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A shape theorem for
the spread of an infection

By Harry Kesten and Vladas Sidoravicius

Abstract

In [KSb] we studied the following model for the spread of a rumor or in-
fection: There is a “gas” of so-called A-particles, each of which performs a
continuous time simple random walk on Zd, with jump rate DA. We assume
that “just before the start” the number of A-particles at x, NA(x, 0−), has a
mean μA Poisson distribution and that the NA(x, 0−), x ∈ Zd, are indepen-
dent. In addition, there are B-particles which perform continuous time simple
random walks with jump rate DB. We start with a finite number of B-particles
in the system at time 0. The positions of these initial B-particles are arbitrary,
but they are nonrandom. The B-particles move independently of each other.
The only interaction occurs when a B-particle and an A-particle coincide; the
latter instantaneously turns into a B-particle. [KSb] gave some basic estimates
for the growth of the set B̃(t) := {x ∈ Zd : a B-particle visits x during [0, t]}.
In this article we show that if DA = DB, then B(t) := B̃(t) + [−1

2 , 1
2 ]d grows

linearly in time with an asymptotic shape, i.e., there exists a nonrandom set
B0 such that (1/t)B(t) → B0, in a sense which will be made precise.

1. Introduction

We study the model described in the abstract. One interpretation of this
model is that the B-particles represent individuals who are infected, and the
A-particles represent susceptible individuals; see [KSb] for another interpre-
tation. B̃(t) represents the collection of sites which have been visited by a
B-particle during [0, t], and B(t) is a slightly fattened up version of B̃(t), ob-
tained by adding a unit cube around each point of B̃(t). This fattened up
version is introduced merely to simplify the statement of our main result. It
is simpler to speak of the shape of the set (1/t)B(t) as a subset of Rd, than of
the discrete set (1/t)B̃(t).

The aim of this paper is to describe how the infection spreads throughout
space as time goes on. In [KSb] we proved a first result in this direction in
the case DA = DB. We proved that under this condition there exist constants
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0 < C2 ≤ C1 < ∞ such that almost surely

C(C2t) ⊂ B(t) ⊂ C(2C1t) for all large t,(1.1)

where

C(r) := [−r, r]d.(1.2)

(1.1) gives upper and lower bounds which are linear in time, for B(t), the region
which has been visited by the infection during [0, t]. However, the upper and
lower bounds in (1.1) are not the same. The principal result of this paper is a
so-called shape theorem which gives the first order asymptotic behavior of the
region B(t). It shows that (1/t)B(t) converges to a fixed set B0. Thus, not
only is the growth linear in time, but B(t) looks asymptotically like (a scaled
version of) B0. This of course sharpens (1.1) by ‘bringing the upper and lower
bound together’. However, the result (1.1) is a crucial tool for proving the
shape theorem. We do not know of a shortcut which proves the shape theorem
without much of the development of [KSb] for (1.1). The precise form of the
shape theorem here is as follows:

Theorem 1. Consider the model described in the abstract. If DA = DB,
then there exists a nonrandom, compact, convex set B0 such that for all ε > 0
almost surely

(1 − ε)B0 ⊂ 1
t
B(t) ⊂ (1 + ε)B0 for all large t.(1.3)

The origin is an interior point of B0, and B0 is invariant under reflections in
coordinate hyperplanes and under permutations of the coordinates.

Remark 1. It follows immediately from Theorem 1 and Proposition B
below that the particle distribution at a large time t looks as follows: The
numbers of particles, irrespective of type, that is NA(x, t)+NB(x, t), x ∈ Zd, is
a collection of i.i.d. mean μA Poisson variables plus a finite number of particles
which started at time zero at fixed locations (these are the particles added as
B-particles at the start). For every ε > 0 there are almost surely no A particles
in (1 − ε)tB0 and no B-particles outside (1 + ε)tB0 for all large t.

Shape theorems have a fairly long history and have become the first goal of
many investigations of stochastic growth models. To the best of our knowledge
Eden (see [E]) was the first one to ask for a shape theorem for his celebrated
‘Eden model’. The problem turned out to be a stubborn one. The first real
progress was due to Richardson, who proved in [Ri] a shape theorem not only
for the Eden model, but also for a more general class of models, now called
Richardson models. In these models one typically thinks of the sites of Zd

as cells which can be of two types (for instance B and A or infected and
susceptible). Cells can change their type to the type of one of their neighbors
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according to appropriate rules. One starts with all cells off the origin of type
A and a cell of type B at the origin and tries to prove a shape theorem for the
set of cells of type B at a large time. An important example of such a model
is ‘first-passage percolation’, which was introduced in [HW] (this includes the
Eden model, up to a time change). A quite good shape theorem for first-
passage percolation is known (see [Ki], [CD], [Ke]). In more recent first-passage
percolation papers even sharper information has been obtained which gives
estimates on the rate at which (1/t)B(t) converges to its limit B0 (see [Ho] for
a survey of such results).

Shape theorems for quite a few variations of Richardson’s model and first-
passage percolation have been proven (see for instance [BG] and [GM]), but as
far as we know these are all for models in which the cells do not move over time,
with one exception. This exception is the so-called frog model which follows
the rules given in our abstract, but which has DA = 0, i.e., the susceptibles
or type A cells stand still (see [AMP] and [RS] for this model). The present
paper may be the first one which allows both tyes of particles to move.

In nearly all cases shape theorems are proven by means of Kingman’s
subadditive ergodic theorem (see [Ki]). This is also what is used for the frog
model. For this model one can show that the family of random variables {Tx,y}
is subadditive, were Tx,y is a version of the first time a particle at y is infected,
if one starts with one infected particle at x and one susceptible at each other
site. More precisely, the Tx,y can all be defined on one probability space such
that Tx,z ≤ Tx,y +Ty,z for all x, y, z ∈ Zd, and such that their joint distribution
is invariant under translations. Unfortunately this subadditivity property is
no longer valid if one allows both types of particles to move. Nevertheless,
subadditivity methods are still heavily used in the proof of Theorem 1. How-
ever, we now use subadditivity only for certain ‘half-space’ processes which
approximate the true process. Moreover, these half-space processes have only
approximate superconvolutive properties (in the terminology of [Ha]). There
is no obvious family of random variables with properties like those of the Tx,y.
One only has some relation between the distribution functions of the H(t, u)
for a fixed unit vector u, where H(t, u) is basically the maximum of 〈x, u〉
over all x which have been reached by a B-particle by time t (〈x, u〉 is the
inner product of x and u; for technical reasons H(t, u) will be calculated in a
process in which the starting conditions are slightly different from our original
process). These properties are strong enough to show that for each unit vector
u there exists a constant λ(u) such that almost surely

lim
n→∞

1
t
H(t, u) = λ(u),(1.4)

Thus the B-particles reach in time t half-spaces in a fixed direction u at dis-
tances which grow linearly in t. Except in dimension 1, it then still requires a
considerable amount of technical work to go from this result about the linear
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growth of the distances of reached half-spaces to the full asymptotic shape
result. We will give more heuristics before some of our lemmas.

Remark 2. Our proof in [KSb] shows that the right-hand inclusion in (1.1)
remains valid for arbitrary jump rates of the A and the B-particles. However,
it is still not known whether the left-hand inclusion holds in general. The lower
bound for B(t) is known only when DA = DB, or when DA = 0, that is, when
the A and B-particles move according to the same random walk (see [KSb]),
or in the frog model, when the A-particles stand still (see [AMP], [RS]).

Here is some general notation which will be used throughout the paper:
‖x‖ without subscript denotes the �∞-norm of a vector x = (x(1), . . . , x(d)) ∈
Rd, i.e.,

‖x‖ = max
1≤i≤d

|x(i)|.

We will also use the Euclidean norm of x; this will be denoted by the usual ‖x‖2.
〈x, u〉 denotes the (Euclidean) inner product of two vectors x, u ∈ Rd, and 0
denotes the origin (in Zd or Rd). For an event E , Ec denotes its complement.

K1, K2, . . . will denote various strictly positive, finite constants whose
precise value is of no importance to us. The same symbol Ki may have different
values in different formulae. Further, Ci denotes a strictly positive constant
whose value remains the same throughout this paper (a.s. is an abbreviation
of almost surely).
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2. Results from [KSb]

Throughout the rest of this paper we assume that

DA = DB(2.1)

and we abbreviate their common value to D. We begin this section with some
further facts about the setup. More details can be found in Section 2 of [KSb]
which deals with the construction of our particle system. {St}t≥0 will be a
continuous-time simple random walk on Zd with jump rate D and starting at 0.
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To each initial particle ρ is assigned a path {πA(t, ρ)}t≥0 which is distributed
like {St}t≥0. The paths πA(·, ρ) for different ρ’s are independent and they are
all independent of the initial NA(x, 0−), x ∈ Zd. The position of ρ at time t

equals π(0, ρ) + πA(t, ρ), and this can be assigned to ρ without knowing the
paths of any of the other particles. The type of ρ at time s is denoted by
η(s, ρ). This equals A for 0 ≤ s < θ(ρ) and equals B for s ≥ θ(ρ), where θ(ρ),
the so-called switching time of ρ, is the first time at which ρ coincides with a
B-particle. Note that this is simpler than in the construction of [KSb] for the
general case which may have DA �= DB. In that case we had simple random
walks {Sη}t≥0 with jump rate Dη for η ∈ {A, B}, and there were two paths
associated with each initial particle ρ : πη(·, ρ), η ∈ {A, B}, with {πη(t, ρ)}
having the same distribution as {Sη

t }. If ρ had initial position z, its position
was then equal to z + πA(t, ρ) until ρ first coincided with a B-particle at time
θ(ρ); for t ≥ θ(ρ) the position of ρ was z+πA(θ(ρ), ρ)+[πB(t, ρ)−πB(θ(ρ), ρ)].
This depends on θ(ρ) and therefore on the movement of all the other particles.

In the present case we can take πB = πA, which has the great advantage
that the path of ρ does not depend on the paths of the other particles. This
is the reason why the case DA = DB is special. We proved in [KSb] that on
a certain state space Σ0 (which we shall not describe here), the collection of
positions and types of all particles at time t, with t running from 0 to ∞, is
well defined and forms a strong Markov process with respect to the σ-fields
Ft = ∩h>0F0

t+h, t ≥ 0, where F0
t is the σ-field generated by the positions and

types of all particles during [0, t]. The elements of these σ-fields are subsets
of Σ[0,∞), where Σ =

∏
k≥1

(
(Zd ∪ ∂k) × {A, B}

)
. Σ[0,∞) is the pathspace for

the positions and types of all particles. More explicit definitions are given in
[KSb] but are probably not needed for this paper. It was also shown in [KSb]
that if one chooses the number of initial A-particles at z, with z varying over
Zd, as i.i.d. mean μA Poisson variables, then the process starts off in Σ0 and
stays in Σ0 forever, almost surely.

We write Nη(z, t) for the number of particles of type η at the space-
time point (z, t), z ∈ Zd, η ∈ {A, B}, while NA(z, 0−) denotes the number of
A-particles to be put at z ‘just before’ the system starts evolving. Note that
our model always has only particles of one type at each given site, because an
A-particle which meets a B-particle changes instantaneously to a B-particle.
Thus, if NA(z, 0−) = N for some site z and we add M(> 0) B-particles at z at
time 0, then we have to say that NA(z, 0) = 0, NB(z, 0) = N + M . We call a
site x occupied at time t by a particle of type η if there is at least one particle
of type η at x at time t; in this case all particles at (x, t) have type η. Also,
x is occupied at time t if there is at least one particle at (x, t), irrespective of
the type of that particle.

We shall rely heavily on basic upper and lower bounds for the growth of
B(t) which come from Theorems 1 and 2 in [KSb].
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Theorem A. If DA = DB, then there exist constants 0 < C2 ≤ C1 < ∞
such that for every fixed K

P
{
C(C2t) ⊂ B(t) ⊂ C(2C1t)

}
≥ 1 − 1

tK
(2.2)

for all sufficiently large t.

We also have some information about the presence of A-particles in the
regions which have already been visited by B-particles. The following is Propo-
sition 3 of [KSb].

Proposition B. If DA = DB, then for all K there exists a constant
C3 = C3(K) such that

P{there are a vertex z and an A-particle at the space-time point (z, t)(2.3)

while there also was a B-particle at z at some time ≤ t − C3[t log t]1/2}

≤ 1
tK

for all sufficiently large t.

Consequently, for large t

P{at time t there is a site in C
(
C2t/2

)
which(2.4)

is occupied by an A-particle} ≤ 2
tK

.

Finally we reproduce here Lemma 15 of [KSb] which gives an impor-
tant monotonicity property. We repeat that in the present setup, with the
NA(x, 0−) i.i.d. Poisson variables, our process a.s. has values in Σ0 at all
times (see Proposition 5 of [KSb]).

Lemma C. Assume DA = DB and let σ(2) ∈ Σ0. Assume further that
σ(1) lies below σ(2) in the following sense:

For any site z ∈ Zd, all particles present in(2.5)

σ(1) at z are also present in σ(2) at z,

and

At any site z at which the particles in σ(2) have type A,(2.6)

the particles also have type A in σ(1).

Let πA(·, ρ) be the random-walk paths associated to the various particles and
assume that the Markov processes {Y (1)

t } and {Y (2)
t } are constructed by means

of the same set of paths πA(·, ρ) starting with state σ(1) and σ(2), respectively
(as defined in Section 2 of [KSb], but with πA(s, ρ) = πB(s, ρ) for all s, ρ; see
(2.6), (2.7) there). Then, almost surely, {Y (1)

t } and {Y (2)
t } satisfy (2.5) and

(2.6) for all t, with σ(i) replaced by Y
(i)
t , i = 1, 2. In particular, σ(1) ∈ Σ0.
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In particular, this monotonicity property says that if σ(1) is obtained
from σ(2) by removal of some particles and/or changing some B-particles to
A-particles, then the process starting from σ(1) has no more B-particles at
each space-time point than the process starting from σ(2). We note that this
monotonicity property holds only under our basic assumption that DA = DB.

3. A subadditivity relation

In this section we shall prove the basic subadditivity relation of Proposi-
tion 3 and deduce from it, in Corollary 5, that the B-particles spread in each
fixed direction over a distance which grows asymptotically linearly with time.
This statement is ambiguous because we haven’t made precise what ‘spread in
a fixed direction’ means. Here this will be measured by

max{〈x, u〉 : x ∈ B̃(t)},(3.1)

where u is a given unit vector (in the Euclidean norm) in Rd (see the abstract
for B̃). In addition we will not prove subadditivity (which is an almost sure
relation), but only superconvolutivity, in the terminology of [Ha] (which is
a relation between distribution functions). The tool of superconvolutivity in
other models with no obvious subadditivity in the strict sense goes back to
[Ri], and was also used in [BG] and [W].

Actually we prove superconvolutivity only for half-space processes, which
we shall introduce now. We define the closed half-space

S(u, c) = {x ∈ Rd : 〈x, u〉 ≥ c}.

Given a u ∈ Sd−1 and r ≥ 0 we consider the half-space process corresponding to
(u,−r) (also called (u,−r) half-space-process). We define this to be the process
whose initial state is obtained by replacing NA(x, 0−) by 0 for all x �∈ S(u,−r).
Thus the initial state of the (u,−r)-half-space-process is

NA(x, 0−)
{

= 0 if x /∈ S(u,−r)
= original NA(x, 0−) if x ∈ S(u,−r),

where the N(A, x,−0) are i.i.d., mean μA Poisson variables. In addition
the particles at w−r are turned into B-particles at time 0, where w−r is
the site in S(u,−r) nearest to the origin (in �∞-norm) with NA(w−r, 0−)
> 0. If there are several possible choices for w−r, the tie is broken in the
following manner. All vertices of Zd are first ordered in some deterministic
manner, say lexicographically. Then among all occupied vertices in S(u,−r)
which are nearest to the origin we take w−r to be the first one in this order.
There will be many other occasions where ties may occur. These will be broken
in the same way as here, but we shall not mention ties or the breaking of them
anymore. Note that no extra B-particles are introduced at time 0, but that
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only the type of the particles at w−r is changed. Thus,

NA(x, 0) + NB(x, 0) = NA(x, 0−) for all x.(3.2)

From time 0 on the particles move and change type as described in the abstract.
Note that only the initial state is restricted to S(u,−r). Once the particles
start to move they are free to leave S(u,−r). The (u,−r) half-space process
will often be denoted by Ph(u,−r).

We further define the (u,−r) half-space process starting at (x, t). This
process is defined for times t′ ≥ t only. We define it as follows: at time t let
w−r(x, t) be the nearest site to x which is occupied in the (u,−r) half-space
process. We then reset the types of the particles at w−r(x, t) to B and the
types of all other particles present in the (u,−r) half-space process at time t

to A. The particles then move along the same path in the (u,−r) half-space
process starting at (x, t) as in Ph(u,−r) (which starts at (0, 0)). However,
the types of the particles in the (u,−r) half-space process starting at (x, t)
are determined on the basis of the reset types at time t. Thus the half-space
process starting at (x, t) has at any time only particles which were in S(u,−r)
at time 0.

Moreover, at any site y and time t′ ≥ t, Ph(u,−r) and the (u,−r) half-
space process started at (x, t) contain exactly the same particles. We see from
this that the paths of the particles in the (u,−r) half-space processes starting
at (x, t) and at (0, 0) are coupled so that they coincide from time t on, but
the types of a particle in these two processes may differ. Lemma C shows that
if there is a B-particle in Ph(u,−r) at x at time t, then in this coupling any
B-particle in the (u,−r) half-space process starting at (x, t) also has to have
type B in Ph(u,−r).

The coupling between the two half-space processes clearly relies heavily
on the assumption DA = DB, so that we can assign the same path to a particle
in the two processes, even though the types of the particle in the two processes
may be different.

It is somewhat unnatural to start the (u,−r) half-space process with
B-particles at w−r in case r < 0, so that the origin does not lie in the half-space
S(u,−r). We shall avoid that situation. We can, however, use the (u,−r) half-
space process starting at (x, t). This is well defined for all r. We merely need
to find the site nearest to x which has at time t a particle which started in
S(u,−r) at time 0. We can then reset the type of the particles at this site to
B at time t. We shall consider the (u,−r) half-space process starting at (x, t)
mostly in cases where we already know that x itself is occupied at time t in
the (u,−r) half-space process.

Finally we shall occasionally talk about the full-space process and the
full-space process starting at (x, t). These are defined just as the half-space
processes, but with r = ∞. In particular, the full-space process starts with
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B-particles only at the nearest occupied site to the origin and (3.2) applies.
The full-space process starting at (x, t) has B-particles at time t only at the
nearest occupied site to x. The type of all particles at other sites are reset
to A at time t. Being stationary in time, the full-space process started at
(x, t) has the same distribution at the space-time point (x + y, t + s) as the
full-space process (started at (0, 0)) at the point (y, s). Again we shall use the
same random walk paths πA for all the full-state processes and the half-space
processes, so that these processes are automatically coupled. We shall denote
the full-space process by P f .

We point out that if 0 ≤ r1 ≤ r2, and if ‖w−r2‖ ≤ r1/
√

d, then w−r2 ∈
S(u,−r1) ⊂ S(u,−r2) and w−r1 = w−r2 . In this case, both Ph(u,−r1) and
Ph(u,−r2) start with changing the type to B at the site w−r1 only and all
other particles are given by type A. In this situation, by Lemma C, at any
time,

any B-particle in Ph(u,−r1) is also a B-particle in Ph(u,−r2).(3.3)

This comment also applies if Ph(u,−r2) is replaced by P f (which is the case
r2 = ∞).

Rather than introduce formal notation for the probability measures gov-
erning the many processes here, we shall abuse notation and write P{A in
the process P} for the probability of the event A according to the probability
measure governing the process P. Neither shall we describe the probability
space on which P lives.

It seems worthwhile to discuss more explicitly the relation of the full-
space process to our process as described in the abstract. The latter has some
B-particles introduced at time 0 at one or more sites, in addition to the Poisson
numbers of particles, NA(x, 0−), x ∈ Zd. If exactly one B-particle is added at
time 0, and this particle is placed at 0, then we shall call the resulting process
the original process.

