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The Calabi-Yau conjectures
for embedded surfaces

By Tobias H. Colding and William P. Minicozzi II*

0. Introduction

In this paper we will prove the Calabi-Yau conjectures for embedded sur-
faces (i.e., surfaces without self-intersection). In fact, we will prove consider-
ably more. The heart of our argument is very general and should apply to a
variety of situations, as will be more apparent once we describe the main steps
of the proof later in the introduction.

The Calabi-Yau conjectures about surfaces date back to the 1960s. Much
work has been done on them over the past four decades. In particular, exam-
ples of Jorge-Xavier from 1980 and Nadirashvili from 1996 showed that the
immersed versions were false; we will show here that for embedded surfaces,
i.e., injective immersions, they are in fact true.

Their original form was given in 1965 in [Ca] where E. Calabi made the
following two conjectures about minimal surfaces (they were also promoted by
S. S. Chern at the same time; see page 212 of [Ch]):

Conjecture 0.1. “Prove that a complete minimal hypersurface in Rn

must be unbounded .”

Calabi continued: “It is known that there are no compact minimal sub-
manifolds of Rn (or of any simply connected complete Riemannian manifold
with sectional curvature ≤ 0). A more ambitious conjecture is”:

Conjecture 0.2. “A complete [nonflat ] minimal hypersurface in Rn has
an unbounded projection in every (n − 2)-dimensional flat subspace.”

These conjectures were revisited in S. T. Yau’s 1982 problem list (see
problem 91 in [Ya1]) by which time the Jorge-Xavier paper had appeared:

Question 0.3. “Is there any complete minimal surface in R3 which is a
subset of the unit ball?”

*The authors were partially supported by NSF Grants DMS-0104453 and DMS-0104187.
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This was asked by Calabi, [Ca]. There is an example of a complete [nonflat]
minimally immersed surface between two parallel planes due to L. Jorge and
F. Xavier, [JXa2]. Calabi has also shown that such an example exists in R4.
(One takes an algebraic curve in a compact complex surface covered by the
ball and lifts it up.)”

The immersed versions of these conjectures turned out to be false. As men-
tioned above, Jorge and Xavier, [JXa2], constructed nonflat minimal immer-
sions contained between two parallel planes in 1980, giving a counterexample
to the immersed version of the more ambitious Conjecture 0.2; see also [RoT].
Another significant development came in 1996, when N. Nadirashvili, [Na1],
constructed a complete immersion of a minimal disk into the unit ball in R3,
showing that Conjecture 0.1 also failed for immersed surfaces; see [MaMo1],
[LMaMo1], [LMaMo2], for other topological types than disks.

The conjectures were again revisited in Yau’s 2000 millenium lecture (see
page 360 in [Ya2]) where Yau stated:

Question 0.4. “It is known [Na1] that there are complete minimal sur-
faces properly immersed into the [open] ball. What is the geometry of these
surfaces? Can they be embedded?...”

As mentioned in the very beginning of the paper, we will in fact show
considerably more than Calabi’s conjectures. This is in part because the con-
jectures are closely related to properness. Recall that an immersed surface in
an open subset Ω of Euclidean space R3 (where Ω is all of R3 unless stated
otherwise) is proper if the pre-image of any compact subset of Ω is compact
in the surface. A well-known question generalizing Calabi’s first conjecture
asks when is a complete embedded minimal surface proper? (See for instance
question 4 in [MeP], or the “Properness Conjecture”, Conjecture 5, in [Me], or
question 5 in [CM7].)

Our main result is a chord arc bound1 for intrinsic balls that implies
properness. Obviously, intrinsic distances are larger than extrinsic distances,
so the significance of a chord arc bound is the reverse inequality, i.e., a bound
on intrinsic distances from above by extrinsic distances. This is accomplished
in the next theorem:

Theorem 0.5. There exists a constant C > 0 so that if Σ ⊂ R3 is an
embedded minimal disk, B2R = B2R(0) is an intrinsic ball2 in Σ \ ∂Σ of radius
2R, and if supBr0

|A|2 > r−2
0 where R > r0, then for x ∈ BR

C distΣ(x, 0) < |x| + r0 .(0.6)

1A chord arc bound is a bound from above and below for the ratio of intrinsic to extrinsic
distances.

2Intrinsic balls will be denoted with script capital “b” like Br(x) whereas extrinsic balls
will be denoted by an ordinary capital “b” like Br(x).
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The assumption of a lower bound for the supremum of the sum of the
squares of the principal curvatures, i.e., supBr0

|A|2 > r−2
0 , in the theorem is

a necessary normalization for a chord arc bound. This can easily be seen by
rescaling and translating the helicoid. Equivalently this normalization can be
expressed in terms of the curvature, since by the Gauss equation −1

2 |A|2 is
equal to the curvature of the minimal surface.

Properness of a complete embedded minimal disk is an immediate conse-
quence of Theorem 0.5. Namely, by (0.6), as intrinsic distances go to infinity,
so do extrinsic distances. Precisely, if Σ is flat, and hence a plane, then obvi-
ously Σ is proper and if it is nonflat, then supBr0

|A|2 > r−2
0 for some r0 > 0

and hence Σ is proper by (0.6). In sum, we get the following corollary:

Corollary 0.7. A complete embedded minimal disk in R3 must be proper.

Corollary 0.7 in turn implies that the first of Calabi’s conjectures is true
for embedded minimal disks. In particular, Nadirashvili’s examples cannot be
embedded. We also get from it an answer to Yau’s questions (Questions 0.3
and 0.4).

Another immediate consequence of Theorem 0.5 together with the one-
sided curvature estimate of [CM6] (i.e., Theorem 0.2 in [CM6]) is the following
version of that estimate for intrinsic balls; see question 3 in [CM7] where this
was conjectured:

Corollary 0.8. There exists ε > 0, so that if

Σ ⊂ {x3 > 0} ⊂ R3(0.9)

is an embedded minimal disk with intrinsic ball B2R(x) ⊂ Σ\∂Σ and |x| < ε R,
then

sup
BR(x)

|AΣ|2 ≤ R−2 .(0.10)

As a corollary of this intrinsic one-sided curvature estimate we get that the
second, and “more ambitious”, of Calabi’s conjectures is also true for embedded
minimal disks. In particular, Jorge-Xavier’s examples cannot be embedded.
Namely, letting R → ∞ in Corollary 0.8 gives the following halfspace theorem:

Corollary 0.11. The plane is the only complete embedded minimal disk
in R3 in a halfspace.

In the final section, we will see that our results for disks imply both of
Calabi’s conjectures and properness also for embedded surfaces with finite
topology. Recall that a surface Σ is said to have finite topology if it is home-
omorphic to a closed Riemann surface with a finite set of points removed or
“punctures”. Each puncture corresponds to an end of Σ.
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The following generalization of the halfspace theorem gives Calabi’s sec-
ond, “more ambitious”, conjecture for embedded surfaces with finite topology:

Corollary 0.12. The plane is the only complete embedded minimal sur-
face with finite topology in a halfspace of R3.

Likewise, we get the properness of embedded surfaces with finite topology:

Corollary 0.13. A complete embedded minimal surface with finite topol-
ogy in R3 must be proper.

Most of the classical theorems on minimal surfaces assume properness,
or something which implies properness (such as finite total curvature). In
particular, this assumption can now be removed from these theorems.

Before we recall in more detail some of the earlier work on these conjec-
tures we will try to give the reader an idea of why these kinds of properness
results should hold.

The proof that complete embedded minimal disks are proper, i.e., Corol-
lary 0.7, consists roughly of the following three main steps:

(1) Show that if the surface is compact in a ball, then in this ball we have
good chord arc bounds.

(2) Show that if each component of the intersection of each ball of a certain
size is compact (so that by the first step we have good estimates), then
each intersection with double the Euclidean balls is also compact, initially
possible with a much worse constant but then by the first step with a
good constant.

(3) Iterate the above two steps.

Step 1 above relies on our earlier results (see [CM3]–[CM6]; see also [CM9]
for a survey) about properly embedded minimal disks. We will come back to
this in the main body of the paper and instead here outline the proof of step 2
assuming step 1.

Suppose therefore that all intersections of the given disk with all Euclidean
balls of radius r are compact and have good chord arc bounds. We will show
the same for all Euclidean balls of radius 2r.

