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The Hopf condition for bilinear forms
over arbitrary fields

By Daniel Dugger and Daniel C. Isaksen

Abstract

We settle an old question about the existence of certain ‘sums-of-squares’
formulas over a field F , related to the composition problem for quadratic forms.
A classical theorem says that if such a formula exists over a field of charac-
teristic 0, then certain binomial coefficients must vanish. We prove that this
result also holds over fields of characteristic p > 2.

1. Introduction

Fix a field F . A classical problem asks for what values of r, s, and n do
there exist identities of the form

( r∑

i=1

x2
i

)
·
( s∑

i=1

y2
i

)
=

n∑

i=1

z2
i(1.1)

where the zi’s are bilinear expressions in the x’s and y’s. Equation (1.1) is to
be interpreted as a formula in the polynomial ring F [x1, . . . , xr, y1, . . . , ys]; we
call it a sums-of-squares formula of type [r, s, n].

The question of when such formulas exist has been extensively studied:
[L] and [S1] are excellent survey articles, and [S2] is a detailed sourcebook. In
this paper we prove the following result, solving Problem C of [L]:

Theorem 1.2. If F is a field of characteristic not equal to 2, and a sums-
of-squares formula of type [r, s, n] exists over F , then

(n
i

)
must be even for

n − r < i < s.

We now give a little history. It is common to let r∗F s denote the smallest
n for which a sums-of-squares formula of type [r, s, n] exists. Many papers
have studied lower bounds on r ∗F s, but for a long time such results were
known only for fields of characteristic 0: one reduces to a geometric problem
over R, and then topological methods are used to obtain the bounds (see [L]
for a summary). In this paper we begin the process of extending such re-
sults to characteristic p, replacing the topological methods by those of motivic
homotopy theory.



944 DANIEL DUGGER AND DANIEL C. ISAKSEN

The most classical result along these lines is Theorem 1.2 for the particular
case F = R, which leads to lower bounds for r ∗R s. It seems to have been
proven in three places, namely [B], [Ho], and [St]; but in modern times the
given condition on binomial coefficients is usually called the ‘Hopf condition’.
The paper [S1] gives some history, and explains how K. Y. Lam and T. Y.
Lam deduced the condition for arbitrary fields of characteristic 0. Problem
C of [L, p. 188] explicitly asked whether the same condition holds over fields
of characteristic p > 2. Work on this question had previously been done by
Adem [A1], [A2] and Yuzvinsky [Y] for special values of r, s, and n. In [SS]
a weaker version of the condition was proved for arbitrary fields and arbitrary
values of r, s, and n.

Stiefel’s proof of the condition for F = R used Stiefel-Whitney classes;
Behrend’s (which worked over any formally real field) used some basic inter-
section theory; and Hopf deduced it using singular cohomology. Our proof of
the general theorem uses a variation of Hopf’s method and motivic cohomol-
ogy. It can be regarded as purely algebraic—at least, as ‘algebraic’ as things
like group cohomology and algebraic K-theory. These days it is perhaps not
so clear that there exists a point where topology ends and algebra begins.

We now explain Hopf’s proof, and our generalization, in more detail.
Given a sums-of-squares formula of type [r, s, n], one has in particular a bi-
linear map φ : F r ×F s → Fn given by (x1, . . . , xr; y1, . . . ys) %→ (z1, . . . , zn). If
we let q be the quadratic form on F k given by q(w1, . . . , wk) = w2

1 + · · ·+ w2
k,

then we have q(φ(x, y)) = q(x)q(y). When F = R one has that q(w) = 0 only
when w = 0, and so φ restricts to a map (Rr − 0) × (Rs − 0) → (Rn − 0).
The bilinearity of φ tells us, in particular, that we can quotient by scalar-
multiplication to get RPr−1 × RPs−1 → RPn−1.

On mod 2 cohomology this gives Z/2[x]/xn → Z/2[a]/ar ⊗Z/2[b]/bs, and
the bilinearity of φ shows that x %→ a + b. Since xn = 0 and we have a ring
map, it follows that (a + b)n = 0 in the target ring. The Hopf condition falls
out immediately.

This proof used, in a seemingly crucial way, the fact that over R a sum of
squares is 0 only when all the numbers were zero to begin with. This of course
does not work over fields of characteristic p (or over C, for that matter). Our
bilinear form gives us a map of schemes φ : Ar × As → An, but we cannot say
that it restricts to (Ar − 0) × (As − 0) → (An − 0) as we did above.

To remedy the situation, let Qk denote the projective quadric in Pk+1

defined by the equation w2
1 + · · · + w2

k+2 = 0. The bilinear map φ induces

(Pr−1 − Qr−2) × (Ps−1 − Qs−2) → (Pn−1 − Qn−2).

In effect, we have removed all possible numbers whose sum-of-squares would
give us zero. Let DQk denote the deleted quadric Pk −Qk−1 (our convention is
that the subscript on a scheme always denotes its dimension). We will compute
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the mod 2 motivic cohomology of DQk (Theorem 2.3), find that it is close to
being a truncated polynomial algebra, and repeat Hopf’s argument in this new
context. As an amusing exercise (cf. [Ln, 6.3]) one can show that over the field
C the space DQk—with the complex topology—has the same homotopy type
as RPk; so our argument is in some sense ‘the same’ as Hopf’s in this case.

The idea of using deleted quadrics to deduce the Hopf condition first
appeared in [SS]. In that paper the Chow groups of the deleted quadrics
were computed, but these are only enough to deduce a weaker version of the
Hopf condition (one that is approximately half as powerful). This is explained
further in Remark 2.7. On the other hand, we should point out that the
full power of motivic cohomology is not completely necessary in this paper:
one can also derive the Hopf condition using étale cohomology, by the same
arguments (see Remark 2.8). Since in this case computing étale cohomology
involves exactly the same steps as computing motivic cohomology, we have
gone ahead and computed the stronger invariant.

1.3. Organization. Section 2 shows how to deduce the Hopf condition
from a few easily stated facts about motivic cohomology. Section 3 outlines
in more detail the basic properties of motivic cohomology needed in the rest
of the paper. This list is somewhat extensive, but our hope is that it will be
accessible to readers not yet acquainted with the motivic theory—most of the
properties are analogs of familiar things about singular cohomology. Finally,
Section 4 carries out the necessary calculations. We also include an appendix
on the Chow groups of quadrics, as several facts about these play a large role
in the paper.

2. The basic argument

Because of the nature of the computations that we will make, we use
slightly different definitions for the varieties Qn and DQn than those in Sec-
tion 1. These definitions will remain in effect for the entire paper. Unfortu-
nately, the usefulness of these choices will not become clear until Section 4.

From now on the field F is always assumed not to have characteristic 2.

Definition 2.1. When n = 2k, let Qn be the projective quadric in Pn+1

defined by the equation a1b1 + a2b2 + · · · + ak+1bk+1 = 0. When n = 2k + 1,
let Qn be the projective quadric in Pn+1 defined by the equation a1b1 + a2b2 +
· · · + ak+1bk+1 + c2 = 0. In either case, let DQn+1 be Pn+1 − Qn.

