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0. Introduction

0.1. Overview.

0.1.1. There are two enumerative theories of maps from curves to curves.
Our goal here is to study their relationship. All curves in the paper will be
projective over C.

The first theory, introduced in the 19th century by Hurwitz, concerns the
enumeration of degree d covers,

π : C → X,

of nonsingular curves X with specified ramification data. In 1902, Hurwitz
published a closed formula for the number of covers,

π : P1 → P1,

with specified simple ramification over A1 ⊂ P1 and arbitrary ramification
over ∞ (see [17] and also [10], [36]).

Cover enumeration is easily expressed in the class algebra of the symmetric
group S(d). The formulas involve the characters of S(d). Though great strides
have been taken in the past century, the characters of S(d) remain objects of
substantial combinatorial complexity. While any particular Hurwitz number
may be calculated, very few explicit formulas are available.

The second theory, the Gromov-Witten theory of target curves X, is mod-
ern. It is defined via intersection in the moduli space Mg,n(X, d) of degree d

stable maps,
π : C → X,

from genus g, n-pointed curves. A sequence of descendents,

τ0(γ), τ1(γ), τ2(γ), . . . ,

is determined by each cohomology class γ ∈ H∗(X, Q). The descendents τk(γ)
correspond to classes in the cohomology of Mg,n(X, d). Full definitions are
given in Section 0.2 below. The Gromov-Witten invariants of X are defined
as integrals of products of descendent classes against the virtual fundamental
class of Mg,n(X, d).

Let ω ∈ H2(X, Q) denote the (Poincaré dual) class of a point. We define
the stationary sector of the Gromov-Witten theory X to be the integrals in-
volving only the descendents of ω. The stationary sector is the most basic and
fundamental part of the Gromov-Witten theory of X.

Since Gromov-Witten theory and Hurwitz theory are both enumerative
theories of maps, we may ask whether there is any precise relationship between
the two. We prove the stationary sector of Gromov-Witten is in fact equivalent
to Hurwitz theory.
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0.1.2. Let X be a nonsingular target curve. The main result of the
paper is a correspondence, termed here the GW/H correspondence, between
the stationary sector of Gromov-Witten theory and Hurwitz theory.

Each descendent τk(ω) corresponds to an explicit linear combination of
ramification conditions in Hurwitz theory. A stationary Gromov-Witten in-
variant of X is equal to the sum of the Hurwitz numbers obtained by replacing
τk(ω) by the associated ramification conditions. The ramification conditions
associated to τk(ω) are universal — independent of all factors including the
target X.

0.1.3. The GW/H correspondence may be alternatively expressed as
associating to each descendent τk(ω) an explicit element of the class algebra
of the symmetric group. The associated elements, the completed cycles, have
been considered previously in Hurwitz theory — the term completed cycle first
appears in [12] following unnamed appearances of the associated elements in
[1], [11]. In fact, completed cycles, implicitly, are ubiquitous in the theory of
shifted symmetric functions.

The completed k-cycle is the ordinary k-cycle corrected by a nonnegative
linear combination of permutations with smaller support (except, possibly, for
the constant term corresponding to the empty permutation, which may be of
either sign). The corrections are viewed as completing the cycle. In [12], the
corrections to the ordinary k-cycle were understood as counting degenerations
of Hurwitz coverings with appropriate combinatorial weights. Similarly, in
Gromov-Witten theory, the correction terms will be seen to arise from the
boundary strata of Mg,n(X, d).

0.1.4. The GW/H correspondence is important from several points of
view. From the geometric perspective, the correspondence provides a combi-
natorial approach to the stationary Gromov-Witten invariants of X, leading
to very concrete and efficient formulas. From the perspective of symmetric
functions, a geometrization of the theory of completed cycles is obtained.

Hurwitz theory with completed cycles is combinatorially much more acces-
sible than standard Hurwitz theory — a major motivation for the introduction
of completed cycles. Completed cycles calculations may be naturally evalu-
ated in the operator formalism of the infinite wedge representation, Λ

∞
2 V . In

particular, closed formulas for the completed cycle correction terms are ob-
tained. If the target X is either genus 0 or 1, closed form evaluations of all
corresponding generating functions may be found; see Sections 3 and 5. In
fact, the completed cycle corrections appear in the theory with target genus 0.

Hurwitz theory, while elementary to define, leads to substantial combi-
natorial difficulties. Gromov-Witten theory, with much more sophisticated
foundations, provides a simplifying completion of Hurwitz theory.
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0.1.5. The present paper is the first of a series devoted to the Gromov-
Witten theory of target curves X. In subsequent papers, we will consider the
equivariant theory for P1, the descendents of the other cohomology classes
of X, and the connections to integrable hierarchies. The equivariant Gromov-
Witten theory of P1 and the associated 2-Toda hierarchy will be the subject
of [32].

The introduction is organized as follows. We review the definitions of
Gromov-Witten and Hurwitz theory in Sections 0.2 and 0.3. Shifted symmetric
functions and completed cycles are discussed in Section 0.4. The basic GW/H
correspondence is stated in Section 0.5.

0.2. Gromov-Witten theory. The Gromov-Witten theory of a nonsingular
target X concerns integration over the moduli space Mg,n(X, d) of stable degree
d maps from genus g, n-pointed curves to X. Two types of cohomology classes
are integrated. The primary classes are:

ev∗i (γ) ∈ H2(Mg,n(X, d), Q),

where evi is the morphism defined by evaluation at the ith marked point,

evi : Mg,n(X) → X,

and γ ∈ H∗(X, Q). The descendent classes are:

ψk
i ev∗i (γ),

where ψi ∈ H2(Mg,n(X, d), Q) is the first Chern class of the cotangent line
bundle Li on the moduli space of maps.

Let ω ∈ H2(X, Q) denote the Poincaré dual of the point class. We will be
interested here exclusively in the integrals of the descendent classes of ω:〈

n∏
i=1

τki
(ω)

〉◦X

g,d

=
∫

[Mg,n(X,d)]vir

n∏
i=1

ψki

i ev∗i (ω).(0.1)

The theory is defined for all d ≥ 0.
Let g(X) denote the genus of the target. The integral (0.1) is defined to

vanish unless the dimension constraint,

2g − 2 + d(2 − 2g(X)) =
n∑

i=1

ki,(0.2)

is satisfied. If the subscript g is omitted in the bracket notation 〈
∏

i τki
(ω)〉Xd ,

the genus is specified by the dimension constraint from the remaining data.
If the resulting genus is not an integer, the integral is defined as vanishing.
Unless emphasis is required, the genus subscript will be omitted.

The integrals (0.1) constitute the stationary sector of the Gromov-Witten
theory of X since the images in X of the marked points are pinned by the



GROMOV-WITTEN THEORY, HURWITZ THEORY, AND COMPLETED CYCLES 521

integrand. The total Gromov-Witten theory involves also the descendants of
the identity and odd classes of H∗(X, Q).

The moduli space Mg,n(X, d) parametrizes stable maps with connected
domain curves. However, Gromov-Witten theory may also be defined with
disconnected domains. If C =

⋃l
i=1 Ci is a disconnected curve with connected

components Ci, the arithmetic genus of C is defined by:

g(C) =
∑

i

g(Ci) − l + 1,

where g(Ci) is the arithmetic genus of Ci. In the disconnected theory, the genus
may be negative. Let M

•
g,n(X, d) denote the moduli space of stable maps with

possibly disconnected domains.
We will use the brackets 〈 〉◦ as above in (0.1) for integration in connected

Gromov-Witten theory. The brackets 〈 〉• will be used for the disconnected
theory obtained by integration against [M•

g,d(X, d)]vir. The brackets 〈 〉 will
be used when it is not necessary to distinguish between the connected and
disconnected theories.

0.3. Hurwitz theory.

0.3.1. The Hurwitz theory of a nonsingular curve X concerns the enu-
meration of covers of X with specified ramification. The ramifications are
determined by the profile of the cover over the branch points.

For Hurwitz theory, we will only consider covers,

π : C → X,

where C is nonsingular and π is dominant on each component of C. Let d > 0
be the degree of π. The profile of π over a point q ∈ X is the partition η of d

obtained from multiplicities of π−1(q).
By definition, a partition η of d is a sequence of integers,

η = (η1 ≥ η2 ≥ · · · ≥ 0),

where |η| =
∑

ηi = d. Let �(η) denote the length of the partition η, and
let mi(η) denote the multiplicity of the part i. The profile of π over q is the
partition (1d) if and only if π is unramified over q.

Let d > 0, and let η1, . . . , ηn be partitions of d assigned to n distinct points
q1, . . . , qn of X. A Hurwitz cover of X of genus g, degree d, and monodromy
ηi at qi is a morphism

π : C → X(0.3)

satisfying:

(i) C is a nonsingular curve of genus g,
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(ii) π has profile ηi over qi,

(iii) π is unramified over X \ {q1, . . . , qn}.

Hurwitz covers may exist with connected or disconnected domains. The
Riemann-Hurwitz formula,

2g(C) − 2 + d(2 − 2g(X)) =
n∑

i=1

(d − �(ηi)) ,(0.4)

is valid for both connected and disconnected Hurwitz covers. In disconnected
theory, the domain genus may be negative. Since g(C) is uniquely determined
by the remaining data, the domain genus will be omitted in the notation below.

Two covers π : C → X, π′ : C ′ → X are isomorphic if there exists an
isomorphism of curves φ : C → C ′ satisfying π′ ◦ φ = π. Up to isomorphism,
there are only finitely many Hurwitz covers of X of genus g, degree d, and
monodromy ηi at qi. Each cover π has a finite group of automorphisms Aut(π).

The Hurwitz number,
HX

d (η1, . . . , ηn),

is defined to be the weighted count of the distinct, possibly disconnected
Hurwitz covers π with the prescribed data. Each such cover is weighted by
1/|Aut(π)|.

The GW/H correspondence is most naturally expressed as a relationship
between the disconnected theories, hence the disconnected theories will be of
primary interest to us.

