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A p-adic local monodromy theorem

By Kiran S. Kedlaya

Abstract

We produce a canonical filtration for locally free sheaves on an open
p-adic annulus equipped with a Frobenius structure. Using this filtration,
we deduce a conjecture of Crew on p-adic differential equations, analogous
to Grothendieck’s local monodromy theorem (also a consequence of results of
André and of Mebkhout). Namely, given a finite locally free sheaf on an open
p-adic annulus with a connection and a compatible Frobenius structure, the
module admits a basis over a finite cover of the annulus on which the connec-
tion acts via a nilpotent matrix.
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3.6. The Bézout property for analytic rings



94 KIRAN S. KEDLAYA

4. The special Newton polygon
4.1. Properties of eigenvectors
4.2. Existence of eigenvectors
4.3. Raising the Newton polygon
4.4. Construction of the special Newton polygon

5. The generic Newton polygon
5.1. Properties of eigenvectors
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1. Introduction

1.1. Crew ’s conjecture on p-adic local monodromy. The role of p-adic dif-
ferential equations in algebraic geometry was first pursued systematically by
Dwork; the modern manifestation of this role comes via the theory of isocrys-
tals and F -isocrystals, which over a field of characteristic p > 0 attempt to play
the part of local systems for the classical topology on complex varieties and
lisse sheaves for the l-adic topology when l �= p. In order to get a usable theory,
however, an additional “overconvergence” condition must be imposed, which
has no analogue in either the complex or l-adic cases. For example, the coho-
mology of the affine line is infinite dimensional if computed using convergent
isocrystals, but has the expected dimension if computed using overconvergent
isocrystals. This phenomenon was generalized by Monsky and Washnitzer
[MW] into a cohomology theory for smooth affine varieties, and then general-
ized further by Berthelot to the theory of rigid cohomology, which has good
behavior for arbitrary varieties (see for example [Be1]).

Unfortunately, the use of overconvergent isocrystals to date has been ham-
pered by a gap in the local theory of these objects; for example, it obstructed
the proof of finite dimensionality of Berthelot’s rigid cohomology with arbi-
trary coefficients (the case of constant coefficients was treated by Berthelot in
[Be2]). This gap can be described as a p-adic analogue of Grothendieck’s local
monodromy theorem for l-adic cohomology.

The best conceivable analogue of Grothendieck’s theorem would be that
an F -isocrystal becomes a successive extension of trivial isocrystals after a
finite étale base extension. Unfortunately, this assertion is not correct; for
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example, it fails for the pushforward of the constant isocrystal on a family of
ordinary elliptic curves degenerating to a supersingular elliptic curve (and for
the Bessel isocrystal described in Section 1.5 over the affine line).

The correct analogue of the local monodromy theorem was formulated
conjecturally by Crew [Cr2, §10.1], and reformulated in a purely local form
by Tsuzuki [T2, Th. 5.2.1]; we now introduce some terminology and notation
needed to describe it. (These definitions are reiterated more precisely in Chap-
ter 2.) Let k be a field of characteristic p > 0, and O a finite totally ramified
extension of a Cohen ring C(k). The Robba ring Γan,con is defined as the set
of formal Laurent series over O[1p ] which converge on some open annulus with
outer radius 1; its subring Γcon consists of series which take integral values on
some open annulus with outer radius 1, and is a discrete valuation ring. (See
Chapter 3 to find out where the notation comes from.) We say a ring endo-
morphism σ : Γan,con → Γan,con is a Frobenius for Γan,con if it is a composition
power of a map preserving Γcon and reducing modulo a uniformizer of Γcon to
the p-th power map. For example, one can choose t ∈ Γcon whose reduction is
a uniformizer in the ring of Laurent series over k, then set tσ = tq. Note that
one cannot hope to define a Frobenius on the ring of analytic functions on any
fixed open annulus with outer radius 1, because for η close to 1, functions on
the annulus of inner radius η pull back under σ to functions on the annulus of
inner radius η1/p. Instead, one must work over an “infinitely thin” annulus of
radius 1.

Given a ring R in which p �= 0 and an endomorphism σ : R → R, we
define a σ-module as a finite locally free module M equipped with an R-linear
map F : M ⊗R,σ R → M that becomes an isomorphism over R[1p ]; the tensor
product notation indicates that R is viewed as an R-module via σ. For the
rings considered in this paper, a finite locally free module is automatically
free; see Proposition 2.5. Then F can be viewed as an additive, σ-linear map
F : M → M that acts on any basis of M by a matrix invertible over R[1p ].

