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Cyclic homology, cdh-cohomology
and negative K-theory

By G. Cortiñas, C. Haesemeyer, M. Schlichting, and C. Weibel*

Abstract

We prove a blow-up formula for cyclic homology which we use to show
that infinitesimal K-theory satisfies cdh-descent. Combining that result with
some computations of the cdh-cohomology of the sheaf of regular functions, we
verify a conjecture of Weibel predicting the vanishing of algebraic K-theory of
a scheme in degrees less than minus the dimension of the scheme, for schemes
essentially of finite type over a field of characteristic zero.

Introduction

The negative algebraic K-theory of a singular variety is related to its ge-
ometry. This observation goes back to the classic study by Bass and Murthy
[1], which implicitly calculated the negative K-theory of a curve X. By def-
inition, the group K−n(X) describes a subgroup of the Grothendieck group
K0(Y ) of vector bundles on Y = X × (A1 − {0})n.

The following conjecture was made in 1980, based upon the Bass-Murthy
calculations, and appeared in [38, 2.9]. Recall that if F is any contravariant
functor on schemes, a scheme X is called F -regular if F (X) → F (X × Ar) is
an isomorphism for all r ≥ 0.

K-dimension Conjecture 0.1. Let X be a Noetherian scheme of di-
mension d. Then Km(X) = 0 for m < −d and X is K−d-regular.

In this paper we give a proof of this conjecture for X essentially of finite
type over a field F of characteristic 0; see Theorem 6.2. We remark that this
conjecture is still open in characteristic p > 0, except for curves and surfaces;
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see [44]. We also remark that this conjecture is sharp in the sense that for any
field k there are n-dimensional schemes of finite type over k with an isolated
singularity and nontrivial K−n; see [29].

Much of this paper involves cohomology with respect to Voevodsky’s cdh-
topology. The following statement summarizes some of our results in this
direction:

Theorem 0.2. Let F be a field of characteristic 0, X a d-dimensional
scheme, essentially of finite type over F . Then:

(1) K−d(X) ∼= Hd
cdh(X, Z) (see 6.2);

(2) Hd
Zar(X,OX) → Hd

cdh(X,OX) is surjective (see 6.1);

(3) If X is smooth then Hn
Zar(X,OX) ∼= Hn

cdh(X,OX) for all n (see 6.3).

In addition to our use of the cdh-topology, our key technical innova-
tion is the use of Cortiñas’ infinitesimal K-theory [4] to interpolate between
K-theory and cyclic homology. We prove (in Theorem 4.6) that infinitesimal
K-theory satisfies descent for the cdh-topology. Since we are in characteristic
zero, every scheme is locally smooth for the cdh-topology, and therefore lo-
cally Kn-regular for every n. In addition, periodic cyclic homology is locally
de Rham cohomology in the cdh-topology. These features allow us to deduce
Conjecture 0.1 from Theorem 0.2.

This paper is organized as follows. The first two sections study the behav-
ior of cyclic homology and its variants under blow-ups. We then recall some
elementary facts about descent for the cdh-topology in Section 3, and provide
some examples of functors satisfying cdh-descent, like periodic cyclic homology
(3.13) and homotopy K-theory (3.14). We introduce infinitesimal K-theory in
Section 4 and prove that it satisfies cdh-descent. This already suffices to prove
that X is K−d−1-regular and Kn(X) = 0 for n < −d, as demonstrated in
Section 5. The remaining step, involving K−d, requires an analysis of the
cdh-cohomology of the structure sheaf OX and is carried out in Section 6.

Notation. The category of spectra we use in this paper will not be
critical. In order to minimize technical issues, we will use the terminology that
a spectrum E is a sequence En of simplicial sets together with bonding maps
bn : En → ΩEn+1. We say that E is an Ω-spectrum if all bonding maps are
weak equivalences. A map of spectra is a strict map. We will use the model
structure on the category of spectra defined in [3]. Note that in this model
structure, every fibrant spectrum is an Ω-spectrum.

If A is a ring, I ⊂ A a two-sided ideal and E a functor from rings to spectra,
we write E(A, I) for the homotopy fiber of E(A) → E(A/I). If moreover f :
A → B is a ring homomorphism mapping I isomorphically to a two-sided ideal
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(also called I) of B, then we write E(A, B, I) for the homotopy fiber of the
natural map E(A, I) → E(B, I). We say that E satisfies excision provided that
E(A, B, I) � 0 for all A, I and f : A → B as above. Of course, if E is only
defined on a smaller category of rings, such as commutative F -algebras of finite
type, then these notions still make sense and we say that E satisfies excision
for that category.

We shall write Sch/F for the category of schemes essentially of finite type
over a field F . We say a presheaf E of spectra on Sch/F satisfies the Mayer-
Vietoris-property (or MV-property, for short) for a cartesian square of schemes

Y ′ −−−→ X ′⏐⏐�
⏐⏐�

Y −−−→ X

if applying E to this square results in a homotopy cartesian square of spectra.
We say that E satisfies the Mayer-Vietoris property for a class of squares pro-
vided it satisfies the MV-property for each square in the class. For example,
the MV-property for affine squares in which Y → X is a closed immersion
is the same as the excision property for commutative algebras of finite type,
combined with invariance under infinitesimal extensions.

We say that E satisfies Nisnevich descent for Sch/F if E satisfies the
MV-property for all elementary Nisnevich squares in Sch/F ; an elementary
Nisnevich square is a cartesian square of schemes as above for which Y → X

is an open embedding, X ′ → X is étale and (X ′ − Y ′) → (X − Y ) is an
isomorphism. By [27, 4.4], this is equivalent to the assertion that E(X) →
Hnis(X, E) is a weak equivalence for each scheme X, where Hnis(−, E) is a
fibrant replacement for the presheaf E in a suitable model structure.

We say that E satisfies cdh-descent for Sch/F if E satisfies the MV-
property for all elementary Nisnevich squares (Nisnevich descent) and for all
abstract blow-up squares in Sch/F . Here an abstract blow-up square is a square
as above such that Y → X is a closed embedding, X ′ → X is proper and the
induced morphism (X ′ − Y ′)red → (X − Y )red is an isomorphism. We will see
in Theorem 3.4 that this is equivalent to the assertion that E(X) → Hcdh(X, E)
is a weak equivalence for each scheme X, where Hcdh(−, E) is a fibrant replace-
ment for the presheaf E in a suitable model structure.

It is well known that there is an Eilenberg-Mac Lane functor from chain
complexes of abelian groups to spectra, and from presheaves of chain com-
plexes of abelian groups to presheaves of spectra. This functor sends quasi-
isomorphisms of complexes to weak homotopy equivalences of spectra. In this
spirit, we will use the above descent terminology for presheaves of complexes.
Because we will eventually be interested in hypercohomology, we use cohomo-
logical indexing for all complexes in this paper; in particular, for a complex A,
A[p]q = Ap+q.
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1. Perfect complexes and regular blowups

In this section, we compute the categories of perfect complexes for blow-
ups along regularly embedded centers. Our computation slightly differs from
that of Thomason ([32], see also [28]) in that we use a different filtration which
is more useful for our purposes. We do not claim much originality.

In this section, “scheme” means “quasi-separated and quasi-compact
scheme”. For such a scheme X, we write Dperf(X) for the derived category of
perfect complexes on X [34]. Let i : Y ⊂ X be a regular embedding of schemes
of pure codimension d, and let p : X ′ → X be the blow-up of X along Y and
j : Y ′ ⊂ X ′ the exceptional divisor. We write q for the map Y ′ → Y .

