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Pseudodifferential operators on manifolds
with a Lie structure at infinity

By Bernd Ammann, Robert Lauter, and Victor Nistor*

Abstract

We define and study an algebra Ψ∞
1,0,V(M0) of pseudodifferential opera-

tors canonically associated to a noncompact, Riemannian manifold M0 whose
geometry at infinity is described by a Lie algebra of vector fields V on a com-
pactification M of M0 to a compact manifold with corners. We show that the
basic properties of the usual algebra of pseudodifferential operators on a com-
pact manifold extend to Ψ∞

1,0,V(M0). We also consider the algebra Diff∗
V(M0)

of differential operators on M0 generated by V and C∞(M), and show that
Ψ∞

1,0,V(M0) is a microlocalization of Diff∗
V(M0). Our construction solves a prob-

lem posed by Melrose in 1990. Finally, we introduce and study semi-classical
and “suspended” versions of the algebra Ψ∞

1,0,V(M0).
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Introduction

Let (M0, g0) be a complete, noncompact Riemannian manifold. It is a
fundamental problem to study the geometric operators on M0. As in the
compact case, pseudodifferential operators provide a powerful tool for that
purpose, provided that the geometry at infinity is taken into account. One
needs, however, to restrict to suitable classes of noncompact manifolds.
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Let M be a compact manifold with corners such that M0 = M � ∂M ,
and assume that the geometry at infinity of M0 is described by a Lie algebra
of vector fields V ⊂ Γ(M ;TM); that is, M0 is a Riemannian manifold with
a Lie structure at infinity, Definition 1.3. In [27], Melrose has formulated a
far reaching program to study the analytic properties of geometric differential
operators on M0. An important ingredient in Melrose’s program is to define a
suitable pseudodifferential calculus Ψ∞

V (M0) on M0 adapted in a certain sense
to (M,V). This pseudodifferential calculus was called a “microlocalization of
Diff∗

V(M0)” in [27], where Diff∗
V(M0) is the algebra of differential operators on

M0 generated by V and C∞(M). (See §2.)
Melrose and his collaborators have constructed the algebras Ψ∞

V (M0) in
many special cases, see for instance [9], [21], [22], [23], [26], [28], [30], [47], and
especially [29]. One of the main reasons for considering the compactification
M is that the geometric operators on manifolds with a Lie structure at infinity
identify with degenerate differential operators on M . This type of differential
operator appears naturally, for example, also in the study of boundary value
problems on manifolds with singularities. Numerous important results in this
direction were obtained also by Schulze and his collaborators, who typically
worked in the framework of the Boutet de Monvel algebras. See [39], [40]
and the references therein. Other important cases in which this program was
completed can be found in [15], [16], [17], [35], [37]. An earlier important moti-
vation for the construction of these algebras was the method of layer potentials
for boundary value problems and questions in analysis on locally symmetric
spaces. See for example [4], [5], [6], [8], [18], [19], [24], [32].

An outline of the construction of the algebras Ψ∞
V (M0) was given by

Melrose in [27], provided certain compact manifolds with corners (blow-ups
of M2 and M3) can be constructed. In the present paper, we modify the blow-
up construction using Lie groupoids, thus completing the construction of the
algebras Ψ∞

V (M0). Our method relies on recent progress achieved in [2], [7],
[35].

The explicit construction of the algebra Ψ∞
1,0,V(M0) microlocalizing

Diff∗
V(M0) in the sense of [27] is, roughly, as follows. First, V defines an

extension of TM0 to a vector bundle A → M (M0 = M � ∂M). Let Vr :=
{d(x, y) < r} ⊂ M2

0 and (A)r = {v ∈ A, ‖v‖ < r}. Let r > 0 be less than the
injectivity radius of M0 and Vr � (x, y) �→ (x, τ(x, y)) ∈ (A)r be a local inverse
of the Riemannian exponential map TM0 � v �→ expx(−v) ∈ M0 × M0. Let χ

be a smooth function on A with support in (A)r and χ = 1 on (A)r/2. For any
a ∈ Sm

1,0(A
∗), we define

[
ai(D)u

]
(x)(1)

= (2π)−n

∫
M0

(∫
T ∗

x M0

eiτ(x,y)·ηχ(x, τ(x, y))a(x, η)u(y) dη

)
dy.
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The algebra Ψ∞
1,0,V(M0) is then defined as the linear span of the operators

aχ(D) and bχ(D) exp(X1) . . . exp(Xk), a ∈ S∞(A∗), b ∈ S−∞(A∗), and Xj ∈ V,
and where exp(Xj) : C∞

c (M0) → C∞
c (M0) is defined as the action on functions

associated to the flow of the vector field Xj .
The operators bχ(D) exp(X1) . . . exp(Xk) are needed to make our space

closed under composition. The introduction of these operators is in fact a
crucial ingredient in our approach to Melrose’s program. The results of [7],
[35] are used to show that Ψ∞

1,0,V(M0) is closed under composition, which is
the most difficult step in the proof.

A closely related situation is encountered when one considers a product
of a manifold with a Lie structure at infinity M0 by a Lie group G and opera-
tors G invariant on M0 × G. We obtain in this way an algebra Ψ∞

1,0,V(M0;G)
of G–invariant pseudodifferential operators on M0 × G with similar proper-
ties. The algebra Ψ∞

1,0,V(M0;G) arises in the study of the analytic properties
of differential geometric operators on some higher dimensional manifolds with
a Lie structure at infinity. When G = Rq, this algebra is slightly smaller
than one of Melrose’s suspended algebras and plays the same role, namely, it
appears as a quotient of an algebra of the form Ψ∞

1,0,V ′(M ′
0), for a suitable man-

ifold M ′
0. The quotient map Ψ∞

1,0,V ′(M ′
0) → Ψ∞

1,0,V(M0;G) is a generalization of
Melrose’s indicial map. A convenient approach to indicial maps is provided by
groupoids [17].

We also introduce a semi-classical variant of the algebra Ψ∞
1,0,V(M0), de-

noted Ψ∞
1,0,V(M0[[h]]), consisting of semi-classical families of operators in

Ψ∞
1,0,V(M0). For all these algebras we establish the usual mapping properties

between appropriate Sobolev spaces.
The article is organized as follows. In Section 1 we recall the definition

of manifolds with a Lie structure at infinity and some of their basic proper-
ties, including a discussion of compatible Riemannian metrics. In Section 2
we define the spaces Ψm

1,0,V(M0) and the principal symbol maps. Section 3
contains the proof of the crucial fact that Ψ∞

1,0,V(M0) is closed under composi-
tion, and therefore it is an algebra. We do this by showing that Ψ∞

1,0,V(M0) is
the homomorphic image of Ψ∞

1,0(G), where G is any d-connected Lie groupoid
integrating A (d–connected means that the fibers of the domain map d are
connected). In Section 4 we establish several other properties of the algebra
Ψ∞

1,0,V(M0) that are similar and analogous to the properties of the algebra
of pseudodifferential operators on a compact manifold. In Section 5 we define
the algebras Ψ∞

1,0,V(M0[[h]]) and Ψ∞
1,0,V(M0;G), which are generalizations of the

algebra Ψ∞
1,0,V(M0). The first of these two algebras consists of the semi-classical

(or adiabatic) families of operators in Ψ∞
1,0,V(M0). The second algebra is a

subalgebra of the algebra of G–invariant, properly supported pseudodifferential
operators on M0 × G, where G is a Lie group.
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1. Manifolds with a Lie structure at infinity

For the convenience of the reader, let us recall the definition of a Rieman-
nian manifold with a Lie structure at infinity and some of its basic properties.

1.1. Preliminaries. In the sequel, by a manifold we shall always understand
a C∞-manifold possibly with corners, whereas a smooth manifold is a C∞-
manifold without corners (and without boundary). By definition, every point
p in a manifold with corners M has a coordinate neighborhood diffeomorphic
to [0,∞)k × Rn−k such that the transition functions are smooth up to the
boundary. If p is mapped by this diffeomorphism to (0, . . . , 0, xk+1, . . . , xn),
we shall say that p is a point of boundary depth k and write depth(p) = k. The
closure of a connected component of points of boundary depth k is called a
face of codimension k. Faces of codimension 1 are also-called hyperfaces. For
simplicity, we always assume that each hyperface H of a manifold with corners
M is an embedded submanifold and has a defining function, that is, that there
exists a smooth function xH ≥ 0 on M such that

H = {xH = 0} and dxH 
= 0 on H.

For the basic facts on the analysis of manifolds with corners we refer to the
forthcoming book [25]. We shall denote by ∂M the union of all nontrivial
faces of M and by M0 the interior of M , i.e., M0 := M � ∂M . Recall that a
map f : M → N is a submersion of manifolds with corners if df is surjective
at any point and dfp(v) is an inward pointing vector if, and only if, v is an
inward pointing vector. In particular, the sets f−1(q) are smooth manifolds
(no boundary or corners).

To fix notation, we shall denote the sections of a vector bundle V → X

by Γ(X, V ), unless X is understood, in which case we shall write simply Γ(V ).
A Lie subalgebra V ⊆ Γ(M, TM) of the Lie algebra of all smooth vector fields
on M is said to be a structural Lie algebra of vector fields provided it is a
finitely generated, projective C∞(M)-module and each V ∈ V is tangent to all
hyperfaces of M .

