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Universal bounds for
hyperbolic Dehn surgery

By Craig D. Hodgson and Steven P. Kerckhoff*

Abstract

This paper gives a quantitative version of Thurston’s hyperbolic Dehn
surgery theorem. Applications include the first universal bounds on the num-
ber of nonhyperbolic Dehn fillings on a cusped hyperbolic 3-manifold, and es-
timates on the changes in volume and core geodesic length during hyperbolic
Dehn filling. The proofs involve the construction of a family of hyperbolic cone-
manifold structures, using infinitesimal harmonic deformations and analysis of
geometric limits.

1. Introduction

If X is a noncompact, finite volume, orientable, hyperbolic 3-manifold, it
is the interior of a compact 3-manifold with a finite number of torus boundary
components. For each torus, there are an infinite number of topologically
distinct ways to attach a solid torus. Such “Dehn fillings” are parametrized
by pairs of relatively prime integers, once a basis for the fundamental group
of the torus is chosen. If each torus is filled, the resulting manifold is closed.
A fundamental theorem of Thurston ([43]) states that, for all but a finite
number of Dehn surgeries on each boundary component, the resulting closed
3-manifold has a hyperbolic structure. However, it was unknown whether or
not the number of such nonhyperbolic surgeries was bounded independent of
the original noncompact hyperbolic manifold.

In this paper we obtain a universal upper bound on the number of nonhy-
perbolic Dehn surgeries per boundary torus, independent of the manifold X.
There are at most 60 nonhyperbolic Dehn surgeries if there is only one cusp;
if there are multiple cusps, at most 114 surgery curves must be excluded from
each boundary torus.

*The research of the first author was partially supported by grants from the ARC. The
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These results should be compared with the known bounds on the number
of Dehn surgeries which yield manifolds which fail to be either irreducible or
atoroidal or fail to have infinite fundamental group. These are all necessary
conditions for a 3-manifold to be hyperbolic. The hyperbolic geometry part of
Thurston’s geometrization conjecture states that these conditions should also
be sufficient; i.e., that the interior of a compact, orientable 3-manifold has a
complete hyperbolic structure if and only if it is irreducible, atoroidal, and has
infinite fundamental group.

It follows from the work of Gromov-Thurston ([26], see also [5]) that all
but a universal number of surgeries on each torus yield 3-manifolds which
admit negatively curved metrics. More recent work by Lackenby [33] and, in-
dependently, by Agol [2], similarly shows that for all but a universally bounded
number of surgeries on each torus the resulting manifolds are irreducible with
infinite word hyperbolic fundamental group. Similar types of bounds using
techniques less comparable to those in this paper have been obtained by
Gordon, Luecke, Wu, Culler, Shalen, Boyer, Zhang and many others. (See,
for example, [13], [7] and the survey articles [21], [22].) Negatively curved
3-manifolds are irreducible, atoroidal and have infinite fundamental groups. If
the geometrization conjecture were known to be true, it would imply that these
manifolds actually have hyperbolic metrics. The same is true for irreducible
3-manifolds with infinite word hyperbolic fundamental group. Thus, the above
results would provide a universal bound on the number of nonhyperbolic Dehn
fillings. However, without first establishing the geometrization conjecture, no
such conclusion is possible and other methods are required.

The bound on the number of Dehn surgeries that fail to be negatively
curved comes from what is usually referred to as the “2π-theorem”. It can be
stated as follows: Given a cusp in a complete, orientable hyperbolic
3-manifold X, remove a horoball neighborhood of the cusp, leaving a man-
ifold with a boundary torus which has a flat metric. Let γ be an isotopy class
of simple closed curve on this torus and let X(γ) denote X filled in so that γ

bounds a disk. Then the 2π-theorem states that, if the flat geodesic length of
γ on the torus is greater than 2π, then X(γ) can be given a metric of negative
curvature which agrees with the hyperbolic metric in the region outside the
horoball. The bound then follows from the fact that it is always possible to
find an embedded horoball neighborhood with boundary torus whose shortest
geodesic has length at least 1. On such a torus there are a bounded number
of isotopy classes of geodesics with length less than or equal to 2π.

Similarly, Lackenby and Agol show that, if the flat geodesic length is
greater than 6, then the Dehn filled manifold is irreducible with infinite word
hyperbolic fundamental group. Agol then uses the recent work of Cao-Meyerhoff
([11]), which provides an improved lower bound on the area of the maximal
embedded horotorus, to conclude that, when there is a single cusp, at most 12
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surgeries fail to be irreducible or infinite word hyperbolic. This is remarkably
close to the the largest known number of nonhyperbolic Dehn surgeries which
is 10, occurring for the complement of the figure-8 knot.

Our criterion for those surgery curves whose corresponding filled manifold
is guaranteed to be hyperbolic is similar. We consider the normalized length of
curves on the torus, measured after rescaling the metric on the torus to have
area 1, i.e. normalized length = (geodesic length)/

√
torus area. Our main

result shows that, if the normalized length of γ on the torus is sufficiently long,
then it is possible to deform the complete hyperbolic structure through cone-
manifold structures on X(γ) with γ bounding a singular meridian disk until
the cone angle reaches 2π. This gives a smooth hyperbolic structure on X(γ).
The important point here is that “sufficiently long” is universal, independent
of X. As before, it is straightforward to show that all but a universal number of
isotopy classes of simple closed curves satisfy this normalized length condition.

The condition in this case that the normalized length, rather than just
the flat geodesic length, be long is probably not necessary, but is an artifact
of the proof.

We will now give a rough outline of the proof.
We begin with a noncompact, finite volume hyperbolic 3-manifold X,

which, for simplicity, we assume has a single cusp. In the general case the
cusps are handled independently. The manifold X is the interior of a compact
manifold which has a single torus boundary. Choose a simple closed curve γ on
the torus. We wish to put a hyperbolic structure on the closed manifold X(γ)
obtained by Dehn filling. The metric on the open manifold X is deformed
through incomplete metrics whose metric completion is a singular metric on
X(γ), called a cone metric. (See [28] for a detailed description of such metrics.)
The singular set is a simple closed geodesic at the core of the added solid
torus. For any plane orthogonal to this geodesic the disks of small radius
around the intersection with the geodesic have the metric of a 2-dimensional
hyperbolic cone with angle α. The angle α is the same at every point along
the singular geodesic Σ and is called the cone angle at Σ. The complete
structure can be considered as a cone-manifold with angle 0. The cone angle
is increased monotonically, and, if the angle of 2π is reached, this defines a
smooth hyperbolic metric on X(γ).

The theory developed in [28] shows that it is always possible to change
the cone angle a small amount, either increase it or decrease it. Furthermore,
this can be done in a unique way, at least locally. The cone angles locally
parametrize the set of cone-manifold structures on X(γ). In particular, there
are no variations of the hyperbolic metric which leave the cone angle fixed.
This property is referred to as local rigidity rel cone angles. Thus, to choose a
1-parameter family of cone angles is to choose a well-defined family of singular
hyperbolic metrics on X(γ) of this type.
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Although there are always local variations of the cone-manifold structure,
the structure may degenerate in various ways as a family of angles reaches a
limit. In order to find a smooth hyperbolic metric on X(γ) it is necessary to
show that no degeneration occurs before the angle 2π is attained.

The proof has two main parts, involving rather different types of argu-
ments. One part is fairly analytic, showing that under the normalized length
hypothesis on γ, there is a lower bound to the tube radius for any of the cone-
manifold structures on X(γ) with angle at most 2π. The second part consists of
showing that, under certain geometric conditions, most importantly the lower
bound on the tube radius, no degeneration of the hyperbolic structure is pos-
sible. This involves studying possible geometric limits where the tube radius
condition restricts such limits to fairly tractable and well-understood types.

The argument showing that there is a lower bound to the tube radius is
based on the local rigidity theory for cone-manifolds developed in [28]. Indeed,
the key estimates are best viewed as effective versions of local rigidity of cone-
manifolds. We choose a smooth parametrization of the increasing family of
cone angles, which uniquely determines a family of cone-manifold structures.
We then need to control the global behavior of these metrics. The idea is first
to form a model for the deformation in a neighborhood of the singular locus
which changes the cone angle in the prescribed fashion and then find estimates
which bound the deviation of the actual deformation from the model.

The main goal is to estimate the actual behavior of the holonomy of the
fundamental group elements corresponding to the boundary torus. The holon-
omy representation of the meridian is simply an elliptic element which rotates
by the cone angle so it suffices to understand the longitudinal holonomy. We
derive some estimates on the complex length of the longitude in terms of the
cone angle which depend on the original geometry of the horospherical torus,
including the length of the meridian on the torus. These results may be of
independent interest.

The estimates are derived by analyzing boundary terms in a Weitzenböck
formula for the infinitesimal change of metric which arises from differentiating
our family of cone metrics. This formula is the basis for local rigidity of
hyperbolic metrics in dimensions 3 and higher ([9], [46]) and of hyperbolic cone-
manifolds in dimension 3 ([28]). Our estimates ultimately provide a bound on
the derivative of the ratio of the cone angle to the hyperbolic length of the
singular core curve of the cone-manifold. The bound depends on the tube
radius. On the other hand, a geometric packing argument shows that the
change in the tube radius can be controlled when the product of the cone
angle and the core length is small.

Putting these results together, we arrive at differential inequalities which
provide strong control on the change in the geometry of the maximal tube
around the singular geodesic, including the tube radius. The value of the
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normalized flat length of the surgery curve on the maximal cusp torus for the
complete structure gives the initial condition for the ratio of the cone angle
to the core length. (Note: The ratio of the cone angle to the core length
approaches a finite, nonzero value even though they individually approach
zero at the complete structure.)

The conclusion is that, if the initial value of the ratio is large, then it will
remain large and the product of the cone angle and the core length will remain
small. The packing argument then shows that there will be a lower bound to
the tube radius.

This gives a proof of the following theorem:

Theorem 1.1. Let X be a complete, finite volume, orientable, hyperbolic
3-manifold with one cusp and let T be a horospherical torus which is embedded
as a cross-section to the cusp. Let γ be a simple closed curve on T and X(γ)
be the Dehn filling with γ as meridian. Let Xα(γ) be a cone-manifold structure
on X(γ) with cone angle α along the core, Σ, of the added solid torus, obtained
by increasing the angle from the complete structure. If the normalized length of
γ on T is at least 7.515, then there is a positive lower bound to the tube radius
around Σ for all 2π ≥ α ≥ 0.

This theorem does not guarantee that cone angle 2π can actually be
reached, just that there is a lower bound to the tube radius over all angles
less than or equal to 2π that are attained. That 2π can actually be attained
follows from the next theorem.

Theorem 1.2. Let Mt, t ∈ [0, t∞), be a smooth path of closed hyper-
bolic cone-manifold structures on (M,Σ) with cone angle αt along the singular
locus Σ. Suppose αt → α ≥ 0 as t → t∞, that the volumes of the Mt are
bounded above by V0, and that there is a positive constant R0 such that there
is an embedded tube of radius at least R0 around Σ for all t. Then the path ex-
tends continuously to t = t∞ so that as t → t∞, Mt converges in the bilipschitz
topology to a cone-manifold structure M∞ on M with cone angles α along Σ.

Given X and T as in Theorem 1.1, choose any nontrivial simple closed
curve γ on T . There is a maximal sub-interval J ⊂ [0, 2π] containing 0 such
that there is a smooth family Mα, where α ∈ J , of hyperbolic cone-manifold
structures on X(γ) with cone angle α. Thurston’s Dehn surgery theorem
([43]) implies that J is nonempty and [28, Theorem 4.8] implies that it is
open. Theorem 1.2 implies that, with a lower bound on the tube radii and an
upper bound on the volume, the path of Mα’s can be extended continuously
to the endpoint of J . Again, [28, Theorem 4.8] implies that this extension
can be made to be smooth. Hence, under these conditions J will be closed.
By Schläfli’s formula (23, Section 2) the volumes decrease as the cone angles



372 CRAIG D. HODGSON AND STEVEN P. KERCKHOFF

increase, so that they will clearly be bounded above. Theorem 1.1 provides
initial conditions on γ which guarantee that there will be a lower bound on
the tube radii for all α ∈ J . Thus, assuming Theorems 1.1 and 1.2, we have
proved:

Theorem 1.3. Let X be a complete, finite volume, orientable, hyperbolic
3-manifold with one cusp, and let T be a horospherical torus which is embedded
as a cross-section to the cusp of X. Let γ be a simple closed curve on T whose
Euclidean geodesic length on T is denoted by L. If the normalized length of γ,

L̂ =
L√

area(T )
, is at least 7.515, then the closed manifold X(γ) obtained by

Dehn filling along γ is hyperbolic.

This result also gives a universal bound on the number of nonhyperbolic
Dehn fillings on a cusped hyperbolic 3-manifold X, independent of X.

Corollary 1.4. Let X be a complete, orientable, hyperbolic 3-manifold
with one cusp. Then at most 60 Dehn fillings on X yield manifolds which
admit no complete hyperbolic metric.

When there are multiple cusps the results (Theorem 5.12) are only slightly
weaker. Theorem 1.2 holds without change. If there are k cusps, the cone
angles αt and α are simply interpreted as k-tuples of angles. Having tube radius
at least R is interpreted as meaning that there are disjoint, embedded tubes
of radius R around all components of the singular locus. The conclusion of
Theorem 1.1 and hence of Theorem 1.3 holds when there are multiple cusps as
long as the normalized lengths of all the meridian curves are at least

√
2 7.515 ≈

10.6273. At most 114 curves from each cusp need to be excluded. In fact, this
can be refined to say that at most 60 curves need to be excluded from one cusp
and at most 114 excluded from the remaining cusps. The rest of the Dehn
filled manifolds are hyperbolic.

In the final section of the paper (Section 6), we prove that every closed
hyperbolic 3-manifold with a sufficiently short (length less than .111) closed
geodesic can be obtained by the process studied in this paper. Specifically, if
one removes a simple closed geodesic from a closed hyperbolic 3-manifold, the
resulting manifold can be seen to have a complete, finite volume hyperbolic
structure. We prove that, if the removed geodesic had length less than .111,
then the hyperbolic structure on the closed manifold and that of the com-
plement of the geodesic can be connected by a smooth family of hyperbolic
cone-manifolds, with angles varying monotonically from 2π to 0.

Also in that section (Theorem 6.5), we prove inequalities bounding the
difference between the volume of a complete hyperbolic 3-manifold and certain
closed hyperbolic 3-manifolds obtained from it by Dehn filling. We see (Corol-
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lary 6.7) that, for the manifolds constructed in Theorem 1.3, this difference is
at most 0.329. Similarly, using known bounds on the volume of cusped hyper-
bolic 3-manifolds, we prove (Corollary 6.8) that every closed 3-manifold with
a closed geodesic of length at most 0.162 has volume at least 1.701.

This paper is organized as follows: In Section 2 we recall basic definitions
for deformations of hyperbolic structures and some necessary results from a
previous paper ([28]). We use these to derive our fundamental inequality (The-
orem 2.7) for the variation of the length of the singular locus as the cone angle
is changed. Section 3 analyzes the limiting behavior of sequences of hyper-
bolic cone-manifolds under the hypothesis of a lower bound to the tube radius
around the singular locus. The proof of Theorem 1.2 is given in that section.
It is, for the most part, independent of the rest of the paper. In Section 4 we
use a packing argument to relate the tube radius to the length of the singular
locus. In Section 5 we combine this relation with the inequality from Section 2
to derive initial conditions that ensure that there will be a lower bound to the
tube radius for all cone angles between 0 and 2π. In particular, the proof of
Theorem 1.1 is completed in that section.