Recall that the exact sequence of OX′-modules 0 → OX′(1) → OX′ →
j∗OY ′ →0 gives rise to the fundamental exact triangle in Dperf(X ′):

OX′(l + 1) → OX′(l) → Rj∗
(
OY ′(l)

)
→ OX′(l + 1)[1],(1.1)

where Rj∗
(
OY ′(l)

)
=

(
j∗OY ′

)
(l) by the projection formula.

We say that a triangulated subcategory S ⊂ T of a triangulated category
T is generated by a specified set of objects of T if S is the smallest thick (that
is, closed under direct factors) triangulated subcategory of T containing that
set.

Lemma 1.2. (1) The triangulated category Dperf(X ′) is generated by
Lp∗F , Rj∗Lq∗G ⊗ OX′(−l), for F ∈ Dperf(X), G ∈ Dperf(Y ) and l =
1, . . . , d − 1.

(2) The triangulated category Dperf(Y ′) is generated by Lq∗G⊗OY ′(−l), for
G ∈ Dperf(Y ) and l = 0, . . . , d − 1.

Proof (Thomason [32]). For k = 0, . . . , d, let A′
k denote the full triangu-

lated subcategory of Dperf(X ′) of those complexes E for which

Rp∗(E ⊗OX′(l)) = 0

for 0 ≤ l < k. In particular, Dperf(X ′) = A′
0. By [32, Lemme 2.5(b)], A′

d = 0.
Using [32, Lemme 2.4(a)], and descending induction on k, we see that for
k ≥ 1, A′

k is generated by Rj∗Lq∗G ⊗ OX′(−l), for some G in Dperf(Y ) and
l = k, . . . , d − 1. For k = 0, we use the fact that the unit map 1 → Rp∗Lp∗

is an isomorphism [32, Lemme 2.3(a)] to see that A′
0 = Dperf(X ′) is generated

by the image of Lp∗ and the kernel of Rp∗. But A′
1 is the kernel of Rp∗.

Similarly, for k = 0, . . . , d, let Ak be the full triangulated subcategory of
Dperf(Y ′) of those complexes E for which Rq∗(E⊗OY ′(l)) = 0 for 0 ≤ l < k. In
particular, Dperf(Y ′) = A0. By [32, Lemme 2.5(a)], A′

d = 0. Using [33, p.247,
from “Soit F · un objet dans A′

k” to “Alors G· est un objet dans A′
k+1”], and

descending induction on k, we have that Ak is generated by Lq∗G ⊗OY ′(−l),
l = k, . . . , d − 1.
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Remark 1.3. As a consequence of the proof of 1.2, we note the following.
Let k = 0, . . . , d − 1 and m be any integer. The full triangulated subcategory
of Dperf(Y ′) of those complexes E with Rq∗(E⊗OY ′(l)) = 0 for m ≤ l < k+m

is the same as the full triangulated subcategory generated by Lq∗G ⊗OY ′(n),
for G ∈ Dperf(Y ) and k +m ≤ n ≤ d−1+m. In particular, the condition that
a complex be in the latter category is local in Y .

Lemma 1.4. The functors Lp∗ : Dperf(X) → Dperf(X ′), Lq∗ : Dperf(Y ) →
Dperf(Y ′) and Rj∗Lq∗ :Dperf(Y )→Dperf(X ′) are fully faithful.

Proof. The functors Lp∗ and Lq∗ are fully faithful, since the unit maps
1 → Rp∗Lp∗ and 1 → Rq∗Lq∗ are isomorphisms [32, Lemme 2.3].

By the fundamental exact triangle (1.1), the cone of the co-unit Lj∗Rj∗OY ′

→ OY ′ is in the triangulated subcategory generated by OY ′(1), since the co-
unit map is a retraction of Lj∗OX′ → Lj∗Rj∗OY ′ . It follows that the cone
of the co-unit map Lj∗Rj∗Lq∗E → Lq∗E is in the triangulated subcategory
generated by Lq∗E⊗OY ′(1), since the latter condition is local in Y (see Remark
1.3), and Dperf(Y ) is generated by OY for affine Y . Since Rq∗(Lq∗G⊗O(−1)) =
G ⊗ Rq∗O(−1) = 0, we have Hom(A, B) = 0 for A (respectively B) in the
triangulated subcategory of Dperf(Y ′) generated by Lq∗G⊗O(1) (respectively,
generated by Lq∗G), for G ∈ Dperf(Y ). Applying this observation to the cone
of Lj∗Rj∗Lq∗E → Lq∗E justifies the second equality in the display:

Hom(E, F ) = Hom(Lq∗E, Lq∗F ) = Hom(Lj∗Rj∗Lq∗E, Lq∗F )

= Hom(Rj∗Lq∗E, Rj∗Lq∗F ).

The first equality holds because Lq∗ is fully faithful, and the final equality is
an adjunction. The composition is an equality, showing that Rj∗Lq∗ is fully
faithful.

For l = 0, . . . , d − 1, let Dl
perf(X

′) ⊂ Dperf(X ′) be the full triangulated
subcategory generated by Lp∗F and Rj∗Lq∗G ⊗ OX′(−k) for F ∈ Dperf(X),
G ∈ Dperf(Y ) and k = 1, . . . , l. For l = 0, . . . , d−1, let Dl

perf(Y
′) ⊂ Dperf(Y ′) be

the full triangulated subcategory generated by Lq∗G⊗OY ′(−k) for G ∈ D(Y )
and k = 0, . . . , l.

By Lemma 1.4, Lp∗ : Dperf(X) → D0
perf(X

′) and Lq∗ : Dperf(Y ) →
D0

perf(Y
′) are equivalences. By Lemma 1.2, Dd−1

perf(X
′) = Dperf(X ′) and Dd−1

perf(Y )
= Dperf(Y ′).

Proposition 1.5. The functor Lj∗ is compatible with the filtrations on
Dperf(X ′) and Dperf(Y ′):
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Dperf(X)
Lp∗

∼ ��

Li∗

��

D0
perf(X

′)

Lj∗

��

⊂ D1
perf(X

′) ⊂ ··· ⊂

Lj∗

��

Dd−1
perf(X

′) = Dperf(X ′)

Lj∗

��
Dperf(Y )

Lq∗

∼ �� D0
perf(Y

′) ⊂ D1
perf(Y

′) ⊂ ··· ⊂ Dd−1
perf(Y

′) = Dperf(Y ′).

For l = 0, . . . , d − 2, Lj∗ induces equivalences on successive quotient triangu-
lated categories:

Lj∗ : Dl+1
perf(X

′)/ Dl
perf(X

′) �−→ Dl+1
perf(Y

′)/ Dl
perf(Y

′).

Proof. The commutativity of the left-hand square follows from Lq∗Li∗ =
Lj∗Lp∗. The compatibility of Lj∗ with the filtrations only needs to be checked
on generators; that is, we need to check that Lj∗[Rj∗Lq∗G ⊗ OX′(−l)] is in
Dl

perf(Y
′), l = 1, . . . , d − 1. The last condition is local in Y (see Remark

1.3), a fortiori it is local in X. So we can assume that X and Y are affine,
and G = OY . In this case, the claim follows from the fundamental exact
triangle (1.1).