If not; then there are two points x, y ∈ B2r ∩ Σ in the same connected
component of B2r ∩ Σ but with distΣ(x, y) ≥ C r for some large constant C.
Let γ be an intrinsic geodesic in B2r ∩ Σ connecting x and y. By dividing γ

into segments, we conclude that there must be a pair of points x0 and y0 on
γ in B2r where the balls are intrinsically far apart yet extrinsically close. We
will start at these two points and build out showing that x0 and y0 could not
connect in B2r ∩ Σ. This will be the desired contradiction.
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By the assumption, each component of Br(x0)∩Σ is compact and by step 1
has good chord arc bounds; hence x0 and y0 must lie in different components.
Thus we have two compact components of Br(x0) ∩ Σ which are extrinsically
close near the center. Earlier results (the one-sided curvature estimate of
[CM6]; see Theorem 0.2 there) show that half of each of these two components
must have curvature bounds. Since this bound for the curvature is in terms
of the size of the relevant balls, then it follows that a fixed fraction of these
components must be almost flat - again relative to its size. In fact, it follows
now easily that these two almost flat regions contains intrinsic balls centered
at x0 and y0 and with radii a fixed fraction of r. We can therefore go to the
boundary of these almost flat intrinsic balls and find two points x1 and y1; one
point in each intrinsic ball so that the two points are extrinsically close yet
intrinsically far apart.

Repeat the argument with x1 and y1 in place of x0 and y0 to get points
x2 and y2. Iterating gives large regions in the surface centered at x0 and y0

with a priori curvature bounds. Once we have a priori curvature bounds then
improvements involving stability show that even these large regions are almost
flat and thus could not combine in B2r. This is the desired contradiction
and hence completes the outline of step 2 above of the proof that embedded
minimal disks are proper.

It is clear from the definition of proper that a proper minimal surface in R3

must be unbounded, so the examples of Nadirashvili are not proper. Much less
obvious is that the plane is the only complete proper immersed minimal surface
in a halfspace. This is however a consequence of the strong halfspace theorem
of D. Hoffman and W. Meeks, [HoMe], and implies that also the examples of
Jorge-Xavier are not proper.

There has been extensive work on both properness (as in Corollary 0.7)
and the halfspace property (as in Corollary 0.11) assuming various curvature
bounds. Jorge and Xavier, [JXa1] and [JXa2], showed that there cannot exist
a complete immersed minimal surface with bounded curvature in ∩i{xi > 0};
later Xavier proved that the plane is the only such surface in a halfspace, [Xa].
Recently, G. P. Bessa, Jorge and G. Oliveira-Filho, [BJO], and H. Rosenberg,
[Ro], have shown that if a complete embedded minimal surface has bounded
curvature, then it must be proper. This properness was extended to embedded
minimal surfaces with locally bounded curvature and finite topology by Meeks
and Rosenberg in [MeRo]; finite topology was subsequently replaced by finite
genus in [MePRs] by Meeks, J. Perez and A. Ros.

Inspired by Nadirashvili’s examples, F. Martin and S. Morales constructed
in [MaMo2] a complete bounded minimal immersion which is proper in the
(open) unit ball. That is, the preimages of compact subsets of the (open) unit
ball are compact in the surface and the image of the surface accumulates on
the boundary of the unit ball. They extended this in [MaMo3] to show that
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any convex, possibly noncompact or nonsmooth, region of R3 admits a proper
complete minimal immersion of the unit disk; cf. [Na2].

Finally, we note that Calabi and P. Jones, [Jo], have constructed bounded
complete holomorphic (and hence minimal) embeddings in higher codimension.
Jones’ example is a graph and he used purely analytic methods (including the
Fefferman-Stein duality theorem between H1 and BMO) while, as mentioned
in Question 0.3, Calabi’s approach was algebraic: Calabi considered the lift of
an algebraic curve in a complex surface covered by the unit ball.

Throughout this paper, we let x1, x2, x3 be the standard coordinates on R3.
For y ∈ Σ ⊂ R3 and s > 0, the extrinsic and intrinsic balls are Bs(y) and
Bs(y), respectively, and distΣ(·, ·) is the intrinsic distance in Σ. We will use
Σy,s to denote the component of Bs(y) ∩ Σ containing y; see Figure 1. The
two-dimensional disk Bs(0) ∩ {x3 = 0} will be denoted by Ds. The sectional
curvature of a smooth surface Σ ⊂ R3 is KΣ and AΣ will be its second funda-
mental form. When Σ is oriented, nΣ is the unit normal.

Σy,s

y

Bs(y)

Σ

Figure 1: Σy,s denotes the component of Bs(y) ∩ Σ containing y.

We will use freely that each component of the intersection of a minimal
disk with an extrinsic ball is also a disk (see, e.g., appendix C in [CM6]).
This follows easily from the maximum principle since |x|2 is subharmonic on a
minimal surface.

In [CM9], the results of this paper as well as [CM3]–[CM6] are surveyed.

1. Theorem 0.5 and estimates for intrinsic balls

The main result of this paper (Theorem 0.5) will follow by combining the
next proposition with a result from [CM6]. This next proposition gives a weak
chord arc bound for an embedded minimal disk but, unlike Theorem 0.5, only
for one component of a smaller extrinsic ball. The result from [CM6] will then
be used to show that there is in fact only one component, giving the theorem.
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Proposition 1.1. There exists δ1 > 0 so that if Σ ⊂ R3 is an embedded
minimal disk, then for all intrinsic balls BR(x) in Σ\∂Σ, the component Σx,δ1 R

of Bδ1 R(x) ∩ Σ containing x satisfies

Σx,δ1 R ⊂ BR/2(x) .(1.2)

The result that we need from [CM6] to show Theorem 0.5 is a consequence
of the one-sided curvature estimate of [CM6]; it is Corollary 0.4 in [CM6]. This
corollary says that if two disjoint embedded minimal disks with boundary in
the boundary of a ball both come close to the center, then each has an interior
curvature estimate. Precisely, this is the following result:

Corollary 1.3 ([CM6]). There exist constants c > 1 and ε > 0 so that
the following holds: Let Σ1 and Σ2 be disjoint embedded minimal surfaces in
BcR ⊂ R3 with ∂Σi ⊂ ∂BcR and Bε R ∩ Σi 	= ∅. If Σ1 is a disk, then for all
components Σ′

1 of BR ∩ Σ1 which intersect Bε R

sup
Σ′

1

|A|2 ≤ R−2 .(1.4)

Using this corollary, we can now prove Theorem 0.5 assuming Proposi-
tion 1.1, whose proof will fill up the next two sections.

Proof of Theorem 0.5 using Corollary 1.3 and assuming Proposition 1.1.
Let c > 1 and ε > 0 be given by Corollary 1.3 and δ1 > 0 by Proposition 1.1.

Let x ∈ BR(0) be a fixed but arbitrary point and let Σ0 and Σx be the
components of

B c (|x|+r0)
ε

∩ Σ(1.5)

containing 0 and x, respectively. Here r0 is given by the curvature assumption
in the statement of the theorem. We will divide into two cases depending on
whether or not we have the following inequality

2 c (|x| + r0)
δ1 ε

≤ R .(1.6)

If (1.6) holds, then Proposition 1.1 (with radius equal to 2 c (|x|+r0)
δ1 ε ) implies

that

Σ0 ⊂ B c (|x|+r0)
δ1 ε

(0)(1.7)

and also, since B c (|x|+r0)
ε

⊂ B 2 c (|x|+r0)
ε

(x) by the triangle inequality,

Σx ⊂ B c (|x|+r0)
δ1 ε

(x) .(1.8)

On the other hand, by definition, the embedded minimal disks Σ0 and Σx

are contained in B c (|x|+r0)
ε

. Since 0 and x are in the smaller extrinsic ball
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Bc (|x|+r0), then both Σ0 and Σx intersect Bc (|x|+r0). Furthermore, (1.7) and
(1.8) imply that Σ0 and Σx are both compact and have boundary in ∂B c (|x|+r0)

ε

.
However, it follows from Corollary 1.3 and the lower curvature bound (i.e.,
supBr0

|A|2 > r−2
0 ) that there can only be one component with all of these

properties. Hence, we have Σ0 = Σx so that

Σx ⊂ B c (|x|+r0)
δ1 ε

(0) ,(1.9)

giving the claim (0.6).
In the remaining case, where (1.6) does not hold, the claim (0.6) follows

trivially.

Before discussing the proof of Proposition 1.1, we conclude this section
by noting some additional applications of Theorem 0.5. As alluded to in the
introduction, an immediate consequence of Theorem 0.5 is that we get intrinsic
versions of all of the results of [CM6]. For instance we get the following:

Theorem 1.10. Intrinsic balls in embedded minimal disks are part of
properly embedded double spiral staircases. Moreover, a sequence of such disks
with curvature blowing up converges to a lamination.

For a precise statement of Theorem 1.10, see Theorem 0.1 of [CM6], with
intrinsic balls instead of extrinsic balls.

A double spiral staircase consists of two multi-valued graphs (or spiral
staircases) spiralling together around a common axis, without intersecting, so
that the the flights of stairs alternate between the two staircases. Intuitively,
an (embedded) multi-valued graph is a surface such that over each point of the
annulus, the surface consists of N graphs; the actual definition is recalled in
Appendix A.