0.3.2. We will require an extended definition of Hurwitz numbers valid
in the degree 0 case and in case the ramification conditions η satisfy |η| 	= d.
The Hurwitz numbers HX

d are defined for all degrees d ≥ 0 and all partitions
ηi by the following rules:

(i) HX
0 (∅, . . . , ∅) = 1, where ∅ denotes the empty partition.

(ii) If |ηi| > d for some i then the Hurwitz number vanishes.

(iii) If |ηi| ≤ d for all i then

HX
d (η1, . . . , ηn) =

n∏
i=1

(
m1(ηi)
m1(ηi)

)
· HX

d (η1, . . . ,ηn) ,(0.5)

where ηi is the partition of size d obtained from ηi by adding d − |ηi|
parts of size 1.

In other words, the monodromy condition η at q ∈ X with |η| < d corre-
sponds to counting Hurwitz covers with monodromy η at q together with the
data of a subdivisor of π−1(q) of profile η.
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0.3.3. The enumeration of Hurwitz covers of P1 is classically known to
be equivalent to multiplication in the class algebra of the symmetric group.
We review the theory here.

Let S(d) be the symmetric group. Let QS(d) be the group algebra. The
class algebra,

Z(d) ⊂ QS(d),

is the center of the group algebra.
Hurwitz covers with profile ηi over qi ∈ P1 canonically yield n-tuples of

permutations (s1, . . . , sn) defined up to conjugation satisfying:

(i) si has cycle type ηi,

(ii) s1s2 · · · sn = 1.

The elements si are determined by the monodromies of π around the points qi.
Therefore, HP1

d (η1, . . . , ηn) equals the number of n-tuples satisfying con-
ditions (ii) and (ii) divided by |S(d)|. The factor |S(d)| accounts for over
counting and automorphisms.

Let Cη ∈ Z(d) be the conjugacy class corresponding to η. We have shown:

HP1

d (η1, . . . , ηn) =
1
d!

[
C(1d)

] ∏
Cηi(0.6)

=
1

(d!)2
trQS(d)

∏
Cηi

where
[
C(1d)

]
stands for the coefficient of the identity class and trQS(d) denotes

the trace in the adjoint representation.
Let λ be an irreducible representation λ of S(d) of dimension dimλ. The

conjugacy class Cη acts as a scalar operator with eigenvalue

fη(λ) = |Cη|
χλ

η

dimλ
, |λ| = |η| ,(0.7)

where χλ
η is the character of any element of Cη in the representation λ. The

trace in equation (0.6) may be evaluated to yield the basic character formula
for Hurwitz numbers:

HP1

d (η1, . . . , ηn) =
∑
|λ|=d

(
dimλ

d!

)2 n∏
i=1

fηi(λ) .(0.8)

The character formula is easily generalized to include the extended Hur-
witz numbers (of Section 0.3.2) of target curves X of arbitrary genus g. The
character formula can be traced to Burnside (exercise 7 in §238 of [2]); see also
[4], [19].
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Define fη(λ) for arbitrary partitions η and irreducible representations λ of
S(d) by:

fη(λ) =
(|λ|
|η|

)
|Cη|

χλ
η

dimλ
.(0.9)

If η = ∅, the formula is interpreted as:

f∅(λ) = 1 .

For |η| < |λ|, the function χλ
η is defined via the natural inclusion of symmetric

groups S(|η|) ⊂ S(d). If |η| > |λ|, the binomial in (0.9) vanishes.
The character formula for extended Hurwitz numbers of genus g targets

X is:

HX
d (η1, . . . , ηn) =

∑
|λ|=d

(
dimλ

d!

)2−2g(X) n∏
i=1

fηi(λ) .(0.10)

0.4. Completed cycles.

0.4.1. Let P(d) denote the set of partitions of d indexing the irreducible
representations of S(d). The Fourier transform,

Z(d) � Cµ → fµ ∈ QP(d) , |µ| = d ,(0.11)

determines an isomorphism between Z(d) and the algebra of functions on P(d).
Formula (0.8) may be alternatively derived as a consequence of the Fourier
transform isomorphism.

Let P denote the set of all partitions (including the empty partition ∅).
We may extend the Fourier transform (0.11) to define a map,

φ :
∞⊕

d=0

Z(d) � Cµ → fµ ∈ QP ,(0.12)

via definition (0.9). The extended Fourier transform φ is no longer an isomor-
phism of algebras. However, φ is linear and injective.

We will see the image of φ in QP is the algebra of shifted symmetric
functions defined below (see [23] and also [31]).

0.4.2. The shifted action of the symmetric group S(n) on the algebra
Q[λ1, . . . , λn] is defined by permutation of the variables λi − i. Let

Q[λ1, . . . , λn]∗S(n)

denote the invariants of the shifted action. The algebra Q[λ1, . . . , λn]∗S(n) has
a natural filtration by degree.
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Define the algebra of shifted symmetric functions Λ∗ in an infinite number
of variables by

Λ∗ = lim←−Q[λ1, . . . , λn]∗S(n) ,(0.13)

where the projective limit is taken in the category of filtered algebras with
respect to the homomorphisms which send the last variable λn to 0.

Concretely, an element f ∈ Λ∗ is a sequence (usually presented as a series),

f =
{
f (n)

}
, f (n) ∈ Q[λ1, . . . , λn]∗S(n) ,

satisfying:

(i) the polynomials f (n) are of uniformly bounded degree,

(ii) the polynomials f (n) are stable under restriction,

f (n+1)
∣∣
λn+1=0

= f (n) .

The elements of Λ∗ will be denoted by boldface letters.
The algebra Λ∗ is filtered by degree. The associated graded algebra gr Λ∗

is canonically isomorphic to the usual algebra Λ of symmetric functions as
defined, for example, in [27].

A point (x1, x2, x3, . . . ) ∈ Q∞ is finite if all but finitely many coordinates
vanish. By construction, any element f ∈ Λ∗ has a well-defined evaluation at
any finite point. In particular, f can be evaluated at any point

λ = (λ1, λ2, . . . , 0, 0, . . . ) ,

corresponding to a partition λ. An elementary argument shows functions
f ∈ Λ∗ are uniquely determined by their values f(λ). Hence, Λ∗ is canoni-
cally a subalgebra of QP .

0.4.3. The shifted symmetric power sum pk will play a central role in our
study. Define pk ∈ Λ∗ by:

pk(λ) =
∞∑
i=1

[
(λi − i + 1

2)k − (−i + 1
2)k

]
+ (1 − 2−k)ζ(−k) .(0.14)

The shifted symmetric polynomials,
n∑

i=1

[
(λi − i + 1

2)k − (−i + 1
2)k

]
+ (1 − 2−k)ζ(−k) , n = 1, 2, 3, . . . ,

are of degree k and are stable under restriction. Hence, pk is well-defined.
The shifts by 1

2 in the definition of pk appear arbitrary — their signifi-
cance will be clear later. The peculiar ζ-function constant term in pk will be
explained below.
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The image of pk in gr Λ∗ ∼= Λ is the usual kth power-sum functions. Since
the power-sums are well known to be free commutative generators of Λ, we
conclude that

Λ∗ = Q[p1,p2,p3, . . . ] .

The explanation of the constant term in (0.14) is the following. Ideally,
we would like to define pk by

pk “=”
∞∑
i=1

(λi − i + 1
2)k .(0.15)

However, the above formula violates stability and diverges when evaluated at
any partition λ. In particular, evaluation at the empty partition ∅ yields:

pk(∅) “=”
∞∑
i=1

(−i + 1
2)k .(0.16)

Definition (0.15) can be repaired by subtracting the infinite constant (0.16)
inside the sum in (0.14) and compensating by adding the ζ-regularized value
outside the sum.

The same regularization can be obtained in a more elementary fashion by
summing the following generating series:

∞∑
i=1

∞∑
k=0

(−i + 1
2)kzk

k!
=

∞∑
i=1

ez(−i+ 1
2
) =

1
z S(z)

,

where, by definition,

S(z) =
sinh(z/2)

z/2
=

∞∑
k=0

z2k

22k (2k + 1)!
.

The coefficients ci in the expansion,

1
S(z)

=
∞∑
i=0

ciz
i ,(0.17)

are essentially Bernoulli numbers. Since

(1 − 2−k) ζ(−k) = k! ck+1 ,

the two above regularizations are equivalent. The constants ck will play an
important role.

It is convenient to arrange the polynomials pk into a generating function:

pk(λ) = k! [zk] e(λ, z) , e(λ, z) =
∞∑
i=0

ez(λi−i+ 1
2
) ,(0.18)

where [zk] denotes the coefficient of zk in the expansion of the meromorphic
function e(λ, z) in Laurent series about z = 0.
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0.4.4. The function fµ(λ), arising in the character formulas for Hurwitz
numbers, is shifted symmetric,

fµ ∈ Λ∗,

a nontrivial result due to Kerov and Olshanski (see [23] and also [31], [33]).
Moreover, the Fourier transform (0.12) is a linear isomorphism,

φ :
∞⊕

d=0

Z(d) � Cµ → fµ ∈ Λ∗ .(0.19)

The identification of the highest degree term of fµ by Vershik and Kerov ([39],
[23]) yields:

fµ =
1∏
µi

pµ + . . . ,(0.20)

where pµ =
∏

pµi
and the dots stand for terms of degree lower than |µ|.

The combinatorial interplay between the two mutually triangular linear
bases {pµ} and {fµ} of Λ∗ is a fundamental aspect of the algebra Λ∗. In fact,
these two bases will define the GW/H correspondence.

Following [12], we define the completed conjugacy classes by

Cµ =
1∏
i µi

φ−1(pµ) ∈
|µ|⊕

d=0

Z(d) .

