
Annals of Mathematics, 161 (2005), 1589–1607

Ergodic properties of rational mappings
with large topological degree

By Vincent Guedj

Abstract

Let X be a projective manifold and f : X → X a rational mapping with
large topological degree, dt > λk−1(f) := the (k − 1)th dynamical degree of f .
We give an elementary construction of a probability measure µf such that
d−n

t (fn)∗Θ → µf for every smooth probability measure Θ on X. We show
that every quasiplurisubharmonic function is µf -integrable. In particular µf

does not charge either points of indeterminacy or pluripolar sets, hence µf is
f -invariant with constant jacobian f∗µf = dtµf . We then establish the main
ergodic properties of µf : it is mixing with positive Lyapunov exponents, preim-
ages of ”most” points as well as repelling periodic points are equidistributed
with respect to µf . Moreover, when dimC X ≤ 3 or when X is complex homo-
geneous, µf is the unique measure of maximal entropy.

Introduction

Let X be a projective algebraic manifold and ω a Hodge form on X nor-
malized so that

∫
X ωk = 1, k = dimC X. Let f : X → X be a rational

mapping. We shall always assume in the sequel that f is dominating; i.e., its
jacobian determinant does not vanish identically in any coordinate chart. We
let If denote the indeterminacy locus of f (the points where f is not holomor-
phic): this is an algebraic subvariety of codimension ≥ 2. We let dt denote the
topological degree of f : this is the number of preimages of a generic point.

Define f∗ωk to be the trivial extension through If of (f|X\If
)∗ω ∧ · · · ∧

(f|X\If
)∗ω. This is a Radon measure of total mass dt. When dt > λk−1(f) (see

Section 1 below), we give an elementary construction of a probability measure
µf such that d−n

t (fn)∗ωk → µf . We show that every quasiplurisubharmonic
function is µf -integrable (Theorem 2.1). In particular µf does not charge
pluripolar sets. This answers a question raised by Russakovskii and Shiffman
[RS 97] which was addressed by several authors (see [HP 99], [FG 01], [G 02],
[Do 01], [DS 02]). This also shows that µf is an invariant measure with positive
entropy ≥ log dt > 0. Thus f has positive topological entropy.
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Building on the work of Briend and Duval [BD 01], we then establish the
main ergodic properties of µf : it is mixing with positive Lyapunov exponents,
preimages of ”most” points as well as repelling periodic points are equidis-
tributed with respect to µf (Theorem 3.1). Moreover, when dimC X ≤ 3 or
when the group of automorphisms Aut(X) acts transitively on X, µf is the
unique measure of maximal entropy (Theorem 4.1).

Acknowledgements. We thank Jeffrey Diller, Julien Duval and Charles
Favre for several interesting conversations.

1. Numerical invariants

In this section we define and establish inequalities between several numer-
ical invariants. This involves some technicalities because our mappings are not
holomorphic and also, the psef/nef-cones are not well understood in dimension
≥ 4. What follows is quite simple when f is holomorphic (the only nontrivial
part, the link between entropy and dynamical degrees, goes back to Gromov
[Gr 77]). When X = Pk, a clean treatment of the dynamical degrees is given
by Russakovskii and Shiffman in [RS 97]: the situation is simpler since Pk is
a complex homogeneous manifold whose cohomology vector spaces H l,l are all
one-dimensional.

1.1. Dynamical degrees. Given a smooth form α of bidegree (l, l),
1 ≤ l ≤ k, we define the pull-back of α by f in the following way: let
Γf ⊂ X × X denote the graph of f and consider a desingularization Γ̃f of Γf .
We have a commutative diagram

Γ̃f
π1

↙
π2

↘
X

f−→ X

where π1,π2 are holomorphic maps. We set f∗α := (π1)∗(π∗
2α) where we push

forward the smooth form π∗
2α by π1 as a current. Note that f∗α is actually

a form with L1
loc-coefficients which coincides with the usual smooth pull-back

(f|X\If
)∗α on X \ If ; thus the definition does not depend on the choice of

desingularization. In other words, f∗α is the trivial extension, as current, of
(f|X\If

)∗α through If .
This definition induces a linear action on the cohomology space H l,l(X, R)

which preserves H l,l
a (X, R), the subspace generated by complex subvarieties

of codimension l. We let H l,l
psef (X, R) denote the closed cone generated by

effective cycles.
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Definition 1.1. Set δl(f) :=
∫
X f∗ωl ∧ ωk−l. We define the lth-dynamical

degree of f to be
λl(f) := lim inf

n→+∞
[δl(fn)]1/n.

This definition clearly does not depend on the choice of the Kähler form ω.
Observe that for l = k, λk(f) is the topological degree of f , i.e. the number
of preimages of a generic point, which we shall preferably denote by dt(f) (or
simply dt when no confusion can arise).

Proposition 1.2. i) The sequence l *→ λl(f)/λl+1(f) is nondecreasing,
0 ≤ l ≤ k − 1; i.e., log λl is a concave function of l. In particular if dt =
λk(f) > λk−1(f), then dt > λk−1(f) > · · · > λ1(f) > 1.

ii) There exists C > 0 such that for all dominating rational self-maps
f, g : X → X,

δ1(g ◦ f) ≤ Cδ1(f)δ1(g).

In particular δ1(fn+m) ≤ Cδ1(fn)δ1(fm) so that λ1(f) = lim[δ1(fn)]1/n. More-
over λ1(f) is invariant under birational conjugacy.

iii) Let r1(f) denote the spectral radius of the linear action induced by f∗

on H1,1
a (X, R) and set λ′

1(f) = lim sup r1(fn)1/n. There exists C > 0 and for
every ε > 0 there exists Cε > 0, such that for all n,

0 ≤ r1(fn) ≤ Cδ1(fn) ≤ Cε[λ′
1(f) + ε]n.

In particular λ1(f) = λ′
1(f).