Note that Q0 is isomorphic to Spec F'Spec F , and Q1
∼= P1. One possible

isomorphism P1 → Q1 sends [x, y] to [−x2, y2, xy].
Occasionally we will need to equip DQn+1 with a basepoint, in which case

we will always choose [1, 1, 0, 0, . . . , 0] (although the choice turns out not to
matter).
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Lemma 2.2. Suppose that the ground field F has a square root of −1 (call
it i). Then Qn is isomorphic to the projective quadric in Pn+1 defined by the
equation w2

1 + · · · + w2
n+2 = 0.

Proof. When n = 2k, use the change of coordinates aj = w2j−1 + iw2j ,
bj = w2j−1 − iw2j . When n = 2k + 1, use the same formulas as above for
1 ≤ j ≤ k + 1 and also let c = wn+2.

We regard P2k ↪→ P2k+1 as the subscheme defined by ak+1 = bk+1, and we
regard P2k−1 ↪→ P2k as the subscheme defined by c = 0. These choices have
the advantage that they give us inclusions Qn−2 ↪→ Qn−1 and DQn−1 ↪→ DQn.

The following theorem states the computation of the motivic cohomology
ring H∗,∗(DQn; Z/2). In order to understand the statement, the reader needs
to know just a few basic facts about motivic cohomology; a more complete ac-
count of these facts appears in Section 3. First, H∗,∗(−; Z/2) is a contravariant
functor defined on smooth F -schemes, taking its values in bi-graded commu-
tative rings of characteristic 2. If we set M2 = H∗,∗(Spec F ; Z/2), the map
induced by X → Spec F makes H∗,∗(X; Z/2) into an M2-algebra. It is known
that M0,0

2
∼= Z/2, M0,1

2
∼= Z/2, and the generator τ ∈ M0,1

2 is not nilpotent.

Theorem 2.3. Assume that every element of F is a square and that
char(F ) += 2.

(a) If n = 2k + 1 then H∗,∗(DQn; Z/2) ∼= M2[a, b]/(a2 = τb, bk+1), where a
has degree (1, 1) and b has degree (2, 1).

(b) If n = 2k then H∗,∗(DQn; Z/2) ∼= M2[a, b]/(a2 = τb, bk+1, abk) where a
and b are as in part (a).

(c) The map H∗,∗(DQn+1; Z/2) → H∗,∗(DQn; Z/2) sends a to a, and b to b.

In fact, b is the unique nonzero class in H2,1, and a is the unique nonzero
class in H1,1 that becomes zero when restricted to the basepoint Spec F →
DQn. These facts are needed below in the proof of Proposition 2.5. See the
comments before Proposition 4.6 for more details.

Note that if τ were equal to 1 then the above rings would be truncated
polynomial algebras (in analogy with the singular cohomology of RPn).

A more general version of this theorem, without any assumptions on F ,
appears as Theorem 4.9. The proof is slightly involved, and so will be deferred
until Section 4. However, let us at least record how the above statements follow
from the more general version:

Proof. If every element of F is a square, then M1,1
2 = 0 (see Section 3.2).

Therefore, in Theorem 4.9 both ρ and ε are zero. This gives us the formulas
in part (a) and (b). Part (c) is Proposition 4.6.
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For us, the most important consequence of the theorem is the following:

Corollary 2.4. In H∗,∗(DQn; Z/2) we have an+1 = 0 and ai += 0 for
i ≤ n.

Proof. The claims are immediate from the calculation since all the powers
of τ are nonzero.

Proof of Theorem 1.2. Suppose we have a sums-of-squares formula of type
[r, s, n] over F . This remains true if we extend F , and so we may as well
assume that every element of F is a square. Therefore, Theorem 2.3 applies.

As explained in Section 1, the sums-of-squares formula gives a map
p : DQr−1×DQs−1 → DQn−1 (this uses Lemma 2.2) and we will consider the in-
duced map on motivic cohomology. There is a Künneth formula for computing
motivic cohomology of products of certain ‘cellular’ varieties (see Proposition
3.9), and the deleted quadrics belong to this class by Proposition 4.2. In order
to apply Proposition 3.9, we also have to observe that H∗,∗(DQr−1; Z/2) is free
over M2, which is apparent from Theorem 2.3.

Therefore p∗ is a map

H∗,∗(DQn−1; Z/2) → H∗,∗(DQr−1; Z/2) ⊗M2 H∗,∗(DQs−1; Z/2).

We will use the letters a and b to denote the generators of H∗,∗(DQn−1; Z/2), a1

and b1 for the generators of H∗,∗(DQr−1; Z/2), and a2 and b2 for the generators
of H∗,∗(DQs−1; Z/2).

We show in the following proposition that p∗(a) = a1 + a2. Since the
above corollary says that an = 0, it will follow that (a1 + a2)n = 0. Using the
corollary again, this can only happen if

(n
i

)
is even for n − r < i < s.

Proposition 2.5. Suppose that F is a field of characteristic not 2 in
which every element is a square. If p∗, a, a1, and a2 are as in the above proof,
then p∗(a) = a1 + a2.

Before we can give the proof, we need to state a few more properties of
motivic cohomology. Once again, more details are given in Section 3. First,
Mp,q

2 is nonzero only in the range q ≥ 0. Second, when every element of F
is a square one has M1,1

2 = 0. Finally, motivic cohomology is A1-homotopy
invariant in the following sense. Let i0 and i1 denote the inclusions {0} ↪→
A1 and {1} ↪→ A1, respectively. If H : X × A1 → Y is a map of smooth
schemes, then the composites H(Id× i0) and H(Id× i1) induce the same map
H∗,∗(Y ; Z/2) → H∗,∗(X; Z/2). Such a map H is called an A1-homotopy from
H(Id × i0) to H(Id × i1).

Proof. Because p∗(a) has degree (1, 1), it must be of the form ε1a1+ε2a2+
m · 1, where m belongs to M1,1

2 and ε1 and ε2 belong to M0,0
2

∼= Z/2. Since
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M1,1
2 = 0 under our assumptions on F , we can ignore m. To show that ε1 = 1,

in light of Theorem 2.3(c) it would suffice to verify that the map

DQ1 × {∗} → DQr−1 × DQs−1 → DQn−1

is A1-homotopic to the standard inclusion DQ1 ↪→ DQn−1. (A similar argu-
ment will show that ε2 = 1.) Actually we will not quite do this, but instead
verify that the composition

j : DQ1 × {∗} → DQr−1 × DQs−1 → DQn−1 ↪→ DQn+1

is A1-homotopic to the standard inclusion. By Theorem 2.3(c) again, this is
enough.

For the rest of this section we will use the coordinates w1, . . . , wn+2 on
Pn+1 given in Lemma 2.2. Recall that φ is our bilinear map F r × F s → Fn.
Let e1, . . . , ek be the standard basis for F k, and let φ(e1, e1) = (u1, . . . , un)
and φ(e2, e1) = (v1, . . . , vn). Then the map j : DQ1 → DQn+1 has the form

[a, b] %→ [u1a + v1b, u2a + v2b, . . . , una + vnb, 0, 0],

and the sums-of-squares formula satisfied by φ tells us that

u2
1 + · · · + u2

n = 1, v2
1 + · · · + v2

n = 1, and u1v1 + · · · + unvn = 0.

