (3.2a) is equivalent to (2.14a). The estimate
(3.2b) follows from (3.2a) and (3.2c) by the convexity of ut. By (2.2), (3.1), and
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equation (2.5), we obtain (3.2c) on the boundary ∂Ω. By (2.15), the interior
part of (3.2c) will follow if we have an appropriate gradient estimate for ut in
the set S0

h,ut
(0).

Let h > 0 be the largest constant such that S0
h,ut

(0) ⊂ Dt/2 and ut satisfies
(2.14) in {ut < h}. By the Lipschitz continuity of u, we have h ≤ Ct. Let
v(y) = ut(x)/h, where y = x/

√
h. Then v satisfies the equation

detD2v = ft in Ω̃ = {x/
√

h | x ∈ Ω}.(3.3)

By (2.16),

C1 ≤ |{v < 1}| ≤ C2.(3.4)

We claim

|∂nv(y)| ≤ CK ∀ y ∈
{

v <
1
2

}
.(3.5)

If (3.5) holds, by Corollary 2.1 (with the auxiliary function w(y) = (1
2 − v)4

· η(1
2v2

n)vnn in the proof of Lemma 2.1), we obtain

∂2
yn

v ≤ CK2 in {v < 1/4}.

In the above estimate we have used

∂2
yn

log ft(y) = h ∂2
xn

log ft(x) ≤ C in {xn < t}

by our definition of ft in (2.3). Changing back to the x-coordinates we obtain
(3.2c).

By convexity it suffices to prove (3.5) for y ∈ ∂{v < 1
2}. Let ah = h−1/2ah,

where ah is as defined in (2.17). If ah ≤ C, by (2.16), the set {v < 1} has a
good shape. By (2.1) and (2.2), the gradient estimate in {v < 1

2} is obvious.
If ah � 1 (ah ≤ CK by (2.20)), we divide ∂{v < 1

2} into two parts. Let
∂1{v < 1

2} denote the set y ∈ {v = 1
2} ∩ Ω̃ such that the outer normal line of

{v < 1
2} at y intersects {v = 1} = {y ∈ Ω̃ | v(y) = 1}, and ∂2{v < 1

2} denote
the rest of ∂{v < 1

2}, which consists of the boundary part {v < 1
2} ∩ ∂Ω̃ and

the points y ∈ {v = 1
2} at which the outer normal line of {v < 1

2} intersects a
boundary point in {v < 1} ∩ ∂Ω̃.

Observe that for any y∈{v<1}∩∂Ω̃, (3.5) holds by (3.1) since Dv(0)=0.
By convexity we obtain (3.5) on the part ∂2{v < 1

2}.
To verify (3.5) on ∂1{v < 1

2}, it suffices to show that

dist
(
{v = 1},

{
v <

1
2

})
>

C

K
.(3.6)

By the convexity of v we then have |Dv| < CK on ∂1{v < 1
2}. From the last

paragraph, dist({v = 1} ∩ ∂Ω, {v < 1
2}) > C/K.
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We will construct appropriate sub-barriers to prove (3.6). Our sub-barrier
will be a function defined on a cylinder U = E × (−an, an) ⊂ Rn (after a
rotation of axes), where E =

∑n−1
i=1 x2

i /a2
i < 1 is an ellipsoid in Rn−1.

First we derive a gradient estimate for such a sub-barrier. Suppose a1 · · · an

= 1. Let w be the convex solution to detD2w = 1 in U with w = 0 on ∂U .
By making the linear transformation ỹi = yi/ai for i = 1, · · · , n such that
U = {|ỹ′| < 1} × (−1, 1), where ỹ′ = (ỹ1, · · · , ỹn−1), we have the estimate
C1 ≤ − infU w ≤ C2 for two constants C2 > C1 > 0 depending only on n.
By constructing proper sub-barriers [4], we see that w is Hölder continuous
in ỹ. Hence for any C0 > 0, by the convexity of w, the gradient estimate
C1 < |Dỹw| < C2 on {w < −C0}, for different C2 > C1 > 0 depends only on
n and C0. Changing back to the variable y, we obtain

C1a
−1
n ≤ |Dyn

w| ≤ C2a
−1
n(3.7)

at any point y ∈ {w = −C0} such that y′ ∈ 1
2E. If a := a1 · · · an �= 1, then by

a dilation one sees that (3.7) holds with an replaced by an/a.
In order to use (3.7) to verify (3.5) on the part ∂1{v < 1

2}, we first show
that

inf
|ν|=1

sup
y,z∈{v<1}

ν · (y − z) ≥ C/K,(3.8)

namely the in-radius of the convex set {v < 1} is greater than C/K, where ν ·y
denotes the inner product in Rn. To prove (3.8) we first observe that by (2.2),

Br1(0) ∩ ∂Ω̃ ⊂ {v < 1} ∩ ∂Ω̃ ⊂ Br2(0) ∩ ∂Ω̃

for some r1, r2 > 0 independent of t. Let ỹ = (0, · · · , 0, ỹn) be a point on the
positive xn-axis such that v(ỹ) = 1. To prove (3.8), it suffices to show that

ỹn ≥ C/K.(3.9)

Let y = (a, 0, · · · , 0, c) ∈ ∂Ω̃ be an arbitrary point such that v(y) = 1. Then
similarly to (2.22), the angle at y of the triangle with vertices y, ỹ and the
origin is larger than C/K. Hence ỹn ≥ Cr1/K ≥ C/K. Hence (3.9) holds.

With (3.9), we can now prove (3.6). For any given point ŷ ∈ {v = 1}∩∂Ω̃,
let P denote the tangent plane of {v = 1} at ŷ. Choose a new coordinate system
z such that ŷ is the origin, P = {zn = 0} and the inner normal of {v < 1} is
the positive zn-axis. Let S′ denote the projection {v < 1} on P . By (3.4) and
(3.8) we have the volume estimate

|S′| ≤ CK.(3.10)

Let E ⊂ P be the minimum ellipsoid of S′ with center z0, and E0 ⊂ P be
the translation of E such that its center is located at the origin z = 0 (the
point ŷ). Then we have S′ ⊂ E ⊂ 4nE0. The latter inclusion is true when E

is a ball and it is also invariant under linear transformations.
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Let U = βE0 × (0, 2/K) and U1/2 = βE0 × (0, 1/K). Let w be the
solution of detD2w = supΩ ft in U such that w = 1 on ∂U . We may choose
the constant β ≥ 8n such that 2E ⊂ βE0 and infU w ≤ −1 (note that since
|U | = 2βn−1|E0|/K, β can be very large if |E0| � K). Then by convexity we
see that w ≤ 0 ≤ v on {zn = 1/K} ∩ {v < 1}.

To verify that w < v on ∂Ω̃∩{v < 1}, we observe that either the distance
from the plane P = {zn = 0} to the set {v < 1} ∩ ∂Ω̃ is larger than C/K, or
the angle θ1 between the plane P and the plane {yn = 0} satisfies (2.22). In
the former case, by (3.7) (with an = 1/K) we have w ≤ v on ∂Ω̃ ∩ U1/2 if β is
chosen large, independent of K. In the latter case, noting that the boundary
part ∂Ω̃∩ {v < 1} is very flat and that |∂ξv| ≤ C, where ξ is tangential to ∂Ω̃,
by (3.7), we also have w ≤ v on ∂Ω̃ ∩ U1/2. Therefore in both cases, w ≤ v on
the boundary of the set {v < 1} ∩ U1/2.

By the comparison principle, it follows that w ≤ v in {v < 1} ∩ U1/2. By
the gradient estimate (3.7) for w, it follows that the distance from {v < 1

2} to
{v = 1} is greater than C/K. This completes the proof.

Lemma 3.2. Suppose |D2ut| ≤ K2 in Dt/8. Then

|D2ut| ≤ CK2 in D2t(3.11)

where C > 0 is a constant independent of K and t.