Definition 1.1. A Lie structure at infinity on a smooth manifold M0 is
a pair (M,V), where M is a compact manifold, possibly with corners, and
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V ⊂ Γ(M, TM) is a structural Lie algebra of vector fields on M with the
following properties:

(a) M0 is diffeomorphic to the interior M � ∂M of M .

(b) For any vector field X on M0 and any p ∈ M0, there are a neighborhood
V of p in M0 and a vector field Y ∈ V, such that Y = X on V .

A manifold with a Lie structure at infinity will also be called a Lie manifold.

Here are some examples.

Examples 1.2. (a) Take Vb to be the set of all vector fields tangent to
all faces of a manifold with corners M . Then (M,Vb) is a manifold with
a Lie structure at infinity.

(b) Take V0 to be the set of all vector fields vanishing on all faces of a manifold
with corners M . Then (M,V0) is a Lie manifold. If ∂M is a smooth
manifold (i.e., if M is a manifold with boundary), then V0 = rΓ(M ;TM),
where r is the distance to the boundary.

(c) As another example consider a manifold with smooth boundary and con-
sider the vector fields Vsc = rVb, where r and Vb are as in the previous
examples.

These three examples are, respectively, the “b-calculus”, the “0-calculus,”
and the “scattering calculus” from [29]. These examples are typical and will be
referred to again below. Some interesting and highly nontrivial examples of Lie
structures at infinity on Rn are obtained from the N -body problem [45] and
from strictly pseudoconvex domains [31]. Further examples of Lie structures
at infinity were discussed in [2].

If M0 is compact without boundary, then it follows from the above defini-
tion that M = M0 and V = Γ(M, TM), so that a Lie structure at infinity on
M0 gives no additional information on M0. The interesting cases are thus the
ones when M0 is noncompact.

Elements in the enveloping algebra Diff∗
V(M) of V are called V-differential

operators on M . The order of differential operators induces a filtration
Diffm

V (M), m ∈ N0, on the algebra Diff∗
V(M). Since Diff∗

V(M) is a C∞(M)-
module, we can introduce V-differential operators acting between sections of
smooth vector bundles E, F → M , E, F ⊂ M × CN by

Diff∗
V(M ;E, F ) := eF MN (Diff∗

V(M))eE ,(2)

where eE , eF ∈ MN (C∞(M)) are the projections onto E and, respectively, F .
It follows that Diff∗

V(M ;E, E) =: Diff∗
V(M ;E) is an algebra that is closed

under adjoints.
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Let A → M be a vector bundle and � : A → TM a vector bundle map.
We shall also denote by � the induced map Γ(M, A) → Γ(M, TM) between
the smooth sections of these bundles. Suppose a Lie algebra structure on
Γ(M, A) is given. Then the pair (A, �) together with this Lie algebra structure
on Γ(A) is called a Lie algebroid if �([X, Y ]) = [�(X), �(Y )] and [X, fY ] =
f [X, Y ] + (�(X)f)Y for any smooth sections X and Y of A and any smooth
function f on M . The map � : A → TM is called the anchor of A. We have
also denoted by � the induced map Γ(M, A) → Γ(M, TM). We shall also write
Xf := �(X)f .

If V is a structural Lie algebra of vector fields, then V is projective, and
hence the Serre-Swan theorem [13] shows that there exists a smooth vector
bundle AV → M together with a natural map

�V : AV −→ TM

↘ ↙
M

(3)

such that V = �V(Γ(M, AV)). The vector bundle AV turns out to be a Lie
algebroid over M .

We thus see that there exists an equivalence between structural Lie alge-
bras of vector fields V = Γ(AV) and Lie algebroids � : A → TM such that the
induced map Γ(M, A) → Γ(M, TM) is injective and has range in the Lie alge-
bra Vb(M) of all vector fields that are tangent to all hyperfaces of M . Because
A and V determine each other up to isomorphism, we sometimes specify a Lie
structure at infinity on M0 by the pair (M, A). The definition of a manifold
with a Lie structure at infinity allows us to identify M0 with M � ∂M and
A|M0 with TM0.

We now turn our attention to Riemannian structures on M0. Any metric
on A induces a metric on TM0 = A|M0 . This suggests the following definition.

Definition 1.3. A manifold M0 with a Lie structure at infinity (M,V),
V = Γ(M, A), and with metric g0 on TM0 obtained from the restriction of a
metric g on A is called a Riemannian manifold with a Lie structure at infinity.

The geometry of a Riemannian manifold (M0, g0) with a Lie structure
(M,V) at infinity has been studied in [2]. For instance, (M0, g0) is necessar-
ily of infinite volume and complete. Moreover, all the covariant derivatives
of the Riemannian curvature tensor are bounded. Under additional mild as-
sumptions, we also know that the injectivity radius is bounded from below by
a positive constant, i.e., (M0, g0) is of bounded geometry. (A manifold with
bounded geometry is a Riemannian manifold with positive injectivity radius and
with bounded covariant derivatives of the curvature tensor; see [41] and refer-
ences therein.) A useful property is that all geometric operators on M0 that
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are associated to a metric on A are V-differential operators (i.e., in Diffm
V (M)

[2]).
On a Riemannian manifold M0 with a Lie structure at infinity (M,V),

V = Γ(M, A), the exponential map expp : TpM0 → M0 is well-defined for
all p ∈ M0 and extends to a differentiable map expp : Ap → M depending
smoothly on p ∈ M . A convenient way to introduce the exponential map is via
the geodesic spray, as done in [2]. A related phenomenon is that any vector
field X ∈ Γ(A) is integrable, which is a consequence of the compactness of M .
The resulting diffeomorphism of M0 will be denoted ψX .

Proposition 1.4. Let F0 be an open boundary face of M and X ∈
Γ(M ;A). Then the diffeomorphism ψX maps F0 to itself.

Proof. This follows right away from the assumption that all vector fields
in V are tangent to all faces [2].

2. Kohn-Nirenberg quantization and pseudodifferential operators

Throughout this section M0 will be a fixed manifold with Lie structure at
infinity (M,V) and V := Γ(A). We shall also fix a metric g on A → M ,
which induces a metric g0 on M0. We are going to introduce a pseudodifferen-
tial calculus on M0 that microlocalizes the algebra of V-differential operators
Diff∗

V(M0) on M given by the Lie structure at infinity.

2.1. Riemann-Weyl fibration. Fix a Riemannian metric g on the bundle
A, and let g0 = g|M0 be its restriction to the interior M0 of M . We shall use
this metric to trivialize all density bundles on M . Denote by π : TM0 → M0

the natural projection. Define

Φ : TM0 −→ M0 × M0, Φ(v) := (x, expx(−v)), x = π(v).(4)

Recall that for v ∈ TxM we have expx(v) = γv(1) where γv is the unique
geodesic with γv(0) = π(v) = x and γ′

v(0) = v. It is known that there is
an open neighborhood U of the zero-section M0 in TM0 such that Φ|U is a
diffeomorphism onto an open neighborhood V of the diagonal M0 = ΔM0 ⊆
M0 × M0.

To fix notation, let E be a real vector space together with a metric or a
vector bundle with a metric. We shall denote by (E)r the set of all vectors v

of E with |v| < r.
We shall also assume from now on that r0, the injectivity radius of (M0, g0),

is positive. We know that this is true under some additional mild assumptions
and we conjectured that the injectivity radius is always positive [2]. Thus, for
each 0 < r ≤ r0, the restriction Φ|(TM0)r

is a diffeomorphism onto an open



724 B. AMMANN, R. LAUTER, AND V. NISTOR

neighborhood Vr of the diagonal ΔM0 . It is for this reason that we need the
positive injectivity radius assumption.

We continue, by slight abuse of notation, to write Φ for that restriction.
Following Melrose, we shall call Φ the Riemann-Weyl fibration. The inverse of
Φ is given by

M0 × M0 ⊇ Vr � (x, y) �−→ (x, τ(x, y)) ∈ (TM0)r ,

where −τ(x, y) ∈ TxM0 is the tangent vector at x to the shortest geodesic
γ : [0, 1] → M such that γ(0) = x and γ(1) = y.

2.2. Symbols and conormal distributions. Let π : E → M be a smooth
vector bundle with orthogonal metric g. Let

〈ξ〉 :=
√

1 + g(ξ, ξ).(5)

We shall denote by Sm
1,0(E) the symbols of type (1, 0) in Hörmander’s sense [12].

Recall that they are defined, in local coordinates, by the standard estimates

|∂α
x ∂β

ξ a(ξ)| ≤ CK,α,β〈ξ〉m−|β|, π(ξ) ∈ K,

where K is a compact subset of M trivializing E (i.e., π−1(K) � K ×Rn) and
α and β are multi-indices. If a ∈ Sm

1,0(E), then its image in Sm
1,0(E)/Sm−1

1,0 (E)
is called the principal symbol of a and denoted σ(m)(a). A symbol a will
be called homogeneous of degree μ if a(x, λξ) = λμa(x, ξ) for λ > 0 and |ξ|
and |λξ| are large. A symbol a ∈ Sm

1,0(E) will be called classical if there
exist symbols ak ∈ Sm−k

1,0 (E), homogeneous of degree m − k, such that a −∑N−1
j=0 ak ∈ Sm−N

1,0 (E). Then we identify σ(m)(a) with a0. (See any book on
pseudodifferential operators or the corresponding discussion in [3].)