For l − k = 1, . . . , d − 1, E ∈ Dperf(X) and G ∈ Dperf(Y ), we have
Hom(Lp∗E ⊗O(−k),Rj∗Lq∗G⊗O(−l)) = Hom(Lp∗E ⊗O(l−k),Rj∗Lq∗G) =
Hom(Lj∗Lp∗E ⊗O(l− k),Lq∗G) = Hom(Lq∗Li∗E ⊗O(l− k),Lq∗G) = 0 since
Rq∗O(k − l) = 0. Therefore, all maps from objects of Dl

perf(X
′) to an object

of O(−l − 1) ⊗ Rj∗Lq∗ Dperf(Y ) ⊂ Dl+1
perf(X

′) are trivial. It follows that the
composition

O(−l − 1) ⊗ Rj∗Lq∗ Dperf(Y ) ⊂ Dl+1
perf(X

′) → Dl+1
perf(X

′)/ Dl
perf(X

′)

is an equivalence (it is fully faithful, both categories have the same set of
generators, and the source category is idempotent complete). Similarly, the
composition

O(−l − 1) ⊗ Lq∗ Dperf(Y ) ⊂ Dl+1
perf(Y

′) → Dl+1
perf(Y

′)/ Dl
perf(Y

′)

is an equivalence.
The co-unit map Lj∗Rj∗Lq∗ → Lq∗ has its cone in the triangulated sub-

category generated by Lq∗G⊗O(1) (see proof of 1.4), G ∈ Dperf(Y ). It follows
that the natural map of functors Lj∗[O(−l−1)⊗Rj∗Lq∗] → OY ′(−l−1)⊗Lq∗,
induced by the co-unit of adjunction, has its cone in Dl

perf(Y
′). Thus, the

composition Lj∗ ◦ [O(−l − 1) ⊗ Rj∗Lq∗] : Dperf(Y ) → Dl+1
perf(X

′)/ Dl
perf(X

′) →
Dl+1

perf(Y
′)/ Dl

perf(Y
′) agrees, up to natural equivalence of functors, with

OY ′(−l − 1) ⊗ Lq∗ : Dperf(Y ) → Dl+1
perf(Y

′)/ Dl
perf(Y

′).

Since two of the three functors are equivalences, so is the third:

Lj∗ : Dl+1
perf(X

′)/ Dl
perf(X

′) ∼→ Dl+1
perf(Y

′)/ Dl
perf(Y

′).
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Remark 1.6. Proposition 1.5 yields K-theory descent for blow-ups along
regularly embedded centers. This follows from Thomason’s theorem in [34] (see
[10], [11]), because every square in 1.5 induces a homotopy cartesian square of
K-theory spectra.

Several people have remarked that this descent also follows from the main
theorem of [32] by a simple manipulation.

2. Thomason’s theorem for (negative) cyclic homology

In this section we prove that negative cyclic, periodic cyclic and cyclic
homology satisfy the Mayer-Vietoris property for blow-ups along regularly em-
bedded centers. We will work over a ground field k, so that all schemes are
k-schemes, all linear categories are k-linear, and tensor product ⊗ means tensor
product over k.

Mixed complexes. In order to fix our notation, we recall some standard
definitions (see [25] and [41]). We remind the reader that we are using coho-
mological notation, with the homology of C being given by Hn(C) = H−n(C).

A mixed complex C = (C, b, B) is a cochain complex (C, b), together with
a chain map B : C → C[−1] satisfying B2 = 0. There is an evident notion
of a map of mixed complexes, and we write Mix for the category of mixed
complexes.

The complexes for cyclic, periodic cyclic and negative cyclic homology of
(C, b, B) are obtained using the total complex:

HC(C, b, B) = Tot(· · · → C[+1] B→ C → 0 → 0 → · · · )

HP (C, b, B) = Tot(· · · → C[+1] B→ C
B→ C[−1] B→ C[−2] → · · · )

HN(C, b, B) = Tot(· · · → 0 → C
B→ C[−1] B→ C[−2] → · · · )

where C is placed in horizontal degree 0 and where for a bicomplex E, TotE is
the subcomplex of the usual product total complex (see [41]) which in degree
n is

TotnE = {(xp,q) ∈ Πp+q=nEp,q| xp,q = 0, q >> 0}.
In addition to the familiar exact sequence 0→C→HC(C)→HC(C)[+2]→0
we have a natural exact sequence of complexes

0 → HN(C) → HP (C) → HC(C)[+2] → 0.

Short exact sequences and quasi-isomorphisms of mixed complexes yield short
exact sequences and quasi-isomorphisms of HC, HP and HN complexes, re-
spectively. Of course, the cyclic, periodic cyclic and negative cyclic homology
groups of C are the homology groups of HC, HP and HN , respectively.

We say that a map (C, b, B) → (C ′, b′, B′) is a quasi-isomorphism in Mix
if the underlying complexes are quasi-isomorphic via (C, b) → (C ′, b′); follow-
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ing [24], we write DMix for the localization of Mix with respect to quasi-
isomorphisms; it is a triangulated category with shift C �→ C[1]. The reader
should beware that DMix is not the derived category of the underlying abelian
category of Mix.

It is sometimes useful to use the equivalence between the category Mix
of mixed complexes and the category of left dg Λ-modules, where Λ is the
dg-algebra

· · · 0 → kε
0→ k → 0 → · · ·

with k placed in degree zero [22, 2.2]. A left dg Λ module (C, d) corresponds
to the mixed complex (C, b, B) with b = d and Bc = εc, for c ∈ C. Un-
der this identification, the triangulated category of mixed complexes DMix is
equivalent to the derived category of left dg Λ-modules. With this interpreta-
tion of mixed complexes as left dg-Λ-modules, we have HC(C) = k ⊗L

Λ C and
HN(C) = R HomΛ(k, C).

Let B be a small dg-category, i.e., a small category enriched over com-
plexes. When B is concentrated in degree 0 (i.e., when B is a k-linear cate-
gory), McCarthy defined a cyclic module and hence a mixed complex Cus(B)
associated to B by

Cus(B)n =
∐

HomB(Bn, B0) ⊗ HomB(Bn−1, Bn) ⊗ · · · ⊗ HomB(B0, B1),

where the coproduct is taken over all n+1-tuples (B0, . . . , Bn) of objects in B,
and the face maps and cyclic operators are given by the usual rules; see [26].
Keller observed in [24, 1.3] that that this formula also defines a cyclic module
for general dg-categories. (Since we are working over a field, Keller’s flatness
hypothesis is satisfied.)

Exact categories 2.1. When A is a k-linear exact category in the sense of
Quillen, Keller defines the mixed complex C(A) in [24, 1.4] to be the cone of
Cus(Acb A) → Cus(Chb A), where Chb A is the dg-category of bounded chain
complexes in A and Acb A is the sub dg-category of acyclic complexes. He also
proves in [24, 1.5] that, up to quasi-isomorphism, C(A) only depends upon the
idempotent completion A+ of A.

Example 2.2. Let A be a k-algebra; viewing it as a (dg) category with
one object, Cus(A) is the usual mixed complex of A (see [25] or [41]). Now
let P(A) denote the exact category of finitely generated projective A-modules.
By McCarthy’s theorem [26, 2.4.3], the natural map Cus(A) → Cus(P(A))
is a quasi-isomorphism of mixed complexes. Keller proves in [24, 2.4] that
Cus(P(A)) → C(P(A)) and hence Cus(A) → C(P(A)) is a quasi-isomorphism
of mixed complexes. In particular, it induces quasi-isomorphisms of HC, HP

and HN complexes.
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Exact dg categories 2.3. Let B be a small dg-category, and let DG(B)
denote the category of left dg B-modules. There is a Yoneda embedding Y :
Z0B → DG(B), Y (B)(A) = B(A, B), where Z0B is the subcategory of B
whose morphisms from A to B are Z0B(A, B). Following Keller [24, 2.1], we
say that a dg-category is exact if Z0B (the full subcategory of representable
modules Y (B)) is closed under extensions and the shift functor in DG(B). The
triangulated category T (B) of an exact dg-category B is defined to be Keller’s
stable category Z0B/B0B.