Note that the standard inclusion DQ1 ↪→ DQn+1 has the same description
but where (u1, . . . , un) = (1, 0, . . . , 0) and (v1, . . . , vn) = (0, 1, 0, . . . , 0). The
following lemma gives the desired A1-homotopy, since both the map j and the
standard inclusion are homotopic to the map [a, b] %→ [0, 0, . . . , 0, a, b].

For the following statement, recall that we are still using the coordinates
on Pn+1 given by Lemma 2.2.

Lemma 2.6. Suppose that F contains a square root of −1. Let u and v
be vectors in Fn such that Σju2

j = 1 = Σjv2
j and Σjujvj = 0. Then the map

f : DQ1 → DQn+1 given by

[a, b] %→ [u1a + v1b, u2a + v2b, . . . , una + vnb, 0, 0]

is A1-homotopic to the map [a, b] %→ [0, 0, . . . , 0, a, b].

Proof. Let i be a square root of −1. First define a homotopy DQ1×A1 →
DQn+1 by the formula

([a, b], t) %→ [u1a + v1b, u2a + v2b, . . . , una + vnb, ta − tib, tia + tb].

This shows that f is homotopic to g, where g is the map

[a, b] %→ [u1a + v1b, u2a + v2b, . . . , una + vnb, a − ib, ia + b].

Now define another homotopy DQ1 × A1 → Pn+1 by the formula

([a, b], t) %→ [tu1a + tv1b, tu2a + tv2b, . . . , tuna + tvnb, a − tib, tia + b].
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The assumptions on the u’s and v’s imply that the sum of the squares in the
image is exactly equal to a2+b2, which is nonzero because [a, b] lies in DQ1. So
this is actually a homotopy DQ1 ×A1 → DQn+1, showing that g is homotopic
to the desired map.

Remark 2.7. In [SS] a weaker version of the Hopf condition was obtained
by computing the Chow ring CH∗(DQn), which essentially corresponds to the
subring of H∗,∗(DQn; Z/2) generated by b (see Property (A) in Section 3). This
amounts to seeing about half of what motivic cohomology sees.

Remark 2.8. When F has a square root of −1, a theorem of [Lv] says that
the étale cohomology ring H∗

et(DQn; µ⊗∗
2 ) is isomorphic to

H∗,∗(DQn; Z/2)[τ−1] ∼= H∗,∗(DQn; Z/2) ⊗M2 M2[τ−1]

(see Property (I) below). Since H∗,∗(DQn; Z/2) is free over M2, this local-
ization is particularly simple: it is precisely a truncated polynomial algebra
M2[τ−1][a]/an+1. So the Hopf condition could have been proven using étale
cohomology.

Remark 2.9. When every element of F is a square, it follows from the
proof of the Milnor conjecture [V2] that M2

∼= Z/2[τ ]. We never needed this,
but it is useful to keep in mind.

3. Review of motivic cohomology

The theory now called motivic cohomology was first developed in two main
places, namely [Bl1] and [VSF] (together with many associated papers). The
paper [V3] proved that the two approaches give isomorphic theories. Below
we recall the basic properties of motivic cohomology needed in the paper. For
various reasons it is difficult to give simple references to [VSF] so most of our
citations will be to [SV, Sec. 3] and the lecture notes [MVW].

3.1. Basic properties. For every field F , motivic cohomology is a con-
travariant functor H∗,∗(−) from the category of smooth schemes of finite type
over F to the category of bi-graded commutative rings. Commutativity means
that if a ∈ Hp,q(X) and b ∈ Hs,t(X) then ab = (−1)psba. For the basic con-
struction we refer the reader to [SV, Sec. 3] or [MVW, Sec. 3]. The list of
properties below is far from complete, and in some cases we only give crude
versions of more interesting properties—but this is all we will need in the
present paper.

The scheme Spec F will often be denoted by “pt”, and we denote H∗,∗(pt)
by M. The ring M can be very complicated (and is, in general, unknown). The



950 DANIEL DUGGER AND DANIEL C. ISAKSEN

motivic cohomology of a scheme is naturally a graded-commutative algebra
over M.

Property A. The graded subring ⊕nH2n,n(X) is naturally isomorphic to
the Chow ring CH∗(X) [Bl1, p. 268], [MVW, p. 4; Lect. 17].

In particular, M0,0 = Z. In general, H∗,∗(X) is isomorphic to the higher
Chow groups of X [V3, Cor. 1.2].

Property B. For a closed inclusion j : Z ↪→ X of smooth schemes of
codimension c, there is a long exact sequence of the form

· · · → H∗−2c,∗−c(Z) j!−→ H∗,∗(X) → H∗,∗(X − Z) → H∗−2c+1,∗−c(Z) → · · · .

The map j! is called the ‘Gysin map’ or the ‘pushforward’, and it is a map
of M-modules. The long exact sequence is called the Gysin, localization, or
purity sequence [Bl1, Sec. 3], [Bl2].

Property C. Let i0 and i1 denote the inclusions {0} ↪→ A1 and {1} ↪→
A1, respectively. If H : X × A1 → Y is a map of smooth schemes, then the
composites H(Id×i0) and H(Id×i1) induce the same map H∗,∗(Y ) → H∗,∗(X).
Such a map H is called an A1-homotopy from H(Id × i0) to H(Id × i1) [Bl1,
Sec. 2], [SV, Prop. 4.2].

Property D. H∗,∗(Pn) = M[t]/(tn+1), where t has degree (2, 1) [SV,
Prop. 4.4].

Property E. If E → B is an algebraic fiber bundle (i.e., a map which is
locally a product in the Zariksi topology) whose fiber is an affine space An,
then H∗,∗(B) → H∗,∗(E) is an isomorphism.

Property (E) is easy to prove by induction on the size of a trivializing
cover, and by use of the Mayer-Vietoris sequence [SV, Prop. 4.1] together with
Property (C).

Property F. Mp,q = 0 if q < 0, if p > q ≥ 0, or if q = 0 and p < 0 [MVW,
p. 4; Th. 3.5].

Property G. M1,1 = F ∗ and M0,1 = 0 [Bl1, Th. 6.1], [MVW, p. 4,(2)].

3.2. Finite coefficients. For every n ∈ Z there is also a theory H∗,∗(−; Z/n)
which is related to H∗,∗(−) by a natural long exact sequence of the form

· · · → H∗,∗(X) ×n−→ H∗,∗(X) → H∗,∗(X; Z/n) → H∗+1,∗(X) ×n−→ · · · .(3.3)

For the definition see [MVW, Def. 3.4]. The theory satisfies the analogs of
Properties (B) through (F) above.
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Let M2 denote H∗,∗(pt; Z/2). Since M may contain 2-torsion, M2 is not
necessarily the same as M/(2)—rather, there is a long exact sequence of the
form

· · · → Mp,q ×2−→ Mp,q → Mp,q
2 → Mp+1,q → · · · .

