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Stability of mixing and rapid mixing
for hyperbolic flows

By Michael Field, Ian Melbourne, and Andrei Török*

Abstract

We obtain general results on the stability of mixing and rapid mixing
(superpolynomial decay of correlations) for hyperbolic flows. Amongst Cr

Axiom A flows, r ≥ 2, we show that there is a C2-open, Cr-dense set of flows
for which each nontrivial hyperbolic basic set is rapid mixing. This is the first
general result on the stability of rapid mixing (or even mixing) for Axiom A
flows that holds in a Cr, as opposed to Hölder, topology.

1. Introduction

Let M be a compact connected differential manifold and let Φt be a C1

flow on M . A Φt-invariant set Λ is (topologically) mixing if for any nonempty
open sets U, V ⊂ Λ there exists T > 0 such that Φt(U) ∩ V �= ∅ for all t > T .
The flow is stably mixing if all nearby flows (in an appropriate topology) are
mixing.

In this work we are interested in the Cr-stability of mixing, and of the
rate of mixing, for Axiom A and Anosov flows.

There is a quite extensive literature on mixing and rates of mixing for
certain classes of Anosov flows. In particular, Anosov [1] showed that geodesic
flows for negatively curved compact Riemannian manifolds are always mixing.
Anosov also proved the Anosov alternative: a transitive volume-preserving
Anosov flow is either mixing or the suspension of an Anosov diffeomorphism
by a constant roof function. Plante [25] generalized the Anosov alternative to
general equilibrium states and proved that codimension-one Anosov flows are
mixing if and only if they are stably mixing (for this class, mixing is equivalent
to the joint nonintegrability of the stable and unstable foliations which is a
C1-open condition). Anosov’s results on geodesic flows were generalized to
contact flows by Katok and Burns [19]. More recently, Chernov [10], Dolgopyat
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[14] and Liverani [21] have obtained results on exponential rates of mixing for
restricted classes of Anosov flows. Bowen [6] showed that if a mixing Anosov
flow is the suspension of an Anosov diffeomorphism of an infranilmanifold then
it is stably mixing. However, the question of the existence of mixing but not
stably mixing Anosov flows is still open. As far as the authors are aware, there
are no known examples of Anosov flows that are stably exponentially mixing.

We turn now to Axiom A flows. Let Ar(M) denote the set of Cr flows
(1 ≤ r ≤ ∞) on M satisfying Axiom A and the no cycle property [31], [28].
The nonwandering set Ω of such a flow admits the spectral decomposition Ω =
Λ1 ∪ · · · ∪ Λk, where the Λi are disjoint closed topologically transitive locally
maximal hyperbolic sets. The sets Λi are called (hyperbolic) basic sets. A
basic set is nontrivial if it is neither an equilibrium nor a periodic solution.
Bowen [4], [6] proved that nontrivial basic sets are generically mixing and gave
an important characterization of mixing.

Theorem 1.1 (Bowen, 1972, 1976). (1) For 1 ≤ r ≤ ∞, there is a resid-
ual subset of flows in Ar(M) in the Cr topology for which each nontrivial basic
set is mixing.

(2) A flow Φt ∈ Ar(M) is not mixing on a basic set Λ if and only if there
exists c > 0 such that every periodic orbit in Λ has period which is an integer
multiple of c.

Remark 1.2. If Λ is a basic set for an Axiom A flow, then a consequence
of the work of Sinai, Ruelle and Bowen in the 1970’s is that the following topo-
logical and measure-theoretic notions of mixing are equivalent: (a) topological
mixing, (b) measure-theoretic weak mixing, and (c) measure-theoretic mixing
(for (b,c) it is assumed that the measure is an equilibrium state corresponding
to a Hölder continuous potential). Moreover, such flows are Bernoulli. (See [7]
and references therein.) In this paper, mixing will refer to any and all of these
properties.

For general Axiom A flows it is well-known that a mixing flow need not
be stably mixing. Hence, the best one can hope for is to show that Ar(M)
contains an open and dense set of mixing flows. Our first main result shows
that this is true for r ≥ 2.

Theorem 1.3. (a) Suppose 2 ≤ r ≤ ∞. There is a C2-open, Cr-dense
subset of flows in Ar(M) for which each nontrivial basic set is mixing.

(b) Suppose 1 ≤ r ≤ ∞. There is a C1-open, Cr-dense subset of flows in
Ar(M) for which each nontrivial attracting basic set is mixing.

Remark 1.4. Rather little hyperbolicity is required for our methods to
apply. It is enough that (a) Λ is a locally maximal transitive set, (b) Λ contains
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a transverse homoclinic point, and (c) there is sufficient (Livšic) regularity of
solutions of cohomology equations for Theorem 1.1(2) to be valid.

In order to quantify rates of mixing, we need to introduce correlation
functions. Suppose then that Λ is a basic set for an Axiom A flow Φt and let
μ be an equilibrium state for a Hölder potential [7]. Given A, B ∈ L2(Λ, μ),
we define the correlation function

ρA,B(t) =
∫

Λ
A ◦ Φt B dμ −

∫
Λ

A dμ

∫
Λ

B dμ.

The flow Φt is mixing if and only if ρA,B(t) → 0 as t → ∞ for all A, B ∈
L2(Λ, μ). Bowen and Ruelle [7] asked whether ρA,B(t) decays at an expo-
nential rate when A, B are restrictions of smooth functions. (For Axiom A
diffeomorphisms, mixing hyperbolic basic sets automatically have exponential
decay of correlations for Hölder observations.) Subsequently, Ruelle [30] found
examples of mixing Axiom A flows which did not mix exponentially. Moreover,
Pollicott [26] showed that the decay rates for mixing basic sets could be arbi-
trarily slow. On the other hand, exponential mixing is proved for the afore-
mentioned restricted classes of Anosov flows and also for certain uniformly
hyperbolic attractors with one-dimensional unstable manifolds (Pollicott [27]).
The authors are unaware of any other examples of smooth exponentially mixing
Axiom A flows.

A weaker notion of decay is superpolynomial decay (called rapid mixing
for the remainder of this paper) where for any n > 0, there is a constant C ≥ 1
such that

|ρA,B(t)| ≤ C‖A‖ ‖B‖t−n, t > 0,

for all observations A, B that are sufficiently smooth in the flow direction. Here
‖ ‖ denotes the appropriate Cs-norm. The constants C and s depend on the
flow Φt, the equilibrium state μ and the polynomial degree n. It turns out that
rapid mixing is independent of the choice of equilibrium state μ [15, Ths. 2, 4].

Remark 1.5. Suppose that Φt is a rapid mixing Axiom A flow and that
A, B are observations. If Φt, A, B are C∞ then ρA,B decays faster than any
polynomial rate for any equilibrium state. (Indeed, ρA,B ∈ S(R), the Schwartz
space of rapidly decreasing functions.) If Φt is Cr, r < ∞, then the definition
of rapid mixing admits the possibility that s > r for certain equilibrium states.
In this situation, the condition that A, B are sufficiently smooth in the flow
direction is not automatic even if A, B are C∞.

Dolgopyat [15] proved that typical (in the measure-theoretic sense of
prevalence) Axiom A flows are rapid mixing. However, the set of rapid mix-
ing flows obtained in [15] is nowhere dense, and there is no uniformity in the
constant C.
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Our second main result (which extends Theorem 1.3) shows that typical
Axiom A flows are stably rapid mixing in the sense that rapid mixing is robust
to C2-small perturbations of the underlying flow. In addition, it follows from
our arguments that the constant C can be chosen uniformly for flows close to
the given one, which is important for applications to statistical physics (see [10,
Intro.]).

