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Robust transitive singular sets

for 3-flows are partially hyperbolic
attractors or repellers

By C. A. Morales, M. J. Pacifico, and E. R. Pujals*

Abstract

Inspired by Lorenz’ remarkable chaotic flow, we describe in this paper
the structure of all C1 robust transitive sets with singularities for flows on
closed 3-manifolds: they are partially hyperbolic with volume-expanding cen-
tral direction, and are either attractors or repellers. In particular, any C1

robust attractor with singularities for flows on closed 3-manifolds always has
an invariant foliation whose leaves are forward contracted by the flow, and
has positive Lyapunov exponent at every orbit, showing that any C1 robust
attractor resembles a geometric Lorenz attractor.

1. Introduction

A long-time goal in the theory of dynamical systems has been to describe
and characterize systems exhibiting dynamical properties that are preserved
under small perturbations. A cornerstone in this direction was the Stability
Conjecture (Palis-Smale [30]), establishing that those systems that are iden-
tical, up to a continuous change of coordinates of phase space, to all nearby
systems are characterized as the hyperbolic ones. Sufficient conditions for
structural stability were proved by Robbin [36] (for r ≥ 2), de Melo [6] and
Robinson [38] (for r = 1). Their necessity was reduced to showing that struc-
tural stability implies hyperbolicity (Robinson [37]). And that was proved by
Mañé [23] in the discrete case (for r = 1) and Hayashi [13] in the framework
of flows (for r = 1).

This has important consequences because there is a rich theory of hyper-
bolic systems describing their geometric and ergodic properties. In particular,
by Smale’s spectral decomposition theorem [39], one has a description of the
nonwandering set of a structural stable system as a finite number of disjoint
compact maximal invariant and transitive sets, each of these pieces being well
understood from both the deterministic and statistical points of view. Fur-
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thermore, such a decomposition persists under small C1 perturbations. This
naturally leads to the study of isolated transitive sets that remain transitive
for all nearby systems (robustness).

What can one say about the dynamics of robust transitive sets? Is there
a characterization of such sets that also gives dynamical information about
them? In the case of 3-flows, a striking example is the Lorenz attractor [19],
given by the solutions of the polynomial vector field in R3:

X(x, y, z) =


ẋ = −αx + αy

ẏ = βx − y − xz

ż = −γz + xy ,

(1)

where α, β, γ are real parameters. Numerical experiments performed by Lorenz
(for α = 10, β = 28 and γ = 8/3) suggested the existence, in a robust way, of a
strange attractor toward which a full neighborhood of positive trajectories of
the above system tends. That is, the strange attractor could not be destroyed
by any perturbation of the parameters. Most important, the attractor contains
an equilibrium point (0, 0, 0), and periodic points accumulating on it, and hence
can not be hyperbolic. Notably, only now, three and a half decades after this
remarkable work, did Tucker prove [40] that the solutions of (1) satisfy such a
property for values α, β, γ near the ones considered by Lorenz.

However, in the mid-seventies, the existence of robust nonhyperbolic at-
tractors was proved for flows (introduced in [1] and [11]), which we now call
geometric models for Lorenz attractors. In particular, they exhibit, in a robust
way, an attracting transitive set with an equilibrium (singularity). For such
models, the eigenvalues λi, 1 ≤ i ≤ 3, associated to the singularity are real
and satisfy λ2 < λ3 < 0 < −λ3 < λ1. In the definition of geometrical mod-
els, another key requirement was the existence of an invariant foliation whose
leaves are forward contracted by the flow. Apart from some other technical
assumptions, these features allow one to extract very complete topological, dy-
namical and ergodic information about these geometrical Lorenz models [12].
The question we address here is whether such features are present for any
robust transitive set.

Indeed, the main aim of our paper is to describe the dynamical structure
of compact transitive sets (there are dense orbits) of flows on 3-manifolds which
are robust under small C1 perturbations. We shall prove that C1 robust transi-
tive sets with singularities on closed 3-manifolds are either proper attractors or
proper repellers. We shall also show that the singularities lying in a C1 robust
transitive set of a 3-flow are Lorenz-like: the eigenvalues at the singularities
satisfy the same inequalities as the corresponding ones at the singularity in a
Lorenz geometrical model. As already observed, the presence of a singular-
ity prevents these attractors from being hyperbolic. On the other hand, we
are going to prove that robustness does imply a weaker form of hyperbolicity:
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C1 robust attractors for 3-flows are partially hyperbolic with a volume-expanding
central direction.

A first consequence from this is that every orbit in any robust attrac-
tor has a direction of exponential divergence from nearby orbits (positive
Lyapunov exponent). Another consequence is that robust attractors always
admit an invariant foliation whose leaves are forward contracted by the flow,
showing that any robust attractor with singularities displays similar properties
to those of the geometrical Lorenz model. In particular, in view of the result of
Tucker [40], the Lorenz attractor generated by the Lorenz equations (1) much
resembles a geometrical one.

To state our results in a precise way, let us fix some notation and recall
some definitions and results proved elsewhere.

Throughout, M is a boundaryless compact manifold and X r(M) denotes
the space of Cr vector fields on M endowed with the Cr topology, r ≥ 1. If
X ∈ X r(M), Xt, t ∈ R, denotes the flow induced by X.

1.1. Robust transitive sets are attractors or repellers. A compact invari-
ant set Λ of X is isolated if there exists an open set U ⊃ Λ, called an isolating
block, such that

Λ =
⋂
t∈R

Xt(U).

If U can be chosen such that Xt(U) ⊂ U for t > 0, we say that the isolated set
Λ is an attracting set.

A compact invariant set Λ of X is transitive if it coincides with the ω-limit
set of an X-orbit. An attractor is a transitive attracting set. A repeller is an
attractor for the reversed vector field −X. An attractor (or repeller) which is
not the whole manifold is called proper. An invariant set of X is nontrivial if
it is neither a periodic point nor a singularity.

Definition 1.1. An isolated set Λ of a C1 vector field X is robust transitive
if it has an isolating block U such that

ΛY (U) =
⋂
t∈R

Yt(U)

is both transitive and nontrivial for any Y C1-close to X.

Theorem A. A robust transitive set containing singularities of a flow on
a closed 3-manifold is either a proper attractor or a proper repeller.

As a matter-of-fact, Theorem A will follow from a general result on
n-manifolds, n ≥ 3, settling sufficient conditions for an isolated set to be an
attracting set: (a) all its periodic points and singularities are hyperbolic and
(b) it robustly contains the unstable manifold of either a periodic point or a
singularity (Theorem D). This will be established in Section 2.
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Theorem A is false in dimension bigger than three; a counterexample can
be obtained by multiplying the geometric Lorenz attractor by a hyperbolic sys-
tem in such a way that the directions supporting the Lorenz flow are normally
hyperbolic. It is false as well in the context of boundary-preserving vector
fields on 3-manifolds with boundary [17]. The converse to Theorem A is also
not true: proper attractors (or repellers) with singularities are not necessarily
robust transitive, even if their periodic points and singularities are hyperbolic
in a robust way.

Let us describe a global consequence of Theorem A, improving a result in
[9]. To state it, we recall that a vector field X on a manifold M is Anosov if
M is a hyperbolic set of X. We say that X is Axiom A if its nonwandering set
Ω(X) decomposes into two disjoint invariant sets Ω0

⋃
Ω1, where Ω0 consists

of finitely many hyperbolic singularities and Ω1 is a hyperbolic set which is the
closure of the (nontrivial) periodic orbits.

Corollary 1.2. C1 vector fields on a closed 3-manifold with robust tran-
sitive nonwandering sets are Anosov.

Indeed, let X be a C1 vector field satisfying the hypothesis of the corollary.
If the nonwandering set Ω(X) has singularities, then Ω(X) is either a proper
attractor or a proper repeller of X by Theorem A, which is impossible. Then
Ω(X) is a robust transitive set without singularities. By [9], [41] we conclude
that Ω(X) is hyperbolic. Consequently, X is Axiom A with a unique basic set
in its spectral decomposition. Since Axiom A vector fields always exhibit at
least one attractor and Ω(X) is the unique basic set of X, it follows that Ω(X)
is an attractor. But clearly this is possible only if Ω(X) is the whole manifold.
As Ω(X) is hyperbolic, we conclude that X is Anosov as desired.

Here we observe that the conclusion of the last corollary holds, replacing
in its statement nonwandering set by limit-set [31].

1.2. The singularities of robust attractors are Lorenz-like. To motivate
the next theorem, recall that the geometric Lorenz attractor L is a proper
robust transitive set with a hyperbolic singularity σ such that if λi, 1 ≤ i ≤ 3,
are the eigenvalues of L at σ, then λi, 1 ≤ i ≤ 3, are real and satisfy λ2 <

λ3 < 0 < −λ3 < λ1 [12]. Inspired by this property we introduce the following
definition.

Definition 1.3. A singularity σ is Lorenz -like for X if the eigenvalues
λi, 1 ≤ i ≤ 3, of DX(σ) are real and satisfy λ2 < λ3 < 0 < −λ3 < λ1.

If σ is a Lorenz-like singularity for X then the strong stable manifold
W ss

X (σ) exists. Moreover, dim(W ss
X (σ)) = 1, and W ss

X (σ) is tangent to the
eigenvector direction associated to λ2. Given a vector field X ∈ X r(M), we
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let Sing(X) be the set of singularities of X. If Λ is a compact invariant set of
X we let SingX(Λ) be the set of singularities of X in Λ.

The next result shows that the singularities of robust transitive sets on
closed 3-manifolds are Lorenz-like.

Theorem B. Let Λ be a robust singular transitive set of X ∈ X 1(M).
Then, either for Y = X or Y = −X, every σ ∈ SingY (Λ) is Lorenz -like for Y

and satisfies
W ss

Y (σ) ∩ Λ = {σ}.

The following result is a direct consequence of Theorem B. A robust
attractor of a C1 vector field X is an attractor of X that is also a robust
transitive set of X.

Corollary 1.4. Every singularity of a robust attractor of X on a closed
3-manifold is Lorenz -like for X.

In light of these results, a natural question arises: can one achieve a general
description of the structure for robust attractors? In this direction we prove:
if Λ is a robust attractor for X containing singularities then it is partially
hyperbolic with volume-expanding central direction.

1.3. Robust attractors are singular-hyperbolic. To state this result in a
precise way, let us introduce some definitions and notations.

Definition 1.5. Let Λ be a compact invariant transitive set of X ∈ X r(M),
c > 0, and 0 < λ < 1. We say that Λ has a (c, λ)-dominated splitting if the
bundle over Λ can be written as a continuous DXt-invariant sum of sub-bundles

TΛ = Es ⊕ Ecu,

such that for every T > 0, and every x ∈ Λ,

(a) Es is one-dimensional,

(b) The bundle Ecu contains the direction of X, and

‖DXT /Es
x‖.‖DX−T /Ecu

XT (x)‖ < c λT .

Ecu is called the central direction of TΛ.

A compact invariant transitive set Λ of X is partially hyperbolic if Λ has
a (c, λ)-dominated splitting TΛM = Es ⊕ Ecu such that the bundle Es is
uniformly contracting; that is, for every T > 0, and every x ∈ Λ,

‖DXT /Es
x‖ < c λT .
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For x ∈ Λ and t ∈ IR we let Jc
t (x) be the absolute value of the determinant

of the linear map DXt/Ecu
x : Ecu

x → Ecu
Xt(x). We say that the subbundle Ecu

Λ

of the partially hyperbolic set Λ is volume-expanding if

Jc
t (x) ≥ c eλt,

for every x ∈ Λ and t ≥ 0 (in this case we say that Ecu
Λ is (c, λ)-volume-

expanding to indicate the dependence on c, λ).

Definition 1.6. Let Λ be a compact invariant transitive set of X ∈ X r(M)
with singularities. We say that Λ is a singular -hyperbolic set for X if all the
singularities of Λ are hyperbolic, and Λ is partially hyperbolic with volume-
expanding central direction.

We shall prove the following result.

Theorem C. Robust attractors of X ∈ X 1(M) containing singularities
are singular-hyperbolic sets for X.

We note that robust attractors cannot be C1 approximated by vector fields
presenting either attracting or repelling periodic points. This implies that, on
closed 3-manifolds, any periodic point lying in a robust attractor is hyperbolic
of saddle-type. Thus, as in [18, Th. A], we conclude that robust attractors
without singularities on closed 3-manifolds are hyperbolic. Therefore we have
the following dichotomy:

Corollary 1.7. Let Λ be a robust attractor of X ∈ X 1(M). Then Λ is
either hyperbolic or singular-hyperbolic.

1.4. Dynamical consequences of singular -hyperbolicity. In the theory of
differentiable dynamics for flows, i.e., in the study of the asymptotic behavior
of orbits {Xt(x)}t∈R for X ∈ X r(M), r ≥ 1, a fundamental problem is to
understand how the behavior of the tangent map DX controls or determines
the dynamics of the flow Xt.

So far, this program has been solved for hyperbolic dynamics: there is a
complete description of the dynamics of a system under the assumption that
the tangent map has a hyperbolic structure.

Under the sole assumption of singular-hyperbolicity one can show that at
each point there exists a strong stable manifold; more precisely, the set is a
subset of a lamination by strong stable manifolds. It is also possible to show the
existence of local central manifolds tangent to the central unstable direction
[15]. Although these central manifolds do not behave as unstable ones, in the
sense that points in it are not necessarily asymptotic in the past, using the
fact that the flow along the central unstable direction expands volume, we can
obtain some remarkable properties.



ROBUST TRANSITIVE SINGULAR SETS 381

We shall list some of these properties that give us a nice description of
the dynamics of robust transitive sets with singularities, and in particular, for
robust attractors. The proofs of the results below are in Section 5.

The first two properties do not depend either on the fact that the set is
robust transitive or an attractor, but only on the fact that the flow expands
volume in the central direction.

Proposition 1.8. Let Λ be a singular-hyperbolic compact set of X ∈
X 1(M). Then any invariant compact set Γ ⊂ Λ without singularities is a
hyperbolic set.

Recall that, given x ∈ M , and v ∈ TxM , the Lyapunov exponent of x in
the direction of v is

γ(x, v) = lim
t→∞

inf
1
t

log ‖DXt(x)v‖ .

We say that x has positive Lyapunov exponent if there is v ∈ TxM such
that γ(x, v) > 0.

The next two results show that important features of hyperbolic attrac-
tors and of the geometric Lorenz attractor are present for singular-hyperbolic
attractors, and so, for robust attractors with singularities:

Proposition 1.9. A singular -hyperbolic attractor Λ of X ∈ X 1(M) has
uniform positive Lyapunov exponent at every orbit.

The last property proved in this paper is the following.

Proposition 1.10. For X in a residual (set containing a dense Gδ) sub-
set of X 1(M), each robust transitive set with singularities is the closure of the
stable or unstable manifold of one of its hyperbolic periodic points.

We note that in [29] it was proved that a singular-hyperbolic set Λ of a
3-flow is expansive with respect to initial data; i.e., there is δ > 0 such that
for any pair of distinct points x, y ∈ Λ, if dist(Xt(x), Xt(y)) < δ for all t ∈ R
then x is in the orbit of y.

Finally, it was proved in [4] that if Λ is a singular-hyperbolic attractor of a
3-flow X then the central direction Ecu

Λ̃
can be continuously decomposed into

Eu ⊕ [X], with the Eu direction being nonuniformly hyperbolic ([28], [32]).
Here Λ̃ = Λ \ ∪σ∈SingX(Λ)W

u(σ).

1.5. Related results and comments. We note that for diffeomorphisms
in dimension two, any robust transitive set is a hyperbolic set [22]. The cor-
responding result for 3-flows without singularities can be easily obtained from
[18, Th. A]. However, in the presence of singularities, this result cannot be
applied: a singularity is an obstruction to consider the flow as the suspension
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of a 2-diffeomorphism. On the other hand, for diffeomorphisms on 3-manifolds
it has recently been proved that any robust transitive set is partially hyper-
bolic [8]. Again, this result cannot be applied to the time-one diffeomorphism
X1 to prove Theorem C: if Λ is a saddle-type periodic point of X then Λ is
a robust transitive set for X, but not necessarily a robust transitive set for
X1. Moreover, such a Λ cannot be approximated by robust transitive sets for
diffeomorphisms C1-close to X1. Indeed, since Λ is normally hyperbolic, it is
persistent, [20]. So, for any g nearby X1, the maximal invariant set Λg of g in a
neighborhood U of Λ is diffeomorphic to S1. Since the set of diffeomorphisms
g C1 close to X1 such that the restriction of g to Λg has an attracting periodic
point is open, our statement follows.

We also point out that a transitive singular-hyperbolic set is not neces-
sarily a robust transitive set, even in the case that the set is an attractor; see
[17] and [27]. So, the converse of our results requires extra conditions that
are yet unknown. Anyway, we conjecture that generically, transitive singular-
hyperbolic attractors or repellers are robust transitive in the C∞ topology.

1.6. Brief sketches of the main results. This paper is organized as follows.
Theorems A and B are proved in Section 2. This section is independent of the
remainder of the paper.

To prove Theorem A we first obtain a sufficient condition for a transi-
tive isolated set with hyperbolic critical elements of a C1 vector field on a
n-manifold, n ≥ 3, to be an attractor (Theorem D). We use this to prove that
a robust transitive set whose critical elements are hyperbolic is an attractor
if it contains a singularity whose unstable manifold has dimension one (The-
orem E). This implies that C1 robust transitive sets with singularities on closed
3-manifolds are either proper attractors or proper repellers, leading to
Theorem A.

To obtain the characterization of singularities in a robust transitive set
as Lorenz-like ones (Theorem B), we reason by contradiction. Using the Con-
necting Lemma [13], we can produce special types of cycles (inclination-flip)
associated to a singularity leading to nearby vector fields which exhibit at-
tracting or repelling periodic points. This contradicts the robustness of the
transitivity condition.

Theorem C is proved in Section 3. We start by proposing an invariant
splitting over the periodic points lying in Λ and prove two basic facts, The-
orems 3.6 and 3.7, establishing uniform estimates on angles between stable,
unstable, and central unstable bundles for periodic points. Roughly speaking,
if such angles are not uniformly bounded away from zero, we construct a new
vector field near the original one exhibiting either a sink or a repeller, yielding
a contradiction. Such a perturbation is obtained using Lemma 3.1, which is a
version for flows of a result in [10]. This allows us to prove that the splitting
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proposed for the periodic points is partially hyperbolic with volume-expanding
central direction. Afterwards, we extend this splitting to the closure of the pe-
riodic points. The main objective is to prove that the splitting proposed for the
periodic points is compatible with the local partial hyperbolic splitting at the
singularities. This is expressed by Proposition 4.1. For this, we use two facts:
(a) the linear Poincaré flow has a dominated splitting outside the singularities
([41, Th. 3.8]) and (b) the nonwandering set outside a neighborhood of the
singularities is hyperbolic (Lemma 4.3). We next extend this splitting to all of
Λ, obtaining Theorem C. Theorems 3.6 and 3.7 are proved in Section 4.