Proof. i) It is equivalent to prove that λl+1(f)λl−1(f) ≤ λl(f)2 for all
1 ≤ l ≤ k − 1. This is a consequence of δl+1(fn)δl−1(fn) ≤ δl(fn)2, which
follows from Teissier-Hovanskii mixed inequalities: it suffices to apply Theorem
1.6.C1 of [Gr 90] in the graph Γ̃fn to the smooth semi-positive forms π∗

1ω
i and

π∗
2ω

k−i.
ii) Let f, g : X → X be dominating rational self-maps. It is possible to

define f∗T for any positive closed current T of bidegree (1, 1) (see [S 99]). In
particular, f∗(g∗ω) is a globally well defined positive closed current of bidegree
(1, 1) on X which coincides with (g◦f)∗ω in X \If ∪f−1(Ig). Now (g◦f)∗ω is a
form with L1

loc coefficients, thus it does not charge the proper algebraic subset
If ∪ f−1(Ig). Therefore we have an inequality between these two currents,

(g ◦ f)∗ω ≤ f∗(g∗ω)(†)

and the same inequality holds in H1,1
psef (X, R). Note that (†) does not hold in

general if we replace [ω] by the class of an effective divisor (see Remark 1.4
below).

Let N be a norm on H l,l(X, R). There exists C1 > 0 such that for all class
α ∈ H l,l

psef (X, R), N(α) ≤ C1
∫
α ∧ ωk−l. We infer from (†) and the continuity
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of (α,β) *→
∫
α ∧ β that

δ1(g ◦ f) ≤
∫

f∗(g∗ω) ∧ ωk−1 =
∫

g∗ω ∧ f∗ω
k−1 ≤ Cδ1(g)δ1(f).

Note that we have used the fact that f∗[ωk−1] ∈ Hk−1,k−1
psef (X, R) (see below for

the definition of f∗ and related properties). We infer from the latter inequality
that the sequence (δ1(fn)) is quasisubmultiplicative, hence the lim inf can be
replaced by a lim (or an inf) in the definition of λ1(f). Moreover if g is
birational, we get

δ1(g ◦ fn ◦ g−1) ≤ Cδ1(g)δ1(g−1)δ1(fn);

hence λ1(g ◦ f ◦ g−1) = λ1(f); i.e., λ1(f) is a birational invariant.
iii) Observe that H1,1

psef (X, R) is a closed convex cone with nonempty inte-
rior which is strict (i.e. H1,1

psef (X, R) ∩ −H1,1
psef (X, R) = {0}) and preserved by

f∗. Therefore there exists, for all n ∈ N, a class [θn] ∈ H1,1
psef (X, R) such that

(fn)∗[θn] = r1(fn)[θn]. This can be thought of as a Perron-Frobenius-type
result (see Lemma 1.12 in [DF 01]).

Fix a basis [ω1] = [ω],[ω2], . . . , [ωs] of H1,1
a (X, R), where the ω′

js are
smooth forms such that ωj ≤ ω. We normalize θn =

∑
j αj,nωj so that

||[θn]|| := maxj |αj,n| = 1; thus θn ≤ sω. Observe that [θ] *→
∫
θ ∧ ωk−1 is

a continuous form on H1,1
a (X, R) which is positive on H1,1

psef (X, R). Therefore
there exists C > 0 such that ||[θ]|| ≤ C

∫
θ ∧ ωk−1, for all [θ] ∈ H1,1

psef (X, R).
This yields the first inequality:

r1(fn) = r1(fn)||[θn]|| ≤ Cr1(fn)
∫

θn ∧ ωk−1

= C

∫
(fn)∗θn ∧ ωk−1 ≤ Cs

∫
(fn)∗ω ∧ ωk−1.

Conversely, fix ε > 0 and p > 1 such that r1(fp) ≤ (λ′
1(f) + ε/2)p.

Fix a norm N on H1,1
a (X, R). Since [θ] *→

∫
X θ ∧ ωk−1 defines a continuous

linear form on H1,1
a (X, R), there exists CN > 0 such that for all [θ], |

∫
X θ ∧

ωk−1| ≤ CNN([θ]). Set Ñ(f) := supN([θ])=1 N(f∗[θ]). It follows from (†) that
N((fn)∗[ω]) ≤ N(f∗(. . . f∗[ω]) . . . ), hence

0 ≤
∫

(fn)∗ω ∧ ωk−1 ≤ CN [Ñ(fp)]qN([(f r)∗ω]),

where n = pq + r. Now for every ε > 0 one can find a norm Nε on H1,1
a (X, R)

such that r1(fp) ≤ Ñε(fp) ≤ r1(fp) + ε/2. This yields iii).

Remark 1.3. It is remarkable that the mixed inequalities λl+1λl−1 ≤ λ2
l

contain all previously known inequalities, e.g. λl+l′(f) ≤ λl(f)λl′(f) (which
are proved by Russakovskii and Shiffman [RS 97] when X = Pk).
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Remark 1.4. One should be aware that simple inequalites like (†) are false
if we replace [ω] by the class of an effective divisor (in particular, Lemma 3
in [Fr 91] is wrong). Here is a simple 2-dimensional counterexample: consider
σ : Y → Y a biholomorphism of some projective surface Y with a nontrivial
2-cycle {p,σ(p)}. Let π : X → Y be the blow-up of Y at point p, E = π−1(p)
and q = π−1(σ(p)). Set f = π−1 ◦ σ ◦ π : X → X. This is a rational self-
map of X such that If = {q}, f(q) = E, f(E) = q. Therefore f∗[E] = 0, so
f∗(f∗[E]) = 0 while (f ◦ f)∗[E] = [E] (contradicting Lemma 3 in [Fr 91]).

We define similarly the push-forward by f as f∗α := (π2)∗(π∗
1α). This

induces a linear action on the cohomology spaces H l,l(X, R) which is dual to
that of f∗ on Hk−l,k−l(X, R). The push-forward of any positive closed current
of bidegree (1, 1) is well defined and yields a positive closed current of bidegree
(1, 1) on X. Therefore H1,1

psef (X, R) is preserved by f∗ (by duality, the dual
cone Hk−1,k−1

nef (X, R) is preserved by f∗). We have a (†)′ inequality

(g ◦ f)∗ω ≤ g∗(f∗ω).(†′)

This yields results on λk−1(f) analogous to those obtained for λ1(f). We
summarize this in the following:

Proposition 1.5. The dynamical degree λk−1(f) is invariant under bi-
rational conjugacy and satisfies

λk−1(f) = lim[δk−1(fn)]1/n = lim[rk−1(fn)]1/n,

where rk−1(f) denotes the spectral radius of the linear action induced by f∗ on
Hk−1,k−1

a (X, R).