Theorem 1.6. (a) Suppose 2 ≤ r ≤ ∞. There is a C2-open, Cr-dense
subset of flows in Ar(M) for which each nontrivial basic set is rapid mixing.

(b) Suppose 1 ≤ r ≤ ∞. There is a C1-open, Cr-dense subset of flows in
Ar(M) for which each nontrivial attracting basic set is rapid mixing.

Remark 1.7. It follows from our proof of Theorem 1.6(a) that we obtain
a C1,1-open set of rapid mixing flows (here C1,1 means C1 with Lipschitz
derivative). Details are provided in Remark 4.10.

The proof of Theorem 1.6 relies on the following result which should be
contrasted with Theorem 1.1(2).

Theorem 1.8 (Dolgopyat [15]). Let Λ be a basic set for a flow Φt ∈
Ar(M) and suppose that Λ is not rapid mixing. Then there exists c > 0 and
C > 0 such that for every α > 0, there exists β > 0 and a sequence |bk| → ∞
such that for each k ≥ 1 and each period τ corresponding to a periodic orbit
in Λ,

dist(bknkτ , cZ) ≤ Cτ |bk|−α,(1.1)

where nk = [β ln |bk|] and dist denotes Euclidean distance.

This result is implicit in [15] and seems of independent interest, so we
indicate the proof at the end of Section 2.

Remark 1.9. It follows as in [22] that the almost sure invariance principle
holds for the time-one map of rapid mixing Axiom A flows (for sufficiently
smooth observables). Hence we obtain a strengthened version of [22, Th. 1].
The standard consequences of the almost sure invariance principle include the
central limit theorem and law of the iterated logarithm [24]. (The correspond-
ing results for the flow itself hold for all Axiom A flows [13], [23], [29] but
time-one maps are more delicate.)

Remark 1.10. In the survey article [12], it is mistakenly claimed that the
open and denseness of rapid mixing for Axiom A flows were proved in Dol-
gopyat [15]. In fact, the only result on openness claimed in [14], [15] is [14,
Th. 3] where it is proved that Anosov flows with jointly nonintegrable foli-
ations (which is an open condition) are rapid mixing. The density of joint
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nonintegrability for Anosov flows (and Axiom A attractors) is a consequence
of methods of Brin [8], [9]. Hence Theorem 1.6(b) is implicit in previous work,
though we have not seen this result stated elsewhere. For completeness, we
give an alternative proof of Theorem 1.6(b) in this paper.

In [11, Th. 4.14], it is incorrectly claimed that mixing Anosov flows are
automatically rapid mixing. This remains an open question. Plante [25] con-
jectured that mixing is equivalent to joint nonintegrability of the stable and
unstable foliations. If the conjecture were true then mixing would be equivalent
to rapid mixing (and stable rapid mixing) for Anosov flows.

We briefly outline the remainder of the paper. In Section 2, we introduce
the key new idea in this paper, namely the notion of good asymptotics. Then
we show that good asymptotics implies part (a) of Theorem 1.6. In Section 3,
we prove Theorem 1.6(b). In Section 4, we prove that good asymptotics holds
for an open and dense set of flows.

2. Good asymptotics and rapid mixing

We start by specifying the topologies we shall be assuming on spaces of
Axiom A and Anosov flows.

Cs topology on the space of Cr-flows. Let Fr(M) denote the space of
Cr-flows on M , r ≥ 2. Let t0 > 0. Every flow Φt ∈ Fr(M) restricts to a Cr

map Φ[t0] : M × [0, t0] → M . Let 1 ≤ s ≤ r. Since M × [0, t0] is compact, we
may take the usual Cs topology on Cr maps M × [0, t0] �→ M , and thereby
define a Cs topology on Fr(M). Using the one-parameter group property of
flows, it is easy to see that the Cs topology we have defined on Fr(M) is
independent of t0 > 0. We topologize Ar(M) as a subspace of Fr(M).

2.1. Good asymptotics. Let Λ be a basic set for a flow Φt ∈ Ar(M). Choose
a periodic point p ∈ Λ with period τ0 and let xH be a transverse homoclinic
point for p. Associated to p and xH are certain constants γ ∈ (0, 1) and
κ ∈ R; see Section 4. Using a shadowing argument, we show in Section 4 that
under certain C1-open and Cr-dense nondegeneracy conditions it is possible
to choose a sequence of periodic points pN ∈ Λ with pN → xH such that the
periods τ(N) of pN satisfy

τ(N) = Nτ0 + κ + ENγN cos(Nθ + ϕN ) + o(γN ),(2.1)

where (EN ) is a bounded sequence of real numbers, and either (i) θ = 0 and
ϕN ≡ 0, or (ii) θ ∈ (0, π) and ϕN ∈ (θ0 − π/12, θ0 + π/12) for some θ0.

Definition 2.1 (Assumptions and notation as above). (1) The sequence
(pN ) of periodic points has good asymptotics if lim infN→∞ |EN | > 0.
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(2) The basic set Λ has good asymptotics if Λ contains a transverse homo-
clinic point xH such that the corresponding sequence of periodic points
(pN ) has good asymptotics.

(3) The flow Φt ∈ Ar(M) has good asymptotics if every nontrivial basic set
of Φt has good asymptotics.

The main technical result of this paper is the following lemma which is
proved in Section 4.

Lemma 2.2. For r ≥ 2, Ar(M) contains a C2-open, Cr-dense subset U
consisting of flows with good asymptotics.

2.2. Genericity of stable rapid mixing. In the remainder of this section
we show how the genericity of stable rapid mixing for Axiom A flows (Theo-
rem 1.6(a)) follows from good asymptotics, Lemma 2.2 and the periodic data
criterion of Theorem 1.8. Theorem 1.3(a) is obtained by a similar, but simpler,
calculation using good asymptotics and Theorem 1.1(2).

We note that our argument relies only on the set of periods of the flow,
and not the location of the periodic orbits.

Proof of Theorem 1.6(a). It suffices by Lemma 2.2 to show that good
asymptotics implies rapid mixing. Choose periodic points p, pN in Λ with
periods τ0, τ(N) satisfying (2.1). We show that if Λ is not rapid mixing, then
lim inf |EN | = 0 so that there is no good asymptotics.

Fix α > 0 (our proof works for any positive value of α). Let c > 0, β > 0
and |bk| → ∞ be as in Theorem 1.8. Recall that nk = [β ln |bk|]. The set of
periods includes τ(N) and Nτ0, and τ(N) = O(N), so that

dist(bknkτ(N) , cZ) = O(N |bk|−α), dist(bknkNτ0 , cZ) = O(N |bk|−α).

Using formula (2.1) for τ(N), eliminating τ0, dividing by c and relabeling, we
obtain

dist(bknk(κ + ENγN cos(Nθ + ϕN ) + o(γN )) , Z) = O(N |bk|−α).