Suppose we want to estimate P{A(x0)} in the full-space process, where

x0 := the nearest occupied site to the origin at time 0 in P f ,(3.4)

A is some event and A(x) is the translation by x of this event (which takes
NA(0, s) to NA(x, s)). Then, for C a subset of Zd,

P{x0 ∈ C,A(x0) in P f} =
∑
x∈C

P{x0 = x,A(x)}(3.5)

≤
∑
x∈C

P{x is occupied at time 0,A(x) in P f}

=
∑
x∈C

∞∑
k=1

e−μA
[μA]k

k!
P{A|there are k B-particles at 0 at time 0}.
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(The probability in the last sum is the same in P f as in the original process.)
On the other hand, in the original process we have

(3.6) P{A in the original process}

=
∞∑

k=1

e−μA
[μA]k−1

(k − 1)!
P{A|there are k B-particles at 0 at time 0}.

Comparison of the right-hand sides in (3.5) and (3.6) yields the crude bound

(3.7) P{x0 ∈ C,A(x0) in the full-space process}
≤ (cardinality of C)μAP{A in original process}.

We shall repeatedly use a somewhat more general version of this inequality
(see for instance (3.25), (3.77), (3.78), (5.35)). Suppose s ≥ 0 is fixed and X

is a random vertex in Zd, and suppose further that

(3.8) P{A(X) but (X, s) is not occupied

in the full-space process starting at (X, s)} = 0.

(Note that this is satisfied if (X, s) is occupied almost surely in P f .) Let C ⊂ Zd

as before. Now, given that there are k ≥ 1 particles at the (nonrandom) space-
time point (x, s), the full-space process starting at (x, s) is simply a translation
by (x, s) in space-time of the original process, conditioned to start with k −
1 points at the origin and one B-particle added at the origin. Therefore,
essentially for the same reasons as for (3.7),

(3.9) P{X ∈ C,A(X) in the full-space process starting at (X, s)}
≤ (cardinality of C)μAP{A in original process}.

For a rather trivial comparison in the other direction we note that if
P{A in P f} = 0 for the full-space process, then we certainly have for each
k ≥ 1 that

0 =P{A in P f , x0 = 0, k particles at x0}(3.10)

= P{A in P f , k particles at 0}

= e−μA
[μA]k

k!
P{A|there are k B-particles at 0 at time 0}.

This implies, via (3.6), that also P{A in original process} = 0.
It is somewhat more complicated to compare P f with the process described

in the abstract if more than one B-particle is introduced at time 0. Rather
than develop general results in this direction we merely show in our first lemma
that it suffices to prove (1.3) for the full-space process.

Lemma 1. If (1.3) holds in P f , then it also holds in the original process
of the abstract with any fixed finite number of B-particles added at time 0.
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Proof. The preceding discussion shows that if (1.3) has probability 1 in
P f , then it has probability 1 in the original process (with one particle added at
the origin at time 0). By translation invariance (1.3) will then have probability
1 in the process of the abstract with one particle added at any fixed site at
time 0.

Lemma C implies that one can couple two processes as in the abstract,
with collections of B-particles A(1) ⊂ A(2) added at time 0, respectively, in such
a way that the process corresponding to A(1) always has no more B-particles
than the one corresponding to A(2). Therefore, if the left-hand inclusion in
(1.3) holds when only one B-particle is added at time 0, then it certainly holds
if more than one B-particles are added.

It follows that we only have to prove the right-hand inclusion in (1.3) for
the process from the abstract with more than one particle added, if we already
know it when exactly one particle is added. Assume first that we run this last
process with one B-particle ρ0 added at z0. We now have to refer the reader to
the genealogical paths introduced in the proof of Proposition 5 of [KSb]. The
right-hand inclusion in (1.3) then says that for all ε > 0

(3.11) P{there exist genealogical paths from z0 to some point

outside (1 + ε)tB0 for arbitrarly large t} = 0.

From the construction of the genealogical paths in Proposition 5 of [KSb] and
the fact that a.s. there are only finitely many B-particles at finite times (see
(2.18) in [KSb]) it is not hard to deduce that

{B̃(t) �⊂ (1 + ε)tB0 at time t if one adds a B-particle ρi(3.12)

at zi, 1 ≤ i ≤ k, at time 0}
= {there is a genealogical path from some zi, 1 ≤ i ≤ k,

to the complement of (1 + ε)tB0 at time t if one

adds a B-particle ρi at zi, 1 ≤ i ≤ k, at time 0}

⊂
k⋃

i=1

{there is a genealogical path from zi to the complement of

(1 + ε)tB0 at time t if one adds a B-particle ρi at zi at time 0}
(the zi do not have to be distinct here). It follows that

P{B̃(t) �⊂ (1 + ε)tB0 for arbitrarily large times t if one(3.13)

adds a B-particle ρi at zi, 1 ≤ i ≤ k, at time 0}

≤
k∑

i=1

P{there are genealogical paths from zi to the complement
of (1 + ε)tB0 at arbitrarily large times t

if one adds a B-particle ρi at zi at time 0}
= 0 (by (3.11)).
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Thus the right-hand inclusion in (1.3) holds a.s., even if one adds k B-particles
at time 0.

We recall that

Ph(u,−r) is short for the (u,−r) half-space process,

P f is short for the full-space process,

and we further introduce

Bh(y, s;u,−r) := {there is a B-particle at (y, s) in Ph(u,−r)},(3.14)

h(t, u,−r) = max{〈x, u〉 : Bh(x, t;u,−r) occurs}.(3.15)

P or will denote the probability measure for the original process (with one
B-particle added at the origin at time 0); Eor is expectation with respect to
P or. (The superscripts h, f and or are added to various symbols which refer to a
half-space process, the full-space process, or the original process, respectively).
We use P without superscript if it is clear from the context with which process
we are dealing or when we are discussing the probability of an event which is
described entirely in terms of the NA(x, 0−) and the paths πA.

The following technical lemma will be useful. It tells us that, with high
probability, Ph(u,−r) moves out in the direction of u at least at the speed C4,
provided r is large enough (see (3.15) and (3.16)). Its proof would be nicer
if we made use of the fact that even the (u, 0) half-space-process has, with a
probability at least 1 − t−K , B-particles at time t at sites x with 〈x, u〉 ≥ Ct,
for some constant C > 0. However, it takes some work to prove this fact and
we decided to do without it.

Lemma 2. Let C1, C2 be as in Theorem A and let

C4 =
2
√

dC1C2

32
√

dC1 + C2

.

For all constants K ≥ 0, there exists a constant r0 = r0(K) ≥ 0 such that for
r ≥ r0

P
{

h(t, u,−r) ≤ C4t for some t ≥ t1 :=
1

4
√

dC1

[
1 +

C2

32
√

dC1

]
r
}
≤ r−K .

(3.16)

Proof. The lemma is proven in three steps. In the first step we intro-
duce exponentially growing sequences of times {tk} and distances {dk}, and
prove that we only need a good bound on the probability that there are no
B-particles in Ph(u,−r) at time tk in S(u, dk) ∩ {x : ‖x‖ ≤ 2C1dk}. In Step 2
we recursively define further events Ek,1−Ek,5 and reduce the lemma to provid-
ing a good estimate for the probability that at least one Ek,i, k ≥ 1, 1 ≤ i ≤ 5,



SHAPE THEOREM FOR SPREAD OF AN INFECTION 713

fails. The required estimates for these probabilities are derived in Step 3. This
last step relies on the left-hand inclusion in (2.2) and on (2.4). Once we know
that there is a B-particle far out in the direction u at time tk−1, or more pre-
cisely a B-particle at some point xk−1 with 〈xk−1, u〉 ≥ dk−1, (2.2) and (2.4)
allow us to conclude that with high probability there is a B-particle at time tk
at some xk with 〈xk, u〉 ≥ dk.

Step 1. For k ≥ 1 define the times

tk =
1

4
√

dC1

[
1 +

C2

32
√

dC1

]k
r,

and the real numbers

dk =
C2

32
√

dC1

[
1 +

C2

32
√

dC1

]k
r.

Also define for each k ≥ 1 the event

(3.17) Dk :=
{
Bh(xk, tk;u,−r) occurs for some xk which

satisfies 〈xk, u〉 ≥ dk and ‖xk‖ ≤ 2C1tk
}
.

In this step we shall reduce the lemma to an estimate for the probability
that Dk fails for some k ≥ 1. Indeed, assume that Dk occurs for all k ≥ 1.
By definition, there is then a B-particle at (xk, tk) in the (u,−r) half-space
process (starting at (0, 0)), so that

h(tk, u,−r) ≥ 〈xk, u〉 ≥ dk =
C2

32
√

dC1

[
1 +

C2

32
√

dC1

]k
r, k ≥ 1.(3.18)

Recall that Ft is defined in the beginning of Section 2. In addition to (3.18),
we have on the event {〈xk, u〉 ≥ dk}, for k ≥ 1,

P{h(t, u,−r) ≤ 1
2
dk for some t ∈ [tk, tk+1)|Ftk

}(3.19)

≤ P{each B-particle in Ph(u,−r) at (xk, tk) moves during

[tk, tk+1] to some site x with 〈x, u〉 ≤ 1
2
dk}

≤ P{ min
q≤tk+1−tk

〈Sq, u〉 ≤ −1
2
dk = −C4tk+1}

≤ K1 exp[−K2tk+1]

for some constants K1, K2 depending on d, DA only; see (2.42) in [KSa] for the
last inequality. It follows that the left-hand side of (3.16) is bounded by

P{Dk fails for some k ≥ 1} +
∞∑

k=1

K1 exp[−K2tk].(3.20)
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Step 2. We shall now derive a recursive bound for ∩1≤j≤kDj . Assume
that ∩1≤j≤k−1Dj occurs for some k ≥ 2. Consider now the full-space process
starting at (xk−1, tk−1). Define the following events for this process:

Ek,1 := {at time tk all occupied sites in

xk−1 + C
(
(C2/2)(tk − tk−1)

)
contain in fact a B-particle},

Ek,2 := {at time tk there is an occupied site in

xk−1 + (C2/4)(tk − tk−1)u + C
(
[log tk]2

)
},

Ek,3 := {all particles in xk−1 + C
(
2C1(tk − tk−1)

)
at time tk−1 started at time 0 in S(u,−r)},

Ek,4 := {there is no B-particle outside xk−1 + C
(
C1(tk − tk−1)

)
during

[tk−1, tk] in the full-space process starting at (xk−1, tk−1)},
Ek,5 := {no particle which is outside xk−1 + C

(
2C1(tk − tk−1)

)
at time tk−1 enters xk−1 + C

(
C1(tk − tk−1)

)
during [tk−1, tk]}.

We claim that on

Dk−1 ∩
⋂

1≤i≤5

Ek,i(3.21)

also Dk occurs, provided r ≥ some suitable r1, independent of k, and k ≥ 2.
We merely need to make sure that

√
d[log tk]2 ≤ (C2/8)(tk − tk−1) whenever

r ≥ r1. To prove our claim when k ≥ 2, observe first that the occurrence
of Ek,1 ∩ Ek,2 guarantees that at time tk there is a B-particle at some xk in
xk−1 + (C2/4)(tk − tk−1)u + C

(
[log tk]2) ⊂ xk−1 + C

(
(C2/2)(tk − tk−1)

)
. Such

a particle automatically satisfies

〈xk, u〉 ≥ 〈xk−1, u〉 +
C2

4
(tk − tk−1) −

√
d[log tk]2 ≥ dk−1 +

C2

8
(tk − tk−1) = dk.

(3.22)

It also satisfies ‖xk‖ ≤ 2C1tk, because ‖xk−1‖ ≤ 2C1tk−1, and on Ek,2, ‖xk‖ ≤
‖xk−1‖+ (C2/4)(tk − tk−1) + [log tk]2, while C2 ≤ C1. This particle at (xk, tk)
is a B-particle in the full-space process starting at (xk−1, tk−1). We are going
to show that, in fact, it is also a B-particle in the (u,−r) half-space process
starting at (xk−1, tk−1). This will prove our claim, because the monotonicity
property of Lemma C implies that any B-particle in the (u,−r) half-space
process starting at (xk−1, tk−1) is also a B-particle in the (u,−r) half-space
process (starting at (0, 0)), provided that there is a B-particle at (xk−1, tk−1)
in the (u,−r) half-space process. (Note that this proviso is satisfied by the
induction assumption that Dk−1 occurred.)

We first observe that the particle at (xk, tk) must at time tk−1 have been
in xk−1+C

(
2C1(tk−tk−1)

)
, because xk ∈ xk−1+C

(
(C2/2)(tk−tk−1)

)
⊂ xk−1+

C
(
(C1/2)(tk−tk−1)

)
and Ek,5 occurs. By virtue of Ek,3 this particle then belongs
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to Ph(u,−r) as well as to the (u,−r) half-space process starting at (xk−1, tk−1).
We still have to show that this particle also has type B in the (u,−r) half-space
process starting at (xk−1, tk−1). To this end we note that the particles starting
outside xk−1 + C

(
2C1(tk − tk−1)

)
at time tk−1 do not influence the type of any

particle at time tk in the full-space process starting at (xk−1, tk−1). Indeed, in
this process the particles outside xk−1 + C

(
2C1(tk − tk−1)

)
start at time tk−1

as A-particles, and since Ek,4 ∩ Ek,5 occurs, these particles do not meet any
B-particle at or before time tk. Thus, whether the particle at (xk, tk) is also
a B-particle in the (u,−r) half-space process starting at (xk−1, tk−1) depends
only on the paths of the particles which were in xk−1 + C

(
2C1(tk − tk−1)

)
at

time tk−1 (compare the lines following (2.37) in [KSb]). All these particles
were particles in Ph(u,−r) at time tk−1 (on Ek,3), and hence also are in this
half-space process at time tk. Thus the type of the particle at (xk, tk) is the
same in the full-space process starting at (xk−1, tk−1) and in the (u,−r) half-
space process starting at (xk−1, tk−1). This justifies our claim that Dk occurs
for k ≥ 2. We leave it to the reader to make some simple modifications in the
above argument to show that D1 occurs on

D0 ∩
⋂

1≤i≤5

E1,i,

where
t0 = 0 and D0 = {‖x0‖ ≤ K3 log r},

provided r1 is chosen large enough; x0 is defined in (3.4) and K3 is chosen right
after (3.26) and depends on K, d and μA only.

We have now shown that on the event (3.21), also, Dk occurs. If this is
the case and also ∩1≤i≤5Ek+1,i occurs, then Dk+1 occurs etc. Consequently, for
r ≥ r1,

(3.23)

P{D0 occurs, but some Dk fails}

≤
5∑

i=1

P{for some x0 with ‖x0‖ ≤ K3 log r, x0 is occupied but E1,i fails}

+
∞∑

k=2

5∑
i=1

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1 and 〈xk−1, u〉 ≥ dk−1,

Bh(xk−1, tk−1;u,−r) occurs, but Ek,i fails}.

Step 3. In this step we shall give most of the estimates for the terms
in the right-hand side here for k ≥ 2. The basic inequalities remain valid for
k = 1 by trivial modifications which we again leave to the reader. For the
various estimates we have to take all tk large. This will automatically be the
case if r is large; we shall not explicitly mention this in the estimates below.
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We start with the estimate for the failure of Ek,1. If Ek,1 fails, for a given
(xk−1, tk−1), then there must be some y ∈ xk−1 +C

(
(C2/2)(tk−tk−1) such that

y is occupied by an A-particle at time tk in the full-space process started at
(xk−1, tk−1). Recall that if we shift the full-space process starting at (x, t) by
(−x,−t) in space-time, then we obtain a copy of the full state process starting
at (0, 0). Moreover, if we condition on the event that x is occupied at time
t, then, after the shift by (−x,−t) the NA(y, 0), y �= 0, are i.i.d. mean μA

Poisson random variables. Therefore, by summing over the possible values for
xk−1,

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1 and 〈xk−1, u〉 ≥ dk−1,

Bh(xk−1, tk−1;u,−r) occurs, but Ek,1 fails}
≤

∑
‖x‖≤2C1tk−1

P{Bh(x, tk−1;u,−r) occurs and in the full-space process started

at (x, tk−1) there is an A-particle in x + C
(
(C2/2)(tk − tk−1)

)
at time tk}

≤
∑

‖x‖≤2C1tk−1

P{0 is occupied at time 0 and in P f there is an A-particle

in C
(
(C2/2)(tk − tk−1)

)
at time tk − tk−1}.

To the right-hand side here we can apply (3.7) (with C = {0}). This shows
that the right-hand side is at most

K4[tk−1]dμAP or{at time tk − tk−1,

there is an A-particle in C
(
(C2/2)(tk − tk−1)

)
}.

The probability in the right-hand side here is calculated for the original process
with one particle added at 0 at time 0. By (2.4) (with K replaced by K +d+2)
this probability is at most 2[tk − tk−1]−K−d−2. Therefore,

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1 and 〈xk−1, u〉 ≥ dk−1,

Bh(xk−1, tk−1;u,−r) occurs, but Ek,1 fails}
≤ 2K4[tk−1]dμA[tk − tk−1]−K−d−2 ≤ K5t

−K−2
k .

It turns out that in the estimates for Ek,2, Ek,3 and Ek,5 we can ignore the
type of the particle at (xk−1, tk−1); we just need that this space-time point is
occupied. For Ek,2 we shift by (−xk−1,−tk), sum over the possible values of
xk−1 and apply (3.7). This gives

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1,

(xk−1, tk−1) is occupied but Ek,2 fails}
≤ K4[tk−1]dμAP{NA(y, 0−) = 0 for all y ∈ (C2/4)(tk − tk−1)u + C([log tk]2)}
≤ t−K−2

k ,

for large r, because the NA(y, 0−) are independent.
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Next, for Ek,3 we use that on Dk−1, the distance between xk−1 +
C
(
2C1(tk − tk−1)

)
and the complement of S(u,−r) is at least

〈xk−1, u〉 + r − 2
√

dC1(tk − tk−1)≥ dk−1 + r − 2
√

dC1(tk − tk−1)

=
1
2
dk−1 + r.

Thus, if we take the restriction 〈xk−1, u〉 ≥ dk−1 into account we find that

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1 and 〈xk−1, u〉 ≥ dk−1,(3.24)

xk−1 is occupied at time tk−1 but Ek,3 fails}
≤

∑
‖x‖≤2C1tk−1
〈x,u〉≥dk−1

∑
y/∈S(u,−r)

∑
z∈x+C

(
2C1(tk−tk−1)

) P{Stk−1 = z − y}

≤ K6t
d
k−1[tk − tk−1]dP{‖Stk−1‖ ≥ 1

2
dk−1 + r}

≤ K7t
2d
k exp

[
− K8

(dk−1 + r)2

tk−1 + dk−1 + r

]
(by (2.42) in [KSa])

≤ t−K−2
k .

The estimate for Ek,4 comes from Theorem A, or rather Theorem 1 in
[KSb], which is the basis for the right-hand inclusion in Theorem A. Indeed,
we have, again by summing over the possible values of xk−1 and using (3.9),

(3.25)

P{for some xk−1 with ‖xk−1‖ ≤ 2C1tk−1, (xk−1, tk−1) is occupied

but Ek,4 fails in the full-space process starting at (xk−1, tk−1)}
≤ K4[tk−1]dμAP or{there are B-particles outside C

(
C1(tk − tk−1)

)
at some time ≤ tk − tk−1}.

To estimate the probability on the right we argue as in the proof of Theorem
3 of [KSb]. If a particle has type B at some time s ≤ tk − tk−1 and is outside
the cube C

(
C1(tk − tk−1)

)
at that time, then by symmetry of the random

walk {S.}, the particle has a conditional probability, given Fs, at least 1/2 of
being outside C

(
C1(tk − tk−1)

)
at time tk − tk−1. Therefore (with Eor denoting

expectation with respect to P or),

Eor{number of B-particles outside C
(
C1(tk − tk−1)

)
at some time during [0, tk − tk−1]}

≤ 2Eor{number of B-particles outside C
(
C1(tk − tk−1)

)
at time tk − tk−1}.

The expectation in the right-hand side here is exponentially small in (tk−tk−1)
by Theorem 1 of [KSb] and is an upper bound for the probability in the right-
hand side of (3.25). Thus the left-hand side of (3.25) is at most O

(
t−K−2
k

)
again.
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The probability involving Ec
k,5 is also O(t−K−2

k ). This can be shown by
large deviation estimates for random walks, analogously to the terms involving
Ec

k,3.
This provides the necessary bounds of the summands in (3.23). Finally,

we have

P{D0 fails}≤P{NA(x, 0−) = 0 for all x with ‖x‖ < K3 log r}(3.26)

= exp
[
− μAK9[K3 log r]d

]
.

