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Schubert induction

By Ravi Vakil*

Abstract

We describe a Schubert induction theorem, a tool for analyzing intersec-
tions on a Grassmannian over an arbitrary base ring. The key ingredient in
the proof is the Geometric Littlewood-Richardson rule of [V2].

As applications, we show that all Schubert problems for all Grassmannians
are enumerative over the real numbers, and sufficiently large finite fields. We
prove a generic smoothness theorem as a substitute for the Kleiman-Bertini
theorem in positive characteristic. We compute the monodromy groups of
many Schubert problems, and give some surprising examples where the mon-
odromy group is much smaller than the full symmetric group.
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The main theorem of this paper (Theorem 2.5) is an inductive method
(“Schubert induction”) of proving results about intersections of Schubert vari-
eties in the Grassmannian. In Section 1 we describe the questions we wish to
address. The main theorem is stated and proved in Section 2, and applications
are given there and in Section 3.

1. Questions and answers

Fix a Grassmannian G(k, n) = G(k−1, n−1) over a base field (or ring) K.
Given a partition α, the condition of requiring a k-plane V to satisfy dimV ∩
Fn−αi+i ≥ i with respect to a flag F· is called a Schubert condition. The
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variety of k-planes satisfying a Schubert condition with respect to a flag F· is
the Schubert variety Ωα(F·). Let Ωα ∈ A∗(G(k, n)) denote the corresponding
Schubert class. Let ΩΩΩα(F·) ⊂ G(k, n) × Fl(n) be the “universal Schubert
variety”.

A Schubert problem is the following: Given m Schubert conditions Ωαi
(F i

· )
with respect to fixed general flags F i

· (1 ≤ i ≤ m) whose total codimension is
dimG(k, n), what is the cardinality of their intersection? In other words, how
many k-planes satisfy various linear algebraic conditions with respect to m

general flags? This is the natural generalization of the classical problem: how
many lines in P3 meet four fixed general lines? The points of intersection
are called the solutions of the Schubert problem. We say that the number of
solutions is the answer to the Schubert problem. An immediate if imprecise
follow-up is: What can one say about the solutions?

For example, if K = C, the answer to the Schubert problems for m = 3
are precisely the Littlewood-Richardson coefficients cγ

αβ .
Let πi : G(k, n) × Fl(n)m → G(k, n) × Fl(n) (1 ≤ i ≤ m) denote the

projection, where the projection to Fl(n) is from the ith Fl(n) of the domain.
We will make repeated use of the following diagram.

π∗
1ΩΩΩα1(F 1

· ) ∩ π∗
2ΩΩΩα2(F 2

· ) ∩ · · · ∩ π∗
mΩΩΩαm

(Fm
· )

S
��

��� � �� G(k, n) × Fl(n)m

Fl(n)m.

(1)

Then a Schubert problem asks: what is the cardinality of S−1(F 1
· , . . . , Fm

· ) for
general (F 1

· , . . . , Fm
· ) ∈ Fl(n)m?

Suppose the base field is K, and α1, . . . , αm are given such that
dim (Ωα1 ∪ · · · ∪ Ωαm

) = 0. The corresponding Schubert problem is said to
be enumerative over K if there are m flags F 1

· , . . . , Fm
· defined over K such

that S−1(F 1
· , . . . , Fm

· ) consists of deg (Ωα1 ∪ · · · ∪ Ωαm
) (distinct) K-points.

1.1. The answer to this problem over C is the prototype of the pro-
gram in enumerative geometry. By the Kleiman-Bertini theorem [Kl1], the
Schubert conditions intersect transversely, i.e. at a finite number of reduced
points. Hence the problem is reduced to one about the intersection theory of
the Grassmannian. The intersection ring (the Schubert calculus) is known, if
we use other interpretations of the Littlewood-Richardson coefficients in com-
binatorics or representation theory.

Yet many natural questions remain:

1.2. Reality questions. The classical “reality question” for Schubert prob-
lems [F1, p. 55], [F2, Ch. 13], [FP, §9.8] is:

Question 1. Are all Schubert problems enumerative over R?
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See [S1], [S6] for this problem’s history. For G(1, n) and G(n − 1, n) the
question can be answered positively using linear algebra. Sottile proved the
result for G(2, n) (and G(n−2, n)) for all n, [S2], and for all problems involving
only Pieri classes [S5]; see [S3] for further discussion. The case G(2, n), in the
guise of lines in projective space, as well as the analogous problem for conics
in projective space, also follow from [V1].

This question can be fully answered with Schubert induction.

1.3. Proposition. All Schubert problems for all Grassmannians are
enumerative over R. Moreover, for a fixed m, there is a set of m flags that
works for all choices of α1, . . . , αm.

Our argument actually shows that the conclusion of Proposition 1.3 holds
for any field satisfying the implicit function theorem, such as Qp.

As noted in [V2, §3.8(f)], Eisenbud’s suggestion that the deformations of
the Geometric Littlewood-Richardson rule are a degeneration of that arising
from the osculating flag to a rational normal curve, along with this proposition,
would imply that the Shapiro-Shapiro conjecture is true asymptotically. (See
[EG] for the proof in the case k = 2.)

1.4. Enumerative geometry in positive characteristic. Enumerative geom-
etry in positive characteristic is almost a stillborn field, because of the failure
of the Kleiman-Bertini theorem. (Examples of the limits of our understanding
are plane conics and cubics in characteristic 2 [Vn], [Ber].) In particular, the
Kleiman-Bertini Theorem fails in positive characteristic for all G(k, n) that
are not projective spaces (i.e. 1 < k < n− 1); Kleiman’s counterexample [Kl1,
ex. 9] for G(2, 4) easily generalizes. Although D. Laksov and R. Speiser have
developed a sophisticated characteristic-free theory of transversality [L], [Sp],
[LSp1], [LSp2], it does not apply in this case [S7, §5].