Proof. Fix a point x0 ∈ D2t − Dt/8. For any small h > 0, there exists a
linear function xn+1 = a·x+b such that a·x0+b = u(x0)+h and x0 is the center
of the minimum ellipsoid E of the section Ŝh := {x ∈ Ω | u(x) < a · x + b} [5],
where a and b depend on h. Let h be the largest constant such that Ŝh−ε ⊂⊂ Ω
for any ε > 0.

Make a linear transformation y = Tx such that T (E) is a unit ball. Let
v = |T |2/n(u − a · x − b). Then v satisfies the equation detD2v = ft(T−1(y))
in T (Ŝh) and v = 0 on the boundary ∂T (Ŝh). We have C1 ≤ − inf v ≤ C2 for
two constants C2 > C1 > 0 depending only on n, the upper and lower bounds
of ft. Let us assume simply that inf v = −1.

Since ft is Hölder continuous with exponent α′ = ε0α, both before and
after the transformation, by the Schauder-type estimate [4], we have u ∈
C2,α′

(T (Ŝh)). That is for any δ > 0, there exist C2 > C1 > 0 depending
on n, δ, α′ ∈ (0, 1), the upper and lower bounds of ft, and ‖ft‖Cα′ (Ω), but
independent of h, such that

C1I ≤ {D2
yv(y)} ≤ C2I(3.12)

for any y ∈ {v < −δ}, where I is the unit matrix. Note that (3.12) implies
that the largest eigenvalue of {D2

yv} is controlled by the smallest one.
Let δ = 1/64. Since inf v = −1, by convexity, v(y0) ≤ −1

2 , where y0 =
T (x0). Since dist(x0, ∂Ω) ≤ 2t, by convexity, there exists a point x∗ ∈ Dt/8
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such that v(y∗) ≤ −1/64, where y∗ = T (x∗). From (3.12) we have

|D2
yv(y0)| ≤ C|D2

yv(y∗)|.

Changing back to the x-variables, we obtain (3.11).

The next lemma is simple but is important for our proof.

Lemma 3.3. Suppose

|D2ut| ≤ C0t
β−1 in D2t,(3.13)

where β ∈ [0, 1] is a constant. Then in Dt/2,

|ut − u|(x) ≤ Ctβ+α′
dist(x, ∂Ω),(3.14)

where α′ = ε0α, C is independent of t.

Proof. By our construction we have ft ≤ f in Ω. Hence ut ≥ u in Ω. Let

z =

{
−4tβ+α′

dx + tβ+α′−1d2
x if dx < 2t,

−4tβ+α′+1 if dx ≥ 2t,
(3.15)

where dx = dist(x, ∂Ω). For any point x ∈ D2t, choose the coordinates properly
such that D2z is diagonal with z11 ≤ · · · ≤ znn. Then

detD2(ut + C ′z) ≥ detD2ut + C ′(detD̃2ut)znn,

where D̃2u = (uij)n−1
i,j=1. From (3.15) we have znn ≥ Ctβ+α′−1. By (3.13),

detD̃2ut ≥ Ct1−β. Hence

detD2(ut + C ′z) ≥ ft + C ′tα
′ ≥ f

if C ′ is chosen large. By the comparison principle, we obtain (3.14).

In Lemma 3.2 we assume that f ∈ Cα(Ω) for some α ∈ (0, 1). This
condition is not satisfied in the proof of Theorem 1.2. For that proof, the trace
of f on ∂Ω is smooth and we use f itself, rather than the mollification fτ , in
(2.3). We will need the following alternative of Lemma 3.3 in this case.

Lemma 3.3
′. Suppose f satisfies

|f(x) − f(y)| ≤ C|x − y| ∀ x ∈ Ω, y ∈ ∂Ω.(3.16)

Then

|u − ut|(x) ≤ Ct1+1/ndist(x, ∂Ω)(3.17)

for some constant C > 0 independent of t.
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Proof. Let

z =

{
−4t1+1/ndx + t1/nd2

x if dx < 2t,

−4t2+1/n if dx ≥ 2t.
(3.18)

Now,
detD2z ≥ Ctn in D2t

for some C > 0. Under assumption (3.16), we have |ft − f | ≤ Ct. Hence

detD2(ut + Cz) ≥ detD2ut + C(detD2ut)(n−1)/n(detD2z)1/n ≥ f in Ω.

Similarly, detD2(u + Cz) ≥ detD2ut in Ω. It follows that

|u − ut|(x) ≤ C|z(x)|.
Hence (3.17) holds.

Let θ = α/16n if f ∈ Cα, or θ = 1/16n if f satisfies (3.16), and t′ = t1+θ.
Let ut′ be the corresponding solution of (2.5). By our construction of ft, we
may assume that ft′ ≥ ft so that ut′ ≤ ut. Obviously Lemma 3.3 holds with u

replaced by ut′ .

Lemma 3.4. Suppose ut satisfies (3.1). Then

|∂ξ∂γut′ | ≤ CK on ∂Ω,(3.19)

where C is independent of K and t.

Proof. Suppose the origin is a boundary point and (2.6), (2.7) hold. For
any (x′, s) ∈ Ω, where s = t′/8,

∂iut(x′, s) = ∂iut(x′, ρ(x′)) + ∂n∂iut(x′, s1)(s − ρ(x′)), i < n,(3.20)

∂iϕ(x′, s) = ∂iϕ(x′, ρ(x′)) + ∂n∂iϕ(x′, s2)(s − ρ(x′)),

for some s1, s2 ∈ (ρ(x′), s). Since Dut(0) = 0, by (3.1) we have |∂γut(x′, ρ(x′))| ≤
CK|x′|. Hence

|∂nut(x′, ρ(x′))| ≤ CK|x′|.
Since ∂ξ(ut − ϕ) = 0,

|∂i(ut − ϕ)|(x′, ρ(x′)) ≤ C|x′| |∂n(ut − ϕ)| ≤ CK|x′|2 ≤ CKs.

By (3.2b) and (3.20),

|∂i(ut − ϕ)(x′, s)| ≤ CKs.(3.21)

Let β ∈ [0, 1] such that K = t(β−1)/2 (by (2.14c) we may assume β ≤ 1).
Then by (3.1) and Lemmas 3.1 and 3.2, |D2ut| ≤ Ctβ−1 in D2t. Hence by
Lemma 3.3,

|ut − ut′ | ≤ Ctβ+α′
s on Ω ∩ {xn = s}.
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By (3.2a),
∂2

i ut ≤ C and ∂2
i ut′ ≤ C on Ω ∩ {xn = s}.

Hence

|∂i(ut − ut′)| ≤ C sup
{xn=s}

|ut − ut′ |1/2 ≤ C(tβ+α′
s)1/2 on Ω ∩ {xn = s}.

Recalling that s = t′/8 = t(1+θ)/8, we obtain

|∂i(ut − ut′)| ≤Ct(β+α′−1−θ)/2s(3.22)

≤Ct(β−1)/2s = CKs on Ω ∩ {xn = s}.
From (3.21) and (3.22),

|∂i(ϕ − ut′)| ≤ CKs on {xn = s}.(3.23)

Next we estimate ∂nut′ on {xn = s}, first considering the point (0, s). By
convexity and (3.14),

∂nut′(0, s)≤ 1
s
[ut′(0, 2s) − ut′(0, s)]

≤ 1
s
[ut(0, 2s) − ut(0, s)] + Csβ+α′

≤ ∂nut(0, 2s) + Csβ+α′
.

By Lemma 3.1, ∂2
nut ≤ CK2. Hence ∂nut(0, 2s) ≤ ∂nut(0) + CK2s = CK2s.

Note that Ks1/2 < Kt(1+θ)/2 ≤ tθ/2. Now,

∂nut′(0, s)≤CK2s + Csβ+α′

≤Ctθ/2Ks1/2 + Csβ+α′ ≤ CKs1/2.