This sequence, together with Property (F) and the fact that M0,0 = Z, tells us
that M0,0

2 = Z/2. Note that H∗,∗(X; Z/2) is naturally a commutative algebra
over M2.

Since M1,1 = F ∗ and M0,1 = M2,1 = 0, we get the exact sequence

0 → M0,1
2 → F ∗ ×2−→ F ∗ → M1,1

2 → 0(3.4)

where the map F ∗ → F ∗ sends x to x2. The usual notation is to let τ ∈ M0,1
2

denote the class which maps to −1, and to let ρ ∈ M1,1
2 denote the image of

−1. If F has a square root of −1 then ρ = 0. Moreover, if every element of F
is a square then M1,1

2 = 0.

3.5. The Bockstein. The Bockstein map β : H∗,∗(−; Z/2)→H∗+1,∗(−; Z/2)
is defined in the usual manner from the maps in the sequence (3.3). A direct
consequence of the definition (as in topology) is that β2 = 0. Note that
β(τ) = ρ.

Property H. For all a, b ∈ H∗,∗(X; Z/2), β(ab) = β(a)b + aβ(b) [Lv,
Lem. 6.1].

3.6. Relation with étale cohomology. There is a natural map of bi-graded
rings η : H∗,∗(X; Z/n) → H∗

et(X; µ⊗∗
n ) (cf. [MVW, Th. 10.2], for example). In

the case n = 2, the element τ maps to the class of −1 in H0
et(pt; µ2) ∼= {1,−1},

and multiplication by this class is an isomorphism on étale cohomology. Note in
particular that this implies that the powers of τ are all nonzero in H0,∗(pt; Z/2).

Property I. The induced map H∗,∗(X; Z/2)[τ−1] → H∗
et(X; µ⊗∗

2 ) is an
isomorphism for any smooth scheme X, provided that F has a square root of
−1 [Lv].

The construction of the map η from [MVW] makes it clear that the Bock-
stein on H∗,∗(−; Z/2) (which can be regarded as induced by the extension
0 → Z/2 → Z/4 → Z/2 → 0) is compatible with the Bockstein on étale coho-
mology induced by 0 → µ2 → µ4 → µ2 → 0. If the field contains a square root
of −1 then we can identify µ4 with Z/4, and of course µ2 with Z/2. These
observations will be used in the proof of Theorem 4.9.

3.7. Reduced cohomology. Given any basepoint of a scheme X (i.e., a map
pt → X), the kernel of the induced map H∗,∗(X) → H∗,∗(pt) is the reduced
cohomology of X and is denoted by H̃∗,∗(X). A similar definition applies



952 DANIEL DUGGER AND DANIEL C. ISAKSEN

with Z/n-coefficients. The above map has a splitting (induced by X → pt),
and thus H∗,∗(X) ∼= M ⊕ H̃∗,∗(X) as M-modules. Similarly, H∗,∗(X; Z/2) ∼=
M2 ⊕ H̃∗,∗(X; Z/2) .

3.8. A Künneth theorem. Let C denote the smallest class of smooth
schemes satisfying the following properties:

(1) C contains the affine spaces Ak.

(2) If Z ↪→ X is a closed inclusion of smooth schemes and C contains two of
X, Z, and X − Z, then it also contains the third.

(3) If E → B is an algebraic fiber bundle whose fiber is an affine space, then
E ∈ C if and only if B ∈ C.

The following result is a modest generalization of [J, Th. 4.5], and can be
proven using the same techniques. A complete proof, for a more general class
of schemes than C, is given in [DI, Th. 8.12].

Proposition 3.9. Suppose X and Y are smooth schemes, with at least
one of them belonging to C. If either H∗,∗(X) or H∗,∗(Y ) is free as an
M-module, then there is a Künneth isomorphism of bi-graded rings

H∗,∗(X) ⊗M H∗,∗(Y ) ∼= H∗,∗(X × Y ).

Similarly, if either H∗,∗(X; Z/n) or H∗,∗(Y ; Z/n) is free as an H∗,∗(pt; Z/n)-
module, then there is a Künneth isomorphism of bi-graded rings

H∗,∗(X; Z/n) ⊗H∗,∗(pt;Z/n) H∗,∗(Y ; Z/n) ∼= H∗,∗(X × Y ; Z/n).

4. Computations

In this section F is an arbitrary ground field not of characteristic 2. We
will study the quadrics Qn and DQn. Note that in this generality Lemma
2.2 does not apply; therefore, Qn and DQn cannot necessarily be redefined in
terms of sums of squares. We assume char(F ) += 2 so that Qn is smooth for all
n, not just even n.

Proposition 4.1. If n is odd, H∗,∗(Qn) is a free module over M with
generators in degrees (0, 0), (2, 1), (4, 2), . . . , (2n, n). If n is even, H∗,∗(Qn)
is a free M-module with generators in degrees (0, 0), (2, 1), . . . , (2n, n) plus an
extra generator in degree (n, n

2 ).

Proof. The proof is by induction. The result for Q0 is obvious, and the
result for Q1

∼= P1 is Property (D).
Except for the base cases in the previous paragraph, the argument for

the odd and even cases is identical. We give details only for the even case,
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and let n = 2k. Let Z be the (n − 1)-dimensional subscheme defined by
a1 = 0, and let U = Qn − Z. Note that Z is singular (it is the projective
cone on Qn−2), and that U ∼= An. Let Q′ = Qn − {[0, 1, 0, 0, . . . , 0]}, and let
Z ′ = Z−{[0, 1, 0, 0, . . . , 0]}. Then Z ′ ↪→ Q′ is a smooth pair, with complement
An. So the localization sequence for Z ′ ↪→ Q′ gives an isomorphism H̃∗,∗(Q′) ∼=
H∗−2,∗−1(Z ′). The projection map Z ′ → Qn−2 which forgets the first two
homogeneous coordinates is a fiber bundle with fiber A1; hence H∗,∗(Z ′) ∼=
H∗,∗(Qn−2) by Property (E).

Taking the computations of the previous paragraph together, we conclude
that H∗,∗(Q′) ∼= M ⊕ H∗−2,∗−1(Qn−2). By induction, this is free over M with
one generator in each degree (0, 0), (2, 1), . . . , (2n − 2, n − 1) plus an extra
generator in degree (n, n

2 ).
Finally, we consider the localization sequence for {[0, 1, 0, . . . , 0]} ↪→ Qn.

This has the form

· · · ← H∗−2n+1,∗−n(pt) δ←− H∗,∗(Q′) ← H∗,∗(Qn) ← H∗−2n,∗−n(pt) ← · · · .

The generators for H∗,∗(Q′) (as an M-module) must map to zero under δ for
dimension reasons. It follows that

0 ← H∗,∗(Q′) ← H∗,∗(Qn) ← H∗−2n,∗−n(pt) ← 0

a short exact sequence of M-modules, in which the outer terms are known to
be free. So the middle term is a direct sum of the outer terms. The right term
provides a generator of degree (2n, n), and the left term provides the rest of
the generators.

