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Weak mixing for interval exchange
transformations and translation flows

By Artur Avila and Giovanni Forni*

Abstract

We prove that a typical interval exchange transformation is either weakly
mixing or it is an irrational rotation. We also conclude that a typical trans-
lation flow on a typical translation surface of genus g ≥ 2 (with prescribed
singularity types) is weakly mixing.

1. Introduction

Let d ≥ 2 be a natural number and let π be an irreducible permutation
of {1, . . . , d}; that is, π{1, . . . , k} �= {1, . . . , k}, 1 ≤ k < d. Given λ ∈ Rd

+, we
define an interval exchange transformation (i.e.t.) f := f(λ, π) in the usual
way [CFS], [Ke]: we consider the interval

(1.1) I := I(λ, π) =

[
0,

d∑
i=1

λi

)
,

break it into subintervals

(1.2) Ii := Ii(λ, π) =

∑
j<i

λj ,
∑
j≤i

λj

 , 1 ≤ i ≤ d,

and rearrange the Ii according to π (in the sense that the i-th interval is
mapped onto the π(i)-th interval). In other words, f : I → I is given by

(1.3) x �→ x +
∑

π(j)<π(i)

λj −
∑
j<i

λj , x ∈ Ii .

We are interested in the ergodic properties of i.e.t.’s. Obviously, they preserve
the Lebesgue measure on I. Katok proved that i.e.t.’s and suspension flows over
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i.e.t.’s with roof function of bounded variation are never mixing [Ka], [CFS].
Then the fundamental work of Masur [M] and Veech [V2] established that
almost every i.e.t. is uniquely ergodic (this means that, for every irreducible
π and for Lebesgue almost every λ ∈ Rd

+, f(λ, π) is uniquely ergodic).
The question of whether the typical i.e.t. is weakly mixing is more delicate

except if π is a rotation of {1, . . . , d}, that is, if π satisfies the following condi-
tions: π(i + 1) ≡ π(i) + 1 mod d, for all i ∈ {1, . . . , d}. In that case f(λ, π) is
conjugate to a rotation of the circle, hence it is not weakly mixing, for every
λ ∈ Rd

+. After the work of Katok and Stepin [KS] (who proved weak mixing for
almost all i.e.t.’s on 3 intervals), Veech [V4] established almost sure weak mix-
ing for infinitely many irreducible permutations and asked whether the same
property is true for any irreducible permutation which is not a rotation. In
this paper, we give an affirmative answer to this question.

Theorem A. Let π be an irreducible permutation of {1, . . . , d} which is
not a rotation. For Lebesgue almost every λ ∈ Rd

+, f(λ, π) is weakly mixing.

We should remark that topological weak mixing was established earlier
(for almost every i.e.t. which is not a rotation) by Nogueira-Rudolph [NR].

We recall that a measure-preserving transformation f of a probability
space (X, m) is said to be weakly mixing if for every pair of measurable sets A,
B ⊂ X,

(1.4) lim
n→+∞

1
n

n−1∑
k=0

|m(f−kA ∩ B) − m(A)m(B)| = 0 .

It follows immediately from the definitions that every mixing transformation
is weakly mixing and every weakly mixing transformation is ergodic. A clas-
sical theorem states that any invertible measure-preserving transformation f

is weakly mixing if and only if it has continuous spectrum; that is, the only
eigenvalue of f is 1 and the only eigenfunctions are constants [CFS], [P]. Thus
it is possible to prove weak mixing by ruling out the existence of non-constant
measurable eigenfunctions. This is in fact the standard approach which is also
followed in this paper. Topological weak mixing is proved by ruling out the ex-
istence of non-constant continuous eigenfunctions. Analogous definitions and
statements hold for flows.

1.1. Translation flows. Let M be a compact orientable translation surface
of genus g ≥ 1, that is, a surface with a finite or empty set Σ of conical
singularities endowed with an atlas such that coordinate changes are given by
translations in R2 [GJ1], [GJ2]. Equivalently, M is a compact surface endowed
with a flat metric, with at most finitely many conical singularities and trivial
holonomy. For a general flat surface the cone angles at the singularities are
2π(κ1 + 1) ≤ · · · ≤ 2π(κr + 1), where κ1, . . . , κr > −1 are real numbers
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satisfying
∑

κi = 2g − 2. If the surface has trivial holonomy, then κi ∈ Z+,
for all 1 ≤ i ≤ r, and there exists a parallel section of the unit tangent bundle
T1M , that is, a parallel vector field of unit length, well-defined on M \ Σ.
A third, equivalent, point of view is to consider pairs (M, ω) of a compact
Riemann surface M and a (non-zero) abelian differential ω. A flat metric on
M (with Σ := {ω = 0}) is given by |ω| and a parallel (horizontal) vector field
v of unit length is determined by the condition ω(v) = 1. The specification of
the parameters κ = (κ1, . . . , κr) ∈ Zr

+ with
∑

κi = 2g − 2 determines a finite
dimensional stratum H(κ) of the moduli space of translation surfaces which is
endowed with a natural complex structure and a Lebesgue measure class [V5],
[Ko].

A translation flow F on a translation surface M is the flow generated by
a parallel vector field of unit length on M \ Σ. The space of all translation
flows on a given translation surface is naturally identified with the unit tangent
space at any regular point; hence it is parametrized by the circle S1. For all
θ ∈ S1, the translation flow Fθ, generated by the vector field vθ such that
e−iθω(vθ) = 1, coincides with the restriction of the geodesic flow of the flat
metric |ω| to an invariant surface Mθ ⊂ T1M (which is the graph of the vector
field vθ in the unit tangent bundle over M \ Σ).

We are interested in typical translation flows (with respect to the Haar
measure on S1) on typical translation surfaces (with respect to the Lebesgue
measure class on a given stratum). In genus 1 there are no singularities and
translation flows are linear flows on T2: they are typically uniquely ergodic
but never weakly mixing. In genus g ≥ 2, the unique ergodicity for a typical
translation flow on the typical translation surface was proved by Masur [M]
and Veech [V2]. This result was later strenghtened by Kerckhoff, Masur and
Smillie [KMS] to include arbitrary translation surfaces.

As in the case of interval exchange transformations, the question of weak
mixing of translation flows is more delicate than unique ergodicity, but it is
widely expected that weak mixing holds typically in genus g ≥ 2. We will show
that it is indeed the case:

Theorem B. Let H(κ) be any stratum of the moduli space of translation
surfaces of genus g ≥ 2. For almost all translation surfaces (M, ω) ∈ H(κ),
the translation flow Fθ on (M, ω) is weakly mixing for almost all θ ∈ S1.

Translation flows and i.e.t.’s are intimately related: the former can be
viewed as suspension flows (of a particular type) over the latter. However, since
the weak mixing property, unlike ergodicity, is not invariant under suspensions
and time changes, the problems of weak mixing for translation flows and i.e.t.’s
are independent of one another. We point out that (differently from the case of
i.e.t.’s, where weak mixing had been proved for infinitely many combinatorics),
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there has been little progress on weak mixing for typical translation flows
(in the measure-theoretic sense), except for topological weak mixing, proved
in [L]. Gutkin and Katok [GK] proved weak mixing for a Gδ-dense set of
translation flows on translation surfaces related to a class of rational polygonal
billiards. We should point out that our results tell us nothing new about
the dynamics of rational polygonal billiards (for the well-known reason that
rational polygonal billiards yield zero measure subsets of the moduli space of
all translation surfaces).

1.2. Parameter exclusion. To prove our results, we will perform a param-
eter exclusion to get rid of undesirable dynamics. With this in mind, instead
of working in the direction of understanding the dynamics on the phase space
(regularity of eigenfunctions1, etc.), we will focus on analysis of the parameter
space.

We analyze the parameter space of suspension flows over i.e.t.’s via a
renormalization operator (i.e.t.’s correspond to the case of constant roof func-
tion). The renormalization operator acts non-linearly on i.e.t.’s and linearly on
roof functions, so it has the structure of a cocycle (the Zorich cocycle) over the
renormalization operator on the space of i.e.t.’s (the Rauzy-Zorich induction).
One can work out a criterion for weak mixing (originally due to Veech [V4])
in terms of the dynamics of the renormalization operator.

