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Ergodic properties of rational mappings
with large topological degree

By VINCENT GUEDJ

Abstract

Let X be a projective manifold and f : X — X a rational mapping with
large topological degree, d; > A\,_1(f) := the (k — 1)"" dynamical degree of f.
We give an elementary construction of a probability measure py such that
d;"(f")*© — py for every smooth probability measure © on X. We show
that every quasiplurisubharmonic function is py-integrable. In particular py
does not charge either points of indeterminacy or pluripolar sets, hence p is
f-invariant with constant jacobian f*u; = dyuy. We then establish the main
ergodic properties of yiy: it is mixing with positive Lyapunov exponents, preim-
ages of "most” points as well as repelling periodic points are equidistributed
with respect to py. Moreover, when dim¢ X < 3 or when X is complex homo-
geneous, s is the unique measure of maximal entropy.

Introduction

Let X be a projective algebraic manifold and w a Hodge form on X nor-
malized so that fX wF =1, k = dimcX. Let f : X — X be a rational
mapping. We shall always assume in the sequel that f is dominating; i.e., its
jacobian determinant does not vanish identically in any coordinate chart. We
let I; denote the indeterminacy locus of f (the points where f is not holomor-
phic): this is an algebraic subvariety of codimension > 2. We let d; denote the
topological degree of f: this is the number of preimages of a generic point.

Define f*w® to be the trivial extension through I of (fixng, )fw A A
(fix\1,)*w. This is a Radon measure of total mass d;. When d; > A\x_1(f) (see
Section 1 below), we give an elementary construction of a probability measure
s such that d; ™(f*)*wk — us. We show that every quasiplurisubharmonic
function is ps-integrable (Theorem 2.1). In particular py does not charge
pluripolar sets. This answers a question raised by Russakovskii and Shiffman
[RS 97] which was addressed by several authors (see [HP 99|, [FG 01], [G 02],
[Do 01], [DS 02]). This also shows that 7 is an invariant measure with positive
entropy > logd; > 0. Thus f has positive topological entropy.
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Building on the work of Briend and Duval [BD 01], we then establish the
main ergodic properties of y: it is mixing with positive Lyapunov exponents,
preimages of "most” points as well as repelling periodic points are equidis-
tributed with respect to py (Theorem 3.1). Moreover, when dim¢ X < 3 or
when the group of automorphisms Aut(X) acts transitively on X, uy is the
unique measure of maximal entropy (Theorem 4.1).

Acknowledgements. We thank Jeffrey Diller, Julien Duval and Charles
Favre for several interesting conversations.

1. Numerical invariants

In this section we define and establish inequalities between several numer-
ical invariants. This involves some technicalities because our mappings are not
holomorphic and also, the psef/nef-cones are not well understood in dimension
> 4. What follows is quite simple when f is holomorphic (the only nontrivial
part, the link between entropy and dynamical degrees, goes back to Gromov
[Gr 77]). When X = P, a clean treatment of the dynamical degrees is given
by Russakovskii and Shiffman in [RS 97]: the situation is simpler since P* is
a complex homogeneous manifold whose cohomology vector spaces H! are all
one-dimensional.

1.1.  Dynamical degrees. Given a smooth form « of bidegree (I,1),
1 < I < k, we define the pull-back of a by f in the following way: let
I'y € X x X denote the graph of f and consider a desingularization r pof I'y.
We have a commutative diagram

where 71, w2 are holomorphic maps. We set f*a := (m1)«(75a) where we push
forward the smooth form 75« by 7 as a current. Note that f*« is actually
a form with Llloc-coefﬁcients which coincides with the usual smooth pull-back
(fix\1,)"a on X \ Iy; thus the definition does not depend on the choice of
desingularization. In other words, f*« is the trivial extension, as current, of
(f|X\[f)*O( through If.

This definition induces a linear action on the cohomology space H" (X, R)
which preserves Hfbl(X ,R), the subspace generated by complex subvarieties
of codimension I. We let Hll)é . f(X ,R) denote the closed cone generated by
effective cycles.
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Definition 1.1. Set &;(f) := [ frwt AWkl We define the *'-dynamical

degree of f to be
M(f) = liminf [5(f")]V".

This definition clearly does not depend on the choice of the Kahler form w.
Observe that for | = k, A\x(f) is the topological degree of f, i.e. the number
of preimages of a generic point, which we shall preferably denote by d;(f) (or
simply d; when no confusion can arise).

PROPOSITION 1.2. i) The sequence | — N(f)/N1(f) is nondecreasing,
0 <1< k—1;ie, log\ is a concave function of I. In particular if dy =
Me(f) > Ae—1(f), then dp > Ag—1(f) > - > M (f) > 1.
ii) There exists C > 0 such that for all dominating rational self-maps
f,g: X — X,
d1(go f) < Co1(f)o1(g).