Localization pairs 2.4. A localization pair B = (B1,B0) is an exact dg-
category B1 endowed with a full dg-subcategory B0 ⊂ B1 such that Z0B0

is an exact subcategory of Z0B1 closed under shifts and extensions. For a
localization pair B, the induced functor on associated triangulated categories
T (B0) ⊂ T (B1) is fully faithful, and the associated triangulated category T (B)
of B is defined to be the Verdier quotient T (B1)/T (B0).

Sub and quotient localization pairs 2.5. Let B = (B1,B0) be a localiza-
tion pair, and let S ⊂ T (B) be a full triangulated subcategory. Let C ⊂ B1

be the full dg subcategory whose objects are isomorphic in T (B) to objects
of S. Then B0 ⊂ C and C ⊂ B1 are localization pairs, and the sequence
(C,B0) → B → (B1, C) has an associated sequence of triangulated categories
which is naturally equivalent to the exact sequence of triangulated categories
S → T (B) → T (B)/S.

A dg category B over a ring R is said to be flat if each H = B(A, B) is flat
in the sense that H ⊗R − preserves quasi-isomophisms of graded R-modules.
A localization pair B is flat if B1 (and hence B2) is flat. When the ground ring
is a field, as it is in this article, every localization pair is flat.

In [24, 2.4], Keller associates to a flat localization pair B a mixed complex
C(B), the cone of C(B0) → C(B1), and proves the following in [24, Th. 2.4]:

Theorem 2.6. Let A → B → C be a sequence of localization pairs such
that the associated sequence of triangulated categories is exact up to factors.
Then the induced sequence C(A) → C(B) → C(C) of mixed complexes extends
to a canonical distinguished triangle in DMix,

C(A) → C(B) → C(C) → C(A)[1].

Example 2.7. The category Chperf(X) of perfect complexes on X is an
exact dg-category if we ignore cardinality issues. We need a more precise
choice for the category of perfect complexes. Let F be a field of characteristic
zero containing k. For X ∈ Sch/F , we choose Chperf(X) to be the category
of perfect bounded above complexes (under cohomological indexing) of flat
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OX -modules whose stalks have cardinality at most the cardinality of F . (Since
F is infinite, all algebras essentially of finite type over F have cardinality at
most the cardinality of F ). This is an exact dg-category over k. Let f : X → Y

be a map of schemes essentially of finite type over F . Then Lf∗ is f∗ on
Chperf(X), so that Chperf is functorial up to (unique) natural isomorphism
of functors on Sch/F . If we want to get a real presheaf of dg categories on
Sch/F , we can replace Chperf by some rectification as, for example, done in
[40, App.].

Let Ac(X) ⊂ Chperf(X) be the full dg-subcategory of acyclic complexes.
Then Chperf(X) = (Chperf(X),Ac(X)) is a localization pair over k whose
associated triangulated category is naturally equivalent to Dperf(X) ([34, 3.5.3],
except for the cardinality part). We define C(X) to be the mixed complex
(over k) associated to Chperf(X).

We define HC(X), HP(X), HN(X) to be the cyclic, periodic cyclic,
negative cyclic homology complexes associated with the mixed complex C(X).
In particular, HC, HP and HN are presheaves of complexes on Sch/F . Keller
proves in [23, 5.2] that these definitions agree with the definitions in [42], with
HCn(X) = H−nHC(X), etc. In addition, the Hochschild homology of X is
the homology of the complex underlying C(X).

Example 2.8. If Z ⊂ X is closed, let Chperf(X on Z) be the localization
pair formed by the category of perfect complexes on X which are acyclic on
X − Z, and its full subcategory of acyclic complexes. We define C(X on Z)
to be the mixed complex associated to this localization pair.

If U ⊂ X is the open complement of Z, then Thomason and Trobaugh
proved in [34, §5] that the sequence Chperf(X on Z)→Chperf(X)→Chperf(U)
is such that the associated sequence of triangulated categories is exact up
to factors. As pointed out in [23, 5.5], Keller’s Theorem 2.6 implies that
C(X on Z) → C(X) → C(U) fits into a distinguished triangle in DMix.

Suppose that we are given an étale neighborhood q : V → X of a closed
subscheme Z of X, i.e., an étale morphism which is an isomorphism over Z.
Then C(X on Z) → C(V on Z) is a quasi-ismorphism. This is a consequence
of the fact, demonstrated by Thomason and Trobaugh in [34, Th. 2.6.3], that
the functors Lq∗ and Rq∗ induce quasi-inverse equivalences on derived cate-
gories Dperf(X on Z) ∼= Dperf(V on Z).

As a consequence of 2.7 and 2.8, and a standard argument involving étale
covers, we recover the following theorem, which was originally proven by Geller
and Weibel in [37, 4.2.1 and 4.8]. (The term “étale descent” used in [37] implies
Nisnevich descent; for presheaves of Q-modules, they are equivalent notions.)

Theorem 2.9. Hochschild, cyclic, periodic and negative cyclic homology
satisfy Nisnevich descent.
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We are now ready to prove the cyclic homology analogue of Thomason’s
theorem for regular embeddings.

Theorem 2.10. Let Y ⊂ X be a regular embedding of F -schemes of pure
codimension d, let X ′ → X be the blow-up of X along Y and Y ′ be the ex-
ceptional divisor. Then the presheaves of cyclic, periodic cyclic and negative
cyclic homology complexes satisfy the Mayer-Vietoris property for the square

Y ′ −−−→ X ′⏐⏐�
⏐⏐�

Y −−−→ X.

Proof. By Section 2.5, the filtrations in Proposition 1.5 induce filtrations
on both Chperf(X ′) and on Chperf(Y ′), and Lf∗ = f∗ is compatible with these
filtrations. Moreover, f∗ induces a map on associated graded localization pairs.
By Theorem 2.6 and Proposition 1.5, each square in the map of filtrations
induces a homotopy cartesian square of mixed complexes; hence the outer
square is homotopy cartesian, too.

Remark 2.11. The filtrations in Proposition 1.5 split (see proof of 1.5),
and induce the usual projective space bundle and blow-up formulas:

HC(Y ′) =HC(Pd−1
Y ) �

⊕
0≤l≤d−1

HC(Y ),

and
HC(X ′)�HC(X) ⊕

⊕
1≤l≤d−1

HC(Y ).

The case is similar for HP and HN in place of HC. For more details in the
K-theory case; see [32].

Remark 2.12. Combining the Mayer-Vietoris property for the usual cov-
ering of X×P1 with the decomposition of 2.11 yields the Fundamental Theorem
for negative cyclic homology, which states that there is a short exact sequence,

0 → HN(X × A1) ∪HN(X) HN(X × A1)→HN(X × (A1 − {0}))
→HN(X)[1] → 0.

This sequence is split up to homotopy; the splitting

HN(X)[1] → HN(X × (A1 − {0}))

is multiplication by the class of dt/t ∈ HN1(k[t, 1/t]). The same argument
shows that there are similar Fundamental Theorems for cyclic and periodic
cylic homology.
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3. Descent for the cdh-topology

We recall the definition of a cd-structure, given in [35] and [36].

Definition 3.1. Let C be a small category. A cd-structure on C is a class
P of commutative squares in C that is closed under isomorphism.

A cd-structure defines a topology on C. We use the following cd-structures
on Sch/F and on the subcategory Sm/F of essentially smooth schemes (that
is, localizations of smooth schemes) over F .

Example 3.2. (1) The combined cd-structure on the category Sch/F .
This consists of all elementary Nisnevich and abstract blow-up squares.
It is complete ([36, Lemma 2.2]), bounded ([36, Prop. 2.12]) and regu-
lar ([36, Lemma 2.13]). By definition, the cdh-topology is the topology
generated by the combined cd-structure (see [36, Prop. 2.16]).