We define a (σ,∇)-module as a σ-module plus a connection ∇ : M →
M⊗Ω1

R/O (that is, an additive map satisfying the Leibniz rule ∇(cv) = c∇(v)+
v ⊗ dc) that makes the following diagram commute:

M
∇ ��

F

��

M ⊗ Ω1
R/O

F⊗dσ
��

M
∇ �� M ⊗ Ω1

R/O

We say a (σ,∇)-module over Γan,con is quasi-unipotent if, after tensoring Γan,con

over Γcon with a finite extension of Γcon, the module admits a filtration by
(σ,∇)-submodules such that each successive quotient admits a basis of elements
in the kernel of ∇. (If k is perfect, one may also insist that the extension
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of Γcon be residually separable.) With this notation, Crew’s conjecture is
resolved by the following theorem, which we will prove in a more precise form
as Theorem 6.12.

Theorem 1.1 (Local monodromy theorem). Let σ be any Frobenius for
the Robba ring Γan,con. Then every (σ,∇)-module over Γan,con is quasi -unipotent.

Briefly put, a p-adic differential equation on an annulus with a Frobenius
structure has quasi-unipotent monodromy. It is worth noting (though not
needed in this paper) that for a given ∇, whether there exists a compatible F

does not depend on the choice of the Frobenius map σ. This follows from the
existence of change of Frobenius functors [T2, Th. 3.4.10].

The purpose of this paper is to establish some structural results on mod-
ules over the Robba ring yielding a proof of Theorem 1.1. Note that The-
orem 1.1 itself has been established independently by André [A2] and by
Mebkhout [M]. However, as we describe in the next section, the methods
in this paper are essentially orthogonal to the methods of those authors. In
fact, the different approaches provide different auxiliary information, various
pieces of which may be of relevance in other contexts.

1.2. Frobenius filtrations and Crew ’s conjecture. Before outlining our
approach to Crew’s conjecture, we describe by way of contrast the common
features of the work of André and Mebkhout. Both authors build upon the
results of a series of papers by Christol and Mebkhout [CM1], [CM2], [CM3],
[CM4] concerning properties of modules with connection over the Robba ring.
Most notably, in [CM4] they produced a canonical filtration (the “filtration de
pentes”), defined whether or not the connection admits a Frobenius structure.
André and Mebkhout show (in two different ways) that when a Frobenius
structure is present, the graded pieces of this filtration can be shown to be
quasi-unipotent.

The strategy in this paper is in a sense completely orthogonal to the afore-
mentioned approach. (For a more detailed comparison between the various
approaches to Crew’s conjecture, see the November 2001 Seminaire Bourbaki
talk of Colmez [Co].) Instead of isolating the connection data, we isolate the
Frobenius structure and prove a structure theorem for σ-modules over the
Robba ring. This can be accomplished by a “big rings” argument, where one
first proves that σ-modules can be trivialized over a large auxiliary ring, and
then “descends” the construction back to the Robba ring. (Isolating Frobenius
in this manner is not unprecedented; for example, this is the approach of Katz
in [Ka].)

The model for our strategy of trivializing σ-modules over an auxiliary ring
is the Dieudonné-Manin classification of σ-modules over a complete discrete
valuation ring R of mixed characteristic (0, p) with algebraically closed residue
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field. (This classification is a semilinear analogue of the diagonalization of ma-
trices over an algebraically closed field, except that here there is no failure of
semisimplicity.) We give a quick statement here, deferring the precise formula-
tion to Section 5.2. For λ ∈ O[1p ] and d a positive integer, let Mλ,d denote the
σ-module of rank d over R[1p ] on which F acts by a basis v1, . . . ,vd as follows:

Fv1 = v2

...

Fvd−1 = vd

Fvd = λv1.

Define the slope of Mλ,d to be vp(λ)/d. Then the Dieudonné-Manin classifica-
tion states (in part) that over R[1p ], every σ-module is isomorphic to a direct
sum ⊕jMλj ,dj

, and the slopes that occur do not depend on the decomposition.
If R is a discrete valuation ring of mixed characteristic (0, p), we may

define the slopes of a σ-module over R[1p ] as the slopes in a Dieudonné-Manin
decomposition over the maximal unramified extension of the completion of R.
However, this definition cannot be used immediately over Γan,con, because that
ring is not a discrete valuation ring. Instead, we must first reduce to considering
modules over Γcon. Our main theorem makes it possible to do so. Again,
we give a quick formulation here and prove a more precise result later as
Theorem 6.10. (Note: the filtration in this theorem is similar to what Tsuzuki
[T2] calls a “slope filtration for Frobenius structures”.)