For any point x = (x′, s) ∈ Ω, note that |∂nut(x′, ρ(x′))| ≤ CK|x′|, where |x′| ≤
Cs1/2 by the uniform convexity of ∂Ω. Hence, similarly, we have |∂nut′(x′, s)| ≤
CKs1/2. It follows that

|∂nut′(x)| ≤ CKs1/2 on {xn = s}.(3.24)

Denote Ti = ∂i +
∑

j<n ρxixj
(0)(xj∂n − xn∂j) and let

z(x) = ±Ti(ut′ − ϕ) + B(|x′|2 + s−1x2
n) − C̃Kxn.

By differentiating equation (1.1) with respect to Ti, one has, by [8],

Lz = ±[Ti(log ft′) − L(Tiϕ)] + 2B

( ∑
i<n−1

uii
t′ + s−1unn

t′

)
,(3.25)

where L = uij
t′ ∂i∂j is the linearized operator of the equation log detD2ut′ =

log ft′ , and {uij
t′ } is the inverse of the Hessian matrix {D2ut′}.

Let G = Ω ∩ {xn < s}. First we verify z ≤ 0 on ∂G. By subtracting a
smooth function we may assume that Dϕ(0) = 0. By the boundary condition
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we have |Ti(ut′ −ϕ)| ≤ C|x|2 on ∂Ω∩ ∂G. Hence for any given B > 0, we may
choose C̃ large such that z ≤ 0 on ∂G ∩ ∂Ω. On the part ∂G ∩ {xn = s}, by
(3.23) and (3.24),

|Ti(ut′ − ϕ)|(x) ≤ CKs + |x′| |∂nut′ | ≤ CKs.

Hence, z ≤ 0 on ∂G.
Next we verify that Lz ≥ 0 in G, computing

|D log ft′ | ≤ Cτ ′α−1 ≤ Ct′ε0(α−1)
,(3.26)

where τ ′ = t′ε0 (ε0 = 1/4n) as in (2.3). Observe that∑
i<n

uii
t′ + s−1unn

t′ ≥ ns−1/n[detD2ut′ ]−1/n ≥ Cs−1/n.

Hence we may choose the constant B large, independent of K, t, t′, such that
Lz ≥ 0 in G. Now by the maximum principle we see that z attains its maximum
at the origin. It follows that zn ≤ 0; namely, |∂i∂nut′(0)| ≤ CK.

Now we choose a fixed small constant t0 > 0, and for k = 1, 2, · · · , let

tk = t1+θ
k−1 = · · · = t

(1+θ)k

0 , θ =
α

16n
,(3.27)

and let uk = utk
be the solution of (2.5) with t = tk. Then we have the

estimates

∂2
ξ uk ≤ C in Dtk/8,(3.28a)

|∂ξ∂γuk| ≤ Ck/
√

t0 in Dtk/8,(3.28b)

∂2
γuk ≤ Ck/t0 in Dtk/8.(3.28c)

where the constant C is independent of k and t0. Note that

Ck = O(| log tk|m)(3.29)

for some m > 0 depending only on C. Hence for sufficiently large k, (3.13)
holds with β < 1 sufficiently close to 1. Hence in both Lemmas 3.3 and 3.4,
we have

|u − ut|(x) ≤ Ct1+α′/2dist(x, ∂Ω)(3.30)

if t > 0 is sufficiently small. In particular (3.30) holds for ut = utk
and

u = utk+1 . From (3.28) and (3.29) we also have an improvement of (2.20) and
(2.21), namely for any small δ > 0,

ah ≤Ch(1−δ)/2,(3.31)

bh ≥Ch(1+δ)/2,(3.32)

provided h is sufficiently small, where C is independent of h.
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With estimate (3.30), we may introduce the notion of affine invariant
neighborhood (with respect to the origin). Let Γi, (i = 1, 2), be two convex
hypersurfaces which can be represented as radial graphs. That is Γi = ρi(x)
for x ∈ Sn, the unit sphere (or a subset of Sn). We say Γ2 is in the affine
invariant δ-neighborhood of Γ1, denoted by Γ2 ⊂ Aδ(Γ1), if

(1 − δ)ρ2 ≤ ρ1 ≤ (1 + δ)ρ2.(3.33)

If Γ2 ⊂ Aδ(Γ1), then T (Γ) ⊂ Aδ(T (∂Ω)) for any affine transformation T which
leaves the origin invariant, namely T (x) = T · x for some matrix T .

Estimate (3.30) gives a control of the shape of the level set Sh,uk
(0) for

sufficiently large k. When h = t2k+1, by convexity and (3.30),

|uk − u|(x)≤Ct
1+α′/2
k dist(x, ∂Ω),

|Duk|(x)≥h/|x| for x ∈ Sh,uk
(0),

where we assume that uk(0) = 0, Duk(0) = 0. It follows that

Sh,u(0) ⊂ Aδ(Sh,uk
(0))(3.34)

with

δ≤ t
1+α′/2
k dx

h
= t

α′/2−1−2θ
k dx(3.35)

≤ t
α′/2−1−2θ
k tk+1 = t

α′/2−θ
k ≤ t

α′/4
k

up to a constant C. Note that |x| does not appear in (3.35), and (3.34) also
holds with u replaced by uk+1.

As a consequence we have an estimate for the shape of the level set Sh,u(y)
for any y ∈ ∂Ω. By subtracting a linear function (which depends on k), we
assume uk(0) = 0 and Duk(0) = 0. By the second inequality of (2.16) we have
Sh,uk

(0) ⊂ Dtk/2 for h = C0t
2
k. For simplicity we assume that C0 = 1. We

define ah,k and bh,k as in (2.17) and (2.18) with u = uk. Let

bh,k = sup{t | (0, · · · , 0, t) ∈ Sh,uk
(0)}.

By Lemma 2.3 and convexity,

bh,k ≥ h1/2

ah,k
bh,k ≥ t0

C2k
h1/2.

Note that h1/2 = tk = t1+θ
k−1 = · · · = t

(1+θ)k

0 . Consequently for any given δ > 0,

bh,k ≥ Ch(1+δ)/2

provided k is sufficiently large, where C = C(δ, θ, t0). Let

bh = sup{t | (0, · · · , 0, t) ∈ Sh,u(0)}.
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By (3.30), bh ≥ Ch(1+δ)/2. Hence

u(0, xn) ≤ Cx2/(1+δ)
n(3.36)

for xn = h(1+δ)/2 (h = t2k). As k > 1 can be chosen arbitrarily, the above
estimate holds for all xn > 0 small. By convexity and the boundary estimates
(2.2), we then obtain

u(x) ≤ C|x|2/(1+δ)(3.37)

for x ∈ Ω near the origin. Therefore we have the following C1,α estimate at
the boundary.

Theorem 3.1. Let u be a solution of (1.1), (1.2). Suppose ∂Ω, ϕ and
f satisfy the conditions in Theorem 1.1. Then for any α̂ ∈ (0, 1), we have the
estimate

|u(x) − u(x0) − Du(x0)(x − x0)| ≤ C|x − x0|1+α̂(3.38)

for any x ∈ Ω and x0 ∈ ∂Ω, where C depends on α̂.

Obviously Theorem 3.1 also holds for ut with any t > 0, and the constant
C in (3.38) is independent of t. In the next section we use a different form of
(3.38). That is,

Lemma 3.5. Let u satisfy (3.38). Then

|Du(y0) − Du(y)| ≤ C|y0 − y|α̂(3.39)

for any y0 ∈ ∂Ω where y ∈ Ω.

Proof. Assume u(0) = 0, Du(0) = 0, and y is on the xn-axis. By convexity
we have ∂νu(y) ≤ 1

t [u(y+tν)−u(y)] for any unit vector ν such that y+tν ∈ Ω,
where t = 1

2 |y|. By (3.38), u(y + tν), u(y) ≤ Ct1+α̂. Hence ∂νu(y) ≤ Ctα̂. It
follows that |Du(y) − Du(0)| ≤ C|y|α̂. Similarly, |∂nu(y0) − ∂nu(0)| ≤ C|y0|α
for y0 ∈ ∂Ω near the origin. From the boundary condition, we then infer that
|Du(y0) − Du(0)| ≤ C|y0|α. Hence (3.39) holds.