The above proof also shows the following:

Proposition 4.2. The schemes Qn and DQn belong to the class C from
Section 3.8.

Proof. If one knows by induction that Qn−2 belongs to C then so do Z ′,
Q′, and Qn, in that order.

The fact that projective spaces belong to the class C is trivial: one uses
the standard algebraic cell decomposition (cf. [F, 1.9.1]). Then since Qn−1

and Pn are both in C, so is DQn.

By Proposition 4.1, in order to understand the ring structure on H∗,∗(Qn)
it suffices just to understand the subring H2∗,∗(Qn) ∼= CH∗(Qn), because the
M-algebra generators lie in degrees (2∗, ∗). The computation of this Chow
ring is well-known; the additive computation can be found in [Sw, 13.3], for
instance, and the ring structure is stated in [KM]. For the reader’s conve-
nience, and because we need several of the auxiliary facts, we give a complete
account in Appendix A. These ideas lead to the following result, whose proof
is essentially the content of Theorem A.4 and Theorem A.10.
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Proposition 4.3.

(a) If n = 2k + 1, then as a ring H∗,∗(Qn) = M[x, y]/(xk+1 − 2y, y2) where
x has degree (2, 1) and y has degree (2k + 2, k + 1).

(b) If n = 2k and k is odd, then H∗,∗(Qn) = M[x, y]/(xk+1 − 2xy, y2) where
x has degree (2, 1) and y has degree (2k, k).

(c) If n = 2k and k is even, then H∗,∗(Qn) = M[x, y]/(xk+1 − 2xy, y2 −xky)
where x has degree (2, 1) and y has degree (2k, k).

We will now consider the motivic cohomology of the deleted quadrics DQn.
The idea is to use the localization sequence

· · · H∗−1,∗−1(Qn−1)!! H∗,∗(DQn)!! H∗,∗(Pn)i∗!! H∗−2,∗−1(Qn−1)
j!!! · · ·!! .

(4.4)

By Proposition 4.1 the cohomology of Qn−1 has generators as an M-module
in degrees (2∗, ∗), so we can completely determine the M-module map j! just
by understanding the pushforward map CH∗−1(Qn−1) → CH∗(Pn) of Chow
groups. For the quadrics, this is discussed in detail in the appendix: all maps
are either the identity or multiplication by 2. However, a problem now occurs.
Because the ground ring M might have 2-torsion, the kernel and cokernel of
j! will not necessarily be free over M—so we run into complicated extension
problems. As a result, we have not been able to compute the integral motivic
cohomology of DQn. The problem goes away if we work with Z/2 coefficients.

Proposition 4.5. If F is a field with char(F ) += 2, then H∗,∗(DQn; Z/2)
is a free M2-module with one generator in degree (i, / i

20) for each 0 ≤ i ≤ n,
where / i

20 is the smallest integer that is at least i
2 .

Proof. The argument from Proposition 4.1 shows that H∗,∗(Qn−1; Z/2) is
free over M2 on the same set of generators as before, and the map of subrings
H2∗,∗(Qn−1) → H2∗,∗(Qn−1; Z/2) is just quotienting by the ideal (2).

By Lemma A.6, we know that the Gysin map

j! : H2i,i(Qn−1) → H2i+2,i+1(Pn)

is multiplication by 2 for 0 ≤ i < n−1
2 , and is an isomorphism for n−1

2 < i ≤
n − 1. If n is odd, then it is the fold map Z ⊕ Z → Z for i = n−1

2 .
The goal is to use the Z/2-analog of (4.4), so we first have to under-

stand the Gysin map j! with Z/2-coefficients. Since H2∗,∗(Qn−1; Z/2) and
H2∗,∗(Pn; Z/2) are both obtained from integral cohomology simply by quoti-
enting by the ideal (2), it follows that the Gysin map with Z/2-coefficients is an
isomorphism, zero, or the fold map in all degrees (2∗, ∗). Since the generators
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(as M2-modules) live in these degrees, we find that the kernel and cokernel of
j! : H∗,∗(Qn−1; Z/2) → H∗,∗(Pn; Z/2) are both free over M2.

If n = 2k, then the generators for coker j! are in degrees (0, 0), (2, 1),
(4, 2), . . . , (2k, k), and the generators for ker j! are in degrees (0, 0), (2, 1), . . . ,
(2k − 2, k − 1). If n = 2k + 1, then the generators are the same, except that
ker j! has another generator in degree (2k, k).

From the Z/2-analog of (4.4), we have the short exact sequence

0 ← ker j! ← H∗,∗(DQn; Z/2) ← coker j! ← 0.

It follows that the middle group is also free over M2. Be aware that the left
map shifts degrees by (−1,−1).

We know M0,0
2

∼= Z/2. From Property (F) it follows that Mp,q
2 = 0 if

q < 0, if q = 0 and p < 0, or if p > q ≥ 0. So the above calculation shows
that H1,1(DQn; Z/2) ∼= M1,1

2 ⊕ M0,0
2 , where the first summand comes from

the motivic cohomology of SpecF . Hence, there is a unique nonzero element
a ∈ H̃1,1(DQn; Z/2). When n > 1 the calculation gives H2,1(DQn; Z/2) ∼=
Z/2, and we let b denote the unique nonzero element. For n = 1 we have
DQ1

∼= A1 − 0, and it is known that H2,1(A1 − 0; Z/2) = 0 (see, for instance,
[V1, Lem. 6.8]). In this case we define b = 0 by convention.

Proposition 4.6. The map H∗,∗(DQn+1; Z/2) → H∗,∗(DQn; Z/2) in-
duced by the inclusion takes a to a and b to b.

Proof. In light of the definitions of a and b in the previous paragraph, we
just need to show that H i,1(DQn+1; Z/2) → H i,1(DQn; Z/2) is surjective for
i = 1 or i = 2. Consider the diagram

H i+1,1(Pn+1; Z/2)

""

H i−1,0(Qn; Z/2)

""

!! H i,1(DQn+1; Z/2)

""

!! H i,1(Pn+1; Z/2)

""

!!

H i+1,1(Pn; Z/2) H i−1,0(Qn−1; Z/2)!! H i,1(DQn; Z/2)!! H i,1(Pn; Z/2)!!

in which the rows are localization sequences. The left and right vertical maps
are isomorphisms. Finally, the cohomology groups of the quadrics are both
isomorphic to Mi−1,0

2 , and the map between them is the identity. It follows
from a diagram chase that the desired map is surjective.

Lemma 4.7. β(a) = b in H∗,∗(DQn; Z/2), where β is the Bockstein.

Proof. We look at the long exact sequence

· · · → H1,1(DQn) ×2−→ H1,1(DQn) → H1,1(DQn; Z/2) δ−→ H2,1(DQn) → · · · .

The localization sequence (4.4) for integral cohomology, together with the iden-
tification of j! in Lemma A.6, show that DQn ↪→ Pn induces an isomorphism
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on H1,1(−; Z). It follows that if a were the mod 2 reduction of an integral class,
it would also be the image of a class in H1,1(Pn; Z/2). But ∗ ↪→ Pn induces an
isomorphism on H1,1(−; Z/2), whereas the class a in H1,1(DQn; Z/2) restricts
to zero on the basepoint. We conclude that a cannot be the mod 2 reduction
of an integral class, and therefore δ(a) is nonzero.