Theorem 1.2. Let M be a σ-module over Γan,con. Then there is a canon-
ical filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M by saturated σ-submodules
such that :

(a) each quotient Mi/Mi−1 is isomorphic over Γan,con to a nontrivial σ-
module Ni defined over Γcon[1p ];

(b) the slopes of Ni are all equal to some rational number si;

(c) s1 < · · · < sl.

The relevance of this theorem to Crew’s conjecture is that (σ,∇)-modules
over Γcon[1p ] with a single slope can be shown to be quasi-unipotent using a
result of Tsuzuki [T1]. The essential case is that of a unit-root (σ,∇)-module
over Γcon, in which all slopes are 0. Tsuzuki showed that such a module
becomes isomorphic to a direct sum of trivial (σ,∇)-modules after a finite
base extension, and even gave precise information about what extension is
needed. This makes it possible to deduce the local monodromy theorem from
Theorem 1.2.
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1.3. Applications. We now describe some consequences of the results of
this paper, starting with some applications via Theorem 1.1. One set of conse-
quences occurs in the study of Berthelot’s rigid cohomology (a sort of “grand
unified theory” of p-adic Weil cohomologies). For example, Theorem 1.1 can
be used to establish finite dimensionality of rigid cohomology with coefficients
in an overconvergent F -isocrystal; see [Cr2] for the case of a curve and [Ke7]
for the general case. It can also be used to generalize the results of Deligne’s
“Weil II” to overconvergent F -isocrystals; this is carried out in [Ke8], build-
ing on work of Crew [Cr1], [Cr2]. In addition, it can be used to treat certain
types of “descent”, such as Tsuzuki’s full faithfulness conjecture [T3], which
asserts that convergent morphisms between overconvergent F -isocrystals are
themselves overconvergent; see [Ke6].

Another application of Theorem 1.1 has been found by Berger [Bg], who
has exposed a close relationship between F -isocrystals and p-adic Galois rep-
resentations. In particular, he showed that Fontaine’s “conjecture de mon-
odromie p-adique” for p-adic Galois representations (that every de Rham rep-
resentation is potentially semistable) follows from Theorem 1.1.

Further applications of Theorem 1.2 exist that do not directly pass through
Theorem 1.1. For example, André and di Vizio [AdV] have formulated a
q-analogue of Crew’s conjecture, in which the single differential equation is
replaced by a formal deformation. They have established this analogue us-
ing Theorem 6.10 plus a q-analogue of Tsuzuki’s unit-root theorem (Propo-
sition 6.11), and have deduced a finiteness theorem for rigid cohomology of
q-F -isocrystals. (It should also be possible to obtain these results using a
q-analogue of the Christol-Mebkhout theorem, and indeed André and di Vizio
have made progress in this direction; however, at the time of this writing, some
technical details had not yet been worked out.)

We also plan to establish, in a subsequent paper, a conjecture of Shiho [Sh,
Conj. 3.1.8], on extending overconvergent F -isocrystals to log-F -isocrystals
after a generically étale base change. This result appears to require a more
sophisticated analogue of Theorem 6.10, in which the “one-dimensional” Robba
ring is replaced by a “higher-dimensional” analogue. (One might suspect that
this conjecture should follow from Theorem 1.1 and some clever geometric
arguments, but the situation appears to be more subtle.) Berthelot (private
communication) has suggested that a suitable result in this direction may help
in constructing Grothendieck’s six operations in the category of arithmetic
D-modules, which would provide a p-adic analogue of the constructible sheaves
in étale cohomology.

1.4. Structure of the paper. We now outline the strategy of the proof of
Theorem 1.2, and in the process describe the structure of the paper. We note in
passing that some of the material appears in the author’s doctoral dissertation
[Ke1], written under Johan de Jong, and/or in a sequence of unpublished
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preprints [Ke2], [Ke3], [Ke4], [Ke5]. However, the present document avoids
any logical dependence on unpublished results.

