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A topological Tits alternative

By E. Breuillard and T. Gelander

Abstract

Let k be a local field, and Γ ≤ GLn(k) a linear group over k. We prove
that Γ contains either a relatively open solvable subgroup or a relatively dense
free subgroup. This result has applications in dynamics, Riemannian foliations
and profinite groups.

Contents

1. Introduction
2. A generalization of a lemma of Tits
3. Contracting projective transformations
4. Irreducible representations of non-Zariski connected algebraic groups
5. Proof of Theorem 1.3 in the finitely generated case
6. Dense free subgroups with infinitely many generators
7. Multiple fields, adelic versions and other topologies
8. Applications to profinite groups
9. Applications to amenable actions

10. The growth of leaves in Riemannian foliations
References

1. Introduction

In his celebrated 1972 paper [35] J. Tits proved the following fundamen-
tal dichotomy for linear groups: Any finitely generated1 linear group contains
either a solvable subgroup of finite index or a non-commutative free subgroup.
This result, known today as “the Tits alternative”, answered a conjecture of
Bass and Serre and was an important step toward the understanding of linear
groups. The purpose of the present paper is to give a topological analog of
this dichotomy and to provide various applications of it. Before stating our

1In characteristic zero, one may drop the assumption that the group is finitely generated.
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main result, let us reformulate Tits’ alternative in a slightly stronger manner.
Note that any linear group Γ ≤ GLn(K) has a Zariski topology, which is, by
definition, the topology induced on Γ from the Zariski topology on GLn(K).

Theorem 1.1 (The Tits alternative). Let K be a field and Γ a finitely
generated subgroup of GLn(K). Then Γ contains either a Zariski open solvable
subgroup or a Zariski dense free subgroup of finite rank.

Remark 1.2. Theorem 1.1 seems quite close to the original theorem of
Tits, stated above. And indeed, it is stated explicitly in [35] in the particu-
lar case when the Zariski closure of Γ is assumed to be a semisimple Zariski
connected algebraic group. However, the proof of Theorem 1.1 relies on the
methods developed in the present paper which make it possible to deal with
non-Zariski connected groups. We will show below how Theorem 1.1 can be
easily deduced from Theorem 1.3.

The main purpose of our work is to prove the analog of Theorem 1.1, when
the ground field, and hence any linear group over it, carries a more interesting
topology than the Zariski topology, namely for local fields.

Assume that k is a local field, i.e. R, C, a finite extension of Qp, or a
field of formal power series in one variable over a finite field. The full linear
group GLn(k), and hence also any subgroup of it, is endowed with the standard
topology, that is the topology induced from the local field k. We then prove
the following:

Theorem 1.3 (Topological Tits alternative). Let k be a local field and
Γ a subgroup of GLn(k). Then Γ contains either an open solvable subgroup or
a dense free subgroup.

Note that Γ may contain both a dense free subgroup and an open solvable
subgroup: in this case Γ has to be discrete and free. For nondiscrete groups
however, the two cases are mutually exclusive.

In general, the dense free subgroup from Theorem 1.3 may have an infinite
(but countable) number of free generators. However, in many cases we can find
a dense free subgroup on finitely many free generators (see below Theorems 5.1
and 5.8). This is the case, for example, when Γ itself is finitely generated. For
another example consider the group SLn(Q), n ≥ 2. It is not finitely generated,
yet, we show that it contains a free subgroup of rank 2 which is dense with
respect to the topology induced from SLn(R). Similarly, for any prime p ∈ N,
we show that SLn(Q) contains a free subgroup of finite rank r = r(n, p) ≥ 2
which is dense with respect to the topology induced from SLn(Qp).

When char(k) = 0, the linearity assumption can be replaced by the
weaker assumption that Γ is contained in some second-countable k-analytic
Lie group G. In particular, Theorem 1.3 applies to subgroups of any real
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Lie group with countably many connected components, and to subgroups of
any group containing a p-adic analytic pro-p group as an open subgroup of
countable index. In particular it has the following consequence:

Corollary 1.4. Let k be a local field of characteristic 0 and let G be a
k-analytic Lie group with no open solvable subgroup. Then G contains a dense
free subgroup F . If additionally G contains a dense subgroup generated by k

elements, then F can be taken to be a free group of rank r for any r ≥ k.

Let us indicate how Theorem 1.3 implies Theorem 1.1. Let K be a field,
Γ ≤ GLn(K) a finitely generated group, and let R be the ring generated by
the entries of Γ. By the Noether normalization theorem, R can be embedded
in the valuation ring O of some local field k. Such an embedding induces an
embedding i of Γ into the linear profinite group GLn(O). Note also that the
topology induced on Γ from the Zariski topology of GLn(K) coincides with the
one induced from the Zariski topology of GLn(k) and this topology is weaker
than the topology induced by the local field k. If i(Γ) contains a relatively open
solvable subgroup then so does its closure, and by compactness, it follows that
Γ is virtually solvable, and hence its Zariski connected component is solvable
and Zariski open. If i(Γ) does not contain an open solvable subgroup then, by
Theorem 1.3, it contains a dense free subgroup which, as stated in a paragraph
above, we may assume has finite rank. This free subgroup is indeed Zariski
dense.

The dichotomy established in Theorem 1.3 strongly depends on the choice
of the topology (real, p-adic, or Fq((t))-analytic) assigned to Γ and on the em-
bedding of Γ in GLn(k). It can be interesting to consider other topologies as
well. However, the existence of a finitely generated dense free subgroup, under
the condition that Γ has no open solvable subgroup, is a rather strong property
that cannot be generalized to arbitrary topologies on Γ (for example the profi-
nite topology on a surface group; see §1.1 below). Nevertheless, making use
of the structure theory of locally compact groups, we show that the following
weaker dichotomy holds:

Theorem 1.5. Let G be a locally compact group and Γ a finitely generated
dense subgroup of G. Then one of the following holds:

(i) Γ contains a free group F2 on two generators which is nondiscrete in G.

(ii) G contains an open amenable subgroup.

Moreover , if Γ is assumed to be linear, then (ii) can be replaced by (ii)′ “G

contains an open solvable subgroup”.

The first step toward Theorem 1.3 was carried out in our previous work [4].
In [4] we made the assumption that k = R and the closure of Γ is connected.
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This considerably simplifies the situation, mainly because it implies that Γ is
automatically Zariski connected. One achievement of the present work is the
understanding of some dynamical properties of projective representations of
non-Zariski connected algebraic groups (see §4). Another new aspect is the
study of representations of finitely generated integral domains into local fields
(see §2) which allows us to avoid the rationality of the deformation space of Γ
in GLn(k), and hence to drop the assumption that Γ is finitely generated.

For the sake of simplicity, we restrict ourselves throughout most of this
paper to a fixed local field. However, the proof of Theorem 1.3 applies also in
the following more general setup:

Theorem 1.6. Let k1, k2, . . . , kr be local fields and let Γ be a subgroup
(resp. finitely generated subgroup) of

∏r
i=1 GLn(ki). Assume that Γ does not

contain an open solvable subgroup. Then Γ contains a dense free subgroup
(resp. of finite rank).

Recall that in this statement, as everywhere else in the paper, the group
Γ is viewed as a topological group endowed with the induced topology coming
from the local fields k1, k2, . . . , kr.

We also note that the argument of Section 6, where we build a dense free
group on infinitely many generators, is applicable in a much greater generality.
For example, we can prove the following adelic version:

Proposition 1.7. Let K be an algebraic number field and G a simply
connected semisimple algebraic group defined over K. Let VK be the set of all
valuations of K. Then for any v0 ∈ VK such that G in not Kv0 anisotropic,
G(K) contains a free subgroup of infinite rank whose image under the diag-
onal embedding is dense in the restricted topological product corresponding to
VK \ {v0}.

Theorem 1.3 has various applications. We shall now indicate some of
them.

1.1. Applications to the theory of profinite groups. When k is non-
Archimedean, Theorem 1.3 provides some new results about profinite groups
(see §8). In particular, we answer a conjecture of Dixon, Pyber, Seress and
Shalev (cf. [12] and [25]), by proving:

Theorem 1.8. Let Γ be a finitely generated linear group over an arbitrary
field. Suppose that Γ is not virtually solvable. Then its profinite completion Γ̂
contains a dense free subgroup of finite rank.

In [12], using the classification of finite simple groups, the weaker state-
ment, that Γ̂ contains a free subgroup whose closure is of finite index, was
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established. Note that the passage from a subgroup whose closure is of finite
index, to a dense subgroup is also a crucial step in the proof of Theorem 1.3.
It is exactly this problem that forces us to deal with representations of non-
Zariski connected algebraic groups. Additionally, our proof of 1.8 does not rely
on [12], neither on the classification of finite simple groups.

We also note that Γ itself may not contain a profinitely dense free subgroup
of finite rank. It was shown in [32] that surface groups have the L.E.R.F.
property that any proper finitely generated subgroup is contained in a proper
subgroup of finite index (see also [34]).

In Section 8 we also answer a conjecture of Shalev about coset identities
in pro-p groups in the analytic case:

Proposition 1.9. Let G be an analytic pro-p group. If G satisfies a
coset identity with respect to some open subgroup, then G is solvable, and in
particular, satisfies an identity.

1.2. Applications in dynamics. The question of the existence of a free
subgroup is closely related to questions concerning amenability. It follows
from the Tits alternative that if Γ is a finitely generated linear group, the
following are equivalent:

• Γ is amenable,
• Γ is virtually solvable,
• Γ does not contain a non-abelian free subgroup.
The topology enters the game when considering actions of subgroups on

the full group. Let k be a local field, G ≤ GLn(k) a closed subgroup and
Γ ≤ G a countable subgroup. Let P ≤ G be any closed amenable subgroup,
and consider the action of Γ on the homogeneous space G/P by measure-class
preserving left multiplications (G/P is endowed with its natural Borel structure
with quasi-invariant measure μ). Theorem 1.3 implies:

Theorem 1.10. The following are equivalent :
(I) The action of Γ on G/P is amenable,
(II) Γ contains an open solvable subgroup,
(III) Γ does not contain a nondiscrete free subgroup.

The equivalence between (I) and (II) for the Archimedean case (i.e. k = R)
was conjectured by Connes and Sullivan and subsequently proved by Zimmer
[37] by other methods. The equivalence between (III) and (II) was asked by
Carrière and Ghys [10] who showed that (I) implies (III) (see also §9). For
the case G = SL2(R) they actually proved that (III) implies (II) and hence
concluded the validity of the Connes-Sullivan conjecture for this specific case
(before Zimmer). We remark that the short argument given by Carrière and
Ghys relies on the existence of an open subset of elliptic elements in SL2(R)
and hence does not apply to other real or p-adic Lie groups.
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Remark 1.11. 1. When Γ is not both discrete and free, the conditions are
also equivalent to: (III′) Γ does not contain a dense free subgroup.

2. For k Archimedean, (II) is equivalent to: (II′) The connected compo-
nent of the closure Γ◦ is solvable.

3. The implication (II)→(III) is trivial and (II)→(I) follows easily from
the basic properties of amenable actions.

Using the structure theory of locally compact groups (see Montgomery-
Zippin [22]), we also generalize the Connes-Sullivan conjecture (Zimmer’s the-
orem) for arbitrary locally compact groups as follows (see §9):

Theorem 1.12 (Generalized Connes-Sullivan conjecture). Let Γ be a
countable subgroup of a locally compact topological group G. Then the action
of Γ on G (as well as on G/P for P ≤ G closed amenable) by left multiplica-
tion is amenable, if and only if Γ contains a relatively open subgroup which is
amenable as an abstract group.

As a consequence of Theorem 1.12 we obtain the following generalization
of Auslander’s theorem (see [27, Th. 8.24]):

Theorem 1.13. Let G be a locally compact topological group, let P � G

be a closed normal amenable subgroup, and let π : G → G/P be the canonical
projection. Suppose that H ≤ G is a subgroup which contains a relatively
open amenable subgroup. Then π(H) also contains a relatively open amenable
subgroup.

Theorem 1.13 has many interesting consequences. For example, it is
well known that the original theorem of Auslander (Theorem 1.13 for real
Lie groups) directly implies Bieberbach’s classical theorem that any compact
Euclidean manifold is finitely covered by a torus (part of Hilbert’s 18th prob-
lem). As a consequence of the general case in Theorem 1.13 we obtain some
information on the structure of lattices in general locally compact groups. Let
G = Gc × Gd be a direct product of a connected semisimple Lie group and
a locally compact totally disconnected group; then it is easy to see that the
projection of any lattice in G to the connected factor lies between a lattice and
its commensurator. Such a piece of information is useful because it says (as
follows from Margulis’ commensurator criterion for arithmeticity) that if this
projection is not a lattice itself then it is a subgroup of the commensurator of
some arithmetic lattice (which is, up to finite index, Gc(Q)). Theorem 1.13
implies that a similar statement holds for general G (see Proposition 9.7).

1.3. The growth of leaves in Riemannian foliations. Y. Carrière’s inter-
est in the Connes-Sullivan conjecture stemmed from his study of the growth
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of leaves in Riemannian foliations. In [9] Carrière asked whether there is a
dichotomy between polynomial and exponential growth. This is a foliated ver-
sion of Milnor’s famous question whether there is a polynomial-exponential
dichotomy for the growth of balls in the universal cover of compact Rieman-
nian manifolds (equivalently, for the word growth of finitely presented groups).
What makes the foliated version more accessible is Molino’s theory [21] which
associates a Lie foliation to any Riemannian one, hence reducing the general
case to a linear one. In order to study this problem, Carrière defined the notion
of local growth for a subgroup of a Lie group (see Definition 10.3) and showed
the equivalence of the growth type of a generic leaf and the local growth of
the holonomy group of the foliation viewed as a subgroup of the corresponding
structural Lie group associated to the Riemannian foliation (see [21]).

The Tits alternative implies, with some additional argument for solv-
able non-nilpotent groups, the dichotomy between polynomial and exponential
growth for finitely generated linear groups. Similarly, Theorem 1.3, with some
additional argument based on its proof for solvable non-nilpotent groups, im-
plies the analogous dichotomy for the local growth:

Theorem 1.14. Let Γ be a finitely generated dense subgroup of a con-
nected real Lie group G. If G is nilpotent then Γ has polynomial local growth.
If G is not nilpotent, then Γ has exponential local growth.

As a consequence of Theorem 1.14 we obtain:

Theorem 1.15. Let F be a Riemannian foliation on a compact mani-
fold M . The leaves of F have polynomial growth if and only if the structural Lie
algebra of F is nilpotent. Otherwise, generic leaves have exponential growth.

The first half of Theorem 1.15 was actually proved by Carrière in [9].
Using Zimmer’s proof of the Connes-Sullivan conjecture, he first reduced to
the solvable case, then he proved the nilpotency of the structural Lie algebra
of F by a delicate direct argument (see also [15]). He then asked whether
the second half of this theorem holds. Both parts of Theorem 1.15 follow from
Theorem 1.3 and the methods developed in its proof. We remark that although
the content of Theorem 1.15 is about dense subgroups of connected Lie groups,
its proof relies on methods developed in Section 2 of the current paper, and
does not follow from our previous work [4].

If we consider instead the growth of the holonomy cover of each leaf, then
the dichotomy shown in Theorem 1.15 holds for every leaf. On the other hand,
it is easy to give an example of a Riemannian foliation on a compact manifold
for which the growth of a generic leaf is exponential while some of the leaves
are compact (see below Example 10.2).

1.4. Outline of the paper. The strategy used in this article to prove
Theorem 1.3 consists in perturbing the generators γi of Γ within Γ and in the
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topology of GLn(k), in order to obtain (under the assumption that Γ has no
solvable open subgroup) free generators of a free subgroup which is still dense
in Γ. As it turns out, there exists an identity neighborhood U of some non-
virtually solvable subgroup Δ ≤ Γ, such that any selection of points xi in UγiU

generates a dense subgroup in Γ. The argument used here to prove this claim
depends on whether k is Archimedean, p-adic or of positive characteristic.