The results in this paper were announced in [26].

2. Attractors and isolated sets for C1 flows

In this section we shall prove Theorems A, and B.
Our approach to understand, from the dynamical point of view, robust

transitive sets for 3-flows is the following. We start by focusing on isolated sets,
obtaining sufficient conditions for an isolated set of a C1 flow on a n-manifold,
n ≥ 3, to be an attractor: (a) all its periodic points and singularities are
hyperbolic and (b) it contains, in a robust way, the unstable manifold of either
a periodic point or a singularity . Using this we prove that isolated sets whose
periodic points and singularities are hyperbolic and which are either robustly
nontrivial and transitive (robust transitive) or robustly the closure of their
periodic points (C1 robust periodic) are attractors if they contain a singularity
with one-dimensional unstable manifold. In particular, robust transitive sets
with singularities on closed 3-manifolds are either proper attractors or proper
repellers, proving Theorem A. Afterward we characterize the singularities on
a robust transitive set on 3-manifolds as Lorenz-like, obtaining Theorem B.

In order to state the results in a precise way, let us recall some definitions
and fix the notation.

A point p ∈ M is a singularity of X if X(p) = 0 and p is a periodic point
of X if X(p) 
= 0 and there is t > 0 such that Xt(p) = p. The minimal t ∈ R+

satisfying Xt(p) = p is called the period of p and is denoted by tp.
A point p ∈ M is a critical element of X if p is either a singularity or a

periodic point of X. The set of critical elements of X is denoted by Crit(X).
If A ⊂ M , the set of critical elements of X lying in A is denoted by CritX(A).

We say that p ∈ Crit(X) is hyperbolic if its orbit is hyperbolic. When p

is a periodic point (respectively a singularity) this is equivalent to saying that
its Poincaré map has no eigenvalues with modulus one (respectively DX(p)
has no eigenvalues with zero real parts). If p ∈ Crit(X) is hyperbolic then
there are well defined invariant manifolds W s

X(p) (stable manifold) and W u
X(p)

(unstable manifold) [15]. Moreover, there is a continuation p(Y ) ∈ Crit(Y ) for
Y Cr-close to X.
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Note that elementary topological dynamics imply that an attractor con-
taining a hyperbolic critical element is a transitive isolated set containing the
unstable manifold of this hyperbolic critical element. The converse, although
false in general, is true for a residual subset of C1 vector fields [3]. We derive
a sufficient condition for the validity of the converse to this result inspired
by the following well known property of hyperbolic attractors [31]: If Λ is a
hyperbolic attractor of a vector field X, then there is an isolating block U of
Λ and x0 ∈ CritX(Λ) such that W u

Y (x0(Y )) ⊂ U for every Y close to X. This
property motivates the following definition.

Definition 2.1. Let Λ be an isolated set of a Cr vector field X, r ≥ 1. We
say that Λ robustly contains the unstable manifold of a critical element if there
are x0 ∈ CritX(Λ) hyperbolic, an isolating block U of Λ and a neighborhood
U of X in the space of Cr vector fields such that

W u
Y (x0(Y )) ⊂ U, for all Y ∈ U .

With this definition in mind we have the following result.

Theorem D. Let Λ be a transitive isolated set of X ∈ X 1(Mn), n ≥ 3,
and suppose that every x ∈ CritX(Λ) is hyperbolic. If Λ robustly contains the
unstable manifold of a critical element then Λ is an attractor.

Next we derive an application of Theorem D. For this let us introduce
the following notation and definitions. If A ⊂ M , then Cl(A) denotes the
closure of A, and int(A) denotes the interior of A. The set of periodic points
of X ∈ X r(M) is denoted by Per(X), and the set of periodic points of X in A

is denoted by PerX(A).

Definition 2.2. Let Λ be an isolated set of a Cr vector field X, r ≥ 1. We
say that Λ is Cr robust periodic if there are an isolating block U of Λ and a
neighborhood U of X in the space of all Cr vector fields such that

ΛY (U) = Cl(PerY (ΛY (U)), ∀ Y ∈ U .

Examples of C1 robust periodic sets are the hyperbolic attractors and the
geometric Lorenz attractor [12]. These examples are also C1 robust transitive.
On the other hand, the singular horseshoe [17] and the example in [27] are
neither C1 robust transitive nor C1 robust periodic. These examples motivate
the question whether all C1 robust transitive sets for vector fields are C1 robust
periodic.

The geometric Lorenz attractor [12] is a robust transitive (periodic) set,
and it is an attractor satisfying: (a) all its periodic points are hyperbolic and
(b) it contains a singularity whose unstable manifold has dimension one. The
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result below shows that such conditions suffice for a robust transitive (periodic)
set to be an attractor.

Theorem E. Let Λ be either a robust transitive or a transitive C1 robust
periodic set of X ∈ X 1(Mn), n ≥ 3. If

1. every x ∈ CritX(Λ) is hyperbolic and

2. Λ has a singularity whose unstable manifold is one-dimensional,

then Λ is an attractor of X.

This theorem follows from Theorem D by proving that Λ robustly contains
the unstable manifold of the singularity in the hypothesis (2) above.

To prove these results, let us establish in a precise way some notation
and results that will be used to obtain the proofs. Throughout, M denotes a
compact boundaryless manifold with dimension n ≥ 3. First we shall obtain
a sufficient condition for an isolated invariant set of X ∈ X 1(M) to be an
attractor. For this we proceed as follows.

Given p ∈ M , OX(p) denotes the orbit of p by X. If OX(p), p ∈ Crit(X),
is hyperbolic and x ∈ OX(p) then there are well-defined invariant manifolds
W s

X(x), the stable manifold at x, and W u
X(x), the unstable manifold at x.

Given a hyperbolic x ∈ Crit(X), and Y Cr-close to X, we denote by x(Y ) ∈
Crit(Y ) the continuation of x.

The following two results are used to connect unstable manifolds to suit-
able points in M . For the proofs of these results see [2], [13], [14], [42].

Theorem 2.3 (The connecting lemma). Let X ∈ X 1(M) and σ ∈
Sing(X) be hyperbolic. Suppose that there are p ∈ W u

X(σ) \ {σ} and q ∈
M \ Crit(X) such that :

(H1) For all neighborhoods U , V of p, q (respectively) there is x ∈ U such that
Xt(x) ∈ V for some t ≥ 0.

Then there are Y arbitrarily C1-close to X and T > 0 such that p ∈ W u
Y (σ(Y ))

and YT (p) = q. If in addition q ∈ W s
X(x) \ OX(x) for some x ∈ Crit(X)

hyperbolic, then Y can be chosen so that q ∈ W s
Y (x(Y )) \ OY (x(Y )).

Theorem 2.4. Let X ∈ X 1(M) and σ ∈ Sing(X) be hyperbolic. Suppose
that there are p ∈ W u

X(σ) \ {σ} and q, x ∈ M \ Crit(X) such that :

(H2) For all neighborhoods U , V , W of p, q, x (respectively) there are xp ∈ U

and xq ∈ V such that Xtp
(xp) ∈ W and Xtq

(xq) ∈ W for some tp > 0,
tq < 0.

Then there are Y arbitrarily C1-close to X and T > 0 such that p ∈ W u
Y (σ(Y ))

and YT (p) = q.
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The following lemma is well-known; see for instance [5, p. 3]. Recall that
given an isolated set Λ of X ∈ X r(M) with isolating block U , we denote by
ΛY (U) = ∩t∈RYt(U) the maximal invariant set of Y in U for every Y ∈ X r(M).

Lemma 2.5. Let Λ be an isolated set of X ∈ X r(M), r ≥ 0. Then, for
every isolating block U of Λ and every open set V containing Λ, there is a
neighborhood U0 of X in X r(M) such that

ΛY (U) ⊂ V, ∀ Y ∈ U0.

Lemma 2.6. If Λ is an attracting set and a repelling set of X ∈ X 1(M),
then Λ = M .

Proof. Suppose that Λ is an attracting set and a repelling set of X. Then
there are neighborhoods V1 and V2 of Λ satisfying Xt(V1) ⊂ V1, X−t(V2) ⊂ V2

(for all t ≥ 0),

Λ =
⋂
t≥0

Xt(V1) and Λ =
⋂
t≥0

X−t(V2).

Define U1 = int(V1) and U2 = int(V2). Clearly Xt(U1) ⊂ U1 and X−t(U2) ⊂ U2

(for all t ≥ 0) since Xt is a diffeomorphism. As U2 is open and contains
Λ, the first equality implies that there is t2 > 0 such that Xt2(V1) ⊂ U2

(see for instance [16, Lemma 1.6]). As Xt2(U1) ⊂ Xt2(V1) it follows that
U1 ⊂ X−t2(U2) ⊂ U2 proving

U1 ⊂ U2.

Similarly, as U2 is open and contains Λ, the second equality implies that there
is t1 > 0 such that X−t1(V2) ⊂ U1. As X−t1(U2) ⊂ X−t1(V2) it follows that
U2 ⊂ Xt1(U1) ⊂ U1 proving

U2 ⊂ U1.

Thus, U1 = U2. From this we obtain

Xt(U1) = U1, ∀t ≥ 0

proving Λ = U1. As Λ is compact, by assumption we conclude that Λ is open
and closed. As M is connected and Λ is not empty we obtain that Λ = M as
desired.

The lemma below gives a sufficient condition for an isolated set to be
attracting.

Lemma 2.7. Let Λ be an isolated set of X ∈ X 1(M). If there are an
isolating block U of Λ and an open set W containing Λ such that Xt(W ) ⊂ U

for every t ≥ 0, then Λ is an attracting set of X.
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Proof. Let Λ and X be as in the statement. To prove that Λ is attracting
we have to find a neighborhood V of Λ such that Xt(V ) ⊂ V for all t > 0 and

Λ = ∩t≤0Xt(V ).(2)

To construct V we let W be the open set in the statement of the lemma
and define

V = ∪t>0Xt(W ).

Clearly V is a neighborhood of Λ satisfying Xt(V ) ⊂ V , for all t > 0.
We claim that V satisfies (2). Indeed, as Xt(W ) ⊂ U for every t > 0 we

have that V ⊂ U and so
∩t∈IRXt(V ) ⊂ Λ

because U is an isolating block of Λ. But V ⊂ Xt(V ) for every t ≤ 0 since V

is forward invariant. So, V ⊂ ∩t≤0Xt(V ). From this we have

∩t≥0Xt(V )⊂V ∩ (∩t>0Xt(V ))

⊂ (∩t≤0Xt(V )) ∩ (∩t>0Xt(V )) = ∩t∈IRXt(V ).

Thus,
∩t≥0Xt(V ) ⊂ Λ.

Now, as Λ ⊂ V and Λ is invariant, we have Λ ⊂ Xt(V ) for every t ≥ 0. Then

Λ ⊂ ∩t≥0Xt(V ),

proving (2).

2.1. Proof of Theorems D and E. The proof of Theorem D is based on
the following lemma.

Lemma 2.8. Let Λ be a transitive isolated set of X ∈ X 1(M) such that
every x ∈ CritX(Λ) is hyperbolic. Suppose that the following condition holds:

(H3) There are x0 ∈ CritX(Λ), an isolating block U of Λ and a neighborhood
U of X in X 1(M) such that

W u
Y (x0(Y )) ⊂ U, ∀ Y ∈ U .

Then W u
X(x) ⊂ Λ for every x ∈ CritX(Λ).

Proof. Let x0, U and U be as in (H3). By assumption OX(x0) is hy-
perbolic. If OX(x0) is attracting then Λ = OX(x0) since Λ is transitive and
we are done. We can then assume that OX(x0) is not attracting. Thus,
W u

X(x0) \ OX(x0) 
= ∅.
By contradiction, suppose that there is x ∈ CritX(Λ) such that W u

X(x) is
not contained in Λ. Then W u

X(x) is not contained in Cl(U). As M \ Cl(U) is
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open there is a cross-section Σ ⊂ M \ Cl(U) of X such that W u
X(x) ∩Σ 
= ∅ is

transversal. Shrinking U if necessary we may assume that W u
Z(x(Z)) ∩ Σ 
= ∅

is transversal for all Z ∈ U .
Now, W u

X(x0) ⊂ Λ by (H3) applied to Y = X. Choose p ∈ W u
X(x0) \

OX(x0). As Λ is transitive and p, x ∈ Λ, there is q ∈ W s
X(x) \ OX(x) such

that p, q satisfy (H1) in Theorem 2.3. Indeed, the dense orbit of Λ accumulates
both p and x. Then, by Theorem 2.3, there are Z ∈ U and T > 0 such that
p ∈ W u

Z(x(Z)), q ∈ W s
Z(x(Z)) and ZT (p) = q. In other words, OZ(q) is a

saddle connection between x0(Z) and x(Z). On the other hand, as Z ∈ U ,
we have that W u

Z(x(Z)) ∩ Σ 
= ∅ is transversal. It follows from the Inclination
Lemma [7] that Zt(Σ) accumulates on q as t → ∞. This allows us to break
the saddle-connection OZ(q) in the standard way in order to find Z ′ ∈ U
such that W u

Z′(x0(Z ′)) ∩ Σ 
= ∅ (see the proof of [7, Lemma 2.4, p. 101]). In
particular, W u

Z′(x0(Z ′)) is not contained in U . This contradicts (H3) and the
lemma follows.

Proof of Theorem D. Let Λ and X be as in the statement of Theorem D.
It follows that there are x0 ∈ CritX(Λ), U and U such that (H3) holds.

Next we prove that Λ satisfies the hypothesis of Lemma 2.7, that is, there
is an open set W containing Λ such that Xt(W ) ⊂ U for every t ≥ 0.

Suppose that such a W does not exist. Then, there are sequences xn →
x ∈ Λ and tn > 0 such that Xtn

(xn) ∈ M \U . By compactness we can assume
that Xtn

(xn) → q for some q ∈ Cl(M \ U).
Fix an open set V ⊂ Cl(V ) ⊂ U containing Λ. As q ∈ Cl(M \ U),

Cl(M \ U) ⊂ M \ int(U), and M \ int(U) ⊂ M \ Cl(V )

we have that
q /∈ Cl(V ).

By Lemma 2.5 there is a neighborhood U0 ⊂ U of X such that

ΛY (U) ⊂ V, ∀ Y ∈ U0.(3)

Then the hypothesis (H3), the invariance of W u
Y (x0(Y )) and the relation (3)

imply

W u
Y (x0(Y )) ⊂ V ⊂ Cl(V ), ∀ Y ∈ U0.(4)

Now we have two cases:

(1) x /∈ Crit(X).

(2) x ∈ Crit(X).
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In Case (1) we obtain a contradiction as follows. Let OX(z) be the dense
orbit of Λ, i.e. Λ = ωX(z). Fix p ∈ W u

X(x0) \ OX(x0). Then p ∈ Λ by (H3)
applied to Y = X. As x ∈ Λ we can choose sequences zn ∈ OX(z) and t′n > 0
such that

zn → p and Xt′n(zn) → x.

It follows that p, q, x satisfy (H2) of Theorem 2.4 for Y = X. Then, by The-
orem 2.4, there is Z ∈ U0 such that q ∈ W u

Z(x0(Z)). As q /∈ Cl(V ) we have
that W u

Z(x0(Z)) is not contained in U . And this is a contradiction by (4) since
Z ∈ U0.

In Case (2) we use (H3) to obtain a contradiction as follows. By assump-
tion OX(x) is a hyperbolic closed orbit. Clearly OX(x) is neither attracting
nor repelling. In particular, W u

X(x) \ OX(x) 
= ∅. But xn /∈ W s
X(x) since

xn → x and Xtn
(xn) /∈ U . Then, using a linearizing coordinate given by the

Grobman-Hartman Theorem around OX(x) (see references in [31]), we can
find x′

n in the positive orbit of xn such that x′
n → r ∈ W u

X(x) \ OX(x). Note
that r /∈ Crit(X) and that there are t′n > 0 such that Xt′n(x′

n) → q.
Since (H3) holds, by Lemma 2.8 we have W u

X(x) ⊂ Λ. This implies that
r ∈ Λ. Then we have Case (1) replacing x by r, tn by t′n and xn by x′

n. As
Case (1) results in a contradiction, we conclude that Case (2) also does.

Hence Λ satisfies the hypothesis of Lemma 2.7, and Theorem D follows.

Proof of Theorem E. Let Λ be either a robust transitive set or a transitive
C1 robust periodic set of X ∈ X 1(M) satisfying the following hypothesis:

(1) Every critical element of X in Λ is hyperbolic.

(2) Λ contains a singularity σ with dim(W u
X(σ)) = 1.

On one hand, if Λ is robust transitive, we can fix by Definition 1.1 a
neighborhood U of X and an isolating block U of Λ such that ΛY (U) is a
nontrivial transitive set of Y , for all Y ∈ U . Clearly, we can assume that
the continuation σ(Y ) is well defined for all Y ∈ U . As transitive sets are
connected sets, we have the following additional property:

(C) ΛY (U) is connected, for all Y ∈ U .

On the other hand, if Λ is C1 robust periodic, we can fix by Definition
2.2 a neighborhood U of X and an isolating block U of Λ such that ΛY (U) =
Cl(Per(ΛY (U))), for all Y ∈ U . As before we can assume that σ(Y ) is well
defined for all Y ∈ U . In this case we have the following additional property.

(C′) σ(Y ) ∈ Cl(PerY (ΛY (U))), for all Y ∈ U .
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Now we have the following claim.

Claim 2.9. Λ robustly contains the unstable manifold of a critical ele-
ment.

By Definition 2.1 it suffices to prove

W u
Y (σ(Y )) ⊂ Cl(U), ∀ Y ∈ U ,

where U is the neighborhood of X described in either Property (C) or (C′).
By contradiction suppose that ∃Y ∈ U such that W u

Y (σ(Y )) is not con-
tained in U . By hypothesis (2) above it follows that W u

X(σ) \ {σ} has two
branches which we denote by w+ and w− respectively. Fix q+ ∈ w+ and
q− ∈ w−. Denote by q±(Y ) the continuation of q± for Y close to X. We can
assume that the q±(Y ) are well defined for all Y ∈ U .