Question 2. Are Schubert problems enumerative over an algebraically
closed field of positive characteristic?

We answer this question by giving a good enough answer to a logically
prior one:

Question 3. Is there any patch to the failure of the Kleiman-Bertini theo-
rem on Grassmannians?

A related natural question is:

Question 4. Are Schubert problems enumerative over finite fields?

We now answer all three questions. The appropriate replacement of
Kleiman-Bertini is the following. We say a morphism f : X → Y is generically
smooth if there is a dense open set V of Y and a dense open set U of f−1(V )
such that f is smooth on U . If X and Y are varieties and f is dominant, this is
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equivalent to the condition that the function field of X is separably generated
over the function field of Y .

1.5. Generic smoothness theorem. The morphism S is generically
smooth. More generally, if Q ⊂ G(k, n) is a subvariety such that (Q×Fl(n))∩
ΩΩΩα(F·) → Fl(n) is generically smooth for all α, then

(Q × Fl(n)m) ∩ π∗
1ΩΩΩα1(F 1

· ) ∩ π∗
2ΩΩΩα2(F 2

· ) ∩ · · · ∩ π∗
mΩΩΩαm

(Fm
· ) �� Fl(n)m

is as well.

This begs the following question: Is the only obstruction to the Kleiman-
Bertini theorem for G(k, n) the one suggested by Kleiman, i.e. whether the
variety in question intersects a general translate of all Schubert varieties trans-
versely? More precisely, is it true that for all Q1 and Q2 such that Qi ∩
ΩΩΩα(F·) → Fl(n) is generically smooth for all α, and i = 1, 2, it follows that

Q1 ∩ σ(Q2) �� PGL(n)

is also generically smooth, where σ ∈ PGL(n)?
Theorem 1.5 answers Question 3, and leads to answers to Questions 2

and 4:

1.6. Corollary.

(a) All Schubert problems are enumerative for algebraically closed fields.

(b) For any prime p, there is a positive density of points P defined over finite
fields of characteristic p where S−1(P ) consists of deg (Ωα1 ∪ · · · ∪ Ωαm

)
distinct points. Moreover, for a fixed m, there is a positive density of
points that works for all choices of α1, . . . , αm.

Part (a) follows as usual (see §1.1). If dim (Ωα1 ∪ · · · ∪ Ωαm
) = 0, then

Theorem 1.5 implies that S is generically separable (i.e. the extension of func-
tion fields is separable). Then (b) follows by applying the Chebotarev density
theorem for function fields to∐

α1,...,αm
π∗

1ΩΩΩα1(F 1
· ) ∩ π∗

2ΩΩΩα2(F 2
· ) ∩ · · · ∩ π∗

mΩΩΩαm
(Fm

· ) �� Fl(n)m

(see for example [E, Lemma 1.2], although all that is needed is the curve case,
e.g. [FJ, §5.4]).

Sottile has proved transversality for intersection of codimension 1 Schubert
varieties [S7], and P. Belkale has recently proved transversality in general, using
his proof of Horn’s conjecture [Bel, Thm. 0.9].

1.7. Effective numerical solutions (over C) to all Schubert problems for
all Grassmannians. Even over the complex numbers, questions remain.
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Question 5. Is there an effective numerical method for solving Schubert
problems (i.e. calculating the solutions to any desired accuracy)?

The case of intersections of “Pieri classes” was dealt with in [HSS]. For
motivation in control theory, see for example [HV]. In theory, one could nu-
merically solve Schubert problems using the Plücker embedding; however, this
is unworkable in practice.

Schubert induction leads to an algorithm for effectively numerically finding
all solutions to all Schubert problems over C. The method will be described
in [SVV], and the reasoning is sketched in Section 2.10.

1.8. Galois or monodromy groups of Schubert problems. The Galois or
monodromy group of an enumerative problem measures three (related) things:

(a) (geometric) As the conditions are varied, how do the solutions permute?

(b) (arithmetic) What is the field of definition of the solutions, given the
field of definition of the flags?

(c) (algebraic) What is the Galois group of the field extension of the “variety
of solutions” over the “variety of conditions” (see (1))?

(See [H] for a complete discussion.) Historically, these groups have been studied
since the nineteenth century [J], [D], [W]; modern interest probably dates from
a letter from Serre to Kleiman in the seventies (see the historical discussion in
the survey article [Kl2, p. 325]). Their modern foundations were laid by Harris
in [H]; the connection between (a) and (c) is made there. The connection
to (b) is via the Hilbert irreducibility theorem, as the target of S is rational
([La, §9.2], see also [Se, §1.5] and [C]). We are grateful to M. Nakamaye for
discussions on this topic.

Question 6. What is the Galois group of a Schubert problem?

We partially answer this question. There is an explicit combinatorial
criterion that implies that a Schubert problem has Galois group “at least al-
ternating” (i.e. if there are d solutions, the group is Ad or Sd). This criterion
holds over an arbitrary base ring. To prove it, we will discuss useful methods
for analyzing Galois groups via degenerations. The criterion is quite strong,
and seems to apply to all but a tiny proportion of Schubert problems. For
example:

1.9. Theorem. The Galois group of any Schubert problem on the Grass-
mannians G(2, n) (n ≤ 16) and G(3, n) (n ≤ 9) is either alternating or sym-
metric.

A short Maple program applying the criterion to a general Schubert prob-
lem is available upon request from the author.

One might expect that the Galois group of a Schubert problem is always
the full symmetric group. However, this not the case. To our knowledge, the
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first examples are due to H. Derksen. In Section 3.12 we describe the smallest
example (involving four flags in G(4, 8)), and determine that the Galois action
is that of S4 on order 2 subsets of {1, 2, 3, 4}. In Section 3.14 we give a family of
examples with

(
N
K

)
solutions, with Galois group SN , and action corresponding

to the SN -action on order K subsets of {1, . . . , N}.
We also describe three-flag examples (i.e. corresponding to Littlewood-

Richardson coefficients) with similar behavior (§3.15). Littlewood-Richardson
coefficients interpret structure coefficients of the ring of symmetric functions
as the cardinality of some set. These three-flag examples show that the set has
further structure, i.e. the objects are not indistinguishable. (More correctly,
pairs of objects are not indistinguishable; this corresponds to failure of two-
transitivity of the monodromy group in SN .)