In order to find a free group, we use a variation of the ping-pong method
used by Tits, applied to a suitable action of Γ on some projective space over
some local field f (which may or may not be isomorphic to k). As in [35]
the ping-pong players are the so-called proximal elements (all iterates of a
proximal transformation of P(fn) contract almost all P(fn) into a small ball).
However, the original method of Tits (via the use of high powers of semisimple
elements to produce ping-pong players) is not applicable to our situation and a
more careful study of the contraction properties of projective transformations
is necessary.

An important step lies in finding a projective representation ρ of Γ into
PGLn(f) such that the Zariski closure of ρ(Δ) acts strongly irreducibly (i.e.
fixes no finite union of proper projective subspaces) and such that ρ(U) contains
very proximal elements. What makes this step much harder is the fact that Γ
may not be Zariski connected. We handle this problem in Section 4. We would
like to note that we gained motivation and inspiration from the beautiful work
of Margulis and Soifer [20] where a similar difficulty arose.

We then make use of the ideas developed in [4] and inspired from [1],
where it is shown how the dynamical properties of a projective transformation
can be read off on its Cartan decomposition. This allows us to produce a
set of elements in U which “play ping-pong” on the projective space P(fn),
and hence generate a free group (see Theorem 4.3). Theorem 4.3 provides a
very handy way to generate free subgroups, as soon as some infinite subset of
matrices with entries in a given finitely generated ring (e.g. an infinite subset
of a finitely generated linear group) is given.

The method used in [35] and in [4] to produce the representation ρ is
based on finding a representation of a finitely generated subgroup of Γ into
GLn(K) for some algebraic number field, and then to replace the number field
by a suitable completion of it. However, in [4] and [35], a lot of freedom was
possible in the choice of K and in the choice of the representation into GLn(K).
What played the main role there was the appropriate choice of a completion.
This approach is no longer applicable to the situation considered in this paper,
and we are forced to choose both K and the representation of Γ in GLn(K) in
a more careful way.

For this purpose, we prove a result (generalizing a lemma of Tits) asserting
that in an arbitrary finitely generated integral domain, any infinite set can be
sent to an unbounded set under an appropriate embedding of the ring into
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some local field (see §2). This result proves useful in many situations when
one needs to find unbounded representations as in the Tits alternative, or in
the Margulis super-rigidity theorem, or, as is illustrated below, for subgroups
of SL2 with property (T). It is crucial in particular when dealing with non
finitely generated subgroups in Section 6. And it is also used in the proof of the
growth-of-leaves dichotomy, in Section 10. Our proof makes use of a striking
simple fact, originally due to Pólya in the case k = C, about the inverse image
of the unit disc under polynomial transformations (see Lemma 2.3).

Let us end this introduction by establishing notation that will be used
throughout the paper. The notation H ≤ G means that H is a subgroup
of the group G. By [G, G] we denote the derived group of G, i.e. the group
generated by commutators. Given a group Γ, we denote by d(Γ) the minimal
cardinality of a generating set of Γ. If Ω ⊂ G is a subset of G, then 〈Ω〉 denotes
the subgroup of G generated by Ω. If Γ is a subgroup of an algebraic group,
we denote by Γz its Zariski closure. Note that the Zariski topology on rational
points does not depend on the field of definition, that is if V is an algebraic
variety defined over a field K and if L is any extension of K, then the K-Zariski
topology on V (K) coincides with the trace of the L-Zariski topology on it. To
avoid confusion, we shall always add the prefix “Zariski” to any topological
notion regarding the Zariski topology (e.g. “Zariski dense”, “Zariski open”).
For the topology inherited from the local field k, however, we shall plainly say
“dense” or “open” without further notice (e.g. SLn(Z) is open and Zariski
dense in SLn(Z[1/p]), where k = Qp).

2. A generalization of a lemma of Tits

In the original proof of the Tits alternative, Tits used an easy but crucial
lemma saying that given a finitely generated field K and an element α ∈ K

which is not a root of unity, there always is a local field k and an embedding
f : K → k such that |f(α)| > 1. A natural and useful generalization of this
statement is the following lemma:

Lemma 2.1. Let R be a finitely generated integral domain, and let I ⊂ R

be an infinite subset. Then there exists a local field k and an embedding i :
R ↪→ k such that i(I) is unbounded.

As explained below, this lemma will be useful in building the proximal
elements needed in the construction of dense free subgroups.

Before giving the proof of Lemma 2.1 let us point out a straightforward
consequence:

Corollary 2.2 (Zimmer [39, Ths. 6 and 7], and [16, 6.26]). There is
no faithful conformal action of an infinite Kazhdan group on the Euclidean
2-sphere S2.
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Proof. Suppose there is an infinite Kazhdan subgroup Γ in PSL2(C), the
group of conformal transformations of S2. Since Γ has Kazhdan’s property (T),
it is finitely generated, and hence, Lemma 2.1 can be applied to yield a faithful
representation of Γ into PSL2(k) for some local field k, with unbounded image.
However PSL2(k) acts faithfully with compact isotropy groups by isometries
on the hyperbolic space H3 if k is Archimedean, and on a tree if it is not. As
Γ has property (T), it must fix a point (cf. [16, 6.4 and 6.23] or [39, Prop. 18])
and hence lie in some compact group, a contradiction.

When R is integral over Z, the lemma follows easily by the diagonal em-
bedding of R into a product of finitely many completions of its field of frac-
tions. The main difficulty comes from the possible presence of transcendental
elements. Our proof of Lemma 2.1 relies on the following interesting fact. Let
k be a local field, and let μ = μk denote the standard Haar measure on k,
i.e. the Lebesgue measure if k is Archimedean, and the Haar measure giving
measure 1 to the ring of integers Ok of k when k is non-Archimedean. Given
a polynomial P in k[X], let

AP = {x ∈ k : |P (x)| ≤ 1} .

Lemma 2.3. For any local field k, there is a constant c = c(k) such that
μ(AP ) ≤ c for any monic polynomial P ∈ k[X].

Proof. Let k be an algebraic closure of k, and P a monic polynomial in
k[X]. We can write P (X) =

∏
(X−xi) for some xi ∈ k. The absolute value on

k extends uniquely to an absolute value on k (see [18, XII, 4, Th. 4.1, p. 482]).
Now if x ∈ AP then |P (x)| ≤ 1, and hence∑

log |x − xi| = log |P (x)| ≤ 0.

But AP is measurable and bounded, therefore, integrating with respect to μ,

we obtain ∑ ∫
AP

log |x − xi| dμ(x) =
∫

AP

∑
log |x − xi| dμ(x) ≤ 0.

The lemma will now result from the following claim: For any measurable set
B ⊂ k and any point z ∈ k,∫

B
log |x − z| dμ(x) ≥ μ(B) − c,(1)

where c = c(k) > 0 is some constant independent of z and B.
Indeed, let z̃ ∈ k be such that |z̃−z| = minx∈k |x−z|, then |x−z| ≥ |x− z̃|

for all x ∈ k, so that∫
B

log |x − z| dμ(x) ≥
∫

B
log |x − z̃| dμ(x) =

∫
B−z̃

log |x| dμ(x).
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Therefore, it suffices to show (1) when z = 0. But a direct computation for
each possible field k shows that −

∫
|x|≤1 log |x|dμ(x) < ∞. Therefore taking

c = μ {x ∈ k : |x| ≤ e}+ |
∫
|x|≤1 log |x|dμ(x)| we obtain (1). This concludes the

proof of the lemma.

Lemma 2.3 was proved by Pólya in [24] for the case k = C by means of
potential theory. Pólya’s proof gives the best constant c(C) = π. For k = R one
can show that the best constant is c(R) = 4 and that it can be realized as the
limit of the sequence of lengths of the pre-image of [−1, 1] by the Chebyshev
polynomials (under an appropriate normalization of these polynomials, see
[30]). In the real case, this result admits generalizations to arbitrary smooth
functions such as the Van der Corput lemma (see [8] for a multi-dimensional
analog, and [29] for a p-adic version).

Let us just explain how, with a little more consideration, one can improve
the constant c in the above proof.2 We wish to find the minimal c > 0 such
that for every compact subset B of k whose measure is μ(B) ≥ c we have∫

B
log |x|dμ(x) ≥ 0.

Suppose k = C. Since log |x| is increasing with |x|, for any B∫
B

log |x|dμ(x) ≥
∫

C
log |x|dμ(x)

where C is a ball around 0 (C = {x ∈ k : |x| ≤ t}) with the same area as
B. Therefore c = πt2 where t is such that 2π

∫ t
0 r log(r)dr = 0. The unique

positive root of this equation is t =
√

e. Thus we can take

c = πe.

For k = R the same argument gives a possible constant c = 2e, while for k

non-Archimedean it gives c = 1 + 1

q
1
n −1

, where q is the size of the residue class

field and n is the degree of k over Qp (or Fp((t))) .
Similarly, there is a positive constant c1 such that the integral of log |x|

over a ball of measure c1 centered at 0 is at least 1. Arguing as above with c1

instead of c, we get:

Corollary 2.4. For any monic polynomial P ∈ k[X], the integral of
log |P (x)| over any set of measure greater than c1 is at least the degree d◦P .

We shall also need the following two propositions:

2Let us also remark that there is a natural generalization of Lemma 2.3 to a higher
dimension which follows by an analogous argument: For any local field k and n ∈ N, there
is a constant c(k, n), such that for any finite set {x1, . . . , xm} ∈ kn, we have μ

(
{y ∈ kn :∏m

1 ‖y − xi‖ ≤ 1}
)
≤ c(k, n).
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Proposition 2.5. Let k be a local field and k0 its prime field. If (Pn)n

is a sequence of monic polynomials in k[X] such that the degrees d◦Pn → ∞
as n → ∞, and ξ1, . . . , ξm are given numbers in k, then there exists a number
ξ ∈ k, transcendental over k0(ξ1, . . . , ξm), such that (|Pn(ξ)|)n is unbounded
in k.

Proof. Let T be the set of numbers in k which are transcendental over
k0(ξ1, . . . , ξm). Then T has full measure. For every r > 0 we consider the
compact set

Kr = {x ∈ k : ∀n |Pn(x)| ≤ r} .

We now proceed by contradiction. Suppose T ⊂ ⋃
r>0 Kr. Then for some

large r, we have μ(Kr) ≥ c1, where c1 > 0 is the constant from Corollary 2.4.
This implies

d◦Pn ≤
∫

Kr

log
(
|Pn(x)|

)
dμ(x) ≤ μ(Kr) log r,

contradicting the assumption of the proposition.

Proposition 2.6. If (Pn)n is a sequence of distinct polynomials in
Z[X1, . . . , Xm] such that supn d◦Pn < ∞, then there exist algebraically in-
dependent numbers ξ1, . . . , ξm in C such that (|Pn(ξ1, . . . , ξm)|)n is unbounded
in C.

Proof. Let d = maxn d◦Pn and let T be the set of all m-tuples of complex
numbers algebraically independent over Z. The Pn’s lie in

{P ∈ C[X1, . . . , Xm] : d◦P ≤ d}

which can be identified, since T is dense and polynomials are continuous, as a
finite dimensional vector subspace V of the C-vector space of all functions from
T to C. Let l = dimC V . Then, as is easy to see, there exist (x1, . . . , xl) ∈ T l,

such that the evaluation map P �→
(
P (x1), . . . , P (xl)

)
from V to Cl is a

continuous linear isomorphism. Since the Pn’s belong to a Z-lattice in V , so
does their image under the evaluation map. Since the Pn’s are all distinct,
{Pn(xi)} is unbounded for an appropriate i ≤ l.

Proof of Lemma 2.1. Let us first assume that the characteristic of R is 0.
By Noether’s normalization theorem, R⊗Z Q is integral over Q[ξ1, . . . , ξm] for
some algebraically independent elements ξ1, . . . , ξm in R. Since R is finitely
generated, there exists an integer l ∈ N such that the generators of R, hence
all elements of R, are roots of monic polynomials with coefficients in S =
Z[1l , ξ1, . . . , ξm]. Hence R0 := R[1l ] is integral over S. Let F be the field of
fractions of R0 and K that of S. Then F is a finite extension of K and there are
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finitely many embeddings σ1, . . . , σr of F into some (fixed) algebraic closure
K of K. Note that S is integrally closed. Therefore if x ∈ R, the characteristic
polynomial of x over F belongs to S[X] and equals

∏
1≤i≤r

(X − σi(x)) = Xr + αr(x)Xr−1 + . . . + α1(x)

where each αi(x) ∈ S. Since I is infinite, we can find i0 such that {αi0(x)}x∈I is
infinite. This reduces the problem to the case R = S, for if S can be embedded
in a local field k such that {|αi0(x)|}x∈I is unbounded, then for at least one
i, the |σi(x)|’s will be unbounded in some finite extension of k in which F

embeds.
So assume I ⊂ S = Z[1l , ξ1, . . . , ξm] and proceed by induction on the

transcendence degree m.
The case m = 0 is easy since S = Z[1l ] embeds discretely (by the diagonal

embedding) in the finite product R × ∏
p|l Qp.

Now assume m ≥ 1. Suppose first that the total degrees of the x’s in
I are unbounded. Then, for say ξm, supx∈I d◦ξm

x = +∞. Let a(x) be the
dominant coefficient of x in its expansion as a polynomial in ξm. Then a(x) ∈
Z[1l , ξ1, . . . , ξm−1] and is nonzero.

If {a(x)}x∈I is infinite, then we can apply the induction hypothesis and
find an embedding of Z[1l , ξ1, . . . , ξm−1] into some local field k for which
{|a(x)|}x∈I is unbounded. Hence I ′ := {x ∈ I : |a(x)| ≥ 1} is infinite. Now

x
a(x) is a monic polynomial in k[ξm], so we can then apply Proposition 2.5 and
extend the embedding to Z[1l , ξ1, . . . , ξm−1][ξm] = S in k, such that { x

a(x)}x∈I′

is unbounded in k. The image of I, under this embedding, is unbounded in k.
Suppose now that {a(x)}x∈I is finite. Then either a(x) ∈ Z[1l ] for all but

finitely many x’s or not. In the first case we can embed Z[1l , ξ1, . . . , ξm−1] into
either R or Qp (for some prime p dividing l) so that |a(x)| ≥ 1 for infinitely
many x’s, while in the second case we can find ξ1, . . . , ξm−1 algebraically inde-
pendent in C, such that |a(x)| ≥ 1 for infinitely many x in I, Then, the same
argument as above, using Proposition 2.5 applies.

Now suppose that the total degrees of the x’s in I are bounded. If for
some infinite subset of I, the powers of 1

l in the coefficients of x (lying in
Z[1l ]) are bounded from above, then we can apply Proposition 2.6 to con-
clude the proof. If not, then for some prime factor p of l, we can write
x = 1

pn(x) x̃ where x̃ ∈ Zp[ξ1, . . . , ξm] with at least one coefficient of p-adic
absolute value 1, and the n(x) ∈ Z are not bounded from above. By com-
pactness, we can pick a subsequence (x̃)x∈I′ which converges in Zp[ξ1, . . . , ξm],
and we may assume that n(x) → ∞ on this subsequence. The limit will be
a non-zero polynomial x̃0. Pick arbitrary algebraically independent numbers
z1, . . . , zm ∈ Qp, such that the limit polynomial x̃0 does not vanish at the
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point (z1, . . . , zm) ∈ Qm
p . The sequence of polynomial (x̃)x∈I′ evaluated at

(z1, . . . , zm) tends to x̃0(z1, . . . , zm) �= 0. Hence
(
x(z1, . . . , zm)

)
x∈I′ tends to

∞ in Qp. Sending the ξi’s to the zi’s we obtain the desired embedding.
Finally, let us turn to the case when char(k) = p > 0. The first part

of the argument remains valid: R is integral over S = Fq[ξ1, . . . , ξm] where
ξ1, . . . , ξm are algebraically independent over Fq and this enables us to reduce
to the case R = S. Then we proceed by induction on the transcendence degree
m. If m = 1, then the assignment ξ1 �→ 1

t gives the desired embedding of S

into Fq((t)). Let m ≥ 2 and note that the total degrees of elements of I are
necessarily unbounded. From this point the proof works verbatim as in the
corresponding paragraphs above.