In Chapter 2, we recall some of the basic rings of the theory of p-adic
differential equations; they include the Robba ring, its integral subring and
the completion of the latter (denoted the “Amice ring” in some sources). In
Chapter 3, we construct some less familiar rings by augmenting the classi-
cal constructions. These augmentations are inspired by (and in some cases
identical to) the auxiliary rings used by de Jong [dJ] in his extension to equal
characteristic of Tate’s theorem [Ta] on p-divisible groups over mixed character-
istic discrete valuation rings. (They also resemble the “big rings” in Fontaine’s
theory of p-adic Galois representations, and coincide with rings occurring in
Berger’s work.) In particular, a key augmentation, denoted Γalg

an,con, is a sort
of “maximal unramified extension” of the Robba ring, and a great effort is
devoted to showing that it shares the Bézout property with the Robba ring;
that is, every finitely generated ideal in Γalg

an,con is principal. (This chapter is
somewhat technical; we suggest that the reader skip it on first reading, and
refer back to it as needed.)

With these augmented rings in hand, in Chapter 4 we show that every
σ-module over the Robba ring can be equipped with a canonical filtration over
Γalg

an,con; this amounts to an “overconvergent” analogue of the Dieudonné-Manin
classification. From this filtration we read off a sequence of slopes, which in
case we started with a quasi-unipotent (σ,∇)-module agree with the slopes of
Frobenius on a nilpotent basis; the Newton polygon with these slopes is called
the special Newton polygon.

By contrast, in Chapter 5, we associate to a (σ,∇)-module over Γcon the
Frobenius slopes produced by the Dieudonné-Manin classification. The New-
ton polygon with these slopes is called the generic Newton polygon. Following
[dJ], we construct some canonical filtrations associated with the generic New-
ton polygon. This chapter is logically independent of Chapter 4 except at its
conclusion, when the two notions of Newton polygon are compared. In partic-
ular, we show that the special Newton polygon lies above the generic Newton
polygon with the same endpoint, and obtain additional structural consequences
in case the Newton polygons coincide.

Finally, in Chapter 6, we take the “generic” and “special” filtrations, both
defined over large auxiliary rings, and descend them back to the Robba ring
itself. The basic strategy here is to separate positive and negative powers of
the series parameter, using the auxiliary filtrations to guide the process. Start-
ing with a σ-module over the Robba ring, the process yields a σ-module over
Γcon whose generic and special Newton polygons coincide. The structural con-
sequences mentioned above yield Theorem 1.2; by applying Tsuzuki’s theorem
on unit-root (σ,∇)-modules (Proposition 6.11), we deduce a precise form of
Theorem 1.1.
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1.5. An example: the Bessel isocrystal. To clarify the remarks of the
previous section, we include a classical example to illustrate the different struc-
tures we have described, especially the generic and special Newton polygons.
Our example is the Bessel isocrystal, first studied by Dwork [Dw]; our descrip-
tion is a summary of the discussion of Tsuzuki [T2, Ex. 6.2.6] (but see also
André [A1]).

Let p be an odd prime, and put O = Zp[π], where π is a (p − 1)-st root
of −p. Choose η < 1, and let R be the ring of Laurent series in the variable
t over O convergent for |t| > η. Let σ be the Frobenius lift on O such that
tσ = tp. Then for suitable η, there exists a (σ,∇)-module M of rank two over
R admitting a basis v1,v2 such that

Fv1 = A11v1 + A12v2

Fv2 = A21v1 + A22v2

∇v1 = t−2π2v2 ⊗ dt

∇v2 = t−1v1 ⊗ dt.

Moreover, the matrix A satisfies

det(A) = p and A ≡
(

1 0
0 0

)
(mod p).

It follows that the two generic Newton slopes are nonnegative (because the
entries of A are integral), their sum is 1 (by the determinant equation), and
the smaller of the two is zero (by the congruence). Thus the generic Newton
slopes are 0 and 1.

On the other hand, if y = (t/4)1/2, define

f± = 1 +
∞∑

n=1

(±1)n (1 × 3 × · · · × (2n − 1))2

(8π)nn!
yn

and set

w± = f±e1 +
(

y
df±
dy

+
(

1
2
∓ πy−1

)
f±

)
e2.

Then

∇w± =
(−1

2
± πy−1

)
w± ⊗ dy

y
.