In particular 5 (f™) < Co1(f™)61(f™) so that Ay (f) = lim[6; (f™)]*/". More-

over A\i(f) is invariant under birational conjugacy.

iii) Let r1(f) denote the spectral radius of the linear action induced by f*
on Hy'(X,R) and set X (f) = limsupri(f*)Y/™. There exists C > 0 and for
every € > 0 there exists C; > 0, such that for all n,

0 <7ri(f") < Co(f") < CN(f) +e]™.
In particular M\ (f) = N (f).

Proof. i) It is equivalent to prove that A\jy1(f)N_1(f) < N(f)? for all
1 <1< k—1. This is a consequence of d;41(f™)&_1(f") < §(f™)?, which
follows from Teissier-Hovanskii mixed inequalities: it suffices to apply Theorem
1.6.Cy of [Gr 90] in the graph T » to the smooth semi-positive forms 7jw" and
TEwh e
ii) Let f,g : X — X be dominating rational self-maps. It is possible to
define f*T for any positive closed current T of bidegree (1,1) (see [S 99]). In
particular, f*(g*w) is a globally well defined positive closed current of bidegree
(1,1) on X which coincides with (go f)*w in X\ I;Uf~1(I,). Now (go f)*wis a
form with LllOC coefficients, thus it does not charge the proper algebraic subset
I;uf -1 ). Therefore we have an inequality between these two currents,

() (go f)fw < [ (g'w)

and the same inequality holds in H ;;i +(X,R). Note that (T) does not hold in
general if we replace [w] by the class of an effective divisor (see Remark 1.4
below).

Let N be a norm on H% (X R). There exists C; > 0 such that for all class

a € H;)’Slef(X, R), N(a) < C; [ a AwF=l. We infer from (1) and the continuity
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of (a,8) — [ @A S that
Silgo N < [ £go) At = [gwn £t < Cailg)ai(s).

Note that we have used the fact that f,[w~!] € Hg;}’kfl(X, R) (see below for
the definition of f, and related properties). We infer from the latter inequality
that the sequence (d1(f™)) is quasisubmultiplicative, hence the liminf can be
replaced by a lim (or an inf) in the definition of A;(f). Moreover if g is

birational, we get

di(go frog™") < Corlg)ar(g™)dr(f);
hence A1(go fog™t) = Ai(f); i.e., A\1(f) is a birational invariant.

iii) Observe that H;;i (X, R) is a closed convex cone with nonempty inte-

rior which is strict (i.e. H;;if(X, R) N —H;;,if(X, R) = {0}) and preserved by

f*. Therefore there exists, for all n € N, a class [0,] € H;;i 7(X,R) such that
(f™)*[0n] = m1(f™)[0n]. This can be thought of as a Perron-Frobenius-type
result (see Lemma 1.12 in [DF 01)).

Fix a basis [w1] = [w],[wa],...,[ws] of Ha'(X,R), where the wis are
smooth forms such that w; < w. We normalize 6, = Zj ajpw; so that
[[[0n]]] := max; |aj,| = 1; thus 6, < sw. Observe that [0] — [0 AwF™1 is
a continuous form on Hy''(X,R) which is positive on H ;;i 7(X,R). Therefore
there exists C' > 0 such that ||[0]|| < C [ A wF~L, for all [0] € HY (X ,R).

sef
This yields the first inequality: ’
r(f") = (O]l < Cri(f") /Gn AwFt
:C/(f”)*Hn APl < C’s/(f”)*w AwFL,

Conversely, fix ¢ > 0 and p > 1 such that r1(fP) < (N (f) + ¢/2)P.
Fix a norm N on Hy'(X,R). Since [0] — [ 0 A wh™1 defines a continuous
linear form on Hy''(X,R), there exists Cy > 0 such that for all [6], | [x O A
Wk < CyN([0]). Set N(f) := supy(jg))=1 N (f*[0]). It follows from (f) that
N((f")[w]) < N f*[w]) ... ), hence

0< / (F")w Ak < ON[R (PN () w]),

where n = pg + r. Now for every € > 0 one can find a norm N on H;’l(X, R)
such that 71 (fP) < N:(fP) < r1(fP) + &/2. This yields iii). O

Remark 1.3. It is remarkable that the mixed inequalities A\jy1A—1 < )‘12
contain all previously known inequalities, e.g. A4 (f) < N(f)\v(f) (which
are proved by Russakovskii and Shiffman [RS 97] when X = PF).
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Remark 1.4. One should be aware that simple inequalites like (1) are false
if we replace |[w] by the class of an effective divisor (in particular, Lemma 3
in [Fr 91] is wrong). Here is a simple 2-dimensional counterexample: consider
0 :Y — Y a biholomorphism of some projective surface Y with a nontrivial
2-cycle {p,o(p)}. Let 7 : X — Y be the blow-up of Y at point p, E = 771(p)
and ¢ = 7 Y(o(p)). Set f =7 loocor: X — X. This is a rational self-
map of X such that Iy = {q}, f(¢) = E, f(E) = q. Therefore f*[E] =0, so
f*(f*[E]) = 0 while (f o f)*[F] = [E] (contradicting Lemma 3 in [Fr 91]).