2. Chord arc properties of properly embedded minimal disks

The proof of Proposition 1.1 will be divided into several steps over the
next two sections. The first step is to prove the special case where we assume
in addition that Σ is compact and has boundary in the boundary of an extrinsic
ball. The advantage of this assumption is that the results of [CM3]–[CM6] can
be applied directly.

2.1. Properly embedded disks. The next proposition gives a weak chord arc
bound for a compact embedded minimal disk with boundary in the boundary
of a ball. The fact that this bound is otherwise independent of Σ will be crucial
later when we remove these assumptions.

Proposition 2.1. Let Σ ⊂ R3 be a compact embedded minimal disk.
There exists a constant δ2 > 0 independent of Σ such that if x ∈ Σ and
Σ ⊂ BR(x) with ∂Σ ⊂ ∂BR(x), then the component Σx,δ2 R of Bδ2 R(x) ∩ Σ
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containing x satisfies

Σx,δ2 R ⊂ BR

2
(x) .(2.2)

The key ingredient in the proof of Proposition 2.1 is an effective version
of the first main theorem in [CM6]. Before we can state this effective version,
we need to recall two definitions from [CM6].

First, given a constant δ > 0 and a point z ∈ R3, we denote by Cδ(z) the
(convex) cone with vertex z, cone angle (π/2 − arctan δ), and axis parallel to
the x3-axis. That is,

Cδ(z) = {x ∈ R3 | (x3 − z3)2 ≥ δ2 ((x1 − z1)2 + (x2 − z2)2)} .(2.3)

Second, recall from [CM6] that, roughly speaking, a blow-up pair (y, s)
consists of a point y where the curvature is almost maximal in a (extrinsic)
ball of radius roughly s. To be precise, fix a constant C1, then a point y and
a scale s > 0 is a blow-up pair (y, s) if

sup
BC1 s(y)∩Σ

|A|2 ≤ 4 s−2 = 4 |A|2(y) .(2.4)

The constant C1 will be given by Theorem 0.7 in [CM6] that gives the existence
of a multi-valued graph starting on the scale s.

We are now ready to state a local version of the first main theorem in
[CM6]. This is Lemma 2.5 below and shows that a compact embedded minimal
disk, with boundary in the boundary of an extrinsic ball, is part of a double
spiral staircase. In particular, it consists of two multi-valued graphs spiralling
together away from a collection of balls whose centers lie along a Lipschitz
curve transverse to the graphs. (The centers yi will be ordered by height
around a “middle point” y0; negative values of i should be thought of as points
below y0.)

Lemma 2.5. Let Σ ⊂ R3 be a compact embedded minimal disk. There
exist constants cin, cout, cdist, cmax, and δ > 0 independent of Σ so that if
Σ ⊂ BR with ∂Σ ⊂ ∂BR and

sup
BR/cmax∩Σ

|A|2 ≥ c2
max R−2 ,(2.6)

then there is a collection of blow-up pairs {(yi, si)}i with y0 ∈ BR/(4cout). In
addition, after a rotation of R3, we have that :

(0) For every i, we have BC1 si
(yi) ⊂ B6R/cout

.

(1) The extrinsic balls Bsi
(yi) are disjoint and the points {yi} lie in the

intersections of the cones

∪i{yi} ⊂ ∩iCδ(yi) .(2.7)
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(2) The points yi “string together” starting at y0: For each i > 0, we have
yi ∈ Bcin si

(yi−1); for each i < 0, we have yi ∈ Bcin si
(yi+1).

(3) The yi’s go from top to bottom, i.e., there is a curve S̃ ⊂ BR/cout
∩

∪iBcin si
(yi) with

inf
S̃

x3 ≤ − δ R

2 cout
<

δ R

2 cout
≤ sup

S̃
x3 .(2.8)

(4) “Graphical away from balls”: BR/cout
∩Σ\∪iBcin si

(yi) consists of exactly
two multi-valued graphs (which spiral together) with gradient ≤ δ/2.

(5) “Chord arc”: For each i, we have Bcin si
(yi) ∩ Σ ⊂ Bcdist si

(yi).

Bs0(y0)

Bs1(y1)

Bs−1(y−1)

S̃

Figure 2: The balls Bsi
(yi) in the statement of Lemma 2.5 are disjoint, yet

consecutive balls are not too far apart; cf. (2). In particular, the ratio of the
radii of consecutive balls is bounded.

Note that (1)–(3) are the effective version of the fact that the singular set
S in [CM6] is a Lipschitz graph over the x3-axis. Property (4) says that the
surface is graphical away from the balls Bcin si

(yi). Finally, (5) is a chord arc
property showing that the extrinsic balls Bcin si

(yi) are contained in intrinsic
balls Bcdist si

(yi).
The proof of Lemma 2.5 is essentially contained in [CM6] but was not

made explicit there. We will describe where to find properties (0)–(5) in [CM6],
as well as the necessary modifications, over the next three subsections. The
reader who wishes to take these six properties (0)–(5) for granted should jump
to subsection 2.5.
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2.2. Results from [CM6]. We will first recall a few of the results from [CM6]
to be used. The first of these, Theorem 0.7 in [CM6], gives the existence of
multi-valued graphs near a blow-up pair; cf. (2.4). The precise statement is
the following:

Lemma 2.9 ([CM6]). Given N ∈ Z+ and ε > 0, there exist C1 and
C2 > 0 so that the following holds: Let Σ ⊂ R3 be an embedded minimal disk
with 0 ∈ Σ ⊂ BR and ∂Σ ⊂ ∂BR. If (0, s) with 0 < s < R/C1 is a blow-up pair
(i.e., satisfies (2.4) with y = 0 and this C1), then there exists (after a rotation
of R3) an N -valued graph

Σg ⊂ Σ ∩ {x2
3 ≤ ε2 (x2

1 + x2
2)}(2.10)

over DR/C2
\ DC1s with gradient ≤ ε.

The second result that we will need to recall is the existence of blow-up
pairs nearby a given blow-up pair. This will be used to show that the points yi

string together. This was a key ingredient in the proofs of both main theorems
in [CM6] and is recorded in Proposition I.0.11 there (it was proven in Corollary
III.3.5 in [CM5]). For clarity, we restate this next and give an elementary proof
using [CM6]. Note, however, that we could not have used this elementary proof
in [CM5] since [CM6] relies on [CM5].

Lemma 2.11 ([CM5]). Let N , ε, C1, and C2 be as in Lemma 2.9. Then
there exists a constant C5 > 4 C1 so that if

(a) Σ ⊂ R3 is an embedded minimal disk with Σ ⊂ BC5 s(y) and ∂Σ ⊂
∂BC5 s(y);

(b) (y, s) is a blow-up pair,

then we get two blow-up pairs (y+, s+) above y and (y−, s−) below y with

BC1 s±(y±) ⊂ BC5 s(y) \ BC1 s(y) .(2.12)

Proof. After rescaling and translating Σ, we can assume that y = 0
and s = 1. We will find the blow-up pair (y+, s+) above y (the other case is
identical). Let Σ+ denote the portion of Σ above 0 (i.e., above the multi-valued
graph corresponding to this blow-up pair).

It is easy to see by a simple blow-up argument (Lemma 5.1 in [CM4]) that
it suffices to show that

sup
z∈BC5/2∩Σ+\B4 C1

|z|−2 |A|2(z) ≥ 4 C1 .(2.13)

We will argue by contradiction; suppose therefore that Σi is a sequence of
embedded minimal disks satisfying (a) and (b) with y = 0, s = 1, and C5 = i

but so that (2.13) fails for every i.
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Rescaling the Σi’s by a factor of
√

i, we get a new sequence Σ̃i with
Σ̃i ⊂ B√

i and ∂Σ̃i ⊂ ∂B√
i and so that |A|2(0) → ∞. Hence, we can apply

the first main theorem of [CM6] (Theorem 0.1 there) to get a subsequence
Σ̃i′ converging off of a Lipschitz curve S (where |A| → ∞) to a foliation of
R3 by parallel planes. Moreover, this Lipschitz curve goes through 0 and is
transverse to the planes and consequently intersects every hemisphere above
the plane through 0. However, this is a contradiction since (2.13) gives a
scale-invariant curvature bound above this plane.

Finally, we will need an easy consequence of the one-sided curvature esti-
mate of [CM6] (this consequence is Corollary I.1.9 in [CM6]):

Corollary 2.14 ([CM6]). There exists δ0 > 0 so that the following
holds: Let Σ ⊂ B2R0 be an embedded minimal disk with ∂Σ ⊂ ∂B2R0. If
Σ contains a 2-valued graph Σd ⊂ {x2

3 ≤ δ2
0 (x2

1 + x2
2)} over DR0 \ Dr0 with

gradient ≤ δ0, then each component of

BR0/2 ∩ Σ \ (Cδ0(0) ∪ B2r0)(2.15)

is a multi-valued graph with gradient ≤ 1.