Remark 1.6. When 2 ≤ l ≤ k − 2 (hence k = dimC X ≥ 4), it seems
unlikely that the cone H l,l

psef (X, R) (or its dual Hk−l,k−l
nef (X, R)) is preserved by

f∗ (or f∗), unless f is holomorphic. It follows however from previous proofs
that if H l,l

psef (X, R) is f∗-invariant and f∗[ωl] ≤ f∗(. . . f∗[ωl]) . . . ), then we
get similar information on λl(f). These conditions are satisfied if e.g. X is a
complex homogeneous manifold.

1.2. Topological entropy. For p ∈ X, we define f(p) = π2π
−1
1 (p) and

f−1(p) = π1π
−1
2 (p): these are proper algebraic subsets of X. Note that If =

{p ∈ X / dim f(p) > 0}. We set I−f := {p ∈ X / dim f−1(p) > 0} and let Cf

denote the critical set of f , i.e. the closure of the set of points in X \ If where
Jf(p) = 0. Clearly I−f ⊂ f(Cf ) and I−fn ⊂ fn(I−f ); thus

∪n≥1I
−
fn ⊂ PC(f) := ∪n≥1f

n(Cf ) := postcritical set of f.

Observe that for a ∈ X \ ∪n≥0I
−
fn , we can define for all n ≥ 0 the probability

measures d−n
t (fn)∗εa. Here εa denotes the Dirac mass at point a. Therefore if
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ν is a probability measure on X which does not charge PC(f), we can define

νn :=
1
dn

t
(fn)∗ν =

∫
1
dn

t
(fn)∗εadν(a).

The latter are again probability measures which do not charge PC(f) since
f(PC(f)) ⊂ PC(f). We will prove, when dt > λk−1(f), that the ν ′ns converge
to an invariant measure µf (Theorem 3.1).

We now give a definition of entropy which is suitable for our purpose (this
definition differs slightly from that of Friedland [Fr 91]). Observe that for all
n ≥ 0, Ifn ⊂ f−n(If ). We set

Ωf := X \ ∪n∈Zfn(If ).

This is a totally invariant subset of X such that fn is holomorphic at ev-
ery point for all n ≥ 0. Following Bowen’s definition [Bo 73] we define the
topological entropy of f relative to Y ⊂ Ωf to be

htop(f|Y ) := sup
ε>0

lim
1
n

log max{+F / F (n, ε)-separated set in Y },

where F is said to be (n, ε)-separated if dn(x, y) ≥ ε whenever (x, y) ∈ F 2,
x /= y. Here dn(x, y) = max0≤j≤n−1 d(f j(x), f j(y)) for some metric d on X.
We define htop(f) := htop(f|Ωf

). These definitions clearly do not depend on
the choice of the metric.

Given ν an ergodic probability measure such that ν(Ωf ) = 1, we define
the metric entropy of ν following Brin-Katok [BK 83]: for almost every x ∈ Ωf ,

hν(f) := sup
ε>0

lim − 1
n
ν(Bn(x, ε)),

where Bn(x, ε) = {y ∈ Ωf / dn(x, y) < ε}. One easily checks that the topolog-
ical entropy dominates any metric entropy:

htop(f) ≥ sup{hν(f), ν ergodic with ν(Ωf ) = 1}.

However it is not clear whether the reverse inequality holds, as it does for
nonsingular mappings. More generally if Y is a Borel subset of Ωf such that
ν(Y ) > 0, then hν(f) ≤ htop(f|Y ). This is what Briend and Duval call the
relative variational principle [BD 01].

Let Γn = {(x, f(x), . . . , fn−1(x)), x ∈ Ωf} be the iterated graph of f and
set

lov(f) := lim
1
n

log(Vol(Γn)) = lim
1
n

log
(∫

Γn

ωk
n

)
,

where ωn =
∑n

i=1 π
∗
i ω, πi being the projection Xn → X on the ith factor. A

well-known argument of Gromov [Gr 77] yields the estimate htop(f) ≤ lov(f).
When f is a holomorphic endomorphism (i.e. when If = ∅), a simple coho-
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mological computation yields lov(f) = max1≤j≤k log λj(f). Such computation
is more delicate for mappings which are merely meromorphic. The following
lemma will be quite useful in our analysis.

Lemma 1.7. Assume dimC X ≤ 3 or X is a complex homogeneous mani-
fold. Fix ε > 0. Then there exists Cε > 0 such that

0 ≤
∫

Ωf

(fn1)∗ω ∧ · · · ∧ (fnk−1)∗ω ∧ ω ≤ Cε[ max
1≤j≤k−1

λj(f) + ε]max ni ,

for all (n1, . . . , nk−1) ∈ Nk−1.

Proof. We can assume n1 ≤ · · · ≤ nk−1 without loss of generality.
When k = dimC X ≤ 2 everything is clear. Assume k = 3. Then∫

Ωf
(fn1)∗ω ∧ (fn2)∗ω ∧ ω ≤

∫
X ω ∧ (fn2−n1)∗ω ∧ (fn1)∗ω. Here we use the

fact that (fn2−n1)∗ω∧ (fn1)∗ω is a globally well defined positive closed current
of bidegree (2, 2) on X. This follows from the intersection theory of positive
currents (see [S 99]), since (fn2−n1)∗ω and (fn1)∗ω have continuous potentials
outside a set of codimension ≥ 2. Using Propositions 1.2 and 1.5, we thus get,
for ε > 0 fixed,

0≤
∫

Ωf

(fn1)∗ω ∧ (fn2)∗ω ∧ ω ≤ CN((fn2−n1)∗[ω])N((fn1)∗[ω])

≤Cε[λ1(f) + ε]n2−n1 [λ2(f) + ε]n1 ≤ Cε max
j=1,2

[λj(f) + ε]n2 .