We define similarly the push-forward by f as fia := (m2).(77a). This
induces a linear action on the cohomology spaces H“ (X, R) which is dual to
that of f* on H*~LF=!(X,R). The push-forward of any positive closed current
of bidegree (1,1) is well defined and yields a positive closed current of bidegree

(1,1) on X. Therefore H;;if(X ,R) is preserved by f, (by duality, the dual

cone H ﬁe_fl’k_l(X ,R) is preserved by f*). We have a (f)’ inequality

() (g0 fsw < gu(faw).

This yields results on A;_1(f) analogous to those obtained for A;(f). We
summarize this in the following:

PROPOSITION 1.5. The dynamical degree A\,_1(f) is invariant under bi-
rational conjugacy and satisfies

MNe—1(f) = Hm[d_1 (™)™ = lim[ry— (f")]"/",

where r_1(f) denotes the spectral radius of the linear action induced by f* on

HE VL (X R).

Remark 1.6. When 2 < [ < k — 2 (hence k = dim¢ X > 4), it seems
unlikely that the cone H;’ief(X, R) (or its dual Hie_fl’k_l(X, R)) is preserved by
f* (or fi), unless f is holomorphic. It follows however from previous proofs
that if Hll)’slef(X,]R) is f*invariant and f*[w!] < f*(... f*[w!])...), then we
get similar information on A\;(f). These conditions are satisfied if e.g. X is a

complex homogeneous manifold.

1.2. Topological entropy. For p € X, we define f(p) = 7r27rl_1(p) and
ftp) = Wlwgl(p): these are proper algebraic subsets of X. Note that Iy =
{p € X/ dim f(p) > 0}. Weset I, :={pe X/ dim f~!(p) > 0} and let C;
denote the critical set of f, i.e. the closure of the set of points in X \ Iy where
Jf(p) =0. Clearly It C f(Cy) and I, C f"(I}); thus

Un>11;, C PC(f) := Un>1/"(Cy) := postcritical set of f.

Observe that for a € X \ Up>0l5,., we can define for all n > 0 the probability

measures d; "(f")*e,. Here g, denotes the Dirac mass at point a. Therefore if
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v is a probability measure on X which does not charge PC(f), we can define
= [ (e
Up 1= — v= [ — «dv(a).
d d ’

The latter are again probability measures which do not charge PC(f) since
F(PC(f)) c PC(f). We will prove, when d; > \t_1(f), that the v/;s converge
to an invariant measure py (Theorem 3.1).

We now give a definition of entropy which is suitable for our purpose (this
definition differs slightly from that of Friedland [Fr 91]). Observe that for all
n>0,Im C f"(Iy). We set

Qf =X\ Unezfn(ff).

This is a totally invariant subset of X such that f™ is holomorphic at ev-
ery point for all n > 0. Following Bowen’s definition [Bo 73] we define the
topological entropy of f relative to Y C {2 to be

—1
htop(fly') := suplim— log max{#F' / I (n, ¢)-separated set in Y},
e>0 n

where F' is said to be (n,¢)-separated if d,(z,y) > ¢ whenever (z,y) € F?,
x # y. Here d,(z,y) = maxo<j<n—1d(f?(x), f/(y)) for some metric d on X.
We define hiop(f) := htop(fin,). These definitions clearly do not depend on
the choice of the metric.

Given v an ergodic probability measure such that v(Q2y) = 1, we define
the metric entropy of v following Brin-Katok [BK 83]: for almost every x € Qy,

1
hu(f) := sup lim — _V(Bn(aj7 E))a
e>0 n
where B, (z,¢) = {y € Q¢ /d,(x,y) < e}. One easily checks that the topolog-
ical entropy dominates any metric entropy:

hiop(f) > sup{h,(f), v ergodic with v(Qs) = 1}.

However it is not clear whether the reverse inequality holds, as it does for
nonsingular mappings. More generally if Y is a Borel subset of {1y such that
v(Y) > 0, then h,(f) < hiop(fjy). This is what Briend and Duval call the
relative variational principle [BD 01].

Let I'y, = {(z, f(z),..., " }(z)), x € Q;} be the iterated graph of f and
set

lov(f) := Tim~ log(Vol(T'y)) = Tim~ log ( / wii) ,
n n r,

where w, = Y1 | Tfw, m; being the projection X” — X on the ith factor. A
well-known argument of Gromov [Gr 77| yields the estimate hiop(f) < lov(f).
When f is a holomorphic endomorphism (i.e. when Iy = (}), a simple coho-
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mological computation yields lov(f) = maxj<j<xlog A;(f). Such computation
is more delicate for mappings which are merely meromorphic. The following
lemma will be quite useful in our analysis.