Using the compatibility between the Frobenius and connection structures, we
deduce that

Fw± = α±y−(p−1)/2 exp(±π(y−1 − y−σ))w±

for some α+, α− ∈ O[1p ] with α+α− = 21−pp. By the invariance of Frobenius
under the automorphism y → −y of Γan,con[y], we deduce that α+ and α− have
the same valuation.
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It follows (see [Dw, §8]) that M is unipotent over

Γan,con[y1/2, z]/(zp − z − y)

and the two slopes of the special Newton polygon are equal, necessarily to 1/2
since their sum is 1. In particular, the special Newton polygon lies above the
generic Newton polygon and has the same endpoint, but the two polygons are
not equal in this case.

Acknowledgments. The author was supported by a Clay Mathematics In-
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ship. Thanks to the organizers of the Algorithmic Number Theory program
at MSRI, the Arizona Winter School in Tucson, and the Dwork Trimester
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de Jong and the referee for helpful suggestions.

2. A few rings

In this chapter, we set some notation and conventions, and define some of
the basic rings used in the local study of p-adic differential equations. We also
review the basic properties of rings in which every finitely generated ideal is
principal (Bézout rings), and introduce σ-modules and (σ,∇)-modules.

2.1. Notation and conventions. Recall that for every field K of charac-
teristic p > 0, there exists a complete discrete valuation ring with fraction field
of characteristic 0, maximal ideal generated by p, and residue field isomorphic
to K, and that this ring is unique up to noncanonical isomorphism. Such a
ring is called a Cohen ring for K; see [Bo] for the basic properties of such
rings. If K is perfect, the Cohen ring is unique up to canonical isomorphism,
and coincides with the ring W (K) of Witt vectors over K. (Note in passing:
for K perfect, we use brackets to denote Teichmüller lifts into W (K).)

Let k be a field of characteristic p > 0, and C(k) a Cohen ring for k. Let O
be a finite totally ramified extension of C(k), let π be a uniformizer of O, and
fix once and for all a ring endomorphism σ0 on O lifting the absolute Frobenius
x 
→ xp on k. Let q = pf be a power of p and put σ = σf

0 . (In principle, one
could dispense with σ0 and simply take σ to be any ring endomorphism lifting
the q-power Frobenius. The reader may easily verify that the results of this
paper carry over, aside from some cosmetic changes in Section 2.2; for instance,
the statement of Proposition 2.1 must be adjusted slightly.) Let vp denote the
valuation on O[1p ] normalized so that vp(p) = 1, and let | · | denote the norm
on O[1p ] given by |x| = p−vp(x).

Let O0 denote the fixed ring of O under σ. If k is algebraically closed,
then the equation uσ = (πσ/π)u in u has a nonzero solution modulo π, and so
by a variant of Hensel’s lemma (see Proposition 3.17) has a nonzero solution
in O. Then (π/u) is a uniformizer of O contained in O0, and hence O0 has the
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same value group as O. That being the case, we can and will take π ∈ O0 in
case k is algebraically closed.

We wish to alert the reader to several notational conventions in force
throughout the paper. The first of these is “exponent consolidation”. The
expression (x−1)σ, for x a ring element or matrix and σ a ring endomorphism,
will often be abbreviated x−σ. This is not to be confused with xσ−1

; the former
is the image under σ of the multiplicative inverse of x, the latter is the preimage
of x under σ (if it exists). Similarly, if A is a matrix, then AT will denote the
transpose of A, and the expression (A−1)T will be abbreviated A−T .

We will use the summation notation
∑n

i=m f(i) in some cases where
m > n, in which case we mean 0 for n = m − 1 and −

∑m−1
i=n+1 f(i) other-

wise. The point of this convention is that
∑n

i=m f(i) = f(n) +
∑n−1

i=m f(i) for
all n ∈ Z.

We will perform a number of calculations involving matrices; these will
always be n × n matrices unless otherwise specified. Also, I will denote the
n × n identity matrix over any ring, and any norm or valuation applied to
a matrix will be interpreted as the maximum or minimum, respectively, over
entries of the matrix.

2.2. Valued fields. Let k((t)) denote the field of Laurent series over k.
Define a valued field to be an algebraic extension K of k((t)) for which there
exist subextensions k((t)) ⊆ L ⊆ M ⊆ N ⊆ K such that:

(a) L = k1/pm

((t)) for some m ∈ {0, 1, . . . ,∞};

(b) M = kM ((t)) for some separable algebraic extension kM/k1/pm

;

(c) N = M1/pn

for some n ∈ {0, 1, . . . ,∞};

(d) K is a separable totally ramified algebraic extension of N .