3. Contracting projective transformations

In this section and the next, unless otherwise stated, k is assumed to be
a local field, with no assumption on the characteristic.

3.1. Proximality and ping-pong. Let us first recall some basic facts about
projective transformations on P(kn), where k is a local field. For proofs and a
detailed and self-contained exposition, see [4, §3]. We let ‖·‖ be the standard
norm on kn, i.e. the standard Euclidean norm if k is Archimedean and ‖x‖ =
max1≤i≤n |xi| where x =

∑
xiei when k is non-Archimedean and (e1, . . . , en)

is the canonical basis of kn. This norm extends in the usual way to Λ2kn.
Then we define the standard metric on P(kn) by

d([v], [w]) =
‖v ∧ w‖
‖v‖ ‖w‖ .

With respect to this metric, every projective transformation is bi-Lipschitz
on P(kn). For ε ∈ (0, 1), we call a projective transformation [g] ∈ PGLn(k)
ε-contracting if there exist a point vg ∈ Pn−1(k), called an attracting point
of [g], and a projective hyperplane Hg, called a repelling hyperplane of [g],
such that [g] maps the complement of the ε-neighborhood of Hg ⊂ P(kn)
(the repelling neighborhood of [g]) into the ε-ball around vg (the attracting
neighborhood of [g]). We say that [g] is ε-very contracting if both [g] and [g−1]
are ε-contracting. A projective transformation [g] ∈ PGLn(k) is called (r, ε)-
proximal (r > 2ε > 0) if it is ε-contracting with respect to some attracting
point vg ∈ P(kn) and some repelling hyperplane Hg, such that d(vg, Hg) ≥ r.
The transformation [g] is called (r, ε)-very proximal if both [g] and [g]−1 are
(r, ε)-proximal. Finally [g] is simply called proximal (resp. very proximal) if it
is (r, ε)-proximal (resp. (r, ε)-very proximal) for some r > 2ε > 0.

The attracting point vg and repelling hyperplane Hg of an ε-contracting
transformation are not uniquely defined. Yet, if [g] is proximal we have the
following nice choice of vg and Hg.
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Lemma 3.1. Let ε ∈ (0, 1
4). There exist two constants c1, c2 ≥ 1 (depending

only on the local field k) such that if [g] is an (r, ε)-proximal transformation
with r ≥ c1ε then it must fix a unique point vg inside its attracting neighborhood
and a unique projective hyperplane Hg lying inside its repelling neighborhood.
Moreover, if r ≥ c1ε

2/3, then all positive powers [gn], n ≥ 1, are (r−2ε, (c2ε)
n

3 )-
proximal transformations with respect to these same vg and Hg.

Let us postpone the proof of this lemma to Paragraph 3.4.
An m-tuple of projective transformations a1, . . . , am is called a ping-pong

m-tuple if all the ai’s are (r, ε)-very proximal (for some r > 2ε > 0) and
the attracting points of ai and a−1

i are at least r-apart from the repelling
hyperplanes of aj and a−1

j , for any i �= j. Ping-pong m-tuples give rise to free
groups by the following variant of the ping-pong lemma (see [35, 1.1]):

Lemma 3.2. If a1, . . . , am ∈ PGLn(k) form a ping-pong m-tuple, then
〈a1, . . . , am〉 is a free group of rank m.

A finite subset F ⊂ PGLn(k) is called (m, r)-separating (r > 0,
m ∈ N) if for every choice of 2m points v1, . . . , v2m in P(kn) and 2m pro-
jective hyperplanes H1, . . . , H2m there exists γ ∈ F such that

min
1≤i,j≤2m

{d(γvi, Hj), d(γ−1vi, Hj)} > r.

A separating set and an ε-contracting element for small ε are precisely the two
ingredients needed to generate a ping-pong m-tuple. This is summarized by
the following proposition (see [4, Props. 3.8 and 3.1]).

Proposition 3.3. Let F be an (m, r)-separating set (r < 1, m ∈ N) in
PGLn(k). Then there is C ≥ 1 such that for every ε, 0 < ε < 1/C:

(i) If [g] ∈ PGLn(k) is an ε-contracting transformation, one can find an
element [f ] ∈ F , such that [gfg−1] is Cε-very contracting.

(ii) If a1, . . . , am ∈ PGLn(k), and γ is an ε-very contracting transforma-
tion, then there are h1, . . . , hm ∈ F and g1, . . . , gm ∈ F such that

(g1γa1h1, g2γa2h2, . . . , gmγamhm)

forms a ping-pong m-tuple and hence are free generators of a free group.

3.2. The Cartan decomposition. Now let H be a Zariski connected reduc-
tive k-split algebraic k-group and H = H(k). Let T be a maximal k-split torus
and T = T(k). Fix a system Φ of k-roots of H relative to T and a basis Δ of
simple roots. Let X(T) be the group of k-rational multiplicative characters of
T and V ′ = X(T) ⊗Z R and V the dual vector space of V ′. We denote by C+

the positive Weyl chamber:

C+ = {v ∈ V : ∀α ∈ Δ, α(v) > 0} .
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The Weyl group will be denoted by W and is identified with the quotient
NH(T )/ZH(T ) of the normalizer by the centralizer of T in H. Let K be a
maximal compact subgroup of H such that NK(T ) contains representatives of
every element of W . If k is Archimedean, let A be the subset of T consisting
of elements t such that |α(t)| ≥ 1 for every simple root α ∈ Δ. And if k is
non-Archimedean, let A be the subset of T consisting of elements such that
α(t) = π−nα for some nα ∈ N ∪ {0} for any simple root α ∈ Δ, where π is
a given uniformizer for k (i.e. the valuation of π is 1). Then we have the
following Cartan decomposition (see Bruhat-Tits [5])

H = KAK.(2)

In this decomposition, the A component is uniquely defined. We can therefore
associate to every element g ∈ H a uniquely defined ag ∈ A.

Then, in what follows, we define χ(g) to be equal to χ(ag) for any character
χ ∈ X(T) and element g ∈ H. Although this conflicts with the original meaning
of χ(g) when g belongs to the torus T(k), we will keep this notation throughout
the paper. Thus we always have |α(g)| ≥ 1 for any simple root α and g ∈ H.

Let us note that the above decomposition (2) is no longer true when
H is not assumed to be k-split (see Bruhat-Tits [5] or [26] for the Cartan
decomposition in the general case).

If H = GLn and α is the simple root corresponding to the difference of the
first two eigenvalues λ1−λ2, then ag is a diagonal matrix diag(a1(g), . . . , an(g))
and |α(g)| = |a1(g)

a2(g) |. Then we have the following nice criterion for ε-contraction,
which justifies the introduction of this notion (see [4, Prop. 3.3]).

Lemma 3.4. Let ε < 1
4 . If |a1(g)

a2(g) | ≥ 1/ε2, then [g] ∈ PGLn(k) is
ε-contracting on P(kn). Conversely, suppose [g] is ε-contracting on P(kn) and k

is non-Archimedean with uniformizer π (resp. Archimedean), then |a1(g)
a2(g) | ≥

|π|
ε2

(resp. |a1(g)
a2(g) | ≥ 1

4ε2 ).

The proof of Lemma 3.1, as well as of Proposition 3.3, is based on the latter
characterization of ε-contraction and on the following crucial lemma (see [4,
Lemmas 3.4 and 3.5]):

Lemma 3.5. Let r, ε ∈ (0, 1]. If |a1(g)
a2(g) | ≥ 1

ε2 , then [g] is ε-contracting with
respect to the repelling hyperplane

Hg = [span{k′−1(ei)}n
i=2]

and the attracting point vg = [ke1], where g = kagk
′ is a Cartan decomposition

of g. Moreover, [g] is ε2

r2 -Lipschitz outside the r-neighborhood of Hg. Con-
versely assume that the restriction of [g] to some open set O ⊂ P(kn)
is ε-Lipschitz . Then |a1(g)

a2(g) | ≥ 1
2ε .
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3.3. The case of a general semisimple group. Now let us assume that H

is a Zariski connected semisimple k-algebraic group, and let (ρ, Vρ) be a finite
dimensional k-rational representation of H with highest weight χρ. Let Θρ be
the set of simple roots α such that χρ/α is again a nontrivial weight of ρ and

Θρ = {α ∈ Δ : χρ/α is a weight of ρ} .

It turns out that Θρ is precisely the set of simple roots α such that the asso-
ciated fundamental weight πα appears in the decomposition of χρ as a sum of
fundamental weights. Suppose that the weight space Vχρ

corresponding to χρ

has dimension 1; then we have the following lemma.

Lemma 3.6. There are positive constants C1 ≤ 1 ≤ C2, such that for any
ε ∈ (0, 1) and any g ∈ H(k), if |α(g)| > C2

ε2 for all α ∈ Θρ then the projective
transformation [ρ(g)] ∈ PGL(Vρ) is ε-contracting, and conversely, if [ρ(g)] is
ε-contracting, then |α(g)| > C1

ε2 for all α ∈ Θρ.

Proof. Let Vρ =
⊕

Vχ be the decomposition of Vρ into a direct sum
of weight spaces. Let us fix a basis (e1, . . . , en) of Vρ compatible with this
decomposition and such that Vχρ

= ke1. We then identify Vρ with kn via this
choice of basis. Let g = k1agk2 be a Cartan decomposition of g in H. We have
ρ(g) = ρ(k1)ρ(ag)ρ(k2) ∈ ρ(K)Dρ(K) where D ⊂ SLn(k) is the set of diagonal
matrices. Since ρ(K) is compact, there exists a positive constant C such that
if [ρ(g)] is ε-contracting then [ρ(ag)] is Cε-contracting, and conversely if [ρ(ag)]
is ε-contracting then [ρ(g)] is Cε-contracting. Therefore, it is equivalent to
prove the lemma for ρ(ag) instead of ρ(g). Now the coefficient |a1(ρ(ag))| in
the Cartan decomposition on SLn(k) equals maxχ |χ(ag)| = |χρ(g)|, and the
coefficient |a2(ρ(ag))| is the second highest diagonal coefficient and hence of the
form |χρ(ag)/α(ag)| where α is some simple root. Now the conclusion follows
from Lemma 3.4.

3.4. Proof of Lemma 3.1. Given a projective transformation [h] and δ > 0,
we say that (H, v) is a δ-related pair of a repelling hyperplane and attracting
point for [h], if [h] maps the complement of the δ-neighborhood of H into the
δ-ball around v.

The attracting point and repelling hyperplane of a δ-contracting transfor-
mation [h] are not uniquely defined. However, note that if δ < 1

4 then for any
two δ-related pairs of [h] (H i

h, vi
h), i = 1, 2, we have d(v1

h, v2
h) < 2δ. Indeed,

since δ < 1
4 , the union of the δ -neighborhoods of the H i

h’s does not cover
P(kn). Let p ∈ P(kn) be a point lying outside this union; then d([h]p, vi

h) < δ

for i = 1, 2.
Now consider two δ-related pairs (H i

h, vi
h), i = 1, 2 of some projective

transformation [h], satisfying d(v1
h, H1

h) ≥ r and no further assumption on the
pair (H2

h, v2
h). Suppose that 1 ≥ r > 4δ. Then we claim that Hd(H1

h, H2
h) ≤
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2δ, where Hd denotes the standard distance between hyperplanes, i.e. the
Hausdorff distance. (Note that Hd(H1, H2) = maxx∈H1{ |f2(x)|

‖x‖ } where f2 is
a norm-one functional whose kernel is the hyperplane H2 (for details see [4,
§3]).) To see this, note that if Hd(H1

h, H2
h) were greater than 2δ then any

projective hyperplane H would contain a point outside the δ-neighborhood of
either H1

h or H2
h. Such a point would be mapped by [h] into the δ-ball around

either v1
h or v2

h, hence into the 3δ-ball around v1
h. This in particular applies to

the hyperplane [h−1]H1
h. A contradiction to the assumption d(H1

h, v1
h) > 4δ.

We also conclude that when r > 8δ, then for any two δ-related pairs (H i, vi),
i = 1, 2 of [h], we have d(vi, Hj) > r

2 for all i, j ∈ {1, 2}.
Let us now fix an arbitrary ε-related pair (H, v) of the (r, ε)-proximal

transformation [g] from the statement of Lemma 3.1. Let also (Hg, vg) be the
hyperplane and point introduced in Lemma 3.5. From Lemmas 3.4 and 3.5,
we see that the pair (Hg, vg) is a Cε-related pair for [g] for some constant
C ≥ 1 depending only on k. Assume d(v, H) ≥ r > 8Cε. Then it follows from
the above that the ε-ball around v is mapped into itself under [g], and that
d(v, Hg) > r

2 . From Lemma 3.5, we obtain that [g] is (4Cε
r )2-Lipschitz in this

ball, and hence [gn] is (4Cε
r )2n-Lipschitz there. Hence [g] has a unique fixed

point vg in this ball which is the desired attracting point for all the powers of
[g]. Note that d(v, vg) ≤ ε.

Since [gn] is (4Cε
r )2n-Lipschitz on some open set, it follows from Lemma 3.5

that |a2(gn)
a1(gn) | ≤ 2(4Cε

r )2n, and from Lemma 3.4 that [gn] is 2(4Cε
r )n-contracting.

Moreover, it is now easy to see that if r > (4C)2ε, then for every 2(4Cε
r )n-

related pair (Hn, vn) for [gn], n ≥ 2, we have d(vg, vn) ≤ 4(4Cε
r )n. (To see

this apply [gn] to some point of the ε-ball around v which lies outside the
2(4Cε

r )n-neighborhood of Hn.) Therefore (Hn, vg) is a 6(4Cε
r )n-related pair for

[gn], n ≥ 2.

We shall now show that the ε-neighborhood of H contains a unique
[g]-invariant hyperplane which can be used as a common repelling hyperplane
for all the powers of [g]. The set F of all projective points at distance at most
ε from H is mapped into itself under [g−1]. Similarly the set H of all projec-
tive hyperplanes which are contained in F is mapped into itself under [g−1].
Both sets F and H are compact with respect to the corresponding Grassmann
topologies. The intersection F∞ = ∩[g−n]F is therefore nonempty and con-
tains some hyperplane Hg which corresponds to any point of the intersection
∩[g−n]H. We claim that F∞ = Hg. Indeed, the set F∞ is invariant under [g−1]
and hence under [g] and [gn]. Since (Hn, vg) is a 6(4Cε

r )n-related pair for [gn],
n ≥ 2, and since vg is “far” (at least r−2ε away) from the invariant set F∞, it
follows that for large n, F∞ must lie inside the 6(4Cε

r )n-neighborhood of Hn.
Since F∞ contains a hyperplane, and since it is arbitrarily close to a hyper-
plane, it must coincide with a hyperplane. Hence F∞ = Hg. It follows that
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(Hg, vg) is a 12(4Cε
r )n-related pair for [gn] for any large enough n. Note that

then d(vg, Hg) > r − 2ε, since d(vg, v) ≤ ε and Hd(Hg, H) ≤ ε. This proves
existence and uniqueness of (Hg, vg) as soon as r > c1ε where c1 ≥ (4C)2 +8C.

If we assume further that r3 ≥ 12(4Cε)2, then F∞ lies inside the 6(4Cε
r )n-

neighborhood of Hn as soon as n ≥ 2. Then (Hg, vg) is a 12(4Cε
r )n-related pair

for [gn], hence a (c2ε)n/3-related pair for [gn] whenever n ≥ 1, where c2 ≥ 1
is a constant easily computable in terms of C. This finishes the proof of the
lemma.