When dimC X ≥ 4, it becomes more difficult to define and control the
positivity of (f i1)∗ω ∧ (f i2)∗ω ∧ (f i3)∗ω on X \ Ωf . However, when X is a
complex homogeneous manifold (i.e. when the group of automorphisms Aut(X)
acts transitively on X), one can regularize every positive closed current T
within the same cohomology class and get this way an approximation of T by
smooth positive closed forms Tε 1 T (see [Hu 94]). Proceeding as above and
replacing each singular term (fn)∗ω, (fm)∗ω by a smooth approximant, we
see that Fatou’s lemma yields the desired inequality (this argument is used in
[RS 97] to obtain related inequalities).

Corollary 1.8. Assume dimC X ≤ 3 or X is complex homogeneous.
Then

htop(f) ≤ lov(f) ≤ max
1≤j≤k

log λj(f).

Proof. By definition Vol(Γn) =
∑

0≤i1,...,ik≤n−1

∫
Ωf

(f i1)∗ω ∧ · · · ∧ (f ik)∗ω.
Assume i1 ≤ · · · ≤ ik and fix ε > 0. Then∫

Ωf

(f i1)∗ω ∧ · · · ∧ (f ik)∗ω = dt(f)i1

∫

Ωf

(f i2−i1)∗ω ∧ · · · ∧ (f ik−i1)∗ω ∧ ω

≤ Cεdt(f)i1 [ max
1≤j≤k−1

λj(f) + ε]ik−i1 ≤ Cε[ max
1≤j≤k

λj(f) + ε]n.
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Therefore Vol(Γn) ≤ Cεnk[maxλj(f) + ε]n, hence lov(f) ≤ log[maxλj(f) + ε].
When ε → 0 we have the desired inequality.

We will also need a relative version of this estimate.

Corollary 1.9. Assume dimC X ≤ 3 or X is complex homogeneous. Let
Y be a proper subset of Ωf . If Y is algebraic then

htop(f|Y ) ≤ lov(f|Y ) ≤ max
1≤j≤k−1

log λj(f).

In the general case, we simply get

htop(f|Y ) ≤ lim
1
n

log(Vol(Γn|Y )ε),

where ε > 0 is fixed, Γn|Y denotes the restriction of Γn to Y and (Γn|Y )ε is
the ε-neighborhood of Γn|Y in Γn.

2. A canonical invariant measure µf

Theorem 2.1. Let f : X → X be a rational mapping such that dt(f) >
λk−1(f). Then there exists a probability measure µf such that if Θ is any
smooth probability measure on X,

1
dt(f)n

(fn)∗Θ −→ µf ,

where the convergence holds in the weak sense of measures. Moreover :

i) Every quasiplurisubharmonic function is in L1(µf ). In particular µf

does not charge pluripolar sets and log+ ||Df±1|| ∈ L1(µf ).

ii) f∗µf = dt(f)µf ; hence µf is invariant f∗µf = µf .

iii) htop(f) ≥ hµf (f) ≥ log dt(f) > 0. In particular µf is a measure of
maximal entropy when dimC X ≤ 3 or when X is complex homogeneous.

Proof. Fix a a noncritical value of f and r > 0 such that f admits
dt = dt(f) well defined inverse branches on B(a, r). Fix Θ a smooth prob-
ability measure with compact support in B(a, r). Then d−1

t f∗Θ is a smooth
probability measure on X. Since X is Kähler, the ddc-lemma (see [GH 78,
p. 149]) yields

1
dt

f∗Θ = Θ+ ddc(S),

where S is a smooth form of bidegree (k−1, k−1). Replacing S by S +Cωk−1

if necessary, we can assume 0 ≤ S ≤ Cωk−1 for some constant C > 0. We now
take the pull-back of the previous equation by f , as explained in Section 1.
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Recall that (fn)∗ddcS = ddc(fn)∗S for all n (because (π1)∗,π∗
2 commute

with d, dc). We infer, by induction, that

1
dn

t
(fn)∗Θ = Θ+ ddcSn, Sn =

n−1∑

j=0

1
dj

t

(f j)∗S.

Indeed observe that (fn+1)∗Θ = (fn)∗(f∗Θ), since these are the pull-backs of
smooth forms; they are smooth and coincide in X \

(
Ifn ∪ Ifn+1

)
, hence they

coincide everywhere since they have L1
loc-coefficients. Therefore

1
dn+1

t

(fn+1)∗Θ =
1
dn

t
(fn)∗

(
1
dt

f∗Θ
)

=
1
dn

t
(fn)∗(Θ+ ddcS) = Θ+ ddcSn+1.

The sequence of positive currents (Sn) is increasing since (f j)∗S ≥ 0.
Setting ||Sn|| :=

∫
X Sn ∧ ω, we get

0 ≤ ||Sn|| ≤ C
n−1∑

j=0

1
dj

t

∫

Ωf

(f j)∗ωk−1 ∧ ω ≤ Cε

∑

j≥0

(
λk−1(f) + ε

dt

)j

< +∞,

using Proposition 1.5 with ε > 0 small enough. Therefore (Sn) converges
towards some positive current S∞; hence

1
dn

t
(fn)∗Θ −→ µf := Θ+ ddcS∞.

Observe that if Θ′ is another smooth probability measure, then Θ′ = Θ+ddcR,
for some smooth form R of bidegree (k − 1, k − 1). Since ||(fn)∗R|| = o(dn

t ),
we have again d−n

t (fn)∗Θ′ → µf .
Let ϕ be a quasiplurisubharmonic (qpsh) function on X, i.e. an upper

semi-continuous function which is locally given as the sum of a plurisubhar-
monic function and a smooth function. Translating and rescaling ϕ if necessary,
we can assume ϕ ≤ 0 and ddcϕ ≥ −ω. It follows from a regularization result
of Demailly (see [De 99]) that there exist C > 0 and ϕε ≤ 0 a smooth sequence
of functions pointwise decreasing towards ϕ such that ddcϕε ≥ −Cω. Using
Stokes’ theorem we get

0 ≤
∫

(−ϕε)dµf =
∫

(−ϕε)Θ+
∫

S∞ ∧ (−ddcϕε) ≤
∫

(−ϕε)Θ+ C

∫
S∞ ∧ω,

since S∞ ≥ 0. The monotone convergence theorem thus implies

0 ≤
∫

X
(−ϕ)dµf ≤

∫

X
(−ϕ)Θ+ C

∫

X
S∞ ∧ ω < +∞.