Since the basis {pµ} is multiplicative, a special role is played by the classes

(k) = C(k) , k = 1, 2, . . . ,

which we call the completed cycles. The formulas for the first few completed
cycles are:

(1) =(1) − 1
24

· () ,

(2) =(2) ,

(3) =(3) + (1, 1) +
1
12

· (1) +
7

2880
· () ,

(4) =(4) + 2 · (2, 1) +
5
4
· (2) ,

where, for example,
(1, 1) = C(1,1) ∈ Z(2) ,

is our shorthand notation for conjugacy classes.
Since fµ(∅) = 0 for any µ 	= ∅, the coefficient of the empty partition,

() = C∅,

in (k) equals the constant term of 1
kpk.
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The completion coefficients ρk,µ determine the expansions of the completed
cycles,

(k) =
∑

µ

ρk,µ · (µ) .(0.21)

Formula (0.17) determining the constants,

ρk,∅ = (k − 1)! ck+1 ,

admits a generalization determining all the completion coefficients,

ρk,µ = (k − 1)!
∏

µi

|µ|! [zk+1−|µ|−�(µ)]S(z)|µ|−1
∏

S(µiz) ,(0.22)

where, as before, [zi] stands for the coefficient of zi. Formula (0.22) will be
derived in Section 3.2.4

The term completed cycle is appropriate as (k) is obtained from (k) by
adding nonnegative multiples of conjugacy classes of strictly smaller size (with
the possible exception of the constant term, which may be of either sign). The
nonnegativity of ρk,µ for µ 	= ∅ is clear from formula (0.22). Also, the coefficient
ρk,µ vanishes unless the integer k + 1 − |µ| − �(µ) is even and nonnegative.

We note the transposition (2) is the unique cycle with no corrections
required for completion.

0.4.5. The term completed cycle was suggested in [12] when the functions
pk in [1], [11] were understood to count degenerations of Hurwitz coverings.
The GW/H correspondence explains the geometric meaning of the completed
cycles and, in particular, identifies the degenerate terms as contributions from
the boundary of the moduli space of stable maps.

In fact, completed cycles implicitly penetrate much of the theory of shifted
symmetric functions. While the algebra Λ∗ has a very natural analog of the
Schur functions (namely, the shifted Schur functions, studied in [31] and many
subsequent papers), there are several competing candidates for the analog of
the power-sum symmetric functions. The bases {fµ} and {pµ} are arguably
the two finalists in this contest. The relationship between these two linear
bases can be studied using various techniques; in particular, the methods of
[31], [33], [24] can be applied.

0.5. The GW/H correspondence.

0.5.1. The GW/H correspondence may be stated symbolically as:

τk(ω) =
1
k!

(k + 1) .(0.23)

That is, descendents of ω are equivalent to completed cycles.
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Let X be a nonsingular target curve. The GW/H correspondence is the
following relation between the disconnected Gromov-Witten and disconnected
Hurwitz theories:〈

n∏
i=1

τki
(ω)

〉•X

d

=
1∏
ki!

HX
d

(
(k1 + 1), . . . , (kn + 1)

)
,(0.24)

where the right-hand side is defined by linearity via the expansion of the com-
pleted cycles in ordinary conjugacy classes.

The GW/H correspondence, the completed cycle definition, and formula
(0.10) together yield:〈

n∏
i=1

τki
(ω)

〉•X

d

=
∑
|λ|=d

(
dimλ

d!

)2−2g(X) n∏
i=1

pki+1(λ)
(ki + 1)!

.(0.25)

For g(X) = 0 and 1, the right side can be expressed in the operator formalism
of the infinite wedge Λ

∞
2 V and explicitly evaluated, see Sections 3 and 5.

The GW/H correspondence naturally extends to relative Gromov-Witten
theory; see Theorem 1. In the relative context, the GW/H correspondence
provides an invertible rule for exchanging descendent insertions τk(ω) for ram-
ification conditions.

The coefficients ρk,µ are identified as connected 1-point Gromov-Witten
invariants of P1 relative to 0 ∈ P1. The explicit formula (0.22) for the coeffi-
cients is a particular case of the formula for 1-point connected GW invariants
of P1 relative to 0,∞ ∈ P1; see Theorem 2.

0.5.2. Let us illustrate the GW/H correspondence in the special case of
maps of degree 0. In particular, we will see the role played by the constant
terms in the definition of pk.

In the degree 0 case, the only partition λ in the sum (0.25) is the empty
partition λ = ∅. Since, by definition,

pk(∅) = k! ck+1 ,

the formula (0.25) yields 〈∏
τki

(ω)
〉•X

0
=

∏
cki+2 .

The result is equivalent to the (geometrically obvious) vanishing of all multi-
point connected invariants,

〈τk1(ω) · · · τkn
(ω)〉◦X0 = 0 , n > 1 ,
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together with the following evaluation of the connected degree 0, 1-point func-
tion,

1 +
∞∑

g=1

〈τ2g−2(ω)〉◦Xg,0 z2g =
1

S(z)
.(0.26)

And, indeed, the result is correct; see [13], [34] .

0.5.3. A useful convention is to formally set the contribution 〈τ−2(ω)〉•X0,0

of the unstable moduli space M0,1(X, 0) to equal 1,

〈τ−2(ω)〉•X0,0 = 1 .(0.27)

This convention simplifies the form of the generating function (0.26) and sev-
eral others functions in the paper. In the disconnected theory, the unstable
contribution (0.27) is allowed to appear in any degree and genus. Hence, in
the disconnected theory, the convention is equivalent to setting

τ−2(ω) = 1 .(0.28)

The parallel convention for the completed cycles

p0 = 0 , 1
(−1)! p−1 = 1

fits well with the formula (0.18) .

0.6. Plan of the paper.

0.6.1. A geometric study of descendent integrals concluding with a proof
of the GW/H correspondence in the context of relative Gromov-Witten theory
is presented in Section 1. The GW/H correspondence is Theorem 1. A special
case of GW/H correspondence is assumed in the proof. The special case, the
GW/H correspondence for the absolute Gromov-Witten theory of P1, will be
established by equivariant computations in [32].

Relative Gromov-Witten theory is discussed in Section 1.2. The comple-
tion coefficients (0.21) are identified in Section 1.7 as 1-point Gromov-Witten
invariants of P1 relative to 0 ∈ P1.

0.6.2. The remainder of the paper deals with applications of the GW/H
correspondence. In particular, generating functions for the stationary Gromov-
Witten invariants of targets of genus 0 and 1 are evaluated. These computa-
tions are most naturally executed in the infinite wedge formalism. We review
the infinite representation Λ

∞
2 V in Section 2. The formalism also provides a

convenient and powerful approach to the study of integrable hierarchies; see
for example [20], [28], [35].

The stationary GW theory of P1 relative to 0,∞ ∈ P1 is considered in
Section 3. We obtain a closed formula for the corresponding 1-point function
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in Theorem 2. The formula (0.22) for the completion coefficients is obtained
as a special case. A generalization of Theorem 2 for the n-point function is
given in Theorem 3.

0.6.3. The 2-Toda hierarchy governing the Gromov-Witten theory of P1

relative to {0,∞} ⊂ P1 is discussed in Section 4. The main result is Theorem 4
which states that the natural generating function for relative GW-invariants
is a τ -function of the 2-Toda hierarchy of Ueno and Takasaki [38]. Theorem 4
generalizes a result of [30].

The flows of the Toda hierarchy are associated to the ramification con-
ditions µ and ν imposed at {0,∞}. The equations of the Toda hierarchy are
equivalent to certain recurrence relations for relative Gromov-Witten invari-
ants, the simplest of which is made explicit in Proposition 4.3.

0.6.4. The Gromov-Witten theory of P1 was conjectured to be governed
by the Toda equation by Eguchi and Yang [8], and also by Dubrovin [5]. The
Toda conjecture was further studied in in [6], [7], [16], [30], [34].

The Toda conjecture naturally extends to the C×-equivariant Gromov-
Witten theory of P1. We will prove in [32] that the equivariant theory of P1

is governed by an integrable hierarchy which can also be identified with the
2-Toda of [38]. The flows in the equivariant 2-Toda correspond to the insertions
of τk([0]) and τk([∞]), where

[0], [∞] ∈ H∗
C×(P1, Q) ,

are the classes of the torus fixed points.
The equivariant 2-Toda hierarchy is different from the relative 2-Toda

studied here. However, the lowest equations of both hierarchies agree on their
common domain of applicability.

0.6.5. In Section 5, we discuss the stationary Gromov-Witten theory of
an elliptic curve E. The GW/H correspondence identifies the n-point function
of Gromov-Witten invariants of E with the character of the infinite wedge
representation of gl(∞). This character has been previously computed in [1],
see also [29], [11]. We quote the results of [1] here and briefly discuss some of
their implications, in particular, the appearance of quasimodular forms.

While the GW/H correspondence is valid for all nonsingular target curves
X, we do not know closed form evaluations for targets of genus g(X) ≥ 2.
The targets P1 and E yield very beautiful theories. Perhaps the study of the
Gromov-Witten theory of higher genus targets will lead to the discovery of new
structures.

0.7. Acknowledgments. An important impulse for this work came from
the results of [12] and, more generally, from the line of research pursued in
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1. The geometry of descendents

1.1. Motivation: nondegenerate maps. We begin by examining the relation
between Gromov-Witten and Hurwitz theory in the context of nondegenerate
maps with nonsingular domains.

Let M•
g,n(X, d) ⊂ M

•
g,n(X, d) be the open locus of maps,

π : (C, p1, . . . , pn) → X,

where each connected component Ci ⊂ C is nonsingular and dominates X.
Let q1, . . . , qn ∈ X be distinct points. Define the closed substack V by:

V = ev−1
1 (q1) ∩ · · · ∩ ev−1

n (qn) ⊂ M•
g,n(X, d) .

The stacks M•
g,n(X, d) and V are nonsingular Deligne-Mumford stacks of the

expected dimensions — see [14] for proofs.
The Hurwitz number HX

d ((k1 + 1), . . . , (kn + 1)) may be defined by the
enumeration of pointed Hurwitz covers

π : (C, p1, . . . , pn) → (X, q1, . . . , qn) ,

where

(i) π(pi) = qi,

(ii) π has ramification order ki at pi.

Here, π has ramification order k at p if π takes the local form z → zk+1 at pi.
The count of pointed Hurwitz covers is weighted by 1/|Aut(π)| where Aut(π)
is the automorphism group of the pointed cover.