(2) The combined cd-structure on Sm/F is the sum of the “upper” and
“smooth blow-up” cd-structures on Sm/F. It consists of all elementary
Nisnevich squares and those abstract blow-up squares of smooth schemes
isomorphic to a blow-up of a smooth scheme along a smooth center (this
cd-structure is discussed in [36, §4]). This cd-structure is complete,
bounded and regular (because resolution of singularities holds over F ;
see the discussion following [36, Lemma 4.5]). By definition, the scdh-
topology is the topology generated by this cd-structure. It coincides with
the restriction of the cdh-topology to Sm/F (see [30, §5] for more on the
cdh- and scdh-topologies and their relationship).

We shall be concerned with two notions of weak equivalence for a mor-
phism f : E → E ′ between presheaves of spectra (or simplicial presheaves) on
a category C. We say that f is a global weak equivalence if E(U) → E ′(U) is a
weak equivalence for each object U . If C is a site, we say that f is a local weak
equivalence if it induces an isomorphism on sheaves of stable homotopy groups
(or ordinary homotopy groups, in the case of simplicial presheaves).

We are primarily interested in the following model structures on the cat-
egories of presheaves of spectra (or simplicial presheaves) on a category C; the
terminology is taken from [2]. First, there is the global projective model struc-
ture for global weak equivalences. A morphism f : E → E ′ is a fibration in this
global projective model structure provided f(U) : E(U) → E ′(U) is a fibration
of spectra for each object U of C (we say that weak equivalences and fibrations
are defined objectwise); cofibrations are defined by the left lifting property. If
E → E ′ is a cofibration then each E(U) → E ′(U) is a cofibration of spectra, but
the converse does not hold.
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Second, for a site C there is the local injective model structure for local
weak equivalences. A morphism E → E ′ is a cofibration in this model structure
if each E(U) → E ′(U) is a cofibration; fibrations are defined by the right lifting
property. These model structures were studied by Jardine in [19] and [21].

Third, there is the local projective (or Brown-Gersten) model structure for
local weak equivalences. A morphism E → E ′ is a cofibration in this model
structure if it is a global projective cofibration; fibrations are defined by the
right lifting property.

We warn the reader that our local projective model structure for presheaves
is slightly different from (but Quillen-equivalent to) the corresponding model
structure for sheaves discussed in [35].

Note that since a cofibration in the local projective model structure is
an objectwise cofibration, it is also a cofibration in the local injective model
structure. In particular, trivial cofibrations in the local projective structure
are also trivial cofibrations in the local injective model structure. It follows
from the lifting property that a morphism of presheaves which is a fibration
in the local injective model structure is also a fibration in the local projective
model structure.

Any local weak equivalence E → E ′ between local projective fibrant pre-
sheaves is a global weak equivalence. This useful remark follows from the fact
that the identity functor on the category of presheaves of spectra (respectively,
simplicial sets) is a right Quillen functor from the local projective to the global
projective model structure and hence preserves weak equivalences between fi-
brant objects, see [18, Prop. 8.5.7].

Recall that a fibrant replacement of E in a model category is a trivial cofi-
bration E → E ′ with E ′ fibrant. Even though we do not need it, we note that for
all the model structures considered, a fibrant replacement can be chosen func-
torially by the “small object argument” (see [19] for the local injective model
structure, and [2] for the projective model structures). We will fix a fibrant
replacement functor E → HC(−, E) for the local injective model structure, and
we will drop the site from the notation when the topology is clear from the
context. Following Thomason [31, p. 532], we write Hn(X, E) for π−nH(X, E).

Definition 3.3. A presheaf of spectra (or simplicial sets) E on a site C is
called quasifibrant if the local injective fibrant replacement E → H(−, E) is a
global weak equivalence; i.e., the map E(U) → H(U, E) is a weak equivalence
for all U in C.

An important result of [35] is that under certain conditions, presheaves
satisfying the Mayer-Vietoris property are precisely quasifibrant presheaves.
Note that in that paper, presheaves satisfying the MV-property are called
“flasque.”
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Theorem 3.4. Let C be a category with a complete bounded regular cd-
structure P. Then a presheaf of simplicial sets (or spectra) E on C is quasifi-
brant (with respect to the topology induced by P) if and only if E satisfies the
MV-property for P.

Proof. We first prove this for presheaves of simplicial sets. Both properties,
satifying the MV-property and being quasifibrant, are invariant under global
weak equivalence. A local injective fibrant presheaf is globally equivalent to
a fibrant replacement (as sheaf) of its sheafification. Hence [35, Lemma 4.3]
shows that a quasifibrant presheaf satisfies the MV-property. Conversely, [35,
Lemma 3.5] asserts that a local weak equivalence between presheaves satisfying
the MV-property is a global weak equivalence. As fibrant presheaves satisfy the
MV-property, this implies that any local injective fibrant replacement E → Ẽ
is a global weak equivalence if the presheaf satisfies the MV-property; that is,
presheaves that satisfy the MV-property are quasifibrant.

The assertion for presheaves of spectra follows from this, because a fi-
brant spectrum is an Ω-spectrum. Indeed, since the properties “quasifibrant”
and “satisfying the MV-property” are once again invariant under global weak
equivalence, we can as well assume that all our presheaves are global projec-
tive fibrant, in particular, they are presheaves of Ω-spectra. Now a map of
Ω-spectra is a (stable) weak equivalence if and only if it is levelwise a weak
equivalence of simplicial sets, and a square of Ω-spectra is homotopy cartesian
if and only if it is levelwise a homotopy cartesian square of simplicial sets. This
reduces the proof to the case of presheaves of simplical sets, as claimed.

Terminology 3.5. If a presheaf E satisfies the equivalent conditions in The-
orem 3.4 for a topology t generated by a complete regular bounded cd-structure
P we say that E satisfies t-descent, or descent for the t-topology.

For later use, we note that the analogues of Theorem 3.4 hold for com-
plexes of (pre)sheaves of abelian groups.

Definition 3.6. Let C be a category with a cd-structure P. Let A• be
a presheaf of cochain complexes on C. We say that A• is quasifibrant for
the topology generated by P provided the natural map A•(U) → RΓ(U, A•)
is a quasi-isomorphism for each object U of C. (This property is usually
called “pseudoflasque” because it is satisfied by any cochain complex of flasque
sheaves.)

We say that A• satisfies the MV-property for P, if, for any square Q ∈ P,
the square of complexes A•(Q) is homotopy cocartesian.

The notation is explained by the following “great enlightenment,” due
to Thomason [31, 5.32]. If E is the presheaf of Eilenberg-Mac Lane spectra
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associated to A•, then H(−, E) is the presheaf of Eilenberg-Mac Lane spectra
associated to RΓ(−, A•), and we have Hn(X, E) ∼= Hn(X, A•).

With these definitions, the exact analogue of Theorem 3.4 holds for com-
plexes of presheaves.

Theorem 3.7. Suppose that C is a category with a complete bounded reg-
ular cd-structure P. Then a complex of presheaves A• is quasifibrant if and
only if it satisfies the MV-property for P.

Proof. Reduce to the result for presheaves of spectra by associating
Eilenberg-Mac Lane spectra to all complexes.

Terminology 3.8. Once again, we say that a presheaf A• of complexes
satisfies t-descent for a topology t generated by a cd-structure P if it satisfies
the equivalent properties of Theorem 3.7.

Corollary 3.9. Let A be a presheaf of spectra (respectively, complexes)
on Sm/F . Then A satisfies scdh-descent (3.2.2) if and only if A satisfies
Nisnevich descent and A satisfies the Mayer-Vietoris property for smooth blow-
up squares.