Since any pluripolar set is included in the −∞ locus of a qpsh function,
µf does not charge pluripolar sets. In particular µf (If ) = 0; hence f∗µf = µf ;
i.e. µf is an invariant probability measure. Similarly µf (I−f ) = 0 so that
f∗µf = dtµf ; i.e. µf has constant jacobian dt.
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It follows from the Rohlin-Parry formula (see [P 69]) that hµf (f) ≥ log dt.
Since µf (Ωf ) = 1, we get in particular htop(f) ≥ log dt > 0. This is reminiscent
of the well-known result of Misiurewicz and Przytycki that the topological
entropy of a C1-smooth endomorphism of a compact manifold is minorated by
log dt (see [KH 95]). When dimC X ≤ 3 or when X is complex homogeneous,
we get

hµf (f) ≤ htop(f) ≤ max
1≤j≤k

log λj(f) = log dt,

by Proposition 1.2 and Corollary 1.8; hence µf is a measure of maximal entropy.

3. First ergodic properties of µf

In this section we adapt the work of Briend and Duval [BD 01] to establish
some ergodic properties of µf .

Theorem 3.1. Let f, µf be as in Theorem 2.1. Then the following hold :

i) If ν is a probability measure which does not charge the postcritical set
PC(f) := ∪j≥1f j(Cf ), then d−n

t (fn)∗ν → µf .

ii) The measure µf is mixing.

iii) If we let χk ≥ · · · ≥ χ1 denote the Lyapunov exponents of µf , then

χ1 ≥ 1
2

log(dt/λk−1(f)) > 0.

iv) Let RPern(f) denote the set of repelling periodic points of order n.
They are equidistributed with respect to µf if lim sup(+RPern(f)/dn

t ) ≤ 1. The
latter holds when dimC X ≤ 3 or when X is complex homogeneous.

Remark 3.2. When X = Pk and f is holomorphic (i.e. when If = ∅), the
measure µf was constructed by Hubbard and Papadopol [HP 94] and Fornæss
and Sibony [FS 94]. The latter also proved ii) and a weaker version i′) of i):
they showed the existence of an exceptional pluripolar set Ef ⊂ Pk such that
d−n

t (fn)∗εa → µf if a /∈ Ef . The remaining assertions iii), iv) were established
by Briend and Duval [BD 99], [BD 01], who also proved that the exceptional
set Ef is actually a totally invariant algebraic subset of PC(f).

When X = Pk but f is merely meromorphic, the measure µf was con-
structed by Russakovskii and Shiffman [RS 97] by proving i′). Following
[BD 01], we actually show that Ef is a subset of PC(f). Note however, that
one can not expect Ef to be algebraic in the meromorphic case.

This result heavily relies on the following lemma. We thank Julien Duval
for explaining to us the construction of inverse branches on balls.
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Lemma 3.3. Set Vl = ∪l
j=1f

j(Cf ), where Cf denotes the critical set of f .
Fix ε > 0 and an embedding X ⊂ CPN . Fix 1 < δ < dt/λk−1, δ arbitrarily
close to dt/λk−1. Then there exists l 3 1 such that the following hold :

i) For every holomorphic disk ∆ ⊂ L ∩ X \ Vl, where L is a generic
projective linear subspace of codimension dimC X−1 in CPN , there are (1−ε)dn

t

inverse branches of fn (n ≥ l) whose images ∆−n
i satisfy

diam(∆−n
i ) ≤ Cδ−n/2,

where C is independent of n.
ii) For every ball B ⊂ X \ Vl, there are (1 − ε)dn

t inverse branches of fn

on B, n ≥ l, whose images B−n
i satisfy

diam(B−n
i ) ≤ Cδ−n/2.

Proof. Fix ε > 0 small and δ = dt/(λk−1(f) + ε).
i) Let V1 = f(Cf ) denote the set of critical values of f . Let D be an

algebraic curve on X which is not included in PC(f). Then V1∩f−nD is finite
(possibly empty) for all n ≥ 0. Let α be a closed smooth form of bidegree
(k − 1, k − 1) which is cohomologous to [D]. Then α ≤ CDωk−1 for some
constant CD > 0. Note that CD = C1 can be chosen independent of D if
we restrict ourselve to curves D which are the trace on X of projective linear
subspaces of PN ; in this case we can choose α = (ωk−1

FS )|X , where ωFS denotes
the Fubini-Study Kähler form on PN . We assume in the sequel that V1 is a
hypersurface of X (in general V1 may have codimension ≥ 2 in X; in this case
we simply replace V1 by some hypersurface Ṽ1 containing V1). Let β be a closed
smooth (1, 1)-form cohomologous to [V1], β ≤ C2ω. Then

+V1 ∩ f−nD =
∫

[V1] ∩ (fn)∗[D] ≤ C1

∫
[V1] ∧ (fn)∗ωk−1

≤C1C2

∫
ω ∧ (fn)∗ωk−1 ≤ Cε[λk−1(f) + ε]n = Cεδ

−ndn
t ,

where the last inequality follows from Proposition 1.5.
Since ∆ ∩ Vl = ∅, there are dl

t well defined inverse branches f−l
i of f l on

∆. Set ∆−l
i = f−l

i ∆. We can further define dt inverse branches of f on ∆−l
i

if ∆−l
i ∩ V1 = ∅. It follows from the computation above that at most Cεδ−ldl

t

of the ∆−l
i ’s may intersect V1. Therefore we can define dl+1

t (1−Cεδ−l) inverse
branches of f l+1 on ∆. A straightforward induction shows that we can define
dn

t (1 − Cεδ−l ∑
j≥0 δ

−j) ≥ dn
t (1 − ε/2) inverse branches of fn on ∆, if we fix

l large enough so that Cεδ−l(1 − δ−1) < ε/2. Let In
ε denote the set of indices

such that f−n
i is well defined on ∆. Now,

∑

i∈In
ε

Area(∆−n
i ) =

∑

i∈In
ε

∫
[f−n

i (∆)] ∧ ω ≤
∫

(fn)∗[D] ∧ ω ≤ Cε[λk−1(f) + ε]n.
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Therefore
+

{
i ∈ In

ε / Area(∆−n
i ) >

2Cε

ε
δ−n

}
≤ ε

2
dn

t ;

hence for (1−ε)dn
t inverse branches f−n

i , we get an upper bound Area(∆−n
i ) ≤

C ′
εδ

−n. It is now a standard fact that the area controls the diameter of slightly
smaller disks ∆̃−n

i = f−n
i (∆̃),

diam(∆̃−n
i ) ≤ C ′′

ε δ
−n/2.