Set N = N(k) = [ρ ln |bk|]. For large enough ρ > 0, we have bknkEN(k)γ
N(k) =

O(|bk|−α ln |bk|). It follows that dist(bknkκ , Z) = O(|bk|−α ln |bk|) and so

dist(bknk(ENγN cos(Nθ + ϕN ) + o(γN )) , Z) = O(N |bk|−α) + O(|bk|−α ln |bk|).
(2.2)

Let S = supN |EN | and set M(k) = [(ln(|bk|nk)+ lnS +ln 2)/(− ln γ)]+1.
Then Sbknkγ

M(k) = ±1
2γρk , with ρk ∈ (0, 1]. In particular, |Sbknkγ

M(k)| ≤ 1
2

and so when N = M(k) + j with j ≥ 0 fixed, condition (2.2) implies that

lim
k→∞

bknkEM(k)+jγ
M(k) cos((M(k) + j)θ + ϕM(k)+j) = 0.
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Moreover, |bknkγ
M(k)| ≥ γ/2S and it follows that

lim
k→∞

EM(k)+j cos((M(k) + j)θ + ϕM(k)+j) = 0.

The proof is complete once we show that there is a choice of j ≥ 0 for which
cos((M(k) + j)θ + ϕM(k)+j) does not converge to 0 as k → ∞. Assume by
contradiction that for each integer j ≥ 0

lim
k→∞

(M(k) + j)θ + ϕM(k)+j = π/2 mod π.(2.3)

Recall that if θ = 0 then ϕN ≡ 0, hence (2.3) fails (with j = 0). Otherwise,
θ ∈ (0, π) and |ϕN − θ0| < π/12. Taking differences of (2.3) for various values
of j we obtain that �θ ∈ [−π/6, π/6] mod π for all �, which is impossible.

Proof of Theorem 1.8. Let T (Λ) denote the set of all periods τ corre-
sponding to periodic orbits in Λ. Note that we do not restrict to prime periods
and so mT (Λ) ⊂ T (Λ) for all positive integers m.

First, we prove the theorem for symbolic semiflows. Let σ : X+ → X+ be
a one-sided subshift of finite type and let f : X+ → R be a roof function that is
Lipschitz with respect to the usual metric on X+. Let Xf

+ be the corresponding
suspension semiflow and define the set of periods T (Xf

+).
Define Vb : C0(X+) → C0(X+), b ∈ R, by (Vbw)(x) = eibf(x)w(σx). For

n ≥ 1, define fn(x) =
∑n−1

j=0 f(σjx). Then (Vn
b w)(x) = eibfn(x)w(σnx).

Suppose that Xf
+ is not rapid mixing, and let α > 0. By [15, Ths. 1 and 2]

(specifically, [15, Th. 2(v)]), there exist β > 0 and a sequence |bk| → ∞, such
that for each k there exists wk : X+ → C continuous and of modulus 1 such
that

|Vnk

bk
wk − wk|∞ ≤ |bk|−α,

where nk = [β ln |bk|]. Since |Vb|∞ ≤ 1, it is immediate that |Vqnk

bk
wk −wk|∞ ≤

q|bk|−α, for all k, q ≥ 1. In other words,

|eibkfqnk
(x)wk(σqnkx) − wk(x)| ≤ q|bk|−α,(2.4)

for all x ∈ X+, k, q ≥ 1.
Let τ ∈ T (Xf

+). There exists a periodic point p ∈ Xf
+ with prime period

τ/� for some � ≥ 1 and a corresponding point x ∈ X+ of prime period N such
that fN (x) = τ/�. Take q = �N . Then

fqnk
(x) = �nkfN (x) = nkτ,

and so (2.4) reduces to

dist(bknkτ , 2πZ) ≤ 2�N |bk|−α.

On the other hand, τ = �fN (x) ≥ �N min f , so we obtain

dist(bknkτ , 2πZ) ≤ Cτ |bk|−α,(2.5)

for all k ≥ 1 and τ ∈ T (Xf
+).
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Now suppose that Λ is a hyperbolic basic set. Bowen [5] showed that there
is a symbolic flow Xf ′

, where X is a two-sided subshift of finite type, and a
bounded-to-one semiconjugacy π : Xf ′ → Λ. Moreover, there are standard
techniques for passing from Xf ′

to Xf
+ where X+ is a one-sided subshift of

finite type (for example [26, p. 419]). It is easily verified that there is an
integer � ≥ 1 such that �T (Λ) ⊂ T (Xf

+). (The integer � takes into account the
fact that the projection π : Xf ′ → Λ is bounded-to-one.) Some tedious but
standard arguments show that if Xf

+ is rapid mixing, then Xf ′
is rapid mixing

and it is immediate that Λ is rapid mixing.
It follows from this discussion that if Λ is not rapid mixing, then the

estimate (2.5) holds for all k ≥ 1 and τ ∈ T (Xf
+). Moreover, if τ ∈ T (Λ),

then �τ ∈ T (Xf
+) and so dividing throughout by � in (2.5) yields the required

result.

3. Rapid mixing for hyperbolic attractors

In this section, we prove Theorem 1.6(b). We start by recalling the def-
initions of local product structure and the temporal distance function [10],
[21].

Let Λ be a basic set for the flow Φt ∈ A1(M). Then Λ has a local product
structure. That is, there exist an open neighborhood U of the diagonal of Λ
in M2 and ε > 0 such that if (x, y) ∈ UΛ = U ∩ Λ2, then W uc

ε (x) ∩ W s
ε (y)

and W sc
ε (x) ∩ W u

ε (y) each consist of a single point lying in Λ. We define the
continuous maps [ , ]s, [ , ]u : UΛ → Λ by W uc

ε (x) ∩ W s
ε (y) = {[x, y]s}, and

W u
ε (x) ∩ W sc

ε (y) = {[x, y]u}. Given Φt, we may choose U, ε to be constant on
a C1-neighborhood of Φt.

Definition 3.1. Let Λ be a basic set for Φt ∈ A1(M). Choose U, ε as above
and set UΛ = U ∩ Λ2. We define the temporal distance function Δ : UΛ → R

by [x, y]u = ΦΔ(x,y)([x, y]s).

Proposition 3.2. The temporal distance function Δ(x, y) is continuous
with respect to x, y, and the flow Φt (C1-topology on A1(M)).

Proof. The result follows from the continuity of the foliations W a
ε (x),

a ∈ {s, sc, u, uc}, with respect to both the flow and the point. Note that by
changing the flow we are also modifying the domain of Δ, but in a continuous
manner.

The following result is well known.

Proposition 3.3. If the temporal distance function is locally constant
(that is, for x and y close enough, Δ(x, y) = 0), then the flow is (bounded-
to-one) semiconjugate to a locally constant suspension over a subshift of finite
type.
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Sketch of proof. By [5], the flow is realized as (the quotient of) a suspension
over a Markov partition. One can assume that the roof function is constant
along the stable leaves spanning the rectangles of the partition (to achieve this,
replace the smooth transversals used in [5] by Hölder transversals of the form
Tx = {z | z ∈ W s

loc(y), y ∈ W u
loc(x)}). Refine the partition so that the temporal

distance function is identically zero on each rectangle. The vanishing of the
temporal distance function means that the stable and unstable foliations of the
flow commute over each rectangle, that is, the rectangles are also spanned by
the unstable foliation. This implies that the roof function is locally constant
along the unstable foliation as well, proving the claim.

Corollary 3.4. If the basic set Λ has good asymptotics (in the sense of
Definition 2.1) then the temporal distance function is not locally constant.

Proof. If the temporal distance function is locally constant then, by Propo-
sition 3.3, Λ is a suspension with locally constant roof function. Therefore the
sequence (τ(N)) of periods in (2.1) satisfies τ(N + 1) − τ(N) = τ0 for all
sufficiently large N and so Λ does not have good asymptotics.

