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A refined version of the
Siegel-Shidlovskii theorem

By F. Beukers

Abstract

Using Y. André’s result on differential equations satisfied by E-functions,
we derive an improved version of the Siegel-Shidlovskii theorem. It gives a
complete characterisation of algebraic relations over the algebraic numbers
between values of E-functions at any nonzero algebraic point.

1. Introduction

In this paper we consider E-functions. An entire function f(z) is called
an E-function if it has a power series expansion of the form

f(z) =
∞∑

k=0

ak

k!
zk

where

(1) ak ∈ Q for all k.

(2) h(a0, a1, . . . , ak) = O(k) for all k where h denotes the log of the absolute
height.

(3) f satisfies a linear differential equation Ly = 0 with coefficients in Q[z].

The linear differential equation Ly = 0 of minimal order which is satisfied
by f is called the minimal differential equation of f .

Furthermore, in all of our consideration we take a fixed embedding Q → C.
Siegel first introduced E-functions around 1929 in his work on transcen-

dence of values of Bessel-functions and related functions. Actually, Siegel’s
definition was slightly more general in that condition (3) reads h(a0, a1, . . . , ak)
= o(k log k). But until now no E-functions in Siegel’s original definition are
known which fail to satisfy condition (2) above. Around 1955 Shidlovski man-
aged to remove Siegel’s technical normality conditions and we now have the
following theorem (see [Sh, Ch. 4.4], [FN, Th. 5.23]).
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Theorem 1.1 (Siegel-Shidlovskii, 1956). Let f1, . . . , fn be a set of
E-functions which satisfy the system of first order equations

d

dz

y1
...

yn

 = A

y1
...

yn


where A is an n× n-matrix with entries in Q(z). Denote the common denom-
inator of the entries of A by T (z). Then, for any ξ ∈ Q such that ξT (ξ) �= 0,

deg trQ(f1(ξ), . . . , fn(ξ)) = deg trQ(z)(f1(z), . . . , fn(z)).

In [B1] Daniel Bertrand gives an alternative proof of the Siegel-Shidlovskii
theorem using Laurent’s determinants.

Of course the Siegel-Shidlovskii theorem suggests strongly that all rela-
tions between values of E-functions at algebraic points arise by specialisation of
polynomial relations over Q(z). Using the techniques of Siegel and Shidlovskii
this turns out to be true up to a finite exceptional set of algebraic points.

Theorem 1.2 (Nesterenko-Shidlovskii, 1996). There exists a finite set S

such that for all ξ ∈ Q, ξ �∈ S the following holds. For any homogeneous poly-
nomial relation P (f1(ξ), . . . , fn(ξ)) = 0 with P ∈ Q[X1, . . . , Xn] there exists
Q ∈ Q[z, X1, . . . , Xn], homogeneous in Xi, such that Q(z, f1(z), . . . , fn(z)) ≡ 0
and P (X1, . . . , Xn) = Q(ξ, X1, . . . , Xn).

In the statement of the theorem one can drop the word ‘homogeneous’
if one wants, simply by considering the set of E-functions 1, f1(z), . . . , fn(z)
instead. Loosely speaking, for almost all ξ ∈ Q, polynomial relations between
the values of fi at z = ξ arise by specialisation of polynomial relations between
the fi(z) over Q(z).

In [NS] it is also remarked that the exceptional set S can be computed in
principle. Although Theorem 1.2 is not stated explicitly in [NS], it is immediate
from Theorem 1 and Lemmas 1, 2 in [NS].

Around 1997 Y. André (see [A1] and Theorem 2.1 below) discovered that
the nature of differential equations satisfied by E-functions is very simple.
Their only nontrivial singularities are at 0,∞. Even more astounding is that
this observation allowed André to prove transcendence statements, as illus-
trated in Theorem 2.2. In particular André managed to give a completely new
proof of the Siegel-Shidlovskii theorem using his discovery. In order to achieve
this, a defect relation for linear equations with irregular singularities had to
be invoked. For a survey one can consult [A2] or, more detailed, [B2].