2.3. Properties (0)–(4) in Lemma 2.5. Properties (1) through (4) in
Lemma 2.5 were implicit in [CM6] and we will describe below how to prove
them using the results in [CM6].

We first describe how to get the blow-up points satisfying (0)–(3).

• The slope δ and constant C1: Set δ = δ0 from Corollary 2.14. Then
let C1 and C2 be given by Lemma 2.9 with N = 2 and ε = δ/8.

• The initial multi-valued graph: The lower curvature bound (2.6) and
a simple blow-up argument (Lemma 5.1 in [CM4]) give a blow-up pair
(y0, s0) with

BC1s0(y0) ⊂ BC′ R/cmax
.(2.16)

Lemma 2.9 then gives an associated rotation of R3 and a 2-valued graph
Σ0 with gradient ≤ δ/8 over

DR/(2C2)(y0) \ DC1 s0(y0) .(2.17)

(Here we have used a slight abuse of notation since y0 may not be in the
plane {x3 = 0}.)

• Blow up pairs satisfying (0) are nearly parallel: As long as cout is
sufficiently large, then any blow-up pair (yi, si) satisfying (0) automati-
cally has gradient ≤ δ/3. To see this, simply note that it has gradient
≤ δ/8 over some plane; embeddedness then forces this plane to be almost
parallel to the plane {x3 = 0}.
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• Nearby blow-up pairs satisfy (0): After possibly choosing cmax even
larger, then (2.6) implies that any blow-up pair (yi, si) with yi ∈ B2R/cout

must have C1 si ≤ 4R/cout, i.e., must satisfy (0).

• Blow up pairs satisfying (0), (1), and (2): We will iteratively apply
Lemma 2.11 to blow-up pairs (yi, si) satisfying (0)–(2). To get the first
pair above y0, apply Lemma 2.11 to get (y1, s1) above y0 with

BC1 s1(y1) ⊂ BC5 s0(y0) \ BC1 s0(y0) .(2.18)

Repeat this to find y2, etc., until

BC5 si
(yi) ∩ ∂B2R/cout

	= ∅ .(2.19)

The yi’s with i < 0 are constructed similarly. Note that every yi is then
contained in B2R/cout

so that (0) holds. Finally, the cone property (1)
follows immediately from Corollary 2.14.

• Property (3): Iteratively applying (1) directly gives (3). This is because
(1) gives a lower bound for the slope of the line segment connecting
consecutive yi’s.

We will next describe how to get (4) by combining (1)–(3) with results of
[CM3]–[CM6]. Finally, we will establish (5) in the next subsection.

Observe first that Lemma 2.9 directly gives the gradient bound (4) on
each of the corresponding 2-valued graphs. To extend this gradient bound to
the rest of Σ, note that we can choose a constant C ′

2 so that each point

y ∈ BR/C′
2
∩ Σ \ ∪iBC′

2 si
(yi)(2.20)

satisfies a one-sided condition as in Corollary 1.3. Precisely, y is between the
2-valued graphs corresponding to some yi and yi+1 and, furthermore, these
graphs are themselves close enough together that we get two (in fact many)
distinct components of

B|y−yi|/2(y) ∩ Σ(2.21)

which intersect the smaller concentric extrinsic ball

Bε |y−yi|/(2c)(y) .(2.22)

Therefore, Corollary 1.3 gives a curvature estimate near y. Finally, the desired
gradient bound (4) at y then follows from this curvature bound, the bound
for the gradient of the 2-valued graphs y is pinched between, and the gradient
estimate. The fact that there are exactly two of these multi-valued graphs was
proven in Proposition II.1.3 in [CM6].

2.4. The proof of (5) in Lemma 2.5. The key to establishing (5) is to
first prove a chord arc bound assuming bounded curvature (Lemma 2.23) and
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second to establish the curvature bound (Lemma 2.26). This chord arc bound
is essentially Lemma II.2.1 of [CM6], but the statement there does not suffice
for the application here. The statement that we need is the following:

Lemma 2.23 (cf. Lemma II.2.1 in [CM6]). There exists Cd > 1 so that
given a constant Ca, we get another constant Cb such that the following holds:
If Σ ⊂ R3 is an embedded minimal disk with 0 ∈ Σ ⊂ BR and ∂Σ ⊂ ∂BR and
in addition

sup
BR∩Σ

|A|2 ≤ Ca R−2 ,(2.24)

then

Σ0, R

Cd

⊂ BCb R(0) .(2.25)

Proof. See Appendix B.

The second result from [CM6] that we will need is a curvature bound on
a larger extrinsic ball BC3si

(yi) around a blow-up point (yi, si). The proof of
this curvature bound is essentially contained in the proof of Lemma I.1.10 in
[CM6] but was not made explicit there. For completeness, we state and prove
this bound below:

Lemma 2.26 ([CM6]). For every positive number C3, there is a positive
number C4 with the following property. If

(a) Σ ⊂ R3 is an embedded minimal disk with Σ ⊂ BC4 s(y) and ∂Σ ⊂
∂BC4 s(y),

(b) (y, s) is a blow-up pair,

then we get the curvature bound

sup
BC3 s(y)∩Σ

|A|2 ≤ C4 s−2 .(2.27)

Proof. After rescaling and translating Σ, we can assume that y = 0 and
s = 1. We will argue by contradiction; suppose therefore that Σi is a sequence
of embedded minimal disks satisfying (a) and (b) with y = 0, s = 1, and C4 = i

but so that (2.27) fails for some fixed C3.
Since both the radii i of the extrinsic balls go to infinity and

sup
BC3 (0)∩Σi

|A|2 → ∞ ,(2.28)

we can apply the first main theorem of [CM6] (Theorem 0.1 there). Therefore,
a subsequence Σi′ converges off of a Lipschitz curve S to a foliation of R3 by
parallel planes. This convergence implies that the supremum of |A|2 on each
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fixed extrinsic ball either goes to zero or infinity, depending on whether or not
this ball intersects S. However, this directly contradicts the assumption (b),
thereby giving the lemma.

To prove (5), we first use Lemma 2.26 to get a uniform curvature bound
on larger extrinsic balls BC′

3si
(yi). Combining Lemma 2.23, and using the one-

sided estimate (i.e., Corollary 1.3) to see that there is only such component,
then gives (5).

2.5. The proof of Proposition 2.1. We will next see how properties (0)–(5)
in Lemma 2.5 imply Proposition 2.1.

Proof (of Proposition 2.1). We will divide the proof into two cases,
depending on whether or not the curvature is large, i.e., whether (2.6) holds.

Suppose first that (2.6) fails so that we have the curvature bound

sup
BR/cmax (x)∩Σ

|A|2 ≤ c2
max R−2 .(2.29)

We can then apply Lemma 2.23 to get

Σx,c′1 R ⊂ Bc1R(x) ,(2.30)

giving the proposition in this case.
In the second case, where (2.6) holds, the proposition will follow from

Lemma 2.5. We do this in two steps.
First, for any point

z ∈ BδR/(4cout)(x) ∩ Σ ,(2.31)

we have

distΣ (z, ∪iBcin si
(yi)) ≤ C ′ R .(2.32)

This follows immediately from the gradient bound for the multi-valued graphs
given by (4) together with the fact that the points yi go from top to bottom
by (2) and (3).

Second, (1) and (5) imply a bound for the diameter of the union of the
balls Bcin si

(yi). Namely, the balls Bsi
(yi) are disjoint and satisfy the cone

property (1) and, therefore, we get a bound for the sum of the radii si of these
balls ∑

i

si ≤ C0 R/cin .(2.33)

Combining this with the chord arc property (5) then gives a bound for the
diameter of the union of these balls

diamΣ (BR/cout
(x) ∩ ∪iBcin si

(yi)) ≤ C ′ R .(2.34)

Combining the bounds (2.32) and (2.34), the triangle inequality gives the
proposition in this case as well.
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3. The proof of Proposition 1.1

In this section, we will complete the proof of Proposition 1.1. To do this,
we will first define a weak chord arc property for an intrinsic ball. This property
requires that the intrinsic ball contains an entire component of Σ in a smaller
extrinsic ball.

Throughout this section Σ ⊂ R3 is an embedded minimal disk, possibly
noncompact, with boundary ∂Σ.

3.1. Weakly chord arc. To show Proposition 1.1, we need to prove that
there is a constant δ1 > 0 so that for any intrinsic ball BR(x) ⊂ Σ \ ∂Σ we
have the inclusion

Σx,δ1 R ⊂ BR

2
(x) ,(3.1)

where, as before, Σx,δ1 R denotes the component of Bδ1 R(x) ∩ Σ containing x.
Since Σ is smooth, the inclusion (3.1) must hold for sufficiently small balls

depending on Σ. The key step in the proof of Proposition 1.1 is to show that
if (3.1) holds on one scale, then it also holds on five times the scale. (Here,
when we say that it holds on a scale, we mean that it holds for all balls of
this radius; cf. (A′) in the proof.) This will be done in Proposition 3.4 below.
Proposition 1.1 will then follow by use of a blow-up argument (Lemma 3.39
below) to locate the largest scale where (3.1) holds and then application of
Proposition 3.4 to see that (3.1) continues to hold on larger scales.