As q±(Y ) ∈ W u
Y (σ(Y )), the negative orbit of q±(Y ) converges to σ(Y ) ∈

int(U) ⊂ U . If the positive orbit of q±(Y ) is in U , then W u
Y (σ(Y )) ⊂ U ,

which is a contradiction. Consequently the positive orbit of either q+(Y ) or
q−(Y ) leaves U . It follows that there is t > 0 such that either Yt(q+(Y ))
or Yt(q−(Y )) /∈ U . Assume the first case. The other case is analogous. As
M \ U is open, the continuous dependence of the unstable manifolds implies
that there is a neighborhood U ′ ⊂ U of Y such that

Zt(q+(Z)) /∈ U, ∀ Z ∈ U ′.(5)

Now we split the proof into two cases.

Case I: Λ is robust transitive. In this case ΛY (U) is a nontrivial transitive
set of Y . Fix z ∈ ΛY (U) such that ωY (z) = ΛY (U). As σ(Y ) ∈ ΛY (U) it
follows that either q+(Y ) or q−(Y ) ∈ ωY (z). As Y ∈ U ′, the relation (5)
implies q−(Y ) ∈ ωY (z). Thus, there is a sequence zn ∈ OY (z) converging to
q−(Y ). Similarly there is a sequence tn > 0 such that Ytn

(zn) → q for some
q ∈ W s

Y (σ(Y ) \ {σ(Y )}. Define p = q−(Y ).
It follows that p, q, Y satisfy (H1) in Theorem 2.3, and so, there is Z ∈ U ′

such that q−(Z) ∈ W s
Z(σ(Z)). This gives a homoclinic connection associated

to σ(Z). Breaking this connection as in the proof of Lemma 2.8, we can find
Z ′ ∈ U ′ close to Z and t′ > 0 such that

Z ′
t′(q

−(Z ′)) /∈ U.(6)

Now, (5), (6) together with [7, Grobman-Harman Theorem] imply that the
set {σ(Z ′)} is isolated in ΛZ(U). But ΛZ′(U) is connected by Property (C)
since Z ′ ∈ U ′ ⊂ U . Then ΛZ′(U) = {σ(Z ′)}, a contradiction since ΛZ′(U) is
nontrivial. This proves Claim 2.9 in the present case.

Case II: Λ is C1 robust periodic. The proof is similar to the previous one.
In this case ΛY (U) is the closure of its periodic orbits and dim(W u

Y (σ(Y )) = 1.
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As the periodic points of ΛY (U) do accumulate either q+(Y ) or q−(Y ), relation
(5) implies that there is a sequence pn ∈ PerY (ΛY (U)) such that pn → q−(Y ).
Clearly there is another sequence p′n ∈ OY (pn) now converging to some q ∈
W s

Y (σ(Y ) \ {σ(Y )}. Set p = q−(Y ).
Again p, q, Y satisfy (H1) in Theorem 2.3, and so, there is Z ∈ U ′ such that

q−(Z) ∈ W s
Z(σ(Z)). As before we have a homoclinic connection associated to

σ(Z). Breaking this connection we can find Z ′ ∈ U ′ close to Z and t′ > 0 such
that

Z ′
t′(q

−(Z ′)) /∈ U.

Again this relation together with [7, Grobman-Harman Theorem] and the re-
lation (5) would imply that every periodic point of Z ′ passing close to σ(Z ′) is
not contained in ΛZ′(U). But this contradicts Property (C′) since Z ′ ∈ U ′ ⊂ U .
This completes the proof of Claim 2.9 in the final case.

It follows that Λ is an attractor by hypothesis (1) above, Theorem D and
Claim 2.9. This completes the proof of Theorem E.

2.2. Proof of Theorems A and B. In this section M is a closed 3-manifold
and Λ is a robust transitive set of X ∈ X 1(M). Recall that the set of periodic
points of X in Λ is denoted by PerX(Λ), the set of singularities of X in Λ is
denoted by SingX(Λ), and the set of critical elements of X in Λ is denoted by
CritX(Λ).

By Definition 1.1 we can fix an isolating block U of Λ and a neighborhood
UU of X such that ΛY (U) = ∩t∈RYt(U) is a nontrivial transitive set of Y , for
all Y ∈ UU .

A sink (respectively source) of a vector field is a hyperbolic attracting
(respectively repelling) critical element. Since dim(M) = 3, robustness of
transitivity implies that X ∈ UU cannot be C1-approximated by vector fields
exhibiting either sinks or sources in U . And this easily implies the following
result:

Lemma 2.10. Let X ∈ UU . Then X has neither sinks nor sources in U ,
and any p ∈ Per(ΛX(U)) is hyperbolic.

Lemma 2.11. Let Y ∈ UU and σ ∈ Sing(ΛY (U)). Then,

1. The eigenvalues of σ are real.

2. If λ2(σ) ≤ λ3(σ) ≤ λ1(σ) are the eigenvalues of σ, then

λ2(σ) < 0 < λ1(σ).

3. If λi(σ) are as above, then

(a)λ3(σ) < 0 =⇒ −λ3(σ) < λ1(σ);

(b) λ3(σ) > 0 =⇒ −λ3(σ) > λ2(σ).
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Proof. Let us prove (1). By contradiction, suppose that there is Y ∈ UU

and σ ∈ Sing(ΛY (U)) with a complex eigenvalue ω. We can assume that σ

is hyperbolic. As dim(M) = 3, the remaining eigenvalue λ of σ is real. We
have either Re(ω) < 0 < λ or λ < 0 < Re(ω). Reversing the flow direction if
necessary we can assume the first case. We can further assume that Y is C∞

and
λ

−Re(ω)

= 1.(7)

By Theorem 2.3, we can assume that there is a homoclinic loop Γ ⊂ ΛY (U)
associated to σ. Then Γ is a Shilnikov bifurcation [43]. By well-known results
[43, p. 227] (see also [35, p. 13]), and by (7), there is a C1 vector field Z

arbitrarily C1 close to Y exhibiting a sink or a source in ΛZ(U). This yields a
contradiction by Lemma 2.10 and proves (1).

Thus, we can arrange the eigenvalues λ1(σ), λ2(σ), λ3(σ) of σ in such a
way that

λ2(σ) ≤ λ3(σ) ≤ λ1(σ).

By Lemma 2.10 we have that λ2(σ) < 0 and λ1(σ) > 0. This proves (2).
Let us prove (3). For this we can apply [43, Th. 3.2.12, p. 219] in order to

prove that there is Z arbitrarily C1 close to Y exhibiting a sink in ΛZ(U) (if
(a) fails) or a source in ΛZ(U) (if (b) fails). This is a contradiction as before,
proving (3).

Lemma 2.12. There is no Y ∈ UU exhibiting two hyperbolic singularities
in ΛY (U) with different unstable manifold dimensions.

Proof. Suppose by contradiction that there is Y ∈ UU exhibiting two
hyperbolic singularities with different unstable manifold dimensions in ΛY (U).
Note that Λ′ = ΛY (U) is a robust transitive set of Y and −Y respectively. By
[7, Kupka-Smale Theorem] we can assume that all the critical elements of Y

in Λ′ are hyperbolic. As dim(M) = 3 and Y has two hyperbolic singularities
with different unstable manifold dimensions, it follows that both Y and −Y

have a singularity in Λ′ whose unstable manifold has dimension one. Then, by
Theorem E applied to Y and −Y respectively, Λ′ is a proper attractor and a
proper repeller of Y . In particular, Λ′ is an attracting set and a repelling set
of Y . It would follow from Lemma 2.6 that Λ′ = M . But this is a contradiction
since Λ′ is proper.

Corollary 2.13. If Y ∈ UU , then every critical element of Y in ΛY (U)
is hyperbolic.

Proof. By Lemma 2.10 every periodic point of Y in ΛY (U) is hyperbolic,
for all Y ∈ U . It remains to prove that every σ ∈ SingY (ΛY (U)) is hyperbolic,
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for all Y ∈ UU . By Lemma 2.11 the eigenvalues λ1(σ), λ2(σ), λ3(σ) of σ are real
and satisfy λ2(σ) < 0 < λ1(σ). Then, to prove that σ is hyperbolic, we only
have to prove that λ3(σ) 
= 0. If λ3(σ) = 0, then σ is a generic saddle-node
singularity (after a small perturbation if necessary). Unfolding this saddle-
node we obtain Y ′ ∈ UU close to Y having two hyperbolic singularities with
different unstable manifold dimensions in ΛY ′(U). This contradicts Lemma
2.12 and the proof follows.

Proof of Theorem A. Let Λ be a robust transitive set with singularities
of X ∈ X 1(M) with dim(M) = 3. By Corollary 2.13 applied to Y = X we
have that every critical element of X in Λ is hyperbolic. So, Λ satisfies the
hypothesis (1) of Theorem E. As dim(M) = 3 and Λ is nontrivial, if Λ has a
singularity, then this singularity has unstable manifold dimension equal to one
either for X or −X. So Λ also satisfies hypothesis (2) of Theorem E either for
X or −X. Applying Theorem E we have that Λ is an attractor (in the first
case) or a repeller (in the second case).

We shall prove that Λ is proper in the first case. The proof is similar in
the second case. If Λ = M then we would have U = M . From this it would
follow that Ω(X) = M and, moreover, that X cannot be C1 approximated by
vector fields exhibiting attracting or repelling critical elements. It would follow
from the Theorem in [9, p. 60] that X is Anosov. But this is a contradiction
since Λ (and so X) has a singularity and Anosov vector fields do not. This
finishes the proof of Theorem A.

Now we prove Theorem B, starting with the following corollary.

Corollary 2.14. If Y ∈ UU then, either for Z = Y or Z = −Y , every
singularity of Z in ΛZ(U) is Lorenz -like.

Proof. Apply Lemmas 2.11, 2.12 and Corollary 2.13.

Before we continue with the proof, let us recall the concept of linear
Poincaré flow and deduce a result for X ∈ UU that will be used in the se-
quel.

Linear Poincaré flow. Let Λ be an invariant set without singularities of a
vector field X. Denote by NΛ the sub-bundle over Λ such that the fiber Nq

at q ∈ Λ is the orthogonal complement of the direction generated by X(q) in
TqM .

For any t ∈ IR and v ∈ Nq define Pt(v) as the orthogonal projection
of DXt(v) onto NXt(q). The flow Pt is called the linear Poincaré flow of X

over Λ.
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Given X ∈ UU set

Λ∗
X(U) = ΛX(U) \ SingX(ΛX(U)).

By Theorem A, we can assume that ΛX(U) is a proper attractor of X.
Thus, there is a neighborhood U ′ ⊂ UU of X such that if Y ∈ U ′, x ∈ Per(Y )
and OY (x) ∩ U 
= ∅, then

OY (x) ⊂ ΛY (U).(8)

In what follows, [X] stands for the bundle spanned by the flow direction, and
PX

t stands for the linear Poincaré flow of X over Λ∗
X(U). By Lemma 2.10, the

fact that Λ∗
X(U) ⊂ Ω(X), (8), and the same arguments as in [9, Th. 3.2] (see

also [41, Th. 3.8]) we obtain

Theorem 2.15 (Dominated splitting for the LPF). Let X ∈ U ′ ⊂ UU .
Then there exists an invariant, continuous and dominated splitting

NΛ∗
X(U) = N s,X ⊕ Nu,X

for the linear Poincaré flow Pt of X. Moreover, the following hold :

1. For all hyperbolic sets Γ ⊂ Λ∗
X(U) with splitting Es,X

Γ ⊕ [X] ⊕ Eu,X
Γ , if

x ∈ Γ then

Es,X
x ⊂ N s,X

x ⊕ [X(x)], Eu,X
x ⊂ Nu,X

p ⊕ [X(x)].

2. If Yn → X and xn → x with xn ∈ Λ∗
Yn

(U), x ∈ Λ∗
X(U) then N s,Yn

xn →
N s,X

x and Nu,Yn
xn → Nu,X

x .

Lemma 2.16. If σ ∈ SingX(Λ) then the following properties hold :

(1) If λ2(σ) < λ3(σ) < 0, then σ is Lorenz -like for X and

W ss
X (σ) ∩ Λ = {σ}.

(2) If 0 < λ3(σ) < λ1(σ), then σ is Lorenz-like for −X and

W uu
X (σ) ∩ Λ = {σ}.

Proof. To prove (1) we assume that λ2(σ) < λ3(σ) < 0. Then, σ is
Lorenz-like for X by Corollary 2.14.

We assume by contradiction that

W ss
X (σ) ∩ Λ 
= {σ}.

By Theorem 2.3, as Λ is transitive, there is Z ∈ UU exhibiting a homoclinic
connection

Γ ⊂ W u
Z(σ(Z)) ∩ W ss

Z (σ(Z)).
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This connection is called orbit-flip. By using [25, Claim 7.3] and the results in
[24] we can approximate Z by Y ∈ UU exhibiting a homoclinic connection

Γ′ ⊂ W u
Y (σ(Y )) ∩ (W s

Y (σ(Y )) \ W ss
Y (σ(Y )))

so that there is a center-unstable manifold W cu
Y (σ(Y )) containing Γ′ and tan-

gent to W s
Y (σ(Y )) along Γ′. This connection is called inclination-flip. The

existence of inclination-flip connections contradicts the existence of the domi-
nated splitting in Theorem 2.15 as in [25, Th. 7.1, p. 374]. This contradiction
proves (1).

The proof of (2) follows from the above argument applied to −X. We
leave the details to the reader.

Proof of Theorem B. Let Λ be a robust transitive set of X ∈ X 1(M)
with dim(M) = 3. By Corollary 2.14, if σ ∈ SingX(Λ), then σ is Lorenz-like
either for X or −X. If σ is Lorenz-like for X we have that W ss

X (σ) ∩ Λ = {σ}
by Lemma 2.16-(1) applied to Y = X. If σ is Lorenz-like for −X we have
that W uu

X (σ) ∩ Λ = {σ} by Lemma 2.16-(2) again applied to Y = X. As
W ss

−X(σ) = W uu
X (σ) the result follows.

3. Attractors and singular-hyperbolicity

Throughout this section M is a boundaryless compact 3-manifold. The
main goal here is the proof of Theorem C.

Let Λ be a robust attractor of X ∈ X 1(M), U an isolating block of Λ,
and UU a neighborhood of X such that for all Y ∈ UU , ΛY (U) = ∩t∈RYt(U)
is transitive. By definition, Λ = ΛX(U). As we pointed out before (Lemma
2.10 and Corollary 2.13), for all Y ∈ UU , all the singularities of ΛY (U) are
Lorenz-like and all the critical elements in ΛY (U) are hyperbolic of saddle
type.

The strategy to prove Theorem C is the following: given X ∈ UU we show
that there exist a neighborhood V of X, c > 0, 0 < λ < 1 and T0 > 0 such
that for all Y ∈ V, the set PerT0

Y (ΛY (U)) = {y ∈ PerY (ΛY (U)) : ty > T0} has
a continuous invariant (c, λ)-dominated splitting Es ⊕Ecu, with dim(Es) = 1.
Here ty is the period of y. Then, using the Closing Lemma [33] and the
robust transitivity, we induce a dominated splitting over ΛX(U). To do so,
the natural question that arises regards splitting around the singularities. By
Theorem B they are Lorenz-like, and in particular, they also have the local
hyperbolic bundle Êss associated to the strongest contracting eigenvalue of
DX(σ), and the central bundle Êcu associated to the remaining eigenvalues
of DX(σ). Thus, these bundles induce a local partial hyperbolic splitting
around the singularities, Êss⊕Êcu. The main idea is to prove that the splitting
proposed for the periodic points is compatible with the local partial hyperbolic
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splitting at the singularities. Proposition 4.1 expresses this fact. Finally we
prove that Es is contracting and that the central direction Ecu is volume
expanding, concluding the proof of Theorem C.

We point out that the splitting for the Linear Poincaré Flow obtained in
Theorem 2.15 is not invariant by DXt. When Λ∗

X(U) = ΛX(U)\SingX(ΛX(U))
is closed, this splitting induces a hyperbolic one for X, see [9, Prop. 1.1] and
[18, Th. A]. The arguments used there do not apply here, since Λ∗

X(U) is not
closed. We also note that a hyperbolic splitting for X over Λ∗

X(U) cannot be
extended to a hyperbolic one over Cl(Λ∗

X(U)): the presence of a singularity is
an obstruction to it. On the other hand, Theorem C shows that this fact is
not an obstruction to the existence of a partially hyperbolic structure for X

over Cl(Λ∗
X(U)).

3.1. Preliminary results. We start by establishing some notation, defini-
tions and preliminary results.

Recall that given a vector field X we denote with DX the derivative of
the vector field. With Xt(q) we set the flow induced by X at (t, q) ∈ R × M

and DXt(q) the derivative of X at (t, q). Observe that X0(q) = q for every
q ∈ M and that ∂tXt(q) = X(Xt(q)). Moreover, for each t ∈ R fixed, Xt :
M → M is a diffeomorphism on M. Then X0 = Id, the identity map of M ,
and Xt+s = Xt ◦ Xs for every t, s ∈ R and ∂sDXs(Xt(q))|s=0 = DX(Xt(q)).
We set ‖.‖ for the C1 norm in X 1(M). Given any δ > 0, set Bδ(X[a,b](q)) the
δ-neighborhood of the orbit segment X[a,b](q) = {Xt(q), a ≤ t ≤ b}.

To simplify notation, given x ∈ M , a subspace Lx ⊂ TxM , and t ∈ R,
DXt/Lx stands for the restriction of DXt(x) to Lx. Also, [X(x)] stands for
the bundle spanned by X(x).

We shall use an extension for flows of a result in [10] stated below. This
result allows us to locally change the derivative of the flow along a compact
trajectory. To simplify notation, since this result is a local one, we shall state it
for flows on compact sets of Rn. Taking local charts we obtain the same result
for flows on compact boundaryless 3-manifolds. Then, only in the lemma
below, M is a compact set of Rn.

Lemma 3.1. Given ε0 > 0, Y ∈ X 2(M), an orbit segment Y[a,b](p), a
neighborhood U of Y[a,b](p) and a parametrized family of invertible linear maps
At : R3 −→ R3, t ∈ [a, b], C2 with respect to the parameter t, such that

a) A0 = Id and At(Y (Ys(q))) = Y (Yt+s(q)),

b) ‖∂sAt+sA
−1
t |s=0 − DY (Yt(p))‖ < ε, with ε < ε0,

then there is Z ∈ U , Z ∈ X 1(M) such that ‖Y −Z‖ ≤ ε, Z coincides with Y in
M \U , Zs(p) = Ys(p) for every s ∈ [a, b], and DZt(p) = At for every t ∈ [a, b].
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Remark 3.2. Note that if there is Z such that DZt(p) = At and Zt(p) =
Yt(p), 0 ≤ t ≤ T , then, necessarily, At has to preserve the flow direction.
Condition a) above requires this. Moreover,

∂sAt+sA
−1
t |s=0 =

∂

∂s
DpZt+sDZt(p)Z−t|s=0 =

∂

∂s
DZt(p)Zs|s=0 = DZ(Zt(p)),

so, condition b) simply requires that DZ be near DY along the given orbit
segment Y[a,b](p).