(Here F 1/p∞
means the perfection of the field F , and K/N totally ramified

means that K and N have the same residue field.) Note that n is uniquely
determined by K: it is the largest integer n such that t has a pn-th root in K.
If n < ∞ (e.g., if K/k((t)) is finite), then L, M, N are also determined by K:
k

1/pn

M must be the integral closure of k in K, which determines kM , and k1/pm

must be the maximal purely inseparable subextension of kM/k.
The following proposition shows that the definition of a valued field is only

restrictive if k is imperfect. It also guides the construction of the rings ΓK in
Section 3.1.

Proposition 2.1. If k is perfect, then any algebraic extension K/k((t))
is a valued field.
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Proof. Normalize the valuation v on k((t)) so that v(t) = 1. Let kM be
the integral closure of k in K, and define L = k((t)) and M = kM ((t)). Then
(a) holds for m = 0 and (b) holds because k is perfect.

Let n be the largest nonnegative integer such that t has a pn-th root in
K, or ∞ if there is no largest integer. Put

N =
∞⋃
i=0

(
K ∩ M1/pi

)
.

Since t1/pi ∈ K for all i ≤ n and kM is perfect, we have M1/pn ⊆ N . On the
other hand, suppose x1/pi ∈ (K ∩M1/pi

) \ (K ∩M1/pi−1
); that is, x ∈ M has a

pi-th root in K but has no p-th root in M . Then v(x) is relatively prime to p,
so that we can find integers a and b such that y = xa/tbp

i ∈ M has a pi-th
root in K and v(y) = 1. We can write every element of M uniquely as a power
series in y, so every element of M has a pi-th root in K. In particular, t has a
pi-th root in K, and so i ≤ n. We conclude that N = M1/pn

, verifying (c).
If y ∈ Kp ∩N , then y = zp for some z ∈ K and ypi ∈ M for some i. Then

zpi+1 ∈ M , so z ∈ N . Since Kp ∩ N = Np, we see that K/N is separable.
To verify that K/N is totally ramified, let K0 be any finite subextension of
K/k((t)) and let U be the maximal unramified subextension of K0/(K0 ∩N).
We now recall two basic facts from [Se] about finite extensions of fields complete
with respect to discrete valuations.

1. K0/U is totally ramified, because K0/(K0 ∩ N) and its residue field
extension are both separable.

2. There is a unique unramified extension of K0 ∩ N yielding any specified
separable residue field extension.

Since K0 ∩ N is a power series field, we can make unramified extensions of
K0 ∩ N with any specified residue field extension by extending the constant
field K0 ∩ kM . By the second assertion above, U/(K0 ∩ N) must then be
a constant field extension. However, kM is integrally closed in K, and so
U = K0 ∩N and K0/(K0 ∩N) is totally ramified by the first assertion above.
Since K is the union of its finite subextensions over k((t)), we conclude that
K/N is totally ramified, verifying (d).

The proposition fails for k imperfect, as there are separable extensions
of k((t)) with inseparable residue field extensions. For example, if c has no
p-th root in k, then K = k((t))[x]/(xp − x − ct−p) is separable over k((t)) but
induces an inseparable residue field extension. Thus K cannot be a valued
field, as valued fields contain their residue field extensions.

We denote the perfect and algebraic closures of k((t)) by k((t))perf and
k((t))alg; these are both valued fields. We denote the separable closure of k((t))
by k((t))sep; this is a valued field only if k is perfect, as we saw above.
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We say a valued field K is nearly finite separable if it is a finite separa-
ble extension of k1/pi

((t)) for some integer i. (That is, any inseparability is
concentrated in the constant field.) This definition allows us to approximate
certain separability assertions for k perfect in the case of general k, where some
separable extensions of k((t)) fail to be valued fields. For example,

k1/p((t))[x]/(xp − x − ct−p)

= k1/p((t))[x]/((x − c1/pt−1)p − (x − c1/pt−1) − c1/pt−1)

is a nearly separable valued field. In general, given any separable extension
of k((t)), taking its compositum with k1/pi

((t)) for sufficiently large i yields a
nearly separable valued field.

2.3. The “classical” case K = k((t)). The definitions and results of
Chapter 3 generalize previously known definitions and results in the key case
K = k((t)). We treat this case first, both to allow readers familiar with the
prior constructions to get used to the notation of this paper, and to provide a
base on which to build additional rings in Chapter 3.