2. Deformation models and changes in holonomy

In this section we recall the description of an infinitesimal change of hyper-
bolic structure in terms of bundle-valued 1-forms and the Weitzenböck formula
satisfied by such a form when it is harmonic in a suitable sense. We compute
the boundary term for this formula in some specific cases which will allow
us to estimate the infinitesimal changes in the holonomy representations of
peripheral elements of the fundamental group.

In order to discuss the analytic and geometric objects associated to an
infinitesimal deformation of a hyperbolic structure, we need first to describe
what we mean by a 1-parameter family of hyperbolic structures.

A hyperbolic structure on an n-manifold X is determined by local charts
modelled on Hn whose overlap maps are restrictions of global isometries of Hn.
These determine, via analytic continuation, a map Φ : X̃ → Hn from the
universal cover X̃ of X to Hn, called the developing map, which is determined
uniquely up to post-multiplication by an element of G = isom(Hn). The
developing map satisfies the equivariance property Φ(γm) = ρ(γ)Φ(m), for all
m ∈ X̃, γ ∈ π1(X), where π1(X) acts on X̃ by covering transformations, and
ρ : π1(X) → G is the holonomy representation of the structure. The developing
map also determines the hyperbolic metric on X̃ by pulling back the hyperbolic
metric on Hn. (See [44] and [42] for a complete discussion of these ideas.)

We say that two hyperbolic structures are equivalent if there is a diffeo-
morphism f , isotopic to the identity, from X to itself taking one structure
to the other. We will use the term “hyperbolic structure” to mean such an
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equivalence class. A 1-parameter family, Xt, of hyperbolic structures defines a
1-parameter family of developing maps Φt : X̃ → Hn, where two families are
equivalent under the relation Φt ≡ ktΦtf̃t where kt are isometries of Hn and
f̃t are lifts of diffeomorphisms ft from X to itself. We assume that k0 and f̃0

are the identity, and write Φ0 = Φ. All of the maps here are assumed to be
smooth and to vary smoothly with respect to t.

The tangent vector to a smooth family of hyperbolic structures will be
called an infinitesimal deformation. The derivative at t = 0 of a 1-parameter
family of developing maps Φt : X̃ → Hn defines a map Φ̇ : X̃ → THn. For
any point m ∈ X̃, Φt(m) is a curve in Hn describing how the image of m is
moving under the developing maps; Φ̇(m) is the initial tangent vector to the
curve.

We will identify X̃ locally with Hn and TX̃ locally with THn via the
initial developing map Φ. Note that this identification is generally not a home-
omorphism unless the hyperbolic structure is complete. However, it is a local
diffeomorphism, providing identification of small open sets in X̃ with ones
in Hn.

In particular, each point m ∈ X̃ has a neighborhood U where Ψt =
Φ−1 ◦ Φt : U → X̃ is defined, and the derivative at t = 0 defines a vector
field on X̃, v = Ψ̇ : X̃ → TX̃. This vector field determines the variation in
developing maps since Φ̇ = dΦ ◦ v, and also determines the variation in the
metric as follows. Let gt be the hyperbolic metric on X̃ obtained by pulling
back the hyperbolic metric on Hn via Φt and put g0 = g. Then gt = Ψ∗

t g and
the variation in metrics ġ = dgt

dt |t=0 is the Lie derivative, Lvg, of the initial
metric g along v.

Covariant differentiation of the vector field v gives a TX̃ valued 1-form on
X̃, ∇v : TX̃ → TX̃, defined by ∇v(x) = ∇xv for x ∈ TX̃. We can decompose
∇v at each point into a symmetric part and a skew-symmetric part. The
symmetric part, η̃ = (∇v)sym, represents the infinitesimal change in metric,
since

ġ(x, y) = Lvg(x, y) = g(∇xv, y) + g(x,∇yv) = 2g(η̃(x), y)

for x, y ∈ TX̃. In particular, η̃ descends to a well-defined TX-valued 1-form η

on X. The skew-symmetric part (∇v)skew is the curl of the vector field v, and
its value at m ∈ X̃ represents the effect of an infinitesimal rotation about m.

To connect this discussion of infinitesimal deformations with cohomology
theory, we consider the Lie algebra g of G = isom(Hn) as vector fields on Hn

representing infinitesimal isometries of Hn. Pulling back these vector fields via
the initial developing map Φ gives locally defined infinitesimal isometries on
X̃ and on X.

Let Ẽ, E denote the vector bundles over X̃, X respectively of (germs of)
infinitesimal isometries. Then we can regard Ẽ as the product bundle with total
space X̃×g, and E as isomorphic to (X̃×g)/∼ where (m, v) ∼ (γm,Adρ(γ) ·v)
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with γ ∈ π1(X) acting on X̃ by covering transformations and on g by the
adjoint action of the holonomy ρ(γ). At each point p of X̃, the fiber of Ẽ

splits as a direct sum of infinitesimal pure translations and infinitesimal pure
rotations about p; these can be identified with TpX̃ and so(n) respectively.

We now lift v to a section s : X̃ → Ẽ by choosing an “osculating” infinites-
imal isometry s(m) which best approximates the vector field v at each point
m ∈ X̃. Thus s(m) is the unique infinitesimal isometry whose translational
part and rotational part at m agree with the values of v and curl v at m.
(This is the “canonical lift” as defined in [28].) In particular, if v is itself an
infinitesimal isometry of X̃ then s will be a constant function.

By the equivariance property of the developing maps it follows that s sat-
isfies an “automorphic” property: s(γm)−Adρ(γ)s(m) is a constant infinites-
imal isometry, given by the variation ρ̇(γ) of holonomy isometries ρt(γ) ∈ G

(see Prop. 2.3(a) of [28]). Here ρ̇ : π1(X) → g satisfies the cocyle condition
ρ̇(γ1γ2) = ρ̇(γ1)+Adρ(γ1)ρ̇(γ2), and so represents a class in group cohomology
[ρ̇] ∈ H1(π1(X); Adρ), describing the variation of holonomy representations ρt.

When s is a vector-valued function with values in the vector space g, its
differential ω̃ = ds satisfies ω̃(γm) = Adρ(γ)ω̃(m) so it descends to a closed
1-form ω on X with values in the bundle E. Hence it determines a de Rham
cohomology class [ω] ∈ H1(X;E). This agrees with the cohomology class [ρ̇]
under the de Rham isomorphism H1(X;E) ∼= H1(π1(X); Adρ). Also, we note
that the translational part of ω can be regarded as a TX-valued 1-form on X.
This is exactly the form η defined above (see Prop. 2.3(b) of [28]), describing
the infinitesimal change in metric on X.

On the other hand, a family of hyperbolic structures determines only
an equivalence class of families of developing maps and we need to see how
replacing one family by an equivalent family changes the cocycles. Recall that
a family equivalent to Φt is of the form ktΦtf̃t where kt are isometries of Hn

and f̃t are lifts of diffeomorphisms ft from X to itself. We assume that k0 and
f̃0 are the identity.

The kt term changes the path ρt of holonomy representations by conju-
gating by kt. Infinitesimally, this changes the cocycle ρ̇ by a coboundary in
the sense of group cohomology. Thus it leaves the class in H1(π1(X); Adρ)
unchanged. The diffeomorphisms ft amount to a different map from X0 to Xt.
But ft is isotopic to f0 = identity, so the lifts f̃t do not change the group cocy-
cle at all. It follows that equivalent families of hyperbolic structures determine
the same group cohomology class.

If, instead, we view the infinitesimal deformation as represented by the
E-valued 1-form ω, we note that the infinitesimal effect of the isometries kt is to
add a constant to s : X̃ → Ẽ. Thus, ds, its projection ω, and the infinitesimal
variation of metric are all unchanged. However, the infinitesimal effect of the
f̃t is to change the vector field on X̃ by the lift of a globally defined vector
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field on X. This changes ω by the derivative of a globally defined section of E.
Hence, it does not affect the de Rham cohomology class in H1(X;E). The
corresponding infinitesimal change of metric is altered by the Lie derivative of
a globally defined vector field on X.

Since, within an equivalence class of an infinitesimal deformation, we are
free to choose an identification of X0 with Xt, we can try to find a canonical
choice with particularly nice analytic properties. A natural choice would be a
harmonic map. At the infinitesimal level, this corresponds to choosing a Hodge
representative for the de Rham cohomology class in H1(X;E). The transla-
tional part, which describes the infinitesimal change in metric, is a harmonic
TX-valued 1-form. These are studied in detail for the case of cone-manifolds
in [28]. They correspond to variations of metric which are L2-orthogonal to
the trivial variations given by the Lie derivative of compactly supported vector
fields on X.

One special feature of the 3-dimensional case is the complex structure on
the Lie algebra g ∼= sl2C of infinitesimal isometries of H3. The infinitesimal
rotations fixing a point p ∈ H3 can be identified with su(2) ∼= so(3); then the
infinitesimal pure translations at p correspond to i su(2) ∼= TpH3. Geometri-
cally, if t ∈ TpH3 represents an infinitesimal translation, then it represents an
infinitesimal rotation with axis in the direction of t. Thus, on a hyperbolic 3-
manifold X we can identify the bundle E of (germs of) infinitesimal isometries
with the complexified tangent bundle TX ⊗ C.

We now specialize to the case of interest in this paper, 3-dimensional
hyperbolic cone-manifolds. We recall some of the results and computations
derived in [28]. The reader is referred to that paper for further details.

Let Mt be a smooth family of hyperbolic cone-manifold structures on M

with cone angles αt along Σ, where 0 ≤ αt ≤ 2π. Note that, locally, Mt is
uniquely determined by αt, by the local rigidity results of [28]. Let U = UR

denote an embedded tube consisting of points distance at most R = Rt from
the singular locus Σ.

By the Hodge theorem proved in [28], the infinitesimal deformation of
hyperbolic structures (“ d

dt(Mt)”) can be represented by a unique harmonic
TX-valued 1-form η on X = M − Σ such that

D∗η = 0, D∗Dη = −η,

where D is the exterior covariant derivative on such forms and D∗ is its adjoint.
In addition, η and Dη are symmetric and traceless, and inside U we can write

η = η0 + ηc

where η0 is a “standard” (non-L2) form, and ηc is a correction term with
ηc, Dηc in L2. Further, only η0 changes the holonomy of the meridian and
longitude on the torus TR = ∂UR.
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Alternatively, we can represent the infinitesimal deformation by a 1-form
with values in the infinitesimal local isometries of X:

ω = η + i ∗Dη.(1)

There is an analogous decomposition of ω in the neighborhood U as ω = ω0+ωc

where only ω0 changes the holonomy and ωc is in L2.
The tubular neighborhood U of the singular locus will be mapped by

the developing map into a neighborhood in H3 of a geodesic. If we use
cylindrical coordinates, (r, θ, ζ), the hyperbolic metric is dr2 + sinh2 r dθ2 +
cosh2 r dζ2, where the angle θ is defined modulo the cone angle α. We de-
note the moving co-frame adapted to this coordinate system by (ω1, ω2, ω3) =
(dr, sinh r dθ, cosh r dζ).

To define our standard forms, we use the cylindrical coordinates on U

defined above, and we denote by e1, e2, e3 the orthonormal frame in U dual to
the co-frame ω1, ω2, ω3. In particular, e2 is tangent to the meridian and e3 is
tangent to the singular locus, which is homotopic in the cone-manifold to the
longitude. We can interpret an E-valued 1-form as a complex-valued section of
TX⊗T ∗X ∼= Hom(TX, TX). Then an element of TX⊗T ∗X can be described
as a matrix whose (i, j) entry is the coefficient of ei ⊗ ωj .

Explicitly, ω0 is a linear combination of the forms given in (23) and (24) of
[28]. The form ωm = ηm + i ∗Dηm below is a “standard” closed and co-closed
(non-L2) form which represents an infinitesimal deformation which decreases
the cone angle but does not change the real part of the complex length of the
meridian. It preserves the property that the meridian is elliptic and, hence,
that there is a cone-manifold structure.

ωm =


−1

cosh2(r) sinh2(r)
0 0

0 1
sinh2(r)

−i
cosh(r) sinh(r)

0 −i
cosh(r) sinh(r)

−1
cosh2(r)

(2)

The form ωl = ηl + i ∗Dηl below is a “standard” closed and co-closed,
L2 form which stretches the singular locus, but leaves the holonomy of the
meridian (hence the cone angle) unchanged.

ωl =


−1

cosh2(r)
0 0

0 −1 −i sinh(r)
cosh(r)

0 −i sinh(r)
cosh(r)

cosh(r)2+1
cosh(r)2

(3)

The effect of ωm and ωl on the complex lengths of the group elements
on the boundary torus was computed in [28] (pages 32–33). For a detailed
explanation for these computations we refer to this reference. We merely record
the results here.
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Lemma 2.1. The effects of the infinitesimal deformations given by the
standard forms on the complex length, L, of any peripheral curve are as follows.

(a) For ωm,

d

dt
(L) = −2L.

(b) For ωl,

d

dt
(L) = 2 Re(L),

where Re(L) denotes the real length of the curve.

Remark 2.2. A meridian curve has complex length iα. So the effect of ωm

on its derivative is −2iα. This shows that the meridian remains elliptic and
that the derivative of the cone angle α is −2α. Similarly, for ωl, the complex
length of the meridian has derivative zero.

If L denotes the complex length of the longitude, then the real part of L
is the length 
 of the singular locus. Thus for ωm, the derivative of 
 is −2
.
For ωl, the derivative of 
 is 2
.

The infinitesimal changes in the complex lengths of the elements of the
fundamental group of the torus uniquely determine a complex linear combina-
tion of ωm and ωl and conversely any such linear combination determines the
infinitesimal changes in these complex lengths. The coefficient of ωm uniquely
determines and is determined by the change in the meridian since ωl leaves
the complex length of the meridian unchanged. By our computations above,
the length of the meridian remains pure imaginary (i.e. an elliptic element)
precisely when the coefficient is real.

The smooth family of structures Mt is determined by a choice of para-
metrization of the cone angles αt and we are free to choose this as we wish.
The value of the coefficient for ωm is determined by the derivative of the cone
angle. It turns out to be useful to parametrize the cone-manifolds by the square
of the cone angle; i.e., we will let t = α2. Since the derivative of the square of
the cone angle is 1 and the derivative of α under ωm is −2α, we have

ω0 =
−1
4α2

ωm + (x + iy)ωl(4)

for some real constants x and y. One of the goals of this section is to estimate
the values of x and y. This will allow us to estimate the infinitesimal change
in all of the complex lengths of curves on the torus. In particular, we can
estimate the change in the length of the singular locus.

The estimates in this section can be viewed as effective versions of local
rigidity arguments. The basic idea behind local rigidity is to represent an in-
finitesimal deformation by a harmonic representative in the cohomology group
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H1(X;E). The symmetric real part of this representative is a 1-form with
values in the tangent bundle of X. Harmonicity, and the fact that it will be
volume preserving (this takes a separate argument), imply that the 1-form
satisfies a Weitzenböck-type formula:

D∗Dη + η = 0

where D is the exterior covariant derivative on such forms and D∗ is its adjoint.
Taking the L2 inner product of this formula with η and integrating by parts
we obtain the formula

||Dη||2X + ||η||2X = 0

when X is closed. (Here ||η||2X denotes the square of the L2 norm of η on X.
The pointwise L2 norm is denoted simply by ||η||.) Thus η = 0 and the
deformation is trivial. This is the proof of local rigidity for closed hyperbolic
3-manifolds.

When X has boundary or is noncompact, there will be a boundary term b:

||Dη||2X + ||η||2X = b.

If the boundary term is nonpositive, the same conclusion holds: the deforma-
tion is trivial. When X = M − Σ, where M is a hyperbolic cone-manifold
with cone angles at most 2π along its singular set Σ, it was shown in [28]
that, for a deformation which leaves the cone angle fixed, it is possible to find
a representative as above for which the boundary term goes to zero on the
boundary of tubes around the singular locus whose radii go to zero. Again,
such an infinitesimal deformation must be trivial. This proves local rigidity rel
cone angles.