Thus we can take K3 = K3(K, d, μA) so large that the left-hand side of (3.26)
is at most r−K−1 for all r ≥ 3. (3.20), (3.26) and (3.23) together now show
that the left-hand side of (3.16) is for large r at most

r−K−1 +
∞∑

k=1

K1 exp[−K2tk] +
∞∑

k=1

K10t
−K−2
k ≤ K11r

−K−1.

For any vector v ∈ Rd, we define

v⊥ = v⊥(u) := v − 〈v, u〉u.

We further introduce the following (semi-infinite) cylinders with axis in the
direction of u, for α, β ∈ R and γ ∈ Rd a vector orthogonal to u (see Figure 1):

Γ(α, β, γ) = Γ(α, β, γ, u) := {x ∈ Rd : 〈x, u〉 ≥ α, ‖x⊥ − γ‖ ≤ β},

and the events

G(α, β, γ,P, t) =G(α, β, γ,P, t, u)

: = {in the process P there is a B-particle in Γ(α, β, γ) at time t}.

The last definition will be used with P taken equal to some half-space, full-
space or the original process.

αu + γ+

u αu

Figure 1: The shaded region represents a cylinder Γ(α, β, γ); it extends to
infinity on the upper right.
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We remind the reader that Ph(u,−r), the (u,−r) half-space process,
only uses particles which at time 0 are in the half-space S(u,−r) =
{x : 〈x, u〉 ≥ −r}. We shall work a great deal with the process Ph

(
u,−C5κ(s)

)
,

where
κ(s) = [(s + 1) log(s + 1)]1/2

and C5 is a constant to be determined below (see the lines following (3.63)).
We make several more definitions:

h∗(s, u) :=h(s, u,−C5κ(s)) = max{〈x, u〉 : Bh
(
x, s;u,−C5κ(s)

)
occurs}(3.27)

= max{〈x, u〉 : x is occupied by a B-particle in

Ph
(
u,−C5κ(s)

)
at time s}.

We order the sites of Zd in some deterministic way, say lexicographically, and
take

(3.28)

�∗(s, u) := the first x in this order for which Bh
(
x, s;u,−C5κ(s)

)
occurs

and which satisfies 〈x, u〉 = h∗(s, u).

Thus, h∗(s, u) is the furthest displacement in the direction of u among the
B-particles in the process Ph(u,−C5κ(s)) at time s, and �∗(s, u) is the first
site occupied by a B-particle in this process at time s on which this maximal
displacement is reached. We shall write m∗(s, u) for [l∗(s, u)]⊥ so that we have
the orthogonal decomposition

�∗(s, u) = h∗(s, u)u + m∗(s, u).(3.29)

The following proposition contains our principal “subadditivity” property.
If we take β = ∞, that is, if we only look at its statement about displace-
ments in the direction of u, then the proposition says that (up to error terms)
the maximal displacement in the direction u at time s + t + C6κ(t) in the
process Ph

(
u,−C5κ(s + t + C6κ(t))

)
is stochastically larger than the sum of

two independent such displacements, which are distributed like the maximal
displacement in Ph

(
u,−C5κ(s)

)
at time s and the maximal displacement in

Ph
(
u,−C5κ(t)

)
at time t, respectively (see Corollary 5 for more details). The

basic idea of the proof (for any value of β) is that if �∗ is a point where
Ph

(
u,−C5κ(s)

)
achieves its maximum displacement in the direction u at time

s, then we can start a new half-space process at time s+C6κ(t) ‘near’ �∗ which
is ‘nearly’ a copy of Ph

(
u,−C5κ(t)

)
and which is ‘nearly’ independent of the

first process Ph
(
u,−C5κ(s)

)
. If we run the second process for t units of time

the sum of the displacements in the direction of u in the first and second pro-
cess is ‘nearly’ a lower bound for the displacement of the original process at
time s + t + C6κ(t).
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Proposition 3. Let u ∈ Sd−1, α ∈ R, β ≥ 0 and γs, γt ∈ Rd orthogonal
to u. For any K > 0 there exist constants 0 < C5 −C8, s0 < ∞, which depend
on K, but are independent of u ∈ Sd−1 and of α, β, γs, γt, such that for

s0 ≤ s ≤ t and t log t ≤ C7s
2,(3.30)

P
{
G
(
α, β, γs + γt,Ph

(
u,−C5κ(s + t + C6κ(t))

)
, s + t + C6κ(t)

)}
(3.31)

≥
∫

h∈R

∫
m∈Rd

P{h∗(s, u) ∈ dh, m∗(s, u) − γs ∈ dm}

× P
{
G
(
α − h, β − d, γt − m,Ph

(
u,−C5κ(t)

)
, t

)}
−C8s

−K−1.

Proof. The constants Ci and s0 will be fixed later. Ki will be used to
denote other auxiliary constants. For the time being we only do manipulations
which do not depend on the specific value of the Ci, Ki.

We break the proof up into four steps, the last one of which is formulated as
a separate lemma which will also be used in the next section. The left-hand side
of (3.31) is the probability that there is a B-particle in a certain semi-infinite
cylinder in the process Ph

(
u,−C5κ(s + t + C6κ(t))

)
at time s + t + C6κ(t).

In the first step we introduce the set A1(s, t) of sites which actually have a
B-particle in the process Ph

(
u,−C5κ(s + t + C6κ(t))

)
at time s + t + C6κ(t).

(3.31) then claims a lower bound on the probability that A1 intersects Γ(α, β,

γs+γt). To prove this lower bound we further introduce in Step 1 a collection of
sites A2(s, t, v), for v ∈ Zd, and show that A1(s, t) ⊃ A2

(
s, t, �∗(s, u)

)
(outside

the event (3.36)) and such that A1(s, t) − �∗(s, u) is ‘at least as large’ as

A3(t) := {x : x is occupied by one or more B-particles at time t in

an independent copy of the process Ph
(
u,−C5κ(t)

)
},

outside an event of probability at most s−K−1. The vector �∗(s, u) is defined in
the beginning of Step 1, and Step 2 formulates the meaning of ‘at least as large’
here as a precise probability estimate. Step 3 and Lemma 4 then prove that
this probability estimate indeed holds. It is for this estimate that the collection
A2(s, t, �∗(s, u)) is used. As we indicated above, we try to approximate the
collection of B-particles in Ph

(
u,−C5κ(s + t + C6κ(t))

)
by the sum of �∗(s, u)

and displacements of a second proces which starts near �∗(s, u) at time s +
C6κ(t). Thus for our approximation to work, there should be a B-particle
at �∗(s, u) at time s which produces a B-particle essentially at �∗(s, u) at
time s + C6κ(t), at which we can start the second process (more precisely,
(3.36) has to hold with high probability). Lemma 4 is used to show that such
B-particles exist with high probability. (Note that �∗(s, u) has a B-particle of
P

(
u,−C5κ(s)

)
at time s.)
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Step 1. Run Ph(u,−C5κ(s)) till time s. Let h∗(s, u) = h ∈ R, �∗(s, u) =
y ∈ Zd. Set y := �y + 4C5κ(t)u� (the meaning of this last notation is that
we take the largest integer for each coordinate separately). Next we run
the (u, 〈y, u〉 + 2C5κ(t)) half-space process starting at the space-time point(
y, s + C6κ(t)

)
for t units of time. This latter half-space process will be

shown to be almost an independent copy of the translate by
(
y, s + C6κ(t)

)
of

Ph
(
u,−C5κ(t)

)
. Define z(s, t) to be the nearest site in Zd to y which is occu-

pied at time s + C6κ(t) by a particle which started at time 0 in the half-space
S

(
u, 〈y, u〉 + 2C5κ(t)

)
. It will be useful to define for general v ∈ Zd

zv = the nearest site on Zd to v := �v + 4C5κ(t)u� which is(3.32)

occupied at time s + C6κ(t) by a particle which started

at time 0 in S
(
u, 〈v, u〉 + 2C5κ(t)

)
.

Thus, zv has the same relation to v as z(s, t) has to y. In particular, zy = z(s, t).
We can now define, still for any v ∈ Zd, the sets

A1(s, t) = {x : x is occupied by one or more B-particles at time(3.33)

s + t + C6κ(t) in the process Ph
(
u,−C5κ(s + t + C6κ(t))

)
},

A2(s, t, v) = {x : x is occupied by one or more B-particles at time

s + t + C6κ(t) in the
(
u, 〈v, u〉 + 2C5κ(t)

)
half-space

process starting at (v, s + C6κ(t)}.
In addition A3(t) was defined just before the start of this step. We stress
that A3 is defined by means of a new copy of all initial data and paths. It is
independent of the processes we have worked with so far.

Our aim is to prove the following two statements, and to show that they
imply (3.31). The first statement is that outside an event of probability at
most s−K−1 it is the case that

A1(s, t) ⊃ A2(s, t, y).(3.34)

The second statment is that

(3.35) A1(s, t) − y is at least as large as A3(t), outside

an event of probability at most s−K−1

(still y = �∗(s, u) in these relations). The relation (3.35) is stated somewhat
imprecisely, but a precise version will be given below (see (3.51)). In this first
step we shall reduce the proofs of (3.34) and (3.35) to a number of probability
estimates.

To begin with the inclusion (3.34), we claim that this holds on the inter-
section of the event

(3.36) {〈y, u〉 ≥ 0} ∩ {z(s, t) is occupied by a B-particle at time

s + C6κ(t) in Ph
(
u,−C5κ(s)

)
}
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with the event (see (3.4) for x0)

{‖x0‖ ≤ K3 log s}.(3.37)

This follows from two applications of the monotonicity property in Lemma C.
Indeed, under (3.37) (and s ≥ s1 for a large enough s1), both the (u,−C5κ(s))
and the

(
u,−C5κ(s+t+C6κ(t))

)
half-space processes begin with B-particles at

x0. One application of the monotonicity property therefore gives us that (under
(3.37)) Ph

(
u,−C5κ(t+s+C6κ(t))

)
has more B-particles than Ph

(
u,−C5κ(s)

)
at each space-time point, and therefore

(3.38) A1(s, t) ⊃ {x : x is occupied by one or more B-particles at time

s + t + C6κ(t) in the process Ph
(
u,−C5κ(s)

)
}.

For the second application we recall that (by definition) z(s, t) is occupied at
time s + C6κ(t) by a particle which started in S

(
u, 〈y, u〉 + 2C5κ(t)

)
, and in

fact is the closest occupied site to y with this property. To run the
(
u, 〈y, u〉+

2C5κ(t)
)

half-space process starting at
(
y, s + C6κ(t)

)
and to find A2(s, t, y)

we first remove all particles which at time 0 were in the half-space {x : 〈x, u〉 <

〈y, u〉 + 2C5κ(t)}. After that, at time s + C6κ(t), we reset to A the types of
all particles not at z(s, t) and give all particles at z(s, t) type B. Note that in
the first step all particles which do not belong to Ph

(
u,−C5κ(s)

)
are removed,

since
−C5κ(s) ≤ 2C5κ(t) ≤ 〈y, u〉 + 2C5κ(t) (on (3.36)).

Thus, at time s + C6κ(t) after both steps, all remaining particles are also in
Ph

(
u,−C5κ(s)

)
, and the particles which have type B, i.e., only the particles

at z(s, t), also have type B in Ph
(
u,−C5κ(s)

)
(still on the event (3.36)). By

virtue of the monotonicity property of Lemma C, at time s + t + C6κ(t), any
B-particle present in the

(
u, 〈y, u〉 + 2C5κ(t)

)
half-space process starting at(

y, s+C6κ(t)
)

is also a B-particle in Ph
(
u,−C5κ(s)

)
. Therefore, on the event

(3.36),

(3.39) A2(s, t, y) ⊂ {x : x is occupied by one or more B-particles at

time s + t + C6κ(t) in the process Ph
(
u,−C5κ(s)

)
}.

Combining (3.38) and (3.39) gives (3.34) on the intersection of the events (3.36)
and (3.37). We postpone the proof that this intersection indeed has probability
at least 1 − s−K−1 to Step 3.

To prepare for the desired precise form of (3.35) we shall prove that there
exist constants K1 and s2 such that for t ≥ s ≥ s2, Λ any nonrandom subset
of Zd, and any fixed v ∈ Zd,

P{A2(s, t, v) intersects Λ} ≥ P
{(

v + A3(t)
)

intersects Λ
}
− K1t

−K−d−1.

(3.40)
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To prove this inequality we remind the reader that A2(s, t, v) is the collection
of sites where B-particles are present at time s+t+C6κ(t), if one starts at time
s+C6κ(t) in the state obtained by removing the particles which started outside
S

(
u, 〈v, u〉+2C5κ(t)

)
at time 0, and by resetting all particles not at zv to type

A, while setting the type of the particles at zv to B. To find the distribution
of A2(s, t, v) we must first describe the state at time s + C6κ(t) (after the
removal of particles and resetting of types) in more detail. First let us look
how many particles there are at the various sites, irrespective of their type. We
began at time 0 with NA(w, 0−) particles at w, for w ∈ S

(
u, 〈v, u〉+ 2C5κ(t)

)
and with 0 particles at any w outside S

(
u, 〈v, u〉 + 2C5κ(t)

)
. The NA(w, 0−)

are i.i.d. mean μA Poisson random variables. We let these particles perform
their random walks till time s + C6κ(t). Let us write N̂

(
w, s + C6κ(t)

)
for the

number of particles (of either type) at w at this time. By properties of the
Poisson distribution, all the N̂

(
v+w, s+C6κ(t)

)
, w ∈ Zd, are still independent

Poisson variables, but

(3.41) EN̂
(
v + w, s + C6κ(t)

)
=

∑
w′∈S

(
u,〈v,u〉+2C5κ(t)

) μAP{Ss+C6κ(t) = v + w − w′} =: ν(v, w, s, t).

Now, zv is the nearest lattice point to v which is occupied by some particle at
time s+C6κ(t). We then reset all particles not at zv to type A, and the ones at
zv to type B. If we shift everything by

(
− v,−s−C6κ(t)

)
(i.e., move (w, r) to(

w−v, r− s−C6κ(t)
)
), then, at (w, 0) we have M(w) := N̂

(
v +w, s+C6κ(t)

)
particles, all of which will be reset to type A, except those at a0 := the nearest
lattice site to the origin with M(w) > 0. In fact, a0 = zv − v. The M(w)
are independent Poisson variables, and M(w) has mean ν(v, w, s, t). It follows
from the definition of A2(s, t, v) and of the

(
u, 〈v, u〉 + 2C5κ(t)

)
half-space

process started at
(
v, s + C6κ(t)

)
that A2(s, t, v) − v has the distribution of

{x : there is a B-particle at x at time t in this shifted system}.(3.42)

For the w ∈ S
(
u,−C5κ(t)

)
, the means ν(v, w, s, t) are close to μA. In fact, it

follows from (3.41) that for t ≥ t0∨s, for some t0 (independent of v, w, u), and
for w ∈ S

(
u,−C5κ(t)

)
,

μA ≥ ν(v, w, s, t)≥μA

[
1 −

∑
w̃:〈w̃,u〉≥C5κ(t)−d

P{Ss+C6κ(t) = w̃}
]

(3.43)

= μA

[
1 − P{〈Ss+C6κ(t), u〉 ≥ C5κ(t) − d}

]
≥μA

[
1 − K2 exp[−K3C

2
5 log t]

]
.

for some constants K2, K3 that depend on d, D only (see (2.42) in [KSa] and
the definition of κ and recall that we assume (3.30)). From now on we take C5
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so large that for large t

μA[1 − t−K−2d−1] ≤ ν(v, w, s, t) ≤ μA for all w ∈ S
(
u,−C5κ(t)

)
.(3.44)

It suffices for this that K3C
2
5 ≥ K+2d+2. We may have to raise C5 in the proof

of (3.54) and (3.65) in Step 3, but that can only improve the present estimates.
With such a choice of C5 the distribution of the particle numbers {M(w) : w ∈
S

(
u,−C5κ(t)

)
∩ C(3C1t)} differs in total variation from the distribution of an

i.i.d. collection of mean μA Poisson variables on S
(
u,−C5κ(t)

)
∩ C(3C1t) by

at most ∑
w∈S

(
u,−C5κ(t)

)
∩ C(3C1t)

μAt−K−2d−1 ≤ K4t
−K−d−1(3.45)

for some constant K4 = K4(μA, d).
Now consider an auxiliary process which starts at time 0 with NA(w, 0−)

particles only at the vertices w ∈ S
(
u,−C5κ(t)

)
∩ C(3C1t), and with no par-

ticles outside this set. Let b0 be the nearest vertex in S
(
u,−C5κ(t)

)
to the

origin with NA(b0, 0−) > 0. (In the beginning of this section this vertex was
denoted by w−C5κ(t)(0, 0), but for the present argument the simpler notation b0

is preferable.) Take the type of all particles not at b0 equal to A and the type
of the particles at b0 equal to B. If b0 lies outside S

(
u,−C5κ(t)

)
∩ C(3C1t),

then this auxiliary process has never any B-particles. On the other hand,
if b0 ∈ S

(
u,−C5κ(t)

)
∩ C(3C1t), then the auxiliary process is obtained from

Ph
(
u,−C5κ(t)

)
by removing at time 0 all particles in S

(
u,−C5κ(t)

)
\C(3C1t).

Finally, let

A4(t) = {x : there is a B-particle at x at time t in this auxiliary system}.

From our considerations above (in particular (3.42), (3.45)) we have that

P{A2(s, t, v) intersects Λ} ≥ P{v + A4(t) intersects Λ} − K4t
−K−d−1.

(3.46)

Indeed, were it not for the fact that NA(w, 0−) is a Poisson variable of mean
μA instead of ν(v, w, s, t), the auxiliary system would be obtained from the
system in which A2(s, t, v) is computed by translation by

(
− v,−s − C6κ(t)

)
and by removing the particles outside S

(
u,−C5κ(t)

)
∩ C(3C1t). The term

−K4t
−K−d−1 corrects for increasing the mean from ν(v, w, s, t) to μA.

To come to (3.40) we still want to prove the inequality

P{v + A4(t) intersects Λ} ≥ P{v + A3(t) intersects Λ} − K5t
−K−d−1.

(3.47)

This follows from the fact that if, in Ph
(
u,−C5κ(t)

)
, all B-particles stay inside

C(2C1t) during [0, t], and no particle which starts outside C(3C1t) at time 0
enters C(2C1t) during [0, t], then the particles which start outside C(3C1t) do
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not interact with any particle, and do not cause the creation of any B-particles
during [0, t] (compare the argument for (2.36) in [KSb]). In these circumstances
Ph

(
u,−C5κ(t)

)
has no more B-particles at time t than the auxiliary process,

which is obtained by removing the particles which start outside C(3C1t) at
time 0, as described above. Therefore

(3.48)∣∣P{v + A4(t) intersects Λ} − P{v + A3(t) intersects Λ
∣∣

≤ P{b0 /∈ S
(
u,−C5κ(t)

)
∩ C(3C1t)}

+P{in Ph
(
u,−C5κ(t)

)
some B-particles leave C(2C1t) during [0, t]}

+P{in Ph
(
u,−C5κ(t)

)
some particles which start outside C(3C1t)

enter C(2C1t) during [0, t]}.
The first term in the right-hand side here is trivially o(t−K−d−1) (compare
(3.26)).

To estimate the second term in the right-hand side of (3.48) we shall derive
the more general bound

(3.49)
P{in Ph

(
u,−C5κ(t)

)
some B-particles leave C(α) during [0, α/(2C1)]}

≤ K6 exp[−α/(2C1)], α ≥ 0.

To this end, we remind the reader that b0 is the nearest vertex to the origin in
S

(
u,−C5κ(t)

)
which is occupied at time 0. By the monotonicity property of

Lemma C, on the event {b0 = w}, all B-particles in Ph
(
u,−C5κ(t)

)
are also

B-particles in the full-space process started at (w, 0). Therefore, the left-hand
side of (3.49) is bounded by

P{b0 /∈ C(α/2)}
+

∑
w∈C

(
α/2

) P
{
w is occupied at time 0 and in the full-space process starting

at (w, 0) there is a B-particle outside C(α/2)
at some time during

[
0, α/(2C1)

]}
≤ P{b0 /∈ C(α/2)} + K7(α + 1)dμAP or{there is a B-particle

outside C(α/2) during
[
0, α/(2C1)

]
}

(by (3.9)).