The following result is a slight modification of Dolgopyat [14, Th. 3].

Lemma 3.5. Let Λ be a hyperbolic attractor such that there exist x, y ∈ UΛ

such that Δ(x, y) �= 0. Then Λ is rapid mixing.

Proof. Set z = [x, y]s. Clearly Δ(z, y) = 0. Since Λ is an attractor,
W uc(x) ⊂ Λ. Consider a path α ∈ [0, 1] �→ xα ∈ W uc

ε (x) ⊂ Λ joining x to z.
By the intermediate value theorem, Proposition 3.2 implies that α �→ Δ(xα, y)
contains a nontrivial interval. The claim then follows from [15, Th. 6], which
states that for flows that are not rapid mixing, the range of the temporal
distance function has zero lower box counting dimension. (See also [14] and
[17, Th. 9.3].)

Proof of Theorem 1.6(b). We only have to show that the hypotheses
of Lemma 3.5 hold for a C1-open, Cr-dense set of attractors in Ar(M). The
openness follows from Proposition 3.2. The density follows from Lemma 2.2
and Corollary 3.4 (if r < 2, first approximate the flows by smoother ones).

Remarks 3.6. (1) It follows from the proof of Theorem 1.6(b), see also
[8], [9], that joint nonintegrability of the stable and unstable foliations is a
C1-open and Cr-dense property for transitive Cr Anosov flows. It is well-
known that joint nonintegrability implies mixing, but the converse remains an
open question (as discussed in Remark 1.10).

(2) Parts (b) of Theorems 1.3 and 1.6 require only the density part of
Lemma 2.2.
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4. Openness and density of good asymptotics

In this section, we prove Lemma 2.2, thus showing that there is an open
and dense set of Axiom A flows with good asymptotics.

The sequence of periodic points {pN} implicit in Lemma 2.2 is constructed
in subsection 4.1. The calculations depend on whether the eigenvalues of a cer-
tain linear map are real or complex. Focusing first on the case of real eigenval-
ues, we formulate Lemma 4.2 which gives the required estimates on the periods
of the periodic points pN . Equation (2.1) and Lemma 2.2 are immediate conse-
quences. Lemma 4.2 is proved in subsection 4.2. In subsection 4.3, we indicate
the modifications that are required when there are complex eigenvalues.

4.1. Construction of the periodic point sequence. In this section we give
the construction of the sequence (pN ) used in Definition 2.1.

Local sections for a flow containing a transverse homoclinic orbit. Let
Γ ⊂ Λ be a periodic orbit for the Cr flow Φt, r ≥ 2, and fix p ∈ Γ. Assume that
xH ∈ W s

loc(p) is a transverse homoclinic point for Γ. Let Σ be a smooth local
transverse cross section to the flow such that Γ ∩ Σ = {p}. Choose an open
neighborhood Σ1 of p in Σ such that the Poincaré return map Ψ : Σ1 → Σ
is well-defined and Cr. Modifying and extending Σ1, Σ away from p, we may
suppose that the Ψ-orbit of xH is contained in Σ and so xH is a transverse
homoclinic point for the fixed point p of Ψ. The closure of the Ψ-orbit of xH

is a compact hyperbolic invariant subset of Σ1. The first return time to Σ
determines a Cr map f : Σ1 → R such that Ψ(x) = Φf(x)(x), x ∈ Σ1.

We may choose a C1-open neighborhood U of Φt ∈ Fr(M), such that Σ1,
Σ define a local section for flows Φ′

t ∈ U and the properties described above
continue to hold for Φ′

t. More precisely, for each Φ′
t ∈ U , there exists a periodic

orbit Γ′ such that Γ′ ∩Σ = {p′}, the Poincaré return map Ψ′ : Σ1 → Σ is well-
defined with a homoclinic point x′

H ∈ Σ1, and the closure of the Ψ′-orbit of
xH is a compact invariant hyperbolic subset of Σ1. Furthermore, p′ and x′

H

depend continuously on Φ′
t, C1-topology, and Ψ′ and f ′ : Σ1 → R depend

continuously on Φ′
t, Cs-topology, 1 ≤ s ≤ r.

Nondegeneracy conditions on Ψ. We shall need to assume a number
of nondegeneracy conditions on the closure of the Ψ-orbit of xH . These are
labeled (N1)–(N4) below.

Let DΨ(p) denote the differential of Ψ at p, with eigenvalues μi, λj where

|μS | ≤ · · · ≤ |μ1| < 1 < |λ1| ≤ · · · ≤ |λT |.
Define

γ = max{|μ1|, |λ1|−1} ∈ (0, 1).

We assume
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(N1) If νi and νj are distinct eigenvalues of DΨ(p) which are not complex
conjugates, then |νi| �= |νj |.

(N2) |νiνj | �= |νk| for all eigenvalues νi, νj , νk of DΨ(p).

It follows from (N1) that the eigenvalues of DΨ(p) are distinct and DΨ(p) is
semisimple. Since we are assuming Φt, and therefore Ψ, is at least C2, it follows
from (N2) and Belickii’s linearization theorem [2], [3] that Ψ is C1-linearizable
at p.

Since Ψ is Cr, there are Cr local stable and unstable manifolds through p.
We use these invariant manifolds as the basis for a local Cr-coordinate system
at p. Thus we regard p as the origin of the vector space R

n = E
s ⊕ E

u with
the local stable (respectively, unstable) manifold through p contained in E

s

(respectively, E
u). We choose coordinates on E

s, Eu so that DΨ(p) = μ ⊕ λ

is in real Jordan normal form (1 × 1 blocks for real eigenvalues, 2 × 2 blocks
for complex eigenvalues). Let xH = (A, 0) ∈ E

s be the transverse homoclinic
point for p. Let x̃H = (0, B) ∈ E

u be the point corresponding to xH , now
regarded as lying on the unstable manifold of p — see Figure 1. Note that
the forward orbit of xH is contained in E

s, while the backward orbit of x̃H

is contained in E
u, and that we regard xH and x̃H as identified. We assume

there exists C > 0 such that

(N3) |Ψn(xH)μ−n
1 |, |Ψ−n(x̃H)λn

1 | ≥ C, for all n ≥ 0.

Another way of viewing (N3) is to note that by (N2) we may C1 linearize Ψ.
If, in the linearized coordinates, A = (A1, . . . , AS), B = (B1, . . . , BT ), then
(N3) is equivalent to requiring A1, B1 �= 0.

Let WA and WB be neighborhoods of xH and x̃H chosen so that the orbit
of xH intersects WA and WB only in the points xH and x̃H . We regard WA

and WB as identified (in the ambient manifold). Choose an open set K̂ disjoint
from WA and WB, such that K = K̂∪WA∪WB contains p and the homoclinic
orbit through xH . We may choose K so that Ψ(WA) ⊂ K̂ and Ψ−1(WB) ⊂ K̂.

From now on, we regard Ψ as defined on K with the understanding that
if z ∈ K then Ψn(z) is defined provided that the iterates of z up to and
including Ψn(z) all lie in K. Henceforth all our computations, perturbations
and estimates will be done inside K. Of course, everything translates back to
the ambient manifold M and we may regard K (with WA, WB identified) as
an open subset of Σ1. In particular, Cr functions f : Σ1 → R determine Cr

functions on K, r ≥ 0. The converse also holds providing we take account of
the identification of WA and WB.