We refer the reader to the appendix in [BD 01] where this is proved using
the notion of extremal length. Note that when the ∆−n

i ’s are included in
a relatively compact ball of some affine chart (i.e. if we already know that
diam(∆̃−n

i ) is small enough), this follows from Cauchy’s formula.
ii) Let now B = B(p, 8rε) be a ball such that B∩Vl = ∅. We now construct

(1 − ε)dn
t inverse branches f−n

i of fn on B(p, 4rε) such that

diam(f−n
i B(p, rε)) ≤ C ′′′

ε δ−n/2.

There are dl
t well defined inverse branches f−l

i of f l on B = B(p, 8rε). Set
B−l

i = f−l
i B. For n ≥ l, we set rn = 1 − ρn with ρn =

∑n
j=l j

−2. We can
further define dt inverse branches of f on f−l

i (rl+1B) if f−l
i (rl+1B) ∩ V1 = ∅.

Assume f−l
i (rl+1B)∩V1 /= ∅; then f l(B−l

i ∩V1)∩rl+1B /= ∅. Let Zl denote the
analytic set f l(B−l

i ∩V1) and pick xl a point on Zl such that B(xl, 8rεl−2) ⊂ B.
Thus Zl∩B(xl, 8rεl−2) is an analytic subset of B(xl, 8rεl−2) without boundary.
It follows from Jensen’s inequality that

∫
[f l(B−l

i ∩ V1)] ∧ ωk−1 ≥
∫

B(xl,8rεl−2)
[Zl] ∧ ωk−1 ≥ C0(8rεl

−2)2(k−1),

for some uniform constant C0 > 0. This is because Zl has Lelong number ≥ 1
at point xl. On the other hand,

∑

i

∫
[f l(B−l

i ∩ V1)] ∧ ωk−1 ≤
∫

(f l)∗[V1] ∧ ωk−1 ≤ C[λk−1(f) + ε]l.

Therefore +{i / f−l
i (rl+1B) ∩ V1 /= ∅} ≤ C ′l4(k−1)δ−ldl

t. Continuing the induc-
tion, slightly shrinking the radius of the ball at each step as indicated above,
we construct dn := dn

t (1−C ′ ∑n−1
j=l l4(k−1)δ−ldl

t) inverse branches of fn on the
ball Bn = B(p, 8rεrn). Now rn ≥ 1 −

∑
j≥l j

−2 so that Bn ⊃ B(p, 4rε) and
dn ≥ dn

t (1 − ε/2) for all n ≥ l, if l is chosen large enough.
Let ω′ =

∫
[Lθ]dν(θ), where Lθ denotes the trace of a projective line

through p and ν is the Fubini-Study volume form on the set of lines 1 PN−1,
so that ω′ is a positive closed current of bidegree (k−1, k−1) which is smooth
in X \ {p}. Thus

0 ≤
∑

i

∫

B(p,4rε)
(f−n

i )∗ω′ ∧ ω ≤
∫

(fn)∗ω′ ∧ ω ≤ C ′′[λk−1(f) + ε]n.
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We infer that
∫
B(p,4rε)

(f−n
i )∗ω′ ∧ ω ≤ 2C′′

ε δ−n for at least (1 − ε)dn
t inverse

branches.
Let In

ε denote the corresponding set of indices. Set ∆θ = Lθ ∩ B(p, 4rε).
For i fixed in In

ε , we get

Area(f−n
i ∆θ) ≤

4C ′′

ε
δ−n

on a set of projective lines An
i ⊂ PN−1 of measure ≥ 1/2. Therefore

diam(f−n
i

1
2∆θ) ≤ Cεδ−n/2 for θ ∈ An

i . Now the sets An
i have projective ca-

pacity ≥ 1/2, so it follows from a result of Sibony and Wong [A 81] (see also
[DS 02], where this is used in a dynamical context ) that

diam
(

f−n
i

1
4
∆θ

)
≤ Cεδ

−n/2

for every line Lθ. The desired bound on diam(f−n
i B(p, rε)) follows.

Proof of Theorem 3.1. Let a, b ∈ X \ PC(f). We claim dn

t (fn)∗(εa − εb)
→ 0. Indeed let 0 ≤ χ ≤ 1 be a test function. Fix ε > 0 and l = lε 3 1 as in
Lemma 3.3. Let ∆ be a holomorphic disk joining a to b such that ∆ ∩ Vl = ∅.
Using Lemma 3.3, we construct (1 − ε)dn

t inverse branches f−n
i of fn on ∆

with small diameter. Thus
∣∣∣∣

〈
(fn)∗(εa − εb)

dn
t

,χ

〉∣∣∣∣ ≤ 2ε sup |χ| +
(1−ε)dn

t∑

i=1

|χ ◦ f−n
i (a) − χ ◦ f−n

i (b)|
dn

t
< 3ε,

if n is large enough so that diam(f−n
i ∆) is smaller than the modulus of conti-

nuity of χ with respect to ε. This proves the claim.
Now let a /∈ PC(f). Using the identities µf =

∫
εbdµf (b) and f∗µf = dtµf ,

we get

µf − 1
dn

t
(fn)∗εa =

1
dn

t
(fn)∗(µf − εa) =

∫
1
dn

t
(fn)∗(εb − εa)dµf (b) → 0,

by the dominated convergence theorem, by the fact that µf (PC(f)) = 0.
Similarly, if ν is a probability measure such that ν(PC(f)) = 0, we get
d−n

t (fn)∗ν =
∫

d−n
t (fn)∗εadν(a) → µf . In particular let χ be a test func-

tion. Translating and rescaling, we can assume 0 ≤ χ and cχ :=
∫
χdµf = 1

so that χµf is a probability measure. Since χµf (PC(f)) = 0, we obtain

χ ◦ fnµf =
1
dn

t
(fn)∗(χµf ) → µf = cχµf .