An important ingredient in our analysis is the result of [F2] on the non-
uniform hyperbolicity of the Kontsevich-Zorich cocycle over the Teichmüller
flow. This result is equivalent to the non-uniform hyperbolicity of the Zorich co-
cycle [Z3]. Actually we only need a weaker result, namely that the Kontsevich-
Zorich cocycle, or equivalently the Zorich cocycle, has two positive Lyapunov
exponents in the case of surfaces of genus at least 2.

In the case of translation flows, a “linear” parameter exclusion (on the
roof function parameters) shows that “bad” roof functions form a small set
(basically, each positive Lyapunov exponent of the Zorich cocycle gives one
obstruction for the eigenvalue equation, which has only one free parameter).
This argument is explained in Appendix A.

The situation for i.e.t.’s is much more complicated, since we have no free-
dom to change the roof function. We need to carry out a “non-linear” exclusion
process, based on a statistical argument. This argument proves weak mixing
at once for typical i.e.t.’s and typical translation flows. While for the linear
exclusion it is enough to use the ergodicity of the renormalization operator
on the space of i.e.t.’s, the statistical argument for the non-linear exclusion
heavily uses its mixing properties.

1 In this respect, we should remark that Yoccoz has pointed out to us the existence of “strange”

eigenfunctions for certain values of the parameter.
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1.3. Outline. We start this paper with basic background on cocycles
over expanding maps. We then prove our key technical result, an abstract
parameter exclusion scheme for “sufficiently random integral cocycles”.

We then review known results on the renormalization dynamics for i.e.t.’s
and show how the problem of weak mixing reduces to the abstract parameter
exclusion theorem. The same argument also covers the case of translation
flows.

In the appendix we present the linear exclusion argument, which is much
simpler than the non-linear exclusion argument but is enough to deal with
translation flows and yields an estimate on the Hausdorff dimension of the set
of translation flows which are not weakly mixing.

2. Background

2.1. Strongly expanding maps. Let (∆, µ) be a probability space. We say
that a measurable transformation T : ∆ → ∆, which preserves the measure
class of the measure µ, is weakly expanding if there exists a partition (modulo
0) {∆(l), l ∈ Z} of ∆ into sets of positive µ-measure, such that, for all l ∈ Z,
T maps ∆(l) onto ∆, T (l) := T |∆(l) is invertible and T

(l)
∗ µ is equivalent to µ.

Let Ω be the set of all finite words with integer entries. The length (number
of entries) of an element l ∈ Ω will be denoted by |l|. For any l ∈ Ω, l =
(l1, . . . , ln), we set ∆l := {x ∈ ∆, T k−1(x) ∈ ∆(lk), 1 ≤ k ≤ n} and T l :=
Tn|∆l. Then µ(∆l) > 0.

Let M = {µl, l ∈ Ω}, where

(2.1) µl :=
1

µ(∆l)
T l
∗µ.

We say that T is strongly expanding if there exists a constant K > 0 such that

(2.2) K−1 ≤ dν

dµ
≤ K, ν ∈ M.

This has the following consequence. If Y ⊂ ∆ is such that µ(Y ) > 0 then

(2.3) K−2µ(Y ) ≤ T l
∗ν(Y )
µ(∆l)

≤ K2µ(Y ), ν ∈ M, l ∈ Ω.

2.2. Projective transformations. We let Pp−1
+ ⊂ Pp−1 be the projectiviza-

tion of Rp
+. We will call it the standard simplex. A projective contraction is

a projective transformation taking the standard simplex into itself. Thus a
projective contraction is the projectivization of some matrix B ∈ GL(p, R)
with non-negative entries. The image of the standard simplex by a projective
contraction is called a simplex. We need the following simple but crucial fact.
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lemma 2.1. Let ∆ be a simplex compactly contained in Pp−1
+ and let

{∆(l), l ∈ Z} be a partition of ∆ (modulo sets of Lebesgue measure 0) into
sets of positive Lebesgue measure. Let T : ∆ → ∆ be a measurable trans-
formation such that, for all l ∈ Z, T maps ∆(l) onto ∆, T (l) := T |∆(l) is
invertible and its inverse is the restriction of a projective contraction. Then T

preserves a probability measure µ which is absolutely continuous with respect to
the Lebesgue measure on ∆ and has a density which is continuous and positive
on ∆. Moreover, T is strongly expanding with respect to µ.

Proof. Let d([x], [y]) be the projective distance between [x] and [y]:

(2.4) d([x], [y]) = sup
1≤i,j≤p

∣∣∣∣ln xiyj

xjyi

∣∣∣∣ .

Let N be the class of absolutely continuous probability measures on ∆ whose
densities have logarithms which are p-Lipschitz with respect to the projective
distance. Since ∆ has finite projective diameter, it suffices to show that there
exists µ ∈ N invariant under T and such that µl ∈ N for all l ∈ Ω. Notice
that N is compact in the weak* topology and convex.

Since (T l)−1 is the projectivization of some matrix Bl = (blij) in GL(p, R)
with non-negative entries, we have

(2.5) |det D(T l)−1(x)| =
[ ‖x‖
‖Bl · x‖

]p

det(Bl),

so that

(2.6)
|det D(T l)−1(y)|
|detD(T l)−1(x)| =

[‖Bl · x‖
‖Bl · y‖

‖y‖
‖x‖

]p

≤ sup
1≤i≤p

(
xi‖y‖
yi‖x‖

)p

≤ epd([x],[y]) .

Thus

(2.7) Lebl :=
1

Leb(∆l)
T l
∗Leb ∈ N ,

and

(2.8) νn :=
1
n

n−1∑
k=0

T k
∗ Leb =

1
n

∑
l∈Ω,|l|≤n

Leb(∆l)Lebl ∈ N .

Let µ be any limit point of {νn} in the weak* topology. Then µ is invariant
under T , belongs to N and, for any l ∈ Ω, µl is a limit of

(2.9) νl
n =

 ∑
l0∈Ω,|l0|≤n

Leb(∆l0l)

−1 ∑
l0∈Ω,|l0|≤n

Leb(∆l0l)Lebl0l ∈ N ,

which implies that µl ∈ N .
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2.3. Cocycles. A cocycle is a pair (T, A), where T : ∆ → ∆ and A : ∆ →
GL(p, R), viewed as a linear skew-product (x, w) �→ (T (x), A(x) ·w) on ∆×Rp.
Notice that (T, A)n = (Tn, An), where

(2.10) An(x) = A(Tn−1(x)) · · ·A(x), n ≥ 0.

If (∆, µ) is a probability space, µ is an invariant ergodic measure for T (in
particular T is measurable) and

(2.11)
∫

∆
ln ‖A(x)‖dµ(x) < ∞,

we say that (T, A) is a measurable cocycle.
Let

(2.12) Es(x) := {w ∈ Rp, lim ‖An(x) · w‖ = 0},

(2.13) Ecs(x) := {w ∈ Rp, lim sup ‖An(x) · w‖1/n ≤ 1}.

Then Es(x) ⊂ Ecs(x) are subspaces of Rp (called the stable and central stable
spaces respectively), and we have A(x) · Ecs(x) = Ecs(T (x)), A(x) · Es(x) =
Es(T (x)). If (T, A) is a measurable cocycle, dim Es and dimEcs are constant
almost everywhere.

If (T, A) is a measurable cocycle, the Oseledets Theorem [O], [KB] implies
that lim ‖An(x) · w‖1/n exists for almost every x ∈ ∆ and for every w ∈ Rp,
and that there are p Lyapunov exponents θ1 ≥ · · · ≥ θp characterized by

(2.14)
#{i, θi = θ} = dim{w ∈ Rp, lim ‖An(x) · w‖1/n ≤ eθ}

− dim{w ∈ Rp, lim ‖An(x) · w‖1/n < eθ} .

Thus dimEcs(x) = #{i, θi ≤ 0}.2 Moreover, if λ < min{θi, θi > 0} then for
almost every x ∈ ∆, for every subspace G0 ⊂ Rp transverse to Ecs(x), there
exists C(x, G0) > 0 such that

(2.15) ‖An(x) · w‖ ≥ C(x, G0)eλn ‖w‖ , for all w ∈ G0(x).

Given B ∈ GL(p, R), we define

(2.16) ‖B‖0 = max{‖B‖, ‖B−1‖}.

If the measurable cocycle (T, A) satisfies the stronger condition

(2.17)
∫

∆
ln ‖A(x)‖0dµ(x) < ∞,

we will call (T, A) a uniform cocycle.