This family of examples was independently found by Derksen. From his
quiver-theoretic point of view, the smallest member of this family (in G(6, 12))
corresponds to the extended Dynkin diagram of E6, and the smallest member
of the other family (in G(4, 8)) corresponds to the extended Dynkin diagram
of D4.

See [BiV] for more suspected examples when the Galois group is smaller
than expected, but where the geometric reason is not understood.

1.10. Flag varieties. The conjecture of [V3] (Conjecture 4.9 of the first
arXiv version of [V2]) would imply that the results of this paper except for
those on Galois/monodromy groups apply to all Schubert problems on flag
manifolds. In particular, as the conjecture is verified in cohomology for n ≤ 5,
the results all hold in this range. For example:

1.11. Proposition. All Schubert problems for Fl(n) are enumerative over
any algebraically closed field or any field with an implicit function theorem (e.g.
R) for n ≤ 5. For a fixed m, there is a set of m flags that works for all choices
of α1, . . . , αm.

(The generalizations of the other statements in this paper are equally
straightforward.)

We note that in the case of triple intersections where the answer is 1,
Knutson has shown that the solution to the problem can be obtained by using
spans and intersections of the linear spaces in the three flags [K].

2. The main theorem, and its proof

2.1. The key observation. Let f : Y → X be a proper morphism
of irreducible varieties that we wish to show has some property P , using an
inductive method. We will apply this to the morphism f = S.
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We will require that P satisfy the conditions (A)–(D) below. As an ex-
ample of P , the reader should think of “f is generically finite, and there is a
Zariski-dense subset U of real points of Y for which f−1(p) consists of deg f

real points for all p ∈ U .”

(A) We require that the condition of having P depends only on dense open
subsets of the target; i.e., if U ⊂ X is a dense open subset, then f : Y →
X has P if and only if f |f−1(U) has P .

(B) Suppose D is a Cartier divisor of X such that D ×X Y is reduced. We
require that if D ×X Y → D has property P , then f has property P .

This motivates the following inductive approach. Suppose

X0 = X ←↩ X1 ←↩ X2 ←↩ · · · ←↩ Xs

is a sequence of inclusions, where Xi+1 is a Cartier divisor of Xi. Suppose Yi,j

(1 ≤ i ≤ s, 1 ≤ j ≤ Ji) is a subvariety of Y such that f maps Yi,j to Xi, and
Yi,j → Xi is proper, and for each 0 ≤ i < s, 1 ≤ j ≤ Ji,

Yi,j ×Xi
Xi+1 = ∪j′∈Ii,j

Yi+1,j′

for some Ii,j ⊂ Ji+1, where each Yi+1,j′ appears with multiplicity one.
If

(C) Yi+1,j′ → Xi+1 has P for all j′ ∈ Ii,j implies ∪j′∈Ii,j
Yi+1,j′ → Xi+1 has

P , and

(D) Ys,j → Xs has P for all j ∈ Js (the base case for the induction),

then we may conclude that f : Y → X has P . (Note that Y ×X Xs → Xs may
be badly behaved; hence the need for the inductive approach. Intersections
with Cartier divisors are often better-behaved than arbitrary intersections.)

The main result of this paper is that this process may be applied to the
morphism S.

For some applications, we will need to refine the statement slightly. For
example, to obtain lower bounds on monodromy groups, we will need the fact
that Ii,j never has more than two elements.

2.2. Sketch of the Geometric Littlewood-Richardson rule [V2]. The key
ingredient in the proof of the Schubert induction Theorem 2.5 is the Geometric
Littlewood-Richardson rule, which is a procedure for computing the intersec-
tion of Schubert cycles by giving an explicit specialization of the flags defining
two representatives of the class, via codimension one degenerations. We sketch
the rule now.

The variety Fl(n) × Fl(n) is stratified by the locally closed subvarieties
with fixed numerical data. For each (aij)i,j≤n, the corresponding subvariety
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is {(F·, F ′
· ) : dimFi ∩ F ′

j = aij}. We denote such numerical data by the
configuration • (normally interpreted as a permutation), and the corresponding
locally closed subvariety by X•.

The variety G(k, n)×Fl(n)×Fl(n) is the disjoint union of “two-flag Schu-
bert varieties”, locally closed subvarieties with specified numerical data. For
each (aij , bij)i,j≤n, the corresponding subvariety is

{(F·, F
′
· , V ) : dimFi ∩ F ′

j = aij ,dimFi ∩ F ′
j ∩ V = bij}.

We denote the data of the (bij) by ◦, so that the locally closed subvarieties are
indexed by the configuration ◦•. Denote the corresponding two-flag Schubert
variety by X◦•. (Warning: The closure of a two-flag Schubert variety need not
be a union of two-flag Schubert varieties [V2, Caution 2.20(a)], and so this is
not a stratification in general.)

There is a specialization order •init, . . . , •final in the Bruhat order, corre-
sponding to partial factorizations of the longest word [V2, §2.3]. If • 
= •final

is in the specialization order, then let •next be the next term in the order. We
have X•next ⊂ X•, dimX•next = dimX• − 1, X•init is dense in Fl(n) × Fl(n),
and X•final is the diagonal in Fl(n) × Fl(n).

There is a subset of configurations ◦•, called mid-sort, where • is in the
specialization order [V2, Defn. 2.8].

2.3. Geometric Littlewood-Richardson Rule, inexplicit form

(cf. [V2, §2]).