LEMMA 1.7. Assume dime X < 3 or X is a complex homogeneous mani-
fold. Fix e > 0. Then there exists C; > 0 such that

< N1\ * Ng_1\* < ) maxn;
0% [ (e n A hw S Gl AP+

for all (ny,...,np_1) € NF-1,

Proof. We can assume nj < --- < ng_1 without loss of generality.

When k£ = dimc¢ X < 2 everything is clear. Assume k£ = 3. Then
fo (f"VwA () wonw < [ywA (™) A (f")w. Here we use the
fact that (f™2~™)*w A (f™ ).w is a globally well defined positive closed current
of bidegree (2,2) on X. This follows from the intersection theory of positive
currents (see [S 99]), since (™™ )*w and (f™),w have continuous potentials
outside a set of codimension > 2. Using Propositions 1.2 and 1.5, we thus get,
for € > 0 fixed,

0= [ (W AW Aw < CN(E T RN
< CM () + ™ () + 2] < Comaxy(f) + el

When dim¢ X > 4, it becomes more difficult to define and control the
positivity of (f)*w A (f2)*w A (f*)w on X \ Qf. However, when X is a
complex homogeneous manifold (i.e. when the group of automorphisms Aut(X)
acts transitively on X), one can regularize every positive closed current T
within the same cohomology class and get this way an approximation of T" by
smooth positive closed forms T, ~ T (see [Hu 94]). Proceeding as above and
replacing each singular term (f™)*w, (f™).w by a smooth approximant, we
see that Fatou’s lemma yields the desired inequality (this argument is used in
[RS 97] to obtain related inequalities). O

COROLLARY 1.8. Assume dimc X < 3 or X is complex homogeneous.
Then

hiop(f) < lov(f) < max, log \j(f)-

Proof. By definition Vol(I'y) = > o<, ;i <pn1 fo(fil)*w A A () w.
Assume 77 < --- <4 and fix € > 0. Then

[ yronn o=t [ e ns A e
Qy Qy

< Cedy(f)'] max Nj(f) +e]™ ™" < Cclmax \;j(f) +e]™

1<j<k—1 1<j<k
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Therefore Vol(T',) < Cen[max \;(f) + €], hence lov(f) < log[max \;(f) + ¢].
When ¢ — 0 we have the desired inequality. O

We will also need a relative version of this estimate.

COROLLARY 1.9. Assumedime X < 3 or X is complex homogeneous. Let
Y be a proper subset of ;. IfY is algebraic then

htop(fly) < lov(fly) < 15@5&11% i (f)-
In the general case, we simply get

1
op(Fiy) < Tom=- Tog(VoI(Tu[Y).),

where € > 0 is fized, I'y|Y denotes the restriction of T'y, to Y and (I'y,|Y); is
the e-neighborhood of T'y|Y in T,,.

2. A canonical invariant measure p

THEOREM 2.1. Let f : X — X be a rational mapping such that di(f) >
Me—1(f). Then there exists a probability measure puy such that if © is any
smooth probability measure on X,

1
de(f)"

where the convergence holds in the weak sense of measures. Moreover:

(f")°© — ny,

i) Every quasiplurisubharmonic function is in L'(uys). In particular pg
does not charge pluripolar sets and log™ ||Df*|| € L*(uy).

i) ffur = di(f)pg; hence py is invariant fopuy = piy.
iii) hiop(f) = hy,(f) = logdi(f) > 0. In particular piy is a measure of
mazimal entropy when dimg X < 3 or when X is complex homogeneous.

Proof. Fix a a noncritical value of f and r > 0 such that f admits
dy = di(f) well defined inverse branches on B(a,r). Fix © a smooth prob-
ability measure with compact support in B(a,r). Then d; 1 *@ is a smooth
probability measure on X. Since X is Kéhler, the dd°-lemma (see |[GH 78,
p. 149]) yields

1
—ffO =0 +dd°(9),
dy
where S is a smooth form of bidegree (k— 1,k —1). Replacing S by S+ Cw*!

if necessary, we can assume 0 < § < Cw*=1 for some constant C' > 0. We now
take the pull-back of the previous equation by f, as explained in Section 1.
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Recall that (f")*dd®S = dd°(f™)*S for all n (because (m1)«, ™5 commute
with d, d®). We infer, by induction, that

n—1
1 1 .
n\*Q) c _ Z(fIV* Q.
O =0, Su= 3 'S

Indeed observe that (f**1)*© = (f")*(f*©), since these are the pull-backs of

smooth forms; they are smooth and coincide in X \ (I m Ul fn+1), hence they

1

ioc-coefficients. Therefore

coincide everywhere since they have L

1 n+1y\* _i n\* l* _i 7\ * c _ c
AU O = ) (5°0) = U (@4 S) = 64 S

The sequence of positive currents (S,,) is increasing since (f7)*S > 0.
Setting [|Sn|| := [y Sn Aw, we get

TSSO

320

n—1
1 N
O<||Sn|\<CZE/Q(fJ) AW < O
=0 % /9

using Proposition 1.5 with € > 0 small enough. Therefore (S,) converges
towards some positive current S..; hence

%(f”)*@ — pf = 0O + dd°Su.