In what follows, whenever we add the article the to an attracting point
and repelling hyperplane of a proximal transformation [g], we shall mean these
fixed point vg and fixed hyperplane Hg obtained in Lemma 3.1.

4. Irreducible representations of non-Zariski
connected algebraic groups

This section is devoted to the proof of Theorem 4.3 below. Only Theorem
4.3 and the facts gathered in Paragraph 4.1 below will be used in the other
sections of this paper.

In the process of constructing dense free groups, we need to find some
suitable linear representation of the group Γ we started with. In general, the
Zariski closure of Γ may not be Zariski connected, and yet we cannot pass to
a subgroup of finite index in Γ while proving Theorem 1.3. Therefore we will
need to consider representations of non-Zariski connected groups.

Let H◦ be a connected semisimple k-split algebraic k-group. The group
Autk(H◦) of k-automorphisms of H◦ acts naturally on the characters X(T) of
a maximal split torus T. Indeed, for every σ ∈ Autk(H◦), the torus σ(T ) is
conjugate to T = T(k) by some element g ∈ H = H(k) and we can define
the character σ(χ) by σ(χ)(t) = χ(g−1σ(t)g). This is not well defined, since
the choice of g is not unique (it is up to multiplication by an element of the
normalizer NH(T )). But if we require σ(χ) to lie in the same Weyl chamber
as χ, then this determines g up to multiplication by an element from the
centralizer ZH(T ), hence it determines σ(χ) uniquely. Note also that every σ

sends roots to roots and simple roots to simple roots.
In fact, what we need are representations of algebraic groups whose re-

striction to the connected component is irreducible. As explained below, it
turns out that an irreducible representation ρ of a connected semisimple alge-
braic group H◦ extends to the full group H if and only if its highest weight is
invariant under the action of H by conjugation.

We thus have to face the problem of finding elements in H◦(k) ∩ Γ which
are ε-contracting under such a representation ρ. By Lemma 3.6 this amounts
to finding elements h such that α(h) is large for all simple roots α in the set
Θρ defined in Paragraph 3.3. As will be explained below, we can take ρ so that
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all simple roots belonging to Θρ are images by some outer automorphisms σ’s
of H◦ (coming from conjugation by an element of H) of a single simple root α.
But σ(α)(h) and α(σ(h)) have a comparable action on the projective space.
The idea of the proof below is then to find elements h in H◦(k) such that
all relevant α(σ(h))’s are large. But, according to the converse statement in
Lemma 3.6, this amounts to finding elements h such that all relevant σ(h)’s
are ε-contracting under a representation ρα such that Θρα

= {α}. This is the
content of the forthcoming proposition.

Before stating the proposition, let us note that, H◦ being k-split, to every
simple root α ∈ Δ corresponds an irreducible k-rational representation of H◦(k)
whose highest weight χρα

is the fundamental weight πα associated to α and has
multiplicity one. In this case the set Θρα

defined in Paragraph 3.3 is reduced
to the singleton {α}.

Proposition 4.1. Let α be a simple root. Let I be a subset of H◦(k)
such that {|α(g)|}g∈I is unbounded in R. Let Ω ⊂ H◦(k) be a Zariski dense
subset. Let σ1, . . . , σm be algebraic k-automorphisms of H◦. Then for any
arbitrary large M > 0, there exists an element h ∈ H◦(k) of the form h =
f1σ

−1
1 (g) . . . fmσ−1

m (g) where g ∈ I and the fi’s belong to Ω, such that |σi(α)(h)|
> M for all 1 ≤ i ≤ m.

Proof. Let ε ∈ (0, 1) and g ∈ I such that |α(g)| ≥ 1
ε2 . Let (ρα, V )

be the irreducible representation of H◦(k) corresponding to α as described
above. Consider the weight space decomposition Vρα

=
⊕

Vχ and fix a basis
(e1, . . . , en) of V = Vρα

compatible with this decomposition and such that
Vχρα

= ke1. We then identify V with kn via this choice of basis, and in partic-
ular, endow P(V ) with the standard metric defined in the previous section. It
follows from Lemma 3.6 above that [ρα(g)] is εC-contracting on P(V ) for some
constant C ≥ 1 depending only on ρα. Now from Lemma 3.5, there exists for
any x ∈ H◦(k) a point ux ∈ P(V ) such that [ρα(x)] is 2-Lipschitz over some
open neighborhood of ux. Similarly, there exists a projective hyperplane Hx

such that [ρα(x)] is 1
r2 -Lipschitz outside the r-neighborhood of Hx. Moreover,

combining Lemmas 3.4 and 3.5 (and up to changing C if necessary to a larger
constant depending this time only on k), we see that [ρα(g)] is ε2C2

r2 -Lipschitz
outside the r-neighborhood of the repelling hyperplane Hg defined in Lemma
3.5. We pick ug outside this r-neighborhood.

By slightly modifying the definition of a finite (m, r)-separating set (see
above Paragraph 3.1), we can say that a finite subset F of H◦(k) is an (m, r)-
separating set with respect to ρα and σ1, . . . , σm if for every choice of m points
v1, . . . , vm in P(V ) and m projective hyperplanes H1, . . . , Hm there exists γ ∈
F such that

min
1≤i,j,k≤m,

d(ρα(σk(γ))vi, Hj) > r > 0.
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Claim. The Zariski dense subset Ω contains a finite (m, r)-separating
set with respect to ρα and σ1, . . . , σm, for some positive number r.

Proof of the claim. For γ ∈ Ω, we let Mγ be the set of all tuples
(vi, Hi)1≤i≤m such that there exist some i, j and l for which ρα(σl(γ))vi ∈ Hj .
Now

⋂
γ∈Ω Mγ is empty, for otherwise there would be points v1, . . . , vm in

P (V ) and projective hyperplanes H1, . . . , Hm such that Ω is included in the
union of the closed algebraic k-subvarieties {x ∈ H◦(k) : ρα(σl(x))vi ∈ Hj}
where i, j and l range between 1 and m. But, by irreducibility of ρα each of
these subvarieties is proper, and this would contradict the Zariski density of
Ω or the Zariski connectedness of H◦. Now, since each Mγ is compact in the
appropriate product of Grassmannians, it follows that for some finite subset
F ⊂ Ω,

⋂
γ∈F Mγ = ∅. Finally, since maxγ∈F min1≤i,j,l≤m d(ρα(σl(γ)vi, Hj) de-

pends continuously on (vi, Hi)m
i=1 and never vanishes, it must attain a positive

minimum r by compactness of the set of all tuples (vi, Hi)m
i=1 in(

P(V ) × Grdim(V )−1(V )
)2m

.

Therefore F is the desired (m, r)-separating set.

Up to taking a bigger constant C, we can assume that C is larger than
the bi-Lipschitz constant of every ρα(x) on P(kn) when x ranges over the finite
set {σk(f) : f ∈ F, 1 ≤ k ≤ m}.

Now let us explain how to find the element h = fmσ−1
m (g) . . . f1σ

−1
1 (g) we

are looking for. We shall choose the fj ’s recursively, starting from j = 1, in
such a way that all the elements σi(h), 1 ≤ i ≤ m, will be contracting. Write

σi(h) = σi(fmσ−1
m (g) . . . f1σ

−1
1 (g))

=
(
σi(fm)σiσ

−1
m (g) · . . . ·σi(fi)

)
· g ·

(
σi(fi−1)σiσi−1(g) · . . . ·σi(f1)σiσ

−1
1 (g)

)
.

In order to make σi(h) contracting, we shall require that:

• For m ≥ i ≥ 2, σi(fi−1) takes the image under σiσi−1(g)·. . .·σi(f1)σiσ
−1
1 (g)

of some open set on which σiσi−1(g) · . . . · σi(f1)σiσ
−1
1 (g) is 2-Lipschitz,

e.g. a small neighborhood of the point

ui :=
(
σiσi−1(g) · . . . · σi(f1)σiσ

−1
1 (g)

)
(uσiσi−1(g)·...·σi(f1)σiσ

−1
1 (g))

at least r apart from the hyperplane Hg, and:

• For m > j ≥ i, σi(fj) takes the image of ui under
(
σiσ

−1
j (g) · . . . · σi(fi)

)
g

at least r apart from the hyperplane Hσiσ
−1
j+1(g) of σiσ

−1
j+1(g) (i.e. of the

next element on the left in the expression of σi(h)).

Assembling the conditions on each fi we see that there are at most m

points that the σj(fi)’s, 1 ≤ j ≤ m should send r apart from at most m

projective hyperplanes.
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This appropriate choice of f1, . . . , fm in F forces each of σ1(h), . . . , σm(h)
to be 2Cm+2ε2

r2m -Lipschitz in some open subset of P(V ). Lemma 3.5 now implies
that σ1(h), . . . , σm(h) are C0ε-contracting on P(V ) for some constant C0 de-
pending only on (ρ, V ).

Moreover h ∈ KahK and each of the σi(K) is compact, we conclude that
σ1(ah), . . . , σm(ah) are also C1ε-contracting on P(V ) for some constant C1.
But for every σi there exists an element bi ∈ H◦(k) such that σi(T ) = biTb−1

i

and σi(α)(t) = α(b−1
i σi(t)bi) for every element t in the positive Weyl chamber

of the maximal k-split torus T = T(k). Up to taking a larger constant C1

(depending on the bi’s) we therefore obtain that b−1
1 σ1(ah)b1, . . . , b−1

m σm(ah)bm

are also C1ε-contracting on P(V ) via the representation ρα. Finally Lemma 3.6
yields the conclusion that |σi(α)(h)| = |α(b−1

i σi(ah)bi)| ≥ 1
C2ε2

for some other
positive constant C2. Since ε can be chosen arbitrarily small, we are done.

Now let H be an arbitrary algebraic k-group, whose identity connected
component H◦ is semisimple. Let us fix a system Σ of k-roots for H◦ and
a simple root α. For every element g in H(k) let σg be the automorphism
of H◦(k) which is induced by g under conjugation, and let S be the group
of all such automorphisms. As was described above, S acts naturally on the
set Δ of simple roots. Let S · α = {α1, . . . , αp} be the orbit of α under this
action. Suppose I ⊂ H◦(k) satisfies the conclusion of the last proposition for
S · α; that is for any ε > 0, there exists g ∈ I such that |αi(g)| > 1/ε2 for all
i = 1, . . . , p. Then the following proposition shows that under some suitable
irreducible projective representation of the full group H(k), for arbitrary small
ε, some elements of I act as ε-contracting transformations.

Proposition 4.2. Let I ⊂ H◦(k) be as above. Then there exist a finite
extension K of k, [K : k] < ∞, and a nontrivial finite dimensional irreducible
K-rational representation of H◦ into a K-vector space V which extends to
an irreducible projective representation ρ̃ : H(K) → PGL(V ), satisfying the
following property : for every positive ε > 0 there exists γε ∈ I such that ρ̃(γε)
is an ε-contracting projective transformation of P(V ).

Proof. Up to taking a finite extension of k, we can assume that H◦ is k-
split. Let (ρ, V ) be an irreducible k-rational representation of H◦ whose highest
weight χρ is a multiple of α1 + . . .+αp and such that the highest weight space
Vχρ

has dimension 1 over k. Burnside’s theorem implies that, up to passing
to a finite extension of k, we can also assume that the group algebra k[H◦(k)]
is mapped under ρ to the full algebra of endomorphisms of V , i.e. Endk(V ).
For a k-automorphism σ of H◦ let σ(ρ) be the representation of H◦ given on
V by σ(ρ)(g) = ρ(σ(g)). It is a k-rational irreducible representation of H◦

whose highest weight is precisely σ(χρ). But χρ = d(α1 + . . . + αp) for some
d ∈ N, and is invariant under the action of S. Hence for any σ ∈ S, σ(ρ) is
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equivalent to ρ. So there must exists a linear automorphism Jσ ∈GL(V ) such
that σ(ρ)(h) = Jσρ(h)J−1

σ for all h ∈ H◦(k). Now set ρ̃(g) = [ρ(g)] ∈ PGL(V )
if g ∈ H◦(k) and ρ̃(g) = [Jσg

] ∈ PGL(V ) otherwise. Since the ρ(g)’s when
g ranges over H◦(k) generate the whole of Endk(V ), it follows from Schur’s
lemma that ρ̃ is a well defined projective representation of the whole of H(k).
Now the set Θρ of simple roots α such that χρ/α is a nontrivial weight of
ρ is precisely {α1, . . . , αp}. Hence if γε ∈ I satisfies |αi(γε)| > 1

ε2 for all
i = 1, . . . , p, then we have by Lemma 3.6 that ρ̃(γε) is C2ε-contracting on
P(V ) for some constant C2 independent of ε.

We can now state and prove the main result of this section, and the
only one which will be used in the sequel. Let here K be an arbitrary field
which is finitely generated over its prime field and H an algebraic K-group
such that its Zariski connected component H◦ is semisimple and nontrivial.
Fix some faithful K-rational representation H ↪→ GLd. Let R be a finitely
generated subring of K. We shall denote by H(R) (resp. H◦(R)) the subset of
points of H(K) (resp. H◦(K)) which are mapped into GLd(R) under the latter
embedding.

Theorem 4.3. Let Ω0 ⊂ H◦(R) be a Zariski-dense subset of H◦ with
Ω0 = Ω−1

0 . Suppose {g1, . . . , gm} is a finite subset of H(K) exhausting all
cosets of H◦ in H, and let

Ω = g1Ω0g
−1
1 ∪ . . . ∪ gmΩ0g

−1
m .

Then we can find a number r > 0, a local field k, an embedding K ↪→ k, and
a strongly irreducible projective representation ρ : H(k) → PGLd(k) defined
over k with the following property. If ε ∈ (0, r

2) and a1, . . . , an ∈ H(K) are n

arbitrary points (n ∈ N), then there exist n elements x1, . . . , xn with

xi ∈ Ω4m+2aiΩ

such that the ρ(xi)’s form a ping-pong n-tuple of (r, ε)-very proximal transfor-
mations on P(kd), and in particular are generators of a free group Fn.

Proof. Up to enlarging the subring R if necessary, we can assume that K is
the field of fractions of R. We shall make use of Lemma 2.1. Since Ω0 is infinite,
we can apply this lemma and obtain an embedding of K into a local field k such
that Ω0 becomes an unbounded set in H(k). Up to enlarging k if necessary we
can assume that H◦(k) is k-split. We fix a maximal k-split torus and a system
of k-roots with a base Δ of simple roots. Then, in the corresponding Cartan
decomposition of H(k) the elements of Ω0 have unbounded A-component (see
Paragraph 3.2). Therefore, there exists a simple root α such that the set
{|α(g)|}g∈Ω0 is unbounded in R. Let σgi

be the automorphism of H◦(k) given
by the conjugation by gi. The orbit of α under the group generated by the
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σgi
’s is denoted by {α1, . . . , αp}. Now it follows from Proposition 4.1 that

for every ε > 0 there exists an element h ∈ Ω2p such that |αi(h)| > 1/ε2 for
every i = 1, . . . , p. We are now in a position to apply the last Proposition 4.2
and obtain (up to taking a finite extension of k if necessary) an irreducible
projective representation ρ : H(k) → PGL(V ), such that the restriction of ρ

to H◦(k) is also irreducible and with the following property: for every positive
ε > 0 there exists hε ∈ Ω2p such that ρ(hε) is an ε-contracting projective
transformation of P(V ). Moreover, since ρ|H◦ is also irreducible and Ω0 is
Zariski dense in H◦ we can find an (n, r)-separating set with respect to ρ|H◦

for some r > 0 (for this terminology, see definitions in Paragraph 3.1). This
follows from the proof of the claim in Proposition 4.1 above (see also Lemma
4.3. in [4]). By Proposition 3.3 (i) above, we obtain for every small ε > 0 an
ε-very contracting element γε in hεΩ0h

−1
ε ⊂ Ω4p+1. Similarly, statement (ii) of

the same proposition gives elements f1, . . . , fn ∈ Ω0 and f ′
1, . . . , f ′

n ∈ Ω0 such
that, for ε small enough, (x1, . . . , xn) = (f ′

1γεa1f1, . . . , f ′
nγεanfn) form under

ρ a ping-pong n-tuple of proximal transformations on P(V ). Then each xi lies
in Ω4p+2aiΩ and together the xi’s form generators of a free group Fn of rank n.