In turn, by the argument following (3.25), the far right side here is bounded
by

P{b0 /∈ C(α/2)}
+2K7(α + 1)dμAEor{number of B-particles outside C

(
α/2

)
at time α/(2C1)

]
}.
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The first term in the right-hand side here is at most exp[−K8α
d], and the

second term is at most 2K7(α + 1)dμA exp[−α/(2C1)], by virtue of Theorem 1
in [KSb]. Thus (3.49) holds.

The third term in the right-hand side of (3.48) is at most

(3.50)
∑

w/∈C(3C1t)

E{NA(w, 0−)}P{sup
r≤t

‖Sr‖ ≥ ‖w‖ − 2C1t}

≤
∑

w/∈C(3C1t)

8dμA exp[−K7‖w‖] ≤ K9t
d−1 exp[−K10C1t]

(see (2.42) in [KSa]). Thus (3.47) and (3.40) hold.

Step 2. We wish to prove the following precise version of (3.35): for
t ≥ s ≥ s0, t log t ≤ C7s

2 and for some constant K11, independent of s, t, u,

(3.51) P{A1(s, t) intersects Λ}
≥ P

{(
�∗(s, u) + A3(t)

)
intersects Λ

}
− K11s

−K−1.

To this end we define the following events for any vector v ∈ Zd:

I1(v) :=
{

during [0, s] in the process Ph
(
u,−C5κ(s)

)
all the B-particles

stay in the set C(2C1s) ∩ {x : 〈x, u〉 < 〈v, u〉 + C5κ(t)}
}

,

I2(v) :=
{

none of the particles which were at time 0 in the half-space

S
(
u, 〈v, u〉 + 2C5κ(t)

)
= {x : 〈x, u〉 ≥ 〈v, u〉 + 2C5κ(t)} enters

the set C(2C1s) ∩ {x : 〈x, u〉 < 〈v, u〉 + C5κ(t)} during [0, s]
}

.

The following independence property is crucial for our argument: Let J (v)
be an event which depends only on v ∈ Zd and the particles which start in
S

(
u, 〈v, u〉 + 2C5κ(t)

)
at time 0, and the paths of these particles. Then

P{�∗(s, u) = v, I1(v), I2(v),J (v)}(3.52)

= P{�∗(s, u) = v, I1(v), I2(v)}P{J (v)|I2(v)}.
The important feature here is that in the last conditional probability v is a
constant, without relation to �∗(s, u). To see (3.52) we note that in the event
I1 ∩ I2 none of the particles which start in S

(
u, 〈v, u〉 + 2C5κ(t)

)
coincides

with any B-particle during [0, s]. Therefore, changing the paths of any of the
particles which start in S

(
u, 〈v, u〉+ 2C5κ(t)

)
has no influence on the types of

any of the other particles during [0, s] (and of course no influence on the paths
of these other particles), as long as we stay on I1 ∩ I2 (compare the argument
for (2.36) in [KSb]). In particular,

P{�∗(s, u) = v, I1(v)|I2(v),J (v)} = P{�∗(s, u) = v, I1(v)|I2(v)}.
This is clearly equivalent to (3.52).
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We take
J (v) = {A2(s, t, v) intersects Λ},

where Λ is some nonrandom set in Zd. By definition, A2(s, t, v) depends only
on v and the particles which start in the half-space S

(
u, 〈v, u〉+2C5κ(t)

)
. Thus

also J (v) depends only on v and this last collection of particles and their paths.
(This is true despite the fact that we talk about B-particles in the definition
(3.33). Indeed, these are B-particles in (u, 〈v, u〉+2C5κ(t)

)
half-space process,

started at
(
v, s + C6κ(t)

)
, and the types of these particles are reset at time

s + C6κ(t) and after that do not depend on particles which started outside
S

(
u, 〈v, u〉+ 2C5κ(t)

)
.) With this choice of J we obtain from (3.52) for every

fixed v,

P{�∗(s, u) = v, I1(v), I2(v), A2(s, t, v) intersects Λ}(3.53)

≥P{�∗(s, u) = v, I1(v), I2(v)}
×

[
P{A2(s, t, v) intersects Λ} − P{Ic

2(v)}
]+

.

We shall show in Step 3 that for suitable choice of constants 0 < Ki =
Ki(K, d) < ∞, independent of s, u and v, it is the case that for the process
Ph

(
u,−C5κ(s)

)
P{�∗(s, u) ∈ C(2C1s), Ic

1(�
∗(s, u))} ≤ K12s

−K−1,(3.54)

P{Ic
2(v)} ≤ K12s

−K−d−1,(3.55)

and

P{(3.36) (with y = �∗(s, u)) fails or (3.37) fails} ≤ K12s
−K−1.(3.56)

In the remainder of this step we only show how to complete the proof of (3.51)
and the proposition from the estimates (3.54)–(3.56). To this end we apply
(3.53). By using (3.53), (3.55), (3.40) and t ≥ s, we get

P{�∗(s, u) = v, A2(s, t, �∗(s, u)) intersects Λ}(3.57)

≥ P{�∗(s, u) = v, I1(v), I2(v), A2(s, t, v) intersects Λ}
≥

[
P{�∗(s, u) = v} − P{�∗(s, u) = v, Ic

1(v)} − P{�∗(s, u) = v, Ic
2(v)}

]
×

[
P{A2(s, t, v) intersects Λ} − P{Ic

2(v)}
]+

≥ P{�∗(s, u) = v}P{A2(s, t, v) intersects Λ}
−P{�∗(s, u) = v, Ic

1(v)} − 2K12s
−K−d−1

≥ P{�∗(s, u) = v}P{v + A3(t) intersects Λ}
−P{�∗(s, u) = v, Ic

1(v)} − (2K12 + K1)s−K−d−1.

Now recall that A1(s, t) ⊃ A2

(
s, t, �∗(s, u)

)
in the intersection of (3.36) and

(3.37). Summing (3.57) over all v ∈ C(2C1s), and using (3.54) and (3.56),
therefore give
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P{A1(s, t) intersects Λ and (3.36), (3.37) occur}(3.58)

≥ P{A2(s, t, �∗(s, u)) intersects Λ} − P{(3.36) or (3.37) fails}

≥
∑

v∈C(2C1s)

P{�∗(s, u) = v}P{v + A3(t) intersects Λ} − K13s
−K−1.

Finally, since �∗(s, u) is the location of a B-particle at time s in Ph
(
u,−C5κ(s)

)
,

we have, essentially as in the estimate for P{Ec
k,4} in (3.25) and the lines fol-

lowing it, or the estimate of the second term in the right-hand side of (3.48)

P{�∗(s, u) /∈ C(2C1s)} ≤ P{‖x0‖ > C1s ∧ C5κ(s)/
√

d}(3.59)

+
∑

‖x‖≤C1s

μAP or{there is a B-particle outside C(C1s) at time s}

≤ K14s
−K−1.

Consequently

(3.60) P{A1(s, t) intersects Λ}

≥
∑
v∈Zd

P{�∗(s, u) = v}P{v + A3(t) intersects Λ} − (K13 + K14)s−K−1.

This is the desired (3.51).
(3.31) is just the special case of (3.60) with Λ = Γ(α, β, γs + γt). Indeed,

{A1(s, t) intersects Λ} is the event that there is a B-particle in Λ at time
s+t+C6κ(t) in the process Ph

(
u,−C5κ(s+t+C6κ(t))

)
. For Λ = Γ(α, β, γs+γt)

this event is also denoted by G
(
α, β, γs + γt,Ph

(
u,−C5κ(s + t + C6κ(t))

)
, s +

t + C6κ(t)
)
. Thus, the left-hand sides of (3.31) and (3.60) are the same for

this choice of Λ. We leave it to the reader to check that the right-hand side of
(3.60) is at least as large as the right-hand side of (3.31), provided we choose
C8 ≥ K13 + K14.

Step 3. Here we prove the relations (3.54)–(3.56). Note that (3.56) also
supplies the missing estimates for (3.34), to wit, P{(3.36) and (3.37) hold}
≥ 1 − s−K−1.

Now we start on (3.54). First

(3.61) P{in Ph
(
u,−C5κ(s)

)
some B-particle leaves C(2C1s) during [0, s]}

= O
(
s−K−d−1

)
(see (3.49)). In addition, by definition of �∗(s, u), 〈�∗(s, u), u〉 = h

(
s, u,−C5κ(s)

)
.

Thus, if we also take into account that s ≤ t,
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(3.62)

P
{
in Ph

(
u,−C5κ(s)

)
, during [0, s] all B-particles stay in C(2C1s), but some

of them leave {x : 〈x, u〉 < 〈�∗(s, u), u〉 + C5κ(t)}
}

≤ P
{
in Ph

(
u,−C5κ(s)

)
, at some time r ≤ s there are

B-particles at some v ∈ C(2C1s) with

〈v, u〉 ≥ max{〈x, u〉 : there is a B-particle at x at time s} + C5κ(s)
}
.

This last event can happen only if some B-particle reaches a vertex v ∈ C(2C1s)
before time s and then this particle moves to some x at time s with 〈x, u〉 <

〈v, u〉 − C5κ(s). The probability that such a particle started outside C(3C1s)
is bounded by the third term in the right-hand side of (3.48), with t replaced
by s. Therefore, the right-hand side of (3.62) is at most

(third term in right-hand side of (3.48) with t replaced by s)(3.63)

+
∑

w∈C(3C1s)

E{NA(w, 0−)P{ sup
0≤r1,r2≤s

‖Sr1 − Sr2‖ ≥ C5κ(s)/
√

d}

≤ K9s
d−1 exp[−K10C1s] + K15(3C1s)d exp[−K16C

2
5 log s],

by (3.50) and by (2.42) in [KSa]. Together with (3.61) this proves that we can
take C5 so large that (3.54) holds. As observed after (3.44) we can even choose
C5 so that (3.44) is also valid. Once we have chosen C5 we fix

C6 =
16C5

C2
.(3.64)

As for (3.55), we have

P{Ic
2(v)}≤

∑
w∈S(u,〈v,u〉+2C5κ(t))

E{NA(w, 0−}(3.65)

×P{sup
r≤s

‖Sr‖ ≥ C5κ(t) ∨
(
‖w‖ − 2C1s

)
}.

We leave it to the reader to show that this is O
(
s−K−d−1

)
for t ≥ s and large

enough C5 (again by (2.42) in [KSa]).
Finally, to prove (3.56), we note first that P{(3.37) fails} = O(s−K−1),

provided K3 = K3(μA, d) is taken large enough, just as in (3.26). Next,

P{〈�∗(s, u), u〉 < 0}=P{h
(
s, u,−C5κ(s)

)
< 0}(3.66)

≤P{h
(
s, u,−C5κ(s)

)
≤ C4s}

≤ [C5κ(s)]−2K−2 ≤ s−K−1

for large s, by virtue of Lemma 2 with K replaced by 2K + 2. Lastly, we have
to show that for the choice of C6 in (3.64)
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P{z(s, t) is not occupied by a B-particle in(3.67)

Ph
(
u,−C5κ(s)

)
at time s + C6κ(t)}

≤ P{z(s, t) is not occupied by a B-particle in Ph
(
u,−C5κ(s)

)
at time s + C6κ(t), but z(s, t) ∈ �∗(s, u) + C(C2C6κ(t)/2}

+P{z(s, t) /∈ �∗(s, u) + C(C2C6κ(t)/2}
= O

(
s−K−1

)
.

The first inequality here is obvious. The bound O(s−K−1) for the middle mem-
ber of (3.67) is formulated as a separate lemma, because the same argument
will be needed once more in the next section. To see that (3.67) follows from
Lemma 4 below, recall that z(s, t) is occupied at time s + C6κ(t) by some
particle which started at time 0 in S

(
u, 〈�∗(s, u), u〉+2C5κ(t)

)
(see a few lines

before (3.32)). In particular there is some particle at z(s, t) at time s+C6κ(t),
so that z(s, t) is occupied in P f at time s + C6κ(t). Also, �∗(s, u) is occupied
by at least one B-particle in Ph

(
u,−C5κ(s)

)
at time s. So Lemma 4 with

s̃ = s + C6κ(t) and y(s) = �∗(s, u) (and C6 as in (3.64)) shows that the middle
member of (3.67) is at most

P{�∗(s, u) /∈ C(2C1s)}+P{〈�∗(s, u), u)〉 < C4s/2} + 5s−K−1(3.68)

+P{z(s, t) /∈ �∗(s, u) + C
(
C2C6κ(t)/2

)
}.

Note that we used the second part of condition (3.30) here; we have to choose
C7 small enough to make sure that (3.71) holds for s̃ − s = C6κ(t). The first
two terms in (3.68) are O(s−K−1), by virtue of (3.61) and (3.66). The fourth
term is bounded by

(3.69)

P{z(s, t) /∈ �∗(s, u) + C(C2C6κ(t)/2)} ≤ P{‖z(s, t) − �∗(s, u)‖ > 4C5κ(t) − 1}
(because C2C6/2 = 8C5 and ‖�∗(s, u) − �∗(s, u)‖ ≤ 4C5κ(t)) + 1)

≤ P{�∗(s, u) /∈ C(2C1s)} + P{�∗(s, u) ∈ C(2C1s), and none of the sites

in �∗(s, u) + C
(
4C5κ(t) − 1

)
are occupied at time s + C6κ(t) by

a particle which started in S(u, 〈�∗(s, u), u〉 + 2C5κ(t))}.
We already saw in (3.59) that the first term in the right-hand side is O

(
s−K−1

)
.

As for the second term in the right-hand side, this is by a decomposition with
respect to the possible values of �∗(s, u), analogously to (3.9), at most

(3.70)
K17

∑
v∈C(2C1s)

P{none of the sites in v + C
(
4C5κ(t) − 1

)
is occupied at time

s + C6κ(t) by a particle which started in S
(
u, 〈v, u〉 + 2C5κ(t)

)
}.

However, the numbers of particles at sites v + w at time s + C6κ(t) which
started in S(u, 〈v, u〉+2C5κ(t)) are independent Poisson variables with means
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ν(v, w, s, t) given in (3.41). By the estimate (3.43) we have ν(v, w, s, t) ≥ μA/2
for 〈w, u〉 ≥ 0 and all v (and t large enough). Therefore (3.70) is at most
K18s

d exp[−K19κ
d(t)μA]. This proves the bound O

(
s−K−1

)
in (3.67), and

therefore (3.56) is reduced to the next lemma.
Roughly speaking, the next lemma guarantees that if a certain vertex y(s)

has a B-particle in the half-space process Ph
(
u,−C5κ(s)

)
at a time s, then

a little later all occupied sites ‘near’ y(s) will actually have a B-particle in
Ph

(
u,−C5κ(s)

)
.

Lemma 4. Let s, s̃ be such that

16C5

C2
κ(s) ≤ s̃ − s ≤ C4

8C1
s.(3.71)

Let u ∈ Sd−1 be fixed and let y(s) ∈ Zd be a random point (that is, y(s) may
depend on the sample point σ). Define the event K(y) by

K(y) := {there exists a site z ∈ y + C
(
C2(s̃ − s)/2

)
such that(3.72)

at time s̃, z is occupied in P f , but is not occupied

by a B-particle in Ph
(
u,−C5κ(s)

)
}.

Then for each K > 0 there exists an s1 = s1(K) (independent of u) such that

P{Bh
(
y(s), s;u,−C5κ(s)

)
∩ K(y(s))}(3.73)

≤ P{y(s) /∈ C(2C1s)} + P{〈y(s), u〉 <
1
2
C4s} + 5s−K−1

for s ≥ s1 (see (3.14) for Bh).

Proof. Assume that the space-time point (y, s) is occupied by some
particle in Ph

(
u,−C5κ(s)

)
. We can then define the following auxiliary events:

K1(y) := {there exists a site z ∈ y + C
(
C2(s̃ − s)/2

)
such that (z, s̃)

is occupied in P f , but is not occupied in Ph(u,−C5κ(s))},
K2(y) := {there exists a site z ∈ y + C

(
C2(s̃ − s)/2

)
such that (z, s̃)

is occupied by an A-particle in the full-space process

starting at (y, s)},
K3(y) := {there exists a site z ∈ y + C

(
C2(s̃ − s)/2

)
such that (z, s̃)

is occupied by a B-particle in the full-space process starting

at (y, s), but occupied by an A-particle in the (u,−C5κ(s))

half-space process starting at (y, s)},
K4(y) := {in the full-space process starting at (y, s) some B-particles

leave y + C
(
2C1(s̃ − s)

)
during [s, s̃]},
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K5(y) := {some particles which start outside S
(
u,−C5κ(s)

)
at time 0

enter y + C
(
2C1(s̃ − s)

)
during [s, s̃]}.

We shall first show that

Bh
(
y, s;u,−C5κ(s)

)
∩ K(y) ⊂

3⋃
i=1

Ki(y) and K3(y) ⊂ K4(y) ∪ K5(y),(3.74)

and then estimate P{y(s) ∈ C(2C1s), 〈y(s), u〉 ≥ C4s/2,Ki(y(s))} for 1 ≤
i ≤ 5. To prove the first part of (3.74), consider a sample point for which
Bh

(
y, s;u,−C5κ(s)

)
∩K(y) occurs and let z be a site in y+C

(
C2(s̃−s)/2

)
such

that (z, s̃) is occupied in P f , but is not occupied by a B-particle
in Ph

(
u,−C5κ(s)

)
. Then it may be that (z, s̃) is not occupied at all in

Ph
(
u,−C5κ(s)

)
. This would mean that K1(y) occurs. If this fails, then (z, s̃) is

occupied in Ph
(
u,−C5κ(s)

)
, necessarily by an A-particle. We claim that (z, s̃)

is then also occupied by an A-particle in the
(
u,−C5κ(s)

)
half-space process

starting at (y, s). This is so, because starting at (y, s) does not remove any
particles, but it may change some types. But on Bh

(
y, s;u,−C5κ(s)

)
, y has

already at least one B-particle at time s in Ph(u,−C5κ(s)
)
. Thus the resetting

at time s only changes some types from B to A, and since z already has type
A at time s̃ in Ph

(
u,−C5κ(s)

)
, it will (by Lemma C) also have type A at time

s̃ in the
(
u,−C5κ(s)

)
half-space process started at (y, s), as claimed. Also,

(z, s̃) is occupied in the full-space process starting at (y, s) (since it is occupied
in the full-space process, starting at (0, 0)). The type at (z, s̃) in this process
may be A, in which case K2(y) occurs, or B, in which case K3(y) occurs. This
proves the first inclusion in (3.74).

The second part of (3.74) follows from the argument given for (3.47).
K3(y) requires that at time s̃ there are particles in y+C

(
C2(s̃−s)/2

)
which have

different types in the full-space and in the (u,−C5κ(s)) half-space process, both
starting at (y, s). This means that in the full-space process starting at (y, s)
the type of some particle which is in y + C

(
C2(s̃− s)/2

)
at time s̃ is influenced

by particles which started outside S
(
u,−C5κ(s)

)
at time 0. However, this can

happen only if in the full-space process starting at (y, s), these particles meet
some B-particles during [s, s̃]. In turn, this can happen only if K4(y) or K5(y)
occurs. This proves the second inclusion in (3.74).

Our next task is to find bounds for

P{y(s) ∈ C(2C1s), 〈y(s), u〉 ≥ C4s/2,Bh
(
y(s), s;u,−C5κ(s)

)
,Ki

(
y(s)

)
},

when i = 1, 2, 4, 5. For i = 1 we have

P{y(s) ∈ C(2C1s), 〈y(s), u〉 ≥ C4s/2,K1(y(s))}(3.75)

≤
∑

w/∈S
(
u,−C5κ(s)

)
∑

〈z,u〉≥C4s/2−C2(s̃−s)/2

z∈C
(

(2C1+C4)s

) ENA(w, 0−)P{w + Ss̃ = z}
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≤
∑

w∈C
(
(4C1+2C4)s

) μAP{‖Ss̃‖ ≥ C4s/(4
√

d)}

+
∑

w/∈C
(
(4C1+2C4)s

) μAP{‖Ss̃‖ ≥ ‖w‖/2} ≤ s−K−1

for all s ≥ some s1 = s1(K). In the first inequality we used ‖z‖ ≤ ‖z − y(s)‖
+ ‖y(s)‖ ≤ C2(s̃ − s)/2 + 2C1s ≤ (2C1 + C4)s, by virtue of (3.71) and the
inequality C2 ≤ C1 (see Theorem A). In the second inequality we used that
for the summands here ‖w − z‖ ≥ 〈(z − w), u〉/

√
d ≥ [C4s/2 − C2(s̃ − s)/2 +

C5κ(s)]/
√

d ≥ C4s/(4
√

d). For the third inequality we use s̃ ≤
(
1+C4/(8C1)

)
s

plus (2.42) in [KSa]; compare (3.24).
Next, we remind the reader that P or is the probability measure governing

the original model, in which one B-particle is added at the origin at time 0.
In this notation we have, by (3.9) and (2.4),

P{y(s) ∈ C(2C1s),Bh
(
y(s), s;u,−C5κ(s)

)
,K2(y(s))}(3.76)

≤ K20s
dP or{there exists a z ∈ C

(
C2(s̃ − s)/2

)
which is

occupied by an A-particle at time s̃ − s}
≤ 2s−K−1.