Observe that if ©’ is another smooth probability measure, then © = ©+dd°R,
for some smooth form R of bidegree (k — 1,k — 1). Since ||(f™)*R|| = o(d}),
we have again d; " (f")*©" — puy.

Let ¢ be a quasiplurisubharmonic (qpsh) function on X, i.e. an upper
semi-continuous function which is locally given as the sum of a plurisubhar-
monic function and a smooth function. Translating and rescaling ¢ if necessary,
we can assume ¢ < 0 and ddp > —w. It follows from a regularization result
of Demailly (see [De 99]) that there exist C' > 0 and ¢. < 0 a smooth sequence
of functions pointwise decreasing towards ¢ such that dd“p. > —Cw. Using
Stokes’ theorem we get

0< [ (s = [(~p0+ [ Sn(-dtoe) < [(p00+C [ Swnw,

since Soo > 0. The monotone convergence theorem thus implies

05/(—@)dﬂf§/(—¢)@+0/ Soo A w < +00.
X X X

Since any pluripolar set is included in the —oo locus of a gpsh function,
¢ does not charge pluripolar sets. In particular py(I¢) = 0; hence fopp = puf;
i.e. py is an invariant probability measure. Similarly pif(I;) = 0 so that
[y = dypy; ie. py has constant jacobian d;.
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It follows from the Rohlin-Parry formula (see [P 69]) that h,,(f) > log d;.
Since p17(£2¢) = 1, we get in particular hop(f) > logdy > 0. This is reminiscent
of the well-known result of Misiurewicz and Przytycki that the topological
entropy of a C'-smooth endomorphism of a compact manifold is minorated by
logd; (see [KH 95]). When dim¢ X < 3 or when X is complex homogeneous,
we get

Py (f) < hop(f) < Joax log A;(f) = logd,

by Proposition 1.2 and Corollary 1.8; hence pi is a measure of maximal entropy.
O

3. First ergodic properties of

In this section we adapt the work of Briend and Duval [BD 01] to establish
some ergodic properties of fif.

THEOREM 3.1. Let f, s be as in Theorem 2.1. Then the following hold:

i) If v is a probability measure which does not charge the postcritical set
PC(f) == Uj=1/7(Cy), then d " (f")"v — py-
ii) The measure iy is mizing.

iii) If we let x > --- > x1 denote the Lyapunov exponents of ji¢, then

X1 2> %log(dt/)\k_l(f)) > 0.

iv) Let RPer,(f) denote the set of repelling periodic points of order n.
They are equidistributed with respect to py if limsup(fRPer,(f)/d}) < 1. The
latter holds when dimc X < 3 or when X is compler homogeneous.

Remark 3.2. When X = P* and f is holomorphic (i.e. when Iy = (}), the
measure ff was constructed by Hubbard and Papadopol [HP 94] and Fornaess
and Sibony [FS 94]. The latter also proved ii) and a weaker version i') of i):
they showed the existence of an exceptional pluripolar set &5 C P* such that
d;"(f")"ea — py if @ ¢ Er. The remaining assertions iii), iv) were established
by Briend and Duval [BD 99|, [BD 01], who also proved that the exceptional
set & is actually a totally invariant algebraic subset of PC(f).

When X = P* but f is merely meromorphic, the measure [ Was con-
structed by Russakovskii and Shiffman [RS 97] by proving i'). Following
[BD 01], we actually show that &£f is a subset of PC(f). Note however, that
one can not expect &£ to be algebraic in the meromorphic case.

This result heavily relies on the following lemma. We thank Julien Duval
for explaining to us the construction of inverse branches on balls.
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LEMMA 3.3. Set V; = Ué-:lfj(Cf), where Cy denotes the critical set of f.
Fiz ¢ > 0 and an embedding X € CPN. Fiz 1 < § < di/Ak—1, O arbitrarily
close to dy/Ap—1. Then there exists | > 1 such that the following hold:

i) For every holomorphic disk A C LN X \Vj, where L is a generic
projective linear subspace of codimension dime X —1 in CPV, there are (1—e)dy
inverse branches of f (n > 1) whose images A;™ satisfy

diam(A;™) < C5~/2,
where C' is independent of n.

ii) For every ball B C X \ 'V}, there are (1 — &)d} inverse branches of f"
on B, n > 1, whose images B; " satisfy

diam(B; ™) < co /2,

Proof. Fix e > 0 small and § = d;/(A\g—1(f) +€).