4. Continuity estimates for second derivatives

Our passage to C2 estimates at the boundary uses a modulus of continuity
estimate for second derivatives proved by Caffarelli, Nirenberg, and Spruck in
their treatment of the Dirichlet problem for the Monge-Ampère equation [8],
[13].

Let ut be the solution of (2.5). As before we always suppose the origin
is a boundary point and near the origin ∂Ω is given by (2.6), and ut satisfies
(2.7).
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Lemma 4.1. Suppose ut satisfies (3.1). Then,

|∂ξ∂γut(x) − ∂ξ∂γut(0)| ≤ CKm

| log |x| − log t| ,(4.1)

where m = 50, x ∈ ∂Ω, |x| ≤ t/2.

Proof. Although Lemma 4.1 is proved in [8], [13], we provide an outline
here in order to display the polynomial dependence on the eigenvalue bounds
of the coefficients.

Let v = ut/t2, y = x/t. Then v is defined on the set {ρ̃(y′) < yn < 1},
where ρ̃(y′) = 1

t ρ(ty′). By (2.2), uξξ ≥ C > 0. By the upper bound in (2.16),
ut(0, xn) ≥ Cx2

n. Hence we have

v ≥ C on {yn = 1}(4.2)

for some positive constant C. By (3.1) and Lemma 3.1,

C−1K−2 ≤ D2v ≤ CK2 in G = B1/2(0) ∩ {yn > ρ̃(y′)},(4.3)

where the constant C is independent of K.
Let T = ∂i + (∂iρ̃)∂n. Then T (v − ψ) = T 2(v − ψ) = 0 on ∂G ∩ B1/2(0),

where ψ(y) = ϕ(ty)/t2 and ϕ is the boundary value in (1.2). By subtracting
a smooth function we may suppose that Dϕ(0) = 0. Computation as in §4 in
[8] shows that

L(T 2(v − ψ)) ≥ −CK8,(4.4)

where L = vij∂i∂j . Note that the Hölder continuity of ft suffices for (4.4), as
in the proof of Lemma 2.1. By (4.3), the least eigenvalue λ and the largest
eigenvalue Λ of D2v satisfy C−1K−2 ≤ λ ≤ Λ ≤ CK2. Hence

z = a|y′|2 − by2
n + cyn

is an upper barrier of T 2(v −ψ) (in a neighborhood of the origin) if we choose
a = C1K

2, b = C2K
10, c = C3K

10 such that C3 � C2 � C1 > 0. It follows
that

viin(0) ≤ CK10.(4.5)

Let h = C̃K10|y|2 − vn. Then

|Lh| ≤ CK12 in G.(4.6)

Making the transformation z′ = y′, zn = yn − ρ̃(y′) to straighten the boundary
∂Ω near the origin, we may suppose G = B+

1/2 = B1/2 ∩ {yn > 0}. By (4.5), h

is convex on B1/2(0) ∩ {xn = 0} if C̃ is chosen large. Hence by the following
Lemma 4.2, we obtain

|∂ξ∂γv(y) − ∂ξ∂γv(0)| ≤ CKm

| log |y||(4.7)

with m = 50. Scaling back, we obtain (4.1).
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The following Lemma 4.2 is equivalent to Lemma 5.1 in [8].

Lemma 4.2. Let h ∈ C2(B+
1/2) ∩ C0(B+

1/2 ∪ T ) satisfy

Lh = aij∂i∂jh ≤ f(4.8)

in B+
1/2, where T = ∂B+

1/2 ∩ {xn = 0}. Let λ and Λ be the least and the largest
eigenvalues of the matrix {aij}. Suppose h|T is convex. Then for x, y ∈ T near
the origin,

|∂ih(x) − ∂ih(y)| ≤ C

| log |x − y||
Λ
λ

(f + Λ
λ

)3 sup(|h| + |Dh|), i < n.(4.9)

The main feature of Lemma 4.2 used in this paper is the polynomial de-
pendence of the modulus of the logarithm continuity of ∂ih on the eigenvalues
of the matrix {aij}. Alternatively we could have used the boundary Hölder
estimate of Krylov [16], which would imply (4.1) with some modulus of conti-
nuity.

5. Mixed derivative estimates at the boundary, continued

To prove the C2,α estimates at the boundary, we need a refinement of
Lemma 3.4. Let tk be as in (3.27) and uk be the solution of (2.5) with t = tk.

Lemma 5.1. For any given small σ > 0, there exists K > 1 sufficiently
large such that if

|∂ξ∂γuk| ≤ K on ∂Ω,(5.1)

then

|∂ξ∂γuk+1| ≤ (1 + σ)K on ∂Ω,(5.2)

where ξ is any unit tangential vector on ∂Ω, and γ is the unit outward normal
to ∂Ω.

The constant σ > 0 will be chosen small enough so that

(1 + 10σ)m ≤ 1 +
1
2
θ,(5.3)

where m = 50 as in (4.1) and θ = α/16n as defined before Lemma 3.4. We
also assume K is sufficiently large and tk sufficiently small such that

Kσ2 > 1,(5.4)

K20tk ≤σ2.(5.5)

Note that (5.5) is satisfied when k is large; see (3.29). Therefore we can also
choose t0 sufficiently small such that (5.5) holds for all k.
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Proof of Lemma 5.1. The proof is also a refinement of that of Lemma 3.4.
As before we suppose the origin is a boundary point, and near the origin ∂Ω
is given by (2.6), and uk satisfies (2.7). Then by (3.30),

|Duk+1|(0) = O(t1+α′/2
k ) = o(tk+1).(5.6)

By subtracting a smooth function we assume that ϕ(0) = 0, Dϕ(0) = 0.
Let L = uij

k+1∂i∂j be the linearized operator of the equation log detD2uk+1

= log ftk+1 . Let G = Dtk+1/8 ∩ {xn < s}, where s = t
1/4
k+1. Let

T = Ti = ∂i +
∑
j<n

ρxixj
(0)(xj∂n − xn∂j),

z(x) =±Ti(uk+1 − ϕ) +
1
2
(|x′|2 + s−1x2

n) − (1 + 8σ)Kxn.

If Lz ≥ 0 in G and z ≤ 0 on ∂G, then by the maximum principle, z attains its
maximum at the origin. Hence zn ≤ 0 and so |∂i∂nuk+1(0)| ≤ (1 + 10σ)K if
σK is large enough to control |D2ϕ|. Hence Lemma 5.1 holds. In the following
we verify that Lz ≥ 0 in G and z ≤ 0 on ∂G.

The verification of Lz ≥ 0 in G is similar to that in the proof of Lemma
3.4. We have

Lz = ±[T (log ftk+1) − L(Tϕ)] +
( ∑

i<n−1

uii
k+1 + s−1unn

k+1

)
.(5.7)

Similar to (3.26),

|T (log ftk+1) − L(Tϕ)| ≤Ct
ε0(α−1)
k+1 ,∑

i<n

uii
k+1 + s−1unn

k+1 ≥ns−1/n[detD2uk+1]−1/n ≥ Cs−1/n,

where ε0 = 1/4n. Hence Lz ≥ 0 as s = t
1/4
k+1 is very small.

To verify z ≤ 0 on ∂G, we divide the boundary ∂G into three parts; that
is, ∂1G = ∂G ∩ ∂Ω, ∂2G = ∂G ∩ {xn = s}, and ∂3G = ∂G ∩ ∂Ωt (t = tk+1/8).