2 It is also possible to show that dim Es(x) = #{i, θi < 0}.
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lemma 2.2. Let (T, A) be a uniform cocycle and let

(2.18) ω(κ) = sup
µ(U)≤κ

sup
N>0

∫
U

1
N

ln ‖AN (x)‖0dµ(x).

Then

(2.19) lim
κ→0

ω(κ) = 0 .

Proof. Let Bκ be the set of measures ν ≤ µ with total mass at most κ.
Notice that T∗Bκ ⊂ Bκ. Let

(2.20) ωN (κ) = sup
ν∈Bκ

∫
1
N

N−1∑
k=0

ln ‖A(T k(x))‖0dν,

so that clearly

(2.21) ω(κ) ≤ sup
N>0

ωN (κ),

(2.22) ωN (κ) = sup
ν∈Bκ

∫
1
N

N−1∑
k=0

ln ‖A(x)‖0dT k
∗ ν ≤ sup

ν∈Bκ

∫
ln ‖A(x)‖0dν.

Since ln ‖A(x)‖0 is integrable,

(2.23) lim
κ→0

sup
ν∈Bκ

∫
ln ‖A(x)‖0dν = 0.

The result follows from (2.21), (2.22) and (2.23).

We say that a cocycle (T, A) is locally constant if T : ∆ → ∆ is strongly
expanding and A|∆(l) is a constant A(l), for all l ∈ Z. In this case, for all l ∈ Ω,
l = (l1, . . . , ln), we let

(2.24) Al := A(ln) · · ·A(l1).

We say that a cocycle (T, A) is integral if A(x) ∈ GL(p, Z), for almost all
x ∈ ∆. An integral cocycle can be regarded as a skew product on ∆ × Rp/Zp.

3. Exclusion of the weak-stable space

Let (T, A) be a cocycle. We define the weak-stable space at x ∈ ∆ by

(3.1) W s(x) = {w ∈ Rp, ‖An(x) · w‖Rp/Zp → 0} ,

where ‖ · ‖Rp/Zp denotes the euclidean distance from the lattice Zp ⊂ Rp. Now,
it is immediate to see that, for almost all x ∈ ∆, the space W s(x) is a union of
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translates of Es(x). If the cocycle is integral, W s(x) has a natural interpreta-
tion as the stable space at (x, 0) of the zero section in ∆×Rp/Zp. If the cocycle
is bounded, that is, if the function A : ∆ → GL(p, R) is essentially bounded,
then it is easy to see that W s(x) = ∪c∈ZpEs(x) + c. In general W s(x) may be
the union of uncountably many translates of Es(x).

Let Θ ⊂ Pp−1 be a compact set. We say that Θ is adapted to the cocycle
(T, A) if A(l) · Θ ⊂ Θ for all l ∈ Z and if, for almost every x ∈ ∆,

(3.2) ‖A(x) · w‖ ≥ ‖w‖,

(3.3) ‖An(x) · w‖ → ∞
whenever w ∈ Rp \ {0} projectivizes to an element of Θ.

Let J = J (Θ) be the set of lines in Rp, parallel to some element of Θ and
not passing through 0.

The main result in this section is the following.

theorem 3.1. Let (T, A) be a locally constant integral uniform cocycle
and let Θ be adapted to (T, A). Assume that for every line J ∈ J := J (Θ),
J ∩ Ecs(x) = ∅ for almost every x ∈ ∆. Then if L is a line contained in Rp

parallel to some element of Θ, L ∩ W s(x) ⊂ Zp for almost every x ∈ ∆.

Remark 3.2. It is much easier to prove Theorem 3.1 if one assumes that∫
‖A‖1+εdµ < ∞ for some ε > 0, and certain parts of the proof become more

transparent already under the condition
∫
‖A‖εdµ < ∞. For the cocycles to

which we will apply Theorem 3.1 in this paper, namely, uniformly hyperbolic
inducings of the Zorich cocycle, it is well known that

∫
‖A‖dµ = ∞, and it

was recently shown in [AGY] that one can choose the cocycles so as to obtain∫
‖A‖1−εdµ < ∞.

The proof of Theorem 3.1 will take up the rest of this section.

For J ∈ J , we let ‖J‖ be the distance between J and 0.

lemma 3.3. There exists ε0 > 0 such that

(3.4) lim
n→∞

sup
J∈J

µ

{
x, ln

‖An(x) · J‖
‖J‖ < ε0n

}
= 0 .

Proof. Let C(x, J) be the largest real number such that

(3.5) ‖An(x) · J‖ ≥ C(x, J)eλn/2‖J‖, n ≥ 0,

where λ > 0 is smaller than all positive Lyapunov exponents of (T, A). By
the Oseledets Theorem [O], [KB], C(x, J) ∈ [0, 1] is strictly positive for every
J ∈ J and almost every x ∈ ∆, and depends continuously on J for almost



646 ARTUR AVILA AND GIOVANNI FORNI

every x. Thus, for every δ > 0 and J ∈ J , there exists Cδ(J) > 0 such that
µ{x, C(x, J) ≤ Cδ(J)} < δ. By Fatou’s Lemma, for any C > 0 the function
F (J) := µ{x, C(x, J) ≤ C} is upper semi-continuous; hence µ{x, C(x, J ′) ≤
Cδ(J)} < δ for every J ′ in a neighborhood of J . By compactness, there exists
Cδ > 0 such that µ{x, C(x, J) ≤ Cδ} < δ for every J ∈ J with ‖J‖ = 1, and
hence for every J ∈ J . The result now follows since 2ε0 < λ.

For any δ < 1/10, let W s
δ,n(x) be the set of all w ∈ Bδ(0) such that

‖Ak(x) · w‖Rp/Zp < δ for all k ≤ n, and let W s
δ (x) = ∩W s

δ,n(x).

lemma 3.4. There exists δ > 0 such that for all J ∈ J and for almost
every x ∈ ∆, J ∩ W s

δ (x) = ∅.

Proof. For any δ < 1/10, let φδ(l, J) be the number of connected compo-
nents of the set Al (J ∩ Bδ(0))∩Bδ(Zp \ {0}) and let φδ(l) := supJ∈J φδ(l, J).
For any (fixed) l ∈ Ω the function δ �→ φδ(l) is non-decreasing and there exists
δl > 0 such that for δ < δl we have φδ(l) = 0. We also have

(3.6) φδ(l) ≤ ‖Al‖0 , l ∈ Ω .

Given J with ‖J‖ < δ and l ∈ Ω, let Jl,1, . . . , Jl,φδ(l,J) be all the lines of the
form Al · J − c where Al (J ∩ Bδ(0)) ∩ Bδ(c) �= ∅ with c ∈ Zp \ {0}. Let
Jl,0 = Al · J .

By definition we have

(3.7) ‖Jl,k‖ < δ, k ≥ 1 .

To obtain a lower bound we argue as follows. Let w ∈ Jl,k satisfy ‖w‖ =
‖Jl,k‖. Then ‖w − w′‖ < δ for some w′ ∈ Al · (J ∩ Bδ(0)) − c. Since J is
parallel to some element of Θ, it is expanded by Al (see (3.2)). It follows that
‖(Al)−1 · (w + c)− (Al)−1 · (w′ + c)‖ < δ, which implies ‖(Al)−1 · (w + c)‖ < 2δ.
Since (Al)−1 · c ∈ Zp \ {0}, we have

(3.8) ‖Al‖0‖w‖ ≥ ‖(Al)−1 · c − (Al)−1 · (w + c)‖ ≥ 1 − 2δ,

and finally we get

(3.9) ‖Jl,k‖ ≥ (1 − 2δ)‖Al‖−1
0 ≥ 2−1‖Al‖−1

0 , k ≥ 1.

On the other hand, it is clear that

(3.10) ‖Al‖0‖J‖ ≥ ‖Jl,0‖ ≥ ‖Al‖−1
0 ‖J‖.

Given measurable sets X, Y ⊂ ∆ such that µ(Y ) > 0, we let

(3.11) Pν(X|Y ) =
ν(X ∩ Y )

ν(Y )
, ν ∈ M,

(3.12) P (X|Y ) = sup
ν∈M

Pν(X|Y ).
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For N ∈ N \ {0}, let ΩN be the set of all words of length N , and Ω̂N be
the set of all words of length a multiple of N .