Again by (3.9)

(3.77)

P{y(s) ∈ C(2C1s),Bh
(
(y(s), s;u,−C5κ(s)

)
,K4(y(s))}

≤ K20s
dP or{some B-particles leave C

(
2C1(s̃ − s)

)
during [0, s̃ − s]}

≤ s−K−1 (by the argument for (3.49) or Theorem 1 in [KSb]).

Finally,

(3.78)

P{y(s) ∈ C(2C1s), 〈y(s), u〉 ≥ C4s/2,Bh
(
(y(s), s;u,−C5κ(s)

)
,K5(y(s))}

≤
∑

w:〈w,u〉<−C5κ(s)

∑
v∈C

(
(2C1+C4)s

)
〈v,u〉≥C4s/4

ENA(w, 0−)P{w + Sr = v for some r ≤ s̃}

≤ μA

∑
w∈C

(
(4C1+2C4)s

) P{ sup
r≤

(
1+C4/(8C1)

)
s

‖Sr‖ ≥ C4s/(4
√

d)}

+μA

∑
w/∈C

(
(4C1+2C4)s

)
∑

v∈C
(
(2C1+C4)s

) P{ sup
r≤

(
1+C4/(8C1)

)
s

‖Sr‖ ≥ ‖w/2‖}

≤ s−K−1 (by (2.42) in [KSa])).

Together with (3.74) these estimates prove (3.73).
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Corollary 5. For every unit vector u there exists a constant λ(u) ∈
[C4, 2

√
dC1] such that

lim
t→∞

1
t
h∗(t, u) = λ(u) almost surely and in Lp for all p > 0(3.79)

(t runs through the reals here). Moreover, for each η > 0 there exist an ex-
ponentially increasing sequence {n1 < n2 < . . . } = {n1(η) < n2(η) < . . . }
(independent of u) and a constant ζ = ζ(η) > 0 such that

1 + ζ <
nj+1

nj
≤ 1 + η, j ≥ 1,(3.80)

and such that for every ε > 0,
∞∑

k=0

P
{∣∣∣ 1

nk
h∗(nk, u) − λ(u)

∣∣∣ > ε
}

< ∞.(3.81)

Proof. The basis for this proof is (3.31) with β = ∞. Since Γ(α,∞, γ, u) =
{x ∈ Rd : 〈x, u〉 ≥ α} = S(u, α), we have

G(α,∞, γ,P, t)

= {in P, at time t, there is a B-particle at some x with 〈x, u〉 ≥ α}.
In particular

G
(
α,∞, γ,Ph(u,−C5κ(s + t + C6κ(t)), s + t + C6κ(t)

)
= {h

(
s + t + C6κ(t), u,−C5κ(s + t + C6κ(t))

)
≥ α}

= {h∗(s + t + C6κ(t), u) ≥ α}.
Similarly,

G
(
α,∞, γ,Ph

(
u,−C5κ(t)

)
, t

)
= {h∗(t, u) ≥ α}.

Thus, (3.31) with β = ∞ says that, under (3.30),

P{h∗(s + t + C6κ(t), u) ≥ α} ≥ P{h∗
1(s, u) + h∗

2(t, u) ≥ α} − C8s
−K−1,

(3.82)

where h∗
1(s, u) and h∗

2(t, u), are independent copies of h∗(s, u) and h∗(t, u),
respectively.

The corollary will be derived from this relation by more or less standard
subadditivity techniques. To apply these techniques we first derive some simple
properties of h∗(s, u). Note that these properties hold as soon as s, t ≥ s0; the
rest of the condition (3.30) is not needed. The first is the following tail estimate:

P{h∗(s, u) ≥ α} + P{‖m∗(s, u)‖ ≥ α} ≤ exp[−K1α] for α ≥ 2
√

dC1s.(3.83)

The second property is an estimate for the negative tail of h∗(s, u):

P{h∗(s, u) ≤ −α} ≤ K2 exp
[
− K3α

2

s + α

]
for α ≥ 0.(3.84)
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We remind the reader that we also have the bound (3.66) for P{h∗(s, u) ≤
C4s}, which for small α is better than (3.84). The third and fourth property
are semi-continuity properties in s, namely

(3.85) P{inf
r≤t

h∗(s + r, u) − h∗(s, u) ≤ −α}

≤ K4s
−K + P{‖ sup

r≤t
Sr‖ ≥ α} ≤ K4s

−K + 8d exp
[
− K3α

2

t + α

]
, α ≥ 0,

and

(3.86) P{sup
r≤t

h∗(s + r, u) − h∗(s + t, u) ≥ α}

≤ K4s
−K + K5(s + t)d exp

[
− K3α

2

t + α

]
, α ≥ 0.

To prove (3.83) take α ≥ 2
√

dC1s. Since 〈x, u〉 ≤ ‖x‖2 ≤
√

d‖x‖, as well
as ‖x⊥‖ ≤ ‖x‖2 ≤

√
d‖x‖, the left-hand side of (3.83) is bounded by

2P{in Ph
(
u,−C5κ(s)

)
there is a B-particle outside C(α/

√
d)(3.87)

at some time during [0, s] ⊂
[
0, [2

√
dC1]−1α

]
}.

The inequality (3.83) now follows from (3.49).
To prove (3.84), let ρ be any particle at w−C5κ(s) at time 0 (see a few lines

before (3.2) for w−r). In Ph
(
u,−C5κ(s)

)
, ρ is given type B at time 0, and ρ

remains a B-particle in Ph
(
u,−C5κ(s)

)
at all times, and in particular at time

s. The distribution at time s of the position of ρ is that of w−C5κ(s) + Ss with
Ss independent of w−C5κ(s). For h∗(s, u) ≤ −α to occur, ρ must lie in the half
space {x : 〈x, u〉 ≤ −α} at time s. Thus

P{h∗(s, u) ≤ −α}≤P{〈w−C5κ(s), u〉 + 〈Ss, u〉 ≤ −α}
≤P{‖w−C5κ(s)‖ ≥ α/(2

√
d)} + P{‖Ss‖ ≥ α/(2

√
d)}.

As before, the first term in the right-hand side is at most exp[−K6α
d] and the

second one is at most 8d exp
[
− K3α

2/(s + α)
]

(by (2.42) in [KSa]). (3.84)
follows.

The argument for (3.85) is basically already given in (3.19) and in the
preceding paragraph. Moreover, it is similar to, but simpler than, the proof of
(3.86) and so we only prove the latter. If h∗(s + t, u) = h, then all B-particles
in Ph

(
u,−C5κ(s + t)

)
are located in {x : 〈x, u〉 ≤ h} at time s + t. If further,

for some 0 ≤ r ≤ t, h∗(s + r, u) ≥ h + α, then there is some B-particle ρ in
Ph

(
u,−C5κ(s+r)

)
in {x : 〈x, u〉 ≥ h+α} at time s+r. This ρ is also a particle

present in Ph
(
u,−C5κ(s + t)

)
and even of type B in Ph

(
u,−C5κ(s + t)

)
at

time s + t, provided ‖x0‖ ≤ C5κ(s)/
√

d (see (3.3)). Thus in this case ρ moved
over a distance at least α/

√
d during [s + r, s + t]. Similarly, ρ is a B-particle
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in P f at time s + t. Therefore, the left-hand side of (3.86) is at most

P{‖x0‖ > C5κ(s)/
√

d}
+P{some particle which starts outside C

(
3C1(s + t)

)
becomes

a B-particle in P f before time s + t}
+

∑
x∈C

(
3C1(s+t)

) μAP{sup
r≤t

‖Sr − St‖ ≥ α/
√

d}

≤ K7s
−K + K8(s + t)d exp

[
− K9α

2

d(t + α)

]
(see (3.48)–(3.50), as well as (2.42) in [KSa]). Thus (3.86) holds.

We can now proceed with subadditivity arguments. We introduce the
random variables

X(s) = [2
√

dC1s − h∗(s, u)]+

and the deterministic quantities Y (t) = 2
√

dC1C6κ(t), and let X ′(t) be a copy
of X(t) which is independent of X(s). Then (3.82) shows that, under (3.30),
these random variables satisfy

(3.88) P{X
(
s + t + C6κ(t)

)
≤ β} ≥ P{X(s) + X ′(t) + Y (t) ≤ β}

− C8s
−K−1 − exp[−2K1

√
dC1s] − exp[−2K1

√
dC1t] ≤ 2C8s

−K−1

for β ≥ 0, s ≥ some constant s3. Here we used that.

P{X(s) �=[2
√

dC1s − h∗(s, u)]}=P{h∗(s, u) > 2
√

dC1s}≤exp−[2K1

√
dC1s]

(see (3.83)). Of course (3.88) also holds trivially for β < 0. This is very close
to the principal hypothesis of the lemma on p. 674 of [Ha] but we have to do
some extra work because of the C6κ(t) which appears in the argument on the
left-hand side of (3.88). From now on we take K = 4. We first derive a simple
approximation for moments of X(s). Fix K10 ≥ 2

√
dC1. Then for p > 0

EXp(s) = p

∫ K10s

0
αp−1P{X(s) ≥ α}dα + p

∫ ∞

K10s
αp−1P{X(s) ≥ α}dα.

By virtue of (3.66) with K replaced by K +p and (3.84) the last integral is for
s ≥ some s4 and a suitable constant K11 = K11(p) bounded by

p

∫ (K10+C4)s

K10s

[
(K10 + C4)s

]p−1
P{h∗(s, u) ≤ 0}dα(3.89)

+p

∫ ∞

C4s

[
K10s + α

]p−1
P{h∗(s, u) ≤ −α}dα

≤ p
[
(K10 + C4)s

]p−1
s−K−p−1C4s

+p

∫ ∞

C4s

[
K10s + α

]p−1
K2 exp

[
− K3α

2

s + α

]
dα

≤ K11s
−K−1.
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Thus we have ∣∣EXp(s) − p

∫ K10s

0
αp−1P{X(s) ≥ α}dα

∣∣ ≤ K11s
−K−1(3.90)

for s ≥ s4. We note in passing that this shows that all moments of X(s) are
finite.

We now apply the relation (3.90) with s replaced by s + t + C6κ(t) for
s ≥ s4. In combination with (3.88) this gives

EXp(s + t + C6κ(t)) − K11[s + t + C6κ(t)]−K−1

≤ p

∫ K10

(
s+t+C6κ(t)

)
0

αp−1P{X
(
s + t + C6κ(t)

)
≥ α}dα

≤ p

∫ ∞

0
αp−1P{X(s) + X ′(t) + Y (t) ≥ α}dα

+2C8s
−K−1[K10

(
s + t + C6κ(t)

)
]p.

In particular the cases p = 1 and p = 2 show that there exists a constant C9

such that under (3.30) and s ≥ s4

EX
(
s + t + C6κ(t)

)
≤EX(s) + EX(t) + 2

√
dC1C6κ(t)(3.91)

+2K10C8

(
s + t + C6κ(t)

)
s−K−1 + K11s

−K−1

≤EX(s) + EX(t) + C9κ(t)

and

(3.92)

EX2
(
2s + C6κ(s)

)
≤E

[
X(s) + X ′(s) + Y (s)

]2 + K12[s + C6κ(s)]2s−K−1

≤E
[
X(s) + X ′(s) + Y (s)

]2 + 4K12s
−K+1.

Without loss of generality we may take s0 so large that(3.91) holds under (3.30).
For (3.92) we took t = s, so that this holds as soon as s ≥ s0. Fortunately
there is a simple replacement for (3.91) that holds as soon as s0 ≤ s ≤ t.
Indeed, assume that s0 ≤ s ≤ t, but t log t > C7s

2. It then follows from the
simple inequality

[a + b − c]+ − [a − d]+ ≤ |b| + [a − c]+ − [a − d]+ ≤ |b| + [c − d]−(3.93)

that

X
(
s+t+C6κ(t)

)
−X(t) ≤ 2

√
dC1[s+C6κ(t)]+[h∗(s+t+C6κ(t), u)−h∗(t, u)]−.

Consequently

(3.94)

EX
(
s + t + C6κ(t)

)
− EX(t)

≤ 2
√

dC1[s + C6κ(t)] + E
{
[h∗(s + t + C6κ(t), u) − h∗(t, u)]−

}
≤ 2

√
dC1[s + C6κ(t)] +

∫ ∞

0
P{h∗(s + t + C6κ(t), u

)
≤ h∗(t, u) − α}dα.
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We break the last integral up into the integrals over [0, 4
√

dC1t] and over
[4
√

dC1t,∞). The first piece is by (3.85) with s and t replaced by t and
s + C6κ(t), respectively, and K taken as 1, at most∫ 4

√
dC1t

0

[K4

t
+ 8d exp

[
− K3α

2

s + C6κ(t) + α

]]
dα ≤ K13[s + κ(t)]1/2 ≤ K14κ(t).

For the second piece we use that

P{h∗(s + t + C6κ(t), u
)
≤ h∗(t, u) − α}

≤ P{h∗(s + t + C6κ(t), u
)
≤ −α/2} + P{h∗(t, u) ≥ α/2}

≤ K2 exp
[
− K3α

2/4
s + t + C6κ(t) + α

]]
+ exp[−K1α/2] (by (3.84) and (3.83))

≤ (K2 + 1) exp[−K15α]

on {α ≥ 4
√

dC1t} and t ≥ s ≥ s0. Thus the second piece of the integral is
bounded by ∫ ∞

4
√

dC1t
(K2 + 1) exp[−K15α]dα ≤ K16.

Returning to (3.94) we now find that for s0 ≤ s ≤ t but t log t > C7s
2,

EX
(
s + t + C6κ(t)

)
− EX(t)≤ 2

√
dC1[s + C6κ(t)]

+K14κ(t) + K16 ≤ K17κ(t).

Therefore, by raising C9, if necessary, we obtain that (3.91) holds for all s0 ≤
s ≤ t.

We shall next use a small variation on the argument of [Ha] to show that
(3.91) implies

λ(u) := lim
t→∞

1
t
Eh∗(t, u)) exists.(3.95)

It suffices for (3.95) to show that

lim
t→∞

1
t
EX(t) = 2

√
dC1 − λ(u),(3.96)

because

lim
t→∞

P{h∗(t, u) ≥ 2
√

dC1t} = 0 and lim
t→∞

1
t
E{h∗(t, u);h∗(t, u) ≥ 2

√
dC1t} = 0,

by virtue of (3.83). Now define for any M ≥ e,

t0(M) = M, tk+1(M) = 2tk(M) + C6κ(tk(M)).

Note that tk+1/tk > 2, and hence tk(M) ≥ 2kM , and for large k

1 <
tk+1(M)
2tk(M)

≤ 1 + C6

(k log 2 + log M

2kM

)1/2
,
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and for some K18, independent of k ≥ 0,

1 ≤
k−1∏
j=0

tj+1(M)
2tj(M)

=
tk(M)
M2k

≤ 1 + K18

[ log M

M

]1/2
.(3.97)

Also, by (3.91), for all M ≥ s0 + e,

EX(tk(M)) ≤ 2EX(tk−1(M)) + C9κ
(
tk−1(M)

)
, k ≥ 1.

Consequently, by induction on k,

EX(tk(M))
tk(M)

≤ EX(M)
M

k∏
j=1

2tj−1(M)
tj(M)

+
C9

2

k∑
�=1

κ
(
tk−�(M)

)
tk−�(M)

k∏
j=k−�+1

2tj−1(M)
tj(M)

≤ EX(M)
M

+ K19
[log M ]1/2

M1/2
, k ≥ 0.

In particular, lim infs→∞ EX(s)/s < ∞. Moreover, for given ε > 0 we can
choose M ≥ s0 + e so large, that

K19[log M ]1/2M−1/2 < ε and EX(M)/M ≤ lim inf
s→∞

EX(s)/s + ε.

Then
EX(tk(M))

tk(M)
≤ lim inf

s→∞
EX(s)

s
+ 2ε, k ≥ 0.(3.98)

Now let q0 ≥ s0 + M be large. We shall expand q0 as a sum of the
form

∑
tk(i) plus some error terms (see (3.100)) and obtain a corresponding

bound for EX(q0) in (3.99). We define k(1) as the unique integer k for which
tk ≤ q0 < tk+1. We distinguish two cases. We are in the first case if q0 ≥
tk(1) + C6κ

(
tk(1)

)
+ s0 + M . In this case we set q1 = q0 − tk(1) − C6κ

(
tk(1)

)
<

tk(1)+1 − tk(1) − C6κ
(
tk(1)

)
= tk(1). Then s0 + M ≤ q1 < tk(1) and

EX(q0) ≤ EX
(
tk(1)

)
+ EX(q1) + C9κ(q0),

by virtue of (3.91). If tk(1) ≤ q0 < tk(1) + C6κ
(
tk(1)

)
+ s0 + M , then, as in

(3.93), (3.94), and the estimates following (3.94)

EX(q0)≤EX
(
tk(1)

)
+ 2

√
dC1[q0 − tk(1)]

+
∫ ∞

0
P{h∗(q0, u) − h∗(tk(1), u

)
≤ −α}dα

≤EX
(
tk(1)

)
+ 2

√
dC1[q0 − tk(1)] + K20[q0]1/2

≤EX
(
tk(1)

)
+ K21κ(q0)

for suitable large constants K20, K21. If we are in the first case, we repeat
the above procedure with q0 replaced by q1. That is, we find k(2) such that
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tk(2) ≤ q1 < tk(2)+1 etc. We continue to determine k(i) and qi until for the first
time qi is in the second case, i.e., tk(i+1) ≤ qi < tk(i+1) +C6κ

(
tk(i+1)

)
+s0 +M .

Suppose this first happens at the index i0. We then have

EX(q0)≤EX
(
tk(1)

)
+ EX(q1) + C9κ(q0) ≤ · · ·(3.99)

≤
i0+1∑
i=1

EX
(
tk(i)

)
+ (C9 + K21)

i0∑
i=0

κ(qi)

≤
i0+1∑
i=1

EX
(
tk(i)

)
+ (C9 + K21)

[
κ(q0) +

i0∑
i=1

κ
(
tk(i)

)]
.

Note that by construction, qi < tk(i) for 1 ≤ i ≤ i0, and consequently, k(i+1) <

k(i) for i < i0. Therefore the above procedure ends at a finite i0, and

(C9 + K21)
[
κ(q0) +

i0∑
i=1

κ
(
tk(i)

)]

≤ (C9 + K21)
[
κ(q0) +

∑
k:tk≤q0

κ(tk)
]
≤ K22

[
q0 log q0

]1/2
.

In addition we have either i0 = 0 and q0 ≥ tk(1), or i0 ≥ 1 and

q0 = tk(1) + C6κ
(
tk(1)

)
+ q1 = · · · =

i0∑
i=1

[
tk(i) + C6κ

(
tk(i)

)]
+ qi0 ≥

i0+1∑
i=1

tk(i).

(3.100)

Finally, we note that by definition of i0, qi−1 ≥ s0+M , and therefore tk(i) ≥ M ,
for i ≤ i0. (3.99) and (3.98) now show that

EX(q0)
q0

≤ 1
q0

i0∑
i=1

tk(i)

[
lim inf
s→∞

EX(s)
s

+ 2ε
]

+K22

[ log q0

q0

]1/2
+ I[tk(i0+1) < M ]

maxj<M EX(j)
q0

,

whence
lim sup

q→∞

EX(q)
q

≤ lim inf
s→∞

EX(s)
s

+ 3ε.