i) Let Vi = f(Cy) denote the set of critical values of f. Let D be an
algebraic curve on X which is not included in PC(f). Then Vi N f~"D is finite
(possibly empty) for all n > 0. Let a be a closed smooth form of bidegree
(k — 1,k — 1) which is cohomologous to [D]. Then a < Cpw*~! for some
constant C'p > 0. Note that Cp = (7 can be chosen independent of D if
we restrict ourselve to curves D which are the trace on X of projective linear
subspaces of PV; in this case we can choose a = (w§§1)| x, where wpg denotes
the Fubini-Study Kéhler form on PY. We assume in the sequel that Vi is a
hypersurface of X (in general V; may have codimension > 2 in X; in this case
we simply replace V7 by some hypersurface Vi containing V7). Let 3 be a closed
smooth (1, 1)-form cohomologous to [Vi], § < Cow. Then

i mf—”D:/[Vl] N D] < Cl/[Vl] A7)
<(C1Cy /w VAN (fn)*wkil < Cgl:)\kﬂfl(f) + E]n = Ce(gind?,

where the last inequality follows from Proposition 1.5.

Since ANV, = 0, there are d. well defined inverse branches fi_l of f! on
A. Set A b= fl-_lA. We can further define d; inverse branches of f on Ai_l
if A;l N V1 = 0. It follows from the computation above that at most C’[.;é_lalft
of the A7 "’s may intersect V4. Therefore we can define di**(1 — C.67) inverse
branches of 1 on A. A straightforward induction shows that we can define
dr(l — C.67! >i>0 §77) > d?(1 — £/2) inverse branches of f™ on A, if we fix
[ large enough so that C.07!(1 — 671) < /2. Let I" denote the set of indices
such that f; " is well defined on A. Now,

> area(d") = 3 [ @) nw < (D) hw < Chea () +eI"

ielr ielr
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Therefore o0
Ec—n < Edn
€ 0 } =9t

jj{z € I/ Area(A™) >

hence for (1 —¢)d} inverse branches f; ", we get an upper bound Area(A; ") <
CLo™™. Tt is now a standard fact that the area controls the diameter of slightly
smaller disks A" = f,"(A),

diam(A; ™) < C/5~/2.

We refer the reader to the appendix in [BD 01] where this is proved using
the notion of extremal length. Note that when the A ™’s are included in
a relatively compact ball of some affine chart (i.e. if we already know that

diam(A;™) is small enough), this follows from Cauchy’s formula.

ii) Let now B = B(p, 87¢) be a ball such that BNV, = (). We now construct
(1 —e)d} inverse branches f; " of f™ on B(p,4r.) such that

diam(f; "B(p,re)) < Cé"é_"/z.

There are d' well defined inverse branches fl-_l of f! on B = B(p,8r.). Set
Bi_l = fi_lB. Forn > I, we set r, = 1 — p, with p, = Z?:lj*? We can
further define d; inverse branches of f on fi_l(nHE) if fz»_l(rlHE) N = 0.
Assume f; (11 B)N Vi # 0; then f4(B;'NV1)Nrip1 B # 0. Let Z; denote the
analytic set fl(B;lﬂVl) and pick z; a point on Z; such that B(x;, 8r.l7%) C B.
Thus Z;NB(x;,87:172) is an analytic subset of B(x;, 8r.l~2) without boundary.
It follows from Jensen’s inequality that

JuE awiaett s | (2] AP 2 Co(8rd 22D,
B(z;,8r:.172)

for some uniform constant Cy > 0. This is because Z; has Lelong number > 1

at point x;. On the other hand,

> [ E A AWt < () AGET < O () + <1

Therefore #{i / f; /(.1 B) N Vi # 0} < C'1*F~D§~1dl. Continuing the induc-
tion, slightly shrinking the radius of the ball at each step as indicated above,
we construct d,, ;= d(1 —C’ Z?:_zl 14=1)§-Ldl) inverse branches of f™ on the
ball B,, = B(p,8rcry). Now r, > 1 — ijzj_z so that B, D B(p,4r:) and
dn > d} (1 —¢/2) for all n > [, if [ is chosen large enough.

Let o' = [[Lg]dv(#), where Ly denotes the trace of a projective line
through p and v is the Fubini-Study volume form on the set of lines ~ PN -1,
so that w' is a positive closed current of bidegree (k — 1, k — 1) which is smooth
in X \ {p}. Thus

(fi M Aw < /(f”)*u/ Nw < C"Ne1(f) + e
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We infer that |’ B(
branches.

Let I denote the corresponding set of indices. Set Ay = Lg N B(p, 4r.).
For ¢ fixed in Iz, we get

p’ME)(f;”)*w’ Aw < 257 for at least (1 — e)d} inverse

1
acr .,
€

Area(f; "Ag) <

on a set of projective lines A? C PN~ of measure > 1/2. Therefore
diam(f; "1Ag) < C07"/2 for § € A?. Now the sets A7 have projective ca-
pacity > 1/2, so it follows from a result of Sibony and Wong [A 81] (see also
[DS 02], where this is used in a dynamical context ) that

1
diam ( fi"ZA9> < 052
for every line Ly. The desired bound on diam(f; " B(p,r.)) follows. O