For any 0 < η < 1/10, select a finite set Z ⊂ ΩN such that µ(∪l∈Z∆l) >

1− η. Since the cocycle is locally constant and uniform, there exists 0 < η0 <

1/10 such that, for all η < η0,

(3.13)
∑

l∈ΩN\Z
ln ‖Al‖0 µ(∆l) <

1
10

.

claim 3.5. There exists N0 ∈ N \ {0} such that, if N > N0, then for
every J ∈ J and every measurable set Y ⊂ ∆ with µ(Y ) > 0,

(3.14) inf
ν∈M

∑
l1∈Z

ln
‖Jl1,0‖
‖J‖ Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)
≥ 2 .

Proof. By Lemma 3.3, for every κ > 0, there exists N0(κ) ∈ N such
that the following holds. For every N > N0(κ) and every J ∈ J there exists
Z ′ := Z ′(N, J) ⊂ Z such that, for all l ∈ Z ′,

(3.15) ln
‖Al · J‖
‖J‖ ≥ ε0N,

(3.16) µ

 ⋃
l∈Z\Z′

∆l

 < κ.

We have

(3.17)

(I) :=
∑
l1∈Z′

ln
‖Jl1,0‖
‖J‖ Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)

≥ ε0NPν

( ⋃
l∈Z′

∆l|
⋃
l∈Z

∆l ∩ T−N (Y )

)

≥ ε0N

1 − K4Pµ

 ⋃
l∈Z\Z′

∆l|
⋃
l∈Z

∆l


≥ ε0N

(
1 − K4 κ

1 − η

)
,
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(3.18)

(II) :=
∑

l1∈Z\Z′

ln
‖Jl1,0‖
‖J‖ Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)

≥ −
∑

l1∈Z\Z′

ln ‖Al1‖0Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)

≥ −
∑

l1∈Z\Z′

ln ‖Al1‖0K
4Pµ

(
∆l1 |

⋃
l∈Z

∆l

)

≥ −K4 1
1 − η

∫
∪l∈Z\Z′∆l

ln ‖Al(x)‖0 dµ

≥ −K4 1
1 − η

ω(κ)N

(where ω(κ) is as in Lemma 2.2), so that for any η < 1/10, for κ > 0 sufficiently
small and for all N > N0(κ),

(3.19)
∑
l1∈Z

ln
‖Jl1,0‖
‖J‖ Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)
≥ (I) + (II) ≥ ε0

2
N.

Hence the claim is proved since N0 ≥ max{N0(κ), 4ε−1
0 }.

claim 3.6. Let N > N0. There exists ρ0(Z) > 0 such that, for every
0 < ρ < ρ0(Z), every J ∈ J and every Y ⊂ ∆ with µ(Y ) > 0,

(3.20) sup
ν∈M

∑
l1∈Z

‖Jl1,0‖−ρPν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)
≤ (1 − ρ)‖J‖−ρ .

Proof. Let

(3.21) Φ(ν, Y, ρ) :=
∑
l1∈Z

‖Jl1,0‖−ρ

‖J‖−ρ
Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)
.

Then Φ(ν, Y, 0) = 1 and

d

dρ
Φ(ν, Y, ρ) =

∑
l1∈Z

− ln
(‖Jl1,0‖

‖J‖

) ‖Jl1,0‖−ρ

‖J‖−ρ
Pν

(
∆l1 |

⋃
l∈Z

∆l ∩ T−N (Y )

)
,

since Z is a finite set. By Claim 3.5 there exists ρ0(Z) > 0 such that, for every
Y ⊂ ∆ with µ(Y ) > 0,

(3.22)
d

dρ
Φ(ν, Y, ρ) ≤ −1, 0 ≤ ρ ≤ ρ0(Z),

which gives the result.
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At this point we fix 0 < η < η0, N > N0, Z ⊂ ΩN , and 0 < ρ < ρ0(Z) so
that (3.13) and (3.20) hold and let δ < 1/10 be so small that

(3.23)
∑

l∈ΩN\Z

[
ρ ln ‖Al‖0 + ln

(
1 + ‖Al‖0(2δ)ρ

)]
µ(∆l)− ρµ(

⋃
l∈Z

∆l) = α < 0,

(this is possible by (3.13)) and

(3.24) φδ(l) = 0, l ∈ Z ,

(this is possible since Z is finite).
Let Γm

δ (J) = {x ∈ ∆, J ∩ W s
δ,mN (x) �= ∅}. Our goal is to show that

µ (Γm
δ (J)) → 0 for every J ∈ J . Let Ω be, as above, the set of all finite words

with integer entries. Let ΩN and Ω̂N be, as above, the subset of all words of
length N and the subset of all words of length a multiple of N , respectively.
Let ψ : ΩN → Z be such that ψ(l) = 0 if l ∈ Z and ψ(l) �= ψ(l′) whenever l �= l′

and l /∈ Z. We let Ψ : Ω̂N → Ω be given by Ψ(l(1) . . . l(m)) = ψ(l(1)) . . . ψ(l(m)),
where the l(i) are in ΩN . We let ∆̂d = ∪l∈Ψ−1(d)∆l.

For d ∈ Ω, let C(d) ≥ 0 be the smallest real number such that

(3.25) sup
ν∈M

Pν(Γm
δ (J)|∆̂d) ≤ C(d)‖J‖−ρ, J ∈ J .

It follows that C(d) ≤ 1 for all d (since Γm
δ (J) = ∅, ‖J‖ > δ).

claim 3.7. If d = (d1, . . . , dm),

(3.26) C(d) ≤
∏
di=0

(1 − ρ)
∏

di �=0,ψ(li)=di

‖Ali‖ρ
0(1 + ‖Ali‖0(2δ)ρ).

Proof. Let d = (d1, . . . , dm+1), d′ = (d2, . . . , dm+1). There are two possi-
bilities: (1) If d1 = 0, we have by (3.20) and (3.24)

Pν(Γm+1
δ (J)|∆̂d) ≤

∑
l1∈Z

P (Γm
δ (Jl1,0)|∆̂d′

)Pν(∆l1 |∆̂d) ≤ (1 − ρ)C(d′)‖J‖−ρ .

(2) If d1 �= 0, let l1 be given by ψ(l1) = d1. Then either ‖J‖ > δ (and
P (Γm+1

δ (J)|∆̂d) = 0) or, by (3.6), (3.9) and (3.10),

P (Γm+1
δ (J)|∆̂d) ≤

φδ(l1)∑
k=0

P (Γm
δ (Jl1,k)|∆̂d′

)

≤ C(d′)(‖Jl1,0‖−ρ + φδ(l1) sup
k≥1

‖Jl1,k‖−ρ)

≤ C(d′)‖J‖−ρ

(
‖Al1‖ρ

0 +
2ρ‖Al1‖1+ρ

0

‖J‖−ρ

)
≤ C(d′)‖J‖−ρ

(
‖Al1‖ρ

0 + (2δ)ρ‖Al1‖1+ρ
0

)
.

The result follows.
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Let

(3.27) γ(x) :=
{ −ρ , x ∈ ∪l∈Z∆l ,

ρ ln ‖Al‖0 + ln
(
1 + ‖Al‖0(2δ)ρ

)
, x ∈ ∪l∈ΩN\Z∆l .

We have chosen δ > 0 so that (see (3.23))

(3.28)
∫

∆
γ(x)dµ(x) = α < 0.

Let Cm(x) = C(d) for x ∈ ∆̂d, |d| = m. Then by (3.26)

(3.29) lnCm(x) ≤
m−1∑
k=0

γ
(
T kN (x)

)
so that, by Birkhoff’s ergodic theorem, Cm(x) → 0 for almost every x ∈ ∆.
By dominated convergence (since Cm(x) ≤ 1),

(3.30) lim
m→∞

∫
∆

Cm(x)dµ(x) = 0.

Notice that

(3.31) µ(Γm
δ (J)) ≤

∑
d∈Ω,|d|=m

µ(∆̂d)Pµ(Γm
δ (J)|∆̂d) ≤

∫
∆

Cm(x)‖J‖−ρdµ(x),

so that limµ (Γm
δ (J)) = 0.