The above enumeration of pointed covers coincides with the definition of
HX

d ((k1 + 1), . . . , (kn + 1)) given in Section 0.3.

Proposition 1.1. Let d > 0. The algebraic cycle class,( n∏
i=1

ki! c1(Li)ki ev∗
i (ω)

)
∩ [M•

g,n(X, d)] ∈ A0(M•
g,n(X, d)),

is represented by the locus of covers enumerated by HX
d ((k1 + 1), . . . , (kn + 1)).
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Proof. Since V represents
∏n

i=1 ev∗
i (ω) in the Chow theory of M•

g,n(X, d),
we may prove that the locus of Hurwitz covers represents

n∏
i=1

ki! c1(Li)ki ∩ [V ]

in the Chow theory of V .
First, consider the marked point p1. There exists a canonical section

s ∈ H0(V, L1) obtained from π by the following construction. Let π∗ denote
the pull-back map on functions:

π∗ : mq1/m2
q1

→ mp1/m2
p1

,(1.1)

where mq1 , mp1 are the maximal ideals of the points q1 ∈ X and p1 ∈ C

respectively. Via the canonical isomorphisms,

mq1/m2
q1

∼= T ∗
q1

(X), mp1/m2
p1

∼= T ∗
p1

(C),

the map (1.1) is the dual of the differential of π. Since q1 is fixed, the identifi-
cation mq1/m2

q1

∼= C yields a section s of L1 by (1.1).
The scheme theoretic zero locus Z(s) ⊂ V is easily seen to be the (reduced)

substack of maps where p1 has ramification order at least 1 over q1. The cycle
Z(s) represents c1(L1) ∩ [V ] in the Chow theory of V .

When restricted to Z(s), the pull-back of functions yields a map:

π∗ : mq1/m2
q1

→ m2
p1

/m3
p1

.

Hence, via the isomorphisms,

mq1/m2
q1

∼= C, m2
p1

/m3
p1

∼= L⊗2
1 ,

a canonical section s′ ∈ H0(Z(s), L⊗2
1 ) is obtained. A direct scheme theoretic

verification shows that Z(s′) ⊂ Z(s) is the (reduced) substack where p1 has
ramification order at least 2 over q. Hence the cycle Z(s′) represents the cycle
class 2c1(L1)2.

After iterating the above construction, we find that k1! c1(L1)k1 is repre-
sented by the substack where p1 has ramification order at least k1. At each
stage, the reducedness of the zero locus is obtained by a check in the versal
deformation space of the ramified map (the issue of reducedness is local).

Since the cycles determined by ramification conditions at distinct mark-
ings pi are transverse, we conclude that

∏n
i=1 ki! c1(Li)ki ∩ [V ] is represented

by the locus of Hurwitz covers enumerated by HX
d ((k1 + 1), . . . , (kn + 1)).

Proposition 1.1 shows a connection between descendent classes and
Hurwitz covers for the open moduli space M•

g,n(X, d). We therefore expect
a geometric formula:

〈τk1(ω) · · · τkn
(ω)〉•Xd =

HX
d ((k1 + 1), . . . , (kn + 1))∏

ki!
+ ∆,(1.2)
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where ∆ is a correction term obtained from the boundary,

M
•
g,n(X, d) \ M•

g,n(X, d).

The GW/H correspondence gives a description of this correction term ∆.
For example, consider the case where ki = 1 for all i. Then, since 2-cycles

are already complete (see Section 0.4), the basic GW/H correspondence (0.24)
yields an exact equality,

〈τ1(ω) · · · τ1(ω)〉•Xd = HX
d ((2), . . . , (2)),(1.3)

which appears in [34]. However, the correction term ∆ will not vanish in
general.

We note that Proposition 1.1 holds for the connected moduli of maps and
connected Hurwitz numbers by the same proof. Since the disconnected case
will be more natural for the study of the correction equation (1.2), the results
have been stated in the disconnected case.

1.2. Relative Gromov-Witten theory. We will study the GW/H correspon-
dence in the richer context of the Gromov-Witten theory of X relative to a
finite set of distinct points q1, . . . , qm ∈ X. Let η1, . . . , ηm be partitions of d.
The moduli space

Mg,n(X, η1, . . . , ηm)

parametrizes genus g, n-pointed relative stable maps with monodromy ηi at qi.
Foundational developments of relative Gromov-Witten theory in symplectic
and algebraic geometry can be found in [9], [18], [25], [26]. The stationary
sector of the relative Gromov-Witten theory is:〈

n∏
i=1

τki
(ω), η1, . . . , ηm

〉◦X

g,d

=
∫

[Mg,n(X,η1,...,ηm)]vir

n∏
i=1

ψki

i ev∗i (ω),(1.4)

the integrals of descendents of ω relative to q1, . . . , qm ∈ X.
The genus and the degree may be omitted in the notation (1.4) as long

as m > 0. Again, the corresponding disconnected theory is denoted by the
brackets 〈 〉•.

The stationary theory relative to q1, . . . , qm specializes to the stationary
theory relative to q1, . . . , qm−1 when ηm is the trivial partition (1d). In par-
ticular, when all the partitions ηi are trivial, the standard stationary theory
of X is recovered. A proof of this specialization property is obtained from the
degeneration formula discussed in Section 1.3 below.

The stationary Gromov-Witten theory of P1 relative to 0,∞ ∈ P1 will
play a special role. Let µ, ν be partitions of d prescribing the profiles over
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0,∞ ∈ P1 respectively. We will use the notation,〈
µ,

∏
τki

(ω), ν
〉P1

,(1.5)

to denote integrals in the stationary theory of P1 relative to 0,∞ ∈ P1.

1.3. Degeneration. The degeneration formula for relative Gromov-Witten
theory provides a formal approach to the descendent integrals〈

τk1(ω) · · · τkn
(ω), η1, . . . , ηm

〉•X
d

.

Let x1, . . . , xn ∈ X be distinct fixed points. Consider a family of curves with
n sections over the affine line,

π : (X , s1, . . . , sn) → A1,

defined by the following properties:

(i) (Xt, s1(t), . . . , sn(t)) is isomorphic to the fixed data (X, x1, . . . , xn) for all
t 	= 0.

(ii) (X0, s1(0), . . . , sn(0)) is a comb consisting of n + 1 components (1 back-
bone isomorphic to X and n teeth isomorphic to P1). The teeth are
attached to the points x1, . . . , xn of the backbone. The section si(0) lies
on the ith tooth.

The degeneration π can be easily constructed by blowing-up the n points (xi, 0)
of the trivial family X × A1.

The following result is obtained by viewing the family π as a degeneration
of the target in relative Gromov-Witten theory.

Proposition 1.2 ([9], [18], [25], [26]). A degeneration formula holds for
relative Gromov-Witten invariants:

(1.6)
〈
τk1(ω) · · · τkn

(ω), η1, . . . , ηm
〉•X
d

=
∑

|µ1|,...,|µn|=d

HX
d (µ1, . . . , µn, η1, . . . , ηm)

n∏
i=1

z(µi)
〈
µi, τki

(ω)
〉•P1

,

where the sum is over all n-tuples µ1, . . . , µn of partitions of d.

Here, the factor z(µ) is defined by:

z(µ) = |Aut(µ)|
�(µ)∏
i=1

µi

where Aut(µ) ∼=
∏

i≥1 S(mi(µ)) is the symmetry group permuting equal parts
of µ. The factor z(µ) will occur often.
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The right side of the degeneration formula (1.6) involves the Hurwitz num-
bers and 1-point stationary Gromov-Witten invariants of P1 relative to 0 ∈ P1.
The degeneration formula together with the definition of the Hurwitz numbers
implies the specialization property of relative Gromov-Witten invariants when
ηm = (1d).

There exists an elementary analog of this degeneration formula in Hurwitz
theory which yields:

(1.7) HX
d

(
(k1), . . . , (kn), η1, . . . , ηm

)
=

∑
|µ1|,...,|µn|=d

HX
d

(
µ1, . . . , µn, η1, . . . , ηm

) n∏
i=1

z(µi)HP1

d

(
µi, (ki)

)
,

where the sum is again over partitions µi of d.

1.4. The abstract GW/H correspondence. Formula (1.6) can be restated
as a substitution rule valid in degree d:

τk(ω) =
∑
|µ|=d

(
z(µ) 〈µ, τk(ω)〉•P1

)
· (µ) .(1.8)

The substitution rule replaces the descendents τk(ω) by ramification conditions
in Hurwitz theory:〈

τk1(ω) · · · τkn
(ω), η1, . . . , ηm

〉•X
d

= HX
d (−, . . . ,−, η1, . . . , ηm) .

Hurwitz numbers on the right side are defined by inserting the respective ram-
ification conditions (1.8) and expanding multilinearly. The substitution rule,
however, is degree dependent by definition.

A degree independent substitution rule is obtained by studying the con-
nected relative invariants. Disconnected invariants may be expressed as sums
of products of connected invariants obtained by all possible decompositions of
the domain and distributions of the integrand. As the invariant 〈µ, τk(ω)〉•P1

has a single term in the integrand and

〈ν〉◦P1

=
δν,1|ν|

|ν|!
it follows that

〈µ, τk(ω)〉•P1

=
m1(µ)∑
i=0

1
i!

〈
µ − 1i, τk(ω)

〉◦P1

,(1.9)

where µ − 1i denotes the partition µ with i parts equal to 1 removed. Since

z(µ)
i!

=
(

m1(µ)
i

)
z(µ − 1i) ,
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we may rewrite (1.9) as:

z(µ) 〈µ, τk(ω)〉•P1

=
m1(µ)∑
i=0

(
m1(µ)

i

)
z(µ − 1i)

〈
µ − 1i, τk(ω)

〉◦P1

.

The following result is then obtained from the definition of the extended
Hurwitz numbers (0.5).

Proposition 1.3. A substitution rule for converting descendents to ram-
ification conditions holds:

τk(ω) =
∑

ν

(
z(ν) 〈ν, τk(ω)〉◦P1

)
· (ν) ,(1.10)

where the summation is over all partitions ν.