We shall also assume |μ1| �= |λ1|−1. Since the case |μ1| < |λ1|−1 follows
from |μ1| > |λ1|−1 by time-reversal, it is no loss of generality to write our final
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WB

x̃H = (0, B)

p
K̂

K = K̂ ∪ WA ∪ WB

xH = (A, 0)

WA

Identified

Figure 1: Basic local setup near the Ψ-orbit of xH

assumption as

(N4) |μ1| > |λ1|−1.

It follows that |μ1λj | > 1 for all j.
Denote the eigenspace associated to μ1 by E1. If μ1 is real, E1 is one-

dimensional, and if μ1 is complex, then E1 is a two-dimensional DΨ(p)-invariant
real subspace of E

s. In the latter case, there is a natural choice of complex
structure on E1 so that μ|E1 is C-linear and μ(u) = μ1u for u ∈ E1. We denote
the E1 component of X ∈ E

s by X1 and regard X1 as a complex number. Note
that if instead of μ1, we had used μ̄1, then we would obtain the conjugate
complex structure on E1. For this reason, we make a fixed choice of eigenvalue
μ1 from the complex conjugate pair {μ1, μ̄1}. Similar comments and conven-
tions apply to all of the real eigenspaces associated to complex eigenvalues of
DΨ(p).

We remark that conditions (N1)–(N4) are open in the C1-topology (on
Fr(M)) and, allowing both inequalities in (N4), dense in the Cr-topology.
The open neighborhood U of Φt described above may be chosen so that all of
the constructions and conventions we have given above continue to hold for
flows Φ′

t lying in U . Let V be the corresponding set of Cr diffeomorphisms
Ψ : Σ1 → Σ.

Lemma 4.1. Let Ψ ∈ V. There exists N0 ≥ 1 and a sequence of periodic
points pN → xH , N ≥ N0, such that pN is of period N and, in the coordinates
defined above, pN = ΨNpN has the representations

pN =
(
A + C(μN

1 ) + o(γN ) , O(γN )
)

on WA,

ΨNpN =
(
O(γN ) , B + D(μN

1 ) + o(γN )
)

on WB,

where A, B, C, D are constants that depend continuously on Ψ (C2 topology).
Here, C : E1 → E

s, D : E1 → E
u are R-linear maps, and C is injective.
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Proof. It follows from condition (N2) and Belickii’s linearization theo-
rem [3] that Ψ can be C1-linearized in a neighborhood of p and that the
linearization depends continuously on Ψ in the C2 topology (in fact in the
C1,1 topology). After C1-linearizing, we may suppose that Ψ coincides with
the linear map DΨ(p) in a neighborhood of p. Using Ψ, we may extend
the domain of the linearized coordinates along E

s and E
u. Hence we may

shrink K so that in the linearized coordinates Ψ|(K̂ ∪ WA) = DΨ(p) and
Ψ−1|(K̂ ∪ WB) = DΨ(p)−1. The nonlinearity of Ψ is pushed into the C1

diffeomorphism identifying WA and WB. In the operator norm derived from
the induced Euclidean norms on E

s and E
u, the linear maps μ and λ−1 are

contractions with ‖μ‖, ‖λ−1‖ ≤ γ.
Set aN = (A,λ−NB). For N sufficiently large, (μjA,λj−NB) ∈ K, 0 ≤

j ≤ N , and so ΨN (aN ) = (μNA, B).
Note that aN → xH and ΨNaN → x̃H ∼ xH in K as N → ∞. Moreover,

setting M1 = |A| + |B| we have that {Ψj(aN ) | j = 0, . . . , N} is a periodic
M1γ

N pseudo-orbit in K (see [20, §18.1]). It follows from the Anosov Closing
Lemma [20, §6.4] that there is a constant M2 > 0 such that for N sufficiently
large, there is a periodic point pN ∈ K of period N such that

|Ψj(pN ) − Ψj(aN )| < M2γ
N for 0 ≤ j ≤ N.

Taking j = 0, we may write pN = (A + CNγN ,λ−NB + ENγN ), where
|CN |, |EN | ≤ M2. Since ΨN (pN ) = (μN (A+CNγN ), B+λNENγN ), it follows,
taking j = N , that we can write λNEN = DN , where |DN | ≤ M2.

Hence, in the linearized coordinates, we have periodic points ΨNpN = pN

for N sufficiently large, with

pN =
(
A+CNγN,λ−N (B+DNγN )

)
, ΨNpN =

(
μN (A+CNγN ), B+DNγN

)
.

The identification between WA and WB is given by a C1-diffeomorphism χ.
Since ΨN (pN ) = pN , we have

χ(A + γNCN ,λ−N (B + γNDN )) = (μN (A + γNCN ), B + γNDN ).

Writing χ(A + x, y) = (0, B) + (E11x + E12y, E21x + E22y) + o(|(x, y)|), we
obtain

E11(γNCN ) = μN
1 A1 + o(γN ), E21(γNCN ) = γNDN + o(γN ),

where μN
1 A1 is defined by complex multiplication in case μ1 is complex (see

the remarks above). It follows by the transversality of the stable and unstable
manifolds at xH that E11 : E

s → E
s is nonsingular. Set L = E−1

11 . Define
C(u) = L(uA1), u ∈ E1, and D = E21C. It follows that in the linearized
coordinates

pN =
(
A + C(μN

1 ) + o(γN ) , λ−N (B + D(μN
1 ) + o(γN ))

)
.



282 MICHAEL FIELD, IAN MELBOURNE, AND ANDREI TÖRÖK

Since the change of coordinates is C1, we have the required expression for pN

in the original coordinate system (with different values of A, C). Similarly for
ΨNpN .

Associated to each flow Φt ∈ U are the Cr pair (Ψ, f) where Ψ ∈ V and
f : Σ1 → R. Set f̃ = f − f(p) ∈ Cr(Σ1) and define

AN (Ψ, f) =
N−1∑
i=0

f̃(ΨipN ) −
∞∑

i=−∞
f̃(ΨixH).(4.1)

The bi-infinite sum converges since f̃(p) = 0 and f is C1 (it is enough that f

be Hölder). We suppress the dependence of AN on the choices of p, xH , pN

and local section Σ1 ⊂ Σ.
If we let τ0 denote the period of the Φt-orbit through p and τ(N) denote

the period of the Φt-orbit through pN , then

τ(N) = Nτ0 + κ + AN (Ψ, f),

where κ =
∑∞

i=−∞ f̃(ΨixH). In order to show that the basic set Λ for Φt has
good asymptotics, we need to obtain precise asymptotic estimates of AN (Ψ, f).

By Sternberg’s linearization theorem [2, 32], there is a Cr-dense subset
V∞ ⊂ V consisting of C∞ maps that are C2-linearizable at p. We carry out
our estimates on a C2-open neighborhood of V∞ inside V. We define the
distance ‖Ψ1 − Ψ2‖r between Ψ1,Ψ2 ∈ V to be max|α|≤r |∂αΨ1 − ∂αΨ2|∞.

We begin by making the simplifying assumption that the eigenvalues of
DΨ(p) are real. In the next lemma we write μ1,Ψ and γΨ to emphasize the
dependence of the eigenvalues on Ψ.