For K = k((t)), let ΓK be the ring of bidirectional power series
∑

i∈Z xiu
i,

with xi ∈ O, such that |xi| → 0 as i → −∞. Note that ΓK is a discrete
valuation ring complete under the p-adic topology, whose residue field is iso-
morphic to K via the map

∑
xiu

i 
→
∑

xit
i (where the bar denotes reduction

modulo π). In particular, if π = p, then ΓK is a Cohen ring for K.
For n in the value group of O, we define the “näıve partial valuations”

vnaive
n

(∑
xiu

i
)

= min
vp(xi)≤n

{i},

with the maximum to be +∞ if no such i exist. These partial valuations obey
some basic rules:

vn(x + y) ≥ min{vn(x), vn(y)},
vn(xy) ≥ min

m
{vm(x) + vn−m(y)}.

In both cases, equality always holds if the minimum is achieved exactly once.
Define the levelwise topology on ΓK by declaring the collection of sets

{x ∈ ΓK : vnaive
n (x) > c},

for each c ∈ Q and each n in the value group of O, to be a neighborhood
basis of 0. The levelwise topology is coarser than the π-adic topology, and the
Laurent polynomial ring O[u, u−1] is dense in ΓK under the levelwise topology;
thus any levelwise continuous endomorphism of ΓK is determined by the image
of u.
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The ring ΓK
con is the subring of ΓK consisting of those series

∑
i∈Z xiu

i

satisfying the more stringent convergence condition

lim inf
i→−∞

vp(xi)
−i

> 0.

It is also a discrete valuation ring with residue field K, but is not π-adically
complete.

Using the näıve partial valuations, we can define actual valuations on
certain subrings of ΓK

con. For r > 0, let ΓK
r,naive be the set of x =

∑
xiu

i in
ΓK

con such that limn→∞ rvnaive
n (x)+n = ∞; the union of the subrings over all r

is precisely ΓK
con. (Warning: the rings ΓK

r,naive for individual r are not discrete
valuation rings, even though their union is.) On this subring, we have the
function

wnaive
r (x) = min

n
{rvnaive

n (x) + n} = min
i
{ri + vp(xi)}

which can be seen to be a nonarchimedean valuation as follows. It is clear
that wnaive

r (x + y) ≥ min{wnaive
r (x), wnaive

r (y)} from the inequality vn(x + y) ≥
min{vn(x), vn(y)}. As for multiplication, it is equally clear that wnaive

r (xy) ≥
wnaive

r (x) + wnaive
r (y); the subtle part is showing equality. Choose m and n

minimal so that wnaive
r (x) = rvnaive

m (x) + m and wnaive
r (y) = rvnaive

n (y) + n;
then

rvnaive
m+n(xy) + m + n ≥ min

i
{rvnaive

i (x) + i + rvnaive
m+n−i(y) + m + n − i}.

The minimum occurs only once, for i = m, and so equality holds, yielding
wnaive

r (xy) = wnaive
r (x) + wnaive

r (y).
Since wnaive

r is a valuation, we have a corresponding norm | · |naive
r given

by |x|naive
r = p−wnaive

r (x). This norm admits a geometric interpretation: the
ring ΓK

r,naive[
1
p ] consists of power series which converge and are bounded for

p−r ≤ |u| < 1, where u runs over all finite extensions of O[1p ]. Then | · |naive
r

coincides with the supremum norm on the circle |u| = p−r.
Recall that σ0 : O → O is a lift of the p-power Frobenius on k. We choose

an extension of σ0 to a levelwise continuous endomorphism of ΓK that maps
ΓK

con into itself, and which lifts the p-power Frobenius on k((t)). In other words,
choose y ∈ ΓK

con congruent to up modulo π, and define σ0 by∑
i

aiu
i 
→

∑
i

aσ0
i yi.

Define σ = σf
0 , where f is again given by q = pf .

Let ΓK
an,con be the ring of bidirectional power series

∑
i xiu

i, now with
xi ∈ O[1p ], satisfying

lim inf
i→−∞

vp(xi)
−i

> 0, lim inf
i→+∞

vp(xi)
i

≥ 0.
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In other words, for any series
∑

i xiu
i in ΓK

an,con, there exists η > 0 such that
the series converges for η ≤ |u| < 1. This ring is commonly known as the Robba
ring. It contains ΓK

con[
1
p ], as the subring of functions which are analytic and

bounded on some annulus η ≤ |u| < 1, but neither contains nor is contained
in ΓK .