Proposition 1.3 is a degree independent, abstract form of the GW/H corre-
spondence. Clearly, only partitions ν of size at most d contribute to the degree
d invariants. What remains is the explicit identification of the coefficients in
(1.10).

1.5. The leading term. Equating the dimension of the integrand in
〈ν, τk(ω)〉◦P1

with the virtual dimension of the moduli space, we obtain

k + 1 = 2g − 1 + |ν| + �(ν) .

Since g ≥ 0 and �(ν) ≥ 1, we find

|ν| ≤ k + 1 .

Moreover, ν = (k +1) is the only partition of size k +1 which actually appears
in (1.10). All other partitions ν appearing in (1.10) have a strictly smaller size.

We will now determine the coefficient of ν = (k + 1) in (1.10) by the
method of Proposition 1.1. The corresponding relative invariant is computed
in the following lemma.

Lemma 1.4. For d > 0,

〈(d), τd−1(ω)〉P1

=
1
d!

.

Proof. We first note that the connected and disconnected invariants coin-
cide,

〈(d), τd−1(ω)〉◦P1

= 〈(d), τd−1(ω)〉•P1

,

since the imposed monodromy is transitive. The genus of the domain is 0 by
the dimension constraint.

Let [π] ∈ M0,1(P1, (d)) be a stable map relative to 0 ∈ P1,

π : (C, p1) → T → P1,
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where T is a destabilization of P1 at 0 and π(p1) = ∞ ∈ P1. If p1 lies on a
π-contracted component C1 ⊂ C then,

(i) C1 must meet C \ C1 in at least two points by stability,

(ii) C \ C1 must be connected by the imposed monodromy at 0.

Since conditions (i) and (ii) violate the genus constraint g(C) = 0, the marked
point p1 is not allowed to lie on a π-contracted component of C.

The moduli space M0,1(P1, (d)) is of expected dimension d. By Proposi-
tion 1.1 pursued for relative maps, the cycle

(d − 1)! c1(L1)d−1 ev∗
1(ω) ∩ [M0,1(P1, (d))] ∈ A0(M0,1(P1, (d)))

is represented by the locus of covers enumerated by H0,d((d), (d)).
In fact, since p1 does not lie on a π-contracted component of the domain for

any moduli point [π] ∈ ev−1
1 (∞) ⊂ M0,1(P1, (d)), the proof of Proposition 1.1

is valid for the compact moduli space. The cycle

(d − 1)! c1(L1)d−1 ev∗
1(ω) ∩ [M0,1(P1, (d))] ∈ A0(M0,1(P1, (d)))

is represented by the locus of covers enumerated by H0,d((d), (d)).
There is a unique cover [ζ] enumerated by H0,d((d), (d)). We may now

complete the calculation:

〈(d), τd−1(ω)〉•P1

=
∫

[M0,1(P1,(d))]
c1(L1)d−1 ev∗

1(ω)

=
1

(d − 1)!

∫
[ζ]

1

=
1
d!

,

since [ζ] is a cyclic Galois cover with automorphism group of order d.

Lemma 1.4 provides an identification of the leading term in the abstract
GW/H correspondence (1.10).

Corollary 1.5.

τk(ω) =
1
k!

(k + 1) + . . . ,(1.11)

where the dots stand for conjugacy classes (ν) with |ν| < k + 1.

1.6. The full GW/H correspondence. Let X be a nonsingular curve. The
main result of the paper is a substitution rule for the relative Gromov-Witten
theory of X.
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Theorem 1. A substitution rule for converting descendents to ramifica-
tion conditions holds:

τk(ω) =
1
k!

(k + 1) .(1.12)

The full correspondence for the relative theory yields:〈
n∏

i=1

τki
(ω), η1, . . . , ηm

〉•X

d

=
1∏
ki!

HX
d

(
(k1 + 1), . . . , (kn + 1), η1, . . . , ηm

)
.

Our proof of Theorem 1 will rely upon a special case — the case of the
absolute Gromov-Witten theory of P1. The formula,〈

n∏
i=1

τki
(ω)

〉•P1

d

=
1∏
ki!

HP1

d

(
(k1 + 1), . . . , (kn + 1)

)
,(1.13)

will be proven in [32] as a result of equivariant computations. We will now
deduce the general statement (1.12) from (1.13).

Proof. Let 1
k!

˜(k + 1) denote the right side of the equality (1.10),

1
k!

˜(k + 1) =
∑

ν

(
z(ν) 〈ν, τk(ω)〉◦P1

)
· (ν) .

Define p̃k by the the Fourier transform (0.19),

φ
(
(̃k)

)
=

1
k
p̃k.

The equality (1.12) is equivalent to the equality

p̃k
?= pk .(1.14)

As a result of (1.11), we find:

p̃µ = pµ + . . . ,(1.15)

where p̃µ =
∏

p̃µi
and the dots stand for lower degree terms. In other words,

the transition matrix between the bases {p̃µ} and {pµ} is unitriangular.
Let l be the following linear form on the algebra Λ∗:

l(f) =
∑

λ

(
dimλ

|λ|!

)2

f(λ) .

This series obviously converges for any polynomial f . For example, l(1) = e.
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The associated quadratic form,

(f ,g) → l(fg) ,(1.16)

is, clearly, positive definite.
Formula (0.8), formula (1.13), and the definitions of the functions p̃µ,pµ

yield the equality,
l(p̃µ) = l(pµ) ,

for all µ. In particular, we find

l(p̃µ · p̃ν) = l(pµ · pν) ,

for all µ and ν. The transition matrix between the bases {p̃µ} and {pµ} is
therefore orthogonal with respect to the positive definite quadratic form (1.16).
By (1.15), the transition matrix is also unitriangular. Hence, the transition is
the identity and equality is established in (1.14).

1.7. Completion coefficients. Theorem 1 together with a comparison of
the formulas (1.10) and (0.21) yields the following result.

Proposition 1.6. The completion coefficients satisfy :
ρk+1,µ

k!
= z(µ) 〈µ, τk(ω)〉◦P1

.(1.17)

In other words, the coefficients ρk,µ are determined by connected relative 1-point
Gromov-Witten invariants of P1 relative to 0 ∈ P1.

We will perform the actual computation of these completion coefficients
in Section 3, using the operator formalism reviewed in Section 2. An explicit
formula for the completion coefficients will be given in Proposition 3.2.

2. The operator formalism

The fermionic Fock space formalism reviewed here is a convenient tool for
manipulating the sums (0.25). The operator calculus of the formalism is basic
to the rest of the paper. In Sections 3 and 5, the formalism is applied to the
Gromov-Witten theory of targets of genus 0 and 1 respectively. The formalism
underlies the study of the Toda hierarchy in Section 4.

2.1. The infinite wedge.

2.1.1. Let V be a linear space with basis {k} indexed by the half-integers:

V =
⊕

k∈Z+
1
2

C k.

For each subset S = {s1 > s2 > s3 > . . . } ⊂ Z + 1
2 satisfying:



GROMOV-WITTEN THEORY, HURWITZ THEORY, AND COMPLETED CYCLES 541

(i) S+ = S \
(
Z≤0 − 1

2

)
is finite,

(ii) S− =
(
Z≤0 − 1

2

)
\ S is finite,

we denote by vS the following infinite wedge product:

vS = s1 ∧ s2 ∧ s3 ∧ . . . .(2.1)

By definition,
Λ

∞
2 V =

⊕
C vS

is the linear space with basis {vS}. Let ( · , · ) be the inner product on Λ
∞
2 V

for which {vS} is an orthonormal basis.

2.1.2. The fermionic operator ψk on Λ
∞
2 V is defined by wedge product

with the vector k,
ψk · v = k ∧ v .

The operator ψ∗
k is defined as the adjoint of ψk with respect to the inner

product ( · , · ).
These operators satisfy the canonical anti-commutation relations:

ψiψ
∗
j + ψ∗

i ψj = δij ,(2.2)

ψiψj + ψjψ1 = ψ∗
i ψ

∗
j + ψ∗

j ψ
∗
i = 0.(2.3)

The normally ordered products are defined by:

:ψi ψ
∗
j :=

{
ψi ψ

∗
j , j > 0 ,

−ψ∗
j ψi , j < 0 .

(2.4)

2.1.3. Let Eij , for i, j ∈ Z + 1
2 , be the standard basis of matrix units of

gl(∞). The assignment
Eij → :ψi ψ

∗
j : ,

defines a projective representation of the Lie algebra gl(∞) = gl(V ) on Λ
∞
2 V .

Normal ordering is introduced to avoid the infinite constants which ap-
pear in the naive definition of the gl(∞)-action on Λ

∞
2 V . The ordering and

divergence issues here are closely related to the discussion in Section 0.4.3.
For example, the action on Λ

∞
2 V of the identity matrix in gl(∞) is well-

defined only after normal ordering. Indeed, the operator,

C =
∑

k∈Z+ 1
2

Ekk,

corresponding to the identity matrix, acts on the basis vS by:

C vS = (|S+| − |S−|)vS .



542 A. OKOUNKOV AND R. PANDHARIPANDE

The operator C is known as the charge operator.1 The kernel of C, the zero
charge subspace, is spanned by the vectors

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ . . .

indexed by all partitions λ. We will denote the kernel by Λ
∞
2

0 V .
The operator

H =
∑

k∈Z+ 1
2

k Ekk

is called the energy operator. The eigenvalues of H on Λ
∞
2

0 V are easily identi-
fied:

H vλ = |λ| vλ .

The vacuum vector
v∅ = −1

2 ∧ −3
2 ∧ −5

2 ∧ . . .

is the unique vector with the minimal (zero) eigenvalue of H.

2.1.4. Define the translation operator T by:

T k1 ∧ k2 ∧ k3 ∧ · · · = k1 + 1 ∧ k2 + 1 ∧ k3 + 1 ∧ . . . .(2.5)

We see,
T ψk T−1 = ψk+1 , T ψ∗

k T−1 = ψ∗
k+1 .

We also find,
T−1 C T = C + 1 .