Lemma 4.2. Let r ≥ 2. Let Ψ0 ∈ V∞ and assume that the eigenvalues
of DΨ0(p) are real. Then we may find a C2-open neighborhood V0 of Ψ0 in V
and a continuous (linear) map E(Ψ0, ·) : C2(Σ1) → R such that

(1) AN (Ψ0, f) = E(Ψ0, f)μN
1,Ψ0

+ o(γN
Ψ0

), for all f ∈ Cr(Σ1).

(2) E(Ψ0, f) �= 0 for a Cr-dense set of f ∈ Cr(Σ1).

(3) AN (Ψ, f) = EN (Ψ, f)μN
1,Ψ + o(γN

Ψ ), for all (Ψ, f) ∈ V0 × Cr(Σ1), where
|EN (Ψ, f) − E(Ψ0, f)| = O(‖f‖2‖Ψ − Ψ0‖2) uniformly in N .

We indicate how Lemma 2.2 follows from Lemma 4.2 in the real eigenvalue
case.

Proof of Lemma 2.2, real eigenvalue case. Let Φt ∈ Ar(M) have
nontrivial hyperbolic basic set Λ containing the transverse homoclinic point
xH . Associated to Φt is the Cr Poincaré map Ψ0 : Σ1 → Σ and Cr map
f0 : Σ1 → R. After a Cr small perturbation of Φt, we may suppose that Ψ0



STABLE MIXING AND RAPID MIXING 283

lies in V∞. It follows from Lemma 4.2(3) that for all Cr pairs (Ψ, f) suffi-
ciently C2-close to (Ψ0, f0), there is a bounded sequence EN (Ψ, f) such that
AN (Ψ, f) = EN (Ψ, f)μN

1,Ψ + o(γN
Ψ ). Hence equation (2.1) is valid for all Cr

flows sufficiently C2-close to Φt with θ = ϕN ≡ 0. (Note that EN here and
in (2.1) differ by a factor of (−1)N when μ1,Ψ < 0.)

By Lemma 4.2(1), we can write AN (Ψ0, f0) = E(Ψ0, f0)μN
1,Ψ0

+ o(γN
Ψ0

). It
follows from Lemma 4.2(2) that, after a Cr small perturbation of f0, we may
suppose that E(Ψ0, f0) �= 0.

By continuity of E(Ψ0, ·), it follows that E(Ψ0, f) is bounded away from
zero for all f ∈ Cr(Σ1) sufficiently C2-close to f0. By Lemma 4.2(3), EN (Ψ, f)
is bounded away from zero, uniformly in N , for all Cr pairs (Ψ, f) sufficiently
C2-close to (Ψ0, f0). Therefore the good asymptotics property holds for all
C2-small perturbations of the flow corresponding to (Ψ0, f0).

In the next subsection, we prove Lemma 4.2 by carrying out explicit and
quite lengthy calculations. However, we should emphasize that the proof of
density in Lemma 2.2 is somewhat simpler and, moreover, sufficient for the
results on attractors in Section 3 (though not for the results on general Axiom
A flows). Thus, in order to prove density, it suffices to verify that

(1′) AN (Ψ0, f) = E(Ψ0, f)μN
1,Ψ0

+o(γN
Ψ0

), where E(Ψ0, f) ∈ R, for all (Ψ0, f) ∈
V∞ × Cr(Σ1).

(2′) For any Ψ0 ∈ V∞ and any ε > 0, there exists f ∈ Cr(Σ1) with ‖f‖r < ε

such that E(Ψ0, f) �= 0.

The proof of (2′) is particularly simple as f can be chosen to be supported
in a small neighborhood of xH so that AN (Ψ0, f) = f(pN ) − f(xH). For the
proof of (1′), one can work in a C2-linearized coordinate system (see also the
following subsection).

4.2. Proof of Lemma 4.2. Let Ψ0 ∈ V∞, so that Ψ0 can be C2-linearized
at its fixed point p. Fix coordinates on K ⊂ R

n = E
s⊕E

u in which Ψ0 is given
by the diagonal matrix

Ψ0(x, y) =
(
μ0x,λ0y

)
(recall that the nonlinearity of Ψ0 is concentrated in the diffeomorphism iden-
tifying WB to WA). Since local stable and unstable manifolds through a hy-
perbolic point depend continuously on the flow [18, Th. 6.23], for any Cr-
diffeomorphism Ψ : Σ1 → Σ that is C2-close to Ψ0, there is a C2 coordinate
map hΨ : Σ1 → E

s⊕E
u, which depends continuously on Ψ (C2 topology), such

that through this identification

Ψ(x, y) =
(
μ(I + a(x, y))x , λ(I + b(x, y))y

)
.(4.2)
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Here, μ = diag(μ1, . . . , μp), λ = diag(λ1, . . . , λq) are diagonal matrices, and
a : E

s ×E
u → L(Es, Es), b : E

s ×E
u → L(Eu, Eu) are C1 matrix-valued maps,

with a(0, 0) = b(0, 0) = 0. The maps a, b (C1-topology) and matrices μ, λ

depend continuously on Ψ (C2 topology). Similarly, we may write Ψ−1(x, y) =(
μ−1(I + b̃(x, y))x , λ−1(I + ã(x, y))y

)
, with ã(0, 0) = b̃(0, 0) = 0.

We may choose C̃, ε0 > 0 such that if ε ∈ (0, ε0] and ‖Ψ−Ψ0‖2 < C̃ε, then
‖μ − μ0‖, ‖λ − λ0‖, ‖a‖1, ‖b‖1, ‖ã‖1, ‖b̃‖1, ‖μ−1 − μ−1

0 ‖, ‖λ−1 − λ−1
0 ‖ ≤ ε.

We begin by obtaining more accurate estimates of the periodic points
pN . This is done in Lemmas 4.3, 4.4, 4.5 and 4.6. Using these estimates, we
compute EN = EN (Ψ, f) in Propositions 4.7, 4.8 and 4.9, and then complete
the proof of Lemma 4.2.

Set μ̂ = μ−1
1 μ. For n ≥ 0, define Qn ∈ L(Es, Es) by Q0 = I and

Qn =
n−1∏
m=0

μ̂(I + a(ΨmxH)), n ≥ 1.

Here, as elsewhere in this section, we adopt the convention that
∏b

m=a ym =
yb · · · ya. It follows from the definition of Qn that ΨnxH = (μn

1QnA, 0), n ≥ 0.
Similarly, we set λ̂ = λ−1

1 λ and for n ≥ 0 define Rn ∈ L(Eu, Eu) by R0 = I

and

Rn =
n−1∏
m=0

λ̂
−1

(I + ã(Ψ−mx̃H)), n ≥ 1.

Note that Ψ−nx̃H = (0, λ−n
1 RnB), n ≥ 0.

Choose ε ∈ (0, ε0] sufficiently small so that β = γ(1 + ε) < 1. Define

K = [Π∞
m=0(1 + 2ε(|A| + |B|)βm)]2,

so that 1 ≤ K < ∞.

Lemma 4.3. For all n ≥ 1,

‖Qn‖, ‖Rn‖ ≤ K, |ΨnxH | ≤ K|A||μ1|n, |Ψ−nx̃H | ≤ K|B||λ1|−n.

Proof. It is immediate that ‖Qn‖ ≤ (1 + ε)n. In particular, |ΨnxH | ≤
βn|A|. But then ‖Qn‖ ≤ ∏n−1

m=0(1 + ‖a‖1|A|βm) ≤ K. Hence |ΨnxH | ≤
K|A||μ1|n. Similar arguments give the required estimates on ‖Rn‖ and |Ψ−nx̃H |.