We now specialize to the case E = A∗, where A → M is the vector bundle
such that V = Γ(M, A). Recall that we have fixed a metric g on A. Let
π : A → M and π : A∗ → M be the canonical projections. Then the inverse of
the Fourier transform F−1

fiber, along the fibers of A∗ gives a map

F−1
fiber : Sm

1,0(A
∗) −→ C−∞(A) := C∞

c (A)′ , 〈F−1
fibera, ϕ〉 := 〈a,F−1

fiberϕ〉,(6)

where a ∈ Sm
1,0(A

∗), ϕ is a smooth, compactly supported function, and

F−1
fiber(ϕ)(ξ) := (2π)−n

∫
π(ζ)=π(ξ)

ei〈ξ,ζ〉ϕ(ζ) dζ.(7)

Then Im(A, M) is defined as the image of Sm
1,0(A

∗) through the above map. We
shall call this space the space of distributions on A conormal to M . The spaces
Im(TM0, M0) and Im(M2

0 ,ΔM0) = Im(M2
0 , M0) are defined similarly. In fact,

these definitions are special cases of the following more general definition. Let
X ⊂ Y be an embedded submanifold of a manifold with corners Y . On a small
neighborhood V of X in Y we define a structure of a vector bundle over X,
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such that X is the zero section of V , as a bundle V is isomorphic to the normal
bundle of X in Y . Then we define the space of distributions on Y that are
conormal of order m to X, denoted Im(Y, X), to be the space of distributions
on M that are smooth on Y � X and, that are, in a tubular neighborhood
V → X of X in Y , the inverse Fourier transforms of elements in Sm(V ∗)
along the fibers of V → X. For simplicity, we have ignored the density factor.
For more details on conormal distributions we refer to [11], [12], [42] and the
forthcoming book [25] (for manifolds with corners).

The main use of spaces of conormal distributions is in relation to pseu-
dodifferential operators. For example, since we have

Im(M2
0 , M0) ⊆ C−∞(M2

0 ) := C∞
c (M2

0 )′ ,

we can associate to a distribution in K ∈ Im(M2
0 , M0) a continuous linear

map TK : C∞
c (M0) → C−∞(M0) := C∞

c (M0)′, by the Schwartz kernel theorem.
Then a well known result of Hörmander [11], [12] states that TK is a pseudod-
ifferential operator on M0 and that all pseudodifferential operators on M0 are
obtained in this way, for various values of m. This defines a map

T : Im(M2
0 , M0) → Hom(C∞

c (M0), C−∞(M0)).(8)

Recall now that (A)r denotes the set of vectors of norm < r of the vector
bundle A. We agree to write Im

(r)(A, M) for all k ∈ Im(A, M) with supp k ⊆
(A)r. The space Im

(r)(TM0, M0) is defined in an analogous way. Then restriction
defines a map

R : Im
(r)(A, M) −→ Im

(r)(TM0, M0).(9)

Recall that r0 denotes the injectivity radius of M0 and that we assume
r0 > 0. Similarly, the Riemann–Weyl fibration Φ of Equation (4) defines, for
any 0 < r ≤ r0, a map

Φ∗ : Im
(r)(TM0, M0) → Im(M2

0 , M0).(10)

We shall also need various subspaces of conormal distributions, which we
shall denote by including a subscript as follows:

• “cl” to designate the distributions that are “classical,” in the sense that
they correspond to classical pseudodifferential operators,

• “c” to denote distributions that have compact support,

• “pr” to indicate operators that are properly supported or distributions
that give rise to such operators.

For instance, Im
c (Y, X) denotes the space of compactly supported conormal

distributions, so that Im
(r)(A, M) = Im

c ((A)r, M). Occasionally, we shall use
the double subscripts “cl,pr” and “cl,c.” Note that “c” implies “pr”.
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2.3. Kohn-Nirenberg quantization. For notational simplicity, we shall use
the metric g0 on M0 (obtained from the metric on A) to trivialize the half-
density bundle Ω1/2(M0). In particular, we identify C∞

c (M0,Ω1/2) with C∞
c (M0).

Let 0 < r ≤ r0 be arbitrary. Each smooth function χ, with χ = 1 close
to M ⊆ A and support contained in the set (A)r, induces a map qΦ,χ :
Sm

1,0(A
∗) −→ Im(M2

0 , M0),

qΦ,χ(a) := Φ∗
(
R

(
χF−1

fiber(a)
))

.(11)

Let aχ(D) be the operator on M0 with distribution kernel qΦ,χ(a), defined using
the Schwartz kernel theorem, i.e., aχ(D) := T ◦ qΦ,χ(a) . Following Melrose,
we call the map qΦ,χ the Kohn-Nirenberg quantization map. It will play an
important role in what follows.

For further reference, let us make the formula for the induced operator
aχ(D) : C∞

c (M0) → C∞
c (M0) more explicit. Neglecting the density factors in

the formula, we obtain for u ∈ C∞
c (M0),

aχ(D)u(x) =
∫

M0

(2π)−n

∫
T ∗

x M0

eiτ(x,y)·ηχ(x, τ(x, y))a(x, η)u(y) dη dy .(12)

Specializing to the case of Euclidean space M0 = Rn with the standard metric
we have τ(x, y) = x − y, and hence

aχ(D)u(x) = (2π)−n

∫
Rn

∫
Rn

ei(x−y)ηχ(x, x − y)a(x, η)u(y) dη dy ,(13)

i.e., the well-known formula for the Kohn-Nirenberg-quantization on Rn, if
χ = 1. The following lemma states that, up to regularizing operators, the
above quantization formulas do not depend on χ.

Lemma 2.1. Let 0 < r ≤ r0. If χ1 and χ2 are smooth functions with
support (A)r and χj = 1 in a neighborhood of M ⊆ A, then (χ1 − χ2)F−1

fiber(a)
is a smooth function, and hence aχ1(D) − aχ2(D) has a smooth Schwartz
kernel. Moreover, the map Sm

1,0(A
∗) → C∞(A) that maps a ∈ Sm

1,0(A
∗) to

(χ1 −χ2)F−1
fiber(a) is continuous, where the right-hand side is endowed with the

topology of uniform C∞-convergence on compact subsets.

Proof. Since the singular supports of χ1F−1
fiber(a) and χ2F−1

fiber(a) are
contained in the diagonal ΔM0 and χ1 − χ2 vanishes there, we have that
(χ1 − χ2)F−1

fiber(a) is a smooth function.
To prove the continuity of the map Sm

1,0(A
∗) � a �→ (χ1 − χ2)F−1

fiber(a) ∈
C∞(A), it is enough, using a partition of unity, to assume that A → M is a triv-
ial bundle. Then our result follows from the standard estimates for oscillatory
integrals (i.e., by formally writing |v|2

∫
ei〈v,ξ〉a(ξ)dξ = −

∫
(Δξe

i〈v,ξ〉)a(ξ)dξ

and then integrating by parts; see [12], [33], [43], [44] for example).
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We now verify that the quantization map qΦ,χ, Equation (11), gives rise
to pseudodifferential operators.

Lemma 2.2. Let r ≤ r0 be arbitrary. For each a ∈ Sm
1,0(A

∗) and each
χ ∈ C∞

c ((A)r) with χ = 1 close to M ⊆ A, the distribution qΦ,χ(a) is the
Schwartz-kernel of a pseudodifferential operator aχ(D) on M0, which is prop-
erly supported if r < ∞ and has principal symbol σ(μ)(a) ∈ Sm

1,0(E)/Sm−1
1,0 (E).

If a ∈ Sμ
cl(A

∗), then aχ(D) is a classical pseudodifferential operator.

Proof. Denote also by χ : Im(TM0, M0) → Im
(r)(TM0, M0) the “multipli-

cation by χ” map. Then

aχ(D) = T ◦ Φ∗ ◦ R ◦ χ ◦ F−1
fiber(a) := TΦ∗(R(χF−1

fiber(a))) = T ◦ qΦ,χ(a)(14)

where T is defined as in Equation (8). Hence aχ(D) is a pseudodifferential
operator by Hörmander’s result mentioned above [11], [12] (stating that the
distribution conormal to the diagonal is exactly the Schwartz kernel of pseu-
dodifferential operators. Since χR(a) is properly supported, so will be the
operator aχ(D)).

For the statement about the principal symbol, we use the principal symbol
map for conormal distributions [11], [12], and the fact that the restriction of
the anchor A → TM to the interior A|M0 is the identity. (This also follows
from Equation (13) below.) This proves our lemma.

Let us denote by Ψm(M0) the space of pseudodifferential operators of
order ≤ m on M0 (no support condition). We then have the following simple
corollary.

Corollary 2.3. The map σtot : Sm
1,0(A

∗) → Ψm(M0)/Ψ−∞(M0),

σtot(a) := aχ(D) + Ψ−∞(M0)

is independent of the choice of the function χ ∈ C∞
c ((A)r) used to define aχ(D)

in Lemma 2.2.

Proof. This follows right away from Lemma 2.2.

Let us remark that our pseudodifferential calculus depends on more than
just the metric.

Remark 2.4. Non-isomorphic Lie structures at infinity can lead to the
same metric on M0. An example is provided by Rn with the standard metric,
which can be obtained either from the radial compactification of Rn with the
scattering calculus, or from [−1, 1]n with the b-calculus. See Examples 1.2 and
the paragraph following it. The pseudodifferential calculi obtained from these
Lie algebra structures at infinity will be, however, different.