Hence, T increases the charge by 1.

2.2. Operators E.

2.2.1. The operator E0(z) on Λ
∞
2 V is defined by:

E0(z) =
∑

k∈Z+ 1
2

ezk Ekk +
1

ez/2 − e−z/2
,(2.6)

where the second term is a scalar operator on Λ
∞
2 V . In fact, the scalar term

in (2.6) and the the constant term in (0.14) have the same origin.
Ideally, we would like E0(z) to be the naive action on Λ

∞
2 V of the following

diagonal operator in gl(∞):
k → ezk k .

1The infinite wedge space is the mathematical formalization of Dirac’s idea of a sea of
fermions filling all but finitely many negative energy levels. The operator C measures the
difference between the number |S+| of occupied positive energy levels (particles) and the
number |S−| of vacant negative energy levels (holes), whence the name.
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In other words, we would like to set

E0(z) “=”
∑

k∈Z+ 1
2

ezk ψk ψ∗
k ,(2.7)

without normal ordering. However, applied to the vacuum, definition (2.7)
yields: ∑

k=− 1
2
,− 3

2
,...

ezk =
1

ez/2 − e−z/2
, �z > 0 ,(2.8)

which may or may not make sense depending on z. We therefore define E0(z)
using the normal ordering and then compensate by adding the scalar (2.8) by
hand.

In particular, we observe

1
ez/2 − e−z/2

= e(∅, z) ,

where the function

e(λ, z) =
∞∑
i=0

ez(λi−i+ 1
2
)

is as defined in (0.18). More generally, we find

E0(z) vλ = e(λ, z) vλ .(2.9)

In other words, the functions e(λ, z) are the eigenvalues of the operator E0(z).

2.2.2. Define the operators Pk for k > 0 by:

Pk = k! [zk] E0(z) ,(2.10)

where [zk] stands for the coefficient of zk. From (0.18) and (2.9) we conclude:

Pk vλ = pk(λ) vλ .(2.11)

In particular, we find
P1 = H − 1

24 .

The definition of the operators Pk is naturally extended as follows:

P0 = C , 1
(−1)! P−1 = 1 .(2.12)

The extension is related to convention (0.28).

2.2.3. The translation operator T acts on the operator E0(z) by

T−1 E0(z) T = ez E0(z) .(2.13)
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We find

T−1 Pk

k!
T =

k+1∑
m=0

1
m!

Pk−m

(k − m)!
,(2.14)

using convention (2.12) .

2.2.4. For any r ∈ Z, we define

Er(z) =
∑

k∈Z+ 1
2

ez(k− r

2
) Ek−r,k +

δr,0

ς(z)
,(2.15)

where the function ς(z) is defined by

ς(z) = ez/2 − e−z/2 .(2.16)

For r 	= 0, the normal ordering is not an issue and no constant term is required.
The exponent in (2.15) is set to satisfy:

Er(z)∗ = E−r(z)∗ ,

where the adjoint is with respect to the standard inner product on Λ
∞
2 V .

The operators E satisfy the following fundamental commutation relation:

[Ea(z), Eb(w)] = ς (det [ a z
b w ]) Ea+b(z + w) .(2.17)

Equation (2.17) automatically incorporates the central extension of the gl(∞)-
action, which appears as the constant term in E0 when r = −s.

2.2.5. The operators E specialize to the standard bosonic operators on
Λ

∞
2 V :

αk = Ek(0) , k 	= 0 .

The commutation relation (2.17) specializes to the following equation:

[αk, Er(z)] = ς(kz) Ek+r(z) .(2.18)

When k + r = 0, equation (2.18) has the following constant term:

ς(kz)
ς(z)

=
ekz/2 − e−kz/2

ez/2 − e−z/2
.

Letting z → 0, we recover the standard relation:

[αk, αr] = k δk+r .(2.19)

2.2.6. The operators E form a projective representation of the (com-
pleted) Lie algebra of differential operators on C×; see for example [21], [1].

Let x be the coordinate on C×. Identify V with x1/2C[x±1] via the as-
signment

k → xk .
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We then find the following correspondences:

Pk ↔
(

x
d

dx

)k

, αk ↔ xk ,

where xk is considered as the operator of multiplication by x. The corre-
spondence is only a Lie algebra representation, and not a representation of an
associative algebra.

The operator E0(z) corresponds to the following differential operator of
infinite order

Tz =
∑

k

zk

k!

(
x

d

dx

)k

,

which acts on functions by rescaling their arguments:

Tz · f(x) = f(ezx) .

3. The Gromov-Witten theory of P1

3.1. The operator formula.

3.1.1. The operator formalism will be used here to study the stationary
Gromov-Witten invariants of P1 relative to 0,∞ ∈ P1,〈

µ,
∏

τki
(ω), ν

〉•P1

,

and the corresponding connected invariants.
The GW/H correspondence (1.12) together with (0.8) results in the fol-

lowing formula:〈
µ,

n∏
i=1

τki
(ω), ν

〉•P1

=
1

z(µ)z(ν)

∑
|λ|=|µ|

χλ
µ χλ

ν

n∏
i=1

pki+1(λ)
(ki + 1)!

,(3.1)

the derivation of which uses the equality

|Cµ| = |µ|!/z(µ) .

3.1.2. We first consider the following generating function,

F •
µ,ν(z1, . . . , zn) =

∞∑
k1,...,kn=−2

〈
µ,

n∏
i=1

τki
(ω), ν

〉•P1
n∏

i=1

zki+1
i ,(3.2)

where convention (0.28) is used for the τ−2(ω) insertions. Invariants in (3.2)
with τ−1(ω) insertions are defined to vanish. Then, formula (3.1) may be
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rewritten as

F •
µ,ν(z1, . . . , zn) =

1
z(µ)z(ν)

∑
|λ|=|µ|

χλ
µ χλ

ν

n∏
i=1

e(λ, zi) .(3.3)

Our next goal is to recast the formula in terms of operators on Λ
∞
2 V .

3.1.3. The following formula in Λ
∞
2 V is well-known (see e.g. [28]):

�(ν)∏
i=1

α−νi
v∅ =

∑
|λ|=d

χλ
ν vλ , |ν| = d .

It is equivalent, for example, to the Murnaghan-Nakayama rule for characters
of a symmetric group. Therefore, using (2.9), we can express the sum on the
right side of (3.3) as:(∏

E0(zi)
∏

α−νi
v∅,

∏
α−µi

v∅
)

.

For any operator A, we denote the diagonal matrix element of A with
respect to the vacuum vector v∅ by angle brackets:

〈A〉 = (Av∅, v∅) .

The above vacuum matrix element is the vacuum expectation. Since, clearly,

α∗
k = α−k ,

formula (3.3) can be recast in the following operator form.

Proposition 3.1. There exists

F •
µ,ν(z1, . . . , zn) =

1
z(µ)z(ν)

〈
�(µ)∏
i=1

αµi

n∏
i=1

E0(zi)
�(ν)∏
i=1

α−νi

〉
.(3.4)

3.2. The 1-point series.

3.2.1. We start by examining how the formalism works in the (geometri-
cally trivial) case of the 0-point series. Formula (3.4) specializes to the following
expression:

F •
µ,ν() =

1
z(µ)z(ν)

〈∏
αµi

∏
α−νi

〉
.(3.5)

Observe, for positive k, that the operator αk annihilates the vacuum

αk v∅ = 0 , k > 0 .

We can use the commutation relation (2.19) repeatedly to move the operators
αµi

all the way to the right, after which the vacuum expectation vanishes.
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Moving the operator α−νi
all the way to the left has the same effect. Thus, a

nonzero result is obtained only in case all operators αµi
and α−νi

annihilate in
pairs via the commutation relation

[αk, α−k] = k .(3.6)

This leads to the expected result

F •
µ,ν() =

δµ,ν

z(µ)
.

From the geometric point of view, the commutation relation (3.6), or the equiv-
alent relation

〈αk α−k〉 = k,

is responsible for a k-fold covering of P1 totally ramified over 0 and ∞.

3.2.2. Now we want to compute the 1-point series

F •
µ,ν(z) =

∞∑
k=−2

〈µ, τk(ω), ν〉•P1

zk+1 ,(3.7)

or, rather, the associated connected series

F ◦
µ,ν(z) =

∞∑
k=−2

〈µ, τk(ω), ν〉◦P1

zk+1 .(3.8)

We have

F •
µ,ν(z) =

1
z(µ)z(ν)

〈∏
αµi

E0(z)
∏

α−νi

〉
.(3.9)

We apply here the same strategy used to evaluate (3.5): we move the operators
αµi

to the right and move the operators α−νi
to the left.

We saw in the evaluation of the 0-point series that the commutation re-
lation (3.6) accounts for a connected component without marked points. The
commutators (3.6) make no contribution to the connected series (3.8).

All the action, therefore, happens as we commute the α’s through the
operator E0(z). The commutation is given by (2.18). Applying formula (2.18)
a total of �(µ) + �(ν) times and using the obvious relation

|µ| = |ν| ,

we obtain the following result

F ◦
µ,ν(z) =

∏
ς(µiz)

∏
ς(νiz)

z(µ) z(ν)
〈E0(z)〉(3.10)

=
1

z(µ)z(ν)

∏
ς(µiz)

∏
ς(νiz)

ς(z)
.
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Using the function

S(z) =
ς(z)
z

=
sinh z/2

z/2
,

we may state formula (3.10) as follows.

Theorem 2. For any two partitions µ and ν of the same size,

(3.11)
∞∑

g=0

z2g
〈
µ, τ2g−2+�(µ)+�(ν)(ω), ν

〉◦P1

=
1

|Aut(µ)| |Aut(ν)|

∏
S(µiz)

∏
S(νiz)

S(z)
.

Formula (0.26) is recovered as the degree 0 case of Theorem 2. More
generally, for µ = ν = (1d), we obtain

∞∑
g=0

z2g 〈τ2g−2+2d(ω)〉◦P1

=
1

(d!)2
S(z)2d−1 ,(3.12)

which is the formula predicted in [34] from the (then) conjectural Toda equa-
tion. The Toda equation will be discussed in Section 4. In particular, formula
(3.12) can also be deduced from Proposition 4.3.