Thus the limit in (3.96) exists and we can use (3.96) to define λ(u).
We next turn our attention to the second moments. We shall denote the

variance of a random variable Z by σ2(Z). By taking s = tk and K = 4
in (3.92), expanding the square in the right-hand side and a little algebra we
obtain

(3.101)

σ2
(
X(tk+1)

)
≤ 2σ2

(
X(tk)

)
+ Y 2(tk) + 4Y (tk)EX(tk) + 2E

[
X(tk)X ′(tk)

]
+2

[
EX(tk)

]2 −
[
EX(tk+1)

]2 + 4K12[tk]−K+1
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≤ 2σ2
(
X(tk)

)
−

[[
EX(tk+1)

]2 −
[
2EX(tk)

]2
]

+K23[tk]3/2[log tk]1/2

(see [Ha, p. 676] or [SW, pp. 21, 22]). For the last inequality we used that
X(tk) and X ′(tk) are i.i.d., that Y (tk) has the constant value 2

√
dC1C6κ(tk),

and that EX(tk) is bounded by a multiple of tk (by virtue of (3.96)). As
shown in [Ha, p. 676] or [SW, pp. 21, 22], (3.101), (3.97) and the boundedness
of EX(t)/t immediately give for any M ≥ some s5

∞∑
k=0

σ2
(
X(tk(M)

)
(M2k)2

< ∞.

Since tk(M)/(M2k) ≥ 1 (see (3.97)) we even have
∞∑

k=0

σ2
(
X(tk(M)

)
[tk(M)]2

< ∞,(3.102)

and hence for any ε > 0,
∞∑

k=0

P
{ 1

tk(M)

∣∣∣X(
tk(M)

)
− (2

√
dC1 − λ(u)

)
tk(M)

∣∣∣ ≥ ε
}

< ∞

(see (3.96)). By (3.83) also
∞∑

k=0

P{X
(
tk(M)

)
�= 2

√
dC1tk(M) − h∗(tk(M), u

)
} < ∞,

so that for each fixed M ≥ s5 and u ∈ Sd−1,
∞∑

k=0

P
{∣∣∣h∗(tk(M), u)

tk(M)
− λ(u)

∣∣∣ ≥ ε
}

< ∞.(3.103)

Of course (3.103) implies h∗(tk(M), u)/tk(M) → λ(u), almost surely.
Since X(s) ≥ 0 by definition, 2

√
dC1 − λ(u) ≥ 0 in (3.96), and hence λ(u) ≤

2
√

dC1, as claimed. Finally, λ(u) ≥ C4 follows from Lemma 2 and the al-
most sure convergence of h∗(tk(M), u)/tk(M) to λ(u). In fact, (3.16) shows
that almost surely h∗(tk(M), u) = h

(
tk(M), u,−C5κ(tk(M)

)
≥ C4tk(M) for

all large k.
Now choose a large M0 ≥ s5 and for some large integer r take Mi =

M02i/r, i = 0, 1, . . . , r−1. Further take Mr = t1(M0) and note that Mi+1/Mi →
21/r as M0 → ∞ for fixed r and 0 ≤ i ≤ r−1 (since t1(M)/M → 2 as M → ∞).
For given η > 0 we can therefore first choose r large, such that 1 < 24/r < 1+η,
and then M0 so large that

21/(2r) ≤ Mi+1

Mi
≤ 22/r, 0 ≤ i ≤ r − 1.
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By (3.97) we may further take M0 so large that

2−1/(4r) M

M ′ ≤
tk(M)
tk(M ′)

≤ 21/r M

M ′ , for M ≥ M ′ ≥ M0, k ≥ 0.

Once these choices have been made we take for {nj}j≥0 the collection of all
distinct tk(Mi), 0 ≤ i ≤ r − 1, k ≥ 0, arranged in increasing order. Note that
i only runs to r − 1 here. We claim that the collection {nj} in increasing
order is {M0, M1, . . . , Mr−1, t1(M0), . . . , t1(Mr−1), t2(M0), . . . }. To verify this
we merely need to check that tk(M0) > tk−1(Mr−1), since the other orderings
are obvious from the monotonicity of tj(·). However, tk(M0) = tk−1(t1(M0)) >

tk−1(Mr−1) is also easy from t1(M0) ≥ 2M0 > Mr−1. This proves our claim.
By construction we now have for all j ≥ 0,

21/(4r) ≤ 2−1/(4r) inf
{ tk(Mi+1)

tk(Mi)
: k ≥ 0, 0 ≤ i ≤ r − 1

}
≤ nj+1

nj
(3.104)

≤ 21/r sup
{ tk(Mi+1)

tk(Mi)
: k ≥ 0, 0 ≤ i ≤ r − 1

}
≤ 24/r ≤ 1 + η.

These inequalities show (3.80) holds, so that nj increases exponentially with j.
Next, (3.81) holds, because by (3.103)

(3.105)
∞∑

k=0

P
{∣∣∣ 1

nk
h∗(nk, u) − λ(u)

∣∣∣ > ε
}

=
r−1∑
i=0

∞∑
k=0

P
{∣∣∣ 1

tk(Mi)
h∗(tk(Mi), u) − λ(u)

∣∣∣ > ε
}

< ∞.

Thus also

lim
k→∞

1
nk

h∗(nk, u) = λ(u) a.s.(3.106)

Now let 0 < ε ≤ C4/4 ≤ λ(u)/4 and 2ηλ(u) < ε/2. Also, let {nk} be a
sequence satisfying 1 < nj+1/nj ≤ 1 + η ≤ 2 for j ≥ 1 as well as (3.81). Let
0 < K24 < ∞ be a constant and assume further that

λ(u) − 2ε ≤ h∗(nk, u)
nk

− ε ≤ 1
nk(1 + η)

[
h∗(nk, u) − K24κ(nk)

]
(3.107)

and

1 + η

nk+1

[
h∗(nk+1, u) + K24κ(nk+1)

]
≤ h∗(nk+1, u)

nk+1
+ ε ≤ λ(u) + 2ε.(3.108)

If further

0≤h∗(nk, u) − K24κ(nk)(3.109)

≤h∗(t, u) ≤ h∗(nk+1, u) + K24κ(nk+1) for all nk ≤ t ≤ nk+1,
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then, for these t

λ(u) − 2ε≤ h∗(nk, u)
nk

− ε ≤ 1
nk(1 + η)

[
h∗(nk, u) − K24κ(nk)

]
(3.110)

≤ h∗(t, u)
t

≤ 1
nk

[
h∗(nk+1, u) + K24κ(nk+1)

]
≤ 1 + η

nk+1

[
h∗(nk+1, u) + K24κ(nk+1)

]
≤ h∗(nk+1, u)

nk+1
+ ε ≤ λ(u) + 2ε.

Now we know already that (3.107) and (3.108) hold a.s. for all large k and
for our choice of η. Moreover, by (3.85) and (3.86)

P{(3.109) fails for some nk ≤ t ≤ nk+1}
≤ P{ inf

r≤nk+1−nk

h∗(nk + r, u) − h∗(nk, u) ≤ −K24κ(nk)}

+P{ sup
r≤nk+1−nk

h∗(nk + r, u) − h∗(nk+1, u) ≥ K24κ(nk+1)}

≤ 2
K4

nK
k

+
(
16d + K5nk+1

)d exp
[
− K3[K24κ(nk)]2

4nk + 4K24κ(nk)

]
.

Since the nk grow exponentially we can choose K24 so large that

∞∑
k=0

P{(3.109) fails for some nk ≤ t ≤ nk+1} < ∞.

Thus almost surely (3.109) and (3.110) fail only for finitely many k, and λ(u)−
2ε ≤ h∗(t, u)/t ≤ λ(u) + 2ε holds for all large t. Since ε > 0 was arbitrary this
proves the almost sure convergence in (3.79). The Lp convergence along all
reals in (3.79) follows from the almost sure convergence and the tail estimates
(3.83) and (3.84).

4. From half-space to full-space processes

The goal for this section is to prove that the B-particles in the full-space
process do not spread faster than in the appropriate half-space process (see
Corollary 8 for a precise statement). The first lemma establishes that for
every u ∈ Sd−1 there are deterministic vectors Vk such that for all η > 0 there
is, with a probability close to 1, a B-particle in Ph

(
u,−C5κ((1 + η)nk)

)
‘near’

Vk at time nk, for all large k. Here nk is the nk(η) of Corollary 5 and 〈Vk, u〉
has to grow essentially like h∗(nk, u) ∼ nkλ(u) (see (4.1)). Apart from this
growth condition the behavior of Vk as a function of k, u is unimportant for
us. The only important aspect is that it is nonrandom, so that we can find,
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with high probability, a B-particle in a nonrandom location at which h∗(nk, u)
is (almost) achieved. This will be used in the second lemma to concatenate
Ph

(
u,−C5κ(nk)

)
with another process which runs from time (1 + η)nk to

(1 + η)nk + rk with rk also of order nk. By starting the second process at the
space-time point

(
Vk, (1 + η)nk

)
we will be able to assure that a B-particle at

time (1 + η)nk + rk in the second process is also a B-particle in

Ph
(
u,−C5κ((1 + η)nk + rk)

)
.

Lemma 6. Let u ∈ Sd−1 be fixed, and let nk = nk(η) be as in Corollary 5.
Then, for all 0 < η < C4/(8C1) there exists a deterministic sequence of vectors
{Vk} = {Vk(η, u)} such that

〈Vk(η, u), u〉 = nk(η)λ(u),(4.1)

and such that

(4.2)
∞∑

k=0

P{in Ph
(
u,−C5κ(nk)

)
there is at time (1 + η)nk either no particle at all

in Vk + C(C2nkη/4) or there is an A-particle in Vk + C(C2nkη/4)}
< ∞.

Proof. Fix u ∈ Sd−1 and ε > 0. Let σ be a time which is so large that
σ ≥ s0 (with s0 as in Proposition 3) and such that∣∣∣ 1

σ
Eh∗(σ, u) − λ(u)

∣∣∣ ≤ 1
4
ε(4.3)

(see (3.27) for h∗). Define the further times

σ1 = σ, σj+1 = σ + σj + C6κ(σj), j ≥ 1.

Now apply (3.31) with the following choices: s = σ, t = σj , γ = γs = Em∗(σ, u)
(see (3.29) for m∗) and γt = jEm∗(σ, u). This yields

P{G
(
α, β, (j + 1)Em∗(σ, u),Ph

(
u,−C5κ(σj+1)

)
, σj+1

)
≥

∫
h∈R

∫
m∈Rd

P{h∗(σ, u) ∈ dh, m∗(σ, u) ∈ γ + dm}

×P{G
(
α − h, β − d, jγ − m,Ph

(
u,−C5κ(σj)

)
, σj

)
} − C8σ

−K−1,

provided (3.30) holds, that is, provided (σj + 1) log(σj + 1) ≤ C7σ
2. We start

with j = r − 1, then use the case j = r − 2 with α, β replaced by α − h and
β−d, respectively, etc., all the way down to j = 1. With (h∗

j , m
∗
j ), j ≥ 1, i.i.d.

copies of
(
h∗(σ, u), m∗(σ, u)

)
we obtain
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(4.4)

P{G
(
α, β, rEm∗(σ, u),Ph

(
u,−C5κ(σr)

)
, σr

)
}

≥
∫

hj∈R,

1≤j≤r−1

∫
mj∈Rd

1≤j≤r−1

r−1∏
j=1

P{h∗(σ, u) ∈ dhj , m
∗(σ, u) ∈ γ + dmj}

×P
{
G
(
α −

r−1∑
j=1

hj , β − (r − 1)d, γ −
r−1∑
j=1

mj , P
h
(
u,−C5κ(σ)

)
, σ

)}
−(r − 1)C8σ

−K−1

= P
{

in Ph
(
u,−C5κ(σ)

)
there is at time σ a B-particle at some x with

〈x, u〉 +
r−1∑
j=1

h∗
j ≥ α and

∥∥x⊥ +
r−1∑
j=1

m∗
j − rγ

∥∥ ≤ β − (r − 1)d
}

−(r − 1)C8σ
−K−1

≥ P
{ r∑

j=1

h∗
j ≥ α,

∥∥ r∑
j=1

(m∗
j − γ)

∥∥ ≤ β − (r − 1)d
}
− (r − 1)C8σ

−K−1,

provided

(σr + 1) log(σr + 1) ≤ C7σ
2.(4.5)

It is easy to see by induction that each σj is a continuous, increasing
function of σ on [0,∞). We further see by induction that σk ≥ kσ and σj

increases with j. Finally, we can for any fixed σ ≥ 1 find a K1 = K1(σ) such
that

σK12k(log k + 1) ≥ C6κ
(
σK1k

2(log k + 1)
)
, k ≥ 1,

and σ1 ≤ σK1 log 2. One more induction argument then shows that for all
k ≥ 1, σk ≤ σK1k

2(log k + 1). Now let s ≥ s0 be large and take r = �s1/3�.
The preceding argument shows that we can fix σ such that σr = s. Thus for
j − 1 ≤ r we have σj−1 ≤ σr = s and σj ≤ σ + σj−1 + C6κ(s). Consequently,
rσ ≤ s = σr ≤ rσ + rC6κ(s) = rσ + �s1/3�C6κ(s) = rσ + o(s), and necessarily
σ ∼ s/r ∼ s2/3 for large s. (4.5) is therefore automatically satisfied. Now let
h∗

j , j ≥ 1, be i.i.d. copies of h∗(σ, u). If we further take

α = rσ[λ(u) − 1
2
ε],

then, by (4.3) and the fact that Variance (h∗
j ) ≤ K2σ

2 (by (3.90)),

P
{ r∑

j=1

h∗
j ≤ α

}
≤ P

{ r∑
j=1

(
h∗

j − Eh∗
j

)
≤ −rσε/4

}
≤ K3

rε2
.(4.6)
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Further, fix s6 so large that 2sε ≥ rσε ≥ (1/2)sε ≥ 2rd ∼ 2s1/3d for s ≥ s6.
Then we have similarly to (4.6), for s ≥ s6, β = sε and γ = Em∗(σ, u),

P
{∥∥ r∑

j=1

(
m∗

j − γ
)∥∥ > β − (r − 1)d

}
≤ P

{∥∥ r∑
j=1

(
m∗

j − γ
)∥∥ > rσε/4

}
≤ K4

rε2
.

(4.7)

The last two inequalities provide us with a lower bound for the right-hand side
of (4.4). We conclude that for s ≥ s6

(4.8) P{G
(
α, β, rEm∗(σ, u),Ph

(
u,−C5κ(σr)

)
, σr

)
}

≥ 1 − (K3 + K4)
rε2

− (r − 1)C8σ
−K−1 ≥ 1 − K5

s1/3ε2

(use any K ≥ 1). Let nj(η) be as in Corollary 5, and take s = nk = nk(η).
In agreement with our previous choice for r, σ we then take r = �n1/3

k (η)� and
σ such that σr = nk(η). Then, by going over to the complementary event in
(4.8), we find for any η > 0, that

∞∑
k=0

P
{
in Ph

(
u,−C5κ(nk)

)
there is at time nk no B-particle(4.9)

in Γ
(
nk[λ(u) − 1

2
ε], nkε, rEm∗(σ, u)

)}
≤

∞∑
k=0

K5

n
1/3
k ε2

< ∞

(recall that the nj grow exponentially). But (3.81) says in particular that
∞∑

k=0

P
{
in Ph

(
u,−C5κ(nk)

)
there is at time nk a B-particle(4.10)

in Γ
(
nk[λ(u) +

1
2
ε], nkε, rEm∗(σ, u)

)}
< ∞.

We now take

Vk = Vk(η, u) = nk(η)λ(u)u + rEm∗(σ, u).(4.11)

Note that r and σ are determined by k and η, so that Vk really is a function
of k, η, u. Since m∗ is orthogonal to u (by definition (3.29)), this choice of Vk

satisfies (4.1). Moreover, (4.9) and (4.10) together give

(4.12)
∞∑

k=0

P{in Ph
(
u,−C5κ(nk)

)
there is at time nk no B-particle

at any site x ∈ Vk + C(2
√

dnkε)}
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≤
∞∑

k=0

P{in Ph
(
u,−C5κ(nk)

)
there is at time nk no B-particle at any site x

with 〈x, u〉 ∈
[
nk[λ(u) − ε

2
], nk[λ(u) +

ε

2
]
]
, ‖x⊥ − rEm∗(σ, u)‖ ≤ nkε}

< ∞.

The convergence of the sums in (4.12) shows that almost surely, for all
large nk(η), there is in Ph

(
u,−C5κ(nk)

)
a B-particle in Vk + C(2

√
dnkε) at

time nk(η). We claim that this implies that if we take ε = C2η/(16d), then, in
Ph

(
u,−C5κ(nk)

)
at time (1 + η)nk, all occupied sites in Vk + C(C2nkη/4) are

occupied by B-particles (and there are such occupied sites). More precisely,
we claim that (4.2) holds. To see this we apply Lemma 4 with the follow-
ing choices: s = nk, s̃ = (1 + η)nk, and finally y(nk) is the location of any
B-particle in Ph

(
u,−C5κ(nk)

)
at time nk in the set Vk + C

(
C2nkη/(8

√
d)

)
, if

such a B-particle exists. If several such B-particles exist we pick the location
of one of them according to some deterministic rule chosen in advance. On the
event that no such B-particle exists we cannot apply Lemma 4, but this does
not cause any problems, because (4.12) already tells us that

∞∑
k=0

P{no choice for y(nk) exists} < ∞.(4.13)

If y(nk) exists, then there is automatically a particle in Ph
(
u,−C5κ(nk)

)
at

time nk at y(nk) ∈ Vk + C
(
C2nkη/(8

√
d)

)
. If this particle does not move a

distance > C2nkη/8 during [nk, (1 + η)nk], then it is in y(nk) + C(C2nkη/8) ⊂
Vk + C(C2nkη/4) at time (1 + η)nk. We recall further that all particles in
Ph

(
u,−C5κ(nk)

)
are also particles in P f . It follows that the k-th summand in

(4.2) is bounded by the k-th summand in (4.13) plus

P{‖Snkη‖ > C2nkη/8} + P{Bh
(
y(nk), nk;u,−C5κ(nk)

)
∩ K

(
y(nk)

)
}(4.14)

(see (3.14) for Bh and (3.72) for K(y)). The first probability in (4.14) is at
most K6 exp[−K7nkη] by (2.42) in [KSa]. The last probability in (4.14) is by
Lemma 4 at most

P{y(nk) /∈ C(2C1nk)} + P{〈y(nk), u〉 <
1
2
C4nk} + 5n−K−1

k .(4.15)

The first probability in (4.15) is O
(
n−K−1

k

)
by the estimates (3.49). The

second probability in (4.15) is zero, because, by construction, y(nk) ∈ Vk +
C
(
C2nkη/(8

√
d)

)
, so that

〈y(nk), u〉≥ 〈Vk, u〉 − C2nkη/8

= nkλ(u) − C2nkη/8 ≥ nk(C4 − C2η/8) (see Corollary 5) ≥ 1
2
C4nk.

It follows that the sum of (4.15) over k is also finite, and this proves (4.2).
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The method of proof of the next lemma will be used again in Lemma 10;
it shows how to concatenate two processes, as outlined before the last lemma.

Lemma 7. Define

(4.16)

H(t, u) = h(t, u,−∞)

= max{〈x, u〉 : x is occupied by a B-particle in P f at time t}.
Assume that for some fixed u ∈ Sd−1 and μ ≥ 0

P{lim sup
t→∞

1
t
H(t, u) ≥ μ} > 0.(4.17)

Then

λ(u) ≥ μ.(4.18)

Proof. We divide the proof into four steps. We shall introduce events L′
k

which occur if the full-space process started at (Vk, (1+ η)nk) has a B-particle
in a certain half-space at time

(
1+η +K2)nk(η)

)
. The assumption (4.17) says

that the full-space process visits certain half-spaces infinitely often. In Step
1 we show that (4.17) and a kind of maximal inequality imply that slightly
larger half-spaces must be visited infinitely many times from the sequence
{(1 + η + K2)nk}. Borel-Cantelli and a translation in space-time immediately
deduce from this that

∑
k P{L′

k} = ∞.
We also introduce events Mk which are almost the same as the L′

k, except
that they depend only on particles which start in certain ‘slabs’. These are cho-
sen in such a way that Mk and M� depend only on disjoint collections of parti-
cles, and are therefore independent, if |k−�| ≥ K5 for some constant K5(η). We
then show in Step 2 that

∑
k P{L′

k} = ∞ implies that also
∑

k P{Mk} = ∞.
By the independence of Mk and M� for |k − �| ≥ K5 this implies that a.s.,
Mk occurs infinitely often (see Step 3). In the last step we show that a.s., for
all large k, Mk implies that h∗((1 + η + K2)nk, u

)
≥ [λ(u) + K2(μ − ε)]nk.