728 B. AMMANN, R. LAUTER, AND V. NISTOR

The above remark readily shows that not all pseudodifferential operators
in Ψm(M0) are of the form aχ(D) for some symbol a ∈ Sm

1,0(A
∗), not even

if we assume that they are properly supported, because they do not have
the correct behavior at infinity. Moreover, the space T ◦ qΦ,χ(S∞

1,0(A
∗)) of all

pseudodifferential operators of the form aχ(D) with a ∈ S∞
1,0(A

∗) is not closed
under composition. In order to obtain a suitable space of pseudodifferential
operators that is closed under composition, we are going to include more (but
not all) operators of order −∞ in our calculus.

Recall that we have fixed a manifold M0, a Lie structure at infinity (M, A)
on M0, and a metric g on A with injectivity radius r0 > 0. Also, recall that
any X ∈ Γ(A) ⊂ Vb generates a global flow ΨX : R × M → M . Evaluation at
t = 1 yields a diffeomorphism ΨX(1, ·) : M → M , whose action on functions is
denoted

ψX : C∞(M) → C∞(M).(15)

We continue to assume that the injectivity radius r0 of our fixed manifold
with a Lie structure at infinity (M,V) is strictly positive.

Definition 2.5. Fix 0 < r < r0 and χ ∈ C∞
c ((A)r) such that χ = 1 in a

neighborhood of M ⊆ A. For m ∈ R, the space Ψm
1,0,V(M0) of pseudodiffer-

ential operators generated by the Lie structure at infinity (M, A) is the linear
space of operators C∞

c (M0) → C∞
c (M0) generated by aχ(D), a ∈ Sm

1,0(A
∗), and

bχ(D)ψX1 . . . ψXk
, b ∈ S−∞(A∗) and Xj ∈ Γ(A), ∀j.

Similarly, the space Ψm
cl,V(M0) of classical pseudodifferential operators gen-

erated by the Lie structure at infinity (M, A) is obtained by using classical
symbols a in the construction above.

It is implicit in the above definition that the spaces Ψ−∞
1,0,V(M0) and

Ψ−∞
cl,V (M0) are the same. They will typically be denoted by Ψ−∞

V (M0). As
usual, we shall denote

Ψ∞
1,0,V(M0) := ∪m∈ZΨm

1,0,V(M0) and Ψ∞
cl,V(M0) := ∪m∈ZΨm

cl,V(M0).

At first sight, the above definition depends on the choice of the metric g

on A. However, we shall soon prove that this is not the case.
As for the usual algebras of pseudodifferential operators, we have the

following basic property of the principal symbol.

Proposition 2.6. The principal symbol establishes isomorphisms

σ(m) : Ψm
1,0,V(M0)/Ψm−1

1,0,V(M0) → Sm
1,0(A

∗)/Sm−1
1,0 (A∗)(16)

and

σ(m) : Ψm
cl,V(M0)/Ψm−1

cl,V (M0) → Sm
cl (A

∗)/Sm−1
cl (A∗).(17)

Proof. This follows from the classical case of the spaces Ψm(M0) by
Lemma 2.2.
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3. The product

We continue to denote by (M,V), V = Γ(A), a fixed manifold with a
Lie structure at infinity and with positive injectivity radius. In this section
we want to show that the space Ψ∞

1,0,V(M0) is an algebra (i.e., it is closed
under multiplication) by showing that it is the homomorphic image of the
algebra Ψ∞

1,0G) of pseudodifferential operators on any d-connected groupoid G
integrating A (Theorem 3.2).

First we need to fix the terminology and to recall some definitions and
constructions involving groupoids.

3.1. Groupoids. Here is first an abstract definition that will be made more
clear below. Recall that a small category is a category whose morphisms form
a set. A groupoid is a small category all of whose morphisms are invertible.
Let G denote the set of morphisms and M denote the set of objects of a
given groupoid. Then each g ∈ G will have a domain d(g) ∈ M and a range
r(g) ∈ M such that the product g1g2 is defined precisely when d(g1) = r(g2).
Moreover, it follows that the multiplication (or composition) is associative and
every element in G has an inverse. We shall identify the set of objects M

with their identity morphisms via a map ι : M → G. One can think then of
a groupoid as being a group, except that the multiplication is only partially
defined. By abuse of notation, we shall use the same notation for the groupoid
and its set of morphisms (G in this case). An intuitive way of thinking of a
groupoid with morphisms G and objects M is to think of the elements of G as
being arrows between the points of M . The points of M will be called units, by
identifying an object with its identity morphism. There will be structural maps
d, r : G → M , domain and range, μ : {(g, h), d(g) = r(h)} → G, multiplication,
G � g → g−1 ∈ G, inverse, and ι : M → G satisfying the usual identities
satisfied by the composition of functions.

A Lie groupoid is a groupoid G such that the space of arrows G and the
space of units M are manifolds with corners, all its structural maps (i.e., mul-
tiplication, inverse, domain, range, ι) are differentiable, the domain and range
maps (i.e., d and r) are submersions. By the definition of a submersion of
manifolds with corners, the submanifolds Gx := d−1(x) and Gx := r−1(x) are
smooth (so they have no corners or boundary), for any x ∈ M . Also, it follows
that that M is an embedded submanifold of G.

The d–vertical tangent space to G, denoted TvertG, is the union of the
tangent spaces to the fibers of d : G → M ; that is,

TvertG := ∪x∈MTGx = ker d∗,(18)

the union being a disjoint union, with topology induced from the inclusion
TvertG ⊂ TG. The Lie algebroid of G, denoted A(G) is defined to be the
restriction of the d–vertical tangent space to the set of units M , that is,
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A(G) = ∪x∈MTxGx, a vector bundle over M . The space of sections of A(G)
identifies canonically with the space of sections of the d-vertical tangent bundle
(= d-vertical vector fields) that are right invariant with respect to the action
of G. It also implies a canonical isomorphism between the vertical tangent
bundle and the pull-back of A(G) via the range map r : G → M :

r∗A(G) � TvertG.(19)

The structure of Lie algebroid on A(G) is induced by the Lie brackets on the
spaces Γ(TGx), Gx := d−1(x). This is possible since the Lie bracket of two
right invariant vector fields is again right invariant. The anchor map in this
case is given by the differential of r, r∗ : A(G) → TM .

Let G be a Lie groupoid with units M , then there is associated to it a
pseudodifferential calculus (or algebra of pseudodifferential operators) Ψ∞

1,0(G),
whose operators of order m form a linear space denoted Ψm

1,0(G), m ∈ R, such
that Ψm

1,0(G)Ψm′

1,0(G) ⊂ Ψm+m′

1,0 (G). This calculus is defined as follows: Ψm
1,0(G)

consists of smooth families of pseudodifferential operators (Px), Px ∈ Ψm
1,0(Gx),

x ∈ M , that are right invariant with respect to multiplication by elements of
G and are “uniformly supported.” To define what uniformly supported means,
let us observe that the right invariance of the operators Px implies that their
distribution kernels KPx

descend to a distribution kP ∈ Im(G, M). Then the
family P = (Px) is called uniformly supported if, by definition, kP has compact
support. If P is uniformly supported, then each Px is properly supported.
The right invariance condition means, for P = (Px) ∈ Ψ∞

1,0(G), that right
multiplication Gx � g′ �→ g′g ∈ Gy maps Py to Px, whenever d(g) = y and
r(g) = x. By definition, the evaluation map

Ψ∞
1,0(G) � P = (Px) �→ ez(P ) := Pz ∈ Ψ∞

1,0(Gz)(20)

is an algebra morphism for any z ∈ M . If we require that the operators Px

be classical of order μ ∈ C, we obtain spaces Ψμ
cl(G) having similar properties.

These spaces were considered in [35].
All results and constructions above remain true for classical pseudodiffer-

ential operators. This gives the algebra Ψ∞
cl (G) consisting of families P = (Px)

of classical pseudodifferential operators satisfying all the previous conditions.
Assume that the interior M0 of M is an invariant subset. Recall that

the so-called vector representation πM : Ψ∞
1,0(G) → End(C∞

c (M0)) associates
to a pseudodifferential operator P on G a pseudodifferential operator πM (P ) :
C∞

c (M0) → C∞
c (M0) [17]. This representation πM is defined as follows. If

ϕ ∈ C∞
c (M0), then ϕ ◦ r is a smooth function on G, and we can let the fam-

ily (Px) act along each Gx to obtain the function P (ϕ ◦ r) on G defined by
P (ϕ ◦ r)|Gx

= Px(ϕ ◦ r|Gx
). The fact that Px is a smooth family guarantees

that P (ϕ ◦ r) is also smooth. Using then the fact that r is a submersion, so
that locally it is a product map, we obtain that P (ϕ ◦ r) = ϕ0 ◦ r, for some
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function ϕ0 ∈ C∞
c (M0). We shall then let

πM (P )ϕ = ϕ0.(21)

The fact that P is uniformly supported guarantees that ϕ0 will also have
compact support in M0. A more explicit description of πM in the case of
Lie manifolds will be obtained in the proof of Theorem 3.2, more precisely,
Equation (27).