The argument for local rigidity rel cone angles actually shows that the
boundary term is negative when the cone angle is unchanged. Note that leav-
ing the cone angle unchanged is equivalent to the vanishing of the coefficient
of ωm. As we shall see below the boundary term for ωm by itself is posi-
tive. Roughly speaking, ωm contributes positive quantities to the boundary
term, while everything else gives negative contributions. (There are, of course,
also some cross-terms.) We think of −1

4α2 ωm as a preliminary model for the
infinitesimal deformation in a tube around the singular locus. Then this is
“corrected” by adding (x + iy)ωl to get the actual change in complex lengths
and then by adding a further term ωc that does not change the holonomy at all.
The requirement that the boundary term for the actual representative (model
plus the other terms) be positive puts strong restrictions on these “correction”
terms. This is the underlying philosophy for the estimates in this section.

In order to implement these ideas we need to derive a formula for the
boundary term. For details we refer to [28].

The Hodge Theorem ([28]) for cone-manifolds gives a closed and co-closed
E-valued form ω = η + i ∗Dη satisfying D∗Dη = −η. Integration by parts, as
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in [28, Prop. 1.3 and p. 36], over any sub-manifold N of X with boundary ∂N

gives:

Lemma 2.3. For any closed and co-closed form ω = η + i ∗Dη satisfy-
ing D∗Dη = −η, and any submanifold N with boundary ∂N oriented by the
outward normal,

0 =
∫

N
(||η||2 + ||∗Dη||2) +

∫
∂N

∗Dη ∧ η.(5)

Note that in these integrals, α∧β denotes the real valued 2-form obtained
using the wedge product of the form parts, and the geometrically defined inner
product on vector-valued parts.

Denote by Ur the tubular neighborhood of points at distance less than or
equal to r from the singular locus. It will always be assumed that r is small
enough so that Ur will be embedded. Let Tr denote the boundary torus of Ur,
oriented with ∂

∂r as outward normal. We define

br(α, β) =
∫

Tr

∗Dα ∧ β.(6)

We emphasize that Tr is oriented as above, so that ω2∧ω3 = sinh r cosh r dθ∧dζ

is the oriented area form.
Fix a value R for the radius and let N = X−UR. Then ∂N = −TR, where

the minus sign denotes the opposite orientation (since − ∂
∂r is the outward

normal for N). Applying (5) in this case, we obtain:

Corollary 2.4. Let N = X−UR be the complement of the tubular neigh-
borhood of radius R around the singular locus. Then, for any closed and co-
closed form ω = η + i ∗Dη satisfying D∗Dη = −η,

bR(η, η) = ||η||2N + ||∗Dη||2N = ||ω||2N .(7)

In particular, we see that the boundary term bR(η, η) is nonnegative. Writ-
ing η = η0 + ηc as before, we analyze the contribution from each part. First,
we note that the cross-terms vanish so that the boundary term is simply the
sum of two boundary terms:

Lemma 2.5. bR(η, η) = bR(η0, η0) + bR(ηc, ηc).

Proof. Expanding this, we have that bR(η, η) = bR(η0 + ηc, η0 + ηc) =
bR(η0, η0)+bR(ηc, ηc)+br(η0, ηc)+br(ηc, η0). So it suffices to show that br(η0, ηc)
= br(ηc, η0) = 0.

This follows from the Fourier decomposition for ηc obtained in [28]. The
term ηc is the infinitesimal change of metric induced by a vector field that
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satisfies a harmonicity condition in a neighborhood of the singular locus. The
main point is that ηc has no purely radial terms. This can be seen from
Proposition 3.2 of that paper, where the purely radial solutions correspond,
in the notation used there, to the case a = b = 0. There is a 3-dimensional
solution space allowed by the chosen domain for the harmonicity equations
(equations (21) in that paper). It becomes 2-dimensional after the conclu-
sion that the deformation is volume-preserving. However, there is an obvious
2-dimensional space of radial solutions coming from the infinitesimal rotations
and translations along the axis corresponding to the singular locus. Since these
are isometries, they do not contribute anything to the change of metric, ηc.

On the other hand, η0 only depends on r by definition, so that each term
in the integrands for br(η0, ηc) and br(ηc, η0) has a trigonometric factor which
integrates to zero over the torus Tr.

Next, we show that the contribution, bR(ηc, ηc), from the part of the “cor-
rection term” that does not affect the holonomy is nonpositive. In fact,

Lemma 2.6.

bR(ηc, ηc) = −(||ηc||2UR
+ ||∗Dηc||2UR

) = −||ωc||2UR
.(8)

Proof. Consider a region N = Ur1,r2 in UR bounded by the tori Tr1 and
Tr2 where 0 < r1 < r2 ≤ R. Then ∂N = Tr2 ∪−Tr1 where, as before, the minus
sign denotes the opposite orientation.

The equation (5), applied to this region with η = ηc, gives

0 =
∫

Ur1,r2

(||ηc||2 + ||∗Dηc||2) +
∫

Tr2

∗Dηc ∧ ηc −
∫

Tr1

∗Dηc ∧ ηc,

or

br2(ηc, ηc) − br1(ηc, ηc) = −
∫

Ur1,r2

(||ηc||2 + ||∗Dηc||2).(9)

The main point here is that limr→0 br(ηc, ηc) = 0. This is a restatement
of the main result in section 3 of [28], since ηc represents an infinitesimal
deformation which does not change the cone angle.

Applying (9), with r2 = R and taking the limit as r1 → 0 we obtain the
desired result.

Combining Lemma 2.5 with (7) and (8), we obtain:

bR(η0, η0) = ||ω||2X−UR
+ ||ωc||2UR

.(10)

In particular, this shows that

bR(η0, η0) ≥ 0,(11)
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Remark. This positivity is the only application of formula (10) we will
use in this paper. However, we note here for future reference that an upper
bound on bR(η0, η0) provides an upper bound on the L2 norm of ω on the
complement of the tubular neighborhood of the singular locus. Such a bound
can be used to bound the infinitesimal change in geometric quantities, like
lengths of geodesics, away from the singular locus. Similarly, an upper bound
on bR(η0, η0) provides an upper bound on the L2 norm of the correction term
ωc in the tubular neighborhood itself. This can be used to bound changes in
the geometry of the tubular neighborhood that are not detected simply by the
holonomy of group elements on the boundary torus.

In the remainder of this section we will use the inequality (11) to find
bounds on the infinitesimal variation of the holonomy of the peripheral ele-
ments. Of particular interest will be bounding the variation in the length of
the singular locus (which equals the real part of the complex length of any lon-
gitude of the boundary torus). To this end, we further decompose η0 as a sum
of a component that changes the cone angle and ones that leave it unchanged.

Recall that ω0 = −1
4α2 ωm + (x + iy)ωl so that

η0 = Re(ω0) =
−1
4α2

ηm + xηl − y ∗Dηl.

The basic principle here is that the contribution of the ηm term to bR(η0, η0)
is positive, while those of the ηl and ∗Dηl terms are negative. (The cross-terms
only complicate matters slightly.) The coefficient of the ηm term is fixed by
the choice of parametrization of the family of cone-manifolds by t = α2. Thus,
the fact that bR(η0, η0) is positive will provide a bound on the coefficients x

and y.
We calculate

bR(η0, η0) =
1

16α4
bR(ηm, ηm) + x2bR(ηl, ηl) + y2bR(∗Dηl, ∗Dηl)

− x

4α2
(bR(ηm, ηl) + bR(ηl, ηm)) +

y

4α2
(bR(ηm, ∗Dηl)

+bR(∗Dηl, ηm)) − xy(bR(ηl, ∗Dηl) + bR(∗Dηl, ηl)).

Now, using the explicit formulas for ηm and ηl, we find

bR(ηm, ηm) =
1

sinh(R) cosh(R)

(
1

sinh2(R)
+

1
cosh2(R)

)
area(TR),(12)

bR(ηl, ηl) = bR(∗Dηl, ∗Dηl) =
− sinh(R)
cosh(R)

(
2 +

1
cosh2(R)

)
area(TR),(13)

bR(ηm, ηl) =
−1

sinh(R) cosh(R)

(
2 +

1
cosh2(R)

)
area(TR),(14)
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bR(ηl, ηm) =
sinh(R)
cosh(R)

(
1

sinh2(R)
+

1
cosh2(R)

)
area(TR),(15)

and the other terms vanish.
It simplifies matters slightly and is somewhat illuminating to rewrite the

value of the boundary term bR(η0, η0) using the geodesic length m of the merid-
ian on the flat boundary torus TR. Recall that

m = α sinh(R).

Then we obtain

bR(η0, η0)/ area(TR) = a(x2 + y2) + bx + c,

where

a=
− sinh(R)
cosh(R)

(
2 +

1
cosh2(R)

)
= − tanh(R)

2 cosh2(R) + 1
cosh2(R)

,

b =
1

4α2

(
2

cosh3(R) sinh(R)

)
=

1
m2

tanh(R)
2 cosh2(R)

,

c=
1

16α4

1
sinh(R) cosh(R)

(
1

sinh2(R)
+

1
cosh2(R)

)
=

1
m4

tanh(R) + tanh3(R)
16

.

Completing the squares gives

bR(η0, η0)/ area(TR) = a(x2 + y2) + bx + c

= a

((
x +

b

2a

)2

+ y2

)
+

4ac − b2

4a
.

By direct computation we see that

b2 − 4ac =
tanh2(R)

m4
.(16)

Since a is negative, we obtain the following estimate for the boundary
term bR(η0, η0). As noted before, we will not use this estimate here, but rather
record it for future reference.

bR(η0, η0)/ area(TR) ≤ 4ac − b2

4a
=

1
4m4

sinh(R) cosh(R)
2 cosh2(R) + 1

.(17)

Our main application of the positivity (11) of bR(η0, η0) is that, using (16),
we can conclude that:(

x +
b

2a

)2

+ y2 ≤ b2 − 4ac

4a2
=

1
4m4

cosh4(R)
(2 cosh2(R) + 1)2

.(18)

This implies, in particular, that x lies in the interval of radius

1
2m2

cosh2(R)
2 cosh2(R) + 1
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around
−b

2a
=

1
4m2

1
2 cosh(R)2 + 1

.

In other words, x lies in the interval [x1, x2] where

x1 =
−b −

√
b2 − 4ac

2a
=

−1
4m2

2 cosh2(R) − 1
2 cosh(R)2 + 1

,

and

x2 =
−b +

√
b2 − 4ac

2a
=

1
4m2

.

Remark. It is useful to rewrite the factor in the formula above for x1 as

2 cosh2(R) − 1
2 cosh(R)2 + 1

=
2 sinh2(R) + 1
2 sinh2(R) + 3

.

Note that this is monotonic increasing in R, taking on values between 1
3 and 1.

By Lemma 2.1 the effect of ω0 on the complex length, L, of any peripheral
curve is given by

d

dt
(L) =

−1
4α2

(−2L) + (x + iy)(2 Re(L)),(19)

where Re(L) denotes the real length of the curve.
In particular, the derivative of the real length 
 of the longitude (the length

of the singular locus) satisfies

d


dt
=




2α2
(1 + 4α2x).(20)

Since t = α2, we conclude that
d


dα
=




α
(1 + 4α2x).(21)

Putting this formula for the derivative of the length of the singular locus
together with the estimates above for the coefficient x (and recalling that
m = α sinh(R)), we obtain the main result of this section:

Theorem 2.7. Consider any smooth family of hyperbolic cone structures
on M , all of whose cone angles are at most 2π. For any component of the
singular set, let 
 denote its length and α its cone angle. Suppose there is an
embedded tube of radius R around that component. Then

d


dα
=




α
(1 + 4α2x),

where
−1

sinh2(R)

(
2 sinh2(R) + 1
2 sinh2(R) + 3

)
≤ 4α2x ≤ 1

sinh2(R)
.(22)
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Remark 2.8. This implies that 
 is an increasing function of α provided
the tube radius R is large enough. Explicitly

d


dα
≥ 0

provided
1

sinh2(R)

(
2 sinh2(R) + 1
2 sinh2(R) + 3

)
≤ 1

which simplifies to

R ≥ arcsinh(
1√
2
) ≈ 0.65848.

This has implications concerning the variation of the volume V of a family of
cone-manifolds due to the Schläfli formula (see [27], [12, Theorem 3.20]):

dV

dα
= −1

2

.(23)

Since
d2V

dα2
= −1

2
d


dα
≤ 0

for these values of R, the volume function will be a concave function of α as
long as the tube radius is sufficiently large.

More specifically, if one considers a family of cone-manifolds with a single
component of the singular locus in which the cone angle is decreasing, the total
change, ∆V , in the volume will be positive. If R ≥ arcsinh( 1√

2
) throughout

the deformation, then we obtain the inequality

∆V ≤ |∆α|
2


0,(24)

where ∆α denotes the total change in cone angle and 
0 denotes the initial
length of the singular locus.

In Section 5, we will see how to control the tube radius by controlling the
length of the singular locus. This will lead to sharper estimates for the change
in volume by integrating the more detailed estimates for d�

dα which are derived
there. However, it seems worthwhile to note that the above estimates follow
immediately from (22).

3. Geometric limits of cone-manifolds

This section is primarily devoted to the proof of Theorem 1.2.
In general, the limiting behavior of a sequence of hyperbolic cone-manifolds

can be quite complicated. In particular, it can collapse to a lower dimensional
object or the singular locus can converge to something of higher complexity.
However, by the results of Section 5, we will be able to assume that there
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is a lower bound to the tube radius around each component of Σ and that
the geometry of the boundary of the tube does not degenerate. This greatly
simplifies matters, essentially reducing them to the manifold case.

Given a sequence of hyperbolic cone-manifold structures Mi on (M, Σ),
remove disjoint, embedded equidistant tubes around each component of Σ.
The result is a sequence of smooth, hyperbolic manifolds Ni with torus bound-
ary components, each of which has an intrinsic flat metric. Furthermore, the
principal normal curvatures are constant on each component, equalling κ, 1

κ

(we assume that κ ≥ 1). When κ > 1 the lines of curvature are geodesics
in the flat metric corresponding to the meridional and longitudinal directions,
respectively. Note that the normal curvatures and the tube radius, R, are
related by coth R = κ and so they determine each other.

We now formalize the structure of this type of boundary torus. Let H3
R

denote 3-dimensional hyperbolic space minus the open tube of points distance
less than R from a geodesic. We allow the values 0 < R ≤ ∞, where H3

∞
denotes the complement of an open horoball based at a point at infinity. We
say that a torus boundary component of a hyperbolic 3-manifold is locally
modelled on H3

R if, for some fixed R, each point on the boundary torus has a
neighborhood isometric to a neighborhood of a point on the boundary of H3

R.
The overlap maps are required to be restrictions of 3-dimensional hyperbolic
isometries. This is equivalent to the condition that the torus have an induced
flat metric and have normal curvatures and lines of curvature as in the previous
paragraph. Note that normal curvatures all equal to 1 corresponds to the case
R = ∞.

Definition 3.1. A hyperbolic 3-manifold is said to have tubular boundary
if its boundary consists of tori that are each locally modelled on H3

R for some
0 < R ≤ ∞. (The value of R is allowed to be different on different components
of the boundary.)

As noted above, one way these arise is when one removes tubular neigh-
borhoods of the components of the singular locus of a cone-manifold. On the
other hand, we will see below that there is a canonical way to fill in any tubu-
lar boundary component. If a hyperbolic 3-manifold with tubular boundary
came from a hyperbolic cone-manifold by removing tubular neighborhoods, the
filling process recovers the same cone-manifold.