We will say that an intrinsic ball where we have the inclusion (3.1) is
weakly chord arc; namely, we make the following definition:

Definition 3.2 (weakly chord arc). An intrinsic ball Bs(x) ⊂ Σ \ ∂Σ is
said to be δ-weakly chord arc for some δ > 0 if (3.1) holds with R = s and
δ = δ1. Note that (3.1) is only possible if δ ≤ 1/2.

It will be important later that subballs of a weakly chord arc ball are
themselves weakly chord arc. While this does not follow directly from (3.1),
we do directly get that the intersections with smaller extrinsic balls are compact
and have boundary in the boundary of the smaller ball. In particular, these
properties will allow us to apply Proposition 2.1 to conclude that the smaller
balls are themselves δ2-weakly chord arc; this will be done in the beginning of
the proof of Proposition 1.1 when we replace (A) with (A′) there.

It will be convenient to introduce notation for the largest radius of a
weakly chord arc ball about a given point. We will do this next.

Given a constant δ and a point x ∈ Σ\∂Σ, we let Rδ(x) denote the largest
radius where BRδ(x)(x) is δ-weakly chord arc, i.e.,

Rδ(x) = sup {R | BR(x) ⊂ Σ \ ∂Σ is δ-weakly chord arc} .(3.3)



THE CALABI-YAU CONJECTURES FOR EMBEDDED SURFACES 227

Since Σ is a smooth surface, we obviously have Rδ(x) > 0 for every x and any
δ < 1/2.

We can now state the key proposition which shows that if all intrinsic
balls of radius R0 near a point y are δ2-weakly chord arc, then so is the five-
times ball B5 R0(y) about y. The constant δ2 in the proposition is given by
Proposition 2.1.

Proposition 3.4. Let Σ ⊂ R3 be an embedded minimal disk. There
exists a constant Cb > 1 independent of Σ so that if BCb R0(y) ⊂ Σ \ ∂Σ is an
intrinsic ball and

(A′) every intrinsic subball BR0(z) ⊂ BCb R0(y) is δ2-weakly chord arc,

then, for every s ≤ 5 R0, the intrinsic ball Bs(y) is δ2-weakly chord arc.

3.2. Extrinsically close yet intrinsically far apart. In this subsection,
we recall from [CM2] and [CM4] several important properties of embedded
minimal surfaces with bounded curvature. The basic point is that nearby, but
disjoint, minimal surfaces with bounded curvature can be written as graphs
over each other of a positive function u which satisfies a useful second order
elliptic equation. We will focus here on two consequences of this. The first is a
chord arc result assuming an a priori curvature bound (see Lemma 3.6 below).
The second is that this elliptic equation for u implies a Harnack inequality for
u that bounds the rate at which the two disjoint surfaces can pull apart.

We will need the notion of 1/2-stability. Recall from [CM4] that a domain
Ω ⊂ Σ is said to be 1/2-stable if, for all Lipschitz functions φ with compact
support in Ω, we have the 1/2-stability inequality:

1
2

∫
|A|2 φ2 ≤

∫
|∇φ|2 .(3.5)

Loosely speaking, the next elementary lemma shows that if two disjoint
intrinsic balls are extrinsically close (see (3.8)) and have a priori curvature
bounds (see (3.7)), then smaller concentric intrinsic balls are almost flat and
thus in particular their boundaries are far away from their centers (see the
conclusion (3.9)). Since it is only this last conclusion that we need, and not
the stronger statement that they are almost flat, we only state this.

Lemma 3.6. There exists C0 > 1 so that for every Ca > 0, there exists
τ > 0 such that if BC0(x1) and BC0(x2) are disjoint intrinsic balls in Σ \ ∂Σ
with

sup
BC0 (x1)∪BC0 (x2)

|A|2 ≤ Ca ,(3.7)

|z1 − z2| < τ ,(3.8)
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then for i = 1, 2

B10(xi) ∩ ∂B11(xi) = ∅ .(3.9)

Proof. Using the argument of [CM2] (i.e., curvature estimates for 1/2-
stable surfaces) we get a constant C0 > 1 so that if BC0/2(z) ⊂ Σ \ ∂Σ is
1/2-stable, then B11(z) is a graph with

B10(z) ∩ ∂B11(z) = ∅ .(3.10)

Corollary 2.13 in [CM4] gives τ = τ(Ca) > 0 so that if |z1 − z2| < τ and
|A|2 ≤ Ca on (the disjoint balls) BC0(zi), then each subball

BC0
2

(zi) ⊂ Σ(3.11)

is 1/2-stable.

As mentioned above, one of the key points in the proof of the previous
lemma was that nearby, but disjoint, embedded minimal surfaces with bounded
curvature can be written as graphs over each other of a positive function u.
Furthermore, standard calculations show that this function u satisfies a second
order elliptic equation resembling the Jacobi equation (for the Jacobi equation,
the functions aij , bj , c in (3.14) vanish). These standard, but very useful, cal-
culations were summarized in Lemma 2.4 of [CM4] which we recall next.

Lemma 3.12 ([CM4]). There exists δg > 0 so that if Σ is minimal and
if u is a positive solution of the minimal graph equation over Σ (i.e.,
{x + u(x)nΣ(x) |x ∈ Σ} is minimal) with

|∇u| + |u| |A| ≤ δg ,(3.13)

then u satisfies on Σ

Δu = div(a∇u) + 〈b,∇u〉 + (c − 1)|A|2 u ,(3.14)

for functions aij , bj , c on Σ with |a|, |c| ≤ 3 |A| |u| + |∇u| and |b| ≤ 2 |A| |∇u|.

Equation (3.14) implies a uniform Harnack inequality for u which bounds
the supremum of u on a compact subset of Σ\∂Σ by a multiple of the infimum;
see, for instance, Theorem 8.20 in [GiTr]. We will use this in the next sub-
section to show that two nearby, but disjoint, components of Σ with bounded
curvature pull apart very slowly.

3.3. Extending weakly chord arc to a larger scale: The proof of Proposi-
tion 3.4. We are now prepared to prove Proposition 3.4, i.e., to show that if
all intrinsic balls of radius R0 near a point y are weakly chord arc, then so is
the five-times ball B5 R0(y) about y. To do this, we first show that B5 R0(y) is
still weakly chord arc, but with a worse constant. We then use Proposition 2.1
to improve the constant, i.e., to see that it is in fact δ2-weakly chord arc.
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The reader may find it helpful to compare the proof below with the simpler
proof of the special case where Σ has bounded curvature, i.e., with the proof
of Lemma 2.23 given in Appendix B. The difference is that here the one-sided
curvature estimate is used, while there, we simply assume an a priori bound
on the curvature.

Proof of Proposition 3.4. After rescaling and translating Σ, we can
assume that R0 = 1 and y = 0.

The proposition follows from the next claim: There exists n so that

Σ0, 5 ⊂ B(6n+3) C0
(0) ,(3.15)

where C0 > 1 is as given by Lemma 3.6. The proposition will follow immedi-
ately from (3.15) by applying Proposition 2.1 to Σ0, 5. Namely, (3.15) implies
that the embedded minimal disk Σ0, 5 is compact and

∂Σ0, 5 ⊂ ∂B5 .(3.16)

We can therefore apply Proposition 2.1 for any t ≤ 5 to get that

Σ0, δ2 t ⊂ Bt/2(0) ,(3.17)

giving the proposition.

We will prove the claim (i.e., (3.15)) by arguing by contradiction; so sup-
pose that (3.15) fails for some large n. Consequently, we get a curve

σ ⊂ Σ0, 5 ⊂ B5(3.18)

from 0 to a point in ∂B(6n+3) C0
(0). For i = 1, . . . , n, fix points

zi ∈ ∂B6i C0(0) ∩ σ .(3.19)

It follows that the intrinsic balls B3 C0(zi):

• Are disjoint.

• Have centers in B5 ⊂ R3.