(i) For any two partitions α1, α2, π∗
1ΩΩΩα1(F 1

· )∩π∗
2ΩΩΩα2(F 2

· ) = X◦•init for some
mid-sort ◦•init, or π∗

1ΩΩΩα1(F 1
· ) ∩ π∗

2ΩΩΩα2(F 2
· ) = ∅.

(ii) For any mid-sort ◦•final, X◦•final = π∗
1ΩΩΩα(F·) ∩ ∆ (= π∗

2ΩΩΩα(F·) ∩ ∆) for
some α, where ∆ is the pullback to G(k, n)×Fl(n)×Fl(n) of the diagonal
X•final of Fl(n) × Fl(n).

(iii) For any mid-sort ◦• with • 
= •final, consider the diagram [V2, eq. (1)]

X◦•
� � open ��

��

X◦•

��

DX
� �closed��

��
X•

� � open �� X• ∪ X•next X•next .� �closed��

(2)

The closures of X◦• are taken in G(k, n)×X• and G(k, n)×(X•∪X•next)
respectively, and the Cartier divisor DX is defined by fibered product.
There are one or two mid-sort configurations (depending on ◦•), denoted
by ◦swap•next and/or ◦stay•next, such that DX = X◦swap•next , X◦stay•next , or
X◦stay•next ∪ X◦swap•next (with multiplicity 1).

There is a more precise version of this rule describing the mid-sort ◦•,
and ◦swap•next and ◦stay•next (see [V2, §2]). For almost all applications here
this version will suffice, but the precise definition of mid-sort, ◦swap•next, and
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◦stay•next will be implicitly required for the Galois/monodromy results of Sec-
tion 3.

2.4. Statement of Main Theorem. Fix an irreducible subvariety Q ⊂
G(k, n), and define S = S(α1, . . . , αm−1) ⊂ G(k, n) × Fl(n)m−1 by

S := (Q × Fl(n)m−1) ∩ π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

m−1ΩΩΩαm−1(F
m−1
· ).(3)

Then S is irreducible, and the projection to B := Fl(n)m−1 has relative di-
mension dimQ −

∑
|αi|. (This follows easily by constructing S as a fibration

over Q.)
Let P be a property of morphisms satisfying (A). For such S → B, and

any mid-sort ◦•, let ρ1 and ρ2 be the two projections from B × (Fl(n)×Fl(n))
onto its factors. Using (2), construct

ρ∗1S ∩ ρ∗2X◦•
� � open ��

e

��

ρ∗1S ∩ ρ∗2X◦•

f

��

ρ∗1S ∩ ρ∗2DX
� �closed��

g

��

ρ∗
1S∩ρ∗

2X◦swap•next

and/or

ρ∗
1S∩ρ∗

2X◦stay•next

birat’l��

h

������������

B × X•
� � open �� B × (X• ∪ X•next) B × X•next .� �closed��

(4)

As in (2), X◦• is the closure of X◦• in the appropriate space; ρ∗2X◦• is the
pullback of X◦• from X• or X• ∪ X•next , and similarly for the other terms of
the top row. The upper right should be interpreted as

ρ∗1S ∩ ρ∗2X◦swap•next , ρ∗1S ∩ ρ∗2X◦stay•next ,

or
ρ∗1S ∩ ρ∗2X◦swap•next

∐
ρ∗1S ∩ ρ∗2X◦stay•next ,

as in the Geometric Littlewood-Richardson rule 2.3.

2.5. Schubert induction theorem. Let P be a property of morphisms
that depends only on dense open sets of the target (condition (A)). Suppose for
any diagram (4) and for any mid-sort checker configuration ◦• that g has P

implies f has P (condition (B)) and that h has P implies g has P (condition
(C)). If the projection

(Q × Fl(n)) ∩ΩΩΩα(F·) �� Fl(n)(5)

has P for all partitions α (the “base case” of the Schubert induction), then the
projection

(Q × Fl(n)m) ∩ π∗
1ΩΩΩα1(F 1

· ) ∩ · · · ∩ π∗
mΩΩΩαm

(Fm
· ) �� Fl(n)m

has P for all m, α1, . . . , αm.
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In particular (with Q = G(k, n)) if the projection

ΩΩΩα(F·) �� Fl(n)(6)

has P for all α (condition (D)), then the projection

S : π∗
1ΩΩΩα1(F 1

· ) ∩ · · · ∩ π∗
mΩΩΩαm

(Fm
· ) �� Fl(n)m

has P .

Proof. To begin with, note that (A) implies that if f has P then e has P

as well.
We show that

(7) (Q × Fl(n)m−1 × X•) ∩ π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

m−1ΩΩΩαm−1(F
m−1
· ) ∩ ρ∗X◦•

→ Fl(n)m−1 × X•

(where ρ is the projection to X•) has P for all m and mid-sort ◦•, by induction
on (m, •), where (m1, •1) precedes (m2, •2) if m1 < m2, or m1 = m2 and
•1 < •2 in the specialization order.

Base case m = 1, • = •final. By the Geometric Littlewood-Richardson
rule 2.3 (ii),

(Q × X•final) ∩ ρ∗X◦•final
��

��
∼=

��

X•final (i.e., (7))

(Q × X•final) ∩ π∗
1ΩΩΩα(F·) ∩ ∆ ��

��
∼=

��

X•final��
∼=

��
(Q × Fl(n)) ∩ΩΩΩα(F·) �� Fl(n)

has P by (5).