The sequence (4.4) (again with our knowledge of j!) also shows that
H2,1(DQn; Z) is isomorphic to Z/2, with the generator in the image of the
map H2,1(Pn; Z) → H2,1(DQn; Z). It follows that δ(a) is the unique nonzero
element of H2,1(DQn; Z), and the mod 2 reduction of δ(a) is b.

We need one more lemma before stating the final result.

Lemma 4.8. H2k+1,k+1(DQ2k+2; Z/2) → H2k+1,k+1(DQ2k+1; Z/2) is in-
jective.

Proof. Consider the diagram

H2k,k(Q2k+1; Z/2)

""

H2k+1,k+1(DQ2k+2; Z/2)

""

!! H2k+1,k+1(P2k+2; Z/2)

""

!! !!

H2k,k(Q2k; Z/2) H2k+1,k+1(DQ2k+1; Z/2)!! H2k+1,k+1(P2k+1; Z/2)!! f!!

in which the rows are portions of localization sequences. We first claim that the
map labelled f (in the lower right corner) is zero. Note that the domain of f is
H2k−1,k(Q2k; Z/2) ∼= M1,1

2 x where x is the generator of H2k−2,k−1(Q2k; Z/2) ∼=
CHk−1(Q2k) ⊗ Z/2. The codomain is isomorphic to M1,1

2 · y, where y is the
generator of H2k,k(P2k+1; Z/2) ∼= CHk(P2k+1) ⊗ Z/2. These two facts follow
from Proposition 4.1 and Properties (D) and (F). The map f is a Gysin map,
and is therefore a map of M2-modules. But the Gysin map takes x to 2y by
Lemma A.6, and so after reducing mod 2 the image of x is zero.

Now note that the right-most vertical map is an isomorphism. A diagram
chase would give us the desired result, if we knew that the left vertical map was
injective. But this map equals the mod 2 reduction of the map CHk(Q2k+1) →
CHk(Q2k). We look at the diagram

Z CHk(Q2k+1) ## CHk(Q2k) Z ⊕ Z

Z CHk(P2k+2)
∼= ##

∼=

$$

CHk(P2k+1)

$$

Z .

Proposition A.3 shows that the left vertical map is an isomorphism. Lemma A.9
identifies the right vertical map as the diagonal, and from that information the
result follows at once.

Theorem 4.9. Let F be a field with char(F ) += 2.
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(a) If n = 2k +1 then H∗,∗(DQn; Z/2) ∼= M2[a, b]/(a2 = ρa+ τb, bk+1) where
a has degree (1, 1) and b has degree (2, 1).

(b) If n = 2k, there exists an element ε in M1,1
2 such that H∗,∗(DQn; Z/2) ∼=

M2[a, b]/(a2 = ρa + τb, bk+1, abk = εbk) where a and b are as in (a).

Remark 4.10. We have not been able to identify the class ε in any non-
trivial case. This is not important for proving the Hopf condition, but it would
be satisfying to resolve the issue of whether ε is equal to 0, or ρ, or some other
element.

Proof. For convenience we will drop subscripts and superscripts: Q =
Qn−1, P = Pn, and DQ = DQn. We know H∗,∗(DQ; Z/2) additively by Propo-
sition 4.5, so that we just need to determine the ring structure.

Note that the map H2i,i(P) → H2i,i(DQ) is surjective because it is the map
CHi(P) → CHi(DQ). Therefore, the nonzero element t of H2,1(P; Z/2) goes to
the nonzero element b of H2,1(DQ; Z/2). Then ti maps to bi, and surjectivity
implies that bi must be the unique nonzero element in H2i,i(DQ; Z/2) for 1 ≤
i ≤ n

2 .
Lemma 4.7 showed that β(a) = b. Since β2 = 0 one has β(b) = 0, so

that Property (H) implies that β(abi) = bi+1. In particular abi is nonzero for
0 ≤ i ≤ n

2 − 1.
Now H̃1,1(DQ; Z/2) ∼= (M0,0

2 )a and H2i−1,i(DQ; Z/2) ∼= M0,0
2 ⊕ M1,1

2 bi−1

for 1 ≤ i ≤ n+1
2 , where the first factor arises from the generator in degree

(2i − 1, i). Property (H) and the fact that M2,1
2 = 0 implies that β(x) = 0 for

any x ∈ M1,1
2 bi−1. So we cannot have abi ∈ M1,1

2 bi−1.
Based on our knowledge of H∗,∗(DQ; Z/2) as an M2-module, we can now

conclude that when n = 2k the classes 1, b, b2, . . . , bk and a, ab, ab2, . . . , abk−1

are a free basis for H∗,∗(DQ; Z/2) over M2.
The argument is slightly harder when n = 2k + 1, because we must show

that abk is nonzero (even though its Bockstein is zero). However, we already
know that abk is nonzero in H∗,∗(DQn+1; Z/2). The map

H2k+1,k+1(DQn+1; Z/2) → H2k+1,k+1(DQn; Z/2)

is an injection by Lemma 4.8 and takes abk to abk by Proposition 4.6. It
follows that 1, b, . . . , bk, a, ab, . . . , abk is a free basis for H∗,∗(DQ; Z/2) when
n = 2k + 1.

We next identify a2. This part of the argument exactly parallels [V1,
pp. 20-21]. The class a2 ∈ H̃2,2(DQ; Z/2) must be a linear combination over
M2 of the elements a and b: a2 = Aa+Bb where A ∈ M1,1

2 and B ∈ M0,1
2

∼= Z/2.
To identify A it is sufficient to look at the image of a2 under H∗,∗(DQ; Z/2) →
H∗,∗(DQ1; Z/2), since Aa + Bb goes to Aa under this map by Proposition 4.6
and the fact that b = 0 in H∗,∗(DQ1; Z/2). Note that DQ1 is isomorphic to
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A1 − 0, and one knows that H∗,∗(A1 − 0; Z/2) ∼= M2[a]/(a2 = ρa) by [V1,
Lem. 6.8]. So A = ρ.

To identify B, let K be the field consisting of F with a square root of −1
adjoined (unless F already has a square root of −1, in which case K = F ). Let
DQK be the base change of DQ along the map SpecK → Spec F . Under the
induced map H∗,∗(DQ; Z/2) → H∗,∗(DQK ; Z/2), ρ maps to zero; so ρa + Bb
maps to Bb. Hence it suffices to assume that F contains a square root of −1
and show that a2 = τb.