Lemma 4.4. There exists N0 such that if N ≥ N0 and 0 ≤ n ≤ N , then

ΨnpN = (μn
1QN,n[A + CμN

1 + o(γN )] , λn−N
1 RN,N−n[B + DμN

1 + o(γN )]),

where ‖QN,n‖, ‖RN,N−n‖ ≤ K.
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Proof. We use the representations of pN and ΨNpN given in Lemma 4.1.
Working forwards from pN and backwards from ΨNpN , we obtain

QN,n =
n−1∏
m=0

μ̂(I + a(ΨmpN )), RN,n =
n−1∏
m=0

λ̂
−1

(I + ã(Ψ−mpN )).

(Our convention is that QN,0, RN,0 are the identity maps on E
s, E

u respec-
tively.) Just as in the previous proposition, we have ‖QN,n‖ ≤ (1 + ε)n and
‖RN,n‖ ≤ (1 + ε)n. Hence, for sufficiently large N , |ΨnpN | ≤ 2|A|βn +
2|B|βN−n. It follows that ‖QN,n‖ can be bounded by a product

∏n−1
m=0(1 +

�βm + �βN−m), where � = 2(|A| + |B|)ε. Since (1 + �βm + �βN−m) ≤ (1 +
�βm)(1 + �βN−m), it follows easily that

n−1∏
m=0

(1 + �βm + �βN−m) ≤ [
N∏

m=0

(1 + �βm)]2 ≤ K.

A similar estimate applies for RN,n.

Lemma 4.5. There exists J > 0 such that

‖Qn − μ̂n‖ ≤ εJ, ‖QN,n − μ̂n‖ ≤ εJ, ‖Rn − λ̂
−n‖ ≤ εJ, ‖RN,n − λ̂

−n‖ ≤ εJ,

for all 0 ≤ n ≤ N .

Proof. We prove the estimate for QN,n. The result for Qn is simpler, and
RN,n, Rn are treated similarly.

Using the definition of QN,n and the estimates of Lemma 4.4 we obtain
that

‖QN,n − μ̂n‖= ‖
n−1∑
m=0

μ̂n−ma(ΨmpN )
m−1∏
�=0

μ̂(I + a(Ψ�pN ))‖

≤K

n−1∑
m=0

‖μ̂a(ΨmpN ))‖ ≤ εK

n−1∑
m=0

|ΨmpN |

≤ εK1

n−1∑
m=0

(|μm
1 | + |λm−N

1 |) ≤ εJ,

where J = K1((1 − |μ1|)−1 + (1 − |λ1|−1)−1).

Lemma 4.6. There exist N1 ≥ N0 and L > 0 such that for ε > 0 suffi-
ciently small, N ≥ N1, and 0 ≤ n ≤ N

‖QN,n − Qn‖ ≤ εL(γN + |λ1|n−N ), ‖RN,n − Rn‖ ≤ εL(γN + γN−n).

Proof. We prove only the first formula, the proof of the second being
similar.
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It follows easily from the definitions of QN,n and Qn, together with the
estimates of Lemmas 4.3, 4.4, that

‖QN,n − Qn‖ ≤ K
n−1∑
m=0

|a(ΨmpN ) − a(ΨmxH)| ≤ εK
n−1∑
m=0

|ΨmpN − ΨmxH |.

The claim is true for n = 0. Assume inductively that the lemma holds for
m < n. Then for N ≥ N1 large enough (independent of n), there is a constant
K1 > 0 such that

|ΨmpN − ΨmxH | =
∣∣(μm

1 [(QN,m − Qm)A + QN,m(CμN
1 + o(γN ))],

λm−N
1 RN,N−m[B + DμN

1 + o(γN )]
)∣∣∣

≤ K1|μ1|m(Lε + 1)(γN + |λ1|m−N ) + K1|λ1|m−N

≤ K1(Lε + 1)γN (|μ1|m + ρN−m) + K1|λ1|m−N ,

where ρ = |μ1λ1|−1 ∈ (0, 1). Hence we can choose a constant K2 > 0, inde-
pendent of n, N , such that

‖QN,n − Qn‖ ≤ εK2(Lε + 1)(γN + |λ1|n−N ).

Therefore the induction step works with L = 2K2, ε < 1/L.

We are now in a position to estimate AN (Ψ, f) for f ∈ Cr(Σ1). It is
convenient to split up f : Σ1 → R into pure terms xiα(x), yjα(y), and mixed
terms xiyjH(x, y). We compute AN (Ψ, f) for mixed terms f in Proposition 4.7
and pure x-terms in Proposition 4.8. The similar calculations for pure y-terms
are stated without proof in Proposition 4.9.

Proposition 4.7 (Mixed terms). Let f(x, y) = xiyjH(x, y) where H :
E

s × E
u → R is C0. Suppose that ‖Ψ − Ψ0‖2 ≤ C̃ε where Ψ0 is linear. Then

AN (Ψ, f) = ENμN
1 + o(γN ) where EN = E + O(ε‖f‖2) and

E =

{
A1Bj

∑∞
k=1(μ1λj)−kH(Ψ−kxH) if i = 1,

0 if i ≥ 2.

Proof. We have AN (Ψ, f) =
∑N−1

n=0 f(ΨnpN ) =
∑N−1

n=0 tn, where

tn = μn
1 (QN,n[A + CμN

1 + o(γN )])iλ
n−N
1 (RN,N−n[B + DμN

1 + o(γN )])jH(ΨnpN ).

By Lemma 4.5, QN,n = μ̂n + O(ε) and RN,N−n = λ̂
n−N

+ O(ε) uniformly in
n, N , and so

tn = μn
i λn−N

j [AiBjH(ΨnpN ) + O(γN )] + O(ε‖H‖0)|μ1|n|λ1|n−N .

Now
∑N−1

n=0 μn
i λn−N

j = O(|μi|N + |λj |−N ). Hence AN (Ψ, f) = O(ε‖H‖0)γN +
o(γN ), i ≥ 2.
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If i = 1, write ρ = (μ1λj)−1, |ρ| < 1, and set k = N − n. It follows that

tn = μN
1 ρk[A1BjH(ΨN−kpN ) + O(γN ) + O(ε‖H‖0)].

Also, ΨN−kpN = Ψ−kpN → Ψ−kx̃H and H is continuous, so

AN (Ψ, f) = μN
1

N∑
k=1

ρk[A1BjH(Ψ−kpN ) + O(γN ) + O(ε‖H‖0)]

= [E + O(ε‖H‖0)]μN
1 + o(γN ) = [E + O(ε‖f‖2)]μN

1 + o(γN ),

where E = A1Bj
∑∞

k=1 ρkH(Ψ−kxH).

Proposition 4.8 (Pure x-terms). Let f(x, y) = xiα(x) where α : E
s →

R is C1. Suppose that ‖Ψ − Ψ0‖2 ≤ C̃ε where Ψ0 is linear. Then AN (Ψ, f) =
ENμN

1 + o(γN ) where EN = E + O(ε‖f‖1) and

E =

⎧⎨
⎩

∑∞
n=0(df)ΨnxH

(μnC) − A1(1 − μ1)−1α(0) if i = 1,∑∞
n=0(df)ΨnxH

(μnC) if i ≥ 2.

Proof. Ideas and notation already used in Proposition 4.7 will be used
without comment. Write

AN (Ψ, f) =
N−1∑
n=0

[f(ΨnpN ) − f(ΨnxH)] −
∞∑

n=N

f(ΨnxH).