Proof of Theorem 3.1. Let a,b € X \ PC(f). We claim d} (f™)*(es — €b)
— 0. Indeed let 0 < x <1 be a test function. Fix e >0 and [ =1[. > 1 as in
Lemma 3.3. Let A be a holomorphic disk joining a to b such that ANV, = 0.
Using Lemma 3.3, we construct (1 — €)d} inverse branches f; ™ of f™ on A
with small diameter. Thus

‘<(f")*(§; — &)

“ZEW X0 ff”(a)cgl X0 77(b)

7X>‘ < 2esup |x| + < 3,
i=1
if n is large enough so that diam(f; "A) is smaller than the modulus of conti-
nuity of x with respect to €. This proves the claim.
Now let a ¢ PC(f). Using the identities iy = [ epdps(b) and f*py = dipy,
we get

iy = U e = () g =2 = [ o7 6 =g (t) =0

by the dominated convergence theorem, by the fact that ps(PC(f)) = 0.
Similarly, if v is a probability measure such that v(PC(f)) = 0, we get
d;"(f")'v = [d7"(f")*eqdv(a) — py. In particular let x be a test func-
tion. Translating and rescaling, we can assume 0 < x and ¢, := [ xdpy =1
so that /s is a probability measure. Since yur(PC(f)) = 0, we obtain

1 *

xo ffup = on(F) (xup) = py = ey

t
This says precisely that the measure pf is mixing (see [KH 95]).

In particular yuy is ergodic. Moreover log™ || Df*!|| € L!(us) (by Theorem
2.1.i); hence piy has well defined (finite) Lyapunov exponents xp > -+ > xi1.
It follows from Birkhoff’s ergodic theorem that

) 1 _
= Jim o [1ogl|(Da™) ldus ().

n—+oo N
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Fix e > 0,1 =1.>1and x € Supp uf \ V; a generic point. Using Lemma 3.3,
we construct (1 —e)d; " inverse branches f; " of f™* on B = B(x,r.) whose
images B, " have small diameter. Let x; " denote the preimages of z under
fm. Since Df"(z) = (Df™(z; ™))}, it follows from Cauchy’s inequalities and
Lemma 3.3 that

(D f") 71 < G572,

where § is arbitrarily close to d¢/A\x_1, C is independent of n and 1 < i <
(1 —€)df. Let

5/2} ={Z = (Tn)nez € Q? . f(zn) = xpy for all n € Z}

be the natural extension of (f,€f). It is well-known that the dynamical system
(Q, f, 1p) lifts to (Q, f, 11y), where f denotes the shift on Qf and i is the
unique invariant probability measure on Q; ¢ such that (Trn)*u f = pf, where m,

denotes the projection onto the n'" coordinate. Set B = =, 1B and BE =
(ZeB:Vn>10_,= Ji " (xo) for some 1 < i < (1 —¢)dp}. Observe that

-\ (u(l i g ) , where B;" = f"B.
n>l
Therefore
(1-e)dy

,uf( ) = lim iy (L,I(1 £)di B ) = lim Z pr(B; ") =(1—¢e)up(B) >0,
i=1

when [y is f-invariant, ﬁ}(;l) = py(A), and py(B; ") = d; "pug(B) (because
(f")*ug = dips and f™ is injective on B; ™).

Set ¢ := —log ||(Dyf) 7| and @ = pomy € L' (fiy). Then x1 = [dus =
[ @dpy. The measure ﬁ} is mixing since py is; hence by Birkhoff’s theorem,

1« _» %) ~
— g — x1 for almost every .
n

7=0

Fix T a generic point in Eg. Then

_ n—1

1 . 1 _

EZ @ == logl[(D, )7
=0 J=0

logd  logC

1
——log|D, 7| > <50 - 25,

hence y; > %log 0. The desired lower bound follows when 6 — d;/\,_1.
Set v, = [tRPer,(f)]~* >_zeRper, () Eo and let v be any cluster point of
Up. Fixe > 0 and x € Supp p\PC(f). Using lemma 3.3, we construct (1 —e¢)d}
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inverse branches f; " of f™ on B = B(x,r.) whose images have small diameter.
We now prove the following inequality:

(1) (1—¢)’us(B) < v(B).

Clearly (t1) implies 1y < v. Indeed any Borel subset A can be approximated
by disjoint union of small balls satisfying (1); hence (1 — &)*us(A) < v(A).
One can then let ¢ — 0. Finally since iy and v are probability measures, we
actually get uy = v; hence v, — py.