4.1. Further remarks. For further use in later sections we shall state two
more facts. Let Γ ⊂ G(K) be a Zariski dense subgroup of some algebraic
group G. Suppose Γ is not virtually solvable and finitely generated and let
Δ ≤ Γ be a subgroup of finite index. Taking the quotient by the solvable
radical of G◦, we obtain a homomorphism π of Γ into an algebraic group H

whose connected component is semisimple. Let g1, . . . , gm ∈ Γ be arbitrary
elements in Γ. Then Ω0 = π(∩m

i=1giΔg−1
i ) ∩ H0 is clearly Zariski dense in H0

and satisfies the conditions of Theorem 4.3. Hence taking ai = π(gi) in the
theorem, we obtain:

Corollary 4.4. Let Γ be a finitely generated linear group which is not
virtually solvable, and let Δ ⊂ Γ be a subgroup of finite index. Then for any
choice of elements g1, . . . , gm ∈ Γ one can find free generators of a free group
a1, . . . , am lying in the same cosets, i.e. ai ∈ giΔ.

The following lemma will be useful when dealing with the non-Archimedean
case.

Lemma 4.5. Let k be a non-Archimedean local field. Let Γ ≤GLn(k) be
a linear group over k which contains no open solvable subgroup. Then there
exists a homomorphism ρ from Γ into a k-algebraic group H such that the
Zariski closure of the image of any open subgroup of Γ contains the connected
component of the identity H◦. Moreover, we can take ρ : Γ → H(k) to be
continuous in the topology induced by k, and we can find H such that H◦ is
semisimple and dim(H◦) ≤ dimΓz.
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Proof. Let Ui be a decreasing sequence of open subgroups in GLn(k)
forming a base of identity neighborhoods. Consider the decreasing sequence
of algebraic groups Γ ∩ Ui

z. This sequence must stabilize after a finite step s.
The limiting group G = Γ ∩ Us

z must be Zariski connected. Indeed, the
intersection of Γ ∩ Us with the Zariski connected component of the identity
in G is a relatively open subgroup and contains Γ ∩ Ut for some large t. If G

were not Zariski connected, then Γ ∩ Ut
z would be a smaller algebraic group.

Moreover, from the assumption on Γ, we get that G is not solvable.
Note that the conjugation by an element of Γ fixes G, since γUiγ

−1 ∩Ui is
again open if γ ∈ Γ and hence contains some Uj . Since the solvable radical
Rad(G) of G is a characteristic subgroup of G, it is also fixed under conjugation
by elements of Γ. We thus obtain a homomorphism ρ from Γ to the k-points of
the group of k-automorphisms H =Aut(S) of the Zariski connected semisimple
k-group S = G/Rad(G). This homomorphism is clearly continuous. Since the
image of Γ ∩ U is Zariski dense in G for all open U ⊂ GLn(k), Γ ∩ U is
mapped under this homomorphism to a Zariski dense subgroup of the group
of inner automorphisms Int(S) of S. But Int(S) is a semisimple algebraic k-
group which is precisely the Zariski connected component of the identity in
H =Aut(S) (see for example [3], 14.9). Finally, it is clear from the construction
that dim H ≤ dim Γz.

5. Proof of Theorem 1.3 in the finitely generated case

In this section we prove our main result, Theorem 1.3, in the case when
Γ is finitely generated. We obtain in fact a more precise result yielding some
control on the number of generators required for the free group.

Theorem 5.1. Let Γ ≤ GLn(k) be a finitely generated linear group over
a local field k. Suppose that Γ contains no solvable open subgroup. Then, there
is a constant h(Γ) ∈ N such that for any integer r ≥ h(Γ), Γ contains a dense
free subgroup of rank r. Moreover, if char(k) = 0 we can take h(Γ) = d(Γ) (i.e.
the minimal size of a generating set for Γ), while if char(k) > 0 we can take
h(Γ) = d(Γ) + n2.

In the following paragraphs we split the proof into three cases
(Archimedean, non-Archimedean of characteristic zero, and positive charac-
teristic) that are dealt with independently.

5.1. The Archimedean case. Here k = R or C. Let G be the linear Lie
group G = Γ, and let G◦ be the connected component of the identity in G.
The condition “Γ contains no open solvable subgroup” means simply “G◦ is
not solvable”. Note also that d(G/G◦) ≤ d(Γ) < ∞.
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Define inductively G◦
0 = G◦ and G◦

n+1 = [G◦
n, G◦

n]. This sequence stabilizes
after some finite step t to a normal topologically perfect subgroup H := G◦

t (i.e.
the commutator group [H, H] is dense in H). As was shown in [4, Th. 2.1], any
topologically perfect group H contains a finite set of elements {h1, . . . , hl}, l ≤
dim(H), and a relatively open identity neighborhood V ⊂ H such that, for any
selection of points xi ∈ V hiV, the group 〈x1, . . . , xl〉 is dense in H. Moreover,
H is clearly a characteristic subgroup of G◦, hence it is normal in G. It is also
clear from the definition of H that if Γ is a dense subgroup of G then Γ∩H is
dense in H.

Let r ≥ d(Γ), and let {γ1, . . . , γr} be a generating set for Γ. Then one can
find a smaller identity neighborhood U ⊂ V ⊂ H such that for any selection of
points yj ∈ UγjU, j = 1, . . . , r, the group they generate 〈y1, . . . , yr〉 is dense
in G. Indeed, as Γ∩H is dense in H, there are l words wi in r letters such that
wi(γ1, . . . , γr) ∈ V hiV for i = 1, . . . , l. Hence, for some smaller neighborhood
U ⊂ V ⊂ H and for any selection of points yj ∈ UγjU, j = 1, . . . , r, we will
have wi(y1, . . . , yr) ∈ V hiV for i = 1, . . . , l. But then 〈y1, . . . , yr〉 is dense in
G, since its intersection with the normal subgroup H is dense in H, and its
projection to G/H coincides with the projection of Γ to G/H.

Let R ≤ G◦ be the solvable radical of G◦. The group G/R is a semisimple
Lie group with connected component G◦/R and H clearly projects onto G◦/R.
Composing the projection G → G/R with the adjoint representation of G/R

on its Lie algebra v = Lie(G◦/R), we get a homomorphism π : G →GL(v). The
image π(G) is open in the group of real points of some real algebraic group H

whose connected identity component H◦ is semisimple. Moreover π(Γ) is dense
in π(G). Let m = |H/H◦| and let g1, . . . , gm ∈ Γ be elements which are sent
under π to representatives of all cosets of H◦ in H. Let U0 be an even smaller
symmetric identity neighborhood U0 ⊂ U ⊂ H such that U4m+2

1 ⊂ U where
U1 = ∪m

j=1gjU0g
−1
j , and set Ω0 = π(U0 ∩ Γ). Then the conditions of Theorem

4.3 are satisfied, since Ω0 is Zariski dense in H◦(R) (see [4, Lemma 5.2] applied
to H). Thus we can choose αi ∈ Γ ∩ U4m+2

1 γiU1 which generate a free group
〈α1, . . . , αr〉. It will also be dense by the discussion above.

5.2. The p-adic case. Suppose now that k is a non-Archimedean local field
of characteristic 0; i.e. it is a finite extension of the field of p-adic numbers Qp

for some prime p ∈ N. Let O = Ok be the valuation ring of k and p its maximal
ideal. Let Γ ≤ GLn(k) be a finitely generated linear group over k, let G be
the closure of Γ in GLn(k). Let G(O) = G ∩ GLn(O) (and Γ(O) = Γ ∩ G(O))
and denote by GL1

n(O) the first congruence subgroup, i.e. the kernel of the
homomorphism GLn(O) →GLn(O/p). The subgroup G1(O) = G ∩ GL1

n(O)
is an open compact subgroup of G and is a p-adic analytic pro-p group. The
group GLn(O) has finite rank (i.e. there is a finite upper bound on the minimal
number of topological generators for all closed subgroups of GLn(O)) as follows
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for instance from Theorem 5.2 in [13]. Consequently, G(O) itself is finitely
generated as a profinite group and it contains the finitely generated pro-p group
G1(O) as a subgroup of finite index. This implies that the Frattini subgroup
F ≤ G(O) (the intersection of all maximal open subgroups of G(O)) is open
(normal), hence of finite index in G(O) (Proposition 1.14 in [13]). In this
situation, generating a dense group in G is an open condition. More precisely:

Lemma 5.2. Suppose x1, . . . , xr ∈ G generate a dense subgroup of G.
Then there is a neighborhood of the identity U ⊂ G, such that for any selection
of points yi ∈ UxiU, 1 ≤ i ≤ r, the yi’s generate a dense subgroup of G.

Proof. Note that a subgroup of the profinite group G(O) is dense if
and only if it intersects every coset of the Frattini subgroup F . Now since
〈x1, . . . , xr〉 is dense, there are l = [G(O) : F ] words {wi}l

i=1 on r letters, such
that the wi(x1, . . . , xr)’s are representatives of all cosets of F in G(O). But
then, if U is small enough, and yi ∈ UxiU , the elements wi(y1, . . . , yr) form
again a full set of representatives for the cosets of F in G(O). This implies
that 〈y1, . . . , yr〉 ∩ G(O) is dense in G(O). Now if we assume further that U

lies inside the open subgroup G(O), then we have xi ∈ G(O)yiG(O); hence
xi ∈ 〈y1, . . . , yr〉 for i = 1, . . . , r. This implies that G = 〈y1, . . . , yr〉.

The proof of Theorem 5.1 now follows easily. Let {x1, . . . , xr} be a gener-
ating set for Γ. Choose U as in the lemma, and take it to be an open subgroup.
Hence it satisfies U l = U for all l ≥ 1. By Lemma 4.5 we have a representation
ρ : Γ → H into some semisimple k-algebraic group H such that the image
of U ∩ Γ is Zariski dense in H0. Thus we can use Theorem 4.3 in order to
find elements αi ∈ Γ ∩ UxiU that generate a free group. It will be dense by
Lemma 5.2.

5.3. The positive characteristic case. Finally, consider the case where k

is a local field of characteristic p > 0, i.e. a field of formal Laurent series
Fq[[t]] over some finite field extension Fq of Fp. First, we do not suppose that
Γ is finitely generated (in particular in the lemmas below). We use the same
notation as introduced at the beginning of Paragraph 5.2 in the p-adic case.
In particular G is the closure of Γ, G(O) is the intersection of G with GLn(O)
where O is the valuation ring of k. In positive characteristic, we have to deal
with the additional difficulty that, even when Γ is finitely generated, G(O)
may not be topologically finitely generated.

However, when G(O) is topologically finitely generated (e.g. when Γ is
finitely generated and G = Γ is compact), then the argument used in the
p-adic case (via Lemmas 4.5 and 5.2) applies here as well without changes. In
this case, we do not have to take more than d(Γ) generators for the dense free
subgroup. This fact will be used in Section 8. We thus have:
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Proposition 5.3. Let k be a non-Archimedean local field and let O be
its valuation ring. Let Γ ≤ GLn(O) be a finitely generated group which is not
virtually solvable. Then Γ contains a dense free group Fr for any r ≥ d(Γ).

Moreover, it is shown in [2] that if k is a local field of positive characteristic,
and G = G(k) for some semisimple simply connected k-algebraic group G, then
G and G(O) are finitely generated. Thus, the above proof applies also to this
case and we obtain:

Proposition 5.4. Let k be a local field of positive characteristic, and let
G be the group of k points of some semisimple simply connected k-algebraic
group. Let Γ be a finitely generated dense subgroup of G. Then Γ contains a
dense Fr for any r ≥ d(Γ).

Let us now turn to the general case, when G(O) is not assumed topologi-
cally finitely generated. As above, we denote by GL1

n(O) the first congruence
subgroup Ker

(
GLn(O) → GLn(O/p)

)
. This group is pro-p and, as is easy to

see, the elements of torsion in GL1
n(O) are precisely the unipotent matrices. In

particular the order of every torsion element is ≤ pn. Moreover, every open
subgroup of GL1

n(O) contains elements of infinite order. Hence the torsion
elements are not Zariski dense in GL1

n(O). More generally we have:

Lemma 5.5. Let k be a non-Archimedean local field of arbitrary charac-
teristic and n a positive integer. There is an integer m such that the order of
every torsion element in GLn(k) divides m. In particular, if H is a semisimple
algebraic k-group, then the set of torsion elements in H(k) is contained in a
proper subvariety.

Proof. Let char(k) = p ≥ 0. Suppose x ∈ GLn(k) is an element of torsion,
then xpn

(resp. x if char(k) = 0) is semisimple. Since the minimal polynomial
of x is of degree at most n, its eigenvalues, which are roots of unity, lie in an
extension of degree at most n of k. But, as k is a local field, there are only
finitely many such extensions. Moreover, in a given non-Archimedean local
field, there are only finitely many roots of unity. Hence there is an integer m

such that xm = 1.
The last claim follows from the obvious fact that if H is semisimple then

there are elements of infinite order in H(k).

Let ρ : Γ → H be the representation given by Lemma 4.5. Then for
any sufficiently small open subgroup U of GLn(O) (for instance some small
congruence subgroup), ρ

(
Γ ∩ U

)
is Zariski dense in H◦. We then have (for Γ

not assumed finitely generated):

Lemma 5.6. There are t := dim(H) elements x1, . . . , xt ∈ Γ∩G(O) such
that ρ

(
〈x1, . . . , xt〉

)
is Zariski dense in H0.
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Proof. Let U be an open subgroup of GLn(O) so that ρ
(
Γ ∩ U

)
lies in

H◦ and is Zariski dense in it. It follows from the above lemma that there
is x1 ∈ Γ ∩ U such that ρ(x1) is of infinite order. Then the algebraic group
A = 〈x1〉

z
is at least one dimensional.

Let the integer i, 1 ≤ i ≤ t, be maximal for the property that there exist i

elements x1, . . . , xi ∈ Γ∩U whose images in H generate a group whose Zariski
closure is of dimension ≥ i. We have to show that i = t. Suppose this is not
the case. Fix such x1, . . . , xi and let A be the Zariski connected component of
identity of 〈ρ(x1), . . . , ρ(xi)〉

z
. Then for any x ∈ Γ∩U , 〈ρ(x1), . . . , ρ(xi), ρ(x)〉z

is i-dimensional. This implies that ρ(x) normalizes A. Since ρ
(
Γ∩U

)
is Zariski

dense in H0, we see that A is a normal subgroup of H◦. Dividing H◦ by A

we obtain a Zariski connected semisimple k-group of positive dimension, and a
map from Γ ∩U with Zariski dense image into the k-points of this semisimple
group. But then, again by Lemma 5.5 above, there is an element xi+1 ∈ Γ∩U

whose image in H◦/A has infinite order — a contradiction to the maximality
of i.