This says precisely that the measure µf is mixing (see [KH 95]).
In particular µf is ergodic. Moreover log+ ||Df±1|| ∈ L1(µf ) (by Theorem

2.1.i); hence µf has well defined (finite) Lyapunov exponents χk ≥ · · · ≥ χ1.
It follows from Birkhoff’s ergodic theorem that

χ1 = lim
n→+∞

− 1
n

∫
log ||(Dxfn)−1||dµf (x).
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Fix ε > 0, l = lε 3 1 and x ∈ Suppµf \ Vl a generic point. Using Lemma 3.3,
we construct (1 − ε)d−n

t inverse branches f−n
i of fn on B = B(x, rε) whose

images B−n
i have small diameter. Let x−n

i denote the preimages of x under
fn. Since Df−n

i (x) = (Dfn(x−n
i ))−1, it follows from Cauchy’s inequalities and

Lemma 3.3 that
||(Dx−n

i
fn)−1|| ≤ Cδ−n/2,

where δ is arbitrarily close to dt/λk−1, C is independent of n and 1 ≤ i ≤
(1 − ε)dn

t . Let

Ω̂f := {x̂ = (xn)n∈Z ∈ ΩZ
f : f(xn) = xn+1 for all n ∈ Z}

be the natural extension of (f,Ωf ). It is well-known that the dynamical system
(Ωf , f, µf ) lifts to (Ω̂f , f̂ , µ̂f ), where f̂ denotes the shift on Ω̂f and µ̂f is the
unique invariant probability measure on Ω̂f such that (πn)∗µ̂f = µf , where πn

denotes the projection onto the nth coordinate. Set B̂ := π−1
0 B and B̂ε :=

{x̂ ∈ B̂ : ∀n ≥ 1, x−n = f−n
i (x0) for some 1 ≤ i ≤ (1 − ε)dn

t }. Observe that

B̂ε =
⋂

n≥l

↘ f̂n
(
∪(1−ε)dn

t

i=1 B̂−n
i

)
, where B−n

i = f−n
i B.

Therefore

µ̂f (B̂ε) = lim µ̂f

(
∪(1−ε)dn

t

i=1 B̂−n
i

)
= lim

(1−ε)dn
t∑

i=1

µf (B−n
i ) = (1 − ε)µf (B) > 0,

when µ̂f is f̂ -invariant, µ̂f (Â) = µf (A), and µf (B−n
i ) = d−n

t µf (B) (because
(fn)∗µf = dn

t µf and fn is injective on B−n
i ).

Set ϕ := − log ||(Dxf)−1|| and ϕ̂ = ϕ ◦π0 ∈ L1(µ̂f ). Then χ1 =
∫
ϕdµf =∫

ϕ̂dµ̂f . The measure µ̂f is mixing since µf is; hence by Birkhoff’s theorem,

1
n

n−1∑

j=0

ϕ̂ ◦ f̂−j(x̂) → χ1 for almost every x̂.

Fix x̂ a generic point in B̂ε. Then

1
n

n−1∑

j=0

ϕ̂ ◦ f̂−j(x̂) =− 1
n

n−1∑

j=0

log ||(Dx−jf)−1||

=− 1
n

log ||Dxf−n
i || ≥ log δ

2
− log C

n
,

hence χ1 ≥ 1
2 log δ. The desired lower bound follows when δ → dt/λk−1.

Set νn := [+RPern(f)]−1 ∑
x∈RPern(f) εx and let ν be any cluster point of

νn. Fix ε > 0 and x ∈ Suppµ\PC(f). Using lemma 3.3, we construct (1−ε)dn
t
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inverse branches f−n
i of fn on B = B(x, rε) whose images have small diameter.

We now prove the following inequality:

(1 − ε)3µf (B) ≤ ν(B).(††)

Clearly (††) implies µf ≤ ν. Indeed any Borel subset A can be approximated
by disjoint union of small balls satisfying (††); hence (1 − ε)4µf (A) ≤ ν(A).
One can then let ε → 0. Finally since µf and ν are probability measures, we
actually get µf = ν; hence νn → µf .

It remains to prove (††). We can assume µf (B) > 0. Fix B′ ⊂⊂ B′′ ⊂⊂ B

such that µf (B′) ≥ (1− ε)µf (B). We consider as above B̂ε the set of histories
of points in B given by the inverse branches f−n

i . Since µ̂f is mixing, we get
µ̂f (f̂−n(B̂ε) ∩ B̂′) → µ̂f (B̂ε)µ̂f (B̂′). Thus, for n large enough,

(1 − ε)3µf (B)2 ≤ (1 − ε)µ̂f (B̂ε)µ̂f (B̂′)

≤ µ̂f (f̂−n(B̂ε) ∩ B̂′) ≤
(1−ε)dn

t∑

i=1

µf (B−n
i ∩ B′).

Observe that either B−n
i ∩ B′ = ∅ or B−n

i ⊂ B′′ ⊂⊂ B since diam(B−n
i ) → 0.

When B−n
i ∩ B′ /= ∅, f−n

i is thus a contraction on B. Therefore it admits a
unique attracting fixed point which is henceforth a repelling periodic point of
order n for f . Using again that µf (B−n

i ) = d−n
t µf (B), we infer

(1 − ε)3µf (B)2 ≤ +RPern(f)
dn

t
νn(B)µf (B).