Since the n points {zi} are all in the Euclidean ball B5 ⊂ R3, there exist
integers i1 and i2 with

0 < |zi1 − zi2 | < C ′ n−1/3 .(3.20)

Furthermore, since each intrinsic ball of radius one about any zi is δ-weakly
chord arc by (A′), we have that each embedded minimal disk Σzi,δ is compact
and has

∂Σzi,δ ⊂ ∂Bδ(zi) .(3.21)
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Consequently, for n large enough, (3.20) implies that the components Σ1 and
Σ2 of

B δ

2
(zi1) ∩ Σ(3.22)

containing zi1 and zi2 , respectively, are compact and have

∂Σi ⊂ ∂B δ

2
(zi1) .(3.23)

Note that the center of this extrinsic ball is the same for Σ1 and Σ2. Let
c > 1 be given by Corollary 1.3. For n sufficiently large, (3.20) implies that Σ2

intersects the smaller concentric extrinsic ball B δ

2c
(zi1) and, since Σ1 contains

the center of this ball, then it follows that for both j = 1 and j = 2,

B δ

2c
(zi1) ∩ Σj 	= ∅ .(3.24)

Combining (3.23) and (3.24), Corollary 1.3 gives the curvature bound for
j = 1, 2

sup
B δ

2c
(zij

)
|A|2 ≤

(
δ

2c

)−2

.(3.25)

By Lemma 2.11 of [CM4], the curvature bound (3.25) gives a constant
r′ = r′(δ, c) so that if n is sufficiently large, then B3 r′(zi2) can be written as a
normal exponential graph of a function u over a domain Ω, where:

(i) The function u satisfies (3.13).

(ii) The domain Ω contains, and is contained in, concentric intrinsic balls as
follows:

B2 r′(zi1) ⊂ Ω ⊂ B4 r′(zi1) .(3.26)

(To see this, first use the curvature bound to write each component locally as
a graph and then use embeddedness to see that these graphs must be roughly
parallel.) By Lemma 3.12 (and (3.20)), we can apply the Harnack inequality
to u to get

sup
Br′ (zi1 )

u ≤ C̃ |zi2 − zi1 | ≤ C̃ ′ n−1/3 .(3.27)

As long as n is large enough, (3.27) allows us to repeat the argument with a
point in the boundary ∂Br′(zi1) in place of zi1 . Therefore, for n large enough,
we can repeatedly combine Corollary 1.3 and the Harnack inequality to extend
the curvature bound (3.25) to the larger intrinsic balls

BC0(zij
) for j = 1, 2 .(3.28)



THE CALABI-YAU CONJECTURES FOR EMBEDDED SURFACES 231

Now that we have a uniform curvature bound on the disjoint intrinsic balls
(3.28) and the centers of these balls are extrinsically close by (3.20), we can
apply Lemma 3.6 to get that

B5 ∩ ∂B11(zij
) = ∅ .(3.29)

(Here we used that B5 ⊂ B10(zij
) because zij

∈ B5.) Since the curve σ must
intersect ∂B11(zij

), this contradicts the fact that the curve σ is contained in
the ball B5. This contradiction proves (3.15) and gives the proposition.

The previous proposition is the key step in the proof of Proposition 1.1.
To complete the proof, we will use a simple blow-up argument to find some
small initial scale which is weakly chord arc and then apply Proposition 1.1
to get that so are larger scales. As is often the case in this type of blow-up
argument, the existence of such an initial scale is complicated slightly by the
fact that Σ has nonempty boundary.

To incorporate the boundary, we let aδ be the supremum of the ratio of
the distance to ∂Σ to the largest radius of an intrinsic ball which is δ-weakly
chord arc; i.e., we set

aδ = sup
z∈Σ

distΣ(z, ∂Σ)
Rδ(z)

,(3.30)

where Rδ(z) is given by (3.3).

3.4. Upper bounds for aδ. Suppose for a moment that Σ is compact and
smooth up to the boundary ∂Σ and δ < 1/2. We will, in the proof of Lemma
3.39 below, use that

aδ < ∞ .(3.31)

To see (3.31), observe that compactness and smoothness give uniform bounds
on |A|2 and the geodesic curvature of ∂Σ. Given any constant ε > 0, the bound
on |A|2 gives a constant r0 > 0 so that if s ≤ r0 and Bs(z) ⊂ Σ\∂Σ, then Bs(z)
is a graph over some plane of a function with gradient ≤ ε. In particular, the
intrinsic ball Bs(z) is δ-weakly chord arc for ε sufficiently small. Furthermore,
the bound on the geodesic curvature of ∂Σ gives a constant r1 > 0 so that if

dz = distΣ(z, ∂Σ) ≤ r1 ,(3.32)

then Bdz
(z) ⊂ Σ \ ∂Σ. We can now establish (3.31) by considering two cases

depending on the distance to the boundary. If

dz = distΣ(z, ∂Σ) ≤ min {r0, r1} ,(3.33)

then Bdz
(z) is δ-weakly chord arc so that

Rδ(z) = distΣ(z, ∂Σ) .(3.34)
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On the other hand, when (3.33) fails, then Br2(z) is δ-weakly chord arc where
r2 = min {r0, r1} and hence

distΣ(z, ∂Σ)
Rδ(z)

≤ diam (Σ)
r2

.(3.35)

This shows that aδ < ∞ if Σ is compact and smooth.
Let us return to Proposition 1.1. It is not hard to see that the proposition

is equivalent to an upper bound (independent of Σ) for aδ for a fixed δ > 0.
Namely, suppose that BR(x) ⊂ Σ \ ∂Σ is as in the proposition and we have an
upper bound for aδ

aδ ≤ c < ∞ .(3.36)

Since BR(x) ⊂ Σ \ ∂Σ, then (3.30) implies that

R ≤ distΣ(x, ∂Σ) ≤ c Rδ(x) .(3.37)

Consequently, by the definition (3.3) of Rδ(x), there exists a radius s > R
2 c so

that Bs(x) is δ-weakly chord arc and hence

Σx, δ R

4 c
⊂ Σx, δ s

2
⊂ BR

2
(x) .(3.38)

Equation (3.38) would then give Proposition 1.1.

3.5. Locating the smallest scale which is not weakly chord arc. We will first
need to locate a smallest scale on which Σ is not δ-weakly chord arc. We do
this in the next lemma with a simple blow-up argument. The Σ in this lemma
is assumed to be compact and smooth up to the boundary so that aδ < ∞ by
(3.31).

Lemma 3.39. Given Σ compact and smooth up to the boundary and a
constant δ with 0 < δ < 1/2, there exists y ∈ Σ and R0 > 0 so that :

(A) Rδ(x) > R0 for every x ∈ Baδ R0(y), where Rδ(x) is given by (3.3).

(B) The intrinsic ball B5 R0(y) is not δ-weakly chord arc.

Proof. Define a function G on Σ by setting

G(x) =
distΣ(x, ∂Σ)

Rδ(x)
.(3.40)

Since Σ is smooth and compact, (3.31) and the definitions of G and aδ give
that

aδ = supG < ∞ .(3.41)

We can therefore choose y so that G(y) is greater than half the supremum aδ

of G on Σ:
distΣ(y, ∂Σ)

Rδ(y)
= G(y) >

supG

2
=

aδ

2
.(3.42)

We will see that (3.42) implies (A) and (B) with R0 = Rδ(y)/4.
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Set d∂ = distΣ(y, ∂Σ) so that if x ∈ Bd∂/2(y), then by the triangle inequal-
ity

distΣ(x, ∂Σ) >
d∂

2
.(3.43)

Combining (3.42) and (3.43) gives for x ∈ Bd∂/2(y) that

d∂

2 Rδ(x)
< G(x) < 2 G(y) =

2 d∂

Rδ(y)
,(3.44)

and thus

Rδ(x) >
Rδ(y)

4
= R0 .(3.45)

From (3.42), we see that 2 aδ R0 < d∂ and hence

BaδR0(y) ⊂ B d∂
2

(y) .(3.46)

Combining (3.45) and (3.46) gives (A). We get (B) immediately from the max-
imality of Rδ(y).

3.6. The proof of Proposition 1.1: Bounding aδ. We are now prepared
to prove Proposition 1.1, i.e., to show that sufficiently small intrinsic balls in
Σ are weakly chord arc. As mentioned above, this is equivalent to giving a
uniform upper bound for the constant aδ defined in (3.30) for some fixed δ > 0
(the constant δ will be given by Proposition 2.1). In the actual proof, we will
first use Lemma 3.39 to find the smallest scale which is not δ-weakly chord
arc. To bound aδ, it suffices to give a lower bound for this scale in terms of the
distance to the boundary ∂Σ. This is precisely the content of Proposition 3.4.

Proof (of Proposition 1.1). Let the constant δ = δ2 be given by Propo-
sition 2.1. As we have seen in (3.38), the proposition follows from a uniform
upper bound for the constant aδ defined in (3.30). The rest of the proof is to
establish such a bound.

Apply first Lemma 3.39 to locate the smallest scale which is not δ-weakly
chord arc. This gives a point y in Σ and an intrinsic ball Baδ R0(y) so that:

(A) Rδ(z) > R0 for every z ∈ Baδ R0(y).

(B) B5R0(y) is not δ-weakly chord arc.