Proof of Theorem 3.1. Assume that there exists a positive measure set X

such that for every x ∈ X, there exists w(x) ∈ (L ∩ W s(x))\Zp. Thus, for every
δ > 0 and for every x ∈ X, there exists n0(x) > 0 such that for every n ≥ n0(x),
there exists cn(x) ∈ Zp \ {0} such that An(x) · w(x) − cn(x) ∈ W s

δ (Tn(x)).
If An(x) ·L− cn(x) passes through 0 for all n ≥ n0, we get a contradiction

as follows. Since An(x) expands L (see (3.3)) we get

‖An−n0 (Tn0(x))−1 (An(x) · w(x) − cn(x)) ‖ → 0 .

In addition,

(3.32)
An−n0 (Tn0(x))−1 (An(x) · w(x) − cn(x))

= An0(x) · w(x) − An−n0 (Tn0(x))−1 · cn(x) ,

so that An0(x) · w(x) = cn0(x), a contradiction.
Thus for every x ∈ X there exists n(x) ≥ n0(x) such that An(x) · L −

cn(x) does not pass through 0; that is, An(x) · L − cn(x) ∈ J . By restricting
to a subset of X of positive measure, we may assume that n(x), An(x)(x)
and cn(x)(x) do not depend on x ∈ X. Then An(x)(x) · L − cn(x)(x) ∈ J
intersects W s

δ (x′) for all x′ ∈ Tn(x)(X) and µ
(
Tn(x)(X)

)
> 0. This contradicts

Lemma 3.4.
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4. Renormalization schemes

Let d ≥ 2 be a natural number and let Sd be the space of irreducible per-
mutations on {1, . . . , d}; that is, π ∈ Sd if and only if π{1, . . . , k} �= {1, . . . , k}
for 1 ≤ k < d. An i.e.t. f := f(λ, π) on d intervals is specified by a pair
(λ, π) ∈ Rd

+ × Sd as described in the introduction.

4.1. Rauzy induction. We recall the definition of the induction procedure
first introduced by Rauzy in [R] (see also Veech [V1]). Let (λ, π) be such that
λd �= λπ−1(d). Then the first return map under f(λ, π) to the interval

(4.1)

[
0,

d∑
i=1

λi − min{λπ−1(d), λd}
)

can again be seen as an i.e.t. f(λ′, π′) on d intervals as follows:
(1) If λd < λπ−1(d), let

(4.2) λ′
i =


λi, 1 ≤ i < π−1(d),

λπ−1(d) − λd, i = π−1(d),

λd, i = π−1(d) + 1,

λi−1, π−1(d) + 1 < i ≤ d,

(4.3) π′(i) =


π(i), 1 ≤ i ≤ π−1(d),

π(d), i = π−1(d) + 1,

π(i − 1), π−1(d) + 1 < i ≤ d.

(2) If λd > λπ−1(d), let

(4.4) λ′
i =

{
λi, 1 ≤ i < d,

λd − λπ−1(d), i = d,

(4.5) π′(i) =


π(i), 1 ≤ π(i) ≤ π(d),

π(i) + 1, π(d) < π(i) < d,

π(d) + 1, π(i) = d.

In the first case, we will say that (λ′, π′) is obtained from (λ, π) by an ele-
mentary operation of type 1, and in the second case by an elementary operation
of type 2. In both cases, π′ is still an irreducible permutation.

Let QR : Rd
+ × Sd → Rd

+ × Sd be the map defined by QR(λ, π) = (λ′, π′).
Notice that QR is defined almost everywhere (in the complement of finitely
many hyperplanes).

The Rauzy class of a permutation π ∈ Sd is the set R(π) of all π̃ that can
be obtained from π by a finite number of elementary operations. It is a basic
fact that the Rauzy classes partition Sd.
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Let Pd−1
+ ⊂ Pd−1 be the projectivization of Rd

+. Since QR commutes with
dilations

(4.6) QR(αλ, π) = (αλ′, π′) , α ∈ R \ {0} ,

QR projectivizes to a map RR : Pd−1
+ × Sd → Pd−1

+ × Sd.

Theorem 4.1 (Masur, [M], Veech, [V2]). Let R ⊂ Sd be a Rauzy class.
Then RR|Pd−1

+ ×R admits an ergodic conservative infinite absolutely continuous
invariant measure, unique in its measure class up to a scalar multiple. Its
density is a positive rational function.

4.2. Zorich induction. Zorich [Z1] modified the Rauzy induction as follows.
Given (λ, π), let n := n(λ, π) be such that Qn+1

R (λ, π) is defined and, for
1 ≤ i ≤ n, Qi

R(λ, π) is obtained from Qi−1
R (λ, π) by elementary operations of

the same type, while Qn+1
R (λ, π) is obtained from Qn

R(λ, π) by an elementary
operation of the other type. Then he sets

(4.7) QZ(λ, π) = Qn(λ,π)
R (λ, π).

Now, QZ : Rd
+ × Sd → Rd

+ × Sd is defined almost everywhere (in the
complement of countably many hyperplanes). We can again consider the pro-
jectivization of QZ , denoted by RZ .

Theorem 4.2 (Zorich, [Z1]). Let R ⊂ Sd be a Rauzy class. Then
RZ |Pd−1

+ ×R admits a unique ergodic absolutely continuous probability measure
µR. Its density is positive and analytic.

4.3. Cocycles. Let (λ′, π′) be obtained from (λ, π) by the Rauzy or
the Zorich induction. Let f := f(λ, π). For any x ∈ I ′ := I(λ′, π′) and
j ∈ {1, . . . , d}, let rj(x) be the number of intersections of the orbit {x, f(x), . . . ,
fk(x), . . . } with the interval Ij := Ij(λ, π) before the first return time r(x) of x

to I ′ := I(λ′, π′); that is, rj(x) := #{0 ≤ k < r(x), fk(x) ∈ Ij}. In particular,
we have r(x) =

∑
j rj(x). Notice that rj(x) is constant on each I ′i := Ii(λ′, π′)

and for all i, j ∈ {1, . . . , d}, let rij := rj(x) for x ∈ I ′i. Let B := B(λ, π)
be the linear operator on Rd given by the d × d matrix (rij). The function
B : Rd

+ × R → GL(d, R) yields a cocycle over the Rauzy induction and a re-
lated one over the Zorich induction, called respectively the Rauzy cocycle and
the Zorich cocycle (denoted respectively by BR and BZ). We see immmedi-
ately that BR, BZ ∈ GL(d, Z), and

(4.8) BZ(λ, π) = BR
(
Qn(λ,π)−1

R (λ, π)
)
· · ·BR(λ, π).

Notice that Q(λ, π) = (λ′, π′) implies λ = B∗λ′ (B∗ denotes the adjoint
of B). Thus

(4.9) 〈λ, w〉 = 0 if and only if 〈λ′, B · w〉 = 0.
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Obviously we can projectivize the cocycles BR and BZ .

Theorem 4.3 (Zorich, [Z1]). Let R ⊂ Sd be a Rauzy class. Then

(4.10)
∫

Pd−1
+ ×R

ln ‖BZ‖0 dµR < ∞ .

4.4. An invariant subspace. Given a permutation π ∈ Sd, let σ be the
permutation on {0, . . . , d} defined by

(4.11) σ(i) :=


π−1(1) − 1, i = 0,

d, i = π−1(d),

π−1(π(i) + 1) − 1, i �= 0, π−1(d) .

For every j ∈ {0, . . . , d}, let S(j) be the orbit of j under σ. This defines a
partition Σ(π) := {S(j), 0 ≤ j ≤ d} of the set {0, . . . , d}. For every S ∈ Σ(π),
let bS ∈ Rd be the vector defined by

(4.12) bS
i := χS(i − 1) − χS(i), 1 ≤ i ≤ d,

where χS denotes the characteristic function of S. Let H(π) be the annihilator
of the subspace generated by the set Υ(π) := {bS , S ∈ Σ(π)}. A basic fact
from [V4] is that if Q(λ, π) := (λ′, π′) then

(4.13) B(λ, π)∗ · Υ(π′) = Υ(π) ,

which implies

(4.14) B(λ, π) · H(π) = H(π′) .