We also point out that although we start with a C2 vector field Y we obtain
Z only of class C1 and C1 near Y . Increasing the class of differentiability of
the initial vector field Y and of the family At with respect to the parameter t

we increase the class of differentiability of Z. But even in this setting the best
we can get about closeness is C1 [34].

Using this lemma we can perturb a C2 vector field Y to obtain Z of class
C1 that coincides with Y on M \ U and on the orbit segment Y[a,b], but such
that the derivative of Zt along this orbit segment is the given parametrized
family of linear maps At.

To prove our results we shall also use the Ergodic Closing Lemma for
flows [22], [41], which shows that any invariant measure can be approximated
by one supported on critical elements. To announce it, let us introduce the set
of points in M which are strongly closed:

Definition 3.3. A point x ∈ M \ Sing(X) is δ-strongly closed if for any
neighborhood U ⊂ X 1(M) of X, there are Z ∈ U , z ∈ M , and T > 0 such
that ZT (z) = z, X = Z on M \ Bδ(X[0,T ](x)) and dist(Zt(z), Xt(x)) < δ, for
all 0 ≤ t ≤ T .

Denote by Σ(X) the set of points of M which are δ- strongly closed for
any δ sufficiently small.

Theorem 3.4 (Ergodic Closing Lemma for flows, [22], [41]). Let µ be any
X-invariant Borel probability measure. Then µ(Sing(X) ∪ Σ(X)) = 1.

3.2. Uniformly dominated splitting over TPer
T0
Y (ΛY (U))M . Let ΛY (U) be a

robust attractor of Y ∈ UU , where U and UU are as in the previous section.
Since any p ∈ PerY (ΛY (U)) is hyperbolic of saddle type, the tangent bundle
of M over p can be written as

TpM = Es
p ⊕ [Y (p)] ⊕ Eu

p ,

where Es
p is the eigenspace associated to the contracting eigenvalue of DYtp

(p),
Eu

p is the eigenspace associated to the expanding eigenvalue of DYtp
(p). Here

tp is the period of p.
Note that Es

p ⊂ N s
p ⊕ [Y (p)] and Eu

p ⊂ Nu
p ⊕ [Y (y)], where N s ⊕Nu is the

splitting for the linear Poincaré flow.
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Observe that, if we consider the previous splitting over all PerY (ΛY (U)),
the presence of a singularity in Cl(PerY (ΛY (U))) is an obstruction to the ex-
tension of the stable and unstable bundles Es and Eu to Cl(PerY (ΛY (U))).
Indeed, near a singularity, the angle between either Eu and the direction of the
flow or Es and the direction of the flow goes to zero. To bypass this difficulty,
we introduce the following definition:

Definition 3.5. Given Y ∈ UU , we set, for any p ∈ PerY (ΛY (U)), the
following splitting:

TpM = Es,Y
p ⊕ Ecu,Y

p ,

where Ecu,Y
p = [Y (p)] ⊕ Eu

p . And we set over PerY (ΛY (U)) the splitting

TPerY (ΛY (U))M = ∪p∈PerY (ΛY (U))(E
s,Y
p ⊕ Ecu,Y

p ).

When no confusion is possible, we drop the Y -dependence on the bundle
defined above. To simplify notation, we denote the restriction of DYT (p),
T ∈ R, p ∈ Per(ΛY (U)), to Es,Y

p (respectively Ecu,Y
p ) simply by DYT /Es

p

(respectively DYT /Ecu
p ).

We shall prove that the splitting over PerY (ΛY (U)) given by Definition
3.5 is a DYt-invariant uniformly dominated splitting along periodic points with
large period. That is, we shall prove

Theorem F. Given X ∈ UU there are a neighborhood V ⊂ UU , 0 < λ < 1,
c > 0, and T0 > 0 such that for every Y ∈ V, if p ∈ PerT0

Y (ΛY (U)) and T > 0
then

‖DYT /Es
p‖ ‖DY−T /Ecu

YT (p)‖ < c λT .

Theorem F will be proved in Section 3.6, with the help of Theorems 3.6
and 3.7 below. The proofs of these theorems are in Section 4.

Theorem 3.6 establishes, first, that the periodic points are uniformly hy-
perbolic, i.e., the periodic points are of saddle-type and the Lyapunov ex-
ponents are uniformly bounded away from zero. Second, that the angle be-
tween the stable and the unstable eigenspace at periodic points are uniformly
bounded away from zero.

Theorem 3.6. Given X ∈ UU , there are a neighborhood V ⊂ UU of X and
constants 0 < λ < 1 and c > 0, such that for every Y ∈ V, if p ∈ PerY (ΛY (U))
and tp is the period of p then
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a) 1. ‖DYtp
/Es

p‖ < λtp (uniform contraction on the period)

2. ‖DY−tp
/Eu

p ‖ < λtp (uniform expansion on the period).

b) α(Es
p, E

u
p ) > c .

Theorem 3.7 is a strong version of Theorem 3.6-b). It establishes that at
periodic points, the angle between the stable and the central unstable bundles
is uniformly bounded away from zero. To announce it, let us introduce some
notation.

If x ∈ M , the angle between vx, wx ∈ TxM is denoted by α(vx, wx). Given
two subspaces A ⊂ TxM and B ⊂ TxM the angle α(A, B) between A and B

is defined as α(A, B) = inf{α(vx, wx), vx, wx ∈ TxM}.

Theorem 3.7. Given X ∈ UU , there are a neighborhood V ⊂ UU of X

and a positive constant C such that for every Y ∈ V and p ∈ PerY (ΛY (U)),

α(Es
p, E

cu
p ) > C (angle uniformly bounded away from zero) .

We shall prove that if Theorem F fails then we can create a periodic
point for a nearby flow with the angle between the stable and the central
unstable bundles arbitrarily small, which yields a contradiction to Theorem 3.7.
In proving the existence of such a periodic point for a nearby flow we use
Theorem 3.6.

Assuming Theorem F, we establish in the next section the extension of
the splitting given in Definition 3.5 to all of ΛX(U). Afterward, with the help
of Theorem 3.6, we prove that the bundle Es is uniformly contracting and
that the bundle Ecu is volume expanding. The role of Theorem 3.6 in the
proof that Es is uniformly contracted (respectively Ecu is volume expanding)
is that the opposite assumption leads to the creation of periodic points for
flows nearby the original one with contraction (respectively expansion) along
the stable (respectively unstable) bundle arbitrarily small, contradicting the
first part of Theorem 3.6.

All of these facts together prove Theorem C.

3.3. Dominated splitting over ΛX(U). In order to induce a dominated
splitting over ΛX(U) using the dominated splitting over PerT0

Y (ΛY (U)) for flows
near X given by Definition 3.5, we proceed as follows. First observe that since
ΛY (U) is a proper attractor for every Y C1-close to X, we can assume, without
loss of generality, that for all Y ∈ V, and x ∈ Per(Y ) with OY (x) ∩ U 
= ∅,

OY (x) ⊂ ΛY (U).(9)

On the other hand, since ΛX(U) is a nontrivial transitive set, we get that
ΛX(U) \ {p ∈ PerX(ΛX(U)) : tp < T0} is dense in ΛX(U). So, to induce an
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invariant splitting over ΛX(U) it is enough to do so over

ΛX(U) \ {p ∈ PerX(ΛX(U)) : tp < T0}

(see [21] and references therein). For this we proceed as follows.
Given X ∈ UU , let K(X) ⊂ ΛX(U) \ {p ∈ PerX(ΛX(U)) : tp < T0} be

such that ∀x ∈ K(X), Xt(x) /∈ K(X) if t 
= 0. In other words, K(X) is the
quotient ΛX(U)\{p ∈ PerX(ΛX(U)) : tp < T0}/ ∼, where ∼ is the equivalence
relation given by x ∼ y if and only if x ∈ OX(y). Since ΛX(U) = ω(z) for
some z ∈ M , we have that for any x ∈ K(X) there exists tn > 0 such that
Xtn

(z) → x. Then, by the C1 Closing Lemma [33], there exist Y n → X,
yn → x such that yn ∈ Per(Y n). We can assume that Y n ∈ UU for all n. In
particular, inclusion (9) holds for all n, and so OY n(yn) ⊂ ΛY n(U). Moreover,
since the period for the periodic points in K(X) are larger than T0, we can
also assume that tyn

> T0 for all n. Thus, the (c, λ)-dominated splitting over
PerT0

Y n(ΛY n(U)) given by Theorem F, Es,Y n ⊕ Ecu,Y n

, is well-defined. Take a
converging subsequence Es,Y nk

ynk
⊕ Ecu,Y nk

ynk
and set

Es,X
x = lim

k→∞
Es,Y nk

ynk
, Ecu,X

x = lim
k→∞

Ecu,Y nk

ynk
.

Since Es,Y n ⊕Ecu,Y n

is a (c, λ)-dominated splitting for all n then so is Es,X
x ⊕

Ecu,X
x . Moreover, dim(Es,X

x ) = 1 and dim(Ecu,X
x ) = 2, for all x ∈ K(X).

Set, along Xt(x), t ∈ R, the eigenspaces

Es,X
Xt(x) = DXt(Es,X

x ), and Ecu,X
Xt(x) = DXt(Ecu,X

x ).

Since for every n the splitting over PerT0
Y n(ΛY n(U)) is (c, λ)-dominated, it

follows that the splitting above defined for X along the orbits of points in K(X)
is also (c, λ)-dominated. Furthermore, dim(Es,X

Xt(x)) = 1 and dim(Ecu,X
Xt(x)) = 2

for all t ∈ R. This provides the desired extension to ΛX(U).
We denote by Es ⊕ Ecu the splitting over ΛX(U) obtained in this way,

and since this splitting is uniformly dominated we also obtain that Es ⊕ Ecu

varies continuously with X [15].
When necessary we denote by Es,Y ⊕ Ecu,Y the above splitting for Y

near X.

Remark 3.8. If σ ∈ SingX(ΛX(U)) then Es
σ is the eigenspace Êss

σ associ-
ated to the strongest contracting eigenvalue of DX(σ), and Ecu

σ is the two di-
mensional eigenspace associated to the remaining eigenvalues of DX(σ). This
follows from the uniqueness of dominated splittings [9], [23].

3.4. Es is uniformly contracting. We start by proving the following two
elementary lemmas.
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Lemma 3.9. If limt→∞ inf ‖DXt/Es
x‖ = 0 for all x ∈ ΛX(U) then there

is T0 > 0 such that for any x ∈ ΛX(U),

‖DXT0/Es
x‖ <

1
2

.

Proof. For each x ∈ ΛX(U) there is tx such that ‖DXtx
/Es

x‖ < 1/3.
Hence, for each x there is a neighborhood B(x) such that for all y ∈ B(x) we
have ‖DXtx

/Es
y‖ < 1/2.

As ΛX(U) is compact, there are B(xi), 1 ≤ i ≤ n, such that ΛX(U) ⊂
∪1≤i≤nB(xi).

Let K0 = sup{‖DXt/Es
y‖, y ∈ B(xi), 0 ≤ t ≤ txi

, 0 ≤ i ≤ n}, and j0 be
such that

K0
1

2j0
<

1
2

.

Fix T0 > j0 sup{txi
, 1 ≤ i ≤ n}. We claim that T0 satisfies the lemma.

Indeed, given y ∈ ΛX(U), we have that y ∈ B(xi1) for some 1 ≤ i1 ≤ n. Let
ti1 , . . . , tik

, tik+1 satisfy

(a) Xti1+···+tij
(y) ∈ B(xij+1), 1 ≤ j ≤ k,

(b) ti1 + · · · + tik
≤ T0 ≤ ti1 + · · · + tik+1 .

Observe that k ≥ j0. Then, if 
j = ti1 + · · · + tij
, 1 ≤ j ≤ k + 1,

‖DXT0/Es
y‖ ≤ ‖DXT0−�k

/Es
X�k

‖ .
k∏

j=1

‖DXtij
/Es

X�j−1 (y)‖ < K0
1
2k

<
1
2

.

The proof is complete.

Lemma 3.10. If there is T0 > 0 such that ‖DXT0/Es
x‖ < 1/2 for all

x ∈ ΛX(U) then there are c > 0, 0 < λ < 1 such that for all x ∈ ΛX(U),

‖DXT /Es
x‖ < c λT , ∀ T > 0.

Proof. Let K1 = sup{‖DXr‖, 0 ≤ r ≤ T0}. Choose λ < 1 such that
1/2 < λT0 , and c > 0 such that K1 < c λr for 0 ≤ r ≤ T0.

For any x ∈ ΛX(U), and all T > 0, we have T = nT0 + r, r < T0. Then,

‖DXT /Es
x‖= ‖DXr/Es

Xr(x)‖ .

n−1∏
j=0

‖DXjT0/Es
XjT0 (x)‖

< K1(1/2)n < c λr (λT0)n < c λT ,

proving the lemma.



402 C. A. MORALES, M. J. PACIFICO, AND E. R. PUJALS

Lemmas 3.9 and 3.10 imply that to prove the bundle Es is uniformly
contracting it is enough to prove that

lim
t→∞

inf ‖DXt/Es
x‖ = 0,

for every x ∈ ΛX(U). Suppose, by contradiction, that there is x ∈ ΛX(U) such
that

lim
t→∞

inf ‖DXt/Es
x‖ > 0.

Then, there is sn → ∞ as n → ∞ such that

lim
sn→∞

1
sn

log ‖DXsn
/Es

x‖ ≥ 0.(10)

Let C0(ΛX(U)) be the set of real continuous functions defined on ΛX(U) with
the C0 topology, and define the sequence of continuous operators

Ψn : C0(ΛX(U)) → R,

ϕ �−→ 1
sn

∫ sn

0
ϕ(Xs(x))ds.

There exists a convergent subsequence of Ψn, which we still denote by Ψn,
converging to a continuous map Ψ : C0(ΛX(U)) → R. Let M(ΛX(U)) be the
space of measures with support on ΛX(U). By the Theorem of Riez, there
exists µ ∈ M(ΛX(U)) such that∫

ΛX(U)
ϕdµ = lim

sn→∞
1
sn

∫ sn

0
ϕ(Xs(x))ds = Ψ(ϕ),(11)

for every continuous map ϕ defined on ΛX(U). It is clear that such µ is
invariant by the flow Xt.

Define ϕX : C0(ΛX(U)) −→ R by

ϕX(p) = ∂h(log ‖DXh/Es
p‖)h=0 = lim

h→0

1
h

log ‖DXh/Es
p‖ .

This map is continuous, and so it satisfies (11).
On the other hand, for any T ∈ R,

1
T

∫ T

0
ϕX(Xs(p))ds =

1
T

∫ T

0
∂h(log ‖DXh/Es

Xs(p)‖)h=0ds(12)

=
1
T

log ‖DXT /Es
p‖ .

Combining (10), (11), and (12) we get∫
ΛX(U)

ϕXdµ ≥ 0.(13)

By the Ergodic Theorem of Birkhoff, we have that∫
ΛX(U)

ϕXdµ =
∫

ΛX(U)
lim

T→∞
1
T

∫ T

0
ϕX(Xs(y))dsdµ(y).(14)
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Let ΣX be the set of strongly closed points. Since µ is invariant and Supp(µ) ⊂
ΛX(U), Theorem 3.4 implies

µ(ΛX(U) ∩ (SingX(ΛX(U) ∪ ΣX)) = 1 .

We claim that µ(ΛX(U) ∩ ΣX) > 0. Indeed, otherwise µ(SingX(ΛX(U)) = 1.
Since SingX(ΛX(U)) is invariant, we get that µ = δσ, the Dirac measure at
σ ∈ SingX(ΛX(U)). But Es

σ = Êss
σ (recall Remark 3.8) and the fact that the

eigenvalue λss along Êss
σ satisfies λss < 0 gives∫

ΛX(U)
ϕXdµ =

∫
σ

ϕXdµ = ϕX(σ) < 0 ,

contradicting (13). So µ(ΛX(U) ∩ ΣX) > 0, as claimed.
By the ergodic decomposition for invariant measures, we can suppose that

µ is ergodic. Hence µ(ΛX(U) ∩ ΣX) = 1.
Now, by (13) and (14) we obtain that there exists y ∈ ΛX(U) ∩ ΣX such

that

lim
T→∞

1
T

∫ T

0
ϕX(Xs(y))ds ≥ 0.(15)

Since y ∈ ΣX , there are δn → 0 as n → ∞, Y n ∈ UU , pn ∈ PerY n(ΛY n(U))
with period tn such that

‖Y n − X‖ < δn, and dist(Y n
s (pn), Xs(y)) < δn, 0 ≤ s ≤ tn,

where Y n
s is the flow induced by Y n. Observe that tn → ∞ as n → ∞.

Otherwise, y ∈ PerX(ΛX(U)) and if ty is the period of y, (12) and (15) imply
that DXty

/Es
y expands. Combining this fact with Theorem 3.6 (a2) gives that

y is a repeller periodic point, contradicting Lemma 2.10.
Let γ < 0 be arbitrarily small. By (15) again, there is Tγ such that for

t ≥ Tγ

1
t

∫ t

0
ϕX(Xs(y))ds ≥ γ .(16)

Since tn → ∞ as n → ∞, we can assume that tn > Tγ for every n. The
continuity of the splitting Es ⊕Ecu over TΛX(U)M with the flow together with
(16) give, for n big enough, that

1
tn

log ‖DY n
tn

/Es,Y n

pn
‖ ≥ γ .

Thus
‖DY n

tn
/Es,Y n

pn
‖ ≥ eγtn .

Taking n sufficiently large and γ < 0 sufficiently small, this last inequality
contradicts (a1) in Theorem 3.6.

This completes the proof that Es is a uniformly contracting bundle.
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3.5. Ecu is uniformly volume expanding. Using lemmas similar to Lemmas
3.9 and 3.10, one can see that to prove that Ecu is volume-expanding it is
enough to prove

lim
t→∞

inf |det(DX−t/Ecu
x )| = 0 ,

for every x ∈ ΛX(U).
Suppose, by contradiction, that there is x ∈ ΛX(U) such that

lim
t→∞

inf |det(DX−t/Ecu
x )| > 0 .