Inductive step, case • 
= •final. By the inductive hypothesis,

(Q × Fl(n)m−1 × X•next)∩π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

m−1ΩΩΩαm−1(F
m−1
· )

∩ ρ∗X◦stay•next → Fl(n)m−1 × X•next

and/or

(Q × Fl(n)m−1 × X•next)∩π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

m−1ΩΩΩαm−1(F
m−1
· )

∩ ρ∗X◦swap•next → Fl(n)m−1 × X•next

have P . Then an application of (B) and (C) shows that (7) has P as well.
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Inductive step, case • = •final, m > 1. Suppose X◦•final = π∗
1ΩΩΩα(F·)

∩ ∆ and π∗
1ΩΩΩαm−1(F·) ∩ π∗

2ΩΩΩα(F ′
· ) = X◦′•init (using the Geometric Littlewood-

Richardson rule 2.3 (ii) and (i) respectively). Then

(Q×Fl(n)m−1×X•)∩π∗
1ΩΩΩα1 (F 1

· )∩···∩π∗
m−1ΩΩΩαm−1 (F m−1

· )∩ρ∗X◦• ��
��

∼=

��

Fl(n)m−1×X•��
∼=

��
(Q×Fl(n)m−1×X•)∩π∗

1ΩΩΩα1 (F 1
· )∩···∩π∗

m−1ΩΩΩαm−1 (F m−1
· )∩π∗

mΩΩΩα(F m
· ) ��

��
∼=

��

Fl(n)m

(Q×Fl(n)m−1×X•)∩π∗
1ΩΩΩα1 (F 1

· )∩···∩π∗
m−2ΩΩΩαm−2 (F m−2

· )∩ρ∗X◦′•init
�� Fl(n)m

which has P as (by (A))

(Q × Fl(n)m−1 × X•)∩π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

m−2ΩΩΩαm−2(F
m−2
· )

∩ ρ∗X◦′•init → Fl(n)m−2 × X•init

has P by the inductive hypothesis.

For some applications, we will need a slight variation.

2.6. The Schubert induction theorem, bis. Suppose P satisfies
conditions (A–C). If ∐

α: dim Q−|α|=0

(Q × Fl(n)) ∩ΩΩΩα(F·) −→ Fl(n)

has P then ∐
α1,...,αm: dim Q−∑ |αi|=0

(Q × Fl(n)m) ∩ π∗
1ΩΩΩα1(F

1
· ) ∩ · · · ∩ π∗

mΩΩΩαm
(Fm

· )

−→ Fl(n)m

has P for all m.

The proof is identical to that of Theorem 2.5; we simply restrict attention
to morphisms (7) of relative dimension zero. There is only one base case (D),
(6), which is rather trivial (when the identity Fl(n) → Fl(n) has P ).

2.7. Applications. We now verify the conditions (A–C) for several P to
prove the results claimed in Section 1.

2.8. Positive characteristic: Proof of Proposition 1.5. Let P be the prop-
erty that the morphism f is generically smooth. Then P clearly satisfies (A–C)
(note that the relative dimensions of (f , g, h) are the same, and that X◦stay•next

and X◦swap•next are disjoint), and the Schubert induction hypothesis (D); apply
Theorem 2.5.
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2.9. Reality : Proof of Proposition 1.3. Let P be the property that there is
a Zariski-dense subset U of real points of Y for which S−1(p) consists of deg S
real points for all p ∈ U . Clearly P satisfies (A–C). Apply Theorem 2.6.

As mentioned earlier, the same argument applies to any field satisfying
the implicit function theorem, such as Qp.

2.10. Numerical solutions. Informally, this application corresponds to
applying Theorem 2.6 to the property of generically finite morphisms f : X ↪→
G(k, n) × Y → Y “for each point of Y whose preimage is a finite number
of points, there is an effective (in practice) algorithm for numerically finding
these points”. Condition (C) corresponds to the fact that if |f−1(y)| = deg f

and the points of f−1(y) can be numerically calculated, then by the implicit
function theorem, the points of f−1(y′) can be numerically calculated for all
y′ such that dim f−1(y′) = 0. This idea will be developed in [SVV].

3. Galois/monodromy groups of Schubert problems

3.1. We recall the “checker tournament” algorithm [V2, §2.18] for solving
Schubert problems. We begin with m partitions, and we make a series of moves.
Each move consists of one of the following.

(i) Take two partitions, and begin a checkergame if possible, else end the
tournament.

(ii) Translate a completed checkergame back to a partition.

(iii) Make a move in an ongoing checkergame.

These parallel (i)–(iii) of Theorem 2.3. When one partition and no check-
ergames are left, the tournament is complete. At step (iii), the checker tour-
nament may bifurcate (if both a “stay” and a “swap” are possible), and both
branches must be completed.

This answer to the Schubert problem can be interpreted as creating a
directed tree, where the vertices correspond to a partially completed checker
tournament. Each vertex has in-degree 1 (one immediate ancestor) except
for the root (corresponding to the original Schubert problem), and out-degree
(number of immediate descendants) between 0 and 2. The graph is constructed
starting with the root, and for each vertex that is not a completed checkergame,
a choice may be made (depending on (iii)) which may lead to a bifurcation.
Vertices corresponding to a single partition and no checkergames are called
leaves. (There may be other vertices with out-degree 0, arising from (i); these
are not leaves.) The answer is the number of leaves of the tree.

The answer is of course independent of the choices made; in the description
of [V2, §2.18], and in the proof of Theorems 2.5 and 2.6, each checkergame was
chosen to be completed before the next was begun.
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3.2. Theorem. Suppose there is a Schubert problem such that there
exists a directed tree as above, where each vertex with out-degree two satisfies
either

(a) there are a different number of leaves on the two branches, or

(b) there is one leaf on each branch.

Then the Galois group of the Schubert problem is at least alternating.

3.3. Specialization of monodromy. To prove the theorem, we will examine
how Galois groups behave under specialization.

We say a generically finite morphism f : X → Y is generically separable if
the corresponding extension of function fields is separable. Define the Galois
group Galf of a generically finite and separable (i.e. generically étale) morphism
to be the Galois group of the Galois closure of the corresponding extension of
function fields.