First we consider the boundary part ∂1G. For any boundary point x ∈ ∂Ω
near the origin, let ξ = ξT be the projection of the vector T = ∂i+ρij(0)(xj∂n−
xn∂i) on the tangent plane of ∂Ω at x. We have

|(T − ξ)|(x) ≤ C|x|2.(5.8)

Hence for x ∈ ∂Ω near the origin, we have, by (3.39) and (5.6), noting that
∂ξ(uk+1 − ϕ) = 0,

|T (uk+1 − ϕ)(x)| ≤C|x|2|∂γ(uk+1 − ϕ)(x)|(5.9)

≤C|x|2(|x|α̂ + |∂γ(uk+1 − ϕ)(0)|)
≤C|x|2(|x|α̂ + tk+1),

where tk+1 = s4. Hence z ≤ 0 on ∂1G.
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Next we consider the part ∂2G. For any given point x = (x′, s) ∈ ∂2G, let
x̂ = (x′, ρ(x′)) ∈ ∂Ω. As above let ξ be the projection of T (x̂) on ∂Ω. Then

∂ξ(uk+1 − ϕ)(x) = ∂ξ(uk+1 − ϕ)(x̂) + ∂n∂ξ(uk+1 − ϕ)(x′, s′)(s − ρ(x′))

for some s′ ∈ (ρ(x′), s). By Lemma 3.4,

|∂n∂ξuk+1| ≤ |∂γ∂ξuk+1| + |∂2
ξ uk+1| ≤ CK.

Note that ∂ξ(uk+1 −ϕ)(x̂) = 0 and |s− ρ(x′)| ≤ (1 + C|x′|2)tk+1 = 2s4. Hence
by (5.8),

|T (uk+1 − ϕ)(x)| ≤ |∂ξ(uk+1 − ϕ)(x)| + |T − ξ| |∂γ(uk+1 − ϕ)(x)|(5.10)

≤Cs4K + C|x|2+α̂,

where we have used that |T (x) − ξ| ≤ |T (x) − T (x̂)| + |T (x̂) − ξ| and

|T (x) − T (x̂)| = |
∑

j

ρij(0)(xn − x̂n)∂j | ≤ Ctk+1 = Cs4.

Hence z ≤ 0 on ∂2G.
Finally we consider the part ∂3G. We introduce a mapping η = ηk from

∂Ω to ∂Ωt for t = tk+1/8. For any boundary point y ∈ ∂Ω, by the strict
convexity of uk, the infimum

inf{uk(x) − uk(y) − Duk(y)(x − y) | x ∈ ∂Ωt}
is attained at a (unique) point z ∈ ∂Ωt. We define η(y) = z. In other words,
z is the unique point in ∂Ωt ∩ Sh,uk

(y) with h > 0 the largest constant such
that S0

h,uk
(y) ⊂ Dt. The mapping η is continuous and one-to-one by the strict

convexity and smoothness of ∂Ωt. The purpose of introducing the mapping η

is to give a more accurate estimate for |T (uk − ϕ)|(p) for p ∈ ∂Ωt.
First we consider the point p = (p1, · · · , pn) ∈ ∂Ωt such that η−1(p) is the

origin. Suppose as before that locally near the origin, ∂Ω is given by (2.6) and
uk(0) = 0, Duk(0) = 0. Then h = inf∂Ωt

uk. By a rotation of the coordinates
x′, we suppose that {∂ijuk(0)}n−1

i,j=1 is diagonal. We want to prove that

|pi| ≤
1 + 4σ

∂2
i uk(0)

Kt ∀ i = 1, · · · , n − 1,(5.11)

pn ≤ t + o(t).(5.12)

By (2.2), ∂2
i uk(0) has positive upper and lower bounds for 1≤ i≤ n−1.

By (3.39), the tangential second derivatives of uk are Hölder continuous. In-
deed, by the boundary condition uk = ϕ on ∂Ω, we have

∂2
ξζuk + ρξζ∂γuk = ∂2

ξζϕ + ρξζ∂γϕ,(5.13)

where ξ and ζ are unit tangential vectors, and γ is the unit outer normal. By
(3.39), ∂γuk is Hölder continuous. Hence

|∂2
ξζuk(x) − ∂2

ξζu(0)| ≤ σ2(5.14)

for any x ∈ ∂Ω near the origin and any unit tangential vectors ξ and ζ.
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We will prove (5.11) for i = 1. By restricting to the 2-plane determined by
the x1-axis and xn-axis, without loss of generality we may assume that n = 2.
Denote

ah = sup{|x1| | x ∈ Sh,uk
(0)},

bh = sup{xn | x ∈ Sh,uk
(0)},

where h = inf∂Ωt
uk. Then it suffices to prove

ah ≤
1 + 4σ

∂2
1uk(0)

Kt,(5.11′)

bh ≤ t + o(t).(5.12′)

Note that we have now x = (x1, xn), and the domains Dt,Ωt denote the re-
striction on the 2-plane.

Assume the supremum ah is achieved at xh = (ah, ch). In the two dimen-
sional case, the level set  := Sh,uk

is a curve in Ω, which has an endpoint
x̂ = (x̂1, x̂n) ∈ ∂Ω with x̂1 > 0.

If ah ≤ Ch1/2 for some C > 0 under control, by (2.16) we have bh ≥
C1h

1/2. In this case we have t ≥ C2h
1/2. Hence (5.11′) holds for sufficiently

large K.
If ah ≥ Ch1/2 (let us choose C = σ−2), let ξ, ζ, θ1, θ2 be as in the proof of

Lemma 2.3. Then θ1 + θ2 < π/2. By (5.1) and (5.14),

|∂γuk(x̂)| ≤ (1 + σ)K|x̂|,(5.15)

|∂ξuk(x̂)| ≥ (1 − σ)∂2
1uk(0) |x̂|.(5.16)

Hence tgθ1 ≥ (1−σ)∂2
1uk(0)

(1+σ)K . Note that tg(θ1+θ2) ≤ ch/(ah−x̂1) by the convexity
of . We obtain

ah ≤ x̂1 +
1 + 2σ

∂2
1uk(0)

Kch.

Recall that h1/2 ≤ σ2ah by assumption, and x̂1 ≤ Ch1/2 by (2.2). Hence we
obtain

ah ≤ 1 + 3σ

∂2
1uk(0)

Kch.(5.17)

Suppose ∂Ωt is locally given by

xn = ρt(x′).(5.18)

Then ρt is smooth and uniformly convex. It is easy to see that ρt(0) = t and
|Dρt|(0) = o(t). Hence we have

ch ≤ t + C1a
2
h + o(t)ah.(5.19)

By (3.31), ah ≤ Ch(1−δ)/2. By (3.36), h ≤ Ct2/(1+δ), where δ > 0 can be
arbitrarily small as long as t is sufficiently small. Hence we have ch ≤ t + o(t).
Therefore (5.11) holds.
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To prove (5.12), assume that the supremum bh is attained at x̂h = (dh, bh).
Then bh ≤ ρt(dh). Hence

bh ≤ t + C1d
2
h + o(t)dh ≤ t + o(t).(5.20)

Recall that dh ≤ ah ≤ Ch(1−δ)/2, and by our definition of h, bh ≥ t. Hence
(5.12) holds.

Now we prove

|T (uk − ϕ)|(p) ≤ (1 + 6σ)Kpn(5.21)

at p = η(0). Let ξ be the projection of T (p) on the tangent plane of ∂Ωt at p.
We have

|T (p)| ≤ 1 + C(pn + |p|2),(5.22)

|(T − ξ)(p)| ≤C(pn + |p|2).(5.23)

Hence

|T (uk − ϕ)(p)| ≤ |∂ξ(uk − ϕ)(p)| + C(pn + |p|2)|D(uk − ϕ)(p)|.(5.24)

By (3.39),
|D(uk − ϕ)(p)| ≤ C|p|α̂.

Hence the second term in (5.24) is small. By (5.13), we have ∂2
ijϕ(0) = ∂2

ijuk(0)
for i, j = 1, · · · , n − 1 (recall that we assume Dϕ(0) = 0 at the beginning).
Hence near the origin we have, by the Taylor expansion and (5.11),

|∂iϕ(p)| ≤ (1 + σ)|pj ∂i∂juk(0)|(5.25)

≤ (1 + 5σ)Kpn.