End of the proof in the positive characteristic case. Suppose now that Γ
is finitely generated and let Δ be the closure in G of the subgroup generated by
x1, . . . , xt given by Lemma 5.6 above. It is a topologically finitely generated
profinite group containing Δ∩G1(O) as a subgroup of finite index. Hence the
Frattini subgroup F of Δ (i.e. the intersection of all maximal open subgroups)
is open and of finite index ([13, Prop. 1.14]). In particular, ρ(F∩〈x1, . . . , xt〉) is
Zariski dense in H◦, and we can use Theorem 4.3 with Ω0 = ρ(F ∩〈x1, . . . , xt〉).
Note that F , being a subgroup, satisfies Fm = F for m ∈ N. Also F is normal
in Δ. Let γ1, . . . , γr be generators for Γ. By Theorem 4.3, we can choose αi ∈
FγiF, i = 1, . . . , r, and αi+r ∈ xiF, i = 1, . . . , t, so that D = 〈α1, . . . , αr+t〉 is
isomorphic to the free group Fr+t on r + t generators. Clearly D ∩ Δ is dense
in Δ and D∩F is dense in F . This implies that each γi lies in FαiF ⊂ D. As
the γi’s generate Γ, we see that D is dense in Γ and this finishes the proof.

5.4. Some stronger statements. In this section we shall formulate some
stronger statements that can be derived from the proof of Theorem 1.3. When
char(k) = 0, the proof actually gives the following:

Theorem 5.7. Let k be a local field of characteristic 0 and let Γ ≤ GLn(k)
be a finitely generated group containing no open solvable subgroup. Assume
further that Γ = 〈γ1, . . . , γd〉; then for any identity neighborhood Ω ⊂ Γ, there
are αi ∈ ΩγiΩ for i = 1, . . . , d such that α1, . . . , αd are free generators of a
dense free subgroup of Γ.

The argument in the previous section combined with the argument of
[4, §2] provides the following generalization:
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Theorem 5.8. Let k be a local field and let G ≤ GLn(k) be a closed
linear group containing no open solvable subgroup. If k is non-Archimedean
of positive characteristic, assume further that G(O) is topologically finitely
generated. Then there is an integer h(G) satisfying

• h(G) ≤ 2 dim(G) − 1 + d(G/G◦) if k is Archimedean, and

• h(G) is the minimal cardinality of a set generating a dense subgroup of G

if k is non-Archimedean,

such that any finitely generated dense subgroup Γ ≤ G contains a dense Fr, for
any r ≥ min{d(Γ), h(G)}. Furthermore, if k is non-Archimedean or if G◦ is
topologically perfect (i.e. [G◦, G◦] = G◦) and d(G/G◦) < ∞, then we can drop
the assumption that Γ is finitely generated. In these cases, any dense subgroup
Γ in G contains a dense Fr for any r ≥ h(G).

Remark 5.9. The interested reader is referred to [4] for a sharper estima-
tion of h(G) in the Archimedean case. For instance, if G is a connected and
semisimple real Lie group, then h(G) = 2.

Also, in the characteristic zero case, we can drop the linearity assumption,
and assume only that Γ is a subgroup of some second countable k-analytic Lie
group. To see this, simply note that the procedure of generating a dense
subgroup does not rely upon the linearity of G = Γ, and for generating a
free subgroup, we can look at the image of G under the adjoint representation
which is a linear group. The main difference in the positive characteristic case
is that we do not know whether or not the image Ad(G) is solvable. For this
reason we make the additional linearity assumption in positive characteristic.

6. Dense free subgroups with infinitely many generators

In this section we shall prove the following refinement of Theorem 1.3:

Theorem 6.1. Let k be a local field and Γ ≤ GLn(k) a linear group
over k. Assume that Γ contains no open solvable subgroup. Then Γ contains
a countable dense subset X which forms a free set. In particular the group
〈X〉 ≤ Γ is a free subgroup of infinite rank.

As above, we denote by G the closure of Γ. Since GLn(k) and hence G is
second countable and Γ is dense, we can pick a sequence of elements (xj) in
Γ and simultaneously a sequence of relatively compact identity neighborhoods
Uj ⊂ G such that the family {U2

j xjU
2
j } forms a base for the topology of G.

We shall set Γj = Γ ∩ Uj .
We are going to perturb the xj ’s to elements yj inside Γ2

jxjΓ2
j so that the

yj ’s play ping-pong all together on some projective space, and hence form a
dense free set.
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From Lemma 4.5 in the non-Archimedean case, and from the discussion
in Paragraph 5.1 in the Archimedean case, we have a homomorphism π : Γ →
H(k), where H is an algebraic k-group with H◦ semisimple, such that the
Zariski closure of π(Γj) contains H◦ for all j ≥ 1. It follows from Lemma 5.6
when char(k) > 0 and from the discussion in Paragraphs 5.1 and 5.2 in the
other cases that Γ1 contains finitely many elements which generate a group Δ
for which the Zariski closure of π(Δ) still contains H◦.

We shall first construct a sequence of points (zε)ε
3 in Γ1 such that zε → 1

in G as ε → 0 and zε acts as an (r, ε)-very proximal transformation for some
fixed r > 0 (independent of ε) with constant attracting points v± and repelling
hyperplanes H± (not necessarily fixed by any of the zε’s).

To construct (zε)ε, let us go back to the proof of Theorem 4.3 and the
construction of the projective representation ρ. Instead of applying Lemma 2.1
to Ω0 as described in the proof of Theorem 4.3, we choose and fix an infinite
sequence I of points in Δ tending to 1 in G and apply Lemma 2.1 to it. We
thus obtain a local field k′ and a projective representation ρ of H on P(Vk′)
defined over k′ whose restriction to H◦ is irreducible. Furthermore, there is
a field extension K of k′ such that under this representation the full group
Γ is mapped into PGL(VK) where VK = Vk′ ⊗ K. This field extension may
not be finitely generated. Nevertheless, the absolute value on k′ extends to an
absolute value on K (see [18, XII, 4, Th. 4.1, p. 482]) and the projective space
P(VK) is still a metric space (although not compact in general) for the metric
introduced in Paragraph 3.1. Moreover, if [g] ∈ PGL(Vk′) is ε-contracting
on P(Vk′), it is cε-contracting on P(VK) for some constant c = c(k′, K) ≥ 1.
Similarly, if [g] ∈ PGLn(Vk′) is an (r, ε)-proximal transformation on P(Vk′) then
it is ( r

c , cε)-proximal on P(VK). Let ρ : Γ → PGL(VK) be this representation.
(The reason why we may not reduce to the case where K is local is that there
may not be a finitely generated dense subgroup in Γ.)

In order to avoid heavy notation we often denote by the same letter an
element from Γ, its image under π, or its image under ρ.

Then, continuing to follow the proof of Theorem 4.3 (now with Ω0 =
π(Δ)), we obtain a sequence (hε)ε in Ω2p

0 such that hε is ε-contracting under
the representation ρ. After taking a subsequence, if necessary, we can assume
that, as ε tends to 0, hε converges in the topology of G towards some point
α ∈ Γ (to verify that α can indeed be taken to belong to Γ, note that in the
statement of Proposition 4.1, after passing to an infinite subset of I if necessary,
one can find fixed fi’s in Γ independently of g ∈ I, then α will be the product
of all fi’s). Again, up to passing to a subsequence, we can assume that all the
hε’s have the same attracting point and repelling hyperplane. By Proposition
3.3 (i), we can then find f ∈ Ω0 such that hεfh−1

ε is Cε-very contracting, then

3Here the subscript ε stands for a sequence of positive numbers converging to 0.
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gε := αf−1α−1hεfh−1
ε is C ′ε-very contracting for some constant C ′ depending

on Ω0 and on α. However gε → 1 in G. Finally, it is easy to find some
other f ′ ∈ Ω0 such that the commutator zε := f ′gεf

′−1g−1
ε acts as a (r, C ′′ε)-

very proximal transformation, for some possibly bigger constant C ′′ and some
fixed r > 0. Renaming zε/C′′ to zε we obtain the sequence with all the desired
properties.

We are now going to construct a two-parameter sequence (βj,n)j,n≥1 of
elements in Γ acting on P(Vk′) by very proximal transformations in such a
way that for every j ≥ 1, all the (βj,n)n≥1’s belong to Γj and have the same
attracting points v±j and repelling hyperplanes H±

j (which may not, however,
be fixed by βj,n) and are thus (rj , εj,n)-very proximal with a better and better
contraction coefficient εj,n → 0 as n → +∞. In the construction, we will
make sure that for any sequence (nj), the elements (βj,nj

)j≥1 play ping-pong
all together on P(Vk′). The sequence (βj,n)j,n≥1 will be built out of an element
g and another auxiliary sequence (γn) that we are about to construct.

We take g to be some element of Δ acting as an (r, ε)-very proximal
transformation on the projective space P(Vk′) with (r, ε) as in Lemma 3.1. As
follows from Lemma 3.1, g (resp. g−1) fixes an attracting point vg (resp. vg−1)
and a repelling hyperplane Hg (resp. Hg−1) and the positive (resp. negative)
powers gn behave as ( r

C , (Cε)
n

3 )-very proximal transformations with respect to
these same attracting points and repelling hyperplanes. Replacing g by some
conjugate, if necessary, we may also assume that {vg, vg−1} ∩ (H+ ∪ H−) =
{v+, v−} ∩ (Hg ∪ Hg−1} = ∅.

In the forthcoming paragraphs, we construct the sequence (γn)n≥1 of el-
ements in Γ acting on P(Vk′) by very proximal transformations and such that
they play ping-pong all together on P(Vk′) with attracting points and repelling
hyperplanes converging to those of g and g−1.

Since π(Δ) is Zariski dense in H◦ and the representation ρ of H◦ is irre-
ducible, we may pick an element γ ∈ Δ such that

{ρ(γ)vg, ρ(γ)vg−1 , ρ(γ−1)vg, ρ(γ−1)vg−1} ∩
(
Hg ∪ Hg−1 ∪ {vg, vg−1}

)
= ∅.

Now consider the element δm1 = gm1γgm1 . When m1 is large enough,
δm1 acts on P(Vk′) under ρ as a very proximal transformation, whose repelling
neighborhoods lie inside the ε-repelling neighborhoods of g and g−1 and whose
attracting points lie inside the ε-attracting neighborhoods of g and g−1. We
can certainly assume that ρ(δm1) satisfies the conditions of Lemma 3.1. Hence
δm1 fixes some attracting points vδm1

, vδ−1
m1

which are close to, but distinct
from vg, vg−1 respectively. Similarly the repelling neighborhoods of δm1 , δ

−1
m1

lie inside the ε-repelling neighborhood of g, g−1, and the repelling hyperplanes
Hδm1

, Hδ−1
m1

are close to that of g. We claim that for all large enough m1

{vg, vg−1} ∩
(
Hδm1

∪ Hδ−1
m1

)
= ∅, and {vδm1

, vδ−1
m1

} ∩
(
Hg ∪ Hg−1

)
= ∅.(3)
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Let us explain, for example, why vg−1 /∈ Hδm1
and why vδm1

/∈ Hg−1 (the
other six conditions are similarly verified). Apply δm1 to the point vg−1 . As g

stabilizes vg−1 we see that

δm1(vg−1) = gm1γgm1(vg−1) = gm1γ(vg−1).

Now, by our assumption, γ(vg−1) /∈ Hg. Moreover when m1 is large, gm1 is
εm1-contracting with Hgm1 = Hg, vgm1 = vg and εm1 arbitrarily small. Hence,
we may assume that γ(vg−1) is outside the εm1 repelling neighborhood of gm1 .
Thus, δm1(vg−1) = gm1

(
γ(vg−1)

)
lie near vg which is far from Hδm1

. Since
Hδm1

is invariant under δm1 , we conclude that vg−1 /∈ Hδm1
.

To show that vδm1
/∈ Hg−1 we shall apply g−2m1 to vδm1

. If m1 is very large
then vδm1

is very close to vg, and hence also gm1(vδm1
) is very close to vg. As we

assume that γ takes vg outside Hg−1 , we get (by taking m1 sufficiently large)
that γ also takes gm1vδm1

outside Hg−1 . Taking m1 even larger if necessary we
get that g−m1 takes γgm1vδm1

to a small neighborhood of vg−1 . Hence

g−2m1vδm1
= g−2m1δm1vδm1

= g−m1γgm1vδm1

lies near vg−1 . Since Hg−1 is g−2m1 invariant and is far from vg−1 , we conclude
that vδm1

/∈ Hg−1 .
Now it follows from (3) and Lemma 3.1 that for every ε1 > 0 we can

take j1 sufficiently large so that gj1 and δj1
m1 are ε1-very proximal transforma-

tions, and the ε1-repelling neighborhoods of each of them are disjoint from the
ε1-attracting points of the other, and hence they form a ping-pong pair. Set
γ1 = δj1

m1 .
In a second step, we construct γ2 in an analogous way to the first step,

working with gj1 instead of g. In this way we would get γ2 which is
ε2-very proximal, and play ping-pong with gj1j2 . Moreover, by construction,
the ε2-repelling neighborhoods of γ2 lie inside the ε1-repelling neighborhoods of
gj1 , and the ε2-attracting neighborhoods of γ2 lie inside the ε1-attracting neigh-
borhoods of gj1 . Hence the three elements γ1, γ2 and gj1j2 form a ping-pong
3-tuple.

We continue recursively in this way and construct the desired sequence
(γn)n≥1. Finally, as the attracting points and repelling hyperplanes v±1

δmj
, H

±1
δmj

converge to those of g, replacing γj by γj+t for some fixed t ∈ N if necessary,
we may assume that

{vδmj
, vδ−1

mj
} ∩ (H+ ∪ H−) = {v+, v−} ∩ (Hδmj

, Hδ−1
mj

) = ∅.

We shall now construct the sequence (βj,n)j,n≥1. Consider the element
γk

j zεγ
−k
j . When ε is very small, this element, being a conjugate of zε, acts as a

very proximal transformation with attracting points v±j := γk
j v± and repelling

hyperplanes H±
j := γk

j H±. Note that as k tends to infinity, γk
j v± converges to
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vδmj
and γk

j H± converges to Hδ−1
mj

. We are going to define βj,n as γ
kj

j zεj,n
γ
−kj

j

for some kj ≥ 1. We choose kj so that γ
kj

j v± lies inside the attracting neigh-

borhood of γj and so that γ
kj

j H± lies inside the repelling neighborhood of γ−1
j ,

i.e. close to Hδ−1
mj

. Then we choose a sequence (εj,n)n≥1 tending rather fast

to zero, such that βj,n is very proximal with attracting points γ
mj

j v± and re-
pelling hyperplanes γk1

j H± and a better and better contraction coefficient as
n → +∞, and such that all the zεj,n

are close enough to 1 in G so that βj,n ∈ Γj .
We can make sure that the attracting neighborhoods of all (βj,n)n≥1’s lie in-
side the attracting neighborhood of γj and that the repelling neighborhoods
of the (βj,n)n≥1 are also inside the repelling neighborhood of γ−1

j . Hence the
two-parameter sequence (βj,n)j,n≥1 satisfies all our requirements.

We can now conclude. Since every Γj is mapped under the homomorphism
π to a set whose Zariski closure contains H◦, we can multiply xj on the left
and on the right by some elements of Γj so that, if we call this new element x′

j

then ρ(x′
j)v

+
j /∈ H+

j
and ρ(x′−1

j )v−j /∈ H−
j . Set then yj = βj,nj

x′
jβj,nj

for some
positive integer nj . Each yj belongs to the basic set Γ2

jxjΓ2
j ; hence the yj ’s are

dense in G.
Moreover, if we take nj large enough, it will behave on P(VK) like a

very proximal transformation whose attracting and repelling neighborhoods
are contained in those of βj,1 . Therefore, the yj ’s also form an infinite ping-
pong tuple. Hence the family (yj)j forms a free set.

7. Multiple fields, adelic versions and other topologies

In this section we prove Statements 1.4, 1.6, 1.7 and 1.5 from the intro-
duction.

Proof of Corollary 1.4. See the discussion at the end of Section 5.4. This
fairly general fact had been known earlier in some cases including the case of
connected real Lie groups. For connected Lie groups, a very short argument
can be given using analyticity and the Baire category theorem because the
existence of a free subgroup implies that the locus of vanishing of a given
nontrivial word in r letters has empty interior in Gr (see Kuranishi [17] for the
original reference and also [14] for a more recent reference).