Example 3.10. It follows from [14, exp. Vbis, Cor. 4.1.6] that singular
cohomology satisfies cdh-descent on the category Sch/C. By this we mean
that the presheaf of complexes X �→ S∗(Xan) assigning to a complex variety
X the singular cochain complex of its associated analytic space satisfies cdh-
descent.

For any presheaf A on Sch/F write rA for the presheaf on the subcategory
Sm/F of smooth schemes obtained by restriction. The following lemma is
immediate from the observation that r(acdhπ∗A) = ascdhπ∗(rA).

Lemma 3.11. Let f : A → B be a morphism of presheaves of spectra on
Sch/F . If f is a local weak equivalence in the cdh-topology then rf : rA → rB

is a local weak equivalence in the scdh-topology.

We can now prove the main technical result of this section; it will be
used in 4.6 to show that infinitesimal K-theory satisfies cdh-descent. Recall
that the combined cd-structures on schemes and smooth schemes are complete,
bounded and regular, so that Theorem 3.4 applies.

Theorem 3.12. Let E be a presheaf of spectra on Sch/F such that E
satisfies excision, is invariant under infinitesimal extension, satisfies Nisnevich
descent and satisfies the Mayer-Vietoris property for every blow-up along a
regular sequence. Then E satisfies cdh-descent.
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Proof. We will prove that E is cdh-quasifibrant. As E satisfies Nisnevich
descent and the MV-property for blow-ups along a regular sequence (in partic-
ular, for a blow-up of a smooth scheme along a smooth subscheme), rE satisfies
the MV-property for the combined cd-structure on Sm/F . Let E → Hcdh(−, E)
be a local injective fibrant replacement of E . By Theorem 3.4, Hcdh(−, E) sat-
isfies the MV-property for the combined cd-structure on Sch/F . A fortiori ,
rHcdh(−, E) satisfies the MV-property for the combined cd-structure on Sm/F .
By Lemma 3.11, the restriction rE → rHcdh(−, E) is a local weak equivalence
in the scdh-topology. As the source and target satisfy the MV-property, it is
a global weak equivalence on Sm/F . In other words, for any smooth scheme
X, the map E(X) → Hcdh(X, E) is a weak equivalence.

Now we proceed as in [16, §§5,6], replacing KH by the presheaf E every-
where. Specifically, we make the following conclusions. First of all, because
E satisfies excision, Nisnevich descent and is invariant under infinitesimal ex-
tensions, E satisfies the MV-property for all closed covers, as well as for finite
abstract blow-ups, such as normalizations. (By a finite abstract blow-up we
mean an abstract blow-up p : X ′ → X that is a finite morphism.) If X is a
hypersurface inside some smooth F -scheme U , we can factor its resolution of
singularities locally into a sequence of blow-ups along regular sequences and
finite abstract blow-ups; using induction on the dimension of X and the length
of the resolution, we conclude that E(X) ∼= Hcdh(X, E). (See [16, Th. 6.1]
for details of the proof in the case where E = KH.) Next, if X is a local
complete intersection, we use induction on the embedding codimension and
Mayer-Vietoris for closed covers to prove that once again E(X) ∼= Hcdh(X, E)
in this case (see [16, Corollary 6.2] for details). Finally, the general case follows
from this because every integral F -scheme is locally a component of a complete
intersection (see [16, Th. 6.4] for details).

As a typical application of this result, we prove that periodic cyclic ho-
mology satisfies cdh-descent when Q ⊆ F . This can also be deduced from
Feigin-Tsygan’s theorem [8, Th. 5] (see also [43, 3.4]), [6, 6.8]), which identifies
HP with crystalline cohomology and from known properties of the latter estab-
lished in [17]. Note that HP here means the presheaf of complexes computing
periodic cyclic homology over Q.

Corollary 3.13. The presheaf of complexes HP on Sch/F satisfies cdh-
descent. Hence its associated presheaf of Eilenberg-Mac Lane spectra also sat-
isfies cdh-descent.

Proof. We have to check that the hypotheses of Theorem 3.12 are sat-
isfied by HP. The fact that HP satisfies excision is in [7, 5.3]; invariance
under infinitesimal extensions is proved in [12, Th. II.5.1]; Nisnevich descent
is Theorem 2.9; and Mayer-Vietoris for blow-ups along a regular sequence is
Theorem 2.10.
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Example 3.14. Theorem 3.12 applies in particular to prove that homotopy
K-theory KH satisfies cdh-descent, as explained in [16]. As a consequence we
have the following computation (see [16, Th. 7.1]).

Suppose that X is a scheme, essentially of finite type over a field F of
characteristic 0 and such that dim(X) = d. Then KHn(X) = 0 for n < −d

and KH−d(X) = Hd
cdh(X, Z).

4. Descent for infinitesimal K-theory

In this section, we combine the previous sections to prove (in Theorem 4.6
below) that Cortiñas’ infinitesimal K-theory satisfies cdh-descent on Sch/F ,
for any field F of characteristic 0. All variants of cyclic homology are taken
over Q.

Recall from 2.7 that HN(X) is the presheaf of complexes defining neg-
ative cyclic homology; we obtain a presheaf of spectra from this by taking
the associated Eilenberg-Mac Lane spectrum. There is a Chern character
K(X) → HN(X) (for a definition, start for example with [39, §4], use the
Fundamental Theorem 2.12 to extend to nonconnective K-theory and glob-
alize using Zariski descent). Here K(X) denotes the nonconnective K-theory
spectrum of perfect complexes on X as in [34, 6.4].

Definition 4.1. Let X be a Q-scheme. We define the infinitesimal K-
theory of X, Kinf(X), to be the homotopy fiber of the Chern character K(X) →
HN(X).

The following theorem was proven by Cortiñas in [5]. It verified the
“KABI-conjecture” of Geller-Reid-Weibel ([9, 0.1]).

Theorem 4.2 (Cortiñas). Kinf satisfies excision on the category of
Q-algebras.

Theorem 4.3. Kinf satisfies Nisnevich descent.

Proof. Both K and HN do, by [34, 10.8] and Theorem 2.9.

From Theorem 2.10 and Remark 1.6, both HN and K-theory have the
Mayer-Vietoris property for any square associated to a blow-up along a regular
embedding. This proves the following result.

Theorem 4.4. Kinf satisfies the Mayer-Vietoris property for every blow-
up along a regular embedding.

Finally, we have the following result, due to Goodwillie; see [13].
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Theorem 4.5 (Goodwillie). Let A be a Q-algebra and I ⊂ A a nilpo-
tent ideal. Then Kinf(A, I) is contractible. That is, Kinf is invariant under
infinitesimal extension.

Proof. Goodwillie proves (in [13, Th. II.3.4]) that the Chern character
induces an equivalence K(A, I) → HN(A, I). This immediately implies the
assertion.

Theorem 4.6. The presheaf of spectra Kinf satisfies cdh-descent.

Proof. This follows from Theorem 3.12, once we observe that the presheaf
Kinf satisfies the conditions given in the theorem. These conditions hold by
Theorems 4.2, 4.4, 4.3 and 4.5.

5. The obstruction to homotopy invariance

We will say that a sequence of presheaves of spectra E1 → E2 → E3 is
an (objectwise) homotopy fibration sequence provided that for each scheme X,
the sequence of spectra E1(X) → E2(X) → E3(X) is weakly equivalent to a
fibration sequence (that is, it defines a distinguished triangle in the homotopy
category of spectra). We have the following useful observation (cf. [31, 1.35],
[19, p. 73], [20, p. 194]): if E1 → E2 → E3 is a homotopy fibration sequence,
then Hcdh(−, E1) → Hcdh(−, E2) → Hcdh(−, E3) is also a homotopy fibration
sequence.