It follows that the dimension of H(π) depends only on the Rauzy class of
π ∈ Sd. Let N(π) be the cardinality of the set Σ(π). Veech showed in [V2]
that the dimension of H(π) is equal to d−N(π)+1 and that the latter is in fact
a non-zero even number equal to 2g, where g := g(π) is the genus of the Rie-
mann surface obtained by the “zippered rectangles” construction. The space
of zippered rectangles Ω(π) associated to a permutation π ∈ Sd is the space of
all triples (λ, h, a) where λ ∈ Rd

+, h belongs to a closed convex cone with non-
empty interior H+(π) ⊂ H(π) (specified by finitely many linear inequalities)
and a belongs to a closed parallelepiped Z(h, π) ⊂ Rd

+ of dimension N(π)− 1.
Given π ∈ Sd and (λ, h, a) ∈ Ω(π), with h in the H(π) interior of H+(π), it is
possible to construct a closed translation surface M := M(λ, h, a, π) of genus
g(π) = (d − N(π) + 1)/2 by performing appropriate gluing operations on the
union of the flat rectangles Ri(λ, h) ⊂ C having bases Ii(λ, π) and heights hi for
i ∈ {1, . . . , d}. The gluing maps are translations specified by the permutation
π ∈ Sd and by the gluing ‘heights’ a := (a1, . . . , ad) ∈ Z(h, π). The set Σ ⊂ M

of the singularities of M is in one-to-one correspondence with the set Σ(π). In
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fact for any S ∈ Σ(π), the surface M has exactly one conical singularity of total
angle 2πν(S), where ν(S) is the cardinality of S ∩ {1, . . . , d − 1} [V2]. There
is a natural local identification of the relative cohomology H1(M,Σ; R) with
the space Rd

+ of i.e.t.’s with fixed permutation π ∈ Sd. Under this identifica-
tion the generators of Υ(π) correspond to integer elements of H1(M, Σ; R) and
the quotient space of the space generated by Υ(π) coincides with the absolute
cohomology H1(M, R). By the definition of H(π) it follows that H(π) is iden-
tified with the absolute homology H1(M, R) and that H(π) ∩ Zd is identified
with H1(M, Z) ⊂ H1(M, R) (see [Z1, §9]), hence H(π) ∩ Zd is a co-compact
lattice in H(π) and in particular,

(4.15) dist
(
H(π), Zd \ H(π)

)
> 0 .

4.5. Lyapunov exponents. Let R ⊂ Sd be a Rauzy class. We can consider
the restrictions BR(λ, π)|H(π) and BZ(λ, π)|H(π), ([λ], π) ∈ Pd−1

+ × R, as
integral cocycles over RZ |Pd−1

+ ×R. We will call these cocycles the Rauzy and
Zorich cocycles respectively. The Zorich cocycle is uniform (with respect to
the measure µR) by Theorems 4.2 and 4.3.3

Let θ1(R) ≥ · · · ≥ θ2g(R) be the Lyapunov exponents of the Zorich cocycle
on Pd−1

+ × R. In [Z1], Zorich showed that θi(R) = −θ2g+1−i(R) for all i ∈
{1, . . . , 2g} and that θ1(R) > θ2(R) (he derived the latter result from the non-
uniform hyperbolicity of the Teichmüller flow proved earlier by Veech in [V3]).
He also conjectured that θ1(R) > · · · > θ2g(R). Part of this conjecture was
proved by the second author in [F2].4

Theorem 4.4 (Forni, [F2]). For any Rauzy class R ⊂ Sd the Zorich
cocycle on Pd−1

+ × R is non-uniformly hyperbolic. Thus

(4.16)
θ1(R) >θ2(R) ≥ · · · ≥ θg(R) > 0

>θg+1(R) ≥ · · · ≥ θ2g−1(R) > θ2g(R) .

Actually [F2] proved the non-uniform hyperbolicity of a related cocycle
(the Kontsevich-Zorich cocycle), which is a continuous time version of the
Zorich cocycle. The relation between the two cocycles can be outlined as fol-
lows (see [V2], [V3], [V5], [Z3]). In [V2] Veech introduced a zippered-rectangles
“moduli space” M(R) as a quotient of the space Ω(R) of all zippered rectan-
gles associated to permutations in a given Rauzy class R. He also introduced a

3 Strictly speaking, to fit into the setting of §2.3 we should fix an appropriate measurable

trivialization of the bundle with fiber H(π) at each (λ, π) ∈ Pd−1
+ × R(π) by selecting, for each

π̃ ∈ R(π), an isomorphism H(π̃) → R2g that takes H(π̃) ∩ Zd to Z2g .
4 The proof of the full conjecture was recently announced [AV].



WEAK MIXING FOR INTERVAL EXCHANGE TRANSFORMATIONS 655

zippered-rectangles flow on Ω(R) which projects to a flow on the moduli space
M(R). By construction, the Rauzy induction is a factor of the return map of
the zippered-rectangles flow to a cross-section Y (R) ⊂ M(R). In fact, such
a return map is a “natural extension” of the Rauzy induction. The Rauzy or
Zorich cocycles are cocycles on the bundle with fiber H(π) at (λ, π) ∈ Pd−1×R.
We recall that the space H(π) can be naturally identified with the real homol-
ogy H1(M, R) of the surface M := M(λ, h, a, π). There is a natural map from
the zippered-rectangles “moduli space” M(R) onto a connected component
C of a stratum of the moduli space Hg of holomorphic (abelian) differentials
on Riemann surfaces of genus g, and the zippered-rectangles flow on M(R)
projects onto the Teichmüller flow on C ⊂ Hg. The Kontsevich-Zorich cocycle,
introduced in [Ko], is a cocycle over the Teichmüller flow on the real cohomology
bundle over Hg, that is, the bundle with fiber the real cohomology H1(M, R)
at every point [(M, ω)] ∈ Hg. The Kontsevich-Zorich cocycle can be lifted to
a cocycle over the zippered-rectangles flow. The return map of the lifted co-
cycle to the real cohomology bundle over the cross-section Y (R) projects onto
a cocycle over the Rauzy induction, isomorphic (via Poincaré duality) to the
Rauzy cocycle. It follows that the Lyapunov exponents of the Zorich cocycle
on the Rauzy class R are related to the exponents of the Kontsevich-Zorich
cocycle on C [Ko], [F2],

(4.17)
ν1(C) = 1 >ν2(C) ≥ · · · ≥ νg(C) > 0

>νg+1(C) ≥ · · · ≥ ν2g−1(C) > ν2g(C) = −1 ,

by the formula νi(C) = θi(R)/θ1(R) for all i ∈ {1, . . . , 2g} (see [Z3, §4.5]).
Thus the non-uniform hyperbolicity of the Kontsevich-Zorich cocycle on every
connected component of every stratum is equivalent to the hyperbolicity of the
Zorich cocycle on every Rauzy class.

5. Exclusion of the central stable space for the Zorich cocycle

Theorem 5.1. Let π ∈ Sd be a permutation with g > 1 and let L ⊂ H(π)
be a line not passing through 0. Let Ecs denote the central stable space of the
Rauzy or Zorich cocycle. If dimEcs < 2g−1 , then for almost every [λ] ∈ Pd−1

+ ,
L ∩ Ecs([λ], π) = ∅.

This theorem was essentially proved by Nogueira and Rudolph in [NR].
However, the result of [NR] is slightly different from what we need, although
the modification is straightforward. We will therefore give a short sketch of
the proof.

Proof. Following Nogueira-Rudolph [NR], we define π ∈ Sd to be standard
if π(1) = d and π(d) = 1. They proved that every Rauzy class contains at least
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one standard permutation [NR], Lemma 3.2. Clearly it suffices to consider the
case when π is standard.

Notice that

(5.1) Ecs (RR([λ], π)) = BR · Ecs([λ], π)

for almost every ([λ], π). It is easy to see (using Perron-Frobenius together
with (4.9)) that Ecs([λ], π) is orthogonal to λ.

Define vectors v(i) ∈ Rd by

(5.2) v
(i)
j =


1, π(j) < π(i), j > i,

−1, π(j) > π(i), j < i,

0, otherwise.

It follows that v(i), 1 ≤ i ≤ d, generate H(π).
In [NR, §3], Nogueira and Rudolph showed that for 1 ≤ i ≤ d there exist

ki ∈ N and a component Di ⊂ Pd−1
+ × {π} of the domain of Rki

R such that

Rki
R (Di) = Pd−1

+ × {π}. Defining B(i) = BR
(
Rki−1

R ([λ], π)
)
· · ·BR([λ], π), we

have

(5.3) B(i) ·

 z1

...
zd

 =

 z1

...
zd

 + zi(v(i) − v(d)) − zd v(d), i �= d,

(5.4) B(d) ·

 z1

...
zd

 =

 z1

...
zd

 − zd v(d).