To see this, first note that when R = ∞ the boundary torus has all
normal curvatures equal to 1, so it can be identified with a horosphere modulo
a group of parabolic isometries fixing the corresponding point at infinity. This
group action extends canonically to an action on the horoball bounded by
the horosphere. In this case, the boundary is “filled in” with a cusp. This
is interpreted as a cone-manifold structure with cone angle 0. If the tubular
boundary came from removing a tubular neighborhood of the “singular locus”,
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it must actually have been a cusp because the normal curvatures all equal 1.
Furthermore, since the structure of the cusp is determined by the flat structure
on the boundary, the cusp replaced must be isometric to the one removed.

To analyze the case of finite R, we note that the universal cover of the
complement of a geodesic in H3 is isometric to R3 with metric in cylindrical
coordinates (r, θ, ζ), where 0 < r, given by

dr2 + sinh2 r dθ2 + cosh2 r dζ2.(25)

A neighborhood of the tubular boundary is given by dividing out a neigh-
borhood of the plane r = R in R3 by a Z ⊕ Z lattice in the (θ, ζ)-plane. The
above metric descends to the metric in a neighborhood of the tubular bound-
ary. In particular, the boundary is the image of r = R and the principal
curvatures, κ, 1/κ, are in the θ, ζ directions, respectively. The metric on the
tubular boundary can be canonically extended by adding the quotient of the
region r ∈ (0, R] by the (θ, ζ) lattice group. This metric is incomplete. In
general its completion is singular, resulting in a hyperbolic structure “with
Dehn surgery singularities” (see Thurston [43] for further discussion). This
structure includes cone-manifolds as a special case. We will not be concerned
with the more general type of singularity here, but rather see below that the
cone-manifold structures can be identified from the structure on the tubular
boundary.

If one removes a tubular neighborhood of a component of the singular
locus of a cone-manifold with cone angle α, the boundary torus has a closed
geodesic in the meridian (ζ = constant) direction which is the boundary of
a totally geodesic, singular disc with cone angle α perpendicular to the core
geodesic. Conversely, we claim that if there is such a closed geodesic, the
completion defined above will be a cone-manifold. To see this, note that there
is a closed meridian on the boundary torus if and only if the lattice in (θ, ζ)
can be chosen to have one generator of the form (α, 0). We denote by (τ, 
)
the other generator, where necessarily 
 �= 0. This corresponds to the first
generator being a rotation by angle α around the removed geodesic. The
second generator translates distance 
 along the removed geodesic and rotates
by angle τ ; i.e., it has complex length 
 + iτ . Then the completion is obtained
by adding in the quotient of the removed geodesic (corresponding to r = 0)
under the action.

This is easily seen to be a cone-manifold with cone angle α. In particular,
the singular locus is the geodesic added in the completion and the meridian,
which is a closed geodesic in the flat metric on the original tubular boundary,
bounds a singular, totally geodesic disk intersecting the singular locus in a
single point. The flat structure on the tubular boundary can be constructed
by taking a flat cylinder of circumference m and height h and attaching it with
a twist of distance tw. The cone angle, α, and the complex length 
 + iτ are
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related to these quantities by the equations:

m =α sinhR,

h = 
 cosh R,

tw = τ sinhR.

This implies that the region added is canonically determined by the ge-
ometry of the boundary torus, the value of R, and the fact that there is a
closed geodesic in the meridian (principal curvature κ > 1) direction. Thus, if
the tubular boundary structure arose from removing a tubular neighborhood
of a component of the singular locus of a cone-manifold, the filling in process
would recover the same cone-manifold structure.

The results proved in this section concern bilipschitz limits of sequences
of hyperbolic manifolds with tubular boundary. The above analysis implies
that if the members of the sequence all arise from cone-manifold structures,
and if the limit is a hyperbolic manifold with tubular boundary, then it can be
filled in to be a cone-manifold also, and the results can be viewed in terms of
bilipschitz limits of cone-manifolds.

There are two advantages to considering sequences of hyperbolic structures
with such boundary data rather than studying sequences of hyperbolic cone-
manifolds directly. First, the analysis of geometric limits is much simpler
in the manifold setting. Though the boundary does introduce complications
similar to those that arise for cone-manifolds, it is easier to isolate them if the
singular locus is removed. Secondly, the results of this section will apply to
more general singular structures than cone-manifolds. In particular, they will
apply to a sequence of hyperbolic structures with Dehn surgery singularities
as long as there is a lower bound to the radii of disjoint tubes around the
singularities. We expect to use this application in a future paper.

A topological ball in a hyperbolic manifold with tubular boundary will be
called standard if it is isometric to a ball of radius r > 0 in H3 or to a ball
of radius r > 0 about a point on the boundary of H3

R. In the latter case, we
further require that r < R. This corresponds to the geometric condition that
if the tube of radius R were added back to H3

R and the ball extended to a ball
in H3, then the extended ball would be disjoint from the geodesic core of the
added tube.

The injectivity radius at a point x in a hyperbolic manifold, N , with
tubular boundary is

inj(x, N) = sup{r | Br(x) ⊂ a standard ball in N}.

Here Br(x) simply denotes the set of points in N distance less than r from
x; there is no assumption on its topology. We will write inj(N) to denote
infx∈N (inj(x, N)).



UNIVERSAL BOUNDS FOR HYPERBOLIC DEHN SURGERY 389

Note that we do not assume that the standard neighborhood is centered at
the point x. This is to avoid difficulties near the boundary: a point x near, but
not on, the boundary has only a small standard ball centered at x, with radius
at most the distance to the boundary. However, there may be much larger
standard balls which contain x that are centered at a point on the boundary.

It is important also to notice that because of the condition that R > r

for a standard ball of radius r centered at a point on a boundary torus locally
modelled on H3

R, a lower bound on the injectivity radius of N implies a lower
bound on the tube radii of all the boundary components.

The goal of this section is to find conditions on a family of hyperbolic
3-manifolds with tubular boundary that ensure that they converge to a diffeo-
morphic manifold with such a structure. The notion of convergence that we
will use is based on a distance between metric spaces defined using bilipschitz
mappings.

Definition 3.2. The bilipschitz distance between two metric spaces X, Y

is the infimum of the numbers

|log lip(f)| + |log lip(f−1)|(26)

where f ranges over all bilipschitz mappings from X to Y and lip(f) denotes
the lipschitz constant of f .

The bilipschitz distance between X and Y is defined to be ∞ if there is
no bilipschitz map between them. In particular, metric spaces that are a finite
distance apart are necessarily homeomorphic. It is not hard to show that two
compact metric spaces are bilipschitz distance 0 apart if and only if they are
isometric.

For noncompact spaces, bilipschitz distance is not very useful because it
is so often infinite. For many purposes, it is important to allow a more flexible
idea of convergence of sequences of metric spaces than that induced simply
by bilipschitz distance. To make this idea precise, it is necessary to choose a
basepoint in each metric space.

Definition 3.3. A sequence, {(Yi, yi)}, of metric spaces with basepoint
converges to (Y, y) in the pointed bilipschitz topology if, for each fixed R > 0,
the radius R neighborhood of yi in Yi converges with respect to the bilipschitz
distance to the radius R neighborhood of y ∈ Y .

Note that with this notion of convergence, a sequence of compact spaces
can converge to a noncompact space. In particular, there is no requirement that
the Yi in a convergent sequence be eventually homeomorphic. Convergence in
the pointed bilipschitz topology means that the metric spaces are becoming
closer and closer to being isometric on larger and larger diameter subsets.
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However, when there is a uniform bound to the diameter of all the spaces in
the sequence, convergence is independent of the choice of basepoint and is just
convergence with respect to the bilipschitz metric.

Our beginning point in the study of convergence of hyperbolic 3-manifolds
with tubular boundary is a seminal and general theorem due to Gromov. It
says that, under very mild conditions (pinched curvature and bounded injec-
tivity radius at the basepoint), a sequence of complete, pointed Riemannian
manifolds will have a convergent subsequence in this topology. This theorem
is actually a corollary of an even broader compactness theorem, involving a
much more general notion of convergence of metric spaces, usually referred
to as Gromov-Hausdorff convergence. However, Gromov shows that, when
applied to various classes of Riemannian manifolds, this general notion of con-
vergence implies convergence in the pointed bilipschitz topology. We will not
need to use the concept of Gromov-Hausdorff convergence in this paper, but
rather begin with its application to Riemannian manifolds.

Theorem 3.4 ([24, Theorem 8.25], [25, Theorem 8.20]). Consider a se-
quence of complete, pointed Riemannian manifolds (Ni, vi) with pinched sec-
tional curvatures |k| ≤ K and injectivity radius at the basepoints, vi, bounded
below by c > 0. Then there is a pointed Riemannian manifold (N, v), together
with a subsequence of the (Ni, vi) which converges in the pointed bilipschitz
topology to (N, v). Furthermore, if there is a D > 0 so that the diameters of
the Ni are less than D for all i, then the Ni in the convergent subsequence will
be diffeomorphic to N for i sufficiently large.

The fact that convergence in the metric is only lipschitz means that,
a priori , the limit metric is only C0. In [24] and [25], it is explained how
a somewhat higher level of regularity can be achieved by consideration of har-
monic coordinates. For closed manifolds, a complete proof along the lines
sketched there appears in [30]. Proofs along somewhat different lines appear
in [23] and [39]; these references also provide simple examples showing why
the limit metric won’t be C2 in general. However, if all the metrics in the
sequence are of a special type, much stronger conclusions are possible. As ex-
plained in [40, p. 307], if the approximating metrics are Einstein, then use of the
Einstein equation and elliptic regularity allows one to bootstrap the regularity
of convergence to any number of derivatives and the limit metric will also be
Einstein.

In our situation with constant curvature, things are vastly simpler. The
regularity issues discussed above are all local. The regularity of the convergence
and of the limit metric follow from local analysis on embedded balls of fixed
radius. In general, simply bounding the injectivity radius and curvature of a
sequence of metrics does not bound derivatives of the curvature and smoothness
may be lost in the limit, even locally. However, since all metric balls of a fixed



UNIVERSAL BOUNDS FOR HYPERBOLIC DEHN SURGERY 391

radius in hyperbolic n-space are isometric, the bilipschitz limit of a sequence
of hyperbolic n-balls of fixed radius will automatically be hyperbolic. Thus,
in the theorem above, if the approximating manifolds are all hyperbolic, the
limit manifold will be also.

The fact that we are considering manifolds with boundary means that we
can’t immediately apply Theorem 3.4 above. Indeed, a few extra conditions on
the boundary are necessary, for example, to keep the boundary from collapsing
to a point or to keep two components on the boundary from colliding in the
limit. This has been worked out in [31], where Gromov’s theorem is extended
to manifolds with boundary if one has the added conditions that the principal
curvatures and intrinsic diameters of the components of the boundary are
bounded above and below and that there is a lower bound to the width of an
embedded tubular neighborhood of the boundary. We see in the proof below
that, with our definition of the injectivity radius, these conditions hold for
manifolds with tubular boundary if the injectivity radius is bounded below
for points on the boundary and the volume of the entire manifold is bounded
above.

Theorem 3.5. Let (Ni, vi) be a sequence of hyperbolic 3-manifolds with
tubular boundary with basepoints vi on ∂Ni. Assume there are constants
c, V > 0, such that, for all i, inj(x, Ni) ≥ c for all x ∈ ∂Ni and vol(Ni) < V .
Then there is subsequence converging in the pointed bilipschitz topology to a
pointed hyperbolic 3-manifold with tubular boundary, (N∞, v∞). Furthermore,
if the diameters of all the Ni are uniformly bounded, then all the Ni in the
subsequence will be diffeomorphic to N∞ for sufficiently large i.

Remark 3.6. The bound on the volume will only be used to conclude that
the intrinsic diameters of the boundary components of all the Ni’s are uniformly
bounded. Thus, the theorem remains true with the volume condition replaced
by such a bound on these intrinsic diameters.

Proof. In order to apply the generalization in [31] of Theorem 3.4 we
need to check the required conditions on the boundary. Recall that points
on the tubular boundary are locally modelled on H3

R and that the definition
of injectivity radius implies that inj(x, Ni) < R for such points. Since the
principal curvatures on the boundary equal κ, 1/κ, where κ = cothR, a lower
bound on the injectivity radius for boundary points immediately bounds the
principal curvatures above and below.

The definition of injectivity radius at a point requires that there will be
a standard ball containing the set of points distance r from the point, for any
r less than the injectivity radius. The radius of the standard ball must be at
least equal to this r. But any standard ball in H3

R containing a boundary point
must be centered at some (possibly different) point on the boundary of H3

R.
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This implies that there is a tubular neighborhood around the boundary with
a lower bound to its width.

Finally, we need to see that the intrinsic diameters of the boundary compo-
nents are bounded above. The boundaries all have flat metrics. By hypothesis,
the injectivity radii of all points on the boundary are all bounded below so the
intrinsic injectivity radii of boundary tori with respect to the flat metrics will
also be bounded below. To see that their intrinsic diameters are bounded
above, it suffices to show that their areas are bounded above. There are col-
lar neighborhoods of each boundary component with a lower bound on their
width and the normal curvatures are bounded above. Thus, if the areas of
the boundary were unbounded, the volumes of the collar neighborhood would
be unbounded. Since the volumes are assumed bounded, the areas, hence the
diameters, are bounded.

The theorems in [31] have the extra hypotheses that the injectivity radius
of all points in the manifold be bounded below, not just boundary points. Also,
the diameters of the Ni are required to be uniformly bounded above. However,
the injectivity radius at a point x changes continuously with x and the rate
at which it can go to zero as a function of distance is uniformly bounded
depending only on the curvature (Proposition 8.22 in [24] or Theorem 8.5 in
[25]). This is often referred to as “bounded decay of injectivity radius”. It
follows that, if the diameters of the Ni are uniformly bounded above, then the
injectivity radius bound on the boundary gives a uniform lower bound to the
injectivity radius over all of the Ni. The results in [31] apply directly.

In general, the bounded decay of injectivity radius implies that, if the
injectivity radius at the basepoints of the Ni are bounded below, then, for
any fixed distance ρ, the injectivity radius over the neighborhood of radius
ρ will be uniformly bounded below. The convergence results for manifolds
with bounded diameter give a convergent subsequence for each ρ. The usual
diagonal argument gives a subsequence converging for any fixed ρ which is the
definition of bilipschitz convergence.

Finally, we need to check that the limit manifold is hyperbolic with tubular
boundary. Any interior point in the limit has a neighborhood that is the
bilipschitz limit of a sequence of embedded balls in H3 with fixed radius. The
limit will be isometric to such a ball and so N∞ will be hyperbolic at such a
point. A boundary point will have a neighborhood that is the bilipschitz limit
of a sequence of embedded balls on the boundary of H3

Ri
with fixed radius.

Since the Ri are bounded below there will be a subsequence which converges
to some R, where possibly R = ∞. The limit neighborhood will be isometric
to such a ball in H3

R so N∞ will have tubular boundary.

Remark 3.7. Although we have based our proof of Theorem 3.5 on the
very general theorems of Gromov and others, there is a much more direct
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proof, following the proof of the compactness result of Jørgensen-Thurston in
[43, Theorem 5.11.2]. A sketch of the argument is as follows: For fixed ε, let
N[ε,∞) be the set points where the injectivity radius is at least ε. For sufficiently
small δ (depending only on ε), there is a covering of N[ε,∞) by embedded balls
of radius δ so that the balls of radius δ/2 with the same centers are disjoint. If
N is a hyperbolic 3-manifold with tubular boundary with vol(N) < V , then the
number of such disjoint balls is bounded in terms of V . Thus, there are finitely
many intersection patterns of the larger balls that cover, and the hyperbolic
structures on N[ε,∞) are completely determined by the relative positions of
the centers of the balls. The space of choices of such relative positions is
compact. On the other hand, an application of the Margulis lemma, extended
to allow tubular boundary, implies that, for sufficiently small ε (universal over
all hyperbolic 3-manifolds), the regions where the injectivity radius is less than
ε is a finite disjoint union of tubular neighborhoods of short geodesics or of
cusps. In the discussion above of canonically filling in tubular boundaries,
we showed that these regions are determined isometrically by their boundary
data. This implies Theorem 3.5.