However, it turns out that even more is possible. Theorem 2.1 allows us
to prove the following theorem.

Theorem 1.3. Theorem 1.2 holds for any ξ ∈ Q with ξT (ξ) �= 0.
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The proof of this theorem will be given in Section 3, after the necessary
preparations. In particular we will use some very basic facts about differen-
tial Galois groups of systems of differential equations. All that we require is
contained in Section 1.4 of the book [PS].

One particular consequence of Theorem 1.3 is the solution of Conjecture A
in [NS]. As pointed out by the referee this conjecture was already alluded to
in S. Lang’s book on transcendental numbers; see [L, p. 100]

Corollary 1.4. Let assumptions be as in Theorem 1.1. Suppose that
f1(z), . . . , fn(z) are linearly independent over Q(z). Then for any ξ ∈ Q, with
ξT (ξ) �= 0, the numbers f1(ξ), . . . , fn(ξ) are Q-linear independent.

A question that remains is about the nature of relations between values of
E-functions at singular points �= 0. The best known example is f(z) = (z−1)ez.
Its minimal differential equation has a singularity at z = 1 and it vanishes at
z = 1, even though f(z) is transcendental over Q(z). Of course the vanishing
of f(z) at z = 1 arises in a trivial way and one would probably agree that
it is better to look at ez itself. It turns out that all relations between values
of E-functions at singularities �= 0 arise in a similar trivial fashion. This is a
consequence of the following theorem.

Theorem 1.5. Let f1, . . . , fn be as above and suppose they are Q(z)-
linear independent. Then there exist E-functions e1(z), . . . , en(z) and an n×n-
matrix M with entries in Q[z] such thatf1(z)

...
fn(z)

 = M

e1(z)
...

en(z)


and where (e1(z), . . . , en(z)) is the vector solution of a system of n homogeneous
first order equations with coefficients in Q[z, 1/z].

Acknowledgement. At this point I would like to express my gratitude to
Daniel Bertrand who critically read and commented on a first draft of this
paper. His remarks were invaluable to me. I would also like to thank the
anonymous referee who did a lot to improve the paper with a number of expert
comments.

2. André’s theorem and first consequences

Everything we deduce in this paper hinges on the following beautiful the-
orem plus corollary by Yves André.
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Theorem 2.1 (Y. André). Let f be an E-function and let Ly = 0 be its
minimal differential equation. Then at every point z �= 0,∞ the equation has
a basis of holomorphic solutions.

All results that follow now, depend on a limited version of Theorem 2.1
where the E-function has rational coefficients. Although the following theorem
occurs in [A1] we want to give a proof of it to make this paper self-contained
to the extent only of accepting Theorem 2.1.

Corollary 2.2 (Y. André). Let f be an E-function with rational coef-
ficients and let Ly = 0 be its minimal differential equation. Suppose f(1) = 0.
Then all solutions of Ly = 0 vanish at z = 1 and consequently z = 1 is an
apparent singularity of Ly = 0.

Proof. Suppose

f(z) =
∞∑

n=0

an

n!
zn.

Let g(z) = f(z)/(1 − z). Note that g(z) is also holomorphic in C. Moreover,
g(z) is again an E-function. Write

g(z) =
∞∑

n=0

bn

n!
zn

where
bn

n!
=

n∑
k=0

ak

k!
.

Since f(1) = 0 we see that

bn

n!
= −

∞∑
k=n+1

ak

k!
.

Since f is an E-function there exist B, C > 0 such that |ak| ≤ B · Ck. Hence

|bn| ≤Bn!

∣∣∣∣∣
∞∑

k=n

Ck

k!

∣∣∣∣∣
≤Bn!

Cn

n!

(
1 +

C

1!
+

C2

2!
+ · · ·

)
≤BeC · Cn.