By our definition of the mapping η, ∂ξuk = 0 at p. (This is the purpose of
introducing the mapping η.) Hence

|∂ξ(uk − ϕ)(p)| ≤ (1 + 6σ)Kpn.(5.26)

By (5.24) we therefore obtain (5.21).
Next we prove (5.21) for any given p ∈ ∂3G. Let y = η−1(p), where η is

the mapping introduced above. Then by (5.14) we have, similarly to (5.11),

|pi − yi| ≤
1 + 5σ

∂2
i uk(0)

Kt.(5.27)

Choose a new coordinate system such that y is the origin and the positive
xn-axis is the inner normal at y. Subtract a linear function from both uk and
ϕ (which does not change the value of T (uk − ϕ)) such that Duk(y) = 0. As
above let ξ be the projection of T (p) on the tangent plane of ∂Ωt at p. By
(3.39), |Duk|, |Dϕ| ≤ σ2 in G. Hence

|Tuk(p)| ≤ |∂ξuk(p)| + |T (p) − ξ| |Duk(p)| ≤ Cpn,

|Tϕ(p)| ≤ |∂ξϕ(p)| + Cpn.
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By (5.13) and noting that |Dϕ| ≤ σ2, we have, similar to (5.14),

|∂2
ξζϕ(x) − ∂2

ξζuk(0)| ≤ σ2.

Hence as (5.25),
|∂ξϕ(p)| ≤ (1 + 6σ)Kpn.

Hence (5.21) holds at any point p ∈ ∂3G.
With (5.21) we are now in position to prove z ≤ 0 on ∂3G. By (3.30),

|uk+1 − uk|(x) ≤ Ct
1+α′/2
k t, x ∈ ∂Ωt.

Hence by (3.28a),

|∂ξ(uk+1 − uk)(x)| ≤ C(t1+α′/2
k t)1/2 ≤ Ct

α′/8
k t, x ∈ ∂Ωt,

where ξ is any unit tangential vector to ∂Ωt. Hence

|T (uk+1 − uk)(x)| ≤ |∂ξ(uk+1 − uk)| + C(t + |x|2)|D(uk − ϕ)|
≤Ct

α′/8
k t + Cxn.

In view of (5.21), it follows that

|T (uk+1 − ϕ)(x)| ≤ (1 + 7σ)Kxn, x ∈ ∂Ωt.(5.28)

From (5.28) and noting that σK � 1, we obtain z ≤ 0 on ∂3G. This completes
the proof.

By Lemma 5.1, we improve (3.28) to

∂2
ξ uk ≤ C in Dtk/8,(5.29a)

|∂ξ∂γuk| ≤ C(1 + σ)k in Dtk/8,(5.29b)

∂2
γuk ≤ C(1 + σ)2k in Dtk/8,(5.29c)

where C depends only on n, ∂Ω, f, t0, and ϕ.
Now we apply the estimate (4.1) to the section S0

h,uk
(0), where

h = t2k+1 = t
2(1+θ)
k , θ = α/16n.

For any x ∈ ∂Ω ∩ S0
h,uk

, we have by (2.2),

|x| ≤ Ch1/2 ≤ Ctk+1.

By (4.1),

|∂ξ∂γuk(x) − ∂ξ∂γuk(0)| ≤ [C(1 + σ)k]m

| log |x| − log tk|
.

By our definition, tk = t1+θ
k−1 = · · · = t

(1+θ)k

0 . We obtain, by the choice of σ

in (5.3),

|∂ξ∂γuk(x) − ∂ξ∂γuk(0)| ≤ C̃
(1 + θ/2)k

(1 + θ)k
,(5.30)

where C̃ depends only on n, ∂Ω, f, ϕ and t0, and is independent of k.
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Proof of Theorem 1.1. We will first prove

sup
x∈Ω

|D2u(x)| ≤ C.(5.31)

Suppose the origin is a boundary point such that Ω ⊂ {xn > 0}. We will prove
D2u is bounded at the origin. By making a linear transformation of the form

yn = xn(5.32)

yi = xi − αixn, i = 1, · · · , n − 1,

we may suppose ∂i∂nuk(0) = 0, where, by (5.29b),

|αi| ≤ C(1 + σ)k ≤ C| log h|.

Hence the boundary part {x ∈ ∂Ω | uk(x) < h} is smooth and uniformly
convex after the transformation (5.32). By (5.30) there is a sufficiently large
k0 such that when k ≥ k0,

|∂ξ∂γuk(x)| ≤ C(5.33)

for x ∈ ∂Ω with |x| < tk+1. Thus, from (2.20) and (2.21),

ah,k = sup{|x′| | x ∈ Sh,uk
(0)} ≤ C̃h1/2,(5.34)

bh,k = sup{xn | x ∈ Sh,uk
(0)} ≥ h1/2/C̃

for some C̃ > 0 depending only on n, f, ϕ and ∂Ω, but independent of k. That
is, the section S0

h,uk
has a good shape, as defined in (2.24).

By (3.34), S0
h,u also has a good shape for h ≤ t2k+1. Now the perturbation

argument [4, §6], implies that

C1|x|2 ≤ u(x) ≤ C2|x|2,(5.35)

where we assume u(0) = 0, Du(0) = 0. Furthermore, |D2u(x)| ≤ C, for
x ∈ Ω near the origin. Making the inverse transformation of (5.32), we obtain
(5.31) for x near the origin. The interior second order derivative estimate was
established in [4]. Hence (5.31) holds.

Estimate (5.31) implies the Monge-Ampère equation is uniformly elliptic,
and so the C2,α estimate follows [2], [19].

Remark. Estimate (5.30) actually implies a continuity estimate for the
mixed second derivatives of u on the boundary. By the C1,α estimate (Lemma
3.5) and the equation itself, we can then infer a continuity estimate for D2u

on the boundary. However, unless the inhomogeneous term f is smoother,
we shall need to use the perturbation argument of the next section to derive
continuity estimates for D2u near the boundary.
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6. The perturbation argument

In this section we provide the perturbation argument [4] which enables us
to proceed from a level set of good shape to second derivative estimates.

Theorem 6.1. Let u be a convex solution to (1.1), (1.2). Suppose there
is an h0 > 0 such that for any boundary point y ∈ ∂Ω, S0

h0,u
(y) has a good

shape. Then under the assumptions of Theorem 1.1, u is C2,α smooth up to
the boundary.

Proof. Let the origin be a boundary point such that Ω ⊂ {xn > 0}. By
subtracting a linear function we suppose

u(0) = 0, Du(0) = 0.(6.1)

By a rescaling u → u/h0, x → x/
√

h0, we may suppose h0 = 1 and

|f(x) − f(0)| ≤ ε|x|α(6.2)

for some ε > 0 sufficiently small. For simplicity we suppose f(0) = 1. By (2.2)
we have

C−1 ≤ uξξ ≤ C on ∂Ω(6.3)

for any unit tangential vector ξ. First we need two lemmas.

Lemma 6.1. Let ui, i = 1, 2, be two convex solutions of detD2u = 1 such
that u1 = u2 on ∂Ω. Suppose ‖ui‖C2,α ≤ C0 in S0

1,u1
(0). Then if

|u1 − u2| ≤ δ in S0
1,u1

(6.4)

for some sufficiently small δ > 0,

|D2(u1 − u2)| ≤ Cδ in S0
1/2,u1

.(6.5)

Proof. We have

detD2u2 − detD2u1 =
∫ 1

0

d

dt
det[D2u1 + t(D2u2 − D2u1)]dt(6.6)

= aij(x)∂i∂j(u2 − u1) = 0,

where L = aij(x)∂i∂j is a linear, uniformly elliptic operator with Hölder con-
tinuous coefficients. By the Schauder estimates for linear elliptic equations, we
obtain (6.5).

Lemma 6.2. Let u be as above such that S0
1,u has a good shape. Then for

h ∈ (0, 1/4],

Sh,u ⊂ Nδ(h1/2E)(6.7)
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with

δ ≤ C(h(1+α̂)/2 + h−1/2ε),(6.8)

where α̂ is any constant in (0, 1), Nδ denotes the δ-neighborhood, E is an
ellipsoid of good shape.