Since Corollary 5 tells us that h∗((1 + η + K2)nk, u
)
/(1 + η + K2)nk → λ(u)

a.s., one concludes that λ(u) ≥ K2(μ− ε)/(η + K2). As ε and η tend to 0 one
obtains the desired (4.18).

Since λ(u) ≥ C4 we assume without loss of generality that μ > 0. Through-
out this proof ε is a small strictly positive number.

Step 1. We choose

K1 > 2
√

dC1 ≥ λ(u), K1 >
1
C4

≥ 1
λ(u)

.(4.19)

For each small η > 0 we then define

mk = mk(η) = K2nk(η),(4.20)
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where nk = nk(η) has the properties (3.80) and (3.81) of Corollary 5. We take
η0 = η0(ε) > 0 so small that

1 + η0 ≤ μ − ε/2
μ − 3ε/4

.

Note that these definitions imply that for η ≤ η0,

mk+1

mk
=

nk+1

nk
≤ 1 + η ≤ μ − ε/2

μ − 3ε/4
.(4.21)

Further, for small ε > 0, define the events

Lk(η, μ − ε)

=
{
in P f there is a B-particle in the half-space S

(
u, mk(μ − ε)

)
at time mk

}
= {H(mk, u) ≥ mk(μ − ε)}.

In this step we shall show that for fixed ε > 0 and all 0 < η ≤ η0(ε),
∞∑

k=0

P{Lk(η, μ − ε)} = ∞.(4.22)

To prove this we shall show that

P{Lk(η, μ − ε) occurs for infinitely many k} > 0.(4.23)

(4.22) then follows from the Borel-Cantelli lemma. Now, (4.17) implies that
for every ε > 0

P{for infinitely many k, H(t, u) > (μ − ε/2)t for some t ∈ [mk, mk+1]} > 0.

(4.24)

However, by (3.86) with h∗ replaced by H (this amounts to taking C5 = ∞,
which does not influence the estimate (3.86); see (3.27) for h∗) and with α =
(ε/4)mk+1 ≤ (μ − ε/2)mk − (μ − ε)mk+1 (see (4.21)),

P{H(t, u)

> (μ − ε/2)t for some t ∈ [mk, mk+1] but H(mk+1, u) ≤ (μ − ε)mk+1}
≤ P{ sup

r∈[mk,mk+1]

[
H(r, u) − H(mk+1, u)

]
≥ (μ − ε/2)mk − (μ − ε)mk+1}

≤ K3(ε, η)[mk]−K .

In particular, by Borel-Cantelli, the event in the left-hand side here occurs
almost surely only finitely often. Together with (4.24) this shows that

P{for infinitely many k, H(mk+1, u) ≥ (μ − ε)mk+1} > 0.

This is the required (4.23).

Step 2. The remaining steps are based on (4.22) only; (4.17) itself is
not needed. With Vk = Vk(η, u) as in (4.11) we define an auxiliary process
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Qk = Qk(η, u) which is more or less the full-space process started at the
deterministic space-time point (Vk, (1 + η)nk). The only difference is that Qk

only uses the particles which are at time 0 in the ‘slab’

{x : −nk/K1 ≤ 〈x, u〉 − nkλ(u) < K1nk},(4.25)

with K1 satisfying (4.19). Thus Qk is defined only from time (1 + η)nk on. At
time (1 + η)nk it has at any x only the particles which started at time 0 in
the set (4.25). If no such particles exist, then there never are any particles in
the process Qk. Otherwise, let zk be the nearest site to Vk which is occupied
at time (1 + η)nk by some particle, which at time 0 was in (4.25). The types
of all particles in Qk at time (1 + η)nk are reset to type A, except for the
particles at zk, which are reset to type B. From time (1 + η)nk the process
then develops by our standard rules. Even though the process Qk is defined
for all times in [(1 + η)nk,∞) we are only interested in what happens during
[(1 + η)nk, (1 + η)nk + mk]. Specifically, we define the events

(4.26)

Mk = Mk(η, μ − ε) = {in Qk there is a B-particle in the half-space

S
(
u, nkλ(u) + mk(μ − ε)

)
at time (1 + η)nk + mk}.

In this step we shall prove that
∞∑

k=0

P{Mk} = ∞.(4.27)

To this end let us shift the event Lk by (1 + η)nk in time and by Vk in space.
Then Lk goes over into the event

L′
k := {in the full-space process started at (Vk, (1 + η)nk) there

is a B-particle in the half-space S
(
u, nkλ(u) + mk(μ − ε)

)
at time (1 + η)nk + mk}

(recall (4.1)). L′
k \Mk can occur only if one of the following two events occurs:

{at time (1 + η)nk, some particle at the nearest occupied site to(4.28)

Vk in the full-space process started at time 0 outside the set (4.25)},

or

{in the full-space process started at
(
Vk, (1 + η)nk

)
there is a(4.29)

particle which starts at time 0 outside the set (4.25) and

which coincides with a B-particle during [(1 + η)nk, (1 + η)nk + mk]}

(compare the argument for (3.47)). It follows that

P{L′
k \ Mk} ≤ P{(4.28) or (4.29) occurs}.
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But

P{(4.28) occurs}(4.30)

≤ P{nearest occupied site to Vk in P f at time (1 + η)nk has

distance more than K4 log k from Vk}
+P{some particle which starts at time 0 outside the set (4.25)

is in Vk + C(K4 log k) at time (1 + η)nk}.

Also,

P{(4.29) occurs}(4.31)

≤ P{in the full-space process started at (Vk, (1 + η)nk)

there are B-particles outside Vk + C(2C1mk) at

some time during [(1 + η)nk, (1 + η)nk + mk]}
+P{some particle which starts at time 0 outside the set (4.25)

visits Vk + C(2C1mk) during [0, (1 + η)nk + mk]}.

The first probability in the right-hand side of (4.30)) can be made O
(
k−K

)
for any given K, by choosing K4 large (compare (3.26)). The second proba-
bility in the right-hand side of (4.30) is for large k no more than the second
probability in the right-hand side of (4.31). To estimate the latter, we merely
point out that a particle which starts at some z outside the set (4.25) and
visits Vk + C(2C1mk) during [0, (1 + η)nk + mk] has to move over a distance of
at least

‖z − Vk‖ − 2C1mk ≥ d−1/2|〈(z − Vk), u〉| − 2C1mk

= d−1/2|〈z, u〉 − nkλ(u)| − 2C1mk ≥ nk/(
√

dK1) − 2C1mk = nk/(2
√

dK1),

by virtue of our choice of mk. We leave it to the reader to use this to check
that the last probability in (4.31) is O

(
[nk]−K

)
(see also the estimates in (3.24)

and (3.50) or (3.75)). Finally, the first probability in the right-hand side of
(4.31) equals

P{in P f there are B-particles outside C(2C1mk) during [0, mk]},(4.32)

and this is O
(
[mk]−K−2

)
, as in (3.49) or (3.25) and the lines following it. It

follows from these estimates that
∑

k P{L′
k \Mk} < ∞. From (4.22) and the

fact that P{L′
k} = P{Lk}, this implies (4.27).

Step 3. In this step we show that

P{Mk occurs for infinitely many k} = 1.(4.33)

This is an easy application of Borel-Cantelli, because Mk and M� depend on
particles which start at disjoint sets of sites (and are therefore independent)
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as soon as the set (4.25) and the corresponding set with k replaced by � are
disjoint. If � > k, this is the case if nk(λ(u) + K1) < n�(λ(u) − 1/K1) and
similarly if k > �. In particular, by (3.80), there is some integer K5 = K5(η)
such that Mk and M� are independent as soon as |k − �| ≥ K5. Moreover, by
(4.27), there is some integer j ∈ [0, K5 − 1] such that∑

k≡j (mod K5)

P{Mk} = ∞.

Thus (4.33) is true.

Step 4. We now complete the proof of the lemma by showing that, almost
surely, for all large k for which Mk occurs, also

(4.34){
in Ph

(
u,−C5κ((1 + η)nk + mk)

)
there is a B-particle in the half-space

S
(
u, nkλ(u) + mk(μ − ε)

)
at time (1 + η)nk + mk

}
= {h∗((1 + η)nk + mk, u

)
≥ nkλ(u) + mk(μ − ε)}

occurs. This will indeed complete the proof, since we already know from Corol-
lary 5 that

(
(1 + η)nk + mk

)−1
h∗((1 + η)nk + mk, u

)
→ λ(u). Thus (4.33) and

(4.34) will imply, for all ε > 0, 0 < η < η0(ε),

λ(u)≥ lim inf
k→∞

[ nk

(1 + η)nk + mk
λ(u) +

mk

(1 + η)nk + mk
(μ − ε)

]
=

1
1 + η + K2

λ(u) +
K2

1 + η + K2
(μ − ε),

and hence

λ(u) ≥ K2

η + K2
(μ − ε).(4.35)

Now to prove (4.34), we write, as in the lines following (4.25), zk for the
nearest site to Vk at time (1 + η)nk which is occupied by a particle which
started at time 0 in (4.25). We already proved that, almost surely, (4.28)
occurs only finitely often. Thus, except for finitely many k, zk actually equals
the nearest occupied site to Vk at time (1 + η)nk in P f . Since the set (4.25) is
contained in S(u, 0) ⊂ S

(
u,−C5κ(nk)

)
, zk is also the nearest occupied site to

Vk at time (1 + η)nk in Ph
(
u,−C5κ(nk)

)
. By virtue of Lemma 6, we further

know that, a.s. for all large k, zk is occupied by B-particles at time (1 + η)nk

in Ph
(
u,−C5κ(nk)

)
. By using the monotonicity property of Lemma C we

conclude that, almost surely, for all large k all the B-particles in Qk at time
(1+η)nk +mk are also B-particles in Ph

(
u,−C5κ(nk)

)
at time (1+η)nk +mk.

In turn, these particles are a.s. B-particles in Ph
(
u,−C5κ((1 + η)nk + mk)

)
at time (1 + η)nk + mk, by another application of Lemma C and (3.3) (recall
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that a.s x0 = w−C5κ(nk) = w−C5κ
(
(1+η)nk+mk

) for all large k). In particular,

h∗((1 + η)nk + mk, u) ≥ nkλ(u) + mk(μ − ε)

for all large k for which Mk occurs. This is the required (4.34).

Corollary 8. For every unit vector u

lim
t→∞

1
t
H(t, u) = λ(u) almost surely and in Lp for all p > 0.(4.36)

(t runs through the reals here). Moreover, for nk = nk(η) as in Corollary 5,
for any δ > 0 and η > 0,

∞∑
k=0

P
{∣∣ 1

nk
H(nk, u) − λ(u)

∣∣ > δ
}

< ∞.(4.37)

Proof. By the monotonicity property of Lemma C

H(t, u) ≥ h∗(t, u) on the event {‖x0‖ ≤ C5κ(t)/
√

d}(4.38)

(see (3.3)). Thus, by the estimate (3.26)

lim inf
t→∞

1
t
H(t, u) ≥ lim

t→∞
1
t
h∗(t, u) = λ(u)

(see Corollary 5). In the other direction, we have from Lemma 7 that

P
{

lim sup
t→∞

1
t
H(t, u) ≥ μ

}
= 0 for all μ > λ(u).

This proves the almost sure convergence in (4.36). The Lp convergence follows
from the almost sure convergence and the tail estimate

P{|H(s, u)| ≥ α} ≤ exp[−K1α] for α ≥ 2
√

dC1s,(4.39)

which can be proven in the same way as (3.83), (3.84) (or we can take C5 = ∞
in (3.83), (3.84)).

As for (4.37), we have by (4.38), (3.81) and an estimate like (3.26) that
∞∑

k=0

P
{ 1

nk
H(nk, u) < λ(u) − δ

}
< ∞.(4.40)

For the other direction, we begin with an indirect argument. Assume, to derive
a contradiction, that for some δ > 0 and 0 < η ≤ C4/(8C1)

∞∑
k=0

P
{ 1

mk
H(mk, u) > λ(u) + δ/2

}
= ∞,

with mk = mk(η) as in (4.20). This is just (4.22) with μ − ε replaced by
λ(u) + δ/2. By Steps 2–4 of the proof of Lemma 7 we then have that (4.35),
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again with μ − ε replaced by λ(u) + δ/2, holds. This is impossible for η <

K2δ/(2λ(u)). Thus for all δ > 0, 0 < η < C4/(8C1) ∧ K2δ/(2λ(u)), it is the
case that

∞∑
k=0

P
{ 1

mk
H(mk, u) > λ(u) + δ/2

}
< ∞.(4.41)

Finally, for given k, let � = �(k) be determined by m� < nk ≤ m�+1. We now
use that

(4.42) P{H(nk, u) > nk

(
λ(u) + δ

)
} ≤ P{H(m�+1, u) > m�+1

(
λ(u) + δ/2

)
}

+ P{H(m�+1, u) − H(nk, u) ≤ m�+1

(
λ(u) + δ/2

)
− nk

(
λ(u) + δ

)
}.

But, by (3.85) (with C5 taken to be infinity) we have

P{inf
r≤t

H(s + r, u) − H(s, u) ≤ −α} ≤ K4s
−K + 8d exp

[
− K3α

2

t + α

]
, α ≥ 0.

(4.43)

Moreover, m�+1 ≤ (1 + η)m� ≤ (1 + η)nk (see (4.21)). Therefore the second
term in the right-hand side of (4.42) is at most

P{H(m�+1, u) − H(nk, u)≤nk[(1 + η)
(
λ(u) + δ/2

)
−

(
λ(u) + δ

)
] ≤ −nkδ/4}

≤K4n
−K
k + 8d exp[−K6nkδ

2/(η + δ)],

provided

η < min
{ C4

8C1
,

K2δ

2λ(u)
,

δ

4(λ(u) + δ/2)

}
.(4.44)

It follows that under this last condition
∞∑

k=0

P{H(nk, u) > nk(λ(u) + δ)}

≤
∞∑

k=0

P{H(m�(k)+1, u) > m�(k)+1(λ(u) + δ/2)} + O(1).

The right-hand side here is finite by virtue of (4.41), because m�(k) = K2n�(k) <

nk ≤ K2n�(k)+1 forces |�(k) − k| ≤ K7 for some K7 which is independent of k

(see (3.80)). Thus
∞∑

k=0

P
{ 1

nk
H(nk, u) > λ(u) + δ

}
< ∞.(4.45)

Finally, we may drop the condition (4.44), because if η does not satisfy
this condition, then we can choose an η′ such that

0 < η′ < min
{ C4

8C1
,

K2δ

4λ(u)
,

δ

8(λ(u) + δ/2)
,
ζ(η)
2

}
,
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with ζ(η) the quantity in (3.80). Let us write rk for nk(η′), where nk(η′)
satisfies (3.80) with η replaced by η′. By what we proved so far we then have

∞∑
k=0

P
{∣∣ 1

rk
H(rk, u) − λ(u)

∣∣ >
δ

2
}

< ∞.(4.46)

Furthermore, if sk is the unique index for which rsk
< nk ≤ rsk+1, then also

∞∑
k=0

P
{ 1

nk
H(nk, u) − 1

rsk+1
H(rsk+1, u) >

δ

2
}

< ∞,(4.47)

by virtue of (3.86) (with h∗ replaced by H and s = rsk
, t = rsk+1 − rsk

, α =
1
4δrsk

). To conclude, η′ < ζ(η) implies that nk+1/nk ≥ 1 + ζ(η) > 1 + 2η′ ≥
rsk+1/rsk

, so that sk+1 > sk and there is at most one nk between two successive
s’s. This, together with (4.46) and (4.47), implies (4.45).

5. Proof of the shape theorem

Now that we have shown that the spread of the B-particles in the full
space process has a definite speed in each direction, the half-space processes
are no longer of importance. In fact Corollary 8 contains Theorem 1 in the one-
dimensional case (with B0 = [−λ(e1), λ(e1)]). For the higher dimensional case,
we shall show in this section how to go from the existence of limt→∞(1/t)H(t, u)
for all u ∈ Sd−1 to the full shape theorem. This should work for a fairly general
class of processes. The idea to derive the shape theorem via results on the
propagation of half-spaces we learned from [GG]. However, the details in our
case differ from those in [GG].

The remaining problem in dimension d > 1 is that even if we know that
H(t, u) grows at rate λ(u), it only tells us that there exist B-particles at time t

at some random site xt for which 〈xt, u〉 ∼ tλ(u). It does not tell us where the
points xt near the hyperplane {x : 〈x, u〉 = tλ(u)} are. In particular, it does
not guarantee that we can find xt which converge in direction to a prescribed
unit vector, i.e., for given v ∈ Sd−1 we do not know whether we can choose xt

such that xt/‖xt‖2 → v.
To attack this problem we first write down the conjectured limiting shape

B0 in terms of the function λ(·) on Sd−1. This conjectured B0 is convex (for
trivial reasons). We then show that we can guarantee xt/‖xt‖2 → v if v

corresponds to a so-called exposed point of the convex set B0. Using some
further properties of convex sets, as well as approximate convexity properties
of the set of points which can be reached by the B-particles in a large time,
we can then show that the limiting shape result (1.3) holds.

The convergence result (4.36) suggests that the limit set B0 in (1.3) should
be given by

B0 = {z ∈ Rd : 〈z, u〉 ≤ λ(u) for all u ∈ Sd−1}.(5.1)



756 HARRY KESTEN AND VLADAS SIDORAVICIUS

Clearly this set B0 is a closed convex set. In fact it is also bounded and hence
compact, because λ(u) ≤ 2

√
dC1 for all u. The origin is an interior point of B0

because λ(u) ≥ C4. We call a point w ∈ ∂B0 an exposed point of B0 if there
exists a supporting hyperplane {z ∈ Rd : 〈a, z〉 = b} of B0 which contains w,
but no other point of B0. Thus

〈a, w〉 = b but 〈a, z〉 < b for all z ∈ B0 \ {w}.(5.2)

Note that this forces a �= 0. If 〈a, z〉 > b for z ∈ B0 we can replace (a, b) by
(−a,−b) to make the inequality go in the indicated direction. We now show
that P f indeed grows in the direction of an exposed point at the rate which is
necessary for (1.3).

Lemma 9. Let w be an exposed point of B0 and let (a, b) ∈ Rd×R satisfy
(5.2). Let u = a/‖a‖2. Then, there exists a sequence εn ↓ 0 such that

P{Nn(w, εn) occurs for all large integers n} = 1,(5.3)

where

Nn(w, ε) := {in P f there are at time
(
1 + 8ε/C2

)
n occupied(5.4)

sites in nw + C(2εn) and all these sites are in fact

occupied by B-particles at time
(
1 + 8ε/C2

)
n}.

Also, define

On(w, δ) =
{
in P f there is at time n a B-particle in nw + C(δn)

}
.

Finally, let nk = nk(η) be as in Corollary 5. Then for all δ, η > 0
∞∑

k=0

[
1 − P{Onk(η)(w, δ)}

]
< ∞.(5.5)

Proof. Let B0 be given by (5.1) and fix an exposed point w of B0. Order
the vertices of Zd in some deterministic way, for instance in the lexicographic
way. Let xt be the first vertex x in this order which is occupied by a B-particle
in P f at time t and with 〈x, u〉 = H(t, u). By (4.36), almost surely,

1
t
〈xt, u〉 → λ(u) = lim

t→∞
1
t
H(t, u)(5.6)

as t → ∞. Moreover, by (4.37), for each δ > 0, η > 0,
∞∑

k=0

P
{∣∣ 1

nk
〈xnk

, u〉 − λ(u)
∣∣ > δ

}
< ∞.(5.7)

We want to show that for each δ > 0

P
{∥∥ 1

n
xn − w

∥∥ ≤ δ for all large integers n
}

= 1.(5.8)



SHAPE THEOREM FOR SPREAD OF AN INFECTION 757

Note that w ∈ B0 implies

〈w, u〉 ≤ λ(u).(5.9)

Recall next that P{xn /∈ C(2C1n)} ≤ K6n
−K−d−1, by virtue of (3.49) or the

estimates for (3.25). So,

P{xn ∈ C(2C1n) for all large n} = 1.(5.10)

Also
∞∑

k=0

P{xnk
/∈ C(2C1nk)} < ∞.(5.11)

So, we can ignore the events {xn /∈ C(2C1n)}. Next, let v ∈ Sd−1 be a unit
vector which is not a multiple of w. We claim that there exists some δ =
δ(v) > 0 such that

P
{∥∥∥ xn

‖xn‖2
− v

∥∥∥ < δ i.o.
}

= 0(5.12)

and
∞∑

k=0

P
{∥∥∥ xnk

‖xnk
‖2

− v
∥∥∥ < δ

}
< ∞(5.13)

(i.o. stands for infinitely often). To prove this, note first that (5.12) holds if
〈v, u〉 = 0, because

lim inf
n→∞

〈 xn

‖xn‖2
, u〉 ≥ λ(u)

lim supn→∞ ‖xn‖2/n
≥ C4

2
√

dC1

a.s.

by virtue of (5.6), (5.10) and the fact the λ(u) ∈ [C4, 2
√

dC1]. Similarly, (5.13)
holds if 〈v, u〉 = 0, by virtue of (5.7) and (5.11). To take care of other vectors
v, define for any y ∈ Rd \ {0}, with 〈y, u〉 �= 0,

ỹ = the unique multiple of y which satisfies 〈ỹ, u〉 = b/‖a‖2.