3.4. Remark : The complex case. To motivate later statements over an
arbitrary ground ring, we first consider the complex case. Suppose

W

��

Y�
�closed��

��
X Z�

�closed��

is a fiber diagram of complex schemes, where the vertical morphisms are proper
generically finite degree d; W , X, and Z are irreducible varieties; Z is Cartier
in X; X is regular in codimension 1 along Z; and Y is reduced. Then GalW→X

can be interpreted as an element of Sd by fixing a point of X with d preimages,
and considering loops in the smooth locus of X based at that point, and their
induced permutations of the preimages.

(a) If Y is irreducible, then by interpreting GalY→Z by choosing a general
base point of Z and elements of the fundamental group of the smooth part of
Z generating the Galois group, we have constructed an inclusion GalY→Z ↪→
GalW→X. In particular, if the first group is at least alternating, then so is the
second.

(b) If Y has two components Y1 and Y2, which each map generically finitely
onto Z with degrees d1 and d2 respectively (so d1 + d2 = d), then the same
construction produces a subgroup H of GalY1→Z×GalY2→Z which surjects onto
GalYi→Z (for i = 1, 2), and an injection of H into GalW→X (via the induced
inclusion Sd1 × Sd2 ↪→ Sd).

Then a purely group-theoretical argument (Prop. 3.7) relying on Gour-
sat’s lemma will show that if GalYi→Z is at least alternating (i = 1, 2), W

is connected (so GalW→X is transitive), and d1 
= d2 or d1 = d2 = 1, then
GalW→X is at least alternating as well.
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3.5. The general case. With this complex intuition in hand, we prove
Remarks 3.4(a) and (b) over an arbitrary ring. Suppose k1 ⊂ k2 is a separable
degree d field extension. Choose an ordering x1, . . . , xd of the k1-valued points
(over Spec k1) of Spec k2. If g : X → Y is a generically finite separable (i.e.
generically étale) morphism, define the “Galois scheme” GalSchg by

deg g︷ ︸︸ ︷
X ×Y · · · ×Y X \∆

where ∆ is the “big diagonal”. Recall that the Galois group of k1 ⊂ k2 can
be interpreted as a subgroup of Sd as follows: σ is in the Galois group if and
only if (xσ(1), . . . , xσ(d)) is in the same component of GalSchSpec k2→Spec k1 as
(x1, . . . , xd).

To understand how this behaves in families, let R be a discrete valuation
ring with function field K and residue field k. Suppose the following is a fiber
diagram

XK

��

� � open �� XR

��

Xk

��

� �closed��

Spec K � � open �� Spec R Spec k� �closed��

where XK is irreducible, Xk is reduced, and the vertical morphisms are finite
and separable (and hence étale, with Xk reduced).

After choice of algebraic closures, there is a bijection from the K-valued
points of XK with the k-valued points of Xk.

By observing that each component of GalSchXk→Spec k lies in a unique
irreducible component of GalSchXR→Spec R (as GalSchXR→SpecR → Spec R is
étale along Xk), we see that Remarks 3.4 (a) and (b) hold in general (by
applying these comments to OX,Z).

3.6. Proof of Theorem 3.2. Each vertex v corresponds to a diagram

X
� � ��

fv

��

B × G(k, n)

B

where X is irreducible, and B is a product of flag varieties (one for each par-
tition) and strata X◦• (one for each checkergame in process). The morphism
fv is generically finite and separable, and its degree is the answer to the cor-
responding enumerative problem.

We label each vertex v with the number of leaves on that branch (i.e.
with deg fv), and with the Galois group Galv of that problem. We prove
that Galv = Adeg fv or Sdeg fv

for all v by induction on v. (This is a slight
generalization of Schubert induction.)
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If v is a leaf, the result is trivial.
Suppose next that v is a vertex with one descendant w, and Galw is at least

alternating. If the move from v to w is of type (i) or (ii), then the morphism
fv is the same as fw, so the result holds. If the move from vertex v is of type
(iii) (so exactly one of {stay, swap} is possible), then Gv is at least alternating
by Remark 3.4(a).

Next, suppose v has two immediate descendants, where we are in case
(iii) and both “stay” and “swap” are possible. If one branch has no leaves,
then Gv is at least alternating by Remark 3.4(a), so assume otherwise. As X

is irreducible, Galv is transitive. By Remark 3.4(b) and the group theoretic
calculation of Proposition 3.7, Galv is at least alternating, and the inductive
step is complete.

Thus by induction the root vertex has at least alternating Galois group,
completing the proof of the Theorem 3.2.

3.7. Proposition. Suppose G is a transitive subgroup of Sm+n such
that G∩ (Sm ×Sn) contains a subgroup H such that the projection of H to Sm

(resp. Sn) is either Am (m ≥ 4) or Sm (resp. An for n ≥ 4, or Sn).

(a) If m 
= n, then G = Am+n (m + n ≥ 4) or Sm+n.

(b) If m = n = 1 then G = S2.

Note that if m = n, then

{e, (1, n + 1)(2, n + 2) · · · (n, 2n)} � (S{1,...,n} × S{n+1,...,2n})

is a subgroup of S2n whose intersection with S{1,...,n} × S{n+1,...,2n} surjects
onto each of its factors.

Proof. Part (b) is trivial, so we prove (a). Assume without loss of gener-
ality that n > m.