Proof of Theorem 1.6. We may assume that k1 = R and ki, i > 1, are
non-Archimedean. Denote by G the closure of Γ, by GR the closure of its
projection to GLn(k1) and by Gd the closure of its projection to Πi>1GLn(ki).
Let G1(O) be the closure of the set of elements of Γ whose real coordinate lies
in G◦

R
while the other coordinates belong to the product of the first congruence

subgroups Πi>1GL1
n(Oki

). This is an open subgroup of G and Γ∩G1(O) does
not contain an open solvable subgroup. We shall distinguish two cases:
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(1) G◦
R

is solvable (including the case where GR is trivial).

(2) G◦
R

is not solvable.

In the first case, for one of the non-Archimedean field say ki, we can find
a homomorphism ρ of Γ into a ki-algebraic group H, whose Zariski-connected
component H◦ is semi-simple, by first factoring through GLn(ki) and then
applying Lemma 4.5. Then the Zariski closure of ρ(Γ ∩ G1(O)) will contain
H◦(ki), and, as can be seen by taking successive commutators, so will the
Zariski closure of ρ(A) where A is the subgroup of Γ ∩ G1(O) consisting of
elements whose real coordinate is trivial. Now by Lemma 5.6, we can pick
finitely many elements x1, . . . , xt ∈ A such that ρ(〈x1, . . . , xt〉) is Zariski dense
in H◦(ki). If Γ is finitely generated, the end of the argument follows verbatim
as the end of the proof of Theorem 1.3 in the positive characteristic case (see
above §5.3). And if Γ is not finitely generated we continue the argument as
in Section 6. Note that Δ := 〈x1, . . . , xt〉 is a topologically finitely generated
profinite group and that its Frattini subgroup is the intersection of Δ with
the product of the inverse images of the Frattini subgroups of the GL1

n(Okj
)’s,

hence it is also open in Δ.
In the second case, let H ≤ G◦

R
be the topologically perfect subgroup

introduced in the proof of Theorem 1.3 in the Archimedean case (H is the
intersection of all closed commutator subgroups of G◦

R
). Then the projection

of Γ ∩ G1(O) to GR intersects H densely, and if the Lie algebra Lie(H) is
generated by t elements, we can find x1, . . . , xt ∈ Γ∩G1(O) whose projections
to GR lie in H and generate H topologically. It is then easy to see, by taking
subgroups of arbitrarily large index, that H ⊂ 〈x1, . . . , xt〉 (where H = H×{1}
is viewed as a subgroup of G). We now find a homomorphism ρ of Γ into an
R-algebraic group H, whose Zariski-connected component H◦ is semi-simple, by
first factoring through GR. Denote by Δ the closure of the projection to Gd of
〈x1, . . . , xt〉. It is a topologically finitely generated profinite group and again its
Frattini subgroup is open in Δ. Moreover, we have 〈x1, . . . , xt〉 = H ·Δ. With
this notation, we can proceed, arguing verbatim as in the proof of Theorem 1.3
in the positive characteristic case when Γ is assumed finitely generated, and as
in Section 6 when Γ is infinitely generated.

Proof of Proposition 1.7 from the introduction. Let G = G∞Gf be the
restricted topological product corresponding to VK \ {v0} where G∞ (resp.
Gf ) corresponds to the product of the Archimedean (resp. non-Archimedean)
places. By the strong approximation theorem (see [23, Th. 7.12]) G(K) is dense
in G. We choose one non-Archimedean place v and proceed as in the proof
of Theorem 1.3 in the infinite generated case in the last section by playing
ping-pong in a representation of G(Kv). First, we pick two elements in G(K)
generating a free subgroup whose projections to G∞ generate a dense subgroup
(see Remark 5.9), while their projections to Gf lie inside the profinite group
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(corresponding to the closure of G(OK)). Note that the closure of the group
generated by these two elements contains G∞. Then continue as in the proof
of Theorem 1.3 in the infinite generated case, to add generators of a free group
of rank ℵ0 whose projections to Gf exhaust a countable base for the topology;
i.e., there is one generator in each basic set. The closure of the (infinitely
generated) free group obtained in this way contains G∞ and its projection to
Gf is dense. Hence it is a dense, free subgroup in G.

Proof of Theorem 1.5. Let G◦ denote the connected component of the
identity in G. Then G/G◦ is a totally disconnected locally compact group,
and hence contains an open compact subgroup P . We may of course replace G

by P ·G◦ and Γ by Γ∩P ·G◦, and assume that G is a compact extension of a
connected group. By the structure theory of locally compact groups (see [22,
Th. 4.6]) there is a compact normal subgroup K � G such that the quotient
L = G/K is a real Lie group. Let f : Γ → L be the restriction of the quotient
map. If L does not contain an open solvable subgroup, then by Theorem 1.3,
f(Γ) contains a free subgroup which is dense in L. We can pick two elements
in this free subgroup so that they generate a nondiscrete subgroup F2. The
pre-image in G of this F2 is a nondiscrete (since K is compact) free subgroup
of Γ, and so we are in case (i). On the other hand, if L contains an open
solvable subgroup, then G is amenable and we have (ii).

To prove the last part of the Theorem, we now assume that Γ is linear
and finitely generated. Up to changing G by some open subgroup of G, we can
assume that L itself is solvable. Now if Γ is virtually solvable, then G contains
an open solvable subgroup of finite index, so we are in case (ii)′. If, on the
other hand, Γ is not virtually solvable, then by Tits’ alternative (applicable
because Γ is linear and finitely generated) it contains a non-commutative free
subgroup F. However, since L is solvable, F ∩ker(f) is also a non-commutative
free subgroup. Hence it contains a free subgroup of rank 2, which cannot be
discrete because it lies in the compact subgroup K. So we are in case (i).

Remark 7.1. If Γ is not assumed to be linear, assertion (ii) just cannot
be replaced by (ii)′. As A. Mann and Y. de Cornulier [19] pointed out to us,
there are examples of finitely generated, residually finite groups Γ which are
not virtually solvable, although they satisfy a law (i.e. some nontrivial word
in Fk kills all of Γk). Residual finiteness ensures that Γ embeds densely inside
its profinite completion G = Γ̂. However, the existence of a law shows that G

contains no non-commutative free subgroups.

8. Applications to profinite groups

We derive two conclusions in the theory of profinite groups. The following
was conjectured by Dixon, Pyber, Seress and Shalev (see [12]):
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Theorem 8.1. Let Γ be a finitely generated linear group over some field.
Assume that Γ is not virtually solvable. Then, for any integer r ≥ d(Γ), its
profinite completion Γ̂ contains a dense free subgroup of rank r.

Proof. Let R be the ring generated by the matrix entries of the elements
of Γ. It follows from the Noether normalization theorem that R can be embed-
ded in the valuation ring O of some local field k. Such an embedding induces an
embedding of Γ into the profinite group GLn(O). By the universal property of
Γ̂ this embedding induces a surjective map Γ̂ → Γ ≤ GLn(O) onto the closure
of the image of Γ in GLn(k). Since Γ is not virtually solvable, Γ contains no
open solvable subgroup, and hence by Theorem 1.3 (see also Proposition 5.3),
Γ contains a dense Fr (in fact we can find such an Fr inside Γ). By Gaschütz’s
lemma (see [28, Prop. 2.5.4]) it is possible to lift the r generators of this Fr to
r elements in Γ̂ generating a dense subgroup in Γ̂. These lifts, thus, generate
a dense Fr in Γ̂.

Let now H be a subgroup of a group G. Following [33] we define the
notion of coset identity as follows:

Definition 8.2. A group G satisfies a coset identity with respect to H if
there exist an integer l, a nontrivial reduced word W on l letters and l fixed
elements g1, . . . , gl, such that the identity W (g1h1, . . . , glhl) = 1 holds for any
h1, . . . , hl ∈ H.

It was conjectured by Shalev [33] that if there is a coset identity with
respect to some open subgroup in a pro-p group G, then there is also an
identity in G. The following immediate consequence of Corollary 4.4 settles
this conjecture in the case where G is a p-adic analytic pro-p group, and in
fact, shows that a stronger statement is true in this case:

Theorem 8.3. Let G be a p-adic analytic pro-p group. If G satisfies a
coset identity with respect to some open subgroup H, then G is solvable.

Proof. If G is not solvable then it is not virtually solvable, since any
finite p-group is nilpotent. Since G, being p-adic analytic, contains a finitely
generated dense subgroup, Corollary 4.4 allows us to choose free generators of
a free group in each coset giH.

In fact the analogous statement holds also for finitely generated linear
groups:

Theorem 8.4. Let Γ be a finitely generated linear group over any field.
If Γ satisfies a coset identity with respect to some finite index subgroup Δ, then
Γ is virtually solvable.
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9. Applications to amenable actions

We refer the reader to [38, Ch. 4] for an introduction and background on
amenable actions.

For convenience, we introduce the following definition:

Definition 9.1. We shall say that a topological group G has property (OS)
if it contains an open solvable subgroup.

Our main result, Theorem 1.3, states that if Γ is a (finitely generated)
linear group over a local field k endowed with the topology induced by k,
then either Γ has property (OS) or Γ contains a dense (finitely generated)
free subgroup. In the previous section we proved the analogous statement
for profinite completions of linear groups over an arbitrary field. For real Lie
groups, property (OS) is equivalent to “the identity component is solvable”.

It was conjectured by Connes and Sullivan and proved subsequently by
Zimmer [37] that if Γ is a countable subgroup of a real Lie group G, then the
action of Γ on G by left multiplications is amenable if and only if Γ has property
(OS). Note also that if Γ acts amenably on G, then it also acts amenably on
G/P whenever P ≤ G is closed amenable subgroup. The harder part of the
equivalence is to show that if Γ acts amenably then it has (OS). As noted by
Carrière and Ghys [10], the Connes-Sullivan conjecture is a straightforward
consequence of Theorem 1.3. Let us reexplain this.

Claim. Let G be a locally compact group and Γ a countable subgroup. If
Γ contains a nondiscrete free subgroup, then the Γ-action by left multiplication
on G is nonamenable.

Proof. By contradiction, if Γ were acting amenably, then any subgroup
would do so too; hence we can assume that Γ itself is a nondiscrete free group
〈x, y〉 . By Proposition 4.3.9 in [38], it follows that there exists a Γ-equivariant
Borel map g �→ mg from G to the space of probability measures on the bound-
ary ∂Γ. Let X (resp. Y ) be the set of infinite words starting with a nontriv-
ial power of x (resp. y). Let (ξn) (resp. θn) be a sequence of elements of Γ
tending to the identity element in G and consisting of reduced words start-
ing with y (resp. y−1). The function g �→ mg(X) is measurable, and up to
passing to a subsequence if necessary, we obtain that for almost all g ∈ G,
mgξn

(X) and mgθn
(X) converge to mg(X). However, for almost every g ∈ G,

mgξn
(X) = mg(ξnX) and mgθn

(X) = mg(θnX). Moreover ξnX and θnX are
disjoint subsets of Y . Hence, for almost every g ∈ G, 2mg(X) ≤ mg(Y ).
Reversing the roles of X and Y we get a contradiction.

Hence Theorem 1.3 implies the following general result:
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Theorem 9.2. Let k be a local field, G a closed subgroup of GLn(k), P

a closed amenable subgroup of G and Γ ≤ G a countable subgroup. Then the
following are equivalent :

(1) Γ has property (OS).

(2) The action of Γ by left multiplication on the homogeneous space G/P is
amenable.

(3) Γ contains no nondiscrete free subgroup.

A theorem of Auslander (see [27, 8.24]) states that if G is a real Lie
group, R a closed normal solvable subgroup, and Γ a subgroup with property
(OS), then the image of Γ in G/R also has property (OS). Applying this to
the situation where G is the group of Euclidean motions, R the subgroup of
translations, and Γ ≤ G a torsion free lattice, one obtains as a corollary the
classical theorem of Bieberbach that any compact Euclidean manifold is finitely
covered by a torus.

Following Zimmer ([37]), we observe that Auslander’s theorem follows
from the Connes-Sullivan conjecture (i.e. Zimmer’s theorem). To see this,
note that G (hence also Γ) being second countable, we can always replace Γ
by a countable dense subgroup of it. Then, if Γ has property (OS) it must
act amenably on G. As R is closed and amenable, this implies that ΓR/R

acts amenably on G/R (see [38, Ch. 4]), which in turn implies, by Zimmer’s
theorem, that ΓR/R has property (OS).

A discrete linear group is amenable if and only if it is virtually solvable.
It follows that for a countable linear group over some topological field, being
(OS) is the same as containing an open amenable subgroup.

Definition 9.3. We shall say that a countable topological group Γ has
property (OA) if it contains an open subgroup which is amenable in the abstract
sense (i.e. amenable with respect to the discrete topology).

The following is a generalization of Zimmer’s theorem:

Theorem 9.4. Let G be a locally compact group, and let Γ ≤ G be a
countable subgroup. Then the action of Γ on G by left multiplications is
amenable if and only if Γ has property (OA).

Proof. The proof makes use of the structure theory for locally compact
groups (see [22]). We shall reduce the general case to the already known case
of real Lie groups.

The “if” side is clear.
Assume that Γ acts amenably. Let G0 be the identity connected compo-

nent of G. Then G0 is normal in G and F = G/G0 is a totally disconnected



466 E. BREUILLARD AND T. GELANDER

locally compact group, and as such, has an open profinite subgroup. Since Γ
acts amenably, its intersection with an open subgroup acts amenably on the
open subgroup. Therefore we can assume that G/G0 itself is profinite. By [22,
Th. 4.6], there is a compact normal subgroup K in G such that the quotient
G/K is a Lie group. Up to passing to an open subgroup of G again, we can
assume that G/K is connected. Since Γ ∩ K acts amenably on K and K is
amenable, Γ∩K is amenable (see [38, Ch. 4]). Moreover, as K is amenable, Γ,
and hence also ΓK/K, acts amenably on the connected Lie group G/K. We
conclude that ΓK/K has property (OS) and hence Γ has property (OA).

As an immediate corollary we obtain the following generalization of Aus-
lander’s theorem:

Theorem 9.5. Let G be locally compact group, R ≤ G a closed normal
amenable subgroup, and Γ ≤ G a subgroup with property (OA). Then the image
of Γ in G/R has also (OA).

Remark 9.6. The original statement of Auslander follows easily from 9.5.

As a consequence of Theorem 9.5 we derive a structural result for lattices
in locally compact groups. Let G be a locally compact group. Then G admits
a unique maximal closed normal amenable subgroup P , and G/P is isomorphic
(up to finite index) to a direct product

G/P ∼= Gd × Gc,

of a totally disconnected group Gd with a connected center-free semisimple Lie
group without compact factors Gc (see [6, Th. 3.3.3]). Let Γ ≤ G be a lattice,
then we have:

Propostition 9.7 (This result was proved in a conversation with Marc
Burger). The projection of Γ to the connected factor Gc lies between a lattice
in Gc and its commensurator.