Then there is sn → ∞ as n → ∞, such that

lim
n→∞

1
sn

log |det(DX−sn
/Ecu

x )| ≥ 0.(17)

Let C0(ΛX(U)) be the set of real continuous functions defined on ΛX(U) with
the C0 topology, and define the sequence of continuous operators

Ψn : C0(ΛX(U)) → R,

ϕ �−→ 1
sn

∫ sn

0
ϕ(X−s(x))ds.

Hence there exists a convergent subsequence of Ψn, which we still denote by
Ψn, converging to a continuous map Ψ : C0(ΛX(U)) → R . Let M(ΛX(U)) be
the space of measures with support on ΛX(U). By the Theorem of Riez, there
exists µ ∈ M(ΛX(U)) such that∫

ΛX(U)
ϕdµ = lim

sn→∞
1
sn

∫ sn

0
ϕ(X−s(x))ds = Ψ(ϕ),

for every continuous map ϕ defined on ΛX(U). It is clear that such µ is
invariant by the flow Yt.

Now define ϕX : C0(ΛX(U)) −→ R by

ϕX(p) = ∂h

(
log |det(DX−h/Ecu

p )|
)
h=0

= lim
h→0

1
h

log |det(DX−h(p)/Ecu
p )| .

Thus, ∫
ΛX(U)

ϕXdµ = lim
n→∞

1
sn

∫ sn

0
ϕX(X−s(p))ds.

On the other hand, for any T ,

1
T

∫ T

0
∂h

(
log |det(DX−h/Ecu

X−s(p))|
)

h=0
ds(18)

=
1
T

log |det(DX−T /Ecu
p )| ,

and using (17) we get ∫
ΛX(U)

ϕXdµ ≥ 0.(19)
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By the Ergodic Theorem of Birkhoff, we have that∫
ΛX(U)

ϕXdµ =
∫

ΛX(U)
lim

T→∞
1
T

∫ T

0
ϕX(X−s(x))dsdµ(x).(20)

Let ΣX be the set of strongly closed points. Arguing as in the previous section,
we can assume that µ(ΛX(U) ∩ ΣX) = 1 for any µ with Supp(µ) ⊂ ΛX(U).

By (19) and (20), there exists y ∈ ΛX(U) ∩ ΣX such that

lim
T→∞

1
T

∫ T

0
ϕX(X−s(y))ds ≥ 0 .(21)

Hence there are δn → 0 as n → ∞, Y n ∈ UU , pn ∈ PerY n(ΛYn
(U)) with period

tn such that ‖Y n−X‖ < δn and dist(Y n
−s(pn), X−s(y)) < δn, 0 ≤ s ≤ tn, where

Y n
s is the flow induced by Y n. Observe that tn → ∞ as n → ∞. Otherwise,

y ∈ PerY (ΛY (U)), and if ty is the period of y then (21) implies that DXty
/Eu

y

contracts. This fact combined with Theorem 3.6 (a1) gives the fact that y is a
contracting periodic point, contradicting Lemma 2.10.

Let γ < 0 be arbitrarily small. By (21), there is Tγ > 0 such that for
t ≥ Tγ ,

1
t

∫ t

0
ϕX(X−s(y))ds ≥ γ .(22)

Since tn → ∞ as n → ∞, we can assume that tn > Tγ for every n.
The continuity of the splitting Es ⊕ Ecu with the flow together with (18)

and (22) imply that for n big enough

1
tn

log |det(DY n
−tn

/Ecu,Y n

pn
)| ≥ γ .

Hence,
|det(DY n

−tn
/Ecu,Y n

pn
)| ≥ eγtn ,

which implies that

|det(DY n
tn

/Ecu,Y n

pn
)| ≤ e−γtn = (e−γ)tn .(23)

Since γ < 0 is arbitrarily small, taking n sufficiently big we obtain that e−γ is
arbitrarily close to one. Since for periodic orbits the equality

|det(DY n
tn

/Ecu,Y n

pn
)| = |DY n

tn
/Eu,Y n

pn
)|

holds, and (23) contradicts (a2) in Theorem 3.6. This completes the proof that
Ecu is volume-expanding.

3.6. Proof of Theorem F. As already said, let us assume Theorems 3.6
and 3.7 and show how we obtain Theorem F. The central idea of the proof is
to show that if Theorem F fails then we can obtain a flow near X exhibiting a
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periodic point with angle between the stable and the central bundles arbitrarily
small, leading to a contradiction to Theorem 3.7.

We shall use the following notation: if v1, . . . , vn are vectors, [v1, . . . , vn]
is the space spanned by v1, . . . , vn.

As in Lemma 3.10, one can easily see that to obtain Theorem F it is
enough to prove that there exist a neighborhood V ⊂ UU of X, and T0 > 0,
such that for any Y ∈ V, if p ∈ PerT0

Y (ΛY (U)) then

‖DYT0/Es
p‖ ‖DY−T0/Ecu

YT0 (p)‖ ≤ 1
2

.(24)

So, we only have to prove (24). The proof goes by contradiction. If it
does not hold then given X ∈ UU , we have that for any T0 > 0 there is
Y ∈ UU ∩X∞(M) C1 arbitrarily close to X, and y ∈ PerT0

Y (ΛY (U)), such that

‖DYT0/Es
y‖ ‖DY−T0/Ecu

YT0 (y)‖ >
1
2

.(25)

Claim 3.11. For any positive number T0, there are Y ∈ X∞(M), C1

arbitrarily close to X, T > T0, y ∈ PerY (ΛY (U)) with period ty larger than T ,
and v ∈ Ecu

YT (y) not collinear to Y (YT (y)), such that

‖DYT /Es
y‖ ‖DY−T (YT (y))(v)‖ = 1 .

Proof. First we will prove that there are Y ∈ X∞(M) C1-arbitrarily
close to X, T > T0, and y ∈ PerT0

Y (ΛY (U)) with period ty larger than T , and
v ∈ Ecu

YT (y), such that

‖DYT /Es
y‖ ‖DY−T (YT (y))(v)‖ =

1
2

.(26)

Take Y of class C∞ close to X, T0 large enough and y ∈ PerT0
Y (ΛY (U))

such that (25) holds. If for some T0 < T < ty

‖DYT /Es
y‖ ‖DY−T /Ecu

YT (y)‖ <
1
2

,

then there is another intermediate time, that we continue to denote by T ,
T0 < T < ty, such that

‖DYT /Es
y‖ ‖DY−T /Ecu

YT (y)‖ =
1
2

,

and so there is v ∈ Ecu
YT (y) such that (26) holds, and we are done. Otherwise,

if for any T0 ≤ T < ty we have

‖DYT /Es
y‖ ‖DY−T /Ecu

YT (y)(v)‖ ≥ 1
2

,(27)
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we argue as follows. Observe that, by Theorem 3.6(a1) and (a2), we have that

‖DYty
/Es

y‖ ‖DY−ty
/Eu

Yty (y)‖ < λ2ty <
1
2

.

Hence, we get that for T < ty and close enough to ty, the inequality above holds
when we replace ty by T . Thus, using (27) and the fact that Eu

YT (y) ⊂ Ecu
YT (y),

we conclude that there is a vector v ∈ Ecu
YT (y) such that

‖DYT /Es
y‖ ‖DY−T (YT (y))(v)‖ =

1
2

,

proving (26).
Now, let At, for 0 ≤ t ≤ T , be the one-parameter family of linear maps

defined by
At/Es

y = 2
t

T DYt/Es
y, At/Ecu

y = DYt/Ecu
y .

Observe that

∂sAt+sA
−1
t

∣∣
s=0

/Es
Yt(y) = ∂sDYt+s(y)DY −1

t /Es
Yt(y) (2

s

T )
∣∣
s=0

= DY/Es
Yt(y) +

log(2)
T

.

Thus
‖∂sAt+sA

−1
t

∣∣
s=0

/Es
Yt(y) − DY/Es

Yt(y)‖ =
∣∣ log(2)

T

∣∣ .

Since At/Ecu
y = DYt/Ecu

y , we get

‖∂sAt+sA
−1
t

∣∣
s=0

− DY ‖ =
∣∣ log(2)

T

∣∣ .

As T can be chosen arbitrarily big we have that log(2)
T is arbitrarily near 0.

Moreover, since the flow direction is contained in Ecu and At/Ecu
y = DYt/Ecu

y

we obtain that At preserves the flow direction of X. Furthermore, as Y ∈ X∞,
the family At is C2 with respect to the parameter t. Thus At satisfies the
hypotheses of Lemma 3.1.

Hence, there is another C1 vector field, which we continue to denote by Y ,
C1 near X, satisfying DYt(y) = At. On the other hand, using (26) and the
definition of At we get ‖AT /Es

y‖ ‖A−1
T (v)‖ = 1 which implies

‖DYT /Es
y‖ ‖DY−T (YT (y))(v)‖ = 1 .

If v is not collinear to Y (y) then we are done. Otherwise we take anothe C∞

vector field that we continue to denote by Y , C1-close to X, and ṽ near v such
that the product

‖DYT /Es
y‖ ‖DY−T (YT (y))(ṽ)‖ = bT is arbitrarily close to 1 ,

and define the one parameter family of linear maps Bt by

Bt/Es
y = b

− t

T

T DYt/Es
y , Bt/Ecu

y = DYt/Ecu
y , 0 ≤ t ≤ T .
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Reasoning as above, we obtain that this family satisfies the hypothesis of
Lemma 3.1 and, as before, we find a new C∞ vector field that we continue
to denote by Y , C1 near X, and w ∈ Ecu

YT (y) not collinear to Y (YT (y)), and
T < ty arbitrarily large, such that

‖DYT /Es
y‖ ‖DY−T (YT (y))(w)‖ = 1 .

This completes the proof of Claim 3.11.

Claim 3.12. There are Z ∈ X∞(M), C1 near Y , and y ∈ PerZ(ΛZ(U)),
such that α(Es,Z

y , Ecu,Z
y ) is arbitrarily small.

Proof. Fix T arbitrarily large and let Y ∈ UU ∩ X∞(M) C1 arbitrarily
close to X, y ∈ PerY (ΛY (U)) with period ty > T , and v ∈ Ecu

YT (y) not collinear
to Y (YT (y)) be given by Claim 3.11. Then

‖DYT /Es
y‖ ‖DY−T (YT (y))(v)‖ = 1 .

Let

w =
DY−T (YT (y))(v)

‖DY−T (YT (y))(v)‖ .

Observe that w ∈ Ecu
y and it is not collinear to Y (y). Set in TyM the basis

By =
{
Y (y)/‖Y (y)‖, w, es

y

}
,

where es
y is the unitary generator of Es

y. For each 0 ≤ r ≤ T < ty set, in
TYr(y)M , the basis

BYr(y) =
{

Y (Yr(y))/‖Y (Yr(y))‖, wr, e
s
Yr(y)

}
,

where wr = DYr(y)(w)
‖DYr(y)(w)‖ and es

Yr(y) is the unitary generator of Es
Yr(y).

Since, by Theorem 3.7, α(Es
Yr(y), E

cu
Yr(y)) > C for all y ∈ PerY (ΛY (U))

and all r, there is K = K(C) such that for all Y ∈ V and all y ∈ Per(ΛY (U)),
there is a metric ‖.‖(Y,y) depending on Y and y, such that Es

Yr(y) and Ecu
Yr(y)

are orthogonal for all r, and

1
K

‖.‖ ≤ ‖.‖(Y,y) ≤ K ‖.‖.

Then, the matrix of DYs(y), for all s, with respect to the basis BYs(y) in
the metric ‖.‖(Y,y) is given by

DYs(y) =

 Y (s) ∗ 0
0 a(s) 0
0 0 b(s)

 , where

Y (s) = ‖Y (Ys(y))‖(Y,y), a(s) = ‖DYs(y)(w)‖(Y,y), b(s) = ‖DYs(y)(es
y)‖(Y,y).
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Observe that in this basis, Y (Ys(y)) = (1, 0, 0) , and a(T ) = b(T ), by the
choice of v and w.

Let As,y be the restriction of DYs(y) to [w, es
y]. Observe that any pertur-

bation on As,y does not affect the direction of Y .
For each δ > 0, let

A+
s,y =

[
a(s) δa(s)

∫ s
0

b(r)
a(r)dr

0 b(s)

]
,

and

A−
s,y =

[
a(s) 0

δb(s)
∫ s
0

a(r)
b(r) dr b(s)

]
.

Observe that for any h ≥ 0,

A+
s+h,y(A

+
s,y)

−1 =
[

a(s, h) c(s, s + h)
0 b(s, h)

]
where

a(s, h) =
a(s + h)

a(s)
, b(s, h) =

b(s + h)
b(s)

, and

c(s, s + h) = δ
a(s + h)

b(s)

∫ s+h

s

b(r)
a(r)

dr.

A similar formula holds for A−
s+h(A−

s )−1.
We claim that

‖∂hA+
s+h,y(A

+
s,y)

−1|h=0 − DY (Ys(y))‖(Y,y) ≤ δ.(28)

Indeed, we have

∂hA+
s+h,y(A

+
s,y)

−1|h=0 =

[
a′(s)
a(s) ∂hc(s, s + h)|h=0

0 b′(s)
b(s)

]
and

DY (Ys(y)) =

[
a′(s)
a(s) 0

0 b′(s)
b(s)

]
.

So, all we need is ‖∂hc(s, s + h)|h=0‖(Y,y) ≤ δ. But

c(s, s + h) = δ
a(s + h)

b(s)

∫ s+h

s

b(r)
a(r)

dr = δ
a(s + h)

b(s)
b(η)
a(η)

h,

for some η ∈ [s, s + h]. From this it follows that

∂hc(s, s + h)|h=0 = lim
h→0

c(s, s + h)
h

= δ .

This implies (28). A similar result holds for A−
s+h(A−

s )−1.



410 C. A. MORALES, M. J. PACIFICO, AND E. R. PUJALS

Let

A+
T,y

[
0
1

]
=

[
δa(T )

∫ T
0

b(r)
a(r)dr

b(T )

]
and A−

T,y

[
1
0

]
=

[
a(T )

δb(T )
∫ T
0

a(r)
b(r) dr

]
.

We shall prove next that shrinking δ results in either

b(T )

δa(T )
∫ T
0

b(r)
a(r)dr

is arbitrarily small or(29)

δ
b(T )
a(T )

∫ T

0

a(r)
b(r)

dr is arbitrarily large.(30)

The meaning of this is that either

A+
T,y

[
0
1

]
is near a horizontal vector or

A−
T,y

[
1
0

]
is near a vertical vector.

If (29) holds we consider the family

B+
s,y =

 Y (s) ∗ 0
0 a(s) δa(s)

∫ s
0

b(r)
a(r)dr

0 0 b(s)


and if (30) holds we take

B−
s,y =

 Y (s) ∗ 0
0 a(s) 0
0 δb(s)

∫ s
0

a(r)
b(r) dr b(s)

 .

Assume (29). Observe that (28) together with the fact that Y ∈ C∞

imply that B+
s,y satisfies Lemma 3.1. So there is Z ∈ UU ∩ X 1(M) C1 near

Y , and so C1 near X, such that y is a periodic point of Z with period T ,
Zt(y) = Yt(y) for every t, and DZs(y) = B+

s,y. In particular, the restriction
of DZs(y) to [w, es

y] is equal to A+
s,y for every s. Hence, Ecu,Z

Zs(y) = Ecu,Y
Ys(y) for

all s. Moreover, Theorem 3.7 combined with the fact that the metric ‖.‖(Y,y) is
comparable with ‖.‖, give α(Ecu,Z

y , Es,Z
y ) > C ′, C ′ = C ′(C) > 0, in the metric

‖.‖(Y,y). Thus, in the basis BYs(y) fixed above, we obtain Es,Z
y = (g, d, 1) with

|g| and |d| upper bounded by a constant depending only on C. Thus,

Es,Z
ZT (y) = DZZT (y)

 g

d

1

 =

 gY (T ) + ∗d
da(T ) + δa(T )

∫ T
0

b(r)
a(r)dr

b(T )

 .



ROBUST TRANSITIVE SINGULAR SETS 411

As a(T ) = b(T ), we obtain that the ratio between the third and the second
coordinate of Es,Z

ZT (y) is equal to(
d + δ

∫ T

0

b(r)
a(r)

dr

)−1

.

Now, (29) implies δ
∫ T
0

b(r)
a(r)dr > K1, with K1 arbitrarily large. Hence,

d + δ

∫ T

0

b(r)
a(r)

dr > K1 + d and so
(

d + δ

∫ T

0

b(r)
a(r)

dr

)−1

<
1

K1 + d
.

As (K1+d)−1 is arbitrarily small, we obtain that α(Es,Z
ZT (y), E

cu,Z
ZT (y)) is arbitrarily

small in the metric ‖.‖(Y,y). And since ‖.‖ and ‖.‖(Y,y) are comparable, we
obtain that α(Es,Z

ZT (y), E
cu,Z
ZT (y)) is also arbitrarily small in the original metric,

contradicting Theorem 3.7.
Assuming (30) and reasoning analogously, we obtain that α(Ecu,Z

ZT (y), E
s,Z
ZT (y))

is arbitrarily small in the original metric.
All of these facts together prove Claim 3.12, which contradicts Theo-

rem 3.7.
Thus, to conclude the proof of Theorem F, all that is left to prove is

that we have either (29) or (30). For this, set δ = T−1/2. Note that as T is
arbitrarily large, δ can be taken arbitrarily small. Since a(s) > 0 and b(s) > 0
for every s ∈ [0, τ ], we can write

T =
∫ T

0
dY =

∫ T

0

√
a(Y )
b(Y )

√
b(Y )
a(Y )

dY ≤
√∫ T

0

a(Y )
b(Y )

dY

√∫ T

0

b(Y )
a(Y )

dY

and so

T 2 ≤
∫ T

0

a(Y )
b(Y )

dY

∫ T

0

b(Y )
a(Y )

dY ,

implying that

T

δ
∫ T
0

b(Y )
a(Y )dY

=
T 2δ2

δ
∫ T
0

b(Y )
a(Y )dY

≤ δ

∫ T

0

a(Y )
b(Y )

dY .

Thus, if (δ
∫ T
0

b(Y )
a(Y )dY )−1 > T−1/2 then T (δ

∫ T
0

b(Y )
a(Y )dY )−1 > T T−1/2 =

√
T ,

which implies

δ

∫ T

0

a(Y )
b(Y )

dr ≥
√

T .

Since T is arbitrarily large, we obtain that either (29) or (30) holds. The
proof of Theorem F is complete, and we conclude that the splitting Es ⊕ Ecu

over PerT0
Y (ΛY (U)) given by Definition 3.5 is an invariant uniformly dominated

splitting.