Under the map H∗,∗(DQ; Z/2) → H∗
et(DQ;µ⊗∗

2 ) the element τ becomes
invertible (cf. Property (I)), and so we can write a = τa′ (in H∗

et(DQ;µ⊗∗
2 )),

for some a′ ∈ H1
et(pt; µ0

2). This group is sheaf cohomology with coefficients in
the constant sheaf Z/2; if βet is the Bockstein on étale cohomology induced
by 0 → Z/2 → Z/4 → Z/2 → 0 one has that βet(a′) = (a′)2 by a standard
property of the Bockstein on sheaf cohomology (the proof is the same as the
one in topology). Our remarks in Section 3.6 show that the Bocksteins in
motivic and étale cohomology are compatible, because F has a square root of
−1. So we now compute that

a2 = τ2(a′)2 = τ2βet(a′) = τ · β(τa′) = τ · β(a) = τ · b(4.11)

in H∗
et(DQ;µ⊗∗

2 ). Note that the third equality uses the analog of Property
(H) for étale cohomology, together with the fact that β(τ) = ρ = 0 (by our
assumption on F ).

As a consequence of (4.11), we have in particular that a2 is nonzero in
H∗,∗(DQ; Z/2)[τ−1]. But a2 = Bb, so B must be nonzero. From the sequence
(3.4) we recall that M0,1

2 = {0, τ}, and so B = τ . We have therefore shown
that a2 = ρa + τb ∈ H2,2(DQ; Z/2).

This finishes part (a) of the theorem. For part (b) we just observe that
abk ∈ H2k+1,k+1(DQ; Z/2), and H2k+1,k+1(DQ; Z/2) ∼= M1,1

2 bk. So for some
ε ∈ M1,1

2 we have εbk = abk. This finishes part (b).

Remark 4.12. When n is odd, the cohomology of DQn is the same as the
cohomology of the scheme (An − 0)/ ± 1, which was essentially computed by
Voevodsky in [V1, Th. 6.10]. With some effort it can be proven that these two
schemes are A1-homotopy equivalent.

Appendix A. Chow groups of quadrics

This appendix contains a calculation of the Chow rings of the quadrics
Qn, as well as various pushforward and pullback maps. This is classical, but
the details are useful and we do not have a suitable reference. We assume a
basic familiarity with the Chow ring; see [F] or [H, App. A].
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Let CHi(X) be the Chow group of dimension i cycles on X. If Z ↪→ X is
a closed subscheme there is an exact sequence

CHi(Z) → CHi(X) → CHi(X − Z) → 0

where the first map is pushforward and the second map is restriction.
If X ⊆ Pn is a closed subscheme, we let /ΣX ⊆ Pn+1 denote the projective

cone on X. Let /Σ : CHi(X) → CHi+1(/ΣX) be the map sending a cycle to
the projective cone on the cycle, and recall that this is an isomorphism for
i ≥ 0. Also note that CH0(/ΣX) = Z no matter what X is. Finally, recall that
CHi(An) = 0 if i += n, whereas CHn(An) = Z.

When X is nonsingular one defines CHi(X) = CHdim X−i(X).
The following discussion is modeled on [Sw, 13.3].

A.1. The odd-dimensional case. Consider the quadric Q2k+1 ↪→ P2k+2

defined by a1b1 + · · · + ak+1bk+1 + c2 = 0. We let j be the inclusion.

Lemma A.2. For all 0 ≤ i ≤ 2k + 1, the Chow group CHi(Q2k+1) is
isomorphic to Z. The pushforward map j∗ : CHi(Q2k+1) → CHi(P2k+2) is an
isomorphism if 0 ≤ i ≤ k, and is multiplication by 2 (as a map Z → Z) if
k + 1 ≤ i ≤ 2k + 1.

Proof. The first claim follows immediately from Proposition 4.1 and Prop-
erty (A).

The proof of the second statement is by induction. The base case Q1 is
isomorphic to P1, and Q1 is imbedded in P2 as a degree two hypersurface. So
j∗ is an isomorphism for i = 0 and is multiplication by 2 for i = 1.

If Z is the closed subscheme defined by a1 = 0, we know Q2k+1−Z ∼= A2k+1

and Z ∼= /ΣQ2k−1. The resulting localization sequence gives us a diagram

CHi( /ΣQ2k−1) ##

""

CHi(Q2k+1) ##

j∗
""

CHi(A2k+1)

CHi( /ΣP2k) ## CHi(P2k+2)

in which the top row is exact. Since /ΣP2k is isomorphic to P2k+1, the bottom
horizontal arrow is an isomorphism for all 0 ≤ i ≤ 2k + 1, and both groups in
the bottom row are isomorphic to Z.

For 0 ≤ i ≤ 2k, the first two groups in the top row are also isomorphic
to Z. For 0 ≤ i ≤ k, the left vertical arrow is known by induction to be an
isomorphism. The only possibility is that the map j∗ is an isomorphism in this
range.

Now for k + 1 ≤ i ≤ 2k, the left vertical arrow is known by induction to
be multiplication by 2. Since the upper left horizontal arrow is a surjection,
the only possibility is that the map j∗ is multiplication by 2.
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Finally, for the case i = 2k + 1 note that Q2k+1 is a degree 2 hypersurface
in P2k+2. Thus, the fundamental class [Q2k+1] maps to twice the generator of
CH2k+1(P2k+2).

By analyzing the above proof, one can give explicit generators for
CHi(Q2k+1). If 0 ≤ i ≤ k, the generator is the class of the cycle determined
by setting all coordinates equal to zero except for b1, . . . , bi+1. Note that this
cycle is isomorphic to Pi. On the other hand, if k + 1 ≤ i ≤ 2k + 1, then the
generator is the class of the cycle determined by setting a1, . . . , a2k+1−i equal
to zero. Note that this cycle is the iterated projective cone on Q2i−2k−1, and
also the intersection of Q2k+1 with a copy of Pi+1.

We next want to compute the ring structure on CH∗(Q2k+1) as well as the
pullback map j∗ : CHi(P2k+2) → CHi−1(Q2k+1). It is easier to do the latter
first.

Proposition A.3. The map j∗ : CHi(P2k+2) → CHi−1(Q2k+1) is an iso-
morphism if k + 2 ≤ i ≤ 2k + 2 and is multiplication by 2 if 1 ≤ i ≤ k + 1.

Proof. The projection formula j∗(a · j∗b) = (j∗a) · b gives us

j∗(j∗[Pi]) = j∗([Q2k+1] · j∗[Pi]) = j∗([Q2k+1]) · [Pi] = 2[P2k+1] · [Pi] = 2[Pi−1].

In other words the composition j∗j∗ : CHi(P2k+2) → CHi−1(P2k+2) is multipli-
cation by 2. When 1 ≤ i ≤ k +1, the map j∗ : CHi−1(Q2k+1) → CHi−1(P2k+2)
is an isomorphism, so j∗ must be multiplication by 2. When k+2 ≤ i ≤ 2k+2,
the map j∗ is multiplication by 2, so j∗ must be an isomorphism.

It is now easy to deduce the ring structure on CH∗(Q2k+1), using the map
from CH∗(P2k+2). Note that when k = 0 we are looking at Q1

∼= P1, and so
CH∗(Q1) is isomorphic to Z[y]/y2, where y has degree 1.

Theorem A.4. If k ≥ 0, then CH∗(Q2k+1) ∼= Z[x, y]/(xk+1 − 2y, y2),
where x has degree 1 and y has degree k + 1.