A Lie groupoid G with units M is said to integrate A if A(G) � A as
vector bundles over M . Recall that the groupoid G is called d–connected if
Gx := d−1(x) is a connected set, for any x ∈ M . If there exists a Lie groupoid
G integrating A, then there exists also a d–connected Lie groupoid with this
property. (Just take for each x the connected component of x in Gx.)

Our plan to show that Ψ∞
1,0,V(M0) is an algebra, is then to prove that it is

the image under πM of Ψ∞
1,0(G), for a Lie groupoid G integrating A, Γ(M, A) =

V. In fact, any d-connected Lie groupoid will satisfy this, by Theorem 3.2. This
requires the following deep result due to Crainic and Fernandes [7] stating that
the Lie algebroids associated to Lie manifolds are integrable.

Theorem 3.1 (Cranic–Fernandes). Any Lie algebroid arising from a Lie
structure at infinity is actually the Lie algebroid of a Lie groupoid (i.e., it is
integrable).

This theorem should be thought of as an analog of Lie’s third theorem
stating that every finite dimensional Lie algebra is the Lie algebra of a Lie
group. However, the analog of Lie’s theorem for Lie algebroids does not hold:
there are Lie algebroids which are not Lie algebroids to a Lie groupoid [20].

A somewhat weaker form of the above theorem, which is however enough
for the proof of Melrose’s conjecture, was obtained [34].

We are now ready to state and prove the main result of this section. We
refer to [17] or [35] for the concepts and results on groupoids and algebras of
pseudodifferential operators on groupoids not explained below or before the
statement of this theorem.

Theorem 3.2. Let M0 be a manifold with a Lie structure at infinity,
(M,V), A = AV , as above. Also, let G be a d-connected groupoid with units
M and with A(G) � A. Then Ψm

1,0,V(M0) = πM (Ψm
1,0(G)) and Ψm

cl,V(M0) =
πM (Ψm

cl (G)).

Proof. We shall consider only the first equality. The case of classical
operators can be treated in exactly the same way.

Here is first, briefly, the idea of the proof. Let P = (Px) ∈ Ψm
1,0(G). Then

the Schwartz kernels of the operators Px form a smooth family of conormal
distributions in Im(G2

x,Gx) that descends, by right invariance, to a distribution
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kP ∈ Im
c (G, M) (i.e., to a compactly supported distribution on G, conormal

to M) called the convolution kernel of P . The map P �→ kP is an isomorphism
[35] with inverse

T : Im
c (G, M) → Ψm

1,0(G).(22)

Fix a metric on A → M . The resulting exponential map (reviewed below) then
gives rise, for r > 0 small enough, to an open embedding

α : (A)r → G,(23)

which is a diffeomorphism onto its image. This diffeomorphism then gives rise
to an embedding

α∗ : Im
(r)(A, M) := Im

c ((A)r, M) → Im(G, M)(24)

such that for each χ as above

πM

(
α∗(χF−1

fiber(a))
)

= aχ(D) ∈ Ψm(M0).(25)

This will allow us to show that πM (Ψm
1,0(G)) contains the linear span of all

operators P of the form P = aχ(D), a ∈ Sm
1,0(A

∗), m ∈ Z fixed. This reduces
the problem to verifying that

πM (Ψ−∞(G)) = Ψ−∞
V (M0).(26)

Using a partition of unity, this in turn will be reduced to Equation (25). Now
let us provide the complete details.

Let Gx
x := d−1(x)∩r−1(x), which is a group for any x ∈ M0, by the axioms

of a groupoid. Then Gx
x � Gy

y whenever there exists g ∈ G with d(g) = x and
r(g) = y (conjugate by g). We can assume, without loss of generality, that
M is connected. Let Γ := Gx

x , for some fixed x ∈ M0. Our above informal
description of the proof can be conveniently formalized and visualized using
the following diagram whose morphisms are as defined below:

Sm
1,0(A)

F−1
fiber �� Im(A, M)

χ �� Im
(r)(A, M)

α∗

��

R �� Im
(r)(TM0, M0)

Φ∗
��

Ψm
1,0(G)

∼= ��

ex

��

Im
c (G, M)

l∗ ��

μ∗
1

��

Im(M2
0 , M0)

Ψm
pr(Gx)Γ

∼= �� Im
pr(G2

x,Gx)Γ

∼=
��

r̃∗ �� Im(M2
0 , M0)

∼=
��

Ψm
pr(Gx)Γ r∗ �� Ψm

1,0(M0).

We now define the morphisms appearing in the above diagram in such a
way that it will turn out to be a commutative diagram. The bottom three
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rectangles will trivially turn out to be commutative. Recall that the index
“pr” means “properly supported.”

Next, recall that the maps F−1
fiber (the fiberwise inverse Fourier transform),

χ (the multiplication by the cut-off function χ), R (the restriction map), Φ∗
(induced by the inverse of the exponential map), and ex (evaluation of the
family (Py) at y = x) have already been defined.

We let μ1(g′, g) = g′g−1, and we let μ∗
1 be the map induced at the level of

kernels by μ1 by pull-back (which is seen to be defined in this case because μ1

is a submersion and its range is transverse to M).
The four isomorphisms not named are the “T isomorphisms” and their

inverses defined in various places earlier (identifying spaces of conormal distri-
butions with spaces of pseudodifferential operators). More precisely, the top
isomorphism is from [35] and all the other isomorphisms are the canonical iden-
tifications between pseudodifferential operators and distributions on product
spaces that are conormal to the diagonal (via the Schwartz kernels). In fact,
the top isomorphism T is completely determined by the requirement that the
left-most square (containing ex) be commutative.

It is a slightly more difficult task to define r∗. We shall have to make
use minimally of groupoid theory. Let y ∈ M be arbitrary for a moment.
Since the Lie algebra of Gy

y is isomorphic to the kernel of the anchor map
� : A(G)y → TyM , we see that Gy

y is a discrete group if, and only if, y ∈ M0.
Then

r∗ : TyGy = A(G)y → TyM0

is an isomorphism, if and only if, y ∈ M0.
Let x ∈ M0 be our fixed point. Then r : Gx → M0 is a surjective local

diffeomorphism. Also Γ := Gx
x acts freely on Gx and Gx/Γ = M0. Hence

r : Gx → M0 is a covering map with group Γ, and C∞(Gx)Γ = C∞(M0). Let
P = (Py) ∈ Ψm

1,0(G). Since Px is Γ-invariant and properly supported, the map
Px : C∞(Gx) → C∞(Gx), descends to a map C∞(M0) → C∞(M0), which is by
definition r∗(P ). More precisely, if ϕ is a smooth function on M0, then ϕ◦r, is
a Γ-invariant function on Gx. Hence P (ϕ ◦ r) is defined (because P is properly
supported) and is also Γ-invariant. Thus there exists a function ϕ0 ∈ C∞(M0)
such that P (ϕ◦r) = ϕ0 ◦r. The operator r∗(P ) is then given by r∗(P )ϕ := ϕ0.
This definition of r∗ provides us with the following simpler definition of the
vector representation πM :

πM (P ) = r∗(ex(P )).(27)

We also obtain that

πM ◦ T = r∗ ◦ ex ◦ T = r∗ ◦ T ◦ μ∗
1,(28)

by the commutativity of the left-most rectangle.
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The commutativity of the bottom rectangle completely determines the
morphism r̃∗. However, we shall also need an explicit description of this map
which can be obtained as follows. Recall that Gx is a covering of M0 with
group Γ := Gx

x . Hence we can identify Im
pr(G2

x,Gx)Γ with Im
pr((G2

x)Γ,GΓ
x ). The

map τ : (G2
x)/Γ → M2

0 is also a covering map. This allows us to identify a
distribution with small support in (G2

x)/Γ with a distribution with support
in a small subset of M2

0 . These identifications then extend by summation
along the fibers of τ : (G2

x)/Γ → M2
0 to define a distribution τ∗(u) ∈ D′(M2

0 ),
for any distribution u on (G2

x)/Γ whose support intersects only finitely many
components of τ−1(U), for any connected locally trivializing open set U ⊂ M0.
The morphism r̃∗ identifies then with τ∗. Also, observe for later use that

τ(g′, g) = (r(g′), r(g)) = (r(g′g−1), d(g′g−1)) = (r(μ1(g′, g)), d(μ1(g′, g))).
(29)

Next, we must set l∗ := r̃∗ ◦ μ∗
1, by the commutativity requirement. For

this morphism we have a similar, but simpler, description of l∗(u). Namely,
l∗(u) is obtained by first restricting a distribution u to d−1(M0) = r−1(M0)
and then by applying to this restriction the push-forward map defined by
(d, r) : d−1(M0) → M2

0 (that is, we sum over open sets in Gx covering sets in
the base M2

0 ). Equation (29) guarantees that this alternative description of l∗
satisfies l∗ := r̃∗ ◦ μ∗

1.
To define α∗, recall that we have fixed a metric on A. This metric then

lifts via r : G → M to TvertG � r∗A(G), by Equations (18) and (19). The
induced metrics on the fibers of Gy, y ∈ M , give rise, using the (geodesic)
exponential map, to maps

Ay � A(G)y = TyGy → Gy.

These maps give rise to an application (A)r → G, which, by the inverse map-
ping theorem, is seen to be a diffeomorphism onto its image. It, moreover,
sends the zero section of A to the units of G. Then α∗ is the resulting map at
the level of conormal distributions. (Note that Gy is complete.)