We will now prove the desired statement by contradiction. If the conclu-
sion of the theorem does not hold, a density point argument shows that there
exists a set of positive measure of [λ] ∈ Pd−1

+ and a line L ⊂ H(π) parallel to
an element of Pd−1

+ such that

(5.5) L ∩ Ecs([λ], π) �= ∅,

(5.6) (B(i) · L) ∩ Ecs([λ], π) �= ∅ , 1 ≤ i ≤ d.

Write L = {h(1) + th(2), t ∈ R} with h(1), h(2) ∈ H(π) linearly independent.
Then from L ∩ Ecs([λ], π) �= ∅, we get

(5.7) h(1) − 〈λ, h(1)〉
〈λ, h(2)〉h

(2) ∈ Ecs([λ], π) ,

and similarly,

(h(1) + h
(1)
i (v(i) − v(d)) − h

(1)
d v(d)) − 〈λ, h(1) + h

(1)
i (v(i) − v(d)) − h

(1)
d v(d)〉

〈λ, h(2) + h
(2)
i (v(i) − v(d)) − h

(2)
d v(d)〉

×(h(2) + h
(2)
i (v(i) − v(d)) − h

(2)
d v(d)) ∈ Ecs([λ], π) ,
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for 1 ≤ i < d, and

(5.8) (h(1) − h
(1)
d v(d)) − 〈λ, h(1) − h

(1)
d v(d)〉

〈λ, h(2) − h
(2)
d v(d)〉

(h(2) − h
(2)
d v(d)) ∈ Ecs([λ], π) .

A computation then shows that

(5.9) v(1), . . . , v(d) ∈ Ecs([λ], π) + {th(2), t ∈ R} ,

for almost every such [λ]. Thus Ecs([λ], π) has codimension at most 1 in H(π),
but this contradicts dimEcs < 2g − 1 = dimH(π) − 1.

6. Weak mixing for interval exchange tranformations

Weak mixing for the interval exchange transformation f is equivalent to
the existence of no non-constant measurable solutions φ : I → C of the equation

(6.1) φ (f(x)) = e2πitφ(x),

for any t ∈ R. This is equivalent to the following two conditions:
(1) f is ergodic;
(2) for any t ∈ R \ Z, there are no non-zero measurable solutions φ : I → C

of the equation

(6.2) φ (f(x)) = e2πitφ(x) .

By [M], [V2], the first condition is not an obstruction to almost sure weak
mixing: f(λ, π) is ergodic for almost every λ ∈ Rd

+. Our criterion to deal with
the second condition is the following :

Theorem 6.1 (Veech, [V4, §7]). For any Rauzy class R ⊂ Sd there exists
an open set UR ⊂ Pd−1

+ ×R with the following property. Assume that the orbit
of ([λ], π) ∈ Pd−1

+ ×R under the Rauzy induction RR visits UR infinitely many
times. If there exists a non-constant measurable solution φ : I → C to the
equation

(6.3) φ (f(x)) = e2πithiφ(x) , x ∈ Ii(λ, π) ,

with t ∈ R, h ∈ Rd, then

(6.4) lim
n→∞

Rn
R

([λ],π)∈UR

‖BR
n ([λ], π) · th‖Rd/Zd = 0.

Notice that (6.3) reduces to (6.2) when h = (1, . . . , 1) and can thus be
used to rule out eigenvalues for i.e.t.’s. The more general form (6.3) will be
used in the case of translation flows.
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We thank Jean-Christophe Yoccoz for pointing out to us that the above
result is due to Veech (our original proof does not differ from Veech’s). We will
call it the Veech criterion for weak mixing. It has the following consequences:

Theorem 6.2 (Katok-Stepin, [KS]). If g = 1 then either π is a rotation
or f(λ, π) is weakly mixing for almost every λ.

(Of course Katok-Stepin’s result predates the Veech criterion.)

Theorem 6.3 (Veech, [V4]). Let π ∈ Sd. If (1, . . . , 1) /∈ H(π), then
f(λ, π) is weakly mixing for almost every λ ∈ Rd

+.

6.1. Proof of Theorem A (Introduction). By Theorems 6.2 and 6.3, it is
enough to consider the case where g > 1 and (1, . . . , 1) ∈ H(π). By the Veech
criterion (Theorem 6.1), Theorem A is a consequence of the following:

Theorem 6.4. Let R ⊂ Sd be a Rauzy class with g > 1, let π ∈ R and
let h ∈ H(π) \ {0}. Let U ⊂ Pd−1

+ × R be any open set. For almost every
[λ] ∈ Pd−1

+ the following holds: for every t ∈ R, either th ∈ Zd or

(6.5) lim sup
n→∞

Rn
R

([λ],π)∈U

‖BR
n ([λ], π) · th‖Rd/Zd > 0.

Proof. We may assume that U intersects Pd−1
+ × {π}. For n sufficiently

large there exists a connected component ∆×{π} ⊂ Pd−1 ×{π} of the domain
of Rn

Z which is compactly contained in U . Indeed, the connected component of
the domain of Rn

R containing ([λ], π) shrinks to ([λ], π) as n → ∞, for almost
every [λ] ∈ Pd−1

+ (this is exactly the criterion for unique ergodicity used in
[V2]).

If the result does not hold, a density point argument implies that there
exists h ∈ H(π) \ {0} and a positive measure set of [λ] ∈ ∆ such that

(6.6) lim
n→∞

Rn
R

([λ],π)∈U

‖BR
n ([λ], π) · th‖Rd/Zd = 0, for some t ∈ R such that th /∈ Zd.

Let T : ∆ → ∆ be the map induced by RZ on ∆. Then T is ergodic, and
by Lemma 2.1, it is also strongly expanding. For almost every λ ∈ ∆, let

(6.7) A(λ) := BZ(T r(λ)−1(λ), π) · · ·BZ(λ, π)|H(π) ,

where r(λ) is the return time of λ ∈ ∆. Then the cocycle (T, A) is lo-
cally constant, integral and uniform, and Θ := Pd−1

+ is adapted to (T, A).
The central stable space of (T, A) coincides with the central stable space of(
RZ , BZ |H(π)

)
almost everywhere. Using Theorem 5.1, we see that all the hy-

potheses of Theorem 3.1 are satisfied. Thus for almost every [λ] ∈ ∆, the line
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L = {th, t ∈ R} intersects the weak stable space in a subset of H(π) ∩ Zd.
This implies (together with (4.15)) that (6.6) fails for almost every λ ∈ ∆, as
required.

7. Translation flows

7.1. Special flows. Any translation flow on a translation surface can be
regarded, by considering its return map to a transverse interval, as a special
flow (suspension flow) over some interval exchange transformation with a roof
function constant on each sub-interval. For completeness we discuss weak mix-
ing for general special flows over i.e.t.’s with sufficiently regular roof function.
Thanks to recent results on the cohomological equation for i.e.t.’s [MMY], the
general case can be reduced to the case of special flows with roof function
constant on each sub-interval.

Let F := F (λ, h, π) be the special flow over the i.e.t. f := f(λ, π) with
roof function specified by the vector h ∈ Rd

+, that is, the roof function is
constant, equal to hi, on the sub-interval Ii := Ii(λ, π), for all i ∈ {1, . . . , d}.
We remark that, by Veech’s “zippered rectangles” construction (see §4), if F

is a translation flow then necessarily h ∈ H(π).
The phase space of F is the union of disjoint rectangles D := ∪iIi× [0, hi),

and the flow F is completely determined by the conditions Fs(x, 0) = (x, s),
x ∈ Ii, s < hi, Fhi

(x, 0) = (f(x), 0), for all i ∈ {1, . . . , d}. Weak mixing for the
flow F is equivalent to the existence of no non-constant measurable solutions
φ : D → C of the equation

(7.1) φ (Fs(x)) = e2πitsφ(x),

for any t ∈ R; or, in terms of the i.e.t. f ,
(1) f is ergodic;
(2) for any t �= 0 there are no non-zero measurable solutions φ : I → C of

equation (6.3).

Theorem 7.1. Let π ∈ Sd with g > 1. For almost every (λ, h) ∈ Rd
+ ×

(H(π) ∩ Rd
+), the special flow F := F (λ, h, π) is weakly mixing.

Proof. This is an immediate consequence of the Veech criterion and of
Theorem 6.4.