Proof. Let π, πd, πc denote the quotient maps from G to G/P, Gd, Gc re-
spectively. Since Γ is discrete, and hence has property (OA) it follows from
Theorem 9.5 that Δ = π(Γ) also has (OA). Let A ≤ Gd be an open com-
pact subgroup, and let Δ0 = Δ ∩ (A × Gc). Then Δ0 has (OA) being open
in Δ. Clearly, Δ commensurates Δ0. Let Σ be the projection of Δ0 to Gc.
By Theorem 9.5, Σ has (OA), and hence also Σ has (OA); i.e., the identity
connected component Σ0 is solvable. However, since the homogeneous space
Gc/Σ clearly carries a finite Gc-invariant Borel measure, it follows from Borel’s
density theorem that Σ0 is normal in Gc. Since Σ0 is also solvable and Gc is
semisimple, it follows that Σ is discrete. Therefore Σ = Σ and Σ is a lattice in
Gc, and Σ ≤ πc(Γ) ≤ CommGc

(Σ).
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10. The growth of leaves in Riemannian foliations

Let M be a compact manifold. A foliation F on M is said to be
Riemannian if one can find a Riemannian metric on M for which the leaves
of F are locally equidistant. An arbitrary Riemannian metric on M induces a
corresponding Riemannian metric on each leaf of F . Then one can ask about
the volume growth of large balls lying inside a given leaf. Note that, since M

is compact, two different choices of a Riemannian metric on M will lead to
coarsely equivalent asymptotic behaviors for the volume of large metric balls
in a given leaf. Hence one can speak about the type of growth of a leaf. The
main result of this section is the following theorem which answers a question
of Carrière [9] (see also [15]):

Theorem 10.1. Let F be a Riemannian foliation on a compact mani-
fold M . Either there is an integer d ≥ 1 such that all leaves of F have polyno-
mial growth of degree less than or equal to d, or there is a Gδ-dense subset of
leaves which have exponential growth.

Molino’s theory assigns to every Riemannian foliation F a finite dimen-
sional Lie algebra g, called the structural Lie algebra of F . In Theorem 10.1,
the case of polynomial growth holds when g is nilpotent while the other case
holds whenever g is not nilpotent. In fact, in the second case, we show that
the holonomy cover of an arbitrary leaf has exponential volume growth. The
result then follows from the fact that a generic leaf has no holonomy (see [7]).
For background and definitions about Riemannian foliations; see [7], [9], [15]
and [21]. The example below shows that it is possible that some leaves are
compact while generic leaves have exponential growth.

Example 10.2. We give here an example of a Riemannian foliation on a
compact manifold which has two compact leaves although every other leaf has
exponential volume growth. This example was shown to us by E. Ghys. Let
Γ be the fundamental group of a surface of genus g ≥ 2 and π : Γ → SO(3)
be a faithful representation. Such a map can be obtained, for instance, by
realizing Γ as a torsion free co-compact arithmetic lattice in SO(2, 1) coming
from a quadratic form over a number field which has signature (2, 1) over R

and all of its nontrivial Galois conjugates are R-anisotropic. The group Γ acts
freely and co-compactly on the hyperbolic plane H2 by deck transformations
and it acts via the homomorphism π by rotations on the 3-sphere S3 viewed as
SO(4)/SO(3). We now suspend π to the quotient manifold M = (H2 × S3)/Γ
and obtain a Riemannian foliation on M whose leaves are projections to M

of each (H2, y), y ∈ S3. There are three types of leaves. The group SO(3)
has two fixed points on S3, the north and south poles, each giving rise to a
compact leaf H2/Γ in M . Each γ ∈ Γ \ {1} stabilizes a circle in S3 and the
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leaf through each point of this circle other than the poles will be a hyperbolic
cylinder H2/〈γ〉. Any other point in S3 has a trivial stabilizer in Γ and gives
rise to a leaf isometric to H2. These are the generic holonomy-free leaves.
Apart from the two compact leaves all others have exponential volume growth.

Following Carrière [9], [11] we define the local growth of a finitely generated
subgroup Γ in a given connected real Lie group G in the following way. Fix
a left-invariant Riemannian metric on G and consider the open ball BR of
radius R > 0 around the identity. Suppose that S is a finite symmetric set
of generators of Γ. Let B(n) be the ball of radius n in Γ for the word metric
determined by S, and let BR(n) be the subset of B(n) consisting of those
elements γ ∈ B(n) which can be written as a product γ = γ1 · . . . ·γk, k ≤ n, of
generators γi ∈ S in such a way that whenever 1 ≤ i ≤ k the element γ1 · . . . ·γi

belongs to BR. In this situation, we say that γ can be written as a word
with letters in S which stays all its life in BR. Let fR,S(n) = card(BR(n)).
As is easy to check, if S1 and S2 are two symmetric sets of generators of Γ
and R is sufficiently large, then there exist integers N0, N1 > 0 such that
fR,S1(n) ≤ fR+N0,S2(N1n).

Definition 10.3. The local growth of Γ in G, with respect to a set S of
generators and a ball BR of radius R, is the growth type of fR,S(n).

The growth type of fR,S(n) is polynomial if there are positive constants
A and B such that fR,S(n) ≤ AnB and is exponential if there are constants
C > 0 and ρ > 1 such that fR,S(n) ≥ Cρn. It can be seen that Γ is discrete in
G if and only if the local growth is bounded for any S and R.

According to Molino’s theory (see [15], [21]), every Riemannian foliation
F on a compact manifold M lifts to a foliation F ′ of the same dimension on the
bundle M ′ of transverse orthonormal frames over M . In general, every leaf of
F ′ is a Riemannian cover over its projection in F , but when the leaf below in F
has no holonomy, then it is actually isometric to its lift. Consideration of such a
lifted foliation has a remarkable advantage: the new foliation F ′ is transversely
parallelizable. This means that one can find q =codim(F ′) vector fields on M ′

whose transverse parts are linearly independent at every point of M ′. It is easy
to see that, for such a foliation, the group of automorphisms of F ′ (i.e. those
diffeomorphisms of M ′ which send leaves to leaves) acts transitively on M ′ and
in particular all leaves are diffeomorphic to one another. Moreover, one can
show that the leaves’ closures are compact submanifolds that form a simple
foliation defined by a locally trivial fibration M ′ → W for some manifold W.

Hence one can reduce the situation to one leaf closure, say N ′.
When restricting the foliation F ′ to N ′ we have a foliation with dense

leaves which remains transversely parallelizable. In this situation, we can con-
sider the Lie subalgebra t of vector fields on N ′ that are tangent to the leaves
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and we define the Lie algebra g to be the quotient Norm(t)/t, where Norm(t) is
the normalizer of t within the Lie algebra of all vector fields on N ′. Changing
N ′ into another leaf closure would lead to an isomorphic Lie algebra, because
leaves are conjugate by automorphisms of the foliation. The Lie algebra g

is called the structural Lie algebra of the Riemannian foliation F . The fact
that leaves are dense in N ′ shows that g is finite dimensional (the evaluation
map X → Xx, from vector fields in g to vectors in the quotient tangent space
TxN ′/TxL where L is the leaf at x ∈ N ′, is a linear isomorphism).

The one-parameter groups of diffeomorphisms associated to elements of
Norm(t) are automorphisms of the foliation and the elements of g give rise
to local diffeomorphisms of the local transverse manifolds. If G denotes the
simply connected Lie group corresponding to g, we see that one can find an
open cover (Ui)i∈I of N ′ such that the foliation F ′ is given locally on each Ui by
the fibers of local submersions fi : Ui → G in such a way that each transition
map hi,j : fi(Ui ∩ Uj) → fj(Ui ∩ Uj) coincides locally with a translation by an
element of G. In this situation, we say that the foliation is a G-Lie foliation.
Thus the above discussion allows us to reduce Theorem 10.1 to Lie foliations
with dense leaves.

Given a base point x0 in M we obtain a natural map D : (M̃, x̃0) → G

from the universal cover of M into G (the developing map), together with a
natural homomorphism ρ of the fundamental group of M into G such that
D is ρ-equivariant. The image of ρ is called the holonomy group of the Lie
foliation and is a dense subgroup Γ in G when the leaves are dense. As Carrière
pointed out in [9], the volume growth of any leaf of a G-Lie foliation is coarsely
equivalent to the local growth of Γ in G. Hence Theorem 10.1 is a consequence
of the following:

Theorem 10.4. Let Γ be a finitely generated dense subgroup of a con-
nected real Lie group G. If G is nilpotent then Γ has polynomial local growth
(for any choice of S and R). If G is not nilpotent, then Γ has exponential local
growth (for any choice of S and any R big enough).

The rest of this section is therefore devoted to the proof of Theorem 10.4.
As it turns out, Theorem 10.4 is an easy corollary of Theorem 1.3 in the case
when G is not solvable. When G is solvable we can adapt the argument as
shown below. The main proposition is the following:

Proposition 10.5. Let G be a non-nilpotent connected real Lie group
and Γ a finitely generated dense subgroup. For any finite set S = {s1, . . . , sk}
of generators of Γ, and any ε > 0, one can find perturbations ti ∈ Γ of the
si, i = 1, . . . , k, such that ti ∈ siBε and the ti’s are free generators of a free
semi-group on k generators.

Before going through the proof of this proposition, let us explain how we
deduce from it a proof of Theorem 10.4.
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Proof of Theorem 10.4. Suppose that

Σ := {g1, . . . , gN , h1, . . . , hN}
is a subset of BR consisting of pairwise distinct elements such that both
{g1, . . . , gN} and {h1, . . . , hN} are maximal R/2-discrete subsets of BR (that
is d(gi, gj), d(hi, hj) ≥ R/2 if i �= j). Then

BR ⊂
⋃

1≤i,j≤N

(giBR/2 ∩ hjBR/2).(4)

Lemma 10.6. Let G be a connected real Lie group endowed with a left-
invariant Riemannian metric. Let BR be the open ball of radius R centered
at the identity. Let Σ = {s1, . . . , sk} be a finite subset of pairwise distinct
elements of BR such that

BR ⊂
⋃
i<j

(s−1
i BR/2 ∩ s−1

j BR/2).(5)

Assume also that the elements of Σ are free generators of a free semi-group.
Then any finitely generated subgroup of G containing Σ has exponential local
growth.

Proof. Let S′(n) be the subset of the sphere of radius n in the free semi-
group for the word metric determined by the generating set Σ consisting of
elements which stay all their life in BR. Let w ∈ S′(n). By (5) there are
indices i �= j such that w ∈ s−1

i BR/2 and w ∈ s−1
j BR/2. This implies that siw

and sjw belong to S′(n + 1). All elements obtained in this way are pairwise
distinct, hence card(S′(n + 1)) ≥ 2 · card(S′(n)). This yields card(S′(n)) ≥ 2n

for all n ≥ 0.

Now observe that any small enough perturbation of the gi’s and hi’s in Σ
in BR satisfying (4) still satisfies (4). Hence we can apply Lemma 10.6, and
exponential local growth for dense subgroups in non-nilpotent connected real
Lie groups follows from Proposition 10.5.

Proof of Proposition 10.5. When G is not solvable, we already know this
fact from the proof of Theorem 1.3 for connected Lie groups (see Paragraph
5.1). In that case, we showed that we could even take the ti’s to generate a
free subgroup. Thus we may assume that G is solvable. By Ado’s theorem it is
locally isomorphic to a subgroup of GLn(C), and since it is enough to establish
the proposition for an arbitrary quotient of G, we may assume that G itself
lies in GLn(C). Let G be the Zariski closure of G in GLn(C). It is a Zariski
connected solvable algebraic group over C which is not nilpotent. We need the
following lemma for k = C.

Lemma 10.7. Let G be a solvable connected algebraic k-group which is
not nilpotent. Suppose it is k-split, then there is an algebraic k-morphism from
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G(k) to GL2(k) whose image is the full affine group

A(k) =
{(

a b

0 1

)
a, b ∈ k

}
.(6)

Proof. We proceed by induction on dim G. We can write G := G(k) = T ·N
where T = T(k) is a split torus and N = N(k) is the unipotent radical of G

(see [3, Ch. III]). Let Z be the center of N . It is a nontrivial normal algebraic
subgroup of G. If T acts trivially on Z by conjugation then G/Z is again
non-nilpotent k-split solvable k-group and we can use induction. Thus we
may assume that T acts nontrivially on Z by conjugation. As T is split over
k, its action on Z also splits, and there is a nontrivial algebraic multiplicative
character χ : T → Gm(k) defined over k and a 1-dimensional subgroup Zχ of Z

such that, identifying Zχ with the additive group Ga(k), we have tzt−1 = χ(t)z
for all t ∈ T and z ∈ Zχ. It follows that Zχ is a normal subgroup in G, and
we can assume that T acts trivially on N/Zχ, for otherwise we could apply the
induction assumption on G/Zχ. For all γ ∈ T , this yields a homomorphism
πγ : N → Zχ given by the formula πγ(n) = γnγ−1n−1. Since T and N do
not commute, πγ is nontrivial for at least one γ ∈ T . Fix such a γ and let N

act on Zχ by left multiplication by πγ(n). Let T act on Zχ by conjugation.
One can verify that this yields an algebraic action of the whole of G on Zχ.
Identifying Zχ with the additive group Ga(k), we have that N acts unipotently
and nontrivially and T acts via the nontrivial character χ. We have found a
k-algebraic affine action of G on the line, and hence a k-map G → A. Clearly
this map is onto.

By Lemma 10.7, G surjects onto the affine group of the complex line,
which we denote by A = A(C). The image of G is a real connected subgroup
of A which is Zariski dense. Hence it is enough to prove Proposition 10.5
for Zariski dense connected subgroups of A. We need the following technical
lemma:

Lemma 10.8. Let Γ be a nondiscrete finitely generated Zariski dense sub-
group of A(C) with connected closure. Let R ⊂ C be the subring generated by
the matrix entries of elements in Γ. Then there exists a sequence (γn)n of points
of Γ, together with a ring embedding σ : R ↪→ k into another local field k, such
that γn = (an, bn) → (1, 0) in A(C) and σ(γn) =

(
σ(an), σ(bn)

)
→ (0, σ(β)) in

the topology of k for some number β in the field of fractions of R.

Proof. Let gn = (an, bn) be a sequence of distinct elements of Γ converging
to the identity in A(C) and such that |an|C ≤ 1 and an �= 1 for all integers n.
From Lemma 2.1 one can find a ring embedding σ : R ↪→ k for some local field
k such that, up to passing to a subsequence of gn’s, we have σ(an) → 0 in k.
We can assume |σ(an)|k < 1 for all n. Now let ξ = (a, b) := g0 and consider
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the element

ξmgnξ−m = (an,
1 − am

1 − a
b(1 − an) + ambn).

Since |a|C ≤ 1, the second component remains ≤ 2
|1−a|C |b|C|1 − an|C + |bn|C

for all m, and tends to 0 in C when n → ∞ uniformly in m. Applying the
isomorphism σ, we have:

σ(ξmgnξ−m) =
(
σ(an),

1 − σ(a)m

1 − σ(a)
σ(b)(1 − σ(an)) + σ(a)mσ(bn)

)
.(7)

Since |σ(a)|k < 1, for any given n, choosing m large, we can make |σ(a)mσ(bn)|k
arbitrarily small. Hence for some sequence mn → +∞ the second component
in (7) tends to σ(β) where β := b

1−a as n tends to +∞.

We shall now complete the proof of Proposition 10.5. Note that if k is
some local field and γ = (a0, b0) ∈ A(k) with |a0|k < 1, then γ acts on the
affine line k with a fixed point x0 = b0/(1 − a0) and it contracts the disc
of radius R around x0 to the disc of radius |a0|k · R. Therefore, if we are
given t distinct points b1, . . . , bt in k, there exists ε > 0 such that for all
a1, . . . , at ∈ k with |ai|k ≤ ε, i = 1, . . . , t, the elements (ai, bi)’s play ping-
pong on the affine line, hence are free generators of a free semi-group. The
group G = Γ is a connected and Zariski dense subgroup of A(C); it follows
that we can find arbitrary small perturbations s̃i of the si’s within Γ such
that the a(s̃i)β + b(s̃i)’s are pairwise distinct complex numbers. If (γn)n is
the sequence obtained in the last lemma, then for some n large enough the
points ti := s̃iγn will be small perturbations of the si’s (i.e. belong to siBε)
and the σ(ti) =

(
σ(a(s̃i)an), σ(a(s̃i)bn)+σ(b(s̃i))

)
will play ping-pong on k for

the reason just explained (the σ(a(s̃i))σ(β) + σ(b(s̃i))’s are all distinct).
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