The second summation for AN (Ψ, f) has nth term

−μn
1 (QnA)iα(ΨnxH) = −μn

i Aiα(ΨnxH) + O(ε‖α‖0)γn.

Hence the contribution to AN (Ψ, f) is

−
∞∑

n=N

[μn
i Aiα(ΨnxH) + O(ε‖α‖0)γn]

= −μN
i Ai

∞∑
n=0

μn
i α(Ψn+NxH) + O(ε‖f‖1)μN

i .

The contribution to E from this sum is zero if i ≥ 2 and −A1(1 − μ1)−1α(0)
when i = 1.

By Lemma 4.4, for 0 ≤ n ≤ N − 1, we have the following expression for
the difference of the E

s-components (ΨnpN )x and (ΨnxH)x:

(ΨnpN )x − (ΨnxH)x = μn
1 (QN,n − Qn)A

+μn
1 (QN,n − μ̂n)(CμN

1 + o(γN )) + μn(CμN
1 + o(γN )).
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It follows from Lemmas 4.5 and 4.6 that for sufficiently large N we have, for
0 ≤ n ≤ N − 1,

‖μn
1 (QN,n − μ̂n)‖ ≤ γnεJ,

‖μn
1 (QN,n − Qn)‖ ≤ γnεL(γN + |λ1|n−N ) = εγNL(γn + ρN−n),

where ρ = |μ1λ1|−1 < 1. Therefore

|(ΨnpN )x − (ΨnxH)x − μnCμN
1 | ≤ εγN [L(γn + ρN−n)|A| + γnJ(|C| + 1)]

(4.3)

for sufficiently large N . Hence

|(ΨnpN )x − (ΨnxH)x| = O(γN ).(4.4)

Since for C2 functions u we have the estimate

|u(y) − u(x) − (du)x(y − x)| ≤ 1
2
‖du‖Lip|y − x|2 ≤ 1

2
‖u‖2|y − x|2,

and f depends only on the E
s-component, we obtain from (4.4) that

|f(ΨnpN ) − f(ΨnxH) − (df)ΨnxH
((ΨnpN )x − (ΨnxH)x) | = O(γ2N‖f‖2).

It follows by (4.3) that

N−1∑
n=0

[f(ΨnpN ) − f(ΨnxH)]

=
N−1∑
n=0

[
(df)ΨnxH

[(ΨnpN )x − (ΨnxH)x] + O(γ2N )
]

=

(
N−1∑
n=0

(df)ΨnxH

(
μnCμN

1

))

+O

(
‖f‖1

N−1∑
n=0

εγN (γn + ρN−n)

)
+ o(γN )

=

(
N−1∑
n=0

(df)ΨnxH
(μnC) + O(ε‖f‖1)

)
μN

1 + o(γN ),

and so this contributes
∑∞

n=0(df)ΨnxH
(μnC) + O(ε‖f‖1) to EN .

Proposition 4.9 (Pure y-terms). Let f(x, y) = yjβ(y) where β : E
u →

R is C1. Suppose that ‖Ψ − Ψ0‖2 ≤ C̃ε where Ψ0 is linear. Then AN (Ψ, f) =
ENμN

1 + o(γN ) where EN = E + O(ε‖f‖1) and

E =
∞∑

n=1

(df)Ψ−nxH

(
λ−nD

)
.
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Proof. The proof is similar to that of Proposition 4.8, except that there
is no special case (all eigenvalues of λ−1 have absolute value less than γ)
and the infinite sum starts at n = 1 because of the convention regarding the
identification of WA and WB.

Remark 4.10. We explain here why these computations hold for a C1,1

neighborhood of flows whose return map around the periodic orbit Γ (see
beginning of Section 4.1) is C2-linearizable and satisfies the nondegeneracy
conditions (N1)-(N4). In the proof of Lemma 4.1, Belickii’s C1 linearization
theorem holds in the C1,1-topology. The subsequent estimates of the orbits of
pN and xH depend only on C0,1-bounds of a, b. The proof of Proposition 4.7
(mixed terms) can also be carried out in the C1,1 setting; see [16, Lemma
4.13(1)]. Finally, the proofs of Propositions 4.8 and 4.9 are valid for f ∈ C1,1.

Proof of Lemma 4.2. Let Ψ ∈ V be sufficiently C2-close to Ψ0 ∈ V∞ and
let f ∈ Cr(Σ1). Statements (1) and (2) of Lemma 4.2, and the continuity of
E(Ψ0, ·), are immediate from the explicit formulas for E in Propositions 4.7, 4.8
and 4.9 (with ε = 0).

The three previous propositions give EN (Ψ, f) = E(Ψ, f) + εN where
εN → 0 uniformly in N as ‖Ψ − Ψ0‖2 → 0. Moreover, it is clear from the
explicit formulas that E(Ψ, f) → E(Ψ0, f) as ‖Ψ − Ψ0‖2 → 0. This proves
Lemma 4.2(3).

4.3. Complex eigenvalues. Finally, we indicate the changes that are re-
quired when DΨ(p) has complex eigenvalues. Suppose for simplicity that
all the eigenvalues are complex. We then have S + T real two-dimensional
eigenspaces, each of which admits a natural complex structure (see the remarks
preceding Lemma 4.1). If we have associated real coordinates (uj , vj) on an
eigenspace Ei and α, β are real functions, we may write ujα + vjβ uniquely in
the form zja + z̄j ā, where zj = uj + ıvj , and a = (α − ıβ)/2. Similar formu-
las hold for mixed terms xjykH. It follows just as before that we can write
f ∈ Cr(Σ1), f(0) = 0, as a sum of real-valued functions defined using complex
coordinates.

We define the differential operators ∂zj
= 1

2( ∂
∂uj

−ı ∂
∂vj

), ∂z̄j
= 1

2( ∂
∂uj

+ı ∂
∂vj

).
With respect to these operators we have the usual derivative formula

a(z0 + z) = a(z0) +
∑

j

(
∂zj

a(z0)z + ∂z̄j
a(z0)z̄

)
+ o(|z|).

Let 1 ≤ j ≤ S. We define C̄j : E1 → Ej by C̄j(u) = Cj(u), u ∈ E1, where
Cj are the components of C : E1 → E

s. (In terms of coordinates on E1, Ej ,
this amounts to multiplying the second row of the matrix of Cj by −1.) We
similarly define D̄j , 1 ≤ j ≤ T .

With these preliminaries out of the way, the computations used to prove
Lemma 4.2 go through much as before. For Ψ0 ∈ V∞ we find that AN (Ψ0, f) =
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Re(E(μN
1 )) + o(γN ), where the R-linear map E : E1 → C can be computed

explicitly as in Subsection 4.2. In particular, E depends continuously on f

and is typically nonvanishing. Since μ1 = γeıθ is complex, we may write
Re(E(μN

1 )) = EγN cos(Nθ + θ0), where θ, θ0 ∈ [0, 2π) and E ∈ R with θ �=
0, π. For Ψ sufficiently C2-close to Ψ0, we obtain AN (Ψ, f) = Re(EN (μN

1 )) +
o(γN ), where the R-linear maps EN : E1 → C converge uniformly to E as
‖Ψ − Ψ0‖2 → 0. Hence we may write Re(EN (μN

1 )) = ENγN cos(Nθ + ϕN ),
where |ϕN − θ0| ≤ π/12 and |EN | is bounded away from zero.
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