412 C. A. MORALES, M. J. PACIFICO, AND E. R. PUJALS

4. Proofs of Theorems 3.6 and 3.7

Here we prove Theorems 3.6 and 3.7, used in the proofs of the results in
the previous section.

Proof of Theorem 3.6(a). Suppose, by contradiction, that given δ > 0
small, there is Y ∈ X∞(M) C1 arbitrarily close to X, and a periodic orbit y

of Y with period ty, such that ‖DYty
/Es

y‖ ≥ (1 − δ)ty .
Let At, 0 ≤ t ≤ ty, be the one-parameter family of linear maps given by

At = DYt(y) (1 − 2δ)−t.

By construction, At preserves the direction of the flow and the eigenspaces of
DYty

. Moreover,

‖∂hAt+hA−1
t |h=0 − DY (Yt(y))‖ < − log(1 − δ) .

As (1− δ) is as near 1 as we wish, the inequality above together with the fact
that Y ∈ C∞ imply that At satisfies Lemma 3.1.

So, there is Z ∈ C1, C1-near Y such that y is a periodic point of Z with
period ty, and DZt(Zt(y)) = At for 0 ≤ t ≤ ty. But, by construction, we get
that ‖DZty

/Es
y‖ > 1, implying that y is a source for Z, contradicting Lemma

2.10.
By the same argument we prove (a.2). This finishes the proof of (a).

Proof of (b). By contradiction, assume that for every γ > 0, there exist
Y ∈ X∞ C1-close to X and p ∈ PerY (ΛY (U)), such that α(Es

p, E
u
p ) < γ.

Let tp be the period of p and λs, λu be the stable and unstable eigenvalues
of DYtp

(p). Then λs < λtp and λu > λ−tp , where λ is given by (a). Observe
that there is t0 such that tp > t0 and thus, |1− λs

λu
| is uniformly bounded away

from 0, and if λs λu > 0 then there is D1 > 0 such that

D−1
1 <

∣∣∣∣2√λsλu − λs − λu

λu − λs

∣∣∣∣ < D1,(31)

and if λs λu < 0 then there is D2 > 0 such that

D−1
2 <

∣∣∣∣−(λs + λu)
(λu − λs)

∣∣∣∣ < D2 .(32)

Let γ̂ be the slope between Es
p and Eu

p . Observe that γ̂ is small if the angle

α(Es
p, E

u
p ) is small. In the case that λs λu > 0, we set δ =

∣∣∣2
√

λsλu−λs−λu

λu−λs

∣∣∣ γ̂.

Otherwise, δ =
∣∣∣−(λs+λu)

(λu−λs)

∣∣∣ γ̂. By hypothesis, γ̂ can be taken arbitrarily small,
so (31) and (32) imply that δ also can be taken arbitrarily small.

Now, let Bt, 0 ≤ t ≤ tp, be a continuous positive oriented basis in TYt(p)M

defined as

Bt(p) =
{

Yt(p)
‖Yt(p)‖ , v2(t), v3(t)

}
,
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where v2(t) ∈ Ecs
Yt(p) and is orthonormal to Y (Yt(p)), and v3(t) is orthonormal

to Ecs
Yt(p).

In this basis we have

DYtp
(p) =

 1 ∗ ∗
0 λs

λu−λs

γ̂

0 0 λu

 .

For each δ as above, let

A(δ) =

 1 0 0
0 1 0
0 δ 1

 ,

and consider B(δ) = A(δ)DYtp
(p). Since δ is arbitrarily small, B(δ) is arbi-

trarily near DYtp
(p). Moreover, a straightforward calculation shows that B(δ)

has one eigenvalue equal to 1, and the other two eigenvalues having modulus
equal to

√
|λs λu|, which is either bigger than 1 or smaller or equal to 1.

Since δ can be taken arbitrarily small, there is a nonnegative C2 real
function δ(t) such that δ(0) = 0, δ(tp) = δ, |δ′(t)| < 2δ, and |δ(t)| < 2δ. Now,
define the one parameter family At, 0 ≤ t ≤ tp, of linear maps whose matrix,
in the basis Bt is

At =

 1 0 0
0 1 0
0 δ(t) 1

 .

Let Ct = AtDYt(p), 0 ≤ t ≤ tp. Note that, by construction, Ct preserves the
flow direction along the Y -orbit of p. Moreover, the choice of δ(t) implies that
At, 0 ≤ t ≤ tp, is a small perturbation of the identity map It : TYt(p)M →
TYt(p)M , and so Ct satisfies Lemma 3.1. So, there is Z ∈ C1, C1 near Y , and
p ∈ PerZ(ΛZ(U)) such that DZt(p) = Ct = AtDYt(p), for 0 ≤ t ≤ tp. On the
other hand, DZtp

= Atp
DYtp

(p) = B(δ), where B(δ) is as defined above. Thus,
taking δ sufficiently small, we get that there is a C1 vector field Z nearby Y

exhibiting a periodic point p which is either a sink or a source, contradicting
Lemma 2.10. The proof of Theorem 3.6 is complete.

Proof of Theorem 3.7. We shall prove that if Theorem 3.7 fails then we
can create periodic points with angle between the stable and unstable directions
arbitrarily small, leading to a contradiction to the second part of Theorem 3.6.

Theorem 3.7 is an immediate consequence of Propositions 4.1 and 4.2 be-
low. The first one establishes that for periodic points close to a singularity, the
stable direction remains close to the strong stable direction of the singularity,
and the central unstable direction is close to the central unstable direction of
the singularity. This result gives the compatibility between the splitting pro-
posed for the periodic points in Definition 3.5 and the local partially hyperbolic
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splitting at the singularities. The second one says that far from singularities,
the angle between the stable direction and the central unstable direction of
any periodic point is uniformly bounded away from zero.

Before we state Propositions 4.1 and 4.2, let us fix some notation. Given a
singularity σ of X ∈ UU , we know that σ is hyperbolic and so, for Y close to X,
it is defined as the unique continuation of σ, which is denoted by σY . Again,
as all singularities of X are hyperbolic we conclude that the singularities of Y

nearby X are the continuations of the ones of X. So, we can assume that for
any Y close to X, the singularities of Y in ΛY (U) coincide with the ones of X

in ΛX(U). Even with this assumption, we denote these singularities of Y close
to X as σY .

By Theorem B, for all Y ∈ UU , the eigenvalues λY
i , 0 ≤ i ≤ 3, of DY (σY )

are real and satisfy λY
2 < λY

3 < 0 < −λY
3 < λY

1 . We denote by Êss,Y
σY the

eigenspace associated to the strongest contracting eigenvalue λY
2 and by Êcu,Y

σY

the two-dimensional eigenspace associated to {λY
3 , λY

1 }. Without loss of gen-
erality, we can assume that for Y close to X, the eigenvalues of DY (σY ) are
the same as the ones of DX(σ).

Since M is a Riemannian manifold, given x ∈ M there is a normal neigh-
borhood V such that x ∈ V ; i.e., for any two distinct points of V there is
a unique geodesic contained in V connecting them. Thus, using the parallel
transport, we get that the angle between two vectors at different points in V is
well defined. In the sequel, any neighborhood of the singularities is a normal
one.

Proposition 4.1. Given X ∈ UU , ε > 0 and σ ∈ Sing(ΛX(U)), there
exist a neighborhood V ⊂ UU of X and δ > 0 such that for all Y ∈ V, if
p ∈ PerY (ΛY (U)) satisfies dist(p, σY ) < δ then

(a) α(Es,Y
p , Êss,Y

σY ) < ε and

(b) α(Ecu,Y
p , Êcu,Y

σY ) < ε .

Proposition 4.2. Given X ∈ UU and δ > 0, there are a neighborhood
V ⊂ U of X and a positive constant C = C(δ) such that if Y ∈ V and p ∈
PerY (ΛY (U)) satisfies dist(p, SingY (ΛY (U))) > δ then

α(Es,Y
p , Ecu,Y

p ) > C .

To prove Propositions 4.1 and 4.2, we use the following results.
The first one establishes that any compact invariant set Γ ⊂ ΛX(U) con-

taining no singularities is hyperbolic.

Lemma 4.3. Let X ∈ UU and Γ ⊂ ΛX(U) be a compact invariant set
without singularities. Then Γ is hyperbolic.
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Given X ∈ UU and δ > 0, set Cδ(SingX(ΛX(U))) = ∪σ∈SingX(ΛX(U))Bδ(σ),
where Bδ(σ) is the ball of radius δ centered at σ, and denote Uδ = Cl(U \
Cδ(SingX(ΛX)). Set

ΩX(Uδ) = {x ∈ Ω(X) : O(x) ⊂ Uδ} .

As a matter-of-fact, we shall use the following application of Lemma 4.3:

Corollary 4.4. For any δ > 0, ΩX(Uδ) is hyperbolic.

Given a regular point x ∈ M recall that we set NY
x for the orthogonal

complement of [Y (x)] in TxM , Λ∗
Y (U) = ΛY (U) \ SingY (ΛY (U)) and

NΛ∗
Y (U) = N s,Y ⊕ Nu,Y

denotes the splitting for the linear Poincaré flow P Y
t of Y ; see Theorem 2.15.

So, for x ∈ Λ∗
Y (U), we have the splittings Ecs,Y

x = N s,Y
x ⊕ [Y (x)] and Ecu,Y

x =
Nu,Y

x ⊕ [Y (x)].
Recall also that for Y near X and p ∈ PerY (ΛY (U)) we denote by Es,Y

p ⊕
Ecu,Y

p the splitting given by Definition 3.5. In this case, we have that Ecu,Y
p =

Nu,Y
p ⊕ [Y (p)] and Es,Y

p ⊂ Ecs,Y
p = N s,Y

p ⊕ [Y (p)].
Using the fact that a hyperbolic set locally has a unique continuation for

flows close to the initial one, we get the following result.

Lemma 4.5. Let X ∈ UU and Γ be a compact invariant set without singu-
larities. Then, there are neighborhoods V of X, V of Γ and γ > 0 such that for
any ε > 0 there exists T = T (ε) > 0 such that if Y ∈ V, y ∈ V ∩ ΛY (U) with
Ys(y) ∈ V for 0 ≤ s ≤ t, t ≥ T , and v ∈ N s,Y

y ⊕ [Y (y)] with α(v, Y (y)) < γ,
then

α(DYt(y)(v), Y (Yt(y))) < ε .

The next result gives angle estimates through the passage near a singular-
ity. It says that for a point y in ΛY (U) and vectors v with angle bounded away
from zero with the strong stable bundle at the singularity, after the passage
through the singularity, DYt(v) lands in the direction of the central unsta-
ble bundle at Yt(y). Before we state it, let us introduce some notation and
definitions.

Given σY ∈ SingY (ΛY (U)), W s
loc(σY ) (W u

loc(σY ) respectively) stands for
the local stable (unstable respectively) manifold at σY . To simplify notations
we set Ŵ s

loc(σY ) = W s
loc(σY )\{σY }, and Ŵ u

loc(σY ) = W u
loc(σY )\{σY }. Since σY

is Lorenz-like, there is a unique bundle in TW s
loc(σY ), Êss,Y , that is strongly

contracted by the derivative of the flow. For each y ∈ W s
loc(σY ), Êss,Y

y is the
fiber of Êss,Y at y.

For further references, let us define cross sections at points in the unstable
bundle at a singularity.
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Definition 4.6. Given σ ∈ SingX(ΛX(U)) and δ > 0, we can define a
compact cross section Σu

δ ⊂ Bδ(σ) to X satisfying the following properties:

(1) Σu
δ is a cross section to all Y near X;

(2) Σu
δ ∩ Ŵ u

loc(σY ) 
= ∅, for all Y near X;

(3) For all Y near X and all y ∈ ΛY (U) ∩ Ŵ u
loc(σY ) there is t such that

Yt(y) ∈ Σu
δ ;

(4) For all y ∈ ΛY (U) ∩Bδ(σY ) there is t such that Yt(y) ∈ Σu
δ , and Ys(y) ∈

Bδ(σ) for all 0 ≤ s ≤ t.

Definition 4.7. If y ∈ Bδ(σY ) we let y∗ be the point in Ŵ s
loc(σY ) such that

dist(y, Ŵ s
loc(σY )) = dist(y, y∗).

Lemma 4.8. Let X ∈ UU , σ ∈ Sing(ΛX(U)), and δ > 0. There is a
neighborhood V of X such that given γ > 0 and ε > 0 there is r = r(ε, γ)
such that for Y ∈ V, y ∈ Bδ(σ) ∩ ΛY (U) verifying dist(y, Ŵ s

loc(σY )) < r and
v ∈ TyM with α(v, Êss,Y

y∗ ) > γ then

α(DYsy
(y)(v), Ecu,Y

Ysy (y)) < ε

where sy is the first positive time such that Ysy
(y) ∈ Σu

δ .

Now, let us introduce compact cross sections at points in the stable bundle
at a singularity satisfying some nice properties.

Definition 4.9. Given σ ∈ SingX(ΛX(U)) and δ > 0, by Theorem B we
can define a compact cross section to X, Σs

δ ⊂ Bδ(σ), satisfying the following
properties:

(1) Σs
δ is a cross section to all Y near X;

(2) Σs
δ ∩ Ŵ s

loc(σY ) 
= ∅, for all Y near X;

(3) Σs
δ ∩ Ŵ ss(σY ) = ∅ for all Y near X;

(4) For all Y near X and all y ∈ ΛY (U) ∩ Ŵ s
loc(σY ) there is t such that

Yt(y) ∈ Σs
δ;

(5) For all y ∈ ΛY (U) ∩ Bδ(σY ) there is t such that Yt(y) ∈ Σs
δ, and Ys(y) ∈

Bδ(σ) for all t ≤ s ≤ 0.

Given δ′ > 0 we define

Σs
δ,δ′ = {x ∈ Σs

δ; dist(x, Ŵ s
loc(σ) ∩ Σs

δ) ≤ δ′}.(33)
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Finally, the last result also gives angle estimates for a passage near a sin-
gularity: it says that for vectors v in the central direction with angle bounded
away from zero with the flow direction then, through the passage near σ,
DXt(v) lands in the direction of the flow.

Lemma 4.10. Let X ∈ UU , σ ∈ Sing(ΛX(U)), and δ > 0. There is a
neighborhood V of X such that given ε > 0, k > 0, δ > 0 and cross sections
Σs

δ, Σu
δ as above, there is δ′ > 0 such that for all Y ∈ V, p ∈ Σs

δ,δ′ , and
v ∈ Nu,Y

p ⊕ [Y (p)], if α(v, Y (p)) > k then

α(DYsp
(p)(v), Y (Ysp

(p))) < ε,

where sp is the first positive time such that Ysp
(p) ∈ Σu

δ .

We postpone the proof of Lemmas 4.3, 4.5, 4.8, and 4.10 to the end of
this section.

Since we have only a finite number of singularities, we can assume that
the estimates given by the previous lemmas hold for all singularities of Y in
ΛY (U), for all Y ∈ V.

Proof of Proposition 4.1 (a). The proof goes by contradiction. Since the
continuation of the singularities varies continuously with the vector field, we
have that if (a) fails then there are a singularity σ of X, γ > 0, a sequence
of vector fields Y n converging to X and a sequence of periodic points pn ∈
PerY n(ΛY n(U)), pn → σ, such that

α(Es,Y n

pn
, Êss,Y n

σYn
) > γ.(34)

We will prove that (34) implies that both the stable and the unstable
directions at some periodic point qn of Y n, with n large, will be close to the
flow direction at qn, and so, the stable and unstable directions at qn will be
close, contradicting Theorem 3.6(b). With this purpose, we will show that
after a first passage through a neighborhood of a singularity, the stable and
the flow direction become close. This property holds up to the next return
to that neighborhood, and after the second passage through it, we obtain
that the stable and the flow directions are close as well, the unstable and the
flow directions, implying the closeness between the stable and the unstable
directions, leading, as we said, to a contradiction to Theorem 3.6(b).

Fix a neighborhood Bδ(σ) and cross sections Σu(s)
δ contained in Bδ(σ) as

in Definition 4.6 (4.9). Since pn → σ, we have that for each n sufficiently large,
there is a first tn > 0 such that qn = Y n

tn
(pn) ∈ Σu

δ .
Note that there is q ∈ Ŵ u

loc(σ) ∩ ΛX(U) such that qn → q.

Claim 4.11. Formula (34) implies that α(Es,Yn
qn , Y n(qn)) → 0 as n → ∞.
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Proof. We will prove first that, as a consequence of (34), the stable direc-
tion at qn is close to the central unstable direction at qn. Using some properties
of the splitting given by the Poincaré flow, we will show that if this happens
then the stable direction at qn is necessarily close to the flow direction at qn,
proving the claim. For this we proceed as follows.

Since (34) holds and pn → σ, by Lemma 4.8 we get that

α(Es,Y n

qn
, Nu,Y n

qn
⊕ [Y n(qn)]) → 0 as n → ∞ .(35)

To complete the proof of the claim we have to prove that (35) holds because
Es,Y n

qn is leaning in the direction of the flow. Indeed, since qn → q ∈ Λ∗
X(U),

Theorem 2.15 implies that

α(N s,Y n

qn
, Nu,Y n

qn
) > 0.9 α(N s,X

q , Nu,X
q ), for n big enough .

As N
s(u)
qn is orthogonal to Y n(qn), we obtain

α(N s,Y n

qn
⊕ [Y n(qn)], Nu,Y n

qn
⊕ [Y n(qn)]) = α(N s,Y n

qn
, Nu,Y n

qn
) .

Thus, α(N s,Y n

qn ⊕ [Y n(qn)], Nu,Y n

qn ⊕ [Y n(qn)]) is uniformly bounded away from
zero. Since Es,Y n

qn ⊂ N s,Y n

qn ⊕[Y n(qn)], and Y n(qn) = N s,Y n

qn ⊕[Y n(qn)]∩Nu,Y n

qn ⊕
[Y n(qn)], by (35) we obtain

α(Es,Y n

qn
, Y n(qn)) → 0 as n → ∞,(36)

proving Claim 4.11.

Now we will apply Lemma 4.10. For this, let δ be as above, k = c where
c is as in Theorem 3.6(b), and ε < c/2. Let δ′ be given by Lemma 4.10.

Fix δ∗ < max{δ, δ′} and consider Uδ∗ = Cl(U \Cδ∗(SingX(ΛX(U))). Since
the singularities of Y ∈ V are the continuation of the ones of X, we can assume
that Uδ∗ ∩ SingY (ΛY (U)) = ∅ for all Y ∈ V.