3.2.3. The product of S-functions in (3.11) satisfies an important prop-
erty: the product is symmetric in the combined set of variables {µi} ∪ {νi}.
This crossing symmetry is very restrictive; see [12]. In particular, the symme-
try implies that the full formula (3.11) may be obtained from the very special
and degenerate case in which µ = (d). In fact, the property is almost equivalent
to the GW/H correspondence: the symmetry alone forces τk(ω) to correspond
to a linear combination of the pi’s.

We also observe that since S(0) = 1, the coefficient of z2g in the product
of S-functions in (3.11) is well defined as a symmetric functions of degree 2g
in infinitely many variables. In other words, we have the following stability:
setting any variable to zero gives the analogous function in fewer variables, see
the discussion in Section 0.4.2.

3.2.4. From (3.11) and Proposition 1.6 we obtain the following result
determining the completion coefficients.

Proposition 3.2. The completion coefficients (0.21) are given by

ρk,µ = (k − 1)!
∏

µi

d!
[z2g]S(z)d−1

∏
S(µiz) ,(3.13)

where [z2g] stands for the coefficient of z2g and the numbers g and d are defined
by

d = |µ| , k + 1 = |µ| + �(µ) + 2g .
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In particular, the terms for which |µ| + �(µ) reaches the maximal value
k + 1 may be viewed together as principal terms of the completed cycle (k).
For such terms, the genus g vanishes and the coefficient ρk,µ simply becomes

ρk,µ = (k − 1)!
∏

µi

|µ|! , |µ| + �(µ) = k + 1 .

The geometric interpretation of the coefficients ρk,µ given in Proposi-
tion 1.6 was not essential for the derivation of formula (3.13).

3.3. The n-point series.

3.3.1. The same strategy works for the evaluation of the general n-point
series (3.2), or, rather, the associated connected series F ◦

µ,ν(z1, . . . , zn). The
result, however, is somewhat more complicated to state. In particular, we
require the following auxiliary function

G

(
a1 . . . an

z1 . . . zn

)
= 〈Ea1(z1) . . . Ean

(zn)〉◦ ,(3.14)

where the superscripted circle indicates the connected part of the vacuum
expectation; that is,

〈Ea1(z1) Ea2(z2)〉◦ = 〈Ea1(z1) Ea2(z2)〉 − 〈Ea1(z1)〉 〈Ea2(z2)〉 ,

et cetera. The function (3.14) clearly vanishes unless the condition

a1 + · · · + an = 0

is satisfied. Also, the equation

G

(
0
z

)
=

1
ς(z)

is clear.

3.3.2. For n > 1, the function (3.14) can be computed recursively as
follows. First, if a1 ≤ 0 then (3.14) vanishes:

G

(
a1 . . . an

z1 . . . zn

)
= 0 , a1 ≤ 0 .

If a1 > 0, then by commuting the operator Ea1(z1) all the way to the right
using the commutation relation (2.17), we obtain

G

(
a1 . . . an

z1 . . . zn

)
=

n∑
i=2

ς

(
det

[
a1 ai

z1 zi

])
G

(
a2 . . . ai + a1 . . . an

z2 . . . zi + z1 . . . zn

)
, a1 > 0 .
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The above rules can be easily converted into a nonrecursive form. For example,
for n = 2

G

(
a −a

z1 z2

)
=


ς(a(z1 + z2))
ς(z1 + z2)

, a > 0 ,

0 a ≤ 0 .

3.3.3. The strategy of Section 3.2 applies to evaluation of (3.4) with
minor modification. Each of the α’s now has a choice of operator E with which
to interact (that is, with which to commute). This choice can be conveniently
formalized in terms of a function

f : {µi} ∪ {−νi} → {1, . . . , n} ,

where {µi} ∪ {−νi} is considered as a multiset, that is, a set with possible
repetitions. The evaluation f(µi) = j indicates that the commutator of αµi

with E0(zj) is taken.

Theorem 3. Let M denote the multiset {µi} ∪ {−νi}. Then

(3.15) F ◦
µ,ν(z1, . . . , zn)

=
1

z(µ)z(ν)

∑
f

( ∏
m∈M

ς
(
|m| zf(m)

))
G

(
. . .

∑
f−1(i) m . . .

. . . zi . . .

)
,

where the sum is over all functions f : M → {1, . . . , n}.

Since the summation over f in (3.15) involves n�(µ)+�(ν) terms, formula
(3.15) is only effective if the partitions µ and ν have few parts. For partitions
of large length, especially for the case µ = ν = (1d), a more effective answer is
given by the Toda equations; see in particular Proposition 4.3.

4. The Toda equation

We study here the Toda equations for the relative Gromov-Witten theory
of P1. The Toda equations are equivalent to certain recurrence relations for
the relative invariants.

4.1. The τ -function. The τ -function is a generating function (of the rela-
tive invariants of P1) which is convenient from the point of view of integrable
hierarchies.

4.1.1. Let t1, t2, . . . be a sequence of indeterminates. Consider the
following vertex operators:

Γ±(t) = exp

(∑
k>0

tk
α±k

k

)
.
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We easily obtain:

Γ−(t) = Γ+(t)∗,

Γ+(t) =
∑

µ

tµ
z(µ)

∏
αµi

,

where tµ =
∏

tµi
. The above sum is over all partitions µ.

4.1.2. Define the τ -function for Gromov-Witten theory of P1 relative to
0,∞ ∈ P1 by:

τP1(x, t, s) =
∑

|µ|=|ν|
tµ sν

〈
µ, exp

( ∞∑
i=0

xi τi(ω)

)
, ν

〉•P1

,(4.1)

where x0, x1, . . . is a new set of variables. The following conventions will hold
for the degree 0 constant terms:

〈∅, ∅〉•0 = 1 , 〈∅, ∅〉◦0 = 0 .

The τ -function is often called the partition function.
Formula (3.4) and the definition (2.10) of the operators Pk together yield

an operator formula for τP1 .

Proposition 4.1. We have

τP1(x, t, s) =

〈
Γ+(t) exp

( ∞∑
k=0

xk

(k + 1)!
Pk+1

)
Γ−(s)

〉
.

4.1.3. By the usual relation between the connected and disconnected
theories, the logarithm of τ generates the connected invariants:

FP1(x, t, s) =
∑

|µ|=|ν|
tµ sν

〈
µ, exp

( ∞∑
i=0

xi τi(ω)

)
, ν

〉◦P1

(4.2)

= ln τP1(x, t, s) ,

where the first equality is the definition of the function FP1 . The function FP1

is known as the free energy.

4.2. The string equation.

4.2.1. As a slight extension of stationary Gromov-Witten theory, we
allow the appearance of

τ0(1) ,

a marked point with no imposed conditions. The τ0(1)-insertions are known
as punctures. In both the connected and disconnected theory, the insertions of
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τ0(1) can be removed using the string equation:〈
τ0(1)

∏
i

τki
(ω)

〉
=

∑
j

〈∏
i

τki−δi,j
(ω)

〉
.(4.3)

By the same principle, one removes any number of punctures, which can be
expressed as follows:〈

eyτ0(1)
∏

i

τki
(ω)

〉
=

〈∏
i

∑
m≥0

ym

m!
τki−m(ω)

〉
.(4.4)

4.2.2. In the standard interpretation of the string equation, all the nega-
tive descendants are set to zero. Also, there is the following unique exception
to the string equation in the connected theory:〈

τ0(1)2 τ0(ω)
〉
0,0

= 1 .

In the disconnected theory, of course, the exception propagates in all degrees
and genera.

An equivalent way of managing the exceptional case is to declare the string
equation always valid, while simultaneously changing the interpretation of the
output. Recall our conventions for the disconnected stationary theory:

τk(ω) =

{
1 , k = −2 ,

0 , k 	= 2, k < 0 .
(4.5)

We now observe that the following interpretation of the string equation is
equivalent to the standard one:

(i) We first apply the string equation in the form〈
τ0(1)

∏
τki

(ω)
〉

=
∑

i

〈τk1(ω) . . . τki−1(ω) . . .〉 ,

that is, without exceptions and without setting τ−1(ω) and τ−2(ω) to
zero, repeatedly to remove all τ0(1)-insertions,

(ii) After this we apply the rules (4.5) to the resulting stationary Gromov-
Witten invariant .

4.2.3. The form of the string equation is unchanged in relative Gromov-
Witten theory. Let us add an additional string variable y0 to the generating
function (4.1):

τP1(x, t, s, y0) =
∑

|µ|=|ν|
tµ sν

〈
µ, exp

(
y0 τ0(1) +

∞∑
i=0

xi τi(ω)

)
, ν

〉•P1

.(4.6)
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Similarly, the function

FP1(x, t, s, y0) = ln τP1(x, t, s, y0)

is the generating function for connected invariants in the presence of punctures.
Equations (4.4) and (2.14) together with the commutation of operator T

with vertex operators Γ± results in the following generalization of Proposi-
tion 4.1:

Proposition 4.2. For n ∈ Z,

τP1(x, t, s, n) =

〈
T−n Γ+(t) exp

( ∞∑
k=0

xk

(k + 1)!
Pk+1

)
Γ−(s)Tn

〉
.

4.3. The Toda hierarchy.

4.3.1. By a standard argument (which can be found, for example, in [15],
[37] and will be explained in more detail in [32]), Proposition 4.2 yields the
following result.

Theorem 4. The sequence

{τP1(x, t, s, n)} , n ∈ Z ,

is a τ -function of the 2-Toda hierarchy of Ueno and Takasaki [38] in the vari-
ables t and s. In particular, the lowest equation of this hierarchy is:

∂2

∂t1∂s1
log τ(n) =

τ(n + 1) τ(n − 1)
τ(n)2

,(4.7)

where τ(n) = τP1(x, t, s, n) .

The two sequences of flows in this hierarchy are connected with two ram-
ification conditions µ and ν in the relative Gromov-Witten theory, and not
with the descendent insertions τk(ω).