The condition (A) implies that each point z ∈ Baδ R0(y) is the center of some δ-
weakly chord arc intrinsic ball of radius greater than R0. However, Proposition
2.1 then easily gives that BR0(z) is in fact δ-weakly chord arc (here we use that
δ is given by that proposition). Namely, (A) can be replaced by:

(A′) Every intrinsic ball BR0(z) with z ∈ Baδ R0(y) is δ-weakly chord arc.
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The proposition now follows from Proposition 3.4. Namely, Proposition 3.4
gives a constant Cb so that if

aδ ≥ Cb ,(3.47)

then (A′) implies that the five times intrinsic ball B5R0(y) is δ-weakly chord
arc. Since this would contradict (B), we conclude that (3.47) cannot hold and
the proposition follows.

4. Finite topology: The proofs of Corollaries 0.12 and 0.13

In this section, we prove both of Calabi’s conjectures and properness for
complete embedded minimal surfaces with finite topology. Recall that a surface
Σ is said to have finite topology if it is homeomorphic to a closed Riemann
surface of genus g with a finite set of punctures. Each puncture corresponds
to an end of Σ and thus the ends can be represented by punctured disks, i.e.,
each end is homeomorphic to the set

{z ∈ C | 0 < |z| ≤ 1} .(4.1)

4.1. Simply connected outside a compact set. The key point for extending
our results to surfaces with finite topology is to show that intrinsic balls are
eventually simply connected so that our results for disks can be applied. This
is made precise in the next lemma.

Lemma 4.2. Let Γ be a complete noncompact embedded minimal annu-
lus which contains one compact component γ of ∂Γ; the other boundary is at
infinity. There is a constant R̄ (depending on Γ) so that the following holds:

If dx = distΓ(x, γ) > R̄, then the intrinsic ball Bdx/2(x) is a disk.(4.3)

Proof. Suppose that (4.3) fails for every R̄. It will follow from the fact that
Γ is an annulus with nonpositive curvature that Γ has finite total curvature.
Namely, if (4.3) fails, we get a sequence xi ∈ Γ with

di = distΓ(xi, γ) → ∞(4.4)

so that the exponential map from xi is not injective into Bdi/2(xi). In par-
ticular, there are distinct geodesics γa

i and γb
i in Bdi/2(xi) from xi to a point

yi ∈ Bdi/2(xi) and the closed curve

γi = γa
i ∪ γb

i(4.5)

is homologous to the compact boundary component γ. Let Γi be the bounded
component of Γ \ γi; so Γi is topologically an annulus bounded by γ and the
piecewise smooth closed geodesic γi with breaks at xi and yi. Write

∫
γ kg and
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∫
γi

kg for the two boundary terms in the Gauss-Bonnet theorem for the annulus
Γi (both are uniformly bounded;

∫
γi

kg is after all just the angle contribution
at xi and yi). It follows that∫

Γi

|A|2 = −2
∫

Γi

KΓ = 2
∫

γ
kg + 2

∫
γi

kg ≤ C .(4.6)

Moreover, by the triangle inequality, we have that distΓ(γ, γi) ≥ di/2 and hence
Γi contains the intrinsic (di/2)-tubular neighborhood of γ. Since di → ∞, the
Γi’s exhaust Γ, i.e., Γ ⊂ ∪iΓi, and thus (4.6) implies that Γ has finite total
curvature.

Finally, we will show that (4.3) must hold when Γ has finite total cur-
vature. To see this, note that since Γ is an embedded annulus with finite
total curvature, it is asymptotic to either a plane or half of a catenoid (see,
e.g., [Sc2]). In either case, (4.3) must hold for points sufficiently far from the
interior boundary γ. This completes the proof of the lemma.

4.2. Compact embedded annuli in a halfspace. We will next bound the
total curvature for a compact embedded minimal annulus in a halfspace. In
the next lemma, we will use Γγ,R to denote the component of BR∩Γ containing
the boundary component γ.

Lemma 4.7. Let Γ be as in Lemma 4.2. There exist constants ε > 0 and
R̂ so that if R > R̂, the component Γγ,2R is compact, and

Γγ,2R ⊂ {x3 > −ε R} ,(4.8)

Γγ,R has bounded total curvature∫
Γγ,R

|A|2 ≤ 2
∫

γ
kg + 8π .(4.9)

Proof. The bound (4.9) follows immediately from the Gauss-Bonnet the-
orem and the following two claims:

(C1) There is a constant ε > 0 so that if Γγ,2R ⊂ {x3 > −ε R} and ∂Γγ,R \ γ

intersects {x3 < ε R}, then ∂Γγ,R\γ is a graph over (a curve in) {x3 = 0}
and

∫
∂Γγ,R\γ

kg < 4π .(4.10)

(C2) For any ε > 0, if R is sufficiently large, then ∂Γγ,R \ γ intersects {x3 <

ε R}.

Since the statement is scale invariant, we can normalize so that γ ⊂ B1.
We will take R much larger than the constant R̄ given by Lemma 4.2 so that
(4.3) holds for R/2 − 1.
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The key point for proving (C1) is that the intrinsic one-sided curvature
estimate, Corollary 0.8, gives a constant μ > 0 so that if ε < μ and y ∈ {|x3| <

μ R} ∩ ∂Γγ,R \ γ, then

sup
BR/4(y)

|A|2 ≤ C ′ μ2 R−2 .(4.11)

Note that to apply Corollary 0.8 here, we used Lemma 4.2 to see that BR/2(y)
is a topological disk. The claim (C1) follows easily from (4.11). Namely, first
choose a point y0 ∈ {x3 < ε R} ∩ ∂Γγ,R \ γ and observe that the curvature
bound (4.11) allows us to apply the gradient estimate to the positive harmonic
function x3 + ε R on BR/4(y0) to get

sup
BR/8(y0)

|∇Γx3| ≤ C ε .(4.12)

The bound (4.12) implies that the ball BR/8(y0) is graphical and moreover
is contained in the slab {|x3| ≤ C ε R}. In particular, for ε > 0 sufficiently
small, we can repeat this process to get a chain of balls BR/8(yi) with yi ∈
∂Γγ,R ∩ {|x3| < μ R} and so that ∪iBR/8(yi) forms a graph which circles the
x3-axis. The intersection of this graph with the cylinder {x2

1 + x2
2 = R2}

contains a graph over the circle ∂DR. Since Γγ,2R is compact, the graph

{|x3| < μ R} ∩ {x2
1 + x2

2 = R2} ∩ Γγ,2R(4.13)

cannot spiral forever and, hence, closes up. Finally, the curvature bound (4.11)
and the gradient bound for the graph imply a pointwise bound for the geodesic
curvature of ∂Γγ,R; integrating this pointwise bound gives (4.10).

To prove the second claim (C2), we will use catenoid barriers and the
strong maximum principle to argue by contradiction. Suppose therefore that
ε > 0 and

∂Γγ,R \ γ ⊂ {x3 > ε R} .(4.14)

Let Cat denote the standard catenoid (Cat = {cosh2(x3) = x2
1 + x2

2}) so that

{x2
1 + x2

2 ≤ 3R} ∩ Cat ⊂ {|x3| ≤ cosh−1(3R)} .(4.15)

Consider the one-parameter family of vertically translated catenoids Catt =
Cat + (0, 0, t) and observe that Cat−2R ∩ Γγ,R = ∅. Furthermore, when R is
large, (4.14) and (4.15) imply that Catt∩∂Γγ,R = ∅ for every t ≤ 5 cosh−1(3R).
Here we used (4.14) to deal with the outer boundary while the inner boundary
γ came for free since it is contained in B1. By the strong maximum principle,
there cannot be a first t ≤ 5 cosh−1(3R) where Catt intersects Γγ,R and hence
for t ≤ 5 cosh−1(3R) we have

Catt ∩ Γγ,R = ∅ .(4.16)

Arguing similarly give that a horizontal translation of Cat3 cosh−1(3R) by a dis-
tance 2R cannot intersect Γγ,R. However, this horizontally translated catenoid
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separates B1 and {x3 > ε R} in BR and hence separates the components of
∂Γγ,R, giving the desired contradiction.

4.3. The proof of Corollary 0.12. Both Corollary 0.12 and Corollary 0.13
will use the following weak chord arc property for annuli (cf.. Proposition 1.1):

Lemma 4.17. Let Γ be as in Lemma 4.2. There exist constants R̃ and
δ > 0 so that for all intrinsic tubular neighborhoods TR(γ) of γ in Γ with
R ≥ R̃, the component Γγ,δ R of Bδ R ∩ Γ containing γ satisfies

Γγ,δ R ⊂ TR/2(γ) .(4.18)

Here R̃ depends on Γ but δ does not.