This theorem is all we need in the case of translation flows since it takes
care of the case h ∈ H(π). Let H⊥(π) be the orthogonal complement of H(π)
in Rd. The case when h ∈ Rd

+ has non-zero orthogonal projection on H⊥(π) is
covered by the following:
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lemma 7.2 (Veech, [V3]). Assume that ([λ], π) ∈ Pd
+ × Sd is such that

Qn
R([λ], π) is defined for all n > 0. If for some h ∈ Rd and t ∈ R,

lim inf
n→∞

‖BR
n ([λ], π) · th‖Rd/Zd = 0 ,

then the orthogonal projection of th on H⊥(π) belongs to Zd.

This lemma, together with the Veech criterion, can be used to establish
typical weak mixing for special flows with some specific combinatorics (which
must satisfy, in particular, dimH(π) ≤ d− 1). However, it does not help at all
when h ∈ H(π), which is the relevant case for translation flows.

Theorem 7.3. Let π ∈ Sd with g > 1 and let h ∈ Rd \ {0}. If U ⊂ Pd−1
+

is any open set, then for almost every [λ] ∈ Pd−1
+ and for every t ∈ R, either

th ∈ Zd or

(7.2) lim sup
Rn

R([λ],π)∈U
‖BR

n ([λ], π) · th‖Rd/Zd > 0.

Proof. If h ∈ H⊥(π), this is just a consequence of Lemma 7.2. So we
assume that h /∈ H⊥(π). Let w be the orthogonal projection of h on H(π). By
Theorem 6.4, there exists a full measure set of [λ] ∈ Pd−1

+ such that if tw �∈ Zd

then
lim sup

Rn
R([λ],π)∈U

‖BR
n ([λ], π) · tw‖Rd/Zd > 0.

By Lemma 7.2, if (7.2) does not hold for some t ∈ R, then th = c + tw with
c ∈ Zd. But this implies that

‖BR
n ([λ], π) · tw‖Rd/Zd = ‖BR

n ([λ], π) · th‖Rd/Zd ,

and the result follows.

Theorem 7.4. Let π ∈ Sd with g > 1. For almost every (λ, h) ∈ Rd
+ ×

Rd
+, the special flow F := F (λ, h, π) is weakly mixing.

Proof. This follows immediately from Theorem 7.3 and the Veech criterion
(Theorem 6.1) by Fubini’s theorem.

Following [MMY], we let BV (�Ii) be the space of functions whose restric-
tions to each of the intervals Ii is a function of bounded variation, BV∗(�Ii)
be the hyperplane of BV (�Ii) made of functions whose integral on the disjoint
union �Ii vanishes and BV 1

∗ (�Ii) be the space of functions which are absolutely
continuous on each Ii and whose first derivative belongs to BV∗(�Ii).

Theorem 7.5. Let π ∈ Sd with g > 1. For almost every λ ∈ Rd
+, there

exists a bounded surjective linear map χ : BV 1
∗ (�Ii) → Rd and a full measure
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set F ⊂ Rd such that if r ∈ BV 1
∗ (�Ii) is a strictly positive function with

χ(r) ∈ F , then the special flow F := F (λ, π; r) over the i.e.t. f := f(λ, π)
under the roof function r is weakly mixing.

Proof. By the definition of a special flow over the map f and under the
roof function r (see [CFS, Chap. 11]), the flow F has continuous spectrum if
and only if

(1) f is ergodic,
(2) for any t �= 0 there are no non-zero measurable solutions φ : I → C of

the equation

(7.3) φ (f(x)) = e2πitr(x)φ(x) , x ∈ I .

By [MMY], under a full measure condition on λ ∈ Rd
+ (a Roth-type con-

dition), one can define a surjective bounded linear map χ : BV 1
∗ (�Ii) → Rd

such that the cohomological equation

u (f(x)) − u(x) = r(x) − χi(r) , x ∈ Ii ,

has a bounded measurable solution u : I → R (the Roth-type condition also
implies that f is uniquely ergodic). If for some t �= 0 there exists a solution φ

of equation (7.3), then the function ψ : I → C given by

ψ(x) := e−2πitu(x)φ(x) , x ∈ I ,

is a solution of the equation (6.3) for h = χ(r) ∈ Rd. The result then follows
from Theorem 7.3 and from the Veech criterion (Theorem 6.1) by Fubini’s
theorem.

7.2. Proof of Theorem B. Let C be a connected component of a stra-
tum of the moduli space of holomorphic differentials of genus g > 1. By
Veech’s “zippered rectangles” construction, C can be locally parametrized by
triples (λ, h, a) ∈ Ω(R) where R is the Rauzy class of some irreducible per-
mutation π0 with g(π0) = g (see [V2], [V3]). Moreover, this parametrization
(which preserves the Lebesgue measure class) is such that the special flow
F := F (λ, h, π) is isomorphic to the vertical translation flow on the translation
surface M(λ, h, a, π). Thus Theorem B follows from Theorem 7.1 by Fubini’s
theorem.

Appendix. Linear exclusion

Theorem A.1. Let (T, A) be a measurable cocycle on ∆×Rp. For almost
every x ∈ ∆, if G ⊂ Rp is any affine subspace parallel to a linear subspace
G0 ⊂ Rp transverse to the central stable space Ecs(x), then the Hausdorff
dimension of G ∩ W s(x) is equal to 0.
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Proof. Let x ∈ ∆. If n ≥ m ≥ 0 we let Sδ,m,n(x) be the set of w ∈ G such
that Ak(x) · w ∈ Bδ(Zp), for all m ≤ k ≤ n. Thus

G ∩ W s(x) = ∩δ>0 ∪m≥0 ∩n≥mSδ,m,n(x).

If δ < 1/2, all connected components of Sδ,m,n(x) are convex open sets of
diameter at most

2δ C(x, G0)−1e−λn,

where C(x, G0) > 0 and λ > 0 are given by Oseledets Theorem as in (2.15).
For n ≥ 0, let ρn(x) be the maximal number of connected components of
Sδ,m,n+1(x) intersecting U , over all m ≤ n and all connected components U of
Sδ,m,n(x). We have

ρn(x) ≤ 1 + (3δ‖A(Tn(x)) ‖)p.

Let then

βδ(x) := lim sup
n→∞

1
n

n−1∑
k=0

ln
[
1 +

(
3δ‖A(T k(x))‖

)p]
.

By Birkhoff’s ergodic theorem, limδ→0 βδ(x) = 0 for almost every x ∈ ∆.
It follows that there exists a sequence εδ(x, n), with limn→∞ εδ(x, n) = 0

for almost every x ∈ ∆, such that each connected component U of Sδ,m,m(x)
intersects at most

n−1∏
k=m

ρk(x) ≤ eεδ(x,n)n eβδ(x)n

connected components of Sδ,m,n(x). Thus U intersects ∩n≥mSδ,m,n(x) in a set
of upper box dimension at most βδ(x)

λ . We conclude that ∪m≥0 ∩n≥m Sδ,m,n(x)
has Hausdorff dimension at most βδ(x)

λ ; hence G∩W s(x) has Hausdorff dimen-
sion 0, for almost every x ∈ ∆.

Theorem A.1, together with Veech’s criterion (Theorem 6.1) has the fol-
lowing consequence, which implies Theorem B.

Theorem A.2. Let π ∈ Sd. Then for almost every λ ∈ Rd
+, the set of

h ∈ H(π) ∩ Rd
+ such that the special flow F (λ, h, π) is not weakly mixing has

Hausdorff dimension at most g(π) + 1.5

Proof. It is enough to show that, for almost every x ∈ ∆, the weak stable
space W s(x) of the cocycle (T, A), considered in the proof of Theorem 6.4,
has Hausdorff dimension at most g(π). In fact, in this case the set of h ∈
H(π) \ {0} such that the line through h intersects W s(x) in some w �= 0 has

5 In order to get a weaker, measure zero, statement (when g(π) > 1), it is enough to assume as

above that the Zorich cocycle has two positive Lyapunov exponents.
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Hausdorff dimension at most g(π) + 1, and the result then follows by Veech’s
criterion. Since W s(x) = (G0∩W s(x))+Es(x), where G0 is any linear subspace
transverse to the stable space Es(x), it is enough to show that W s(x) ∩ G0

has Hausdorff dimension 0. This follows from the above Theorem A.1, since
by the non-uniform hyperbolicity of (T, A) the central stable space Ecs(x) and
the stable space Es(x) coincide, for almost every x ∈ ∆.
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