Rather than filling in the details of this argument, we have chosen to base
our proof on published results. However, some readers may find this argument
clearer.

Theorem 3.5 allows for the possibility that, even if all the hyperbolic
manifolds Ni are diffeomorphic, the limiting manifold N∞ may not be. For this
to occur the diameters must go to infinity. If this were to occur, then a priori
a portion of the approximating manifolds might be pushed an infinite distance
from the basepoint and be lost in the limit. This is a familiar occurrence for
hyperbolic surfaces where the length of a geodesic can go to zero, creating a
new cusp and a new diffeomorphism type.

We prove below that this is not possible for sequences of 3-manifolds with
tubular boundary having bounded volume and a lower bound for injectivity
radius at boundary points. First we need to establish the fact that the ends
of a finite volume hyperbolic 3-manifold with tubular boundary have the same
structure as those of a complete, finite volume hyperbolic 3-manifold. They
are cusp neighborhoods, diffeomorphic to T 2 × (0,∞), formed by dividing out
a horoball by a discrete Z⊕Z lattice. The usual proof that this is the structure
of the ends of a complete, finite volume hyperbolic 3-manifold uses a refined
version of the Margulis lemma and relies on discreteness of the holonomy group.
The holonomy groups of hyperbolic 3-manifolds with tubular boundary are
usually not discrete so the proof does not immediately apply. It is possible
to give a direct geometric proof for the case with tubular boundary as in
Gromov’s extension of the Margulis lemma ([24, Prop. 8.51]). Instead we use
known results about the ends of finite volume manifolds with pinched negative
curvature, due to Eberlein ([14]).
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To apply these results we first prove the following lemma:

Lemma 3.8. The metric on a hyperbolic manifold N with tubular bound-
ary can be extended to a complete metric with pinched negative curvature on a
manifold X diffeomorphic to the interior of N . N embeds isometrically in X

in this metric and the volume of its complement X − N is finite.

Proof. The idea of the proof is simply to attach to each component of
the tubular boundary a space diffeomorphic to T 2 × (−∞, 0], with T 2 × 0
attached to the boundary. The result is clearly diffeomorphic to the interior
of N . Furthermore, the metric on each of the T 2 × (−∞, 0] pieces will have
pinched negative curvature, finite volume, and agree with the metric on N in
a neighborhood of the tubular boundary.

If R = ∞ for a boundary component of N , then, as discussed above, the
canonical extension of the boundary metric results in a finite volume cusp. In
this case, the attached piece has constant curvature −1.

If R is finite, we use the fact that the metric in a neighborhood of the
tubular boundary is induced from the metric (25) in a neighborhood of r = R

by dividing out by the action of a (θ, ζ) lattice. We alter the metric, keeping
it of the form

dr2 + f(r)2 dθ2 + g(r)2 dζ2,(27)

where f(r), g(r) are defined on (−∞, R] and agree with sinh r, cosh r, respec-
tively near r = R. Furthermore, we want f(r), f ′(r), f ′′(r), g(r), g′(r), g′′(r) to
be positive on (−∞, R]. Such a metric is complete and has negative curvature.
From the explicit formulae for the curvatures, it is not hard to see that the
sectional curvatures can be pinched between two negative constants. (See [3]
or [32] for details of the curvature computation.)

Since the functions f(r), g(r) depend only on r, such a metric is invariant
under any (θ, ζ) lattice and so it descends to a pinched negatively curved
metric on T 2×(−∞, R] which can be attached to the boundary of N . Further,
choosing the functions so that

∫ R
−∞ f(r) g(r) dr < ∞ ensures that the volume

will be finite.

Proposition 3.9. Each end of a complete, finite volume hyperbolic
3-manifold with tubular boundary is diffeomorphic to T 2 × (0,∞) and is iso-
metric to a horoball in H3 divided by a parabolic Z ⊕ Z lattice.

Proof. In [14] it is proved that for complete, finite volume n-manifolds
with pinched negative curvature, there will be a finite number of ends, each of
the form W × (0,∞) where W is an (n − 1)-manifold with virtually nilpotent
fundamental group. Since our manifolds are orientable and 3-dimensional,
W is an orientable surface and the only possibility is a torus. It is further
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shown that the end is isometric to a horoball divided by a parabolic lattice
isomorphic to the fundamental group of W . In the general negatively curved
context, horoballs are defined in terms of Busemann functions. However, since
the ends of the negatively curved manifold constructed in Lemma 3.8 that come
from the original hyperbolic manifold with tubular boundary all have constant
curvature, a horoball sufficiently far out in the end defined by a Busemann
function will agree with the usual definition in hyperbolic geometry.

We are now in a position to prove a compactness result for the set of
hyperbolic structures with tubular boundary on a fixed compact 3-manifold.

Theorem 3.10. The set of hyperbolic structures with tubular boundary
on a fixed compact 3-manifold N with volumes bounded above and injectivity
radius on the boundary bounded below is compact in the bilipschitz topology. In
other words, suppose that Ni is a sequence of hyperbolic manifolds with tubular
boundary, all diffeomorphic to N . Assume there are constants c, V > 0 such
that, for all i, inj(x, Ni) ≥ c for all x ∈ ∂Ni and vol(Ni) ≤ V . Then there is a
subsequence which converges in the bilipschitz topology to a hyperbolic structure
on N with tubular boundary.

Proof. By Theorem 3.5, it suffices to show that the diameters of the Ni are
uniformly bounded. Choose a basepoint xi ∈ ∂Ni for all i. Again, by Theo-
rem 3.5, there will always be a subsequence of (Ni, xi) with a limit (N∞, x∞) in
the pointed bilipschitz topology which is again a pointed hyperbolic 3-manifold
with tubular boundary.

Suppose that the diameters of the Ni are not bounded above. By definition
of convergence in the bilipschitz topology the limit will be noncompact and will
have finite volume. It will have at least one end, and each end is a cusp with
a horospherical Euclidean torus as cross section by Proposition 3.9.

Convergence in the bilipschitz topology further implies that we get a
sequence of bilipschitz maps of larger and larger radius neighborhoods of
x∞ ∈ N∞ into Ni which, for any fixed radius, are becoming arbitrarily close
to an isometry onto their images. For a sufficiently large radius, the topology
of these neighborhoods will be constant and equal to a manifold W with torus
boundary components whose interior is diffeomorphic to N∞. We identify the
Ni with N and the large radius neighborhoods with W and consider the bilip-
schitz maps as maps φi : W → N . Under the identification of the interior of
W with N∞ certain of the boundary tori of W correspond to cusps of N∞. We
will refer to these tori as “cusp tori”.

The hyperbolic structures, Ni, on N induce holonomy representations
ρi : π1N → G, where G is the group of isometries of H3. The representations
are well-defined up to conjugation by elements in G. Similarly, the hyperbolic
structure N∞, viewed as a structure on the interior of W , induces a represen-
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tation ρ : π1W → G. The fact that the bilipschitz maps converge on compact
sets implies the convergence of the holonomy representations of any finite set
of group elements, at least after conjugating the representations. Since π1W

is finitely generated, this implies that, perhaps after conjugating the ρi by
elements of G, we obtain

ρi ◦ (φi)∗ → ρ.(28)

By Proposition 3.9 the fundamental group of the torus cross-sections of
the cusp ends of N∞ inject into the fundamental group of N∞. Since N∞ is
diffeomorphic to the interior of W , it follows that the fundamental group of
each cusp torus of W injects into the fundamental group of W . Choose any
cusp torus and denote it by T . We wish to show that, for i sufficiently large, the
fundamental group of T must inject under (φi)∗ into the fundamental group
of N . Furthermore, T will not be peripheral in N . This will contradict the
fact that N is atoroidal, implying that the diameters of the Ni must have been
uniformly bounded above.

For each value of i we denote by Wi the homeomorphic image of W in N

under φi and by Ti the homeomorphic image of T . Suppose, for some i, the
torus Ti ⊂ Wi is compressible in N . Since N is irreducible, the torus must
either bound a solid torus outside Wi or be contained in a 3-ball in N . For any
element γ ∈ π1T we have ρi ◦ (φi)∗(γ) → ρ(γ). Since, for any nontrivial γ, ρ(γ)
is a nontrivial parabolic element, this implies that ρi ◦ (φi)∗(γ) is nontrivial
for sufficiently large i. Hence, π1T at least maps nontrivially under (φi)∗.
Therefore, no cusp torus is contained in a 3-ball and so all the cusp tori must
bound solid tori outside Wi. Since this is true for all of the cusp tori in W , it
follows that, for all sufficiently large i, adding N −Wi to Wi ⊂ N corresponds
to obtaining N by Dehn filling on W .

Let γi denote a curve on a cusp torus T of W which bounds a disk when
mapped into N by φi. As above, for any fixed nontrivial element γ ∈ π1T ,
ρi ◦ (φi)∗(γ) will be nontrivial for sufficiently large i (where “sufficiently large”
generally depends on γ). Since (φi)∗(γi) = e, its holonomy representation is
trivial. Thus, γi can represent a fixed element of π1T for only finitely many
values of i. Since this argument holds for each cusp torus, it implies that N

can be obtained by Dehn fillings on W using infinitely many distinct filling
curves on each cusp torus. We will show that this is impossible by Thurston’s
theory of hyperbolic Dehn surgery.

First, note that, since N has a complete metric of pinched negative cur-
vature, it is irreducible and atoroidal ([14]). It is the interior of the compact
manifold W with nonempty boundary which is therefore Haken. By Thurston’s
Geometrization Theorem for Haken manifolds ([45], [37], [38], [29]), N supports
a complete, finite volume metric of constant negative curvature. Thurston’s
hyperbolic Dehn surgery theorem says that, when considering all possible Dehn
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fillings of such a 3-manifold, for all but finitely many choices of filling curve on
each cusp torus, the result is hyperbolic. Thus, for i sufficiently large, all the
manifolds obtained above by Dehn filling W are hyperbolic. Furthermore, they
have volumes converging from below to the volume of the complete hyperbolic
structure on N . But, since the resulting 3-manifold is always diffeomorphic to
N and the hyperbolic volume of N is a topological invariant, this is a contra-
diction.

Remark 3.11. The above result generalizes to the case when N has cusps.
To do this, one shows (using, for example, the packing results of the next
section), that it is possible to remove neighborhoods of the cusps in such a
way that the injectivity radii of the new boundary components of the resulting
compact hyperbolic manifold with tubular boundary are also bounded below.

We are now in a position to prove our main convergence result, referred
to in the introduction as Theorem 1.2.

Theorem 3.12. Let Mt, t ∈ [0, t∞), be a smooth path of closed hyper-
bolic cone-manifold structures on (M,Σ) with cone angle αt along the singular
locus Σ. Suppose that αt → α ≥ 0 as t → t∞, that the volumes of the Mt

are bounded above by V0, and that there is a positive constant R0 such that
there is an embedded tube of radius at least R0 around Σ for all t. Then the
path extends continuously to t = t∞ so that as t → t∞, Mt converges in the
bilipschitz topology to a cone-manifold structure M∞ on M with cone angles α

along Σ.

Proof. Removing disjoint tubular neighborhoods of the singular locus, we
obtain a smooth path of hyperbolic manifolds Nt with tubular boundary, with
all the Nt diffeomorphic to a fixed compact 3-manifold N . The volumes are
bounded above since they are smaller than the volumes of the cone-manifolds
Mt which are bounded above by hypothesis.

To apply Theorem 3.10 we need to show that there is a lower bound to
the injectivity radii on the boundary of the Nt. That will imply that there is
a subsequence of the Nt converging to a hyperbolic manifold N∞ with tubular
boundary. The boundary can then be filled in canonically to obtain a hyper-
bolic cone-manifold M∞.

By definition, the injectivity radius at a boundary point is less than its
distance to the singular locus in the corresponding hyperbolic cone-manifold
structure. Similarly, it is less than its distance to any other boundary com-
ponents besides the one it is on. Since the tube radii of the hyperbolic cone-
manifolds are bounded below by hypothesis, the tubular neighborhoods that
are removed can be chosen so that both the distances to the singular locus and
to other boundary components are bounded below. Furthermore, we will see
in the next section that, on a boundary torus of radius R, there is always an
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embedded ellipse with minor axis lengths given by (33). This implies that the
injectivity radii are bounded below as desired.

Take any sequence Ntj
, where tj ∈ [0, t∞), tj → t∞. We can apply The-

orem 3.10 to conclude that there is a subsequence Ni which converges in the
bilipschitz topology to a hyperbolic manifold, N∞, with tubular boundary. It
is also diffeomorphic to N . As in the proof of the previous theorem, the hy-
perbolic structures Ni and N∞ give rise to holonomy representations ρi and ρ

respectively from π1N to the group G of isometries of H3. Since the diame-
ters of the Ni are uniformly bounded, convergence in the bilipschitz topology
provides basepoint-preserving bilipschitz homeomorphisms from N∞ to the Ni

which, under the identifications of both the domain and range with N , give
basepoint-preserving homeomorphisms φi : N → N . As in the proof of the
previous theorem, it is possible to choose conjugacy classes of the holonomy
representations so that ρi ◦ (φi)∗ → ρ.

Since the φi : N → N are basepoint-preserving homeomorphisms, the
induced maps (φi)∗ on π1N are automorphisms. We saw in the proof of The-
orem 3.10 that N has a complete, finite volume hyperbolic metric on its inte-
rior. This implies that the outer automorphism group of π1N is finite because
Mostow rigidity says that any outer automorphism is homotopic to an isometry
of the complete finite volume metric on the interior of N . The group of such
isometries is finite. (See [43] for a more detailed version of this argument.)
Since there are only finitely many choices for (φi)∗ up to conjugacy, there is a
further subsequence so that (φi)∗ is constant and, hence, that ρi ◦ (φ)∗ → ρ for
a fixed automorphism (φ)∗ of π1N . This implies that the holonomy represen-
tations ρi converge in the representation variety (representations of π1N to G

modulo conjugation) to ρ ◦ (φ)−1
∗ = ρ̂.

The hyperbolic structure N∞ with tubular boundary has ρ̂ as a holonomy
representation. The boundary data of the Ni determine the canonical com-
pletion to the hyperbolic cone-manifold structures Mi. Since these boundary
data converge to that of N∞, its canonical completion is a hyperbolic cone-
manifold structure M∞ with cone angle α along its singular locus Σ. Under
the isomorphism π1N ∼= π1(M∞−Σ) the holonomy representation of M∞−Σ
can be identified with ρ̂.

The local rigidity theorem of [28] implies that the hyperbolic cone-manifold
structures on (M∞,Σ) with a fixed cone angle (with angle at most 2π) are iso-
lated. The above analysis applies to any convergent subsequence of the Mt.
If we view the path Mt as a path ρt in the representation variety, this implies
that any accumulation point of ρt as t → t∞ corresponds to a hyperbolic cone-
manifold structure on (M∞,Σ) with cone angle α. Since these are isolated
and the set of accumulation points is connected, there can be only a single
accumulation point. It follows that the path ρt extends continuously to t∞
and that the Mt converge in the bilipschitz topology to M∞.
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4. A packing argument

Let M be a 3-dimensional hyperbolic cone-manifold with a link Σ as sin-
gular locus. Let R be the radius of the maximal embedded tube in M around
Σ and denote this tube by UR. If Σ has multiple components, this is to be
interpreted as meaning that the radii of the tubes around all of the components
are the same, equal to R. In this section we will find lower bounds for the area
of each component of the boundary of UR via a packing argument analogous
to the usual horoball packing arguments for nonsingular cusped hyperbolic 3-
manifolds (cf. [34], [1]). For nonsingular hyperbolic 3-manifolds, similar tube
packing arguments are used in [15].