Furthermore, the common denominator of b0, . . . , bn is bounded above by the
common denominator of a0, a1, . . . , an, hence bounded by B1 · Cn

1 for some
B1, C1 > 0. This shows that f(z)/(z − 1) is an E-function. The minimal
differential operator which annihilates g(z) is simply L◦ (z−1). From André’s
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Theorem 2.1 it follows that the kernel of (z − 1)−1 ◦ L ◦ (z − 1) around z = 1
is spanned by holomorphic functions. Hence the kernel of L is spanned by
holomorphic solutions times z − 1. In other words, all solutions of Ly = 0
vanish at z = 1 and therefore z = 1 is an apparent singularity.

Lemma 2.3. Let f be an E-function with minimal differential equation
Ly = 0 of order n. Let G be its differential Galois group and let Go be the
connected component of the identity in G. Let V be the vector space spanned by
all images of f(z) under Go. Then V is the complete solution space of Ly = 0.

Proof. The fixed field of Go is an algebraic Galois extension K of Q(z)
with Galois group G/Go. Suppose that V has dimension m. Then f satisfies
a linear differential equation with coefficients in K of order m. In particular
we have a relation

f (m) + pm−1(z)f (m−1) + · · · + p1(z)f ′ + p0(z)f = 0(1)

for some pi ∈ K. We subject this relation to analytic continuation. Since f is
an entire function, it has trivial monodromy. By choosing suitable paths we
obtain the conjugate relations

f (m) + σ(pm−1)f (m−1) + · · · + σ(p1)f ′ + σ(p0)f = 0

for all σ ∈ G/Go. Taking the sum over all these relations gives us a nontrivial
differential equation for f of order m over Q(z). From the minimality of Ly = 0
we now conclude that m = n; i.e., the dimension of V is n.

Actually it follows from Theorem 2.1 that the fixed field of Go is of the
form K = Q(z1/r) for some positive integer r. But we do not need that in our
proof. Lemma 2.3 also follows from a lemma of O. Gabber which states that
the monodromy group surjects onto G/Go. See [PS, p. 282].

The following lemma is a straightforward consequence of the general the-
ory of algebraic groups.

Lemma 2.4. Let G1, . . . , Gr be linear algebraic groups and denote by Go
i

their components of the identity. Let H ⊂ G1 × G2 × · · · × Gr be an algebraic
subgroup such that the natural projection πi : H → Gi is surjective for every i.
Let Ho be the connected component of the identity in H. Then the natural
projections πi : Ho → Go

i are surjective.

Now we prove a generalisation of André’s Corollary 2.2 to general nonzero
algebraic points.

Theorem 2.5. Let f be an E-function with minimal differential equation
Ly = 0 of order n. Suppose that ξ ∈ Q∗ and f(ξ) = 0. Then all solutions of
Ly vanish at z = ξ. In particular, Ly = 0 has an apparent singularity at z = ξ.
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Proof. By replacing f(z) by f(ξz) if necessary, we can assume that f

vanishes at z = 1. Let fσ1(z), . . . , fσr(z) be the Gal(Q/Q)-conjugates of f(z)
where we take fσ1(z) = f(z). Let Lσiy = 0 be the σi-conjugate of Ly = 0.
Note that this is the minimal differential equation satisfied by fσi(z). Let Gi be
the differential Galois group and Go

i the connected component of the identity.
By Lemma 2.3 the images of fσi(z) under Go

i span the complete solution space
of Lσiy = 0.

The product F (z) =
∏r

i=1 fσi(z) is an E-function having rational coeffi-
cients. Let Ly = 0 be its minimal differential equation. Furthermore, F (1) = 0.
Hence, from André’s Theorem 2.2 it follows that all solutions of Ly = 0 vanish
at z = 1.

Let H be the differential Galois group of the differential compositum of
the Picard-Vessiot extensions corresponding to Lσiy = 0. Note that the image
of F (z) under any h ∈ H is again a solution of Ly = 0. In particular this
image also vanishes at z = 1.