Since σ is an accumulation point of OY n(qn) we have that for n large
enough, there is a first positive time sn such that

q̃n = Y n
sn

(qn) ∈ Cδ∗(SingY n(ΛY n(U))).

We can take sn in such a way that q̃n ∈ Σs
δ,δ′ , where Σs

δ,δ′ is as in (33).
We assume, without loss of generality, that every q̃n belongs to the same

connected component of Σs
δ,δ′ associated to the same singularity of Y n. Note

that from the choice of δ∗, we get that Y n
s (qn) ∈ Uδ∗ for all 0 ≤ s ≤ sn.

Next we prove that (36) holds when we replace qn by q̃n. That is, we shall
prove

α(Es,Y n

q̃n
, Y n(q̃n)) → 0 as n → ∞.(37)

Indeed, if there exists S > 0 such that for infinitely many n we have
sn < S then (36) immediately implies (37).
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Otherwise, let q be such that Y n
sn/2(qn) → q, with sn → ∞. Then

Cl(OX(q)) ⊂ Uδ∗ which implies ω(OX(q)) ⊂ ΩX(Uδ∗). By Corollary 4.4,
ΩX(Uδ∗) is hyperbolic. Let V be a neighborhood of ΩX(Uδ∗) given by Lemma
4.5. The next claim establishes that the time spent by the Y n orbit segment
{Y n

t (qn), 0 ≤ t ≤ sn} outside V is uniformly bounded.

Claim 4.12. There is S′′ > 0 such that for all n, there are 0 ≤ s1
n < s2

n

≤ sn, s1
n < S′′, sn − s2

n < S′′, such that Y n
s (qn) ∈ V for all s1

n ≤ s ≤ s2
n.

Proof. It is enough to prove that if there is S′ such that given qn and
0 < s′n < sn with the property that Y n

s′
n
(qn) /∈ V, then either s′n < S′

or sn − s′n < S′. If this were not the case, there would exist s′n such that
Y n

s′
n
(qn) /∈ V and sn − s′n → ∞, s′n → ∞. Then we could consider a sequence

Y n
s′

n
(qn) → q′ with q′ /∈ V , and this would imply that Cl(OX(q′)) ⊂ Uδ∗ , and

that ω(OX(q′)) ⊂ ΩX(Uδ∗) which implies ω(OX(q′)) ⊂ V . Hence, for large n,
we would get Y n

s′
n
(qn) ∈ V , contradicting the assumption. This finishes the

proof of Claim 4.12.

Returning to the proof of (37), recall that α(Es,Y n

qn , Y n(qn)) is arbitrarily
small for n large enough. Then, Lemma 4.5 combined with the fact that for
n sufficiently large the time spent by the orbit segment {Y n

s (qn), 0 ≤ s ≤ sn}
outside V is finite (Claim 4.12) give (37).

As before, since q̃n ∈ Σs
δ,δ′ , there is a first rn > 0 such that ˜̃qn = Y n

rn
(q̃n)

∈ Σu
δ . Next we prove that we also have α(Es,Y n˜̃qn

, Y n(˜̃qn)) → 0 as n → ∞.
If there is S > 0 such that 0 < rn < S for infinitely many n, taking a sub-

sequence, we get the assertion. Otherwise, taking a subsequence if necessary,
we get that q̃n → Ŵ s

loc(σ) ∩ Σs
δ,δ′ and there exists ˜̃q ∈ Ŵ u

loc(σ) ∩ Σu
δ such that˜̃qn → q. Observe that there is d > 0 such that for any y ∈ Ŵ s

loc(σ) ∩ Σs
δ,δ′ we

have that α(X(y), Êss
y ) > d and so, provided n is large enough we get that

α(Y n(q̃n), Êss,Y n

q̃n∗
) > d .(38)

Combining (37) and (38) we obtain α(Es,Y n

q̃n
, Êss,Y n

q̃n∗
) > d for n large.

Then, arguing as in Claim 4.11, replacing qn by q̃n, n ≥ 0, we obtain

lim
n→∞

α(Es,Y n˜̃qn

, Y n(˜̃qn)) = 0 .(39)

Moreover, since (37) holds, Theorem 3.6(b) implies that

α(Eu,Y n

q̃n
, Y n(q̃n)) > c for n big enough.(40)

As Eu,Y n

q̃n
⊂ Nu,Y n

q̃n
⊕ [Y n(q̃n)] and (40) holds, Lemma 4.10 implies

α(DY n
rn

(Eu,Y n

q̃n
), Y n(˜̃qn)) < ε < c/2,(41)

by the choice of ε.
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Now, (39) and (41) combined with the fact that Eu,Y n˜̃qn

= DY n
rn

(Eu,Y n

q̃n
)

give
α(Eu,Y n˜̃qn

, Es,Y n˜̃qn

) < c/2, for n big enough.

This contradicts Theorem 3.6(b), and proves Proposition 4.1(a).

Proof of Proposition 4.1(b). We will prove that given Y near X and a
periodic point p of Y close to σY then Ecu,Y

p is close to Êcu,Y
σY . For this we shall

use the following claims.
First, given δ > 0 and δ′ > 0, we will consider the cross sections Σs

δ and
Σs

δ,δ′ as in Definition 4.9 and (33) respectively.

Claim 4.13. Let X ∈ UU , σ ∈ SingX(ΛX(U)) and δ > 0. There are a
neighborhood V of X such that given γ > 0 and ε > 0, there is r = r(ε, γ) > 0
such that if y ∈ Σs

δ and Ly ⊂ TyM is a plane with α(Ly, Ê
ss
y ) > γ then

α(DYsy
(y)(Ly), Êcu

σY
) < ε, where sy is such that Ysy

(y) ∈ Br(σY ) and Ys(y) ∈
Bδ(σY ) for all 0 ≤ s ≤ sy.

The proof of this claim is similar to the one for Claim 4.15, proved in the
end of this section, and so we shall not do it here.

Given y ∈ Σs
δ,δ′ let y∗ be as in Definition 4.7.

Claim 4.14. Let X ∈ UU , σ ∈ SingX(ΛX(U)) and δ > 0. There are
a neighborhood V of X, γ > 0 and δ′ > 0 such that for all Y ∈ V and all
y ∈ ΛY (U) ∩ Σs

δ,δ′ there is α(Ecu,Y
y , Êss,Y

y∗ ) > γ.

Assuming the claims, let us finish the proof of the proposition.

Observe that for p close to σY there is sp > 0 such that p̃ = Y−sp
(p) ∈ Σs

δ,δ′ ,
where δ and δ′ are as in Claim 4.14. Let p̃∗ be as in Definition 4.7. By
Claim 4.14, α(Ecu,Y

p̃ , Êss,Y
p̃∗

) > γ, and hence, by Claim 4.13 we have that

α(DYt(p̃)(Ecu,Y
p̃ ), Êcu,Y

σY ) is arbitrarily small, provided p is close enough to σY ,
concluding the proof of Proposition 4.1(b).

Hence, we only need to prove Claim 4.14. First we show the claim for
points q ∈ Σs

δ,δ′ ∩ ΛX(U) ∩ Ŵ s
loc(σ).

In this case, observe that α(Ecu,X
q , Êss

q ) ≥ α(Ecu,X
q , TqW

s
loc(σ)). By [9,

Prop. 2.2], N s,X
q = TqW

s
loc(σ) ∩ Ny and since X(q) ∈ TqW

s
loc(σ) we get that

TqW
s
loc(σ) = N s,X

q ⊕ [X(q)]. Now, we conclude that

α(Ecu,X
q , TqW

s
loc(σ)) = α(Ecu,X

q , N s,X
q ⊕ [X(q)]) = α(Nu,X

q , N s,X
q ) .(42)

Since Σs
δ,δ′ is compact and does not contain singularities, by Theorem 2.15,

there is γ = γ(δ, δ′) such that α(Nu,X
q , N s,X

q ) > γ , for any q ∈ Σδ,δ′ . Replacing
this inequality in (42) we conclude the proof of the claim in this case. we have
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that dist(p̃, Σs
δ,δ′∩Ŵ s

loc(σY )) is arbitrarily small. So, using the continuity of the
splitting N s,X ⊕ Nu,X with the flow, Theorem 2.15, we get that the estimate
(42) above still holds replacing q by p̃ and X by Y , concluding the proof of
Claim 4.14.

All of these facts together give the proof of Proposition 4.1.

Proof of Proposition 4.2. Assume, by contradiction, that there exists a
sequence of periodic points pn /∈ Cδ(Sing(ΛX(U))) of flows Y n → X such that

α(Ecu,Y n

pn
, Es,Y n

pn
) → 0 as n → ∞ .(43)

We claim that Cl(∪nOY n(pn))∩Sing(ΛX(U)) 
= ∅. Indeed, if this were not
the case, we would get that there is δ∗ such that Cl(∪nOY n(pn)) ⊂ ΩX(Uδ∗).

By Corollary 4.4, ΩX(Uδ∗) is hyperbolic, and so there are neighborhoods V

and V of ΩX(Uδ∗) and Y respectively, and c > 0 such that α(Es,Y
p , Ecu,Y

p ) > c

for all p ∈ PerY (ΛY (U)) such that OY (p) ⊂ V .
Since Y n → X as n → ∞, we have that OY n(pn) ⊂ V for n sufficiently

large. Hence we conclude that α(Es,Y n

pn , Ecu,Y n

pn ) > c, leading to a contradiction.
Thus Cl(∪nOY n(pn)) ∩ Sing(ΛX(U)) 
= ∅ as claimed.

Fix δ > 0 and take cross sections Σs(u)
δ as in Definitions 4.6 and 4.9.

Since Cl(∪nOY n(pn)) ∩ Sing(ΛX(U)) 
= ∅, we get that for each n there is
sn such that p̃n = Y n

sn
(pn) ∈ Σs

δ(σ).
Now, we take k = c where c is as in Theorem 3.6(b), ε < c/2 and δ′ as in

Lemma 4.10.
Fix δ∗ < δ, δ′ and consider Uδ∗ = Cl(U \Cδ∗(Sing(ΛX(U))). By Corollary

4.4 ΩX(Uδ∗) is hyperbolic.
From the choice of δ∗, we get that Y n

s (pn) ∈ Uδ∗ for any 0 ≤ s ≤ sn. We
assume, without loss of generality, that every p̃n belongs to the same connected
component of Σs

δ,δ′ , associated to the same singularity σ, where Σs
δ,δ′ is as in

(33). Reasoning as in Claim 4.11 we prove that (43) implies

α(Es,Y n

p̃n
, Y n(p̃n)) → 0 as n → ∞.(44)

Once (44) is settled, the proof is similar to that in the previous proposition,
and we leave the details for the reader.

We close this section presenting the proof of Lemmas 4.3, 4.5, 4.8, and
4.10.

Proof of Lemma 4.3. We will prove, with the help of the Ergodic Closing
Lemma and Theorem 3.6(b), that the linear Poincaré flow restricted to Γ is
hyperbolic. Applying [9, Prop. 1.1] we obtain the result.

To prove that the splitting N s ⊕ Nu for the linear Poincaré flow PX
t

restricted to Γ is hyperbolic we proceed as follows. First observe that N s⊕Nu

is defined over Γ everywhere and is continuous. So, all we need is to show that
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N s is forward contractive and Nu is backward expansive by the derivative of
PX

t . To prove that the bundle N s is uniformly contracting it is enough to
prove that

lim
t→∞

inf ‖PX
t /N s

x‖ = 0,

for every x ∈ Γ. Suppose, by contradiction, that there is x ∈ Γ such that

lim
t→∞

inf ‖PX
t /N s

x‖ > 0.

Then there is sn → ∞ as n → ∞, such that

lim
sn→∞

1
sn

log ‖PX
sn

/N s
x‖ ≥ 0.(45)

Let C0(Γ) be the set of real continuous functions defined on Γ with the C0

topology, and define the sequence of continuous operators

Ψn : C0(Γ) → R,

ϕ �−→ 1
sn

∫ sn

0
ϕ(PX

s (x))ds.

There exists a convergent subsequence of Ψn, which we still denote by Ψn,
converging to a continuous map Ψ : C0(Γ) → R. Let M(Γ) be the space of
measures with support on Γ. By the Theorem of Riez, there exists µ ∈ M(Γ)
such that ∫

Γ
ϕdµ = lim

sn→∞
1
sn

∫ sn

0
ϕ(PX

s (x))ds = Ψ(ϕ),(46)

for every continuous map ϕ defined on Γ. It is clear that such µ is invariant
by the flow PX

t .
Define ϕP X : C0(Γ) −→ R by

ϕP X (p) = ∂h(log ‖PX
h /N s

p‖)h=0 = lim
h→0

1
h

log ‖PX
h /N s

p‖ .

This map is continuous, and so it satisfies (46).
On the other hand, for any T ∈ R,

1
T

∫ T

0
ϕP X (PX

s (p))ds =
1
T

∫ T

0
∂h(log ‖PX

h /N s
P X

s (p)‖)h=0ds(47)

=
1
T

log ‖PX
T /N s

p‖ .

Combining (45), (46), and (47) we get∫
Γ

ϕP X dµ ≥ 0.

By the Ergodic Theorem of Birkhoff,∫
Γ

ϕP X dµ =
∫

Γ
lim

T→∞
1
T

∫ T

0
ϕP X (PX

s (y))dsdµ(y).
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Let ΣX be the set of strongly closed points. Since µ is invariant and
Supp(µ) ⊂ Γ, Theorem 3.4 implies µ(Γ ∩ (Sing(X) ∪ ΣX)) = 1 . As there
are no singularities in Γ we conclude that µ(Γ ∩ Sing(X)) = 1 .

By the ergodic decomposition for invariant measures, we can suppose that
µ is ergodic. Then there exists y ∈ Γ ∩ ΣX such that

lim
T→∞

1
T

∫ T

0
ϕP X (PX

s (y))ds ≥ 0.(48)

Then there are δn → 0 as n → ∞, Y n ∈ UU , pn ∈ PerY n(ΛY n(U)) with
period tn such that

‖Y n − X‖ < δn, and dist(Y n
s (pn), Xs(y)) < δn, 0 ≤ s ≤ tn,

where Y n
s is the flow induced by Y n. Observe that tn → ∞ as n → ∞.

Otherwise, y ∈ PerX(Γ) and if ty is the period of y, combining the continuity
of the splitting N s ⊕ Nu with the flow, (47) and (48) we get that P

Xty

t /N s,X
y

expands. Then, taking γ < 0 arbitrarily small, we obtain that ‖PXty

t /N s,X
y ‖

> eγ ty .
Now consider the eigenspace Ecs

y = N s
y ⊕ [X(y)] of DXty

(y).
Let ns

y ∈ N s
y , ‖ns

y‖ = 1. Then DXty
(y)(ns

y) = aX(y)+ bns
y. Since ns

y is or-
thogonal to X(y) and DXty

(X(y)) = X(y) we conclude that b = det(DXty
(y)).

On the other hand, if es
y ∈ Es

y, ‖es
y‖ = 1, by Theorem 3.6(a) we have

DXty
(y)(es

y) = λ̃es
y with |λ̃| < λty , λ < 1. Then,

eγ ty < ‖PX
ty

(ns
y)‖ = ‖PNDXty

(ns
y)‖ = |b| < K λty ,

for some positive constant K, leading to a contradiction. Thus tn → ∞ as
n → ∞.

Let γ < 0 be arbitrarily small. By (48) again, there is Tγ such that for
t ≥ Tγ

1
t

∫ t

0
ϕP X (PX

s (y))ds ≥ γ .

Since tn → ∞ as n → ∞, we can assume that tn > Tγ for n sufficiently large.
Using the continuity of the splitting N s ⊕ Nu with the flow, we can take Y n

and pn such that

1
tn

∫ tn

0
ϕP Y n (P Y n

s (pn))ds ≥ γ .

This implies that ‖P Y n

tn
/N s

pn
‖ > eγ tn .

Considering the eigenspace Ecs
pn

of DY n
tn

(pn), and reasoning as above, re-
placing X by Y n and y by pn, we obtain

eγ tn < K λtn ,

with λ < 1, leading again to a contradiction.
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The proof that Nu
X is backward expansive by the derivative of PX

t is
similar and we leave the details to the reader.

The proof of Lemma 4.3 is finished.

Proof of Lemma 4.5. Since Γ is hyperbolic, there are 0 < λΓ < 1
and c > 0 such that N s,X

Γ = Es,X
Γ ⊕ [X] with ‖DXt/Es,X‖ < c λt

Γ, and
c−1 < ‖X/Γ‖ < c. Changing uniformly the metric in a neighborhood of Γ,
we can assume that for all x ∈ Γ, Es,X

x is orthogonal to [X(x)], and ‖X(x)‖ = 1.
In other words, in this new metric, Es,X

Γ coincides with the stable bundle N s,X
Γ

for the linear Poincaré flow restricted to Γ.
For each x ∈ Γ, let ns,X

x ∈ N s,X
x with ‖ns,X

x ‖ = 1, and consider the
orthogonal basis Bx = {X(x), ns,X

x } of [X(x)]⊕N s,X
x . In this basis, the matrix

of DXt(x) restricted to [X(x)] ⊕ N s,X
x is given by

DXt(x)/[X(x)] ⊕ N s,X
x =

[
1 0
0 ns,X

x,t

]
,

where ‖ns,X
x,t ‖ < c λΓ

t.
Fix t0 such that ‖ns,X

x,t0‖ < 1/2 for all x ∈ Γ. Moreover, there is c′ > 0
such that ‖ns,X

x,t0‖ > c′ for all x ∈ Γ.
Taking a neighborhood V of Γ and a neighborhood V ⊂ UU of X, both

sufficiently small, and a continuous change of metric with the flow, we get that
for all Y ∈ V, and for all y ∈ ΛY (U), ‖Y (y)‖ = 1. Thus, the matrix of DYt0(y)
restricted to [Y (y)]⊕N s,Y

y with respect to the basis By = {Y (y), ns,Y
y } is given

by

DYt0(y)/[Y (y)] ⊕ N s,Y
y =

[
1 δY

y

0 ns,Y
y,t0

]
,

where δY
y < δ0, δ0 small for Y sufficiently close to X, and ‖ns,Y

y,t0‖ < 1/2. Thus,

DYn t0(y)/[Y (y)] ⊕ N s,Y
y =

[
1 δY

y,n

0 ns,Y
y,n t0

]
,

with δY
y,n < < 2δ0.

Let ε > 0, and n0 be such that |(1/2)n| < ε for all n ≥ n0.
Given v ∈ [Y (y)]⊕N s,Y

y , in the basis By, we can write v = (1, γ′
0). Then,

for m ∈ N we get

slope(DYn0 m(y)(v), (1, 0)) ≤ ns,Y
y,n0 mγ′

0

1 − δY
y,n0

ns,Y
y,n0 m

<
(1/2)n0 m

1 − 2δ0
.