Proof. Let v be the solution of

detD2v = f(0) = 1 in S0
1,u

such that v = u on ∂S0
1,u. Since u = ϕ ∈ C3 on ∂Ω and ∂Ω ∈ C3, from [22] we

have v ∈ C2,α̂(S0
3/4,u) ∀ α̂ ∈ (0, 1). By the Taylor expansion,

v(x) = v(0) + vi(0)xi +
1
2
vij(0)xixj + O(|x|2+α̂),

we have, on Sh,v(0),

C−1h1/2 ≤ |Dv| ≤ Ch1/2.(6.9)

Hence
Sh,v(0) ≤ Nδ̂(h

1/2E)

with δ̂ ≤ Ch(1+α̂)/2, where E is the ellipsoid {x ∈ Rn | 1
2vij(0)xixj = 1}.

By (6.2) it is easy to verify that |u − v| ≤ Cε, and by (6.3) we have
|Dv(0)| ≤ Cε. Hence by (6.9),

S0
h−Ch−1/2ε,v(0) ≤ S0

h,u(0) ≤ S0
h+Ch−1/2ε,v(0)(6.10)

provided ε � h1/2. Hence

Sh,u ⊂ NCh−1/2ε(Sh,v) ⊂ NCh(1+α̂)/2+Ch−1/2ε(h
1/2E).

Proof of Theorem 6.1 continued. Let uk, k = 0, 1, · · · , be the solution of

detD2uk = 1 in S0
4−k,u,

uk = u on ∂S0
4−k,u.

Since S0
1,u has a good shape, by the regularity of the Monge-Ampère equation,

‖u0‖C2,α(S0
3/4,u) ≤ C. Denote

ωk = sup{|f(x) − 1| | x ∈ S0
4−k,u},

where f(0) = 1 by assumption. By the comparison principle, |u − u0| ≤ Cω0.
Hence if the constant ε in (6.2) is sufficiently small, S0

1/4,u has a good shape.
It follows ‖u1‖C2,α̂(S0

3/16,u1
) ≤ C. Note that |u1 −u0| ≤ Cω0. By Lemma 6.1 we

obtain

|D2u0(x) − D2u1(x)| ≤ Cω0 for x ∈ S0
4−2,u1

.(6.11)

It follows that 22S0
4−2,u1

has a good shape, where tΩ = {x ∈ Rn | tx ∈ Ω}.



1022 NEIL S. TRUDINGER AND XU-JIA WANG

Let Rk = sup{|x| | x ∈ S0
4−k,u}, namely BRk

(0) is the smallest ball
containing S0

4−k,u. By (6.11) there is a constant β > 0 such that

R1 < (1 − β)R0.(6.12)

For k = 1, 2, · · · , applying the same argument to û0 := 4kuk(2−kx) and
û1 := 4kuk+1(2−kx), we obtain

|D2uk(x) − D2uk+1(x)| ≤ Cωk for x ∈ S0
4−k−2,uk+1

.(6.13)

From (6.2) and by induction we have

Rk ≤ (1 − β)Rk−1 ≤ C(1 − β)k,

ωk ≤Cε(1 − β)αk.

Hence we obtain from (6.13),

|D2u0(x) − D2uk+1(x)| ≤ C

k∑
i=0

ωi for x ∈ S0
4−k−2,uk+1

,(6.14)

where the right-hand side ≤ Cε. Hence S0
4−k,u = S0

4−k,uk
has a good shape.

From (6.14) we see that {D2uk+1(0)} is convergent. Hence u is twice differ-
entiable at 0, and D2u(0) = limk→∞ D2uk(0). Moreover, (D2u) is positive
definite, so that the Monge-Ampère equation (1.1) is uniformly elliptic. The
Hölder continuity of D2u follows from [2], [19].

The Hölder continuity of D2u also follows from (6.14) immediately. In-
deed, let x̂ be a point in Ω near the origin. Choose k0 such that x̂ ∈ S4−k0−1,u(0).
For k ≥ k0, let ûk be the solution of

detD2ûk = f̂k in S0
4−k,u(x̂),

ûk = u on ∂S0
4−k,u(x̂),

where f̂k = inf{f(x) | x ∈ S0
4−k,u(x̂)}. Then, similarly,

|D2ûk0(x̂) − D2ûk+1(x̂)| ≤ C

k∑
i=k0

ω̂i,(6.15)

where ω̂k ≤ sup{|f(x) − f(x̂)| | x ∈ S0
4−k,u(x̂)}. Since f is Hölder continuous,∑∞

i=k0
ω̂i ≤ Cdα

0 and
∑∞

i=k0
ωi ≤ Cdα

0 , where d0 is the diameter of the set
S4−k0−1,u(0). From (6.14), (6.15), and the interior smoothness of uk0 , and by
choosing appropriate k0, we obtain the Hölder continuity at the origin,

|D2u(x̂) − D2u(0)| ≤ C|x̂|α′
(6.16)

for some α′ ∈ (0, α). From (6.16) we obtain the global Hölder continuity for
D2u. Indeed, let x, y ∈ Ω and be close to ∂Ω. If |x − y| ≥ δ0(dist(x, ∂Ω) +
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dist(y, ∂Ω)) for some constant δ0 > 0, let x̂, ŷ ∈ ∂Ω be the boundary points
closest to x, y. Then by (6.16) (denote A(x, y) = |D2u(x)−D2u(y)| for short),

A(x, y) ≤ A(x, x̂) + A(x̂, ŷ) + A(ŷ, y) ≤ C|x − y|α′
.

Otherwise the estimate for A(x, y) is equivalent to the interior one [4].

Remark 6.1. For the estimate (6.16), if x̂ is also a boundary point, the
proof uses only the Hölder continuity of f in the sets S0

h,u(x) for x ∈ ∂Ω. Hence
if f satisfies (3.16), D2u is Hölder continuous on ∂Ω. We do not require that
f be Hölder in Ω.

Remark 6.2. We have actually proved that D2u is continuous if f is Dini
continuous, that is if ∫ 1

0

ω(t)
t

dt < ∞,

where ω(t) = sup{|f(x) − f(y)| | |x − y| < t}, so that the right-hand side of
(6.14) is convergent.

Remark 6.3. For the interior C2,α estimate, the condition that S0
h0,u

has
a good shape is automatically satisfied if u is a strictly convex solution, since
the convex set S0

h0,u
can be normalized by a linear transformation. However

for the C2,α estimate at the boundary, we can only do a linear transformation
of the form (5.32) with relatively small αi, and must prove (5.34) for u so that
the level set has a good shape. Other linear transformations may worsen the
boundary condition.

7. Application to the affine mean curvature equation

In this section we prove Theorem 1.2. First we prove the uniqueness of
solutions.

Lemma 7.1. There is at most one uniformly convex solution u ∈ C4(Ω)∩
C2(Ω) of the second boundary value problem (1.4)–(1.6).

Proof. Suppose both u1 and u2 are solutions. We have, by the concavity
of the affine area functional A,

A(u1) − A(u2) =
∫

Ω

(
detD2u1)1/(n+2) − (detD2u2)1/(n+2)

)
≤ 1

n + 2

∫
Ω

w2U
ij
2 Dij(u1 − u2)

=
1

n + 2
[ ∫

∂Ω
γiDj(u1 − u2)w2U

ij
2 +

∫
Ω
(u1 − u2)f(x)

]
.
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where we have used the divergence-free relation
∑

i ∂iU
ij = 0 ∀ j. Similarly

we have

A(u2) − A(u1) ≤
1

n + 2

[∫
∂Ω

γiDj(u2 − u1)w1U
ij
1 −

∫
Ω
(u1 − u2)f(x)

]
.

Note that w1 = w2 on ∂Ω. Hence

0 ≤
∫

∂Ω
w1γiDj(u1 − u2)(U

ij
2 − U ij

1 ) = −
∫

∂Ω
w1γiDj(u1 − u2)(U

ij
1 − U ij

2 ).