Furthermore, H is an algebraic subgroup of G1 ×G2 × · · · ×Gr such that
the natural projections πi : H → Gi are surjective. Let Ho be the connected
component of the identity of H. Then, by Lemma 2.4, the projections πi :
Ho → Go

i are surjective.
Let Vi be the solution space of local solutions at z = 1 of Lσiy = 0. In view

of Theorem 2.1 all these solutions are holomorphic at z = 1. Let Wi be the
linear subspace of solutions vanishing at z = 1. The group Ho acts linearly on
each space Vi. Let vi ∈ Vi be the vector corresponding to the solution fσi(z).
Define Hi = {h ∈ Ho|πi(h)vi ∈ Wi}. Then Hi is a Zariski closed subset of Ho.
Furthermore, because all solutions of Ly = 0 vanish at z = 1, we have that
Ho = ∪r

i=1Hi. Since Ho is connected this implies that Hi = Ho for at least
one i. Hence πi(Hi) = πi(Ho) = Go

i and we see that gvi ∈ Wi for all g ∈ Go
i .

We conclude that Wi = Vi. In other words, all local solutions of Lσiy = 0
around z = 1 vanish in z = 1. By conjugation we now see that the same is
true for Ly = 0.

3. Independence results

We now consider a set of E-functions f1, . . . , fn which satisfy a system of
homogeneous first order equations

y′ = Ay

where y is a vector of unknown functions (y1, . . . , yn)t and A an n × n-matrix
with entries in Q(z). The common denominator of these entries is denoted by
T (z).
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Lemma 3.1. Let us assume that the Q(z)-rank of f1, . . . , fn is m. Then
the Q[z]-relations bewteen f1, . . . , fn have a basis

Ci,1(z)f1(z) + Ci,2(z)f2(z) + · · · + Ci,n(z)fn(z) ≡ 0, i = 1, 2, . . . , n − m,

(1)

such that for any ξ ∈ Q the matrix C11(ξ) C12(ξ) . . . C1n(ξ)
...

...
...

Cn−m,1(ξ) Cn−m,2(ξ) . . . Cn−m,n(ξ)


has rank precisely n − m.

Proof. The Q(z)-dimension of all relations is n − m. Choose an indepen-
dent set of n − m relations of the form (1) (without the extra specialisation
condition).

Denote the greatest common divisor of the determinants of all (n−m)×
(n − m) submatrices of (Cij(z)) by D(z). Suppose that D(ξ) = 0 for some ξ.
Then the matrix (Cij(ξ)) has linearly dependent rows. By taking Q-linear
relations between the rows, if necessary, we can assume that C1j(ξ) = 0 for
j = 1, . . . , n. Hence all C1j(z) are divisible by z − ξ and the polynomials
C1j(z)/(z − ξ) are the coefficients of another Q(z)-linear relation. Replace the
first relation by this new relation. The new greatest divisor of all (n − m) ×
(n−m)-determinants is now D(z)/(z− ξ). By repeating this argument we can
find an independent set of n − m relations of the form (1) whose associated
D(z) is a nonzero constant.

But now it is not hard to see that (1) is a Q[z]-basis of all Q[z]-relations.
Furthermore, D(ξ) �= 0 for all ξ (because D(z) is constant), so all specialisa-
tions have maximal rank.

Theorem 3.2. Let f1, . . . , fn be a vector solution of the system

y′ = Ay

consisting of E-functions. Let T (z) be the common denominator of the en-
tries in A. Then, for any ξ ∈ Q, ξT (ξ) �= 0, any Q-linear relation between
f1(ξ), . . . , fn(ξ) arises by specialisation of a Q(z)-linear relation.