We have now completed the definition of all morphisms in our diagram.
To prove that our diagram is commutative, it remains to prove that

l∗ ◦ α∗ = Φ∗ ◦ R.

This however follows from the above description of the map l∗, since (d, r) is
injective on α((A)r) and r : Gx → M0 is an isometric covering, thus preserving
the exponential maps.

The commutativity of the above diagram finally shows that

aχ(D) := T ◦ qΦ,χ(a) =T ◦ Φ∗ ◦ R ◦ χ ◦ F−1
fiber(a)(30)

=πM ◦ T ◦ α∗ ◦ χ ◦ F−1
fiber(a) = πM (Q),
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where Q = T ◦ α∗ ◦ χ ◦ F−1
fiber(a) and a ∈ Sm

1,0(A
∗). Thus every operator of the

form aχ(D) is in the range of πM .
We notice for the rest of our argument that the definition of the vector

representation πM can be extended by the same formula to arbitrary right
invariant families of operators P = (Px), Px : C∞(Gx) → C∞(Gx), such that
the induced operator P : C∞

c (G) → ∪C∞(Gx) has range in C∞
c (G). We shall

use this in the following case. Let X ∈ V. Then X defines by integration
a diffeomorphism of M , see Equation (15). Let X̃ be its lift to a d-vertical
vector field on G (i.e., on each Gx we obtain a vector field, and this family of
vector fields is right invariant). A result from [14, Appendix] (see also [34])
then shows that X̃ can be integrated to a global flow. Let us denote by ψ̃X

the family of diffeomorphisms of each Gx obtained in this way, as well as their
action on functions. It follows then from the definition that

πM (ψ̃X) = ψX .(31)

The Equations (30) and (31) then give

πM (Qψ̃X1 . . . ψ̃Xn
) = aχ(D)ψX1 . . . ψXn

∈ Ψ−∞
1,0,V(M0),(32)

for any a ∈ S−∞(A∗) and Q = T ◦ α∗ ◦ χ ◦ F−1
fiber(a). Also Qψ̃X1 . . . ψ̃Xn

∈
Ψ−∞(G), since the product of a regularizing operator with the operator induced
by a diffeomorphism is regularizing. We have thus proved that πM (Ψm

1,0(G)) ⊃
Ψm

1,0,V(M0). Let us now prove the opposite inclusion, that is that πM (Ψm
1,0(G)) ⊂

Ψm
1,0,V(M0).

Let Q ∈ Ψm
1,0(G) be arbitrary and let b = T−1(Q). Let χ0 be a smooth

function on G that is equal to 1 in a neighborhood of M in G and with support
in α((A)r) and such that χ = 1 on the support of χ0 ◦ α. Then b0 := χ0b is in
the range of α∗ ◦ χ ◦ F−1

fiber, because any distribution u ∈ Im
(r)(A, M) is in the

range of F−1
fiber, if r < ∞. Then the difference b − b0 is smooth. Because G is

d-connected, we can use a construction similar to the one used to define b0 and
a partition of unity argument to obtain that

T (b − b0) =
l∑

j=1

T (bj)ψ̃Xj1 . . . ψ̃Xjn
(33)

for some distributions bj ∈ χI−∞
(r) (A, M) and vector fields Xjk ∈ V. Let aj be

such that bj = α∗ ◦χ◦F−1
fiber(aj), for a0 ∈ Sm

1,0(A
∗) and aj ∈ S−∞

1,0 (A∗), if j > 0.
Then Equations (30) and (32) show that

πM (Q) = a0(D) +
l∑

j=1

aj(D)ψXj1 . . . ψXjn
∈ Ψm

1,0,V(M0).(34)

We have thus proved that πM (Ψm
1,0(G)) = Ψm

1,0,V(M0), as desired. This com-
pletes our proof.
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Since the map πM respects adjoints: πM (P ∗) = πM (P )∗, [17], we obtain
the following corollary.

Corollary 3.3. The algebras Ψ∞
1,0,V(M0) and Ψ∞

cl,V(M0) are closed un-
der taking adjoints.

We end this section with three remarks.

Remark 3.4. Equation (33) is easily understood in the case of groups,
when it amounts to the possibility of covering any given compact set by finitely
many translations of a given open neighborhood of the identity. The argument
in general is the same as the argument used to define the basic coordinate
neighborhoods on G in [34]. The basic coordinate neighborhoods on G were
used in that paper to define the smooth structure on the groupoid G.

Remark 3.5. We suspect that any proof of the fact that Ψ∞
1,0,V(M0) is

closed under multiplication is equivalent to the integrability of A. In fact,
Melrose has implicitly given some evidence for this in [27] for particular (M,V),
by showing that the kernels of the pseudodifferential operators on M0 that he
constructed naturally live on a modified product space M2

V . In his case M2
V was

a blow-up of the product M×M , and hence was a larger compactification of the
product M0×M0. The kernels of his operators naturally extended to conormal
distributions on this larger product M2

V . The product and adjoint were defined
in terms of suitable maps between M2

V and some fibered product spaces M3
V ,

which are suitable blow-ups of M3 and hence larger compactifications of M3
0 .

This in principle leads to a solution of the problem of microlocalizing V that
we stated in the introduction whenever one can define the spaces M2

V and M3
V .

Let us also mention here that Melrose’s approach usually leads to algebras that
are slightly larger than ours.

Remark 3.6. Let G be a Lie groupoid such that the map πM is an isomor-
phism and let N ⊂ M be a face of M ; then we obtain a generalized indicial
map

RN : Ψ∞
1,0,V(M0) � Ψ∞

1,0(G) → Ψ∞
1,0(GN ).

In applications, the algebras Ψ∞
1,0(GN ) often turn out to be isomorphic to the

algebras Ψ∞
1,0,V1

(N0;G) studied in the last section of this paper. In fact, this
is the motivation for introducing the algebras Ψ∞

1,0,V1
(N0;G).

4. Properties of Ψ∞
1,0,V(M0)

Theorem 3.2 has several consequences similar to the results in [21], [28],
[29], [30], [38], [40].
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4.1. Basic properties. We obtain that the algebras Ψ∞
1,0,V(M0) and

Ψ∞
cl,V(M0) are independent of the choices made to define them and, thus, de-

pend only on the Lie structure at infinity (M,V).

Corollary 4.1. The spaces Ψm
1,0,V(M0) and Ψm

cl,V(M0) are independent
of the choice of the metric on A and the function χ used to define it, but
depend, in general, on the Lie structure at infinity (M, A) on M0.

Proof. The space Ψm
1,0(G) does not depend on the metric on A or on the

function χ and neither does the vector representation πM . Then, by using
Theorem 3.2, we see that the proof is the same for classical operators.

An important consequence is that Ψ∞
1,0,V(M0) and

Ψ∞
cl,V(M0) = ∪m∈ZΨm

cl,V(M0)

are filtered algebras, as it is the case of the usual algebra of pseudodifferential
operators on a compact manifold.

Proposition 4.2. By the above notation,

Ψm
1,0,V(M0)Ψm′

1,0,V(M0)⊆Ψm+m′

1,0,V (M0) and

Ψm
cl,V(M0)Ψm′

cl,V(M0)⊆Ψm+m′

cl,V (M0) ,

for all m, m′ ∈ C ∪ {−∞}.

Proof. Use Theorem 3.2 and the fact that πM preserves the product.

Part (i) of the following result is an analog of a standard result about
the b-calculus [28], whereas the second part shows the independence of dif-
feomorphisms of the algebras Ψ∞

cl,V(M0), in the framework of manifolds with
a Lie structure at infinity. Recall that if X ∈ Γ(A), we have denoted by
ψX := ΨX(1, ·) : M → M the diffeomorphism defined by integrating X (and
specializing at t = 1).

Proposition 4.3. (i) Let x be a defining function of some hyperface
of M . Then

xsΨm
1,0,V(M0)x−s = Ψm

1,0,V(M0) and xsΨm
cl,V(M0)x−s = Ψm

cl,V(M0)

for any s ∈ C.

(ii) Similarly,

ψXΨm
1,0,V(M0)ψ−1

X = Ψm
1,0,V(M0) and ψXΨm

cl,V(M0)ψ−1
X = Ψm

cl,V(M0),

for any X ∈ Γ(A).
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Proof. We have that xsΨm
cl (G)x−s = Ψm

cl (G), for any s ∈ C, by [17]. A
similar result for type (1, 0) operators is proved in the same way as in [17].
This proves (a) because πM (xsPx−s) = xsπM (P )x−s.

Similarly, using the notations of Theorem 3.2, we have ψ̃XΨm
cl (G)ψ̃−1

X =
Ψm

cl (G), for any X ∈ Γ(A) = V. By the diffeomorphism invariance of the space
of pseudodifferential operators, ψ̃XPψ̃−1

X defines a right invariant family of
pseudodifferential operators on G for any such right invariant family P = (Px),
as in the proof of Theorem 3.2. To check that the family P1 := ψXPψ−1

X has
a compactly supported convolution kernel, denote by

(G)a = {g,dist(g, d(g)) ≤ a}.

Then observe that supp(ψ̃XPψ̃−1
X ) ⊂ Gd+2‖X‖ whenever supp(P ) ⊂ (G)d. Then

use Equation (31) to conclude the result.
The proof for type (1, 0) operators is the same.