Recall Goursat’s lemma: if H ⊂ G1 ×G2, such that H surjects onto both
factors, then there are normal subgroups Ni�Gi (i = 1, 2) and an isomorphism
φ : G1/N1

∼→ G2/N2 such that (g1, g2) ∈ H if and only if φ(g1N1) = g2N2.
We first show that if G is a transitive subgroup of Sm+n (n > m ≥ 3)

containing Am ×An, then G contains any 3-cycle and hence Am+n. Color the
numbers 1 through m red and m+1 through m+n green. Any monochromatic
3-cycle lies in Am × An and hence G. Suppose τ is any element of G sending
a green number to a red position. (i) If there are two numbers of each color
in the positions of one color (say, red) then the conjugate of a 3-cycle in Am

by τ will be a 3-cycle α of 1 red and 2 green objects, and the conjugate of a
different 3-cycle in Am by τ will be a 3-cycle α of 1 green and 2 red objects.
Similarly, (ii) if there is at least one number of each color in the positions of
both colors, we can find a conjugate α of a 3-cycle in Am or An by τ that is a
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3-cycle α of 1 red and 2 green objects, and the conjugate of a 3-cycle in An or
Am by τ that is a 3-cycle α of 1 green and 2 red objects. By conjugating α

and β further by elements of Am ×An, we can obtain any non-monochromatic
3-cycle. Now τ falls into case (i) and/or (ii), or n = m + 1 and τ sends all
red objects to green positions, and all but one green object to red positions.
Suppose p is the green position containing the green object in τ , and σ is a
3-cycle in An moving p. Then τ−1στ is a permutation where exactly one red
object is sent to a green position, and vice versa, and we are in case (ii). Thus
in all cases G contains Am+n, as desired.

We now deal with the case m, n ≥ 3. By Goursat’s lemma, G must
contain Am × An. (For example, if the projections of H to Sm and Sn are
surjective, then H arises from isomorphic quotients Sn/Nm

∼= Sn/Nn. Then
(Nm, Nn) = (Sm, Sn) or (Nm, Nn) = (Am, An); in both cases Am ⊂ Nm and
An ⊂ Nn.) Then apply the previous paragraph.

For the remaining cases, it is straightforward to see (using Goursat) that
(i) if the image of H is An (resp. Sn) and m = 1, then Am+n ⊂ G (resp.
G = Sm+n), and (ii) if H surjects onto An (n ≥ 4) or Sn and m = 2, then
Am+n ⊂ G.

3.8. Remark. We note for use in Section 3.12 that if n = 1 and the
projection to Sm is surjective, then the same argument shows that G = Sm+n.

3.9. Applying Theorem 3.2. Theorem 3.2 is quite strong, and can be
checked with a naive computer program. For example, it implies that all Schu-
bert problems for G(2, n) for n ≤ 16 are at least alternating. It also implies
that all but a tiny handful of Schubert problems for Grassmannians of dimen-
sion less than 20 are at least alternating; we will describe these exceptions.

For k > 1, the criterion will fail for the Schubert problem (1)k
2
on G(k, 2k):

the first degeneration (i.e. the first vertex with out-degree 2) will correspond
to

(1)k2
= (2)(1)k2

+ (1, 1)(1)k2

and the two branches will have the same number of leaves by symmetry. More
generally, if 1 ≤ m < k and (m, k) 
= (1, 2), the criterion will fail for the
Schubert problem

(
m︷ ︸︸ ︷

m, . . . , m)(1)k2−m2

on G(k, 2k) for the same reason.

9 5
×

Figure 1: The two counterexamples of G(3, 6)
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4 ××

Figure 2: An induced (nonprimitive) counterexample in G(3, 7)

On G(3, 6), the only counterexamples are of this sort, when m = 1 and 2,
shown in Figure 1. By “embedding” these problems in larger problems, these
trivially induce counterexamples in larger Grassmannians; for example, Fig-
ure 2 is a counterexample in G(3, 7) that is really an avatar of the second ex-
ample in G(3, 6). We call counterexamples in G(k, n) not arising in this way,
i.e. involving only subpartitions not meeting the right column and bottom row
of the rectangle, primitive counterexamples.

4
×6 × ××

5

Figure 3: The primitive counterexamples in G(3, 7)

Then G(3, 7) has only three counterexamples, shown in Figure 3, and
the counterexamples in G(4, 7) are given by the transposes of these. The
Grassmannian G(3, 8) has six counterexamples, shown in Figure 4, and G(3, 9)
has 13 counterexamples, shown in Figure 5.

4
×

×

× ×
3 2

×

× ×

×

×

×

4

5

67

Figure 4: The primitive counterexamples in G(3, 8)

All of these exceptions can be excluded with the following, slightly stronger
criterion.

3.10. Theorem. Suppose there is a Schubert problem such that there ex-
ists a directed tree as above, where each vertex with two immediate descendants
satisfies (a) or (b) of Theorem 3.2, or

(c) there are m 
= 6 leaves on each branch, and it is known that the corre-
sponding Galois group is two-transitive.

Then the Galois group of the Schubert problem is at least alternating.

In particular, to show that the Galois group is (n − 2)-transitive, it often
suffices to show that it is two-transitive.
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4
×× ×

5
×

×

×

×

×

×

6

3

3

33

4

5

4

2 2

97

8

2

×

× ×

× × ×

×××××

×

×

Figure 5: The primitive counterexamples in G(3, 9)

As with Theorem 3.2, the proof reduces to the following variation of Propo-
sition 3.7.

3.11. Proposition. Suppose G is a two-transitive subgroup of S2m

(m 
= 6) such that G∩(Sm×Sm) contains a subgroup H such that the projection
of H to both factors Sm is either Am (m ≥ 4) or Sm. Then G = A2m or S2m.

The proof is similar to that of Proposition 3.7, and is omitted.
If m = n = 6, D. Allcock has pointed out that the Mathieu group M12

can be expressed as a subgroup of S12 such that

M12 ∩ (S6 × S6) = {(g, σ(g)) : g ∈ S6}

where σ is an outer automorphism of S6. Thus Proposition 3.11 cannot be
extended to m = 6.

We say two vertices v, w in a directed tree (as in §3.1) are equivalent if
they are connected by a chain of edges v1 → v2 → · · · → vs ((v1, vs) = (v, w)
or (w, v)) and deg fv = deg fw (and hence = deg fvi

for all i). In each of
the cases G(3, n) (6 ≤ n ≤ 9) given above, it is possible to find such a tree
satisfying Theorem 3.10 (a)–(c), where the vertices of type (c) are equivalent
to vertices corresponding to Schubert problems (i.e. corresponding to a set of
partitions, with no checkergames-in-progress), and to show by ad hoc means
that these Schubert problems are two-transitive. (The details are omitted; this
method should not be expected to be workable in general.) Hence all Schubert
problems for these Grassmannians have Galois group at least alternating.
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The Grassmannian G(4, 8) has only 31 Schubert problems where the cri-
terion of Theorem 3.2 does not apply (not shown here). Each of these cases
may be reduced to checking that a certain Schubert problem is two-transitive.
As we shall see in the next section, in one of these cases two-transitivity does
not hold!