In particular, since
τ1(ω) = (2) = (2) ,

the function τP1 specializes under the restriction

x2 = x3 = · · · = 0

to the τ -function of [30] enumerating Hurwitz covers with arbitrary branching
over 0,∞ ∈ P1 and simple ramifications elsewhere. Thus, Theorem 4 general-
izes the results of [30].

4.3.2. A 2-Toda hierarchy of a different kind arises in in the equivariant
GW theory of P1; see [32]. The flows of the equivariant 2-Toda hierarchy are
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associated to the insertions of τk([0]) and τk([∞]), where

[0], [∞] ∈ H∗
C×(P1)

are the classes of the C×-fixed points in the equivariant cohomology of P1.
In the nonequivariant limit, both [0] and [∞] yield the point class ω. In

the nonequivariant specialization, the 2-Toda becomes a 1-Toda hierarchy for
the absolute stationary Gromov-Witten theory of P1 described by the function

τabs
P1 (x, q) = τP1(x, t1, 0, 0, . . . , s1, 0, 0, . . . ) ,

where the variable q = t1s1 keeps track of degree. On this absolute station-
ary submanifold, the lowest equations of the two different Toda hierarchies
coincide; see Section 4.3.5.

Getzler in [16] and Zhang [40] have constructed an extension of the 1-Toda
hierarchy, the extra flows of which correspond to the descendents τk(1). In
other words, this extended Toda hierarchy describes the full absolute nonequiv-
ariant Gromov-Witten theory of P1. Getzler has proven the extended hierarchy
is essentially equivalent to the union of the stationary 1-Toda hierarchy and the
Virasoro constraints [16]. Further clarification of the structure of the extended
Toda hierarchy was obtained by Carlet, Dubrovin, and Zhang in [3].

4.3.3. In terms of the free energy (4.2), equation (4.7) reads

∂2

∂t1∂s1
FP1(x, t, s, y0) = exp (∆FP1(x, t, s, y0)) ,(4.8)

where ∆ is the following divided difference operator in the string variable y0

∆f(y0) = f(y0 + 1) − 2f(y0) + f(y0 − 1) .

Equivalently, the operator ∆ can be interpreted as the insertion of

eτ0(1) − 2 + e−τ0(1) = ς (τ0(1))2 .

The exponential on the right side of (4.8) can be interpreted as a generating
function for disconnected invariants, modified by the action of the operator ∆.

Observe that, by the definition of FP1 , the coefficient of tµsν in the ex-
pansion of ∂2

∂t1∂s1
FP1(x, t, s) is equal to:

(m1(µ) + 1)(m1(ν) + 1)

〈
µ + 1, exp

( ∞∑
i=0

xi τi(ω)

)
, ν + 1

〉◦P1

,

where µ + 1 denotes the partition µ ∪ {1}.
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4.3.4. By the string equation (4.4), the effect of the operator ∆ on an
n-point function is the following:

(4.9)
∑
ki

〈
µ, ς (τ0(1))2

∏
τki

(ω), ν
〉 ∏

zki+1
i

= ς
(∑

zi

)2 ∑
ki

〈
µ,

∏
τki

(ω), ν
〉 ∏

zki+1
i .

In particular, the result vanishes when n = 0. Hence, the 0-point functions do
not appear in the right-hand side of (4.8).

We may now translate equation (4.8) to the following relation for n-point
functions.

Proposition 4.3. The Toda equations (4.7), (4.8) are equivalent to the
following recurrence relation for n-point functions. For any µ and ν of the
same size,

(4.10) F ◦
µ+1,ν+1(z1, . . . , zn)

=
1

(m1(µ) + 1)(m1(ν) + 1)

∑
{(Si,µi,νi)}

∏
i

ς (ΣSi
)2 F ◦

µi,νi (zSi
) ,

where the summation is over all sets of triples

{(Si, µ
i, νi)} ,

such that {Si} is a partition of the set {1, . . . , n} into nonempty disjoint sub-
sets:

{1, . . . , n} =
⊔

Si , Si 	= ∅ ;

similarly, {µi} and {νi} satisfy

µ =
⋃

µi , ν =
⋃

νi , |µi| = |νi| ,

where, by definition, zS = {zi}i∈S and ΣS =
∑

i∈S zi.

It is instructive to notice the consistency of this result with the result of
Theorem 2.

4.3.5. We will now consider the absolute stationary Gromov-Witten theory
of P1. From the generating function τP1 , the absolute specialization τabs

P1 is
obtained by setting

t2 = t3 = · · · = s2 = s3 = · · · = 0 .

The restricted function τabs
P1 depends on t1 and s1 only through the weight

(t1s1)d multiplying terms of degree d. Similarly, its dependence on the variable
x0 is exclusively through the weight ex0(d− 1

24
) multiplying terms of degree d in
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τabs
P1 . The constant term − 1

24 can be transformed into an overall factor of
e−x0/24. Since

∂2

∂x2
0

log e−x0/24 = 0 ,

we see

t1s1
∂2

∂t1∂s1
log τabs

P1 =
∂2

∂x2
0

log τabs
P1 .

We now replace the ∂2

∂t1∂s1
derivative in (4.8) by derivatives with respect to x0.

Then, we we set t1s1 = q and obtain the following result.

Proposition 4.4. The generating function

Fabs
P1 (x, y0, q) =

∑
d

qd

〈
exp

(
y0 τ0(1) +

∞∑
i=0

xi τi(ω)

)〉◦P1

d

for the absolute invariants of P1 satisfies the following version of the Toda
equation (4.8)

∂2

∂x2
0

Fabs
P1 (x, y0, q) = q exp

(
∆Fabs

P1 (x, y0, q)
)

.(4.11)

In contrast to (4.7), (4.8), the differentiation in (4.11) is with respect to
the variable coupled to the insertion of τ0(ω). Equation (4.11) is the lowest
equation in another Toda hierarchy, mentioned in Section 4.3.2, the flows of
which are associated to descendent insertions in the absolute Gromov-Witten
theory of P1.

5. The Gromov-Witten theory of an elliptic curve

Gromov-Witten invariants are deformation invariant and, therefore, are
the same for all elliptic curves E. Since a nonsingular cubic can be degenerated
to a nodal rational curve, the degeneration principle explained in Section 1.3
yields the following expression for the Gromov-Witten invariants of an elliptic
curve E in terms of relative invariants of P1:〈∏

τki
(ω)

〉•E

d
=

∑
|µ|=d

z(µ)
〈
µ,

∏
τki

(ω), µ
〉•P1

.(5.1)

Here the sum is taken over all partitions µ of d.
Consider the following n-point generating function

FE(z1, . . . , zn; q) =
∑
d≥0

qd
∑

k1,...,kn

〈
n∏

i=1

τki
(ω)

〉•E

d

n∏
i=1

zki+1
i ,
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which includes contributions of all degrees. From the degeneration formula
(5.1) and the operator formula (3.4), we conclude that

FE(z1, . . . , zn; q) =
∑

µ

q|µ|

z(µ)

〈∏
αµi

∏
E0(zi)

∏
α−µi

〉
(5.2)

= tr0 qH
∏

E0(zi) ,

where tr0 denotes the trace in the charge zero subspace Λ
∞
2

0 V ⊂ Λ
∞
2 V , spanned

by the vectors vλ or, equivalently, by the vectors∏
α−µi

v∅ ,

as λ or µ range over all partitions. The vectors
∏

α−µi
v∅ are orthogonal with

norm squared equal to z(µ); see Section 3.2.1. Also, the energy operator H in
(5.2) was defined in Section 2.1.3.

The trace (5.2) has been previously computed in [1], see also [29], [11].
The result is as follows. Introduce the product

(q)∞ =
∞∏

n=1

(1 − qn) ,

and the genus 1 theta function

ϑ(z) = ϑ 1
2
, 1
2
(z; q) =

∑
n∈Z

(−1)nq
(n+ 1

2 )2

2 e(n+ 1
2
)z .

Up to normalization, ϑ(z) is the only odd genus 1 theta function — the nor-
malization is immaterial as the formula will be homogeneous in ϑ.

Theorem 5 ([1]).

(5.3) FE(z1, . . . , zn; q)

=
1

(q)∞

∑
all n! permutations

of z1, . . . , zn

det

[
ϑ(j−i+1)(z1 + · · · + zn−j)

(j − i + 1)!

]n

i,j=1

ϑ(z1)ϑ(z1 + z2) · · ·ϑ(z1 + · · · + zn)
,

where in the n! summands the zi’s are permuted in all possible ways.

Here, ϑ(k) denotes the k-th derivative of ϑ. If k < 0, the standard conven-
tion 1/k! = 0 is followed. Hence, negative derivatives do not appear in formula
(5.3).

A qualitative conclusion which may be drawn is that the z-coefficients
of (5.3) are quasimodular forms in the degree variable q. Concretely, for any
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collection of the ki’s,

(q)∞
∞∑

d=0

qd
〈∏

τki
(ω)

〉•E

d
∈ Q[E2, E4, E6]∑(ki+2) ,(5.4)

where Q[E2, E4, E6] denotes the ring (freely) generated by the Eisenstein series

Ek(q) =
ζ(1 − k)

2
+

∑
n

∑
d|n

dk−1

 qn

of weight k = 2, 4, 6, and the lower index specifies the homogeneous component
of weight

∑
(ki + 2). This quasimodularity condition is both very useful and

very restrictive. The modular transformation relates the q → 1 behavior of the
series (5.4) with its q → 0 behavior, thus connecting large degree invariants
with low degree invariants.

Since the 2-cycle is complete,

τ1(ω) = (2) = (2) .

the quasimodularity (5.4) generalizes the quasimodularity of generating func-
tions for simply branched coverings of the torus studied in [4], [22].

Further discussion of the properties of the function (5.3) can be found in
[1], [11]. In particular, [11] contains the asymptotic analysis of this function
as q → 1, which corresponds to the d → ∞ asymptotics of the GW-invariants.

Princeton University, Princeton, NJ
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rahulp@math.princeton.edu
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