We can view ΓK as the π-adic completion of ΓK
con; our next goal is to

identify ΓK
an,con with a certain completion of ΓK

con[
1
p ]. Let ΓK

an,r,naive be the ring
of series x ∈ ΓK

an,con such that rvnaive
n (x)+n → ∞ as n → ±∞. Then ΓK

an,con is
visibly the union of the rings ΓK

an,r,naive over all r > 0. We equip ΓK
an,r,naive with

the Fréchet topology for the norms | · |naive
s for 0 < s ≤ r. These topologies

are compatible with the embeddings ΓK
an,r,naive ↪→ ΓK

an,s,naive for 0 < s < r

(that is, the topology on ΓK
an,r,naive coincides with the subspace topology for

the embedding), and so by taking the direct limit we obtain a topology on
ΓK

an,con, which by abuse of language we will also call the Fréchet topology. (A
better name might be the “limit-of-Fréchet topology”.) Note that ΓK

r,naive[
1
p ] is

dense in ΓK
an,r,naive for each r, so that ΓK

con[
1
p ] is dense in ΓK

an,con.

Proposition 2.2. The ring ΓK
an,r,naive is complete (for the Fréchet topol-

ogy).

Proof. Let {xi} be a Cauchy sequence for the Fréchet topology, consisting
of elements of ΓK

r,naive[
1
p ]. This means that for 0 < s ≤ r and any c > 0, there

exists N such that wnaive
s (xi − xj) ≥ c for i, j ≥ N . Write xi =

∑
l xi,lu

l; then
for each l, {xi,l} forms a Cauchy sequence. More precisely, for i, j ≥ N ,

sl + vp(xi,l − xj,l) ≥ c.

Since O is complete, we can take the limit yl of {xi,l}, and it will satisfy
sl + vp(xi,l − yl) ≥ c for i ≥ N . Thus if we can show y =

∑
l ylu

l ∈ ΓK
an,r,naive,

then {xi} will converge to y under | · |naive
s for each s.

Choose s ≤ r and c > 0; we must show that sl + vp(yl) ≥ c for all but
finitely many l. There exists N such that sl + vp(xi,l − yl) ≥ c for i ≥ N .
Choose a single such i; then

sl + vp(yl) ≥ min{sl + vp(xi,l − yl), sl + vp(xi,l)}
≥ min{c, sl + vp(xi,l)}.

Since xi ∈ ΓK
r,naive[

1
p ], sl + vp(xi,l) ≥ c for all but finitely many l. For such l,

we have sl + vp(yl) ≥ c, as desired. Thus y ∈ ΓK
an,r,naive; as noted earlier, y is

the limit of {xi} under each | · |naive
s , and so is the Fréchet limit.

We conclude that each Cauchy sequence with elements in ΓK
r,naive[

1
p ] has a

limit in ΓK
an,r,naive. Since ΓK

r,naive[
1
p ] is dense in ΓK

an,r,naive (one sequence converg-
ing to

∑
i xiu

i is simply {
∑

i≤j xiu
i}∞j=0), ΓK

an,r,naive is complete for the Fréchet
topology, as desired.
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Unlike ΓK and ΓK
con, ΓK

an,con is not a discrete valuation ring. For one thing,
π is invertible in ΓK

an,con. For another, there are plenty of noninvertible elements
of ΓK

an,con, such as

∞∏
i=1

(
1 − upi

pi

)
.

For a third, ΓK
an,con is not Noetherian; the ideal (x1, x2, . . . ), where

xj =
∞∏
i=j

(
1 − upi

pi

)
,

is not finitely generated. However, as long as we restrict to “finite” objects,
ΓK

an,con behaves well: a theorem of Lazard [L] (see also [Cr2, Prop. 4.6] and
our own Section 3.6) states that ΓK

an,con is a Bézout ring, which is to say every
finitely generated ideal is principal.

For L a finite extension of k((t)), we have L ∼= k′((t′)) for some finite
extension k′ of k and some uniformizer t′, and so one could define ΓL, ΓL

con,
ΓL

an,con abstractly as above. However, a better strategy will be to construct
these in a “relative” fashion; the results will be the same as the abstract rings,
but the relative construction will give us more functoriality, and will allow
us to define ΓL, ΓL

con, Γ
L
an,con even when L is an infinite algebraic extension of

k((t)). We return to this approach in Chapter 3.
The rings defined above occur in numerous other contexts, and so it is

perhaps not surprising that there are several sets of notation for them in the