3.12. Galois groups of Schubert problems need not be the full symmetric
group, or alternating.

3.13. Derksen’s example in G(4, 8). One of the 31 examples in G(4, 8)
described above has a Galois group that is not equal to Sn or An (and hence is
not two-transitive by our earlier discussion): the Schubert problem of Figure 6.
This example (and the existence of Schubert problems with a “small” Galois
group) is due to H. Derksen. By Theorem 1.9, this is the smallest example of
a Schubert problem with a Galois group smaller than alternating.

4

Figure 6: This Schubert problem (in G(4, 8)) has 6 solutions; the Galois group
is S4.

The problem has six solutions. We show now that the Galois group is S4.
Fix four general flags in K8, and consider the Schubert problem in G(2, 8) (cor-
responding to these flags) shown in Figure 7. This problem has four solutions,
corresponding to four transverse 2-planes V1, V2, V3, V4. It is straightforward
to check that Vi +Vj (i < j) is a solution to the original problem of Figure 6, in
G(4, 8). Hence the Galois group of the original problem is not two-transitive:
two solutions W1 and W2 may have intersection of dimension 0 or 2, and both
possibilities occur. The Galois group is a subgroup of S4 (acting on the six ele-
ments as described above), and is canonically the Galois group of the problem
of Figure 7.

4

Figure 7: An auxiliary Schubert problem in G(2, 8)

Applying Theorem 3.2 (indeed Theorem 1.9), the Galois group of Figure 7
is at least A4. By examining the directed tree of Theorem 3.2 more closely, we
see that the Galois group is actually S4: the first branching has one branch
with three leaves and one branch with one leaf (see Remark 3.8).

3.14. A family of examples generalizing Derksen’s. Derksen’s example
can be generalized to produce other examples of smaller-than-expected Galois
groups, where the Galois action is that of SN acting on the order K subsets of
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{1, 2, . . . , N}, as follows. The Schubert problem of Figure 8 in G(2K, 2N) has(
N
K

)
solutions. Given four general flags in G(2, 2N), the auxiliary problem of

Figure 9 has N solutions, corresponding to N transverse 2-planes V1, . . . , VN

in G(2, 2N). By repeated applications of Remark 3.8, the Galois group of the
auxiliary Schubert problem is SN . The subspace Vi1 + · · ·+ViK

(1 ≤ i1 < · · · <

iK ≤ N) is a solution to the original problem of Figure 8. Hence the original
problem exhibits the desired behavior.

...K

KN

4

Figure 8: A Schubert problem in G(2K, 2N) with
(
N
K

)
solutions and Galois

group SN

N

4

1

...

Figure 9: An auxiliary problem

The only statements in the previous paragraph that are nontrivial to verify
are (i) the enumeration of solutions to the Schubert problem, and (ii) the fact
that the Galois group of the auxiliary problem is SN . Both are easiest to see
in terms of puzzles. (See [KTW] for a definition of puzzles, and [V2, App. A]
for the bijection between checkers and puzzles.)

Part (i) is the number of ways of filling in the puzzle of Figure 10 (where
the blocks of 1’s are all of size K, and the blocks of 0’s are all of size N −K),
which reduces to Figure 11. After trying the puzzle, the reader will quickly see
that the number of solutions is

(
N
K

)
. The solutions correspond to the choice

of labels on segment A — there will be N − K 0’s and K 1’s, and each order
appears in precisely one completed puzzle.

To construct the directed tree for part (ii), note that the order of the first
checkergame corresponds to filling in the top half of the puzzle of Figure 10
(and hence Figure 11) row by row; the directed graph corresponds to the tree
of choices made while completing the puzzle in this order. Applying this in
the case K = 1, the puzzles of the previous paragraph show that the tree is of
the desired form.

It is interesting (but inessential) to note more generally that the tree for(
N
K

)
(call it of type (N, K)) can be interpreted in terms of Pascal’s triangle

as follows. The two branches at the first branch point have
(
N−1
K−1

)
and

(
N−1

K

)
leaves, and the two corresponding directed trees are of type (N −1, K−1) and
(N − 1, K) respectively. Thus Theorem 3.2 fails to apply because of vertices
of type (2N ′′, N ′′), corresponding to the central terms in Pascal’s triangle.
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Figure 10: The puzzle corresponding to Figure 8

Figure 11: The puzzle corresponding to Figure 8, partially completed

3.15. A similar family of three-flag examples. We now exhibit a family
of three-flag examples with behavior similar to that of the previous section.
The Schubert problem of Figure 12 in G(3K, 3N) has

(
N
K

)
solutions and Galois

group SN , where the action is that of SN on order K subsets of {1, . . . , N}.
As with the previous family, to prove this, first count solutions using

checkers or puzzles. The puzzle is shown in Figure 13, which again reduces to
Figure 11 (without the equatorial cut). Next, fix three general flags. Consider
the analogous problem with K = 1. There are N solutions, corresponding to
N transverse 3-spaces V1, . . . , VN . The Galois group is SN by Remark 3.8,
as the tree is identical to that of the previous section. The sum of any K of
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K

N

K

K KN

3

Figure 12: A Schubert problem in G(3K, 3N) with
(
N
K

)
solutions and Galois

group SN

Figure 13: The puzzle corresponding to Figure 12

these 3-spaces is a solution to the original Schubert problem (with respect to
the same three flags). Thus the Galois group of the original problem is SN as
desired.
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