Denote by X̃ the universal cover of X = M −Σ, equipped with the lift of
the metric on X. The developing map X̃ → H3 can be extended by completion
to the lifts of the singular locus, giving a map D : M̂ → H3 where M̂ is the
metric completion of X̃. Further the covering projection X̃ → X extends
by completion to a map p : M̂ → M . (M̂ can be regarded as the universal
branched covering of M , branched over Σ.)

Choose a component, Σ0, of the lift of a component of the singular locus
to M̂ . Under the developing map Σ0 maps to a geodesic, g, in H3. The
universal cover of H3 − g can be completed by adding a geodesic, ĝ, which
projects to g in H3. (This can be thought of as the infinite cyclic branched
cover of H3 branched over the geodesic g.) Let Ĥ3 denote this completion
and let Ûr denote the neighborhood of radius r about ĝ in Ĥ3. Then for each
r < R, the r-neighborhood Ur of each component of Σ in M is isometric to the
quotient of Ûr by a discrete group Γ ∼= Z ⊕ Z of isometries of Ĥ3 preserving
the axis ĝ.

We can also regard Ĥ3 as the “normal bundle” to Σ0 in M̂ and there is an
exponential map E : Û2R → M̂ defined by extending geodesics orthogonally
from Σ0. This gives an isometric embedding from Û2R onto the neighborhood
of radius 2R about Σ0 in M̂ .

Because R is the maximal tube radius, there is a geodesic arc τ of length
2R in M going from Σ to itself which is perpendicular to Σ at both endpoints.
It is a shortest geodesic arc from Σ to itself not entirely contained in Σ. The
radius R tube around Σ, UR, has a self-tangency at the midpoint of τ . Now
consider all the lifts to M̂ of arcs of length 2R from Σ to itself, beginning
at Σ0. They end at points qi lying on other lifts of Σ. These points can be
identified, via the inverse of the exponential map E with points, also denoted
by qi, in Û2R.

Lemma 4.1. Let {qi} be the set of all endpoints of such lifts of arcs of
length 2R from Σ to itself. Then the distance between qi and qj in Ĥ3 satisfies
d(qi, qj) ≥ 2R for all i �= j.
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Proof. Consider two points qi, qj with i �= j. These lie on the boundary of
the set Û2R in Ĥ3, which is convex since the distance to a geodesic is a convex
function. Thus, the shortest geodesic γ from qi to qj in Ĥ3 lies inside Û2R.
Composing γ with the exponential map E : Û2R → M̂ and the (branched)
covering projection p : M̂ → M gives a geodesic γ̄ in M joining Σ to itself.
Since γ̄ is not entirely contained in Σ it has length at least 2R. Hence d(qi, qj)
≥ 2R.

For each i, let Bi denote the ball in Ĥ3 of radius R about qi. We project
the balls for all the qi orthogonally onto the surface ∂ÛR in Ĥ3 at radius R

from the singular set. The fact that the balls Bi are disjoint implies that their
projections Pi are also disjoint. This follows easily from the facts that the
centers of the Bi all have the same radial coordinate and all of the Bi have the
same radius.

Next we will estimate the area of each Pi and use this to estimate the area
of TR. But first we prove some preliminary geometric results.

Let (r, θ, ζ) denote hyperbolic cylindrical coordinates on H3 about a
geodesic g. These can also be regarded as cylindrical coordinates on Ĥ3 about
the geodesic ĝ covering g, but the angle θ is no longer measured modulo 2π,
but rather as a real number.

Lemma 4.2. The distance d between two points p1, p2 in Ĥ3 with cylin-
drical coordinates (r1, θ1, ζ1) and (r2, θ2, ζ2) with |θ1 − θ2| ≤ π is given by

cosh d = cosh(ζ1 − ζ2) cosh r1 cosh r2 − cos(θ1 − θ2) sinh r1 sinh r2.

Proof. See [15, Lemma 2.1].

We now study the projection of a ball onto a hyperbolic cylinder.

Lemma 4.3. Consider a ball of radius d centered at the point with cylin-
drical coordinates (r, θ, ζ) = (r0, 0, 0) with d < r0. The projection of this ball
to the (θ, ζ)-plane has equation

sinh2 ζ cosh2 r0 + sin2 θ sinh2 r0 ≤ sinh2 d.

Proof. From the distance formula in cylindrical coordinates (Lemma 4.2),
the ball has equation

cosh ζ cosh r0 cosh r − cos θ sinh r0 sinh r ≤ cosh d.

Writing cosh r and sinh r as exponentials gives

cosh ζ cosh r0(er + e−r) − cos θ sinh r0(er − e−r) − 2 cosh d ≤ 0

or

e2r(cosh ζ cosh r0−cos θ sinh r0)−2er cosh d+(cosh ζ cosh r0+cos θ sinh r0) ≤ 0.
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Given (θ, ζ) this quadratic for er has a real solution if and only if the discrim-
inant is nonnegative, i.e.

(2 cosh d)2 − 4(cosh ζ cosh r0 − cos θ sinh r0)(cosh ζ cosh r0 + cos θ sinh r0) ≥ 0,

or
cosh2 ζ cosh2 r0 − cos2 θ sinh2 r0 ≤ cosh2 d.

Rewriting this, using cosh2 ζ = sinh2 ζ + 1 and cos2 θ = 1 − sin2 θ, we have

sinh2 ζ cosh2 r0 + sin2 θ sinh2 r0 ≤ sinh2 d.

Each ball Bi has radius R and its center is at distance 2R from the geodesic
ĝ in Ĥ3. We choose coordinates so that the center of a ball Bi has coordinates
(r, θ, ζ) = (2R, 0, 0). From Lemma 4.3, the projection of Bi onto the (θ, ζ)-
plane satisfies the equation:

f(ζ, θ) = sinh2 ζ cosh2 2R + sin2 θ sinh2 2R ≤ sinh2 R.(29)

Ignoring the self-tangencies, the boundary of the maximal tube, UR, in
the cone-manifold is a torus TR with an induced Euclidean structure. The
Euclidean structure is induced from the set of points in Ĥ3 at distance R from
ĝ modulo the group Γ. Since the projection of each Bi onto the (θ, ζ)-plane
is disjoint from its translates under Γ, the corresponding set Pi with radial
coordinate R is disjoint from its translates. This implies that it embeds in
TR under the quotient map from the action of Γ. Further the collection of Pi

contains at least two distinct Γ-orbits if Σ consists of a single component.
Next we estimate the area of each Pi and use this to estimate the area

of TR.

Theorem 4.4. The area of the torus TR at distance R from Σ satisfies

area(TR) ≥ 3.3957
sinh2 R

cosh(2R)
(30)

if Σ is connected. If Σ has multiple components, then one component satisfies
(30), while the other components satisfy

area(TR) ≥ 1.6978
sinh2 R

cosh(2R)
.(31)

Proof. Equation (29) gives bounds on ζ and θ:

| sinh ζ| ≤ sinh(R)
cosh(2R)

and | sin θ| ≤ sinh(R)
sinh(2R)

.

Now
sinhR

cosh(2R)
=

s

1 + 2s2
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where s = sinh(R). By the arithmetic-geometric mean inequality we have√
2s =

√
2s2 ≤ 1+2s2

2 ; hence s
1+2s2 ≤ 1

2
√

2
for all s ≥ 0, with equality attained

exactly when 1 = 2s2; i.e. R = R0 where sinh(R0) = 1√
2
.

So for such ζ we have | sinh ζ| ≤ 1
2
√

2
. Since sinh ζ is a convex function for

positive values of ζ, we obtain
∣∣∣ sinh ζ

ζ

∣∣∣ ≤ S where

S =
1

2
√

2

arcsinh( 1
2
√

2
)
≈ 1

0.980258
.

Since | sin θ
θ | ≤ 1, we deduce that

f(ζ, θ) ≤ (Sζ)2 cosh2(2R) + θ2 sinh2(2R).

Thus the projected ball defined by equation (29) contains the region

(Sζ)2 cosh2(2R) + θ2 sinh2(2R) ≤ sinh2 R

or (
S cosh(2R)

cosh R sinhR

)2

(ζ cosh R)2 +
(

sinh(2R)
sinh2 R

)2

(θ sinhR)2 ≤ 1.(32)

Since ζ cosh R and θ sinhR are Euclidean coordinates on the torus at radius R,
equation (32) describes an ellipse with semi-major axes

a =
cosh R sinhR

S cosh(2R)
and b =

sinh2 R

sinh(2R)
(33)

and area

πab =
π sinh2 R

2S cosh(2R)
.

The axes of all of the ellipses are parallel to the θ and ζ axes. By an area-
preserving affine transformation of the torus, we can arrange that all the in-
scribed ellipses simultaneously become circles of the same radius. It follows
that the packing density of the ellipses is at most the maximum packing density
of circles, namely π

2
√

3
.

Furthermore, if Σ is connected, the torus TR at radius R contains at least
two disjoint ellipses (see, for example, [1]), so that its area satisfies:

area(TR)≥ 2
√

3
π

2πab =
√

3ab =
2
√

3 sinh2 R

S cosh(2R)
,

and so

area(TR)≥ 3.3957
sinh2 R

cosh(2R)
.

When there are multiple components, it can be arranged so that there will still
be two disjoint embedded ellipses on one boundary torus but perhaps only one
on the remaining boundary tori. (See [5] for this argument.) Hence, for one
component we obtain the same lower bound for area(TR), while for the other
components the lower bound for area(TR) is half as large.
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5. Controlling the tube radius

In this section we will use the information derived in Sections 2 and 4 to
control the change in the radius of the maximal embedded tube around the
singular locus. This will allow us to complete the proof of Theorem 1.1. Finally
we combine this with Theorem 1.2 to prove Theorems 1.3 and 1.4.

Rather than studying the tube radius directly, we will derive information
about it by studying the geometry of the torus on the boundary of the maximal
tube. The boundary torus has an intrinsic flat metric. We will denote by m the
length in this metric of the geodesic in the homotopy class of the meridian. The
height of the maximal annulus with the meridian as its core will be denoted
by h. Thus, the area of the torus, denoted by A, will equal mh. If the radius
of the tube is R, then m, h and A are related to the cone angle α and the
length 
 of the singular locus by the formulae:

m =α sinhR,

h = 
 cosh R,

A =α
 sinhR cosh R.

Theorem 4.4 implies that the area A of the flat torus satisfies

A ≥ 3.3957
sinh2 R

cosh (2R)
.

Dividing by sinhR cosh R provides the following key estimate.

Corollary 5.1.Suppose the singular set Σ has length 
 and cone angle α.
Then the radius R of a maximal embedded tube about Σ satisfies

α
 ≥ h(R) = 3.3957
tanhR

cosh (2R)
.(34)

Remark. In the case of a closed geodesic in a nonsingular hyperbolic
3-manifold we have α = 2π, and this gives


 ≥ 0.5404
tanhR

cosh (2R)
.

This seems to be very close to the estimate given in Proposition 3.1 of [15].

The qualitative behavior of the function h(r) = 3.3957 tanh r
cosh (2r) , whose

graph is pictured below, is very important and will influence the form of all of
our arguments.
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The inequality (34) implies that, for a given tube radius, there is a lower bound
to the product, α
. Hence, for a given tube radius and cone angle, there is a
lower bound to the length of the core curve. Instead, we would like to bound
the tube radius in terms of α
. This is, in fact, not literally possible and is
reflected by the graph of h(r) as it drops down to 0 as r → 0.

However, note that h(r) appears to have a single maximum near r = .5
(more precise values are given below) and to be strictly decreasing for values
of r larger than this. In particular, it appears to be invertible for such values
of r. Thus, if the tube radius R is known to be larger than this value and if
α
 is smaller than the maximum value of h(r), then the value h−1(α
) of the
inverse function will provide a further lower bound for R. This lower bound
goes to infinity as α
 goes to zero.

In our situation, we will be starting with a complete structure, for which
the tube radius is infinite and α = 
 = 0. In particular, as we try to increase
the cone angle, we begin with values of the tube radius and α
 for which the
inverse of the function h(r) provides a lower bound to the tube radius. As
long as the value of α
 remains below the maximum value of h(r), the tube
radius is bounded below and the results of section 3 imply that there can be
no degeneration.

The goal of this section is to provide initial conditions on the surgery curve
that will guarantee that α
 remains below this maximum value until the cone
angle reaches 2π.



UNIVERSAL BOUNDS FOR HYPERBOLIC DEHN SURGERY 405

Remark. For smooth structures, i.e. when α = 2π, the results of [35]
imply that, for sufficiently short geodesics, there is a lower bound to the tube
radius. This result uses Jørgensen’s inequality, which has no literal analogue
for cone-manifolds. To see that there is no such lower bound for the tube
radius around short core curves in a general cone-manifold, one can consider
the figure eight knot complement and choose the standard meridian as the
surgery curve. As the cone angle increases, the length of the core geodesic
increases for a while (enough for α
 to become larger than the maximum of
h(r)), but then goes to 0 as the cone angle approaches α = 2π

3 . In fact, the
hyperbolic structures degenerate in such a way, that, if they are rescaled to
have volume 1, they converge to a Euclidean orbifold at α = 2π

3 .

The following lemma shows that the qualitative behavior of the function
h(r) which was presumed in the previous discussion is as desired. It also
provides an accurate value for the maximum of h(r) and for the value of r at
which it is attained.

Lemma 5.2. The function h(r) is a decreasing function of r for r ≥ 0.531
with an inverse h−1(a) defined for 0 ≤ a ≤ hmax = h(0.531) ≈ 1.019675 such
that h−1(a) = r if and only if h(r) = a and r ≥ 0.531.

Proof. Writing the function h in terms of ζ = tanh r, we have

h(r) = 3.3957 tanh r
cosh2 r − sinh2 r

cosh2 r + sinh2 r
= 3.3957

ζ(1 − ζ2)
1 + ζ2

.

If we put f(ζ) =
ζ(1 − ζ2)
1 + ζ2

, then f ′(ζ) =
1 − 4ζ2 − ζ4

(1 + ζ2)2
. Hence f(ζ) has a

unique maximum for 0 < ζ < 1 when 1 − 4ζ2 − ζ4 = 0, or ζ2 =
√

5 − 2.
Then ζ ≈ 0.485868, r = arctanh(ζ) ≈ 0.5306375 and h(r) = 3.3957 f(ζ) ≈
1.0196755. The result follows immediately.

From this lemma we deduce that the estimate (34) gives a lower bound
for the tube radius in terms of α
:

Proposition 5.3. The tube radius R satisfies

R ≥ h−1(α
) when α
 ≤ hmax ≈ 1.019675 and R ≥ 0.531.(35)

Together with the nondegeneration results of Section 3 we immediately
have the following theorem:

Theorem 5.4. Let Ms be a smooth family of finite volume 3-dimensional
hyperbolic cone-manifolds, with cone angles αs, 0 ≤ s < 1, where lims→1 αs

= α1. Suppose the tube radius R satisfies R ≥ 0.531 for s = 0 and αs
s ≤ hmax

holds for all s, where 
s denotes the length of the singular geodesic. If the
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volumes of the Ms remain bounded, then the Ms converge geometrically to a
cone-manifold M1 with cone angle α1. In particular, this conclusion holds if
M0 is complete (α0 = 0), αs is increasing and 0 < αs
s ≤ hmax for all s.