For t > n0, we write t = m n0+s with 0 ≤ s ≤ n0. Then, α(DYt(y)(v), Y (Yt(y))
< K ε, for some small positive constant K, proving Lemma 4.5.
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Proof of Lemma 4.8. Let y ∈ Bδ(σ) and sy be such that Ysy
(y) ∈ Σu

δ ,
and Ys(y) ∈ Bδ(σ) for all 0 ≤ s ≤ sy. Observe that if y is close to W s

loc(σ)
then YsY

(y) is close to W u
loc(σ). Regarding this property, it is easy to see that

the proof of Lemma 4.8 follows immediately from the next two claims. Before
we state them, let us introduce some notation and definitions.

Given σ ∈ SingX(ΛX(U)) consider the local central unstable manifold
W cu

loc(σY ) at σY for any Y close to X. Observe that W cu
loc(σY ) is not uniquely

defined, but it has the property that W u
loc(σY ) ⊂ W cu

loc(σY ), and for all y ∈
W u

loc(σY ), the tangent bundle TyW
cu
loc(σY ) does not depend on the choice of

the central unstable manifold. So, for all y ∈ W u
loc(σY ) we define Êcu,Y

y =
TyW

cu
loc(σY ). In other words, for points in W u

loc(σY ) we get a central bundle
induced by the central unstable manifold of the singularity.

The first claim gives angle estimates through the passage near a singular-
ity. It says that for a point y in Bδ(σ) and vectors v with angle bounded away
from zero with the strong stable bundle at the singularity, after the passage
through a neighborhood of the singularity, DYt(v) lands in the direction of
the central unstable bundle induced by the central unstable manifold of the
singularity. Given y ∈ Bδ(σY ) such that Ysy

(y) ∈ Σu
δ and Ys(y) ∈ Bδ(σY )

for all 0 ≤ s ≤ sy, let y∗ be as in Definition 4.7 and set y∗∗ for the point in
Ŵ u

loc(σY ) ∩ Σu
δ such that dist(Ysy

(y), Ŵ u
loc(σY ) ∩ Σu

δ ) = dist(Ysy
(y), y∗∗).

Claim 4.15. Let X ∈ UU , σ ∈ Sing(ΛX(U)), and δ > 0. There is a
neighborhood V of X such that given γ > 0 and ε > 0 there is r = r(ε, γ)
such that for Y ∈ V, y ∈ Bδ(σ) with dist(y, Ŵ s

loc(σY )) < r and v ∈ TyM with
α(v, Êss

y∗) > γ. Then
α(DYsy

(y)(v), Êcu,Y
y∗∗ ) < ε

where sy is the first positive time such that Ysy
(y) ∈ Σu

δ .

The next claim relates the splitting for the linear Poincaré flow and the
local splitting at a singularity for points in the unstable manifold of the singu-
larity. More precisely, the lemma shows that the central unstable bundle for
the linear Poincaré flow coincides with the one given by the central unstable
manifold of the singularity.

Claim 4.16. Let X ∈ UU , σ ∈ Sing(ΛX(U)) and y ∈ Ŵ u
loc(σ) ∩ ΛX(U).

Then there is a neighborhood V of X such that for any ε there exists r = r(ε)
such that for any Y ∈V if p∈ΛY (U) and dist(p, y)<r then α(Ecu,Y

p , Êcu,Y
y )<ε.

We will prove the first claim introducing linearizable coordinates in a
normal neighborhood V of the singularity. For this, to simplify notations, we
shall assume that there is a neighborhood V of σ where all Y sufficiently near
X are linearizable. We fix δ > 0 small such that Bδ(σ) ⊂ V . We shall also
assume that σY = σ and the eigenvalues of DY (σY ) are the same as the ones
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of DX(σ). Let λ2 < λ3 < 0 < −λ3 < λ1 be the eigenvalues of DX(σ). Then,
in local coordinates x̄, ȳ, z̄, we have that Y/V can be written as

Y (x̄, w̄, z̄) =


˙̄x = λ1x̄
˙̄y = λ2ȳ
˙̄z = λ3z̄ .

Note that in this case W s
loc(σ) = [(0, 1, 0), (0, 0, 1)]∩V , W u

loc(σ) = [(1, 0, 0)]∩V ,
W cu

loc(σ) = [(1, 0, 0), (0, 0, 1)] ∩ V , Êss,Y
y = [(0, 1, 0)] ∩ V for any y ∈ W s

loc(σ),
Êcu,Y

y = [(1, 0, 0), (0, 0, 1)] for any y ∈ W u
loc(σ), and Σu

δ ∩W u
loc(σ) = {(±1, 0, 0)}.

For y ∈ V and for v = (v1, v2, v3), if t > 0 is such that Ys(y) ∈ V for all
0 ≤ s ≤ t then DYt(y)(v) = (eλ1tv1, e

λ2tv2, e
λ3v3).

Given two vectors v and w we set slope(v, w) for the slope between v

and w.

Proof of Claim 4.15. Let r > 0 and y ∈ Bδ(σ) be such that dist(y, Ŵ s
loc(σ))

< r, v = (v1, v2, v3) ∈ TyM and t > 0 such that Ys(y) ∈ V for all 0 ≤ s ≤ t.
Then,

slope(DYt(y)(v), Êcu,X
σ ) =

|eλ2tv2|√
(eλ1tv1)2 + (eλ3tv3)2

.

On the other hand, assuming that α(Êss,X
σ , v) = α((0, 1, 0), v) > γ we get that

there is 0 < γ̂ < 1 such that 0 ≤ |v2| < γ̂. Hence v2
1 +v2

3 > 1− γ̂2. This implies

that either v1 >
√

(1 − γ̂2)/2 or v3 >
√

(1 − γ̂2)/2. Thus,

slope(DYt(y)(v), Êcu,X
σ ) ≤ |eλ2tv2|

|eλitvi|
≤ γ̂√

(1 − γ̂2)/2)
e(λ2−λi)t ,

where i is chosen in such a way that vi satisfies v2
i >

√
(1 − γ2)/2. As both

λ2−λ3 and λ2−λ1 are strictly smaller than 0, there is T = T (ε, γ) > 0 such that
if t > T then the right side member of the inequality above is smaller than ε.
Now, with r sufficiently small, for all y ∈ (Bδ(σ) \ Ŵ s

loc(σ)) if Yt(y) ∈ Σu
δ then

t > T . These last two facts combined complete the proof.

Proof of Claim 4.16. Given Y , p, and y as in the statement, recall
that Ecu,Y

p = Nu,Y
p ⊕ [Y (p)]. By the continuity of the normal bundle for the

linear Poincaré flow far from singularities, we get that given ε > 0 there are a
neighborhood V of X and r > 0 such that if Y ∈ V and dist(p, y) < r then

Nu,Y
p ⊕ [Y (p)] is close to Nu,X

y ⊕ [X(y)] .

Now, to prove the claim it is enough to prove that the central unstable bundle
for the linear Poincaré flow coincides with the one given by the central unstable
manifold of the singularity; i.e.,

Nu,X
y ⊕ [X(y)] = Êcu,X

y .



ROBUST TRANSITIVE SINGULAR SETS 427

On the other hand, since X(y) ∈ Êcu
y and Nu, is orthogonal to X(y), to obtain

the equality above, we only need to show that Nu,X
y ⊂ Êcu

y . For this we
proceed as follows. Take yn → y such that yn ∈ ΛX(U) for all n. Again,
by the continuity of the splitting for the linear Poincaré flow we get that
Nu,X

yn → Nu,X
y . Thus, to conclude the result it suffices to prove that

α(Nu,X
yn

, Êcu,X
y ) → 0.(49)

Since yn → y ∈ Ŵ u
loc(σ), we can assume first that yn ∈ Bδ(σ) for all n. Second,

for each n there is tn > 0 such that ŷn = X−tn
(yn) ∈ Σs

δ, where Σs
δ is a cross

section as in Definition 4.9. Then, there is ŷ ∈ Ŵ s
loc(σ) such that ŷn → ŷ.

For each n let ŷn∗ ∈ Ŵ s
loc(σ) be as in Definition 4.7. We assert that there

is some positive constant γ such that

α(Nu,X
ŷn

, Êss,X
ŷn∗

) > γ.(50)

Assuming (50), we apply Claim 4.15 to obtain (49) and complete the proof of
Claim 4.16.

Thus, we are left to prove (50). For this, observe that Nu,X
ŷ ⊂ Nŷ, and

so, (50) follows from Claim 4.14.
All of these facts together prove Lemma 4.8.

Proof of Lemma 4.10. For the proof of this lemma we shall use local
linearisable coordinates in a neighborhood of σ as in the proof of Lemma 4.8.

Let δ > 0 be small such that Bδ(σ) ⊂ V , and consider Σs(u)
δ as in Defini-

tions 4.6 and 4.9 respectively . Let δ′ > 0 and consider Σs
δ,δ′ as in (33). Let

p ∈ Σδ,δ′ ∩ ΛY (U) and v ∈ Nu,Y
p ⊕ Y (p) with α(v, Y (p)) > k, where k > 0.

Write v = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) with a2 + b2 + c2 = 1.

Claim 4.17. There are R > 0 and δ′ such that if p and v are as above
then |a| > R.

Proof. By the continuity of the flow direction and the normal bundle
splitting far from singularities, it suffices to verify the claim for p ∈ W s

loc(σ) \
{σ}. In this case Ecs,Y

p = Π0, where Π0 = [(0, 1, 0), (0, 0, 1)]. Thus, all we
need to prove is that α(v, Ecs,Y

p ) > κ for some κ > 0. For this, observe
that since dist(p, σ) > δ, by Theorem 2.15, there is k′ = k′(δ) such that
α(N s,Y

p , Nu,Y
p ) > k′ . As α(Ecu,Y

p , Ecs,Y
p ) = α(N s,Y

p , Nu,Y
p ), we conclude that

α(Ecu,Y
p , Ecs,Y

p ) > k′ .(51)

On the other hand, v ∈ [Y (p)] ⊕ Nu,Y
p = Ecu,Y

p and

α(v, Y (p)) = α(v, Ecs,Y
p ∩ Ecu,Y

p ) > k

by hypothesis. This fact combined with (51) give the proof of the claim.
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Returning to the proof of Lemma 4.10, let tp be such that Ytp
(p) ∈ Σu

δ .

Next we will prove that for δ′ small we get that

(1) α(Y (Ytp
(p)), (1, 0, 0)) is small and,

(2) α(DYtp
(p)(v), (1, 0, 0)) is small.

Observe that if δ′ → 0 then tp → ∞ and Ytp
(p) converges to a point in

Ŵ u
loc(σ), where the flow direction is (1, 0, 0). Thus, the continuity of the flow

direction implies (1).
To prove (2), recall that DYtp

(p)(v) = (aeλ1tp , beλ2tp , ceλ3tp). So, by Claim
4.17, ∣∣∣∣ beλ2tp

aeλ1tp

∣∣∣∣ < e(λ2−λ1)tp |b|R−1 .

Similarly, ∣∣∣∣ ceλ3tp

aeλ1tp

∣∣∣∣ < e(λ3−λ1)tp |c|R−1 .

Since tp → ∞ as δ′ → 0, both λ2 − λ1 and λ3 − λ1 are negative numbers, and
R > 0, we obtain that the right side member of both inequalities above go to
0 as δ′ → 0, which concludes the proof of Lemma 4.10.

5. Proof of the results in Section 1.4

In this section we present the proof of Propositions 1.8, 1.9 and 1.10.

Proof of Proposition 1.8. The proof of Corollary 1.8 relies on the fact that
the intersection of the dominated splitting Es ⊕ Ecu with the normal bundle
NΓ over Γ induces a hyperbolic splitting for the linear Poincaré flow defined
over Γ. Thus, by [9, Prop. 1.1] we conclude the proof. To see this we proceed
as follows.

From the fact that Γ does not contain singularities, there exists K = K(Γ)
such that 1/K < ‖X(x)‖ < K for every x ∈ Γ. Consider the following splitting
on the normal bundle NΓ: for x ∈ Γ, set

Nu
x = Ecu

x ∩ Nx and N s
x = Ecs

x ∩ Nx,

where Ecs
x = [X(x)] ⊕ Es

x.
Next we show that this splitting is hyperbolic for the linear Poincaré flow

Pt restricted to Γ. For this, note that for any t ∈ R, and any nu
x ∈ Nu

x with
‖nu

x‖ = 1,

|det(DXt/Ecu
x )| = sin(α(DXt(x)(nu

x), X(Xt(x)))) ‖DXt(x)(nu
x)‖ ‖X(Xt(x))‖

‖X(x)‖ .
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The second term of the equality above is equal to

‖PNXt(x)(DXt(x)(nu
x))‖ ‖X(Xt(x))‖

‖X(x)‖ ,

where PNXt(x) denotes the orthogonal projection onto NXt(x). Thus,

|det(DXt/Ecu
x )| = ‖PNXt(x)(DXt(x)(nu

x))‖ ‖X(Xt(x))‖
‖X(x)‖ .(52)

Since the central direction is (c, λ)-volume-expanding, |det(DXt/Ecu
x )| > c etλ.

Combining this last fact with (52) we get that

‖PNXt(x)(DXt(x)(nu
x))‖ >

c

K
etλ,

for any t ≥ 0, proving that Nu is uniformly expanded by Pt.
To see that N s is uniformly contracted by the linear Poincaré flow, first note
that since Es ⊕ Ecu is partially hyperbolic along Γ, there is a0 > 0 such
that α(Es

x, X(x)) ≥ a0 for every x ∈ Γ. Then, there is a′0 such that for any
x ∈ Γ and v ∈ N s

x with ‖v‖ = 1, there is w ∈ Es
x with ‖w‖ = 1 such that

v = aw + b X(x)
‖X(x)‖ with |a| < a0. Hence

‖PNXt(x)(DXt(x)(v))‖= ‖PNXt(x)(DXt(x)(aw + b
X(x)

‖X(x)‖))‖

= ‖PNXt(x)(DXt(x)(aw))‖ ≤ ‖DXt(x)(aw)‖ ≤ a′0 c et λ,

for 0 < λ < 1 (recall that Es is the contractive direction). Thus N s is uniformly
contracted by Pt.

All of these facts together prove Proposition 1.8.

Proof of Proposition 1.9. Let Λ be as in the statement of Corollary 1.9.
Given x ∈ Λ, if x is a singularity then the result follows from the fact that x

is Lorenz-like for X. So, let us assume X(x) 
= 0 and take v ∈ Ecu
x , ‖v‖ = 1,

orthogonal to X(x). We have

|det(DXt(x))| ≤ ‖DXt(x)v‖ ‖DXt(x)X(x)‖
‖X(x)‖ .(53)

Since v ∈ Ecu
x , |det(DXt(x)| ≥ c eλt with λ > 1. Combining this fact with

(53) one obtains that γ(x, v) ≥ λ > 0.

Proof of Proposition 1.10. Let Λ be a robust transitive set with singulari-
ties of X ∈ X 1(M). By Theorems A and C we can assume that Λ is a partially
hyperbolic attractor for X. Residually, Λ has a hyperbolic period orbit p.

As Λ is an attractor, the unstable manifold W u(p) of a periodic point p

is contained in Λ. In particular, the closure Cl(W u(p)) of W u(p) is contained
in Λ. We shall prove that Λ is contained in Cl(W u(p)). Using the fact that
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Λ is transitive, we can take q ∈ Λ such that Λ = ω(q). Let V be a small
neighborhood of p. As the orbit of q is dense in Λ, we can assume that q ∈ V.
On the other hand, since Λ is partially hyperbolic, projecting q into W u(p)
through the stable manifold of q, we can actually assume that q is contained
in W u(p). Indeed, being in the same stable manifold, q and its projection
have the same ω-limit sets. Thus, since W u(p) is invariant by the flow of X,
ω(q) ⊂ Cl(W u(p)), and the result follows.
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[2] M. C. Arnaud, Création de connexions en topologie C1, Ergodic Theory Dynam. Systems
21 (2001), 339–381.

[3] C. M. Carballo, C. Morales, and M. J. Pacifico, Homoclinic classes for C1 generic
vector fields, Ergodic Theory Dynam. Systems 23 (2003), 403–415.

[4] W. Colmenárez, Dynamical properties of singular-hyperbolic attractors, Ph. D. Thesis,
UFRJ, 2002.

[5] C. Conley, Isolated invariant sets and the morse index, CBMS Reg. Conf. Ser. in Math.
38, A. M. S., Providence, RI, (1978).

[6] W. de Melo, Structural stability of diffeomorphisms on two-manifolds, Invent. Math.
21 (1973), 233–246.

[7] W. de Melo and J. Palis, Geometric Theory of Dynamical Systems - An Introduction,
Springer-Verlag, New York (1982).

[8] L. J. Dı́az, E. Pujals, and R. Ures, Partial hyperbolicity and robust transitivity, Acta
Math. 183 (1999), 1–43.

[9] C. I. Doering, Persistently transitive vector fields on three-dimensional manifolds, in
Proc. on Dynamical Systems and Bifurcation Theory , Pitman Res. Notes Math. Ser .
160 (1987), 59–89.

[10] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math.
Soc. 158 (1971), 301–308.

[11] J. Guckenheimer, A strange, strange attractor, The Hopf Bifurcation Theorem and its
Applications, Springer-Verlag, New York (1976).

[12] J. Guckenheimer and R. F. Williams, Structural stability of Lorenz attractors, Publ.
Math. IHES 50 (1979), 59–72.

[13] S. Hayashi, Connecting invariant manifolds and the solution of the C1 stability and
Ω-stability conjectures for flows, Ann. of Math. 145 (1997), 81–137.

[14] ———, A C1 make or break lemma, Bol. Soc. Brasil Mat . 31 (2000), 337–350.

[15] M. Hirsch, C. Pugh, and M. Shub, Invariant Manifolds, Lecture Notes in Math. 583,
Springer-Verlag, New York (1977).



ROBUST TRANSITIVE SINGULAR SETS 431

[16] M. Hurley, Attractors: persistence, and density of their basins, Trans. A. M. S . 269
(1982), 247–271.

[17] R. Labarca and M. J. Pacifico, Stability of singularity horseshoes, Topology 25 (1986),
337–352.

[18] S. T. Liao, On hyperbolicity properties of nonwandering sets of certain 3-dimensional
differential systems, Acta Math. Sc. 3 (1983), 361–368.

[19] E. N. Lorenz, Deterministic nonperiodic flow. J. Atmosph. Sci . 20 (1963), 130–141.
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