Let us notice that the same proof gives (ii) above for any diffeomorphism of
M0 that extends to an automorphism of (M, A). Recall that an automorphism
of the Lie algebroid π : A → M is a morphism of vector bundles (ϕ, ψ),
ϕ : M → M , ψ : A → A, such that ϕ and ψ are diffeomorphisms, π ◦ψ = ϕ◦π,
and we have the following compatibility with the anchor map �:

� ◦ ψ = ϕ∗ ◦ �.

4.2. Mapping properties. Let Hs(M0) be the domain of (1 + Δ)s/2, where
Δ is the (positive) Laplace operator on M0 defined by the metric, if s ≥ 0.
The space H−s(M0), s ≥ 0, is defined by duality, the duality form being the
pairing of distributions with test functions.

Corollary 4.4. Each operator P ∈Ψm
1,0,V(M0), P : C∞

c (M0)→C∞(M0),
extends to continuous linear operators P : C∞(M) → C∞(M) and P : Hs(M0)
→ Hs−m(M0). The space Hm(M0), m ≥ 0, identifies with the domain of P

with the graph topology and H−m(M0) = PL2(M0) + L2(M0), for any elliptic
P ∈ Ψm

1,0(M0).

Proof. The first part is a direct consequence of the definition since any
P ∈ Ψm

1,0,V(M0) is properly supported. The last part follows from the results
of [1] and [3].

We now sketch the proof for the benefit of the reader. It follows from the
explicit form of the kernels of operators T ∈ Ψ−n−1

1,0,V (M0), n = dim(M0), that
such a T is bounded on L2(M0). Using the symbolic properties of the algebra
Ψ∞

1,0,V(M0), namely Proposition 2.6 and Proposition 4.2, it then follows that
any T ∈ Ψ0

1,0,V(M0) is bounded on L2(M0) (the details are the same as in [17]
or [3]). Using again the symbolic properties of Ψ∞

1,0,V(M0), we prove as in [3]
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that the domain of the closure of P and PL2(M0) + L2(M0) is independent of
P elliptic of order m. Let us denote by Hm the domain of the closure of P

and H−m = PL2(M0) + L2(M0). Then it is proved in [3] that T : Hr → Hr−m

is bounded, for any T of order m. In [1] it is proved using partitions of unity
that T : Hr(M0) → Hr−m(M0) is bounded for any T of order m. This shows
that Hr = Hr(M0) for any r ∈ R.

4.3. Quantization. We have the following quantization properties of the
algebra Ψ∞

1,0,V(M0).
For any X ∈ Γ(A), denote by aX : A∗ → C the function defined by

aX(ξ) = ξ(X). Then there exists a unique Poisson structure on A∗ such that
{aX , aY } = a[X,Y ]. It is related to the Poisson structure { · , · }T ∗M on T ∗M
via the formula

{f1 ◦ �∗, f2 ◦ �∗}T ∗M = {f1, f2} ◦ �∗,

where �∗ : T ∗M → A∗ denotes the dual to the anchor map �. In particular,
{ · , · } and { · , · }T ∗M coincide on M0.

Proposition 4.5. For any P ∈ Ψm
1,0(M0) and any Q ∈ Ψm′

1,0(M0), where
{ · , · } is the usual Poisson bracket on A∗,

σ(m+m′−1)([P, Q]) = {σ(m)(P ), σ(m′)(Q)}.

Proof. The Poisson structure on T ∗M0 is induced from the Poisson struc-
ture on A∗. In turn, the Poisson structure on T ∗M0 determines the Poisson
structure on A∗, because T ∗M0 is dense in A∗. The desired result then follows
from the similar result that is known for pseudodifferential operators on M0

and the Poisson bracket on T ∗M0.

We conclude with the following result, which is independent of the previ-
ous considerations, but sheds some light on them. The invariant differential
operators on G are generated by d–vertical invariant vector fields on G, that is
by Γ(A(G)). We have by definition that πM = � : Γ(M ;A(G)) → Γ(M ;TM),
and hence πM maps the algebra of invariant differential operators onto G to
Diff∗

V(M0). In particular, the proof of Theorem 3.2 (more precisely Equation
(30)) can be used to prove the following result, which we will however prove
also without making appeal to Theorem 3.2.

Proposition 4.6. Let X ∈ Γ(A) and denote by aX(ξ) = ξ(X) the as-
sociated linear function on A∗. Then aX,χ ∈ S1(A∗) and aX(D) = −iX.
Moreover,

{aχ(D), a = polynomial in each fiber } = Diff∗
V(M0).

Proof. We continue to use a fixed metric on A to trivialize any density
bundle. Let u = F−1

fiber(a), where a ∈ Sm
cl (A

∗) is polynomial in each fiber.
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By the Fourier inversion formula (and integration by parts), u is supported
on M , which is the same thing as saying that u is a distribution of the form
〈u, f〉 =

∫
M P0f(x)dvol(x), with P0 a differential operator acting along the

fibers of A → M and f ∈ C∞
c (A). It then follows from the definition of aχ(D),

from the formula above for u = F−1
fiber(a), and from the fact that χ = 1 in a

neighborhood of the support of u that

aχ(D)f(x) = [P0f(expx(−v))]|v=0, v ∈ TxM0.(35)

Let X1, X2, . . . , Xm ∈ Γ(A) and

a = aX1aX2 . . . aXm
∈ Sm(A∗).(36)

Then the differential operator P0 above is given by the formula

P0f(x) =
∫

A∗
x

a(ξ)F−1f(ξ),

with the inverse Fourier transform F−1 being defined along the fiber Ax. Hence

P0 = imX1X2 . . . Xm,

with each Xj being identified with the family of constant-coefficient differential
operators along the fibers of A → M that acts along Ax as the derivation in
the direction of Xj(x).

For any X ∈ A, we shall denote by ψtX the one-parameter subgroup of
diffeomorphisms of M generated by X. (Note that ψtX is defined for any t

because M is compact and X is tangent to all faces of M .) We thus obtain an
action of ψtX on functions by [ψtX(f)](x) = f(exp(tX)x). Then the differential
operator P0, associated to a as in Equation (36), is given by

P0(f ◦ exp)|M = im
[
∂1∂2 . . . ∂mψt1X1+t2X2+···+tmXm

f
]
|t1=···=tm=0.(37)

Then Equations (35) and (37) give

aχ(D)f = im
[
∂1 . . . ∂m exp(−t1X1 − · · · − tmXm)f

]
|t1=···=tm=0,(38)

In particular, aX(D) = −iX, for any X ∈ Γ(A).
This proves that

aχ(D) ∈ Diff∗
V(M0),(39)

by the Campbell-Hausdorff formula [10], [36], which states that aχ(D) is gener-
ated by X1, X2, . . . , Xn (and their Lie brackets), and hence that it is generated
by V, which was assumed to be a Lie algebra.

Let us prove now that any differential operator P ∈ Diff∗
V(M0) is of the

form aχ(D), for some polynomial symbol a on A∗. This is true if P has degree
zero. Indeed, assume P is the multiplication by f ∈ C∞(M). Lift f to an
order zero symbol on A∗, by letting this extension be constant in each fiber.
Then P = f(D). We shall prove our statement by induction on the degree
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m of P . By linearity, we can reduce to the case P = i−mX1 . . . Xm, where
X1, . . . , Xm ∈ Γ(A). Let a = aX1 . . . aXm

. Then

σm(aχ(D))(ξ) = a(ξ) = X1(ξ) . . . Xm(ξ) = σm(P ),

and hence Q := aχ(D) − i−mX1 . . . Xm ∈ Diffm−1
V (M0). By the induction

hypothesis, Q = bχ(D) for some polynomial symbol of order at most m− 1 on
A∗. This completes the proof.

From this we obtain the following corollary.

Corollary 4.7. Let Diff(M0) be the algebra of all differential operators
on M0. Then

Ψ∞
1,0,V(M0) ∩ Diff(M0) = Diff∗

V(M0).

Proof. We know from the above proposition that

Ψ∞
1,0,V(M0) ∩ Diff(M0) ⊃ Diff∗

V(M0).

Conversely, assume P ∈ Ψm
1,0,V(M0)∩Diff(M0). We shall prove by induction on

m that P ∈ Diffm
V (M0). If m = 0 then P is the multiplication with a smooth

function f on M0. But then f = σ(0)(P ) ∈ S0(A∗) is constant along the fibers
of A∗ → M , and hence f ∈ C∞(M) ⊂ Diff∗

V(M0).
Assume now that the statement is proved for P of order < m. We shall

prove it also for P of order m. Then a := σ(m)(P ) is a polynomial sym-
bol in Sm(A∗). Thus aχ(D) ∈ Diffm

V (M0), by Proposition 4.6. But then
σ(m)(P − aχ(D)) = 0, by Lemma 2.2, and hence P − aχ(D) ∈ Ψm−1

1,0,V(M0) ∩
Diff(M0). By the induction hypothesis P − aχ(D) ∈ Diffm−1

V (M0). This com-
pletes the proof.