It remains to prove (). We can assume ps(B) > 0. Fix B cC B” CC B
such that puf(B’) > (1 —¢e)us(B). We consider as above B. the set of histories
of points in B given by the inverse branches f; . Since iy is mixing, we get

~

wr(f "(B:) N B\’) — ﬁ}(éa)ﬁ}(@) Thus, for n large enough,

(1= 2)*up(B)* < (1 — )i (B:)ii (B')
(=g
<pp(f"B)NB)< Y pw(B"NB).
i=1
Observe that either B; "N B’ =0 or B;" C B” CC B since diam(B; ") — 0.
When B; " N B # 0, f, " is thus a contraction on B. Therefore it admits a
unique attracting fixed point which is henceforth a repelling periodic point of
order n for f. Using again that us(B; ") = d, " us(B), we infer

(1~ 2)uy(B? < TS
t

Letting n; — oo yields (11) if limfRPer,(f)/d? < 1. Note that di(f) >
maxi<j<g—1 Aj(f) by Proposition 1.2. When dim¢ X < 3 or when X is complex
homogeneous, each dynamical degree \;(f) equals the asymptotical growth
of the spectral radii 7;(f™) of the linear action induced by f* on H:'(X,R)
(see Proposition 1.2 and Remark 1.3.ii). In these cases, the upper bound on
fRPer, (f) follows from the Lefschetz fixed point formula if f has no curve of
periodic points. Note that f cannot have a curve of repelling periodic points.
The bound therefore follows from a perturbation argument. O

4. Uniqueness of the measure of maximal entropy

THEOREM 4.1. Assume dimc X < 3 or X is complexr homogeneous. Then
the measure iy is the unique measure of mazximal entropy.

Here again we follow Briend and Duval [BD 01] who proved this result for
holomorphic endomorphisms of CP*.

Proof. Let v be an ergodic measure such that v(PC(f)) > 0. Then
v(f7(Cys)) > 0 for some j € N, so that it follows from the relative variational
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principle and Corollary 1.9 that

() < hrap(fgsicp) < | mac o Ay (f) < logds(f).

Consider now an ergodic probability measure v of entropy h,(f) >
maxi<j<g—1log Aj(f). Then v does not charge PC(f); hence d;"(f")*(v)
— . Assume v # pip. Then v does not have constant jacobian, i.e. f*v # dyv.
Therefore one can construct a simply connected domain U in X \ f(Cy) with
v(U) = Vol(U) = 1 admitting Uy, ..., Uy, preimages on which f is one-to-one
and not equally well v-distributed, say with v(U) > o > d; ' (see [BD 01]
for more details on this construction). We are going to show that this implies
hy (f) <logdy(f).

Observe that v(2¢) = 1; otherwise h,(f) < maxi<j<ip—1logA;(f) by
Corollary 1.9. Consider O a slightly smaller open subset of U; such that
O. C Ui, where O, denotes the e-neighborhood of O, and v(O) > o. Set
Y={a€Q;:4{0<j<n-—1,f/(a) € O} > no for n > m}. It follows from
Birkhoff’s theorem that v(Y") > 0 for m large enough. The relative variational
principle yields

1
hu(f) < htop(f|Y) < limsup EVOl(Fn‘Y)Ea

where T, = {(a,..., f""1(a)) : a € Qy} is the iterated graph of f (see Sec-
tion 1). Up to a zero volume set, we get

(To[Y)e € | Tule

aeX,

where ¥, = {a € {1,...,d:} : t{q,aq = 1} > no} and I'y(a) = ', N
(Ua, X -+ x Ug,). Indeed the Ujs form a partition of X (up to a zero vol-
ume set) and {I",(«)} is the induced partition on I'y,. Therefore

Vol(T, |Y). Z/
n(a

aed,

DYDY /(Fn(a))(f“)*wA---A(f““)*w

i€{0,...,n—1}k a€x, 7™

where 7 denotes the projection of X™ on the first factor. Fix € > 0 so small
that 0+ ¢ < d;, where § := maxj<j<k—1 Aj(f). Fix v < 1 to be chosen later
and define, following a trick of Briend and Duval,

I={ie{0,....n—1}":4y,...i >yn} and IT = {0,...,n —1}2\ 1.

Fix i € IT and assume i1 < --- < i (hence i1 < ~n). Since the 7(I',(a)) form
a partition of Qy, we get
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S [ Genea e s [ wneea e

€,
=dy' / WA (27 WA AT
Qf
<Ced [+ ]
< Cod"(B + €],

where the existence of C; is as in Lemma 1.7. Therefore

2.2 / f“ A7) w < ConFd]" (B + €],

i€ll aex,

Now fix i € I, a € ¥, and set ¢ = [yn]|. Since f9 is injective on 7(I'y(cv)),
assuming 41 < --- < 1, we get

/ F)w Ao A (F)
(T ()
— / O (P w A A (F9) )
m(Crn(a))
G1—Qq\* T —q\*
S/Qf(f VWA A (fET)

dy
B+e

<CdP UG + ] = ( > 8+ €]+
<c.dy i< odt,

By Lemma 7.2 in [L 83] there exists p < 1 such that #3,, < d;'”. Therefore

>, / (WA A (e < Cenfdf™di" ™.

i€l aex,

Altogether this yields

hy(f) < max([1 + p —~]logdi(f), ylog di(f) + [1 — ~]log(f + ),
so that h,(f) < logd.(f) if we choose p < vy < 1. O
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