For a presheaf of spectra E on Sch/F , we will write C̃jE for the cofiber
of the map E → E(− × Aj). Since C̃jE is a direct factor of E(− × Aj), the
functor E �→ C̃jE preserves homotopy fibration sequences. If we also use the
C̃j notation for presheaves of abelian groups, then C̃j(πrE) ∼= πr(C̃jE).

Lemma 5.1. Suppose the presheaf of spectra E satisfies descent for the
cdh-topology (or Zariski, or Nisnevich topology). Then so do the presheaves
C̃jE.

Proof. All three topologies are generated by a complete bounded regular
cd-structure. By Theorem 3.4, the presheaf E satisfies the MV-property, hence
so do the presheaves E(− × Aj), for all j; consequently, the presheaves C̃jE
also satisfy Mayer-Vietoris; that is, they satisfy descent.

In particular, the presheaves C̃jKinf satisfy descent for the cdh-topology,
and the presheaves C̃jHN satisfy descent for the Zariski topology.

We will say that a presheaf E is contractible if E(X) � ∗ for all X.

Lemma 5.2. The presheaves Hcdh(−, C̃jK) are contractible for all j ≥ 1.
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Proof. As smooth schemes are Km-regular for any m, acdhπmC̃jK =
acdhC̃jKm = 0 for all j ≥ 1 and all m. The assertion follows from the general
local-to-global spectral sequence in [31, 1.36], applied to the cdh site.

In characteristic zero, we also have the following result; see [12].

Proposition 5.3. For all j ≥ 1, the presheaves C̃jHP are contractible,
and hence so are the presheaves Hcdh(−, C̃jHP).

Proof. Since Q ⊆ F , HP is A1-homotopy invariant on algebras, by [12,
III.5.1] (see also [25, E.5.1.4]). As HP satisfies Zariski descent, this implies
the first assertion. The second assertion is an immediate consequence.

Corollary 5.4. For all j ≥ 1, there is a (global) weak equivalence
C̃jHC ∼= ΩC̃jHN, and hence an (objectwise) homotopy fibration sequence:

C̃jHC → C̃jKinf → C̃jK.

Proof. This is immediate from Proposition 5.3 and the fundamental ho-
motopy fibration sequences HN(X) → HP(X) → Ω−2HC(X).

Applying Hcdh(−,−) to this homotopy fibration sequence, and using Lemma
5.2, we see that Theorem 4.6 implies the next result.

Theorem 5.5. Let j ≥ 0. There is an (objectwise) homotopy fibration
sequence

C̃jHC → Hcdh(−, C̃jHC) → C̃jK.

Lemma 5.6. Let j ≥ 0. The Zariski sheaves aZarπnC̃jHC (and a fortiori,
the cdh-sheaves acdhπnC̃jHC) vanish for all n < 0.

Proof. For any ring A, HC(A) is −1-connected. Therefore C̃jHCn(A) = 0
for n < 0. This implies the assertion.

Remark 5.7. The vanishing range in 5.6 is the best possible, because
aZarπ0C̃jHC is C̃jO.

Corollary 5.8. For all m > d = dim(X) and all j, HC−m(X × Aj) =
Hm

cdh(X × Aj ,HC) = 0. Moreover, Hd
Zar(X, C̃jHC) = Hd

Zar(X, C̃jO) and
Hd

cdh(X, C̃jHC) = Hd
cdh(X, acdhC̃jO).

Proof. Since both the Zariski and cdh cohomological dimensions of X are
at most d, these follow from 5.6 via the Leray spectral sequences

Hp(X, atπ−qC̃jHC) ⇒ Hp+q(X, C̃jHC).
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From this we can already conclude the following weak form of Conjec-
ture 0.1.

Corollary 5.9. Let F be a field of characteristic 0, and X a d-dimen-
sional scheme, essentially of finite type over F . Then X is Kn-regular and
Kn(X) = 0 for all n < −d.

Proof. The first part is an immediate consequence of Theorem 5.5 and
Corollary 5.8. The second part follows from the first using the spectral sequence
Kq(X × Ap) ⇒ KHp+q(X).

Corollary 5.10. If dim(X) = d, there is an exact sequence for every
j ≥ 1:

Hd
Zar(X, aZarC̃jHC0) → Hd

cdh(X, acdhC̃jHC0) → C̃jK−d(X) → 0.

Proof. Combine 5.5 and 5.8.

6. cdh-cohomology of coherent sheaves
and the K-dimension conjecture

Most of this section will be taken up by the proof of the next result.

Theorem 6.1. Let X be an F -scheme, essentially of finite type, and of
dimension d. Then the natural homomorphism, induced by the change of topol-
ogy,

Hd
Zar(X,OX) −→ Hd

cdh(X, acdhOX)

is surjective.

Before proving this theorem, we show how Theorem 6.1 and Corollary 5.10
imply the K-dimension Conjecture 0.1.

Theorem 6.2. Let F be a field of characteristic 0 and X be an F -scheme,
essentially of finite type and of dimension d. Then X is K−d-regular and
Kn(X) = 0 for n < −d. Moreover, K−d(X) ∼= Hd

cdh(X, Z).

Proof. Fix j ≥ 1 and let Vj denote the F -vector space F [t1, . . . tj ]/F .
Since HC0(A) = A for any commutative algebra A, C̃jHC0(A) = A ⊗F Vj .
Hence aZarC̃jHC0

∼= OX ⊗F Vj and acdhC̃jHC0
∼= acdhOX ⊗F Vj . Therefore

Theorem 6.1 and Corollary 5.10 imply that X is K−d-regular.
The remaining assertions follow from the calculation of KH∗(X) in Ex-

ample 3.14, and the spectral sequence Kq(X × Ap) ⇒ KHp+q(X).

The proof of Theorem 6.1 will be in two parts: First, we will prove a
stronger result for smooth X. The second part is the proof for a general X.
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To simplify notation, for any topology t and presheaf A, we write H∗
t (X, A)

for H∗
t (X, atA). We write O for the presheaf X �→ OX(X), and RΓt(X,O)

for a functorial model for the total right derived functor of the global sections
functor X �→ atO(X).

Proposition 6.3. Let X be a smooth F -scheme. Then O(X) ∼= acdhO(X)
and the natural homomorphism

H∗
Zar(X,O) −→ H∗

cdh(X,O)

is an isomorphism.

Proof. We need to show that the natural map RΓZar(X,O) → RΓcdh(X,O)
is a quasi-isomorphism. Since the target satisfies cdh-descent 3.8, this amounts
to showing that the presheaf of complexes X �→ RΓZar(X,O) on Sm/F satisfies
the conditions of Corollary 3.9. First of all, it is classical that RΓZar(X,O) ∼=
RΓNis(X,O), which implies that this presheaf satisfies Nisnevich descent (it
sends elementary Nisnevich squares to homotopy cocartesian squares). Hence,
it suffices to show that RΓZar(−,O) transforms smooth blow-up squares into
homotopy cocartesian squares. To this end, let X be a smooth scheme, Y ⊂ X

a smooth closed subscheme, p : X ′ → X the blow-up along Y and j : Y ′ ⊂ X ′

the exceptional divisor; write q : Y ′ → Y for the restriction. Then we need to
show that the natural map

Cone
(

RΓZar(X,O) → RΓZar(X ′,O)
)

−→ Cone
(

RΓZar(Y,O) → RΓZar(Y ′,O)
)

is a quasi-isomorphism. In fact, both of those cones are 0. Indeed, OX →
Rp∗p∗OX is a quasi-isomorphism by [32, Lemme 2.3(a)], and the usual com-
putation of cohomology of projective space shows that OY → Rq∗Lq∗OY =
Rq∗OY ′ is also a quasi-isomorphism. Hence we have a homotopy cartesian
square, or alternatively,

RΓZar(X,O) → RΓZar(X ′,O) × RΓZar(Y,O) → RΓZar(Y ′,O)

is a homotopy fibration sequence. It follows that RΓZar(−,O) satisfies scdh-
descent, and in particular that O ∼= acdhO on Sm/F .