Proof. Proposition 5.3 implies that, if the initial tube radius is at least
0.531, then, since h−1(α
) ≥ 0.531 by definition, the tube radius will remain
at least 0.531 as long as h−1 is defined. This will be the case as long as
αs
s ≤ hmax. The first statement now follows immediately from Theorem 1.2.
In the special case when M0 is complete, the tube radius is infinite, hence
bigger than 0.531, for s = 0. From the Schläfli differential formula (23), the
volume decreases as the cone angle increases. Hence the volumes are uniformly
bounded throughout the deformation and this special case follows from the
general case.

In light of the above theorem, we would like to find a method to bound
the quantity α
 from above throughout a deformation. Since t = α2 is our
parameter, this amounts to controlling the growth of the core length 
. Our
estimates from Section 2 provide control of the change in 
 in terms of α pro-
vided that the tube radius is bounded below. Specifically, recall that equation
(21) gives

d


dα
=




α
(1 + 4α2x),

and that we have the estimate (22)

−1
sinh2(R)

(
2 sinh2(R) + 1
2 sinh2(R) + 3

)
≤ 4α2x ≤ 1

sinh2(R)
.

Using Proposition (5.3) we can, in turn, bound R in terms of α
. Because
of its importance in what follows, we introduce the new variable

ρ = h−1(α
).

Note that ρ is defined whenever α
 = h(ρ) ≤ hmax and, if R ≥ 0.531 also, it
satisfies 0.531 ≤ ρ ≤ R. This allows us to replace R with ρ in the estimate
(22):

Proposition 5.5. Whenever α
 ≤ hmax and R ≥ 0.531 the following
inequality holds:

−1
sinh2(ρ)

(
2 sinh2(ρ) + 1
2 sinh2(ρ) + 3

)
≤ 4α2x ≤ 1

sinh2(ρ)
.(36)

Proof. Proposition 5.3 implies that ρ ≤ R. The result follows immediately

once it is noted that both 1
sinh2(r)

and 1
sinh2(r)

(
2 sinh2(r)+1
2 sinh2(r)+3

)
are decreasing in r.

That the first is decreasing is obvious; that the second is decreasing can be
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seen easily by rewriting it as
2+ 1

sinh2(r)

2 sinh2(r)+3
so that the numerator is decreasing

and the denominator increasing.

The significance of putting the inequality in the form (36), as opposed
to that of (22) is that, since ρ is a function of α
, the inequality bounds the
derivative of the core length 
 purely in terms of α and 
. Since α2 is our
parameter, this will allow us to bound the value α
 by integration, after some
algebraic manipulation and separation of variables.

Now put
u =

α



.

This turns out to be an important and useful function of α and 
. It approaches
a finite, nonzero value as one approaches the cusp case, even though 
 and α

both approach 0. Recall that the meridian length m and annulus height h

in the flat metric on the boundary of a tube of radius R around the singular
locus satisfy m = α sinhR, h = 
 cosh R. Thus, as R → ∞, the ratio of α to 


approaches that of m to h. This implies that:

lim
R→∞

u = lim
R→∞

m

h
= lim

R→∞
m2

A
= L̂2,(37)

where L̂ is the normalized length of the meridian curve on the torus boundary
of the tube around the cusp.

This provides an initial condition for u in terms of the normalized length
of the chosen surgery curve. To control the value of α
, it suffices to control
the value of u. The derivative of u can be computed by:

du

dα
=

1


− α


2

d


dα
=

α


2

(



α
− d


dα

)
=

α


2

(
−4α2x




α

)
= −1



(4α2x),

or
du

dt
=

1
2α

du

dα
= − 1

2α

(4α2x),

where t = α2.
Using (36) and the fact that h(ρ) = α
 we obtain upper and lower bounds

on the derivative of u in terms of ρ. The expressions for these bounds become
simpler if we use the variable:

z = tanh ρ.

Then, as derived in the proof of Lemma 5.2, h(ρ) = 3.3957 z(1−z2)
1+z2 . We define

the function

H(z) =
1
α


=
1

h(ρ)
=

1 + z2

3.3957z(1 − z2)
.(38)

Noting that sinh2(ρ) = z2

1−z2 we can rewrite the inequality (36) in terms of z:

−
(

(1 − z2)(1 + z2)
z2(3 − z2)

)
≤ 4α2x ≤ 1 − z2

z2
.(39)
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We introduce the functions:

G(z) =
H(z)

2
1 − z2

z2
=

1 + z2

6.7914 z3
(40)

and

G̃(z) =
H(z)

2
(1 − z2)(1 + z2)

z2(3 − z2)
=

(1 + z2)2

6.7914 z3 (3 − z2)
.(41)

Since du
dt = − 1

2α�(4α2x) = −H(z)
2 (4α2x), the inequality (39) provides in-

equalities for du
dt expressed purely in terms of z. Using the functions defined

above, the inequalities can be written simply as

−G(z) ≤ du

dt
≤ G̃(z).

These inequalities hold as long as R ≥ 0.531 and α
<hmax. The latter
holds, by definition of h−1, as long as h−1(α
) = ρ ≥ ρ1 = 0.531, or, since
z = tanh(ρ) is increasing in ρ, as long as z ≥ tanh ρ1 ≈ 0.4862 = z1. If the
initial tube radius is at least 0.531 then it will remain so as long as ρ ≥ ρ1.
Thus, in this case, as long as z ≥ z1, the inequalities are valid. We record this
fact as a proposition.

Proposition 5.6. For any smooth family of hyperbolic cone-manifolds
whose initial tube radius is at least 0.531, the following differential inequalities
hold as long as z ≥ z1 = 0.4862:

−G(z) ≤ du

dt
≤ G̃(z),(42)

with the functions G(z) and G̃(z) defined by (40) and (41), respectively.

We will only use the lower bound in this section. The upper bound will
be used in the final section.

In order to solve this differential inequality, we note that u = α
� = t

α� ,
where t = α2 is our variational parameter. By definition, H(z) = 1

α� and this
becomes

u = tH(z).(43)

From the inequality (42) we obtain

d

dt
(H(z)t) ≥ −G(z)

or

t
dH

dz

dz

dt
≥ −(H(z) + G(z)).(44)

Denoting dH
dz by H ′(z) we obtain the inequality:

dz

dt
≥ −(H(z) + G(z))

t H ′(z)
.(45)
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Again, if the initial structure has tube radius at least 0.531, this inequality
is valid as long as z > z1. Observe that H ′(z) is positive since, by Lemma 5.2,
h(ρ) = 1

H(z) is decreasing for these values of z = tanh ρ.
Since this inequality bounds the change in z, if we start with a complete

structure, where z = 1, it should provide conditions under which this inequality
will be maintained until t = (2π)2. In particular, we will have z ≥ z1; hence
α
 < hmax, throughout the deformation, implying, by Theorem 5.4, that the
smooth structure with cone angle 2π can be reached without any degeneration.
To do this explicitly we will use separation of variables.

By algebraic manipulation we obtain

H ′(z)
H(z) + G(z)

dz

dt
≥ −1

t
.(46)

However this separation of variables is only valid away from the complete
structure because both sides of the new inequality blow up as t → 0 and
z → 1. It cannot be applied directly for initial conditions at the complete
structure. Some care must be taken to analyze the rate at which the left side
goes to infinity as t → 0.

We compute that

H ′(z)
H(z) + G(z)

= F (z) +
1

1 − z

where

F (z) = −(1 + 4z + 6z2 + z4)
(z + 1)(1 + z2)2

,

and F is integrable on the interval 0 ≤ z ≤ 1. Recall that z(t) is a smooth
function of t which approaches 1 as t approaches 0. For any sufficiently small
value of t > 0, z(t) < 1 will be larger than z1 = .4862 and the differential
inequality (46) holds. Choose 0 < t0 < τ so that z1 < z(t) < 1 for all
0 < t < τ , and denote z(t0) by z0. Integrating the inequality over the interval
0 < t < τ and changing the variable to w = z(t), we obtain∫ z(τ)

z0

F (w) dw + log(1 − z0) − log(1 − z(τ)) ≥ log(t0) − log(τ)

or

exp

(∫ z(τ)

z0

F (w) dw

)
≥ t0

1 − z0

1 − z(τ)
τ

.

To compute the limit of t0
1−z0

as t0 → 0, multiply the numerator and

denominator by H(z0). Since u(t) = H(z(t))t, this becomes u(t0)
(1−z0)H(z0)

. Now
as t0 → 0, z0 → 1 and from the formula (38) it is clear that H(z0)(1 − z0) →

1
3.3957

. From (37) we know that limR→∞ u = L̂2. Since R → ∞ as t → 0, it

follows that limt→0 u(t) = L̂2.
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We conclude that

exp

(∫ z(τ)

1
F (w) dw

)
≥ 3.3957 L̂2 1 − z(τ)

τ
.

This inequality holds for any time τ during a deformation through cone-
manifolds which begins at a complete structure (where z(0) = 1); we use a
surgery curve of normalized length L̂, as long as z(t) is larger than z1 through-
out the deformation. This provides information about the times t at which
various values of z(t) can be attained. In particular, this implies, for any
z ≥ z1, the following inequality for the first time t at which z(t) = z:

t ≥ 3.3957 L̂2 (1 − z) exp
(
−

∫ z

1
F (w) dw

)
.(47)

We conclude that we can increase the cone angle α from 0 to 2π, while
maintaining the condition z = tanh ρ ≥ z1 > tanh(ρ1), hence keeping the tube
radius R ≥ ρ ≥ ρ1 = 0.531 and α
 ≤ hmax, provided

3.3957 L̂2 (1 − z1) exp
(
−

∫ z1

1
F (w)dw

)
≥ (2π)2

or

L̂2 ≥ (2π)2

3.3957(1 − z1)
exp

(∫ z1

1
F (w)dw

)
≈ 56.4696

or
L̂ ≥

√
56.4696 ≈ 7.5146.

Thus, we have shown that as long as the normalized Euclidean geodesic
length L̂ of the surgery curve satisfies this inequality then there is a lower
bound to the tube radius. This completes the proof of Theorem 1.1 which we
restate here for convenience.

Theorem 5.7. Let X be a complete, finite volume, hyperbolic 3-manifold
with one cusp and let T be a horospherical torus which is embedded as a cross-
section to the cusp. Let γ be a simple closed curve on T and X(γ) be the
Dehn filling with γ as meridian. Let Xα(γ) be a cone-manifold structure on
X(γ) with cone angle α along the core, Σ, of the added solid torus, obtained by
increasing the angle from the complete structure. If the normalized length of γ

on T is at least 7.515, then there is a positive lower bound to the tube radius
around Σ for all 2π ≥ α ≥ 0.

Remark 5.8. The proof of this theorem shows that α
 ≤ hmax and R ≥
0.531 for 0 ≤ α ≤ 2π, where 
 and R denote the length and tube radius of
the singular geodesic Σ. In particular, the core geodesic of the nonsingular
hyperbolic structure on X(γ) has length 
 ≤ hmax

2π ≈ 0.162 and tube radius
R ≥ 0.531.
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Theorem 1.1, together with Theorem 1.2, implies our main result, Theo-
rem 1.3. (Note also that Theorem 5.4 (which depends on Theorem 1.2) together
with (47) immediately implies Theorem 1.3.)

Theorem 5.9. Let X be a complete, orientable hyperbolic 3-manifold with
one cusp, and let T be a horospherical torus which is embedded as a cross-
section to the cusp of X. Let γ be a simple closed curve on T whose normalized
Euclidean geodesic length L̂ is at least 7.515. Then the closed manifold X(γ)
obtained by Dehn filling along γ is hyperbolic.

This result also gives a universal bound on the number of nonhyperbolic
Dehn fillings on a cusped hyperbolic 3-manifold.

Corollary 5.10. Let X be a complete, orientable hyperbolic 3-manifold
with one cusp. Then at most 60 Dehn fillings on X yield manifolds which
admit no complete hyperbolic metric.

Proof. The arguments of Agol [2] give the following result.

Lemma 5.11. The number of slopes of length less than L on a Euclidean
torus of area A is at most p + 1, where p is the smallest prime number larger
than L2/A.

Now let T be the Euclidean torus obtained by taking a horospherical cusp
cross-section in X and rescaling the metric so that T has area A = 1. Then
the slopes β with Xβ nonhyperbolic have length on T less than L = 7.515.
Since 56 < L2/A = (7.515)2 < 57, application of Agol’s lemma with p = 59
shows that the number of exceptional slopes is at most p + 1 = 60.

If there are multiple cusps, we must vary the rate at which the cone
angles are increased to ensure that the upper bound in (22) is satisfied for
each boundary component. The argument then proceeds as before except that
we can no longer use the larger area bound (30) from the packing theorem
(Theorem 4.4). When there are multiple cusps, Theorem 4.4 gives an area
bound (30) for one boundary torus and an area bound (31) that is half as large
for the remaining boundary tori.

This implies that the function corresponding to h(r) (see (34)) on the
remaining boundary tori is half as big. It follows that the functions corre-
sponding to H(z), G(z), G̃(z) are twice as big. Everything else remains the
same. The effect on the differential inequalities is that the inequality (42) is
replaced by one in which G(z) and G̃(z) are twice as large. However, the key
inequality (44) relating the change in z = tanh(ρ) to that of t = α2 remains
exactly the same because it involves the ratio of functions, each of which is
twice as large. The only change in the analysis arising from that inequality
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is that the limit as z → 1 of H(z)(1 − z) is twice as large. In other words,
H(z)(1−z) → 2

3.3957 and the coefficient 3.3957 in inequality (47) is replaced by
3.3957

2 . So, to guarantee that angle α = 2π is reached, we need to assume that
the normalized Euclidean geodesic lengths of all of the surgery curves satisfy

L̂ ≥
√

2 (56.4696) ≈ 10.6273.

Since the first prime number larger than 2 (56.4696) ≈ 112.939 is 113, the
bound on the number of exceptional slopes per cusp, for all but one cusp,
becomes 113 + 1 = 114. The bound for the other cusp will still be 60.

Thus, we have proved the following:

Theorem 5.12. Let X be a complete, finite volume orientable hyperbolic
3-manifold with more than one cusp, and let Ti be a horospherical torus which
is embedded as a cross-section to the ith cusp of X. Let {γi} be simple closed
curves on the Ti and suppose that, for all i > 1, the normalized Euclidean
geodesic length of γi on Ti is at least 10.628 and for i = 1 it is at least 7.515.
Then the closed manifold X(γ) obtained by Dehn filling along γ = {γi} is
hyperbolic. In particular, there are at most 60 choices of γ1 on the first cusp
and 114 choices of γi on the remaining cusps so that X(γ) can fail to have a
hyperbolic metric.

Remark 5.13. The results in this section provide initial conditions which
guarantee that any particular collection of cone angles, all at most 2π, can be
realized by hyperbolic cone-manifold structures on X(γ). In particular, they
imply the existence of hyperbolic structures on orbifolds when the singular
locus is a link. In this case, the cone angles are all of the form 2π

n , n ∈ Z. The
conditions on the the normalized Euclidean geodesic lengths are replaced by
the same condition on n times the length. Similarly, the results of Section 6,
concerning volumes and lengths of the singular locus, will also apply in this
case.