Letting ni → +∞ yields (††) if lim+RPern(f)/dn
t ≤ 1. Note that dt(f) >

max1≤j≤k−1 λj(f) by Proposition 1.2. When dimC X ≤ 3 or when X is complex
homogeneous, each dynamical degree λl(f) equals the asymptotical growth
of the spectral radii rl(fn) of the linear action induced by f∗ on H l,l

a (X, R)
(see Proposition 1.2 and Remark 1.3.ii). In these cases, the upper bound on
+RPern(f) follows from the Lefschetz fixed point formula if f has no curve of
periodic points. Note that f cannot have a curve of repelling periodic points.
The bound therefore follows from a perturbation argument.

4. Uniqueness of the measure of maximal entropy

Theorem 4.1. Assume dimC X ≤ 3 or X is complex homogeneous. Then
the measure µf is the unique measure of maximal entropy.

Here again we follow Briend and Duval [BD 01] who proved this result for
holomorphic endomorphisms of CPk.

Proof. Let ν be an ergodic measure such that ν(PC(f)) > 0. Then
ν(f j(Cf )) > 0 for some j ∈ N, so that it follows from the relative variational
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principle and Corollary 1.9 that

hν(f) ≤ htop(f|f j(Cf )) ≤ max
1≤j≤k−1

log λj(f) < log dt(f).

Consider now an ergodic probability measure ν of entropy hν(f) >
max1≤j≤k−1 log λj(f). Then ν does not charge PC(f); hence d−n

t (fn)∗(ν)
→ µf . Assume ν /= µf . Then ν does not have constant jacobian, i.e. f∗ν /= dtν.
Therefore one can construct a simply connected domain U in X \ f(Cf ) with
ν(U) = Vol(U) = 1 admitting U1, . . . , Udt

preimages on which f is one-to-one
and not equally well ν-distributed, say with ν(U1) > σ > d−1

t (see [BD 01]
for more details on this construction). We are going to show that this implies
hν(f) < log dt(f).

Observe that ν(Ωf ) = 1; otherwise hν(f) ≤ max1≤j≤k−1 log λj(f) by
Corollary 1.9. Consider O a slightly smaller open subset of U1 such that
Oε ⊂ U1, where Oε denotes the ε-neighborhood of O, and ν(O) > σ. Set
Y = {a ∈ Ωf : +{0 ≤ j ≤ n − 1, f j(a) ∈ O} ≥ nσ for n ≥ m}. It follows from
Birkhoff’s theorem that ν(Y ) > 0 for m large enough. The relative variational
principle yields

hν(f) ≤ htop(f|Y ) ≤ lim sup
1
n

Vol(Γn|Y )ε,

where Γn = {(a, . . . , fn−1(a)) : a ∈ Ωf} is the iterated graph of f (see Sec-
tion 1). Up to a zero volume set, we get

(Γn|Y )ε ⊂
⋃

α∈Σn

Γn(α),

where Σn = {α ∈ {1, . . . , dt} : +{q,αq = 1} ≥ nσ} and Γn(α) = Γn ∩
(Uα1 × · · ·× Uαn). Indeed the U ′

js form a partition of X (up to a zero vol-
ume set) and {Γn(α)} is the induced partition on Γn. Therefore

Vol(Γn|Y )ε≤
∑

α∈Σn

∫

Γn(α)
ωk

n

≤
∑

i∈{0,...,n−1}k

∑

α∈Σn

∫

π(Γn(α))
(f i1)∗ω ∧ · · · ∧ (f ik)∗ω,

where π denotes the projection of Xn on the first factor. Fix ε > 0 so small
that β + ε < dt, where β := max1≤j≤k−1 λj(f). Fix γ < 1 to be chosen later
and define, following a trick of Briend and Duval,

I = {i ∈ {0, . . . , n − 1}k : i1, . . . ik ≥ γn} and II = {0, . . . , n − 1}2 \ I.

Fix i ∈ II and assume i1 ≤ · · · ≤ ik (hence i1 ≤ γn). Since the π(Γn(α)) form
a partition of Ωf , we get
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∑

α∈Σn

∫

π(Γn(α))
(f i1)∗ω ∧ · · · ∧ (f ik)∗ω ≤

∫

Ωf

(f i1)∗ω ∧ · · · ∧ (f ik)∗ω

= di1
t

∫

Ωf

ω ∧ (f i2−i1)∗ω ∧ · · · ∧ (f ik−i1)∗ω

≤Cεd
i1
t [β + ε]ik−i1

≤Cεd
γn
t [β + ε]n(1−γ),

where the existence of Cε is as in Lemma 1.7. Therefore
∑

i∈II

∑

α∈Σn

∫

π(Γn(α))
(f i1)∗ω ∧ · · · ∧ (f ik)∗ω ≤ Cεn

kdγn
t [β + ε]n(1−γ).

Now fix i ∈ I, α ∈ Σn and set q = [γn]. Since f q is injective on π(Γn(α)),
assuming i1 ≤ · · · ≤ ik, we get

∫

π(Γn(α))
(f i1)∗ω ∧ · · · ∧ (f ik)∗ω

=
∫

π(Γn(α))
(f q)∗

(
(f i1−q)∗ω ∧ · · · ∧ (f ik−q)∗ω

)

≤
∫

Ωf

(f i1−q)∗ω ∧ · · · ∧ (f ik−q)∗ω

≤Cεd
i1−q
t [β + ε]ik−i1 =

(
dt

β + ε

)i1−q

[β + ε]ik−q

≤Cεd
n−1−q
t ≤ Cεd

n(1−γ)
t .

By Lemma 7.2 in [L 83] there exists ρ < 1 such that +Σn ≤ dnρ
t . Therefore

∑

i∈I

∑

α∈Σn

∫

π(Γn(α))
(f i1)∗ω ∧ · · · ∧ (f ik)∗ω ≤ Cεn

kdρnt dn(1−γ)
t .

Altogether this yields

hν(f) ≤ max([1 + ρ− γ] log dt(f), γ log dt(f) + [1 − γ] log(β + ε)),

so that hν(f) < log dt(f) if we choose ρ < γ < 1.

Laboratoire Emile Picard, Université Paul Sabatier, Toulouse, France
E-mail address: guedj@picard.ups-tlse.fr
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