Proof. The map j∗ : CHi(P2k+2) → CHi(Q2k+1) (which now preserves the
grading because we are grading by codimension) is an isomorphism if 0 ≤ i ≤ k
and is multiplication by 2 if k +1 ≤ i ≤ 2k +1. This follows immediately from
the previous proposition simply by regrading.

Let t be the generator of CH1(P2k+2), and let x = j∗(t). Then xk+1 =
j∗(tk+1) is twice a generator of CHk+1(Q2k+1), and we let y be this generator.
The desired isomorphism of rings follows immediately from our knowledge of
the groups CH∗(Q2k+1) and the description of j∗ in the previous paragraph.

A.5. The even-dimensional case. This case is a little harder. The quadric
Q2k is defined by a1b1 + · · · + ak+1bk+1 = 0. As before, let j be the inclusion
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Q2k ↪→ P2k+1. Many of the results from the previous section carry over to this
section with identical proofs.

The base case is Q0, which is pt' pt. Note that j∗ : CH0(Q0) → CH0(P1)
is the fold map Z ⊕ Z → Z.

We already know from Proposition 4.1 that the Chow group CHi(Q2k) is
isomorphic to Z for all 0 ≤ i ≤ 2k, except that CHk(Q2k) is isomorphic to
Z⊕Z. The same arguments as in the proof of Lemma A.2 allow us to conclude
that the pushforward map j∗ : CHi(Q2k) → CHi(P2k+1) is an isomorphism if
0 ≤ i ≤ k − 1, is multiplication by 2 if k + 1 ≤ i ≤ 2k, and is the fold map if
i = k. We summarize these facts (with cohomological grading, and for both
the even and odd cases) in the following lemma—this result is critical for the
computations in Section 4.

Lemma A.6. For any n, the map j∗ : CHi(Qn−1) → CHi+1(Pn) is multi-
plication by 2 for 0 ≤ i < n−1

2 , and is an isomorphism for n−1
2 < i ≤ n − 1. If

n is odd, then it is the fold map Z ⊕ Z → Z for i = n−1
2 .

Once again, one can give explicit generators for CHi(Q2k). For i += k, the
description of these generators is the same as in the odd case. For i = k, one
generator is determined by b1 = b2 = · · · = bk+1 = 0, and the other generator
is determined by a1 = b2 = · · · = bk+1 = 0. We let α and β represent these
two codimension k cycles.

Lemma A.7. Let α′ be the cycle determined by a1 = a2 = · · · = ak+1 = 0,
and let β′ be the cycle determined by b1 = a2 = · · · = ak+1 = 0. If k is odd,
then α = α′ and β = β′ in CHk(Q2k). If k is even, then α = β′ and β = α′ in
CHk(Q2k).

Proof. The result is a consequence of Theorems II and III in [HP, §XIII.4].
Alternatively, one can easily write down explicit homotopies. For instance, if
k is odd let H : Pk × A1 → Q2k be given by

[a1, a2, . . . , ak+1], t %→ [(1 − t)a1, ta2, (1 − t)a2,−ta1, (1 − t)a3, ta4, . . . ,−tak]

(where the last four coordinates are (1 − t)ak, tak+1, (1 − t)ak+1,−tak). Let
Z denote the image of the closed inclusion Pk × A1 ↪→ Q2k × A1 given by
(x, t) %→ (H(x, t), t). Then Z gives a rational equivalence between α and α′ by
intersecting Z with Q2k × {0} and Q2k × {1}, similarly to [F, Ex. 2.6.6]. The
same kind of homotopy allows one to deduce the other rational equivalences
as well.

Lemma A.8. Let [∗] be the fundamental class of a point in CH2k(Q2k). If
k is odd, then α · α = 0 = β · β and α · β = [∗] in the Chow ring CH∗(Q2k). If
k is even, then α · α = [∗] = β · β and α · β = 0.
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Proof. When k is odd, α · α = α · α′. However, α and α′ do not intersect,
so α · α′ = 0. Similarly, β · β = 0. Now α and β′ intersect transversely at a
point, so α · β = α · β′ = [∗]. Similar arguments apply to the even case.

As in Proposition A.3, the map j∗ : CHi(P2k+1) → CHi−1(Q2k) is an
isomorphism if k + 2 ≤ i ≤ 2k + 1 and is multiplication by 2 if 1 ≤ i ≤ k.
After regrading by codimension, this says j∗ : CHi(P2k+1) → CHi(Q2k) is an
isomorphism for 0 ≤ i < k and multiplication by 2 for k < i ≤ 2k. The same
argument with the projection formula also shows that when i = k, j∗ takes the
generator to uα + (2 − u)β for some u ∈ Z.

Lemma A.9. The map j∗ : CHk(P2k+1) → CHk(Q2k) sends the generator
tk to α + β.

Proof. We already know that j∗(t2k) = 2[∗], where [∗] is the fundamental
class of a point in Q2k and is also the generator of CH2k(Q2k). Therefore,

2[∗] = j∗(t2k) = (j∗(tk))2 = (uα + (2 − u)β)2

= u2α2 + 2u(2 − u)αβ + (2 − u)2β2.

If k is odd, Lemma A.8 lets us rewrite this equation as 2[∗] = 2u(2 − u)[∗], so
that u = 1. If k is even, Lemma A.8 gives 2[∗] = (u2 + (2 − u)2)[∗], so that
again u = 1.

Theorem A.10. If k is odd, then there is an isomorphism of rings
CH∗(Q2k) ∼= Z[x, y]/(xk+1 − 2xy, y2), where x has degree 1 and y has de-
gree k. If k is even, then CH∗(Q2k) ∼= Z[x, y]/(xk+1 − 2xy, y2 − xky), where x
has degree 1 and y has degree k.

Proof. Let t be the generator [P2k] of CH1(P2k+1), and let x = j∗(t). Then
j∗(ti) = xi. As we know that j∗ takes generators to generators for 0 ≤ i ≤ k−1,
it follows that xi is a generator for CHi(Q2k) in these dimensions.

Now xk = j∗(tk) = α+β by the previous lemma. If we let y equal α, then
xk and y are two generators for CHk(Q2k). Note that Lemma A.8 implies that
xky = [∗] since α(α + β) = [∗] in both the even and odd cases.

Next we can compute that

j∗(xi · y) = j∗(j∗(ti) · y) = ti · j∗y = ti · tk = tk+i

for 1 ≤ t ≤ k. Since j∗ is an isomorphism in codimension k + i, it follows that
xiy is a generator in CHk+i(Q2k).

Now xk+1 = j∗(tk+1) = j∗(j∗(xy)) = 2xy. Also, for dimension reasons
xk+1y = 0. Finally, Lemma A.8 shows that y2 = 0 if k is odd and y2 = [∗] =
xky if k is even.

Thus, we have shown that the additive generators for CH∗(Q2k) are 1, x,
x2, . . . , xk, y, xy, . . . , xky, where the elements are listed in order of increasing
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degree. Moreover, we have constructed a ring map from the desired ring to
CH∗(Q2k) which is an additive isomorphism.
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