Neither the global sections of O nor the higher Zariski cohomology of O
satisfies cdh-descent for non-smooth schemes; this fails for example when X

is a cusp. Nevertheless, we have the following partial result, which suffices for
Theorem 6.1.

Lemma 6.4. Let X be a reduced affine Noetherian scheme and p :X ′→X

a proper morphism such that all the fibers of p have dimension at most d−1. Let
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j : Y ′ ⊂ X ′ be a closed subscheme. Then the restriction map Hd−1
Zar (X ′,OX′) →

Hd−1
Zar (Y ′,OY ′) is surjective.

Proof. The theorem on formal functions implies that Rdp∗F = 0 for
any quasicoherent sheaf F on X ′. Hence the functor Rd−1p∗ is right exact
on quasicoherent sheaves. In particular, Rd−1p∗OX′ → Rd−1p∗j∗OY ′ is onto.
Because X is affine, this proves the assertion.

For legibility, we will write a for the natural morphism of sites from the
cdh-site to the Zariski site on Sch/F . If F is a Zariski sheaf, then a∗F is the
same as acdhF .

Lemma 6.5. For any scheme X of finite type over F , the complex of
Zariski sheaves Ra∗a∗O|XZar has coherent cohomology sheaves.

Proof. If X is smooth then the assertion is an immediate consequence
of Proposition 6.3. We prove the general case by induction on the dimension
of X. If dim(X) = 0, then X = Spec(A) for some Artinian ring A and
Ra∗a∗O ∼= Ored, which is a coherent sheaf. Now suppose d = dim(X) > 0.
Let p : X ′ → X be a resolution of singularities, i : Y ⊂ X the singular set
and j : Y ′ ⊂ X ′ the exceptional divisor. Because Ra∗ commutes with Rf∗ for
every morphism f in Sch/F , we have a distinguished triangle of complexes of
sheaves of OX -modules on XZar:

Ra∗a
∗O → Rp∗Ra∗a

∗O × Ri∗Ra∗a
∗O → R(pj)∗Ra∗a

∗O.

The second and third terms in this triangle have coherent cohomology sheaves;
this follows from induction on the dimension, the assertion for the smooth X ′,
and the fact that proper morphisms have coherent direct images. Hence, the
first term has coherent cohomology sheaves, too (see [15, Exposé I, Cor. 3.4]).

Proof of Theorem 6.1. We proceed by induction on the dimension. If
d = 0, then X = Spec(A) for some Artinian ring A, and H0(X,O) = A →
Ared = H0

cdh(X,O) is surjective. Now assume that we have shown the assertion
for all schemes of dimension less than d > 0.

We claim that it suffices to prove the assertion when X is affine, or indeed
for local X of dimension d. To see this, suppose that X is any d-dimensional
scheme, essentially of finite type over F . We have a Leray spectral sequence

Hp
Zar(X, Rqa∗a

∗O) =⇒ Hp+q
cdh (X,O).

Fix q > 0 and consider the stalk of Rqa∗a∗O at a point x ∈ X of codimension c

(that is, where the local ring OX,x has Krull dimension c). By assumption, the
stalk is zero if q ≥ c. Since the sheaf Rqa∗a∗O is coherent by Lemma 6.5, this
implies that Rqa∗a∗O is supported on a closed subscheme of codimension > q,
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i.e., of dimension < d − q. This implies that Hp
Zar(X, Rqa∗a∗O) = 0 provided

p + q ≥ d and q > 0. Hence the Leray spectral sequence degenerates enough
to show that Hd

Zar(X, a∗a∗O) → Hd
cdh(X,O) is surjective.

Consider the cokernel F of the adjunction map O → a∗a∗O, which is
coherent by 6.5. It vanishes on an open dense subset of X (namely, on the
complement of the singular set of Xred, by 6.3), so F is supported in di-
mension < d and hence Hd

Zar(X,F) = 0. Since Hd
Zar(X,−) is right exact,

Hd
Zar(X,O) → Hd

zar(X, a∗a∗O) must be a surjection. This establishes our
claim. To summarize, it suffices to assume the result true in dimension < d

and prove it for affine schemes of dimension d. To simplify matters, we can also
assume that X is reduced. Indeed, since Hd

Zar(X,−) is right exact, the map
Hd

Zar(X,O) → Hd
Zar(X

red,O) is surjective, and Hd
cdh(X,O) = Hd

cdh(X
red,O).

Let X be an affine d-dimensional scheme, and choose a resolution of
singularities p : X ′ → X. Let Y ⊂ X be the singular subscheme and
Y ′ ⊂ X ′ the exceptional divisor. Since Y and Y ′ have smaller dimension,
Hd

cdh(Y,O) = Hd
cdh(Y

′,O) = 0 for cohomological dimension reasons [30]. Fur-
thermore, p is proper and has fibers of dimension < d; because X is affine, this
implies that Hd

Zar(X
′,O) = 0, by the theorem on formal functions. Since X ′ is

smooth, we conclude that Hd
cdh(X

′,O) = 0 by Proposition 6.3. Now the long
exact sequence in cdh-cohomology for the abstract blow-up p gives a diagram
with exact top row.

Hd−1
cdh (Y,O) × Hd−1

cdh (X ′,O) −−−→ Hd−1
cdh (Y ′,O) −−−→ Hd

cdh(X,O) −−−→ 0
⏐⏐

⏐⏐onto

Hd−1
Zar (X ′,O) onto−−−→ Hd−1

Zar (Y ′,O).

The right vertical map in this diagram is surjective by induction. As the fibers
of p have dimension less than d, Lemma 6.4 implies that the bottom horizontal
map is surjective. Therefore Hd−1

cdh (X ′,O) → Hd−1
cdh (Y ′,O) is also surjective

and hence Hd
cdh(X,O) = 0. This finishes the induction step and the proof of

Theorem 6.1.
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[4] G. Cortiñas, Infinitesimal K-theory, J. Reine Angew. Math. 503 (1998), 129–160.

[5] ———, The obstruction to excision in K-theory and in cyclic homology, Invent. Math.
164 (2006), 143–173.

[6] ———, De Rham and infinitesimal cohomology in Kapranov’s model for noncommu-
tative algebraic geometry, Compositio Math. 136 (2003), 171–208.

[7] J. Cuntz and D. Quillen, Excision in bivariant periodic cyclic homology, Invent. Math.
127 (1997), 67–98.

[8] B. L. Feigin and B. L. Tsygan, Additive K-theory and crystalline cohomology, Funct.
Anal. Appl. 19 (1985), 123–132.

[9] S. Geller, L. Reid, and C. Weibel, The cyclic homology and K-theory of curves, J.
Reine Angew. Math. 393 (1989), 39–90.

[10] H. Gillet, Riemann-Roch theorems for higher algebraic K-theory, Adv. in Math. 40
(1981), 203–289.
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(SGA 4), Dirigé par M. Artin, A. Grothendieck et J. L. Verdier, Avec la collaboration de
N. Bourbaki, P. Deligne et B. Saint-Donat, Lecture Notes in Math. 270, Springer-Verlag,
New York, 1972.

[15] A. Grothendieck and collaborators, Théorie des Intersections et Théorème de
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