5. Group actions and semi-classical limits

One of the most convenient features of manifolds with a Lie structure
at infinity is that questions about analysis of these manifolds often reduce to
questions about analysis of simpler manifolds. These simpler manifolds are
manifolds of the same dimension but endowed with certain nontrivial group
actions. Harmonic analysis techniques then allow us to ultimately reduce our
questions to analysis of lower dimensional manifolds with a Lie structure at
infinity. In this section, we discuss the algebras Ψ∞

1,0,V(M0, G) that generalize
the algebras Ψ∞

1,0,V(M0) when group actions are considered. These algebras
are necessary for the reductions mentioned above and are typically the range
of (generalized) indicial maps. Then we discuss a semi-classical version of the
algebra Ψ∞

1,0,V(M0).
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5.1. Group actions. We shall consider the following setting. Let M0 be
a manifold with a Lie structure at infinity (M, A), and V = Γ(A), as above.
Also, let G be a Lie group with Lie algebra g := Lie(G). We shall denote by
gM the bundle M × g → M . Then

VG := V ⊕ C∞(M, g) � Γ(A ⊕ gM )(40)

has the structure of a Lie algebra with respect to the bracket [ · , · ] which is
defined such that on C∞(M, g) it coincides with the pointwise bracket, on V
it coincides with the original bracket, and, for any X ∈ V, f ∈ C∞(M), and
Y ∈ g, we have

[X, f ⊗ Y ] := X(f) ⊗ Y .

(Here f ⊗ Y denotes the function ξ : M → g defined by ξ(m) = f(m)Y ∈ g.)
The main goal of this subsection is to indicate how the results of Section

(2) extend to VG, after we replace A with A ⊕ gM , M0 with M0 × G, and M

with M × G. The resulting constructions and definitions will yield objects on
M × G that are invariant with respect to the action of G on itself by right
translations.

We now proceed by analogy with the construction of the operators aχ(D)
in Subsection 2.3. First, we identify a section of VG := V ⊕ C∞(M, g) �
Γ(A ⊕ gM ) with a right G-invariant vector field on M0 × G. At the level of
vector bundles, this corresponds to the map

p : T (M0 × G) = TM0 × TG → TM0 × g,(41)

where the map TG → g is defined by means of the trivialization of TG by right
invariant vector fields. Let p1 : M × G → M be the projection onto the first
component and p∗1A be the lift of A to M × G via p1.

The map p defined in Equation (41) can then be used to define the lift

p∗(u) ∈ Im(p∗1A ⊕ TG, M × G),(42)

for any distribution u ∈ Im(A⊕gM , M). In particular, p∗(u) will be a right G-
invariant distribution. Then we define R to be the restriction of distributions
from p∗1A ⊕ TG to distributions on TM0 × TG = T (M0 × G).

We endow M0 × G with the metric obtained from a metric on A and a
right invariant metric on G. This allows us to define the exponential map, thus
obtaining, as in Section 2, a differentiable map

Φ : (TM0 × TG)r = (T (M0 × G))r → (M0 × G)2(43)

that is a diffeomorphism onto an open neighborhood of the diagonal, provided
that r < r0, where r0 is the injectivity radius of M0 × G. We shall denote as
before by

Φ∗ : Im
c ((TM0 × TG)r, M0 × G) → Im

c ((M0 × G)2, M0 × G)

the induced map on conormal distributions.
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The inverse Fourier transform will give a map

F−1
fiber : Sm

1,0(A
∗ ⊕ g∗M ) −→ Im(A ⊕ gM , M),(44)

defined by the same formula as before (Equation (6)). Finally, we shall also
need a smooth function χ on A ⊕ gM that is equal to 1 in a neighborhood of
the zero section and has support inside (A ⊕ gM )r.

We can then define the quantization map in the G-equivariant case by

qΦ,χ,G := Φ∗ ◦ R ◦ p∗ ◦ χ ◦ F−1
fiber : Sm

1,0(A
∗ ⊕ g∗M ) −→ Im((M0 × G)2, M0 × G).

(45)

The main difference from the definition in Equation (11) is that we included
the map p∗, which is the lift of distributions in Im(A⊕ gM , M) to G-invariant
distributions in Im(p∗1A ⊕ TG, M0 ⊗ G); see Equation (42). Then

aχ(D) = T ◦ qΦ,χ,G,(46)

as before.
With this definition of the quantization map, all the results of the previous

sections remain valid, with the appropriate modifications. In particular, we ob-
tain the following definition of the algebra of G-equivariant pseudodifferential
operators associated to (A, M, G).

Definition 5.1. For m ∈ R, the space Ψm
1,0,V(M0, G) of G-equivariant

pseudodifferential operators generated by the Lie structure at infinity (M, A)
is the linear space of operators C∞

c (M0 × G) → C∞
c (M0 × G) generated by

aχ(D), a ∈ Sm
1,0(A

∗ ⊕ g∗M ), and bχ(D)ψX1 . . . ψXk
, b ∈ S−∞(A∗ ⊕ g∗M ) and

Xj ∈ Γ(A ⊕ gM ).
The space Ψm

cl,V(M0, G) of classical G-equivariant pseudodifferential oper-
ators generated by the Lie structure at infinity (M, A) is defined similarly, but
using classical symbols a.

With this definition, all the results on the algebras Ψm
1,0,V(M0) and

Ψm
cl,V(M0) extend right away to the spaces Ψm

1,0,V(M0, G) and Ψm
cl,V(M0, G).

In particular, these spaces are algebras for m = 0, are independent of the
choice of the metric on A used to define them, and have the usual symbolic
properties of the algebras of pseudodifferential operators.

The only thing that may need more explanation is what we replace πM

with in the G-equivariant case, because there we no longer use the vector
representation. Let G be a groupoid integrating A, Γ(A) = V. Then G × G

integrates A ⊕ gM . If P = (Px) ∈ Ψm
1,0(G × G), then we consider π0(P ) to be

the operator induced by Px on (Gx/Gx
x) × G, x ∈ M0, the later space being a

quotient of (G ×G)x. We shall then use π0 instead of πM in the G-equivariant
case. (By the proof of Theorem 3.2, π0 = πM , if G is reduced to a point.)
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5.2. Indicial maps. The main reason for considering the algebras
Ψm

1,0,V(M0, G) and their classical counterparts is the following. Let (M,V),
V = Γ(M, A), be a manifold with a Lie structure at infinity. Let N0 ⊂ M be a
submanifold such that TxN0 = �(Ax) for any x ∈ N0. Moreover, assume that
N0 is completely contained in an open face F ⊂ M such that N := N0 is a
submanifold with corners of F and N0 = N �∂N . Then the restriction A|N0 is
such that the Lie bracket on V = Γ(A) descends to a Lie bracket on Γ(A|N0).
(This is due to the fact that the space I of functions vanishing on N is invariant
for derivations in V. Then IV is an ideal of V, and hence V/IV � Γ(A|N ) is
naturally a Lie algebra.)

Assume now that there exists a Lie group G and a vector bundle A1 → N

such that A|N � A1 ⊕ gN and V1 := V|N � Γ(A1). Then V1 is a Lie algebra
and (N0, N, A1) is also a manifold with a Lie structure at infinity. In many
cases (certainly for many of the most interesting examples) one obtains for any
Lie group H a natural morphism

RN : Ψm
1,0,V(M0;H) → Ψm

1,0,V1
(N0;G × H).(47)

For example, the generalizations of the morphisms considered in [17] are of the
form (47). However, we do not know exactly what the conditions are under
which the morphism RN above is defined.

Let h = Lie H and hN = M × Lie H. Then, at the level of kernels the
morphism defined by Equation (47) corresponds to the restriction maps

rN : Im(A∗ ⊕ h∗N , M) → I∗(A∗|N ⊕ h∗N , N) � I∗(A∗
1 ⊕ gN ⊕ h∗N , N)

in the sense that RN (aχ(D)) = (rN (a))χ(D).

5.3. Semi-classical limits. We now define the algebra Ψm
1,0,V(M0[[h]]), an

element of which will be, roughly speaking, a semi-classical family of operators
(Tt), Tt ∈ Ψm

1,0,V(M0) t ∈ (0, 1]. See [46] for some applications of semi-classical
analysis.

Definition 5.2. For m ∈ R, the space Ψm
1,0,V(M0[[h]]) of pseudodifferential

operators generated by the Lie structure at infinity (M, A) is the linear space
of families of operators Tt : C∞

c (M0 × G) → C∞
c (M0 × G), t ∈ (0, 1], generated

by

aχ(t, tD) , a ∈ Sm
1,0([0, 1] × A∗ ⊕ g∗M ),

and

bχ(t, tD)ψtX1(t) . . . ψtXk(t), b ∈ S−∞([0, 1] × A∗ ⊕ g∗M ),

Xj ∈ Γ([0, 1] × A ⊕ gM ).
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The space Ψm
cl,V(M0[[h]]) of semi-classical families of pseudodifferential

operators generated by the Lie structure at infinity (M, A) is defined similarly,
but using classical symbols a.

Thus we consider families of operators (Tt), Tt ∈ Ψm
1,0,V(M0), defined in

terms of data a, b, Xk, that extend smoothly to t = 0, with the interesting
additional feature that the cotangent variable is rescaled as t → 0.

Again, all the results on the algebras Ψm
1,0,V(M0) and Ψm

cl,V(M0) extend
right away to the spaces Ψm

1,0,V(M0[[h]]) and Ψm
cl,V(M0[[h]]), except maybe

Proposition 4.6 and its Corollary 4.7, that need to be properly reformulated.
Another variant of the above constructions is to consider families of man-

ifolds with a Lie structure at infinity. The necessary changes are obvious
though, and we will not discuss them here.
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