In particular, ỹ lies in the in the supporting hyperplane {z : 〈a, z〉 = b} (recall
that u = a

‖a‖2
). Now, by assumption ṽ �= w, so that ṽ /∈ B0. By definition of

B0 this means that there exists some u′ ∈ Sd−1 such that 〈ṽ, u′〉 > λ(u′). We
can then find δ > 0 and η > 0 such that 〈z̃, u′〉 > (1 + η)λ(u′) for all z ∈ Sd−1

with ‖z − v‖ < δ. Thus, if ∥∥∥ xn

‖xn‖2
− v

∥∥∥ < δ,(5.14)

then

〈x̃n, u′〉 = 〈 ˜(
xn/‖xn‖2

)
, u′〉 > (1 + η)λ(u′).(5.15)
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In addition, by (5.6) and (5.9),

lim
n→∞

1
n
〈xn, u〉 = λ(u) ≥ 〈w, u〉 =

b

‖a‖2
(see (5.2)),

while, by definition of ỹ,

〈x̃n, u〉 =
b

‖a‖2
.

Moreover, we must have

‖a‖2〈w, u〉 = b > 0(5.16)

by (5.2) and the fact that 0 ∈ B0. Consequently, xn = γnx̃n for some reals γn

which satisfy γn/n → 1. Thus (5.14) together with (5.15) implies

〈xn, u′〉 = γn〈x̃n, u′〉 > n(1 + η/2)λ(u′)

for large n. But, P{〈xn, u′〉 > n(1 + η/2)λ(u′) i.o.} = 0, by virtue of (4.36)
with u replaced by u′ and by the fact that H(n, u′) ≥ 〈xn, u′〉 (by definition of
H). Thus (5.12) holds for the chosen δ. Similarly, (5.13) follows by means of
(5.7) with u′ instead of u and (4.37).

Now, for any ε > 0, the compact set

W (ε) := {z ∈ Sd−1 : z =
x

‖x‖2
for some x ∈ C(2C1n) with

〈x, u〉 ≥ nλ(u)/2, ‖z − w

‖w‖2
‖ ≥ ε}

= {z ∈ Sd−1 : z =
x

‖x‖2
for some x ∈ C(2C1) with

〈x, u〉 ≥ λ(u)/2, ‖z − w

‖w‖2
‖ ≥ ε}

is independent of n and is covered by finitely many neighborhoods U1, . . . , UN

of the form Ui = {z ∈ Sd−1 : ‖z−vi‖ < δ(vi)} with vi ∈ Sd−1. Thus, by (5.12),
P{xn/‖xn‖2 ∈ W (ε) i.o.} = 0. This holds for all ε > 0. In view of (5.6) and
(5.10), this implies

P
{ xn

‖xn‖2
→ w

‖w‖2

}
= 1.(5.17)

In turn, this together with (5.6) implies

lim
n→∞

nλ(u)
‖xn‖2

= lim
n→∞

〈xn, u〉
‖xn‖2

=
〈w, u〉
‖w‖2

a.s.

Since 〈w, u〉 �= 0 (see (5.16)), ‖xn‖2 ∼ n‖w‖2λ(u)/〈w, u〉 and

lim
n→∞

1
n

xn =
λ(u)
〈w, u〉w a.s.(5.18)

To complete the proof of (5.8) we show that

λ(u) = 〈w, u〉.(5.19)
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Indeed, we already saw that 〈x̃n, u〉 = b/‖a‖2 = 〈w, u〉. We also saw that
xn = γnx̃n with γn ∼ n. Therefore 〈xn/n, u〉 ∼ 〈x̃n, u〉 = 〈w, u〉. On the other
hand, (5.18) implies that limn→∞〈xn/n, u〉 = λ(u). Thus (5.19) and (5.8) hold.

We now also obtain (5.5). Indeed, essentially the same argument as for
(5.17), but now using (5.13) instead of (5.12) gives, for any δ > 0,

∞∑
k=0

P
{∥∥∥ xnk

‖xnk
‖2

− w

‖w‖2

∥∥∥ > δ
}

< ∞.(5.20)

Consequently also
∞∑

k=0

P
{∣∣ 1

nk
〈xnk

, u〉 − ‖xnk
‖2

nk‖w‖2
〈w, u〉

∣∣ >
δ

nk
‖xnk

‖2

}
< ∞.

Together with (5.7), (5.19) and (5.11) this last relation yields
∞∑

k=0

P
{∣∣λ(u) − ‖xnk

‖2

nk‖w‖2
λ(u)

∣∣ > (1 + 2C1

√
d)δ

}
< ∞.

Thus, for suitable constants K9, K10

∞∑
k=0

P
{∣∣∣‖xnk

‖2

nk
− ‖w‖2

∣∣∣ > K9δ
}

< ∞

and then, by (5.20),
∞∑

k=0

P
{∥∥∥ xnk

‖xnk
‖2

− nkw

‖xnk
‖2

∥∥∥ > K10δ
}

< ∞.

This finally gives for some other constant K11

∞∑
k=0

[
1 − P{Onk(η)(w, K11δ)}

]
≤

∞∑
k=0

P
{∥∥xnk

nk
− w

∥∥ > K11δ
}

< ∞.

Since this holds for any δ > 0, this is equivalent to (5.5).
The preceding (see (5.8)) shows that there exists a sequence εn → 0, and

random vertices xn such that with probability 1, for all large n,

xn ∈ nw + C(εnn) and Bf(xn, n) occurs,(5.21)

where
Bf(x, s) := {there is B-particle at x at time s in P f}.

Now take
ñ := n

(
1 +

8εn

C2

)
and define the event

R(x, n) = {at time ñ there is some particle in P f which lies in

x + C
(
C2(ñ − n)/2

)
= x + C(4εnn) but is of type A}.
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We shall complete the proof of the lemma by proving that the event

(5.22) {for infinitely many n there exists an xn for which

Bf(xn, n) ∩R(xn, n) occurs}

has probability 0. First we show that this will indeed prove the lemma. The
probability that any particle which is in nw + C(εnn) at time n is outside
nw + C(2εnn) at time ñ is bounded by

(5.23)
E{(number of particles in P f in nw + C(εnn))} · P{ sup

r≤ñ−n
‖Sr‖ ≥ εnn}

≤ K12[εnn]dP{ sup
r≤ñ−n

‖Sr‖ ≥ εnn}.

Without loss of generality we can let εn go to 0 so slowly that for large n this
expression is no more than n−K−1 (by (2.42) in [KSa]) and such that

εn ≥ n−1/2.(5.24)

From this and the fact that the event (5.21) occurs for all large n, we conclude
via the Borel-Cantelli lemma that almost surely, for all large n there are parti-
cles in P f in the set nw + C(2εnn) at time ñ. Further, the fact that (5.22) has
probability 0 implies that R(xn, n) must fail for all large n. But this implies
that a.s. there are particles in P f which lie in nw +C(2εnn) ⊂ xn +C(4εnn) at
time ñ, and all of these particles must have type B. This is the desired result
(5.3).

It remains to prove that (5.22) has probability 0. But this is almost
immediate from Proposition B. Indeed,

P{Bf(xn, n) ∩R(xn, n)}
≤ P{xn /∈ C(2C1n)} +

∑
x∈C(2C1n)

P{Bf(x, n) but at time ñ there is a particle

in P f of type A at some z ∈ x + C(4εnn)}

≤ K4n
−K−d−1 +

∑
x∈C(2C1n)

P{x is occupied at time n in P f and in the

full-space process started at (x, n) there is an

A-particle at some z ∈ x + C(4εnn) at time ñ},

where we used Lemma C for the last inequality. As in the estimate for K2 in
(3.76), by (3.9) and (2.4) with K replaced by 2K + 2d, the last sum here is at
most

K10n
d(left-hand side of (2.4) with t = ñ − n = 8εnn/C2) ≤ K11n

−K

(see (5.24)).
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The preceding lemma shows that the set B(t) grows in the direction of
the exposed points of B0 in ∂B0 at the “right” speed. More specifically, if w

is such a point, then almost surely, for all large t, there exist points w(t) ∈
(1/t)B(t) such that w(t) → w. We merely have to choose n in Lemma 9
such that n(1 + 8εn/C2) ≤ t but n/t → 1, and then choose w(t) a point
in B̃

(
n(1 + 8εn/C2)

)
) ∩ [nw + C(2εnn)]. Lemma 9 guarantees that this last

intersection is nonempty for large n. The next two lemmas will show that the
same is true for any point w ∈ ∂B0. This is basically done by concatenating
a number of paths which produce B-particles at αinwn,i for exposed points
wn,i with

∑k
i=1 αiwn,i → w, αi ≥ 0,

∑k
i=1 αi = 1. Lemma 10 contains the basic

technical step. It explains how the concatenation works; this is basically the
same construction as in the proof of Lemma 7.

Lemma 10. Let w1, w2 ∈ ∂B0. Assume that there exist εn > 0 such that
εn → 0 and such that (5.3) holds with w replaced by w1; that is,

P{Nn(w1, εn) occurs for all large integers n} = 1.(5.25)

(We are not assuming that w1 is an exposed point of B0.) In addition, assume
that for all δ, η > 0

∞∑
k=0

[
1 − P{Onk(η)(w2, δ)}

]
< ∞(5.26)

(see Corollary 5 for nk = nk(η)). Let 0 < α < 1 and η > 0. Then there exists
δn > 0 such that δn → 0 and such that

P{Nn(αw1 + (1 − α)w2, δn) occurs for all large n} = 1.(5.27)

Proof. Fix 0 < α < 1. Also fix

δ > 0 and 0 < η < δ/2

for the time being. Take

pk = pk(η) =
⌊ α

1 − α
nk(η)

⌋
and

qk = qk(η) =
(
1 + 8εpk(η)/C2

)
pk.

Define O′
nk

(w2, δ) as the translate by
(
pk(η)w1, qk(η)

)
(in space-time) of

Onk
(w2, δ). Explicitly,

O′
nk

(w2, δ) = {in the full-space process started at
(
pk(η)w1, qk(η)

)
there

is at time qk + nk a B-particle in pkw1 + nkw2 + C(δnk)}.
(We suppress the dependence on w1 and η in this notation). Also let

zk = nearest occupied site to pkw1 in P f at time qk.
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Since P{O′
nk

(w2, δ)} = P{Onk
(w2, δ)}, assumption (5.26) implies that almost

surely,

O′
nk

(w2, δ) occurs for all large k.(5.28)

Also, by assumption (5.25), almost surely,

Npk
(w1, εpk

) occurs for all large k.(5.29)

Now consider a k for which Npk
(w1, εpk

)∩O′
nk

(w2, δ) occurs. By the definition
(5.4) of Npk

this implies that zk lies in pkw1 + C(2εpk
pk) and that the particles

at zk at time qk have type B in P f . Therefore the resetting of the types to
start the full-space process at (pkw1, qk) does not change the type at zk. By
the monotonicity property of Lemma C, P f therefore has at least as many
B-particles at any space-time point (x, t) with t ≥ qk as the full state process
started at (pkw1, qk). Since O′

nk
(w2, δ) occurs this implies that in P f there is

a B-particle in pkw1 + nkw2 + C(δnk) at time qk + nk.
Let the nearest B-particle to pkw1 + nkw2 in P f at time qk + nk be at the

position yk, so that Bf(yk, qk + nk) occurs. The last paragraph gives us that
‖yk − pkw1 − nkw2‖ ≤ δnk. These are only statements for the times qk + nk.
Since (5.25) requires that certain events happen for all large n we now first
show how to go from the qk +nk to general integers n. For any large n let k(n)
be such that qk + nk ≤ n < qk+1 + nk+1. Then for large n

qk + nk ≤ n ≤ (qk + nk)(1 + 2η) ≤ (qk + nk)(1 + δ),

since nk+1/nk ≤ 1 + η and qk+1/qk ∼ pk+1/pk ∼ nk+1/nk. Also by our choice
of pk, qk

αn ∼ α(qk + nk) + O(ηn) = α(pk + nk) + O((η + εk)n) = pk + O(δn)

and
‖pkw1 + nkw2 − n[αw1 + (1 − α)w2]‖ ≤ K12δn

for large n. Thus, on Bf(yk, qk + nk), there is a B-particle at yk ∈
n[αw1 + (1 − α)w2] + C

(
(K12 + 1)δn

)
at time qk + nk. Moreover, as in (5.23)

we have

P{in P f there is a B-particle in n[αw1 + (1 − α)w2] + C
(
(K12 + 1)δn

)
at time qk + nk which is no longer in n[αw1 + (1 − α)w2]

+ C
(
(K12 + 2)δn

)
at time n} = O

(
n−K

)
.

Thus, almost surely, there is in P f for all large n a B-particle in

n[αw1 + (1 − α)w2] + C
(
(K12 + 2)δn

)
at time n. We can now proceed as in Lemma 9. Essentially as in (5.22) and
in the lines following it we now have that almost surely
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(5.30)

{there is some y ∈ n[αw1 + (1 − α)w2] + C
(
(K12 + 2)δn

)
for which

Bf(y, n) occurs, but in P f there are either no particles or an A-particle in

n[αw1 + (1 − α)w2] + C
(
2(K12 + 2)δn

)
at time

(
1 + 8(K12 + 2)δ/C2

)
n
}

occurs only for finitely many n. This shows that

P{Nn

(
αw1 + (1 − α)w2, (K12 + 2)δ

)
occurs for all large n} = 1.(5.31)

This holds for all δ > 0 and η < δ/2. However, (5.31) is already independent
of η, so that it holds for all δ > 0. There then also exists a sequence δn → 0
such that almost surely Nn

(
αw1 + (1 − α)w2, δn

)
occurs for all large n.

Proof of Theorem 1. We shall prove (1.3) with the B0 defined in (5.1).
For the right-hand inclusion in (1.3) we note that for any ε > 0 there exists
finitely many half-spaces {z ∈ Rd : 〈z, ui〉 ≤ λ(ui)}, 1 ≤ i ≤ N , with ui ∈ Sd−1

such that

N⋂
i=1

{z ∈ Rd : 〈z, ui〉 ≤ λ(ui)} ⊂ (1 + ε/3)B0.(5.32)

Indeed, B0 is contained in the cube C̃ := ∩N
i=1{z ∈ Rd : −λ(ei) ≤ 〈z, ei〉 ≤

λ(ei)} (with ei = i-th coordinate vector), and by compactness, C̃\(interior of
(1+ε/3)B0 is covered by finitely many relatively open subsets of C̃ of the form
C̃ ∩ {z ∈ Rd : 〈z, u〉 > λ(u)}. Thus (5.32) holds. In addition to (5.32) we know
from (4.36) that, almost surely, H(t, ui) < t(1 + ε/3)λ(ui) for all large t and
i = 1, . . . , N . Consequently, almost surely

B̃(t) ⊂ t(1 + ε/3)
N⋂

i=1

{z ∈ Rd : 〈z, ui〉 ≤ λ(ui)} ⊂ (1 + ε/3)2tB0

for all large t. Thus the right-hand inclusion in (1.3) holds.
For the left-hand inclusion in (1.3) we first observe that by Lemma 9,

the hypotheses (5.25) and (5.26) of Lemma 10 hold for all exposed points
w1, w2 ∈ ∂B0. It then follows from Lemma 10 that (5.27) holds. In turn,
(5.27) states that the hypothesis (5.25) with w1 replaced by αw1 +(1−α)w2 is
satisfied. Therefore, if w3 ∈ ∂B0 is also an exposed point of B0 and 0 < β < 1,
then we get from Lemma 10 that there exist δ′n → 0 such that

P{Nn(βαw1 + β(1 − α)w2 + (1 − β)w3, δ
′
n) occurs for all large n} = 1.

But as α and β vary over (0, 1), βαw1 +β(1−α)w2 +(1−β)w3 varies over the
convex combinations α1w1 + α2w2 + α3w3 with αi > 0,

∑3
i=1 αi = 1. We can

repeat this procedure to obtain that for each convex combination
∑k

i=1 αiwi
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with αi ≥ 0,
∑k

i=1 αi = 1 and wi ∈ ∂B0 exposed points of B0, there exist
δn → 0 such that

P{Nn

( k∑
i=1

αiwi, δn

)
for all large integers n} = 1.

In particular (see (5.4)), for each such
∑k

i=1 αiwi and each fixed η > 0

P{in P f there are at time (1 + 8δn/C2)n B-particles in

n

k∑
i=1

αiwi + C(2ηn) for all large integers n} = 1.

In turn, this means that if for a given vector v and η > 0 we can find αi, wi as
above such that ‖v − ∑k

i=1 αiwi‖ ≤ η, then also

P{in P f there are at time (1 + 8δn/C2)n B-particles in(5.33)

nv + C(3ηn) for all large integers n} = 1.

If v is such that there exist k(r) < ∞, αr
i ≥ 0 and w

(r)
i ∈ ∂B0 exposed points

of B0 such that
∑k(r)

i=1 αi = 1 and ‖v − ∑k(r)

i=1 α
(r)
i w

(r)
i ‖ → 0 (as r → ∞), then

(5.33) holds for each η > 0. For such v there then exist ηn → 0 such that
almost surely, for all large n there exist B-particles within distance 4ηnn of nv

at time (1 + 8δn/C2)n, for some δn → 0 (δn and ηn may depend on v).
The last statement applies to each v ∈ B0, because each such v is a convex

combination of at most (d + 1) extreme points of B0 (see [Ru, Th. 3.22 and
the lemma following Th. 3.25]) and the exposed points of B0 are dense in the
extreme points (Strascewicz’ theorem; see Theorem 18.6 in [Ro]). Thus, by
applying the last result to a fixed v ∈ B0 with n = �(1 − ε)t� and 0 < ε < 1,
we find that almost surely for all large t,

at time (1 + 8δn/C2)n there exists a site vn with(5.34)

‖vn − nv‖ ≤ 4ηnn, which is occupied in P f by B-particles.

We claim that

(5.35)

P{(5.34) holds, but not all sites in (1 − ε)tv + C(C2εt/4) belong to B̃(t)}
≤ K13t

−K .

This is an easy consequence of (3.9) and Theorem A. Indeed, from (3.9) with
(X, s) taken to be

(
vn, (1 + 8δn/C2)n

)
, s = (1 + 8δn/C2)n, X = vn = the

nearest site to v which is occupied in P f at time s by some B-particle and

A= {not all vertices in C(C2εn/2) have been

visited by a B-particle by time εn/2}
= {C(C2εn/2) �⊂ B(εn/2)},
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we see that the probability in (5.35) is for large t at most

K14n
dP or{C(C2εn/2) �⊂ B(εn/2)} ≤ K15n

−K ≤ K13t
−K

(for the first inequality here we used Theorem A with K + d in the place of
K). This establishes the claim (5.35).

To obtain Theorem 1 we now choose for a given ε a finite number of vectors
v(1), . . . , v(N) in B0 such that each v ∈ B0 satisfies ‖v − v(r)‖ < C2ε/4 for at
least one r. This means that

B0 ⊂
⋃

1≤r≤N

[
v(r) + C(C2ε/4)

]
.

Moreover, by (5.34) and (5.35) it holds almost surely for all large t that⋃
1≤r≤N

[
(1 − ε)tv(r) + C(C2εt/4)

]
⊂ B̃(t).

Together, these last two inclusions imply that almost surely the left-hand in-
clusion in (1.3) holds for all large t.

Cornell University, Ithaca, NY

E-mail address: kesten@math.cornell.edu
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