For any given boundary point, suppose en = (0, · · · , 0, 1) is the inner normal
there. Then γ = −en, and the right-hand side of the above inequality is equal
to

−
∫

∂Ω
w1Dn(u1 − u2)(Unn

1 − Unn
2 ),

where Unn = det(uxixj
)|n−1

i,j=1. Since u1 = u2 on ∂Ω,

Unn
1 − Unn

2 > 0 if
∂u1

∂xn
<

∂u2

∂xn
.

Hence we obtain

0 ≤
∫

∂Ω
w1Dn(u1 − u2)(Unn

1 − Unn
2 ) < 0,

which implies Du1 = Du2 on ∂Ω. Hence u1 = u2 by the concavity of the affine
area functional. This completes the proof.

In the following we always assume that u ∈ C4(Ω) is a uniformly convex
solution of (1.4)–(1.6) and the conditions of Theorem 1.2 hold. By Aleksan-
drov’s maximum principle [13], u ∈ W 4,p(Ω) (p ≥ n) suffices for the estimates
below. Note that u ∈ W 4,1

loc (Ω) ∩ C2(Ω) suffices for Lemma 7.1. The following
lemma is taken from [21]

Lemma 7.2.There exists a constant C >0 such that any solution u of (1.4)
satisfies

C−1 ≤ w≤C in Ω,(7.1)

|w(x) − w(x0)| ≤C|x − x0| ∀ x ∈ Ω, x0 ∈ ∂Ω,(7.2)

where C depends only on n, diam(Ω), supΩ |f |, and supΩ |u|.

Proof. Let z = log w − u. If z attains its minimum at a boundary point,
by the boundary condition (1.6) we have w ≥ C in Ω. Let us suppose z attains
its minimum at an interior point x0 ∈ Ω. At this point we have

0 = zi =
wi

w
− ui,

0≤ zij =
wij

w
− wiwj

w2
− uij



BOUNDARY REGULARITY 1025

as a matrix. Hence

0 ≤ uijzij ≤
f

dθ
− n

where d = detD2u, θ = 1/(n + 2). We obtain d(x0) ≤ C. Since z(x) ≥ z(x0),
we obtain

w(x) ≥ w(x0)exp(u(x) − u(x0)).(7.3)

The first inequality in (7.1) follows.
Next let z = log w +A|x|2. If z attains its maximum at a boundary point,

by (1.6) we have w ≤ C and so (7.1) holds. If z attains its maximum at an
interior point x0, we have, at x0,

0 = zi =
wi

w
+ 2Axi,

0≥ zii =
wii

w
− w2

i

w2
+ 2A.

Suppose (D2u) is diagonal at x0. Then

0 ≥ uijzij =
f

dθ
− 4A2x2

i u
ii + 2Auii ≥ f

dθ
+ Auii(7.4)

if A is small. Observe that

dθ
∑

uii ≥ C
(∑

uii
)2/(n+2)

We obtain
∑

uii ≤ C, and hence (7.1) is proved.
Let v be a smooth, uniformly convex function in Ω such that v = ψ on

∂Ω and D2v ≥ K. Then

U ijvij ≥ K
∑

U ii ≥ CK[detD2v](n−1)/n ≥ CK.

Hence if K is large enough, v is a lower barrier of w (where (1.4) is a second
order elliptic equation of w). We thus obtain

w(x) − w(x0) ≥ −C|x − x0| ∀ x ∈ Ω, x0 ∈ ∂Ω.(7.5)

Similarly one can construct an upper barrier for w. Hence (7.2) holds.

In (7.3) the lower bound for w depends on the uniform estimate for u

which we obtain in turn need to find the lower bound for w, namely the upper
bound for detD2u. To avoid the mutual dependence we assume f ≤ 0, so
that w attains its minimum on the boundary by the maximum principle. This
condition can be relaxed to f ≤ ε for some ε > 0 small but cannot be removed
completely, as is easily seen by solving equation (1.4) in the one-dimensional
case.
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Lemma 7.3. Let u ∈ C4(Ω) be a solution of the boundary value problem
(1.4)–(1.6). Then we have the estimate

sup
Ω

|D2u| ≤ C,(7.6)

where C depends only on n, ∂Ω, ‖f‖L∞ , ‖ϕ‖C4(Ω), ‖ψ‖C4(Ω), and inf ψ.
Proof. Consider the Monge-Ampère equation

detD2u = w−(n+2)/(n+1) in Ω.(7.7)

By Lemma 7.2, the right-hand side of (7.7) is positive and satisfies condition
(3.16). Hence by the argument in the preceding sections, D2u is bounded and
Hölder continuous on the boundary; see Remark 6.1. For any δ > 0, by (7.1)
the solution of the linearized Monge-Ampère equation

U ijwij = f in Ω(7.8)

is Hölder continuous [7]; namely, detD2u ∈ Cα(Ωδ) for some α ∈ (0, 1). Hence
u ∈ C2,α(Ωδ) [4]. So we are left to consider a point x̂ ∈ Ω near the boundary.
Choosing an appropriate coordinate system, we assume that x̂ is on the positive
xn-axis, the origin is a boundary point, and Ω ⊂ {xn > 0}. Suppose u(0) = 0,
Du(0) = 0. Then the arguments of the preceding sections apply, with θ = 1

16n ,
and we conclude as before the quadratic growth estimate (5.35). Let ĥ be the
largest constant such that S0

ĥ,u
(x̂) ⊂ Ω. By (5.35), the section S0

ĥ,u
(x̂) has a

good shape. Hence the argument in [7] applies, and we also conclude that w

is bounded and Hölder continuous near x̂. Hence (7.6) holds.

Lemma 7.4. If f ∈ L∞(Ω), then for any p > 1,

‖u‖W 4,p(Ω) ≤ C,(7.9)

where C depends only on n, p, ∂Ω, ‖f‖L∞ , ‖ϕ‖C4(Ω), ‖ψ‖C4(Ω), and inf ψ. If
f ∈ Cα(Ω), ϕ ∈ C4,α(Ω), ψ ∈ C4,α(Ω), and ∂Ω ∈ C4,α for some α ∈ (0, 1),
then

u ∈ C4,α(Ω) ≤ C(7.10)

where C depends, in addition, on α.

Proof. Regard the fourth order equation (1.4) as a system of two second
order partial differential equations (7.7) (7.8). By estimate (7.6), both (7.7)
and (7.8) are uniformly elliptic. It follows that w is Hölder continuous up to
the boundary and so u ∈ C2,α(Ω) [2], [19]. Hence (7.8) is a linear, uniformly
elliptic equation with Hölder coefficients and w ∈ W 2,p(Ω) for any p < ∞.
From (7.7) we also conclude the global C4,α a priori estimate for u.
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Proof of Theorem 1.2. We have proved the uniqueness and established
the a priori estimate for solutions of (1.4)–(1.6). To prove the existence of
solutions we use the degree theory as follows.

For any positive w ∈ C0,1(Ω), let u = uw ∈ C2,α(Ω) be the solution of

detD2u = w−(n+2)/(n+1) in Ω, u = ϕ on ∂Ω.(7.11)

Next let wt, t ∈ [0, 1], be the solution of

U ijwij = tf(x) in Ω, wt = tψ + (1 − t) on ∂Ω.(7.12)

We have thus defined a compact mapping Tt : w ∈ C0,1(Ω) → wt ∈ C0,1(Ω).
By the a priori estimate (7.9), the degree deg(Tt, BR, 0) is well defined, where
BR is the set of all positive functions satisfying ‖u‖C0,1(Ω) ≤ R. When t = 0,
from (7.12) we have, obviously, w ≡ 1. Namely, T0 has a unique fixed point
w ≡ 1. Hence the degree deg(Tt, BR, 0) = 1 for all t ∈ [0, 1]. This completes
the proof.

Remark. Theorem 1.2 extends to more general equations (1.4) where

w = [detD2u]θ−1, 0 < θ ≤ 1
n

.
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