Proof. Suppose there exists a Q-linear relation

α1f1(ξ) + α2f2(ξ) + · · · + αnfn(ξ) = 0

which does not come from specialisation of a Q(z)-linear relation at z = ξ.
Consider the function

F (z) = A1(z)f1(z) + A2(z)f2(z) + · · · + An(z)fn(z)
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where Ai(z) ∈ Q[z] to be specified later. Let Ly = 0 be the minimal differential
equation satisfied by F . Suppose that the Q(z)-rank of f1, . . . , fn is m. Then
the order of Ly = 0 is at most m.

We now show how to choose A1(z), . . . , An(z) such that

(i) Ai(ξ) = αi for i = 1, 2, . . . , n.

(ii) The order of Ly = 0 is m.

(iii) ξ is a regular point of Ly = 0.

By using the system y′ = Ay recursively we can find Aj
i (z) ∈ Q(z) such

that

F (j)(z) =
n∑

i=1

Aj
i (z)fi(z).

In addition we fix a Q(z)-basis of linear relations

Ci,1(z)f1(z) + · · · + Ci,nfn(z) ≡ 0, i = 1, . . . , n − m,

with polynomial coefficients Cij(z) such that the (n−m)× n-matrix of values
Cij(ξ) has maximal rank n−m. This is possible in view of Lemma 3.1. Consider
the (n + 1) × n-matrix

M =



C11(z) . . . C1n(z)
...

...
Cn−m,1(z) . . . Cn−m,n(z)

A1(z) . . . An(z)
...

...
Am

1 (z) . . . Am
n (z)


where A0

i (z) = Ai(z). We denote the submatrix obtained from M by deleting
the row with Aj

i (i = 1, . . . , n) by Mj . There exists a Q(z)-linear relation
between the rows of M which explains why the minimal equation Ly = 0 of
F satisfies a differential equation of order ≤ m. Observe that if the order
is < m, then there exists a nontrivial Q(z)-linear relation between the rows
(Aj

1, . . . , A
j
n(z)) (j = 0, . . . , m − 1) which gives a vanishing relation between

f − 1, . . . , fn. Hence det(Mm) = 0. So, if the rank of Mm equals n, the order
of Ly = 0 should be m. In that case the minimal differential equation for F is
given by

∆mF (m) + · · · + ∆1F
′ + ∆0F = 0

where ∆j = (−1)j det(Mj).
By induction it is not hard to show that A0

i (z) = Ai(z) and

Aj
i (z) = A

(j)
i + Pij(A1, . . . , An, . . . , A

(j−1)
1 , . . . , A(j−1)

n )
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where
Pij ∈ Q[z, 1/T (z)][X10, . . . , Xn0, . . . , X1,j−1, . . . , Xn,j−1]

are linear forms with coefficients in Q[z, 1/T (z)]. In what follows we choose
the Ai(z) and their derivatives in such a way that det(Mm) does not vanish
in the point ξ. The choice of Ai(ξ) is fixed by taking Ai(ξ) = αi. Since the
relation

∑n
i=1 αifi(ξ) = 0 does not come from specialisation, the rows of values

(Ci1(ξ), . . . , Cin(ξ)) for i = 1, . . . , n − m and (α1, . . . , αn) have maximal rank
n − m + 1. We can now choose the derivatives A

(j)
i recursively with respect

to j such that det(Mm)(ξ) �= 0. With this choice we note that conditions (i),
(ii), (iii) are satisfied.

On the other hand, F (ξ) = 0, so it follows from Theorem 2.5 that ξ is a
singularity of Ly = 0. This contradicts condition (iii).

Proof of Theorem 1.3. Consider the vector of E-functions given by the
monomials f(z)i := f1(z)i1 · · · fn(z)in , i1 + · · · + in = N of degree N in
f1(z), . . . , fn(z). This vector again satisfies a system of linear first order equa-
tions with singularities in the set T (z) = 0. So we now apply Theorem 3.2 to
the set of E-functions f(z)i. The relation P (f1(ξ), . . . , fn(ξ)) is now a Q-linear
relation between the values f(ξ)i. Hence, by Theorem 3.2, there is a Q[z]-linear
relation between the f(z)i which specialises to the linear relation between the
values at z = ξ. This proves our theorem.

4. Removal of nonzero singularities

In this section we prove Theorem 1.5. For this we require the following
proposition.

Proposition 4.1. Let f be an E-function and ξ ∈ Q∗ such that f(ξ) = 0.
Then f(z)/(z − ξ) is again an E-function.

Proof. By replacing f(z) by f(ξz) if necessary, we can restrict our atten-
tion to ξ = 1. Write down a basis of local solutions of Ly = 0 around z = 1.
Since f vanishes at z = 1, Theorem 2.5 implies that all solutions of Ly = 0
vanish at z = 1. But then, by conjugation, this holds for the solutions around
z = 1 of the Gal(Q/Q)-conjugates Lσy = 0 as well. In particular, the conju-
gate E-function fσ(z) vanishes at z = 1 for every σ ∈ Gal(Q/Q). Taking up
the notations of the proof of Theorem 2.2 we see that

bσ
n

n!
= −

∞∑
k=n+1

aσ
k

k!

for every σ. We can now bound |bσ
n| exponentially in n for every σ. Since the

coefficients of an E-function lie in a finite extension of Q, only finitely many
conjugates are involved. So we get our desired bound h(b0, . . . , bn) = O(n).
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Proof of Theorem 1.5. Denote the column vector (f1(z), . . . , fn(z))t by
f(z). Let

y′(z) = A(z)y(z)

be the system of equations satisfied by f and let G be its differential Galois
group. Because the fi(z) are Q(z)-linear independent, the images of f under
G span the complete solution set of y′ = Ay. So the images under G give us
a fundamental solution set F of our system. We assume that the first column
is f(z) itself. Since the fi(z) are E-functions, it follows from Theorem 2.1
that the entries of F are holomorphic at every point �= 0. Consequently, the
determinant W (z) = det(F) is holomorphic outside 0. Since W (z) satisfies
W ′(z) = Trace(A)W (z), we see that W (α) = 0 implies that α is a singularity
of our system. In particular, α ∈ Q. Let k be the highest order with which
α occurs as a pole in A. Write Ã(z) = (z − α)kA(z). Then it follows from
specialisation at z = α of (z − α)kf ′(z) = Ã(z)f(z) that there is a nontrivial
vanishing relation between the components of f(α). By choosing a suitable
M ∈ GL(n, Q) we can see to it that M f(z) is a vector of E-functions, of which
the first component vanishes at α. But then, by Theorem 2.5, the whole first
row of MF(z) which, by construction, is composed of images under G of its
first element, vanishes at z = α. Hence we can write MF(z) = DF1 where

D =


z − α 0 . . . 0

0 1 . . . 0
...

...
...

0 0 . . . 1


and F1 has entries holomorphic around z = α. Thanks to Proposition 4.1, the
entries of the first column in F1 are again E-functions. Moreover, F1 satisfies
the new system of equations

F ′
1 = (D−1MAM−1D − D−1D′)F1.

Notice that the order of vanishing of W1(z) = det(F1) at z = α is one lower
than the vanishing order of W (z). We repeat our argument when W1(α) = 0.
By using this reduction procedure to all zeros of W (z) we end up with an n×n-
matrix B, with entries in Q[z], and an n × n-matrix of functions E such that
F = BE , the first column of E consists of E-functions and det(E) is nowhere
vanishing in C∗. As a result we have E ′(z) = AE(z)E(z) where AE(z) is an
n × n-matrix with entries in Q[z, 1/z].

Universiteit Utrecht, Utrecht, The Netherlands
E-mail address: F.Beukers@math.uu.nl
URL: http://www.math.uu.nl/people/beukers/



A REFINED VERSION OF THE SIEGEL-SHIDLOVSKII THEOREM 379

References
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de Bordeaux 15 (2003), 1–10.
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