Proof. Let R̄ be the constant given by Lemma 4.2 so that (4.3) holds. We
can now directly follow the proof of claim (3.15) in the proof of Proposition 3.4
to get (4.18). This requires one modification to get that intrinsic subballs are
weakly chord arc. Namely, rather than using condition (A′) there, we use (4.3)
to first see that the intrinsic subballs are disks and then apply Proposition 1.1
to these disks.

The weak chord arc property given by Lemma 4.17 implies the necessary
compactness needed to apply Lemma 4.7 and gives that embedded minimal
annuli in a halfspace have finite total curvature:

Corollary 4.19. Let Γ be as in Lemma 4.2. If Γ is contained in a
halfspace, then Γ has finite total curvature. It follows that Γ is asymptotic to
a plane or half of a catenoid.

Proof. Lemma 4.17 implies that, for every R, the component Γγ,2R of
B2R ∩Γ containing γ is compact. Hence, we can apply Lemma 4.7 to Γγ,2R for
R sufficiently large to get ∫

Γγ,R

|A|2 ≤ 2
∫

γ
kg + 8π .(4.20)

As R goes to infinity, the Γγ,R’s exhaust Γ and hence (4.20) bounds the total
curvature of Γ. The second statement follows since the annulus Γ is also
embedded (see, e.g., [Sc2]).

Corollary 0.12, and hence Calabi’s conjectures for surfaces with finite
topology, now follow easily from Corollary 4.19:

Proof of Corollary 0.12. Observe first that an embedded minimal surface
Σ with finite topology in a halfspace has finite total curvature. This is because
such a Σ can be written as the union of a compact piece Σ0 which may have
nonzero genus and a finite collection of noncompact annuli Γ1, . . . ,Γk each of
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which contains one of its boundary components. Clearly, Σ0 has finite total
curvature since it is compact. Furthermore, each Γi has finite total curvature
by Corollary 4.19, so we conclude that Σ itself has finite total curvature.

Finally, since Σ has finite total curvature, [Hu] implies that Σ is parabolic
(in the sense that any positive harmonic function is constant). Therefore the
positive harmonic function x3 is constant on Σ and Σ must be a plane as
claimed.

4.4. The proof of Corollary 0.13: Properness. The properness of embedded
minimal surfaces with finite topology will be an almost immediate consequence
of properness of embedded annuli that we will show next. As in the case of
disks, the weak chord arc property given by Lemma 4.17 applies only to one
component and therefore does not directly give properness.

Proposition 4.21. Let Γ be as in Lemma 4.2. Then Γ must be proper.

Proof. The proposition follows from the following claim: For every radius
R > 0, there is a constant SR > R (depending on both R and Γ) so that

BR ∩ Γ ⊂ Γγ,SR
.(4.22)

Here, as in Lemma 4.17, Γγ,SR
denotes the component of BSR

∩ Γ containing
γ. To get the proposition from (4.22), simply apply Lemma 4.17 (for R large)
to get

Γγ,SR
⊂ TSR/(2δ)(γ) ,(4.23)

and observe that the (closure of the) intrinsic tubular neighborhood TSR/(2δ)(γ)
is compact.

The rest of the proof is to establish (4.22). We will do this by contradic-
tion; suppose therefore that R > 0 is fixed, γ ⊂ BR, and yi is a sequence of
points in BR ∩ Γ with

yi /∈ Γγ,i R .(4.24)

We will show that (4.24) implies that Γ has finite total curvature and then get
a contradiction from this.

The first step is to find large graphical regions in Γ. Observe that, by the
triangle inequality,

di = distΓ(yi, γ) ≥ (i − 1)R .(4.25)

Since i → ∞, it follows from (4.25) that for any J we can choose indices i1
and i2 so that

di1 > 2J and di2 > 2J ,(4.26)

distΓ(yi1 , yi2) > 2J .(4.27)
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When J is large, Lemma 4.2 and (4.26) imply that the intrinsic balls BJ(yi1)
and BJ(yi2) are topological disks; and disjoint by (4.27). The one-sided cur-
vature estimate now implies that BJ(yi1) and BJ(yi2) contains a graph Γ1 and
Γ2, respectively, over a disk of radius c J with small gradient ≤ τ and yij

∈ Γj

(where c depends on τ). To prove this, first apply Proposition 1.1 to see that
the intrinsic balls are weakly chord arc and then apply Corollary 1.3 to get a
curvature bound.

The second step is to use the large graphical region to show that Γ has
finite total curvature. Namely, for J large, Lemma 4.17 implies that the compo-
nent Γγ,cJ of BcJ ∩Γ containing γ is compact. Moreover, since Γ is embedded,
the graph Γ1 forces Γγ,cJ to be contained in a halfspace

Γγ,cJ ⊂ {x3 > −R − c τ J} .(4.28)

(Here we have assumed that Γ1 is beneath γ; this can be arranged after possibly
reflecting across {x3 = 0}.) For τ > 0 small, we can apply Lemma 4.7 to get a
bound for the total curvature of Γγ,cJ/2 which is independent of J . It follows
that Γ has finite total curvature since the Γγ,cJ/2’s exhaust Γ as J → ∞.

Finally, as in the proof of Lemma 4.2, we conclude that Γ is asymptotic to
either a plane or half of a catenoid since it has finite total curvature. However,
in either case, (4.22) clearly holds. This contradiction establishes the claim
(4.22) and thus completes the proof.

The properness of embedded minimal surfaces with finite topology now
follows easily:

Proof of Corollary 0.13. Write the embedded minimal surface with
finite topology Σ as the union of a compact piece Σ0 and a finite collection
of noncompact annuli Γ1, . . . ,Γk each of which contains one of its boundary
components. Proposition 4.21 implies that each annulus Γi is proper and hence
so is Σ.

Appendix A. Multi-valued graphs

To make the notion of multi-valued graphs precise, let P be the universal
cover of the punctured plane C \ {0} with global polar coordinates (ρ, θ) so
that ρ > 0 and θ ∈ R. An N -valued graph on the annulus Ds \ Dr is a single
valued graph of a function u over

{(ρ, θ) | r < ρ ≤ s , |θ| ≤ N π} .(A.1)

For working purposes, we generally think of the intuitive picture of a multi-
sheeted surface in R3, and we identify the single-valued graph over the univer-
sal cover with its multi-valued image in R3.
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The multi-valued graphs considered in this paper will all be embedded,
which corresponds to a nonvanishing separation between the sheets. Here the
separation is the function

w(ρ, θ) = u(ρ, θ + 2π) − u(ρ, θ) .(A.2)

If Σ is the helicoid (i.e., Σ can be parametrized by (s cos t, s sin t, t) where
s, t ∈ R], then Σ \ {x3 − axis} = Σ1 ∪ Σ2, where Σ1, Σ2 are ∞-valued graphs
on C \ {0}. Now, Σ1 is the graph of the function u1(ρ, θ) = θ and Σ2 is the
graph of the function u2(ρ, θ) = θ + π. (Σ1 is the subset where s > 0 and Σ2

the subset where s < 0.) In either case the separation w = 2π.

Appendix B. The proof of Lemma 2.23

We will next include the proof of Lemma 2.23. This lemma is modelled
on Lemma II.2.1 in [CM6]. The proof follows that of Lemma II.2.1 in [CM6]
with very minor changes, but we include it here for completeness.

Proof of Lemma 2.23. Let C0 > 2 be given by Lemma 3.6. We will show
that there exists n depending on Ca so that

Σ0, R

C0
⊂ Bn R(0) .(B.1)

To prove this, we will argue by contradiction; so suppose that (B.1) fails for
some large n. Consequently, we get a curve

σ ⊂ Σ0, R

C0
⊂ B R

C0
(0)(B.2)

from 0 to a point in ∂Bn R(0). For i = 1, . . . , n, fix points

zi ∈ ∂Bi R(0) ∩ σ .(B.3)

It follows that the intrinsic balls BR/2(zi):

• Are disjoint.

• Have centers in B R

C0
(0).

• Do not intersect ∂Σ.

Since the n points {zi} are all in the Euclidean ball B R

C0
(0) ⊂ R3, there exist

integers i1 and i2 with

0 < |zi1 − zi2 | < C n−1/3 R .(B.4)

Note that (2.24) gives a uniform curvature bound on the balls BR/2(zi1) and
BR/2(zi2). Therefore, Lemma 3.6 implies that, for n sufficiently large (so the
centers zi1 and zi2 are extrinsically close), we get for j = 1, 2 that

B R

C0
(0) ∩ ∂B 11R

2C0
(zij

) = ∅ .(B.5)
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(Here we used that BR/C0
(0) ⊂ B5R/C0

(zij
) because zij

∈ BR/C0
(0).) Since

the curve σ must intersect ∂B11R/(2C0)(zij
), (B.5) contradicts the fact that the

curve σ is contained in the ball BR/C0
(0). This contradiction proves (B.1) and

consequently gives the lemma.
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