6. Geometry comparison

6.1. Decreasing the cone angle. It is natural to ask how general this process
of constructing a closed hyperbolic manifold is. Can every closed hyperbolic
3-manifold be obtained by starting with a noncompact, finite volume 3-manifold
with one cusp and increasing the cone angle from 0 to 2π? Specifically, given
a simple closed geodesic τ in a closed hyperbolic 3-manifold N , can the cone
angle be decreased from 2π (at the smooth structure) back to angle 0? There
is no topological obstruction to doing this. It can be shown (see [32, Theo-
rem 1.2.1], [3]) that N − τ can be given a complete finite volume metric with
pinched negative curvature so that it will be irreducible, atoroidal, and have
infinite fundamental group. In fact, since it is the interior of a manifold with
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nonempty boundary, it is Haken, so that Thurston’s geometrization theorem
for Haken manifolds implies that it can be given a hyperbolic structure. The
issue is whether or not the hyperbolic structures on N and on N − τ can be
connected by a family of hyperbolic cone-manifolds.

In this section we apply our techniques to show that, as long as τ is
sufficiently short, with length less than a universal constant independent of N ,
then N can be constructed in this manner. The cone angle can be decreased
back from 2π to 0.

To see why the condition that τ be short might arise from the techniques
of the previous section, note that all of the closed hyperbolic manifolds con-
structed in the proof of Theorem 1.3 have a short geodesic, which was the
singular set throughout the deformation through cone-manifolds. It is short
because the control of the tube radius using the inverse function h−1(α
) only
held as long as α
 ≤ hmax ≈ 1.019675. When α = 2π this holds if 
 ≤ 0.162.

In order to show that it is possible to decrease the cone angle back to 0, the
main step is again to show that the tube radius is bounded below. By Theorem
5.4 it suffices to show that the initial tube radius R satisfies R ≥ 0.531, that
the volumes remain bounded, and that, if α
 ≤ hmax at the beginning of the
deformation, it will remain so throughout.

Lemma 6.1. α
 is an increasing function of α provided the tube radius R

satisfies R ≥ 0.4407 and α ≤ 2π.

Proof. Using equation (21) and estimate (22) (the proof of the estimate
using [28] requires that α ≤ 2π, though this is probably unnecessary), we have

1
α

d(α
)
dα

=
d


dα
+




α
=




α
(2 + 4α2x) ≥ 


α

(
2 − 1

sinh2 R

(
2 sinh2 R + 1
2 sinh2 R + 3

))
≥ 0

provided 1
s2 (2s2+1

2s2+3) ≤ 2 or 4s4 + 4s2 − 1 ≥ 0 where s = sinhR. This holds

provided (2s2 + 1)2 ≥ 2, i.e. s2 ≥
√

2−1
2 or R ≥ 0.4407.

Theorem 6.2. Let M be a closed hyperbolic 3-manifold and τ a simple
closed geodesic in M having length l(τ) ≤ hmax/(2π) ≈ 0.1623 and tube radius
R ≥ 0.531. Then the hyperbolic structure on M can be deformed to a complete
hyperbolic structure on M − τ by decreasing the cone angle along τ from 2π

to 0.

Proof. For α = 2π we have α
 ≤ hmax and R ≥ 0.531 > 0.4407. By
Lemma 6.1, α
 ≤ hmax throughout any deformation decreasing the cone an-
gles. Since the volume is increasing, it is not immediate that the volumes are
bounded above. However, it is not difficult to show by general arguments, for
example by using the Gromov norm, that an upper bound exists. (See, for
example, [32, Prop. 1.3.2] or [3].) For our specific situation, we can appeal to
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the next section in which we give explicit bounds on the change in volume as
the cone angle is changed. In particular, this provides an upper bound over
the family of cone-manifolds.

Hence there can be no degeneration by Theorem 5.4.

The previous theorem requires conditions on both the length of the geodesic
and on its tube radius. As noted previously, for a general cone-manifold, it is
not true that a sufficiently short singular locus provides a lower bound on the
tube radius. However, for smooth hyperbolic manifolds such a lower bound
does exist. This follows from the Margulis Lemma or the Jørgensen inequality.

An explicit formula giving a lower bound to the tube radius around suffi-
ciently short closed geodesics in closed hyperbolic 3-manifolds was derived by
Meyerhoff and Zagier [35] and sharpened by Cao, Gehring, Martin [10] (see also
[15, Theorem 3.2]). By combining this bound with a tube-packing estimate,
similar to the estimate α
 ≥ h(r) from the previous section, Gabai-Milley-
Meyerhoff obtain an improved bound on the tube radius of short geodesics ([15,
Theorem 3.1]). In particular, their formula implies that if τ is a closed geodesic
in a smooth hyperbolic 3-manifold and if its length satisfies 
(τ) ≤ 0.111, then
it has tube radius R ≥ 0.982 ≥ 0.531. Hence, the previous theorem applies.
The conclusion is:

Corollary 6.3. Let M be a closed hyperbolic 3-manifold and τ a simple
closed geodesic in M having length 
(τ) ≤ 0.111. Then the hyperbolic structure
on M can be deformed to a complete hyperbolic structure on M−τ by decreasing
the cone angle along τ from 2π to zero.

Suppose τ is actually a shortest closest geodesic in a closed hyperbolic
3-manifold M . Then τ is a simple closed curve, and the results of Gabai-
Meyerhoff-Thurston [16] show that either τ has tube radius R ≥ log(3)/2 >

0.531 or τ has length > 0.831. Thus if τ has length ≤ 0.162 then the hypotheses
of Theorem 6.2 are again satisfied. This proves

Corollary 6.4. Let M be a closed hyperbolic manifold and let τ be a
shortest closed geodesic in M having length 
(τ) ≤ 0.162. Then the hyperbolic
structure on M can be deformed to a complete hyperbolic structure on M − τ

by decreasing the cone angle along τ from 2π to 0.

6.2. Volume estimates. The rigidity theorem of Mostow and Prasad shows
that geometric invariants of finite volume hyperbolic 3-manifolds are actually
topological invariants. Perhaps the most useful such invariant is the hyper-
bolic volume. This volume has proved to be a good way of distinguishing
3-manifolds, and is a very good measure of the complexity of a manifold.

Thurston and Jørgensen [43] proved that the set of volumes of complete,
finite volume, orientable, hyperbolic 3-manifolds is a well-ordered, closed subset
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of R of order type ωω, and that there are finitely many manifolds of any given
volume. Thus the volumes can be arranged:

0 < v1 < v2 < · · · < vω < vω+1 < · · · < v2ω < · · · < v3ω < · · · < vω2 < . . . .

The smallest volume v1 is the volume of a closed hyperbolic 3-manifold, and the
first limit volume vω represents the volume of the smallest cusped hyperbolic
3-manifold.

In general, the volume v of each cusped hyperbolic 3-manifold M is a
limit point: performing Dehn filling on M and produces a collection of closed
hyperbolic manifolds converging geometrically to the cusped manifold, and
their volumes converge to v from below. Thus the decrease in volume during
Dehn filling is an indication of how close the filled manifold is geometrically to
the cusped manifold.

A few of the lowest volumes are now known. Adams [1] has shown the
smallest nonorientable cusped hyperbolic 3-manifold has volume 1.01494 . . . ;
this is the volume of the Gieseking manifold, a nonorientable manifold double
covered by the figure eight knot complement. Recently, Cao-Meyerhoff [11]
showed that the orientable cusped hyperbolic 3-manifolds of smallest volume
are the figure eight knot complement and another closely related manifold,
with volume vω = 2.02988 . . . .

For closed manifolds, much less is known. The best current estimate for v1

is that 0.32 < v1 ≤ 0.9427 . . . , where the right-hand side represents the volume
of the “Weeks manifold” obtained by (5,−1), (5, 2) surgery on the Whitehead
link. The left-hand side is an estimate obtained by Agol [3], improving earlier
results of Meyerhoff [35] [34], Gabai-Meyerhoff-Thurston [16], Gehring-Martin
[18], [19] and Przeworski [41].

Since the smallest cusped manifold volume is known but the smallest
closed manifold volume is not known, we could try to study volumes of closed
hyperbolic 3-manifolds by regarding them as Dehn fillings on cusped manifolds.
Our work in Sections 2 and 5, gives good control on the change in length of
the core geodesic during Dehn filling. We now show that this leads to good
estimates on the change in hyperbolic volume during Dehn filling.

Theorem 6.5. Let X be a cusped hyperbolic 3-manifold and M a closed
hyperbolic 3-manifold which can be joined by a smooth family of hyperbolic
cone-manifolds with cone angles 0 ≤ α ≤ 2π along a knot Σ. Suppose that
α
 ≤ hmax ≈ 1.019675 holds throughout the deformation, where 
 denotes the
length of Σ. Then the difference in volume

∆V = Volume(X) − Volume(M)

satisfies ∫ 1

ẑ

H ′(z)dz

4H(z)(H(z) + G(z))
≤ ∆V ≤

∫ 1

ẑ

H ′(z)dz

4H(z)(H(z) − G̃(z))
(48)
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where ẑ = tanh(ρ̂), ρ̂ is the unique solution of h(ρ̂) = 2π
̂ with ρ̂ ≥ 0.531, and

̂ is the length of Σ in M (i.e. when α = 2π).

Remark 6.6. The graph below shows the upper and lower bounds for ∆V

given by this theorem as a function of the core geodesic length 
 in M , for

 < 0.162. The dotted line shows the asymptotic formula ∆V ∼ π

2 
 as 
 → 0
of Neumann-Zagier [36].
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Proof. We write t = α2 and use the notation from Section 5. From the
Schläfli formula (23), the change in volume V of a hyperbolic cone-manifold
during a deformation satisfies

dV = −1
2

dα = −αdα

2u
= − dt

4u
(49)

since 
 = α
u and dt = d(α2) = 2αdα. Recalling that u = H(z)t we can rewrite

this as:

dV

dt
= −1

t

1
4H(z)

.(50)

Since X is a cusped manifold, the condition α
 ≤ hmax guarantees that the
tube radius satisfies R ≥ ρ1 = 0.531 throughout the deformation (see Theorem
5.4). From equation (42) we have

−G(z) ≤ du

dt
≤ G̃(z),
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with G(z) and G̃(z) defined as in (40) and (41). Again, since u = H(z)t, it
follows that du

dt = H ′(z)tdz
dt + H(z). Hence, we obtain:

−(G(z) + H(z)) ≤ H ′(z)t
dz

dt
≤ G̃(z) − H(z).

With algebraic manipulation to separate the variables as in Section 5 this
becomes:

H ′(z)
G(z) + H(z)

dz

dt
≥ −1

t
≥ H ′(z)

H(z) − G̃(z)
dz

dt
.(51)

To verify the direction of the inequalities, note as before that H ′(z) is positive
for all z > z1. It is also true, for such values of z, that H(z)− G̃(z) is positive.

To see this, recall that G̃(z) = H(z)
2

(
(1−z2)(1+z2)

z2(3−z2)

)
. Hence, it suffices to check

that (1−z2)(1+z2)
z2(3−z2) < 2. But (1−z2)(1+z2)

z2(3−z2) = 1
sinh2 ρ

(
2 sinh2 ρ+1
2 sinh2 ρ+3

)
and we computed

in the proof of Lemma 6.1 that this is less than 2 as long as ρ > 0.4407. Since
ρ ≥ ρ1 = 0.531 the inequality holds.

Putting together equation (50) with inequality (51), we obtain:

H ′(z)
4H(z)(H(z) + G(z))

dz

dt
≥ dV

dt
≥ H ′(z)

4H(z)(H(z) − G̃(z))
dz

dt
.(52)

We now integrate over the interval 0 ≤ t ≤ t̂ = (2π)2, and change variable
from t to z(t). As t increases, the values of z decrease from z(0) = 1 to a value
ẑ = z(t̂), satisfying ẑ > z1 = tanh ρ1, so that the decrease in volume satisfies:∫ 1

ẑ

H ′(z)
4H(z)(H(z) + G(z))

dz ≤ ∆V ≤
∫ 1

ẑ

H ′(z)
4H(z)(H(z) − G̃(z))

dz.

(Note that the integrands are positive.)

The results of Section 5 (Remark 5.8) show that Theorem 6.5 applies
when M = X(γ) is obtained from a cusped manifold X by Dehn filling along
a surgery curve γ with normalized length L̂ ≥ 7.515. This gives

Corollary 6.7. Let X be a complete, finite volume, hyperbolic manifold
with one cusp and γ a surgery curve with normalized length L̂ ≥ 7.515. Then
X(γ) is hyperbolic and its volume satisfies:

Volume(X(γ)) ≥ Volume(X) − 0.329.

In particular,
Volume(X(γ)) ≥ 1.701.

Proof. For surgery curves γ with normalized length L̂ ≥ 7.515, we have
α
 ≤ hmax and tube radius R ≥ ρ1 = 0.531 as the cone angle is increased from 0
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to 2π. The values of z decrease from 1 to a value ẑ, satisfying ẑ > z1 = tanh ρ1;
so the decrease in volume is at most:∫ 1

ẑ

H ′(z)dz

4H(z)(H(z) − G̃(z))
≤

∫ 1

z1

H ′(z)dz

4H(z)(H(z) − G̃(z))
< 0.3287,

i.e.
Volume(X(γ)) ≥ Volume(X) − 0.3287.

The results of Cao-Meyerhoff [11] show that the figure eight knot comple-
ment and its sister are the cusped orientable hyperbolic 3-manifolds of minimal
volume ≈ 2.02988. So we conclude that any surgery on a cusped hyperbolic
3-manifold along a surgery curve with L̂ ≥ 7.515 gives a hyperbolic manifold
with volume at least 2.0298 − 0.3287 = 1.701.

The results of Section 6.1 show that we can also apply Theorem 6.5 when
M is a closed hyperbolic 3-manifold and X = M −τ is obtained by removing a
sufficiently short simple closed geodesic τ . For example, the proof of Corollary
6.4 shows that the hypotheses of Theorem 6.5 are satisfied for any shortest
closed geodesic τ of length at most 0.162. By the same argument as above, we
then obtain the following estimate on volumes of closed 3-manifolds containing
short geodesics.

Corollary 6.8. Let M be a closed hyperbolic 3-manifold and let τ be a
shortest closed geodesic in M having length 
(τ) ≤ 0.162. Then M − τ has a
finite volume hyperbolic structure and

Volume(M) ≥ Volume(M − τ) − 0.329.

In particular,
Volume(M) ≥ 1.701.

Remark 6.9. It is interesting to compare this with the result of Agol in
[3], which shows that any closed hyperbolic 3-manifold with shortest geodesic
length less than 0.244 has volume greater than the volume of the Weeks man-
ifold (0.9427 . . . ). That there is such a large gap between the volume estimate
above (1.701) and the volume of the Weeks manifold suggests that one ought
to be able to improve significantly our bound on the geodesic length. Unfor-
tunately, the fact that all our arguments using the function h(r) break down
once the geodesic length gets much bigger means that such an improvement
would require further methods.

Remark 6.10. We saw in Remark 2.8 that for a hyperbolic cone-manifold,
if the tube radius R satisfies R ≥ arcsinh( 1√

2
) ≈ 0.6584, then the core length 


decreases as α decreases. If the length of a closed geodesic in a closed hyperbolic
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3-manifold satisfies 
(τ) ≤ 0.111, then τ has tube radius R ≥ ρ(τ) > 0.98 >

0.6584. Furthermore, we can decrease the cone angle α along τ from 2π to zero,
keeping the tube radius larger than this value throughout the deformation. As
discussed in Remark 2.8, this implies, by Schläfli’s formula, that

Volume(M − τ) ≤ Volume(M) + π
(τ).

However, it is not hard to see that the estimate given in Theorem 6.5 is con-
siderably stronger. (Compare the figure in Remark 6.6.)

Bridgeman ([8]) showed that such an estimate holds for a certain nice
class of geodesics in hyperbolic 3-manifolds. However, the estimate does not
hold in general. Using Oliver Goodman’s “Tube” program [20], Ian Agol has
observed that this estimate is violated for several closed geodesics τ in the
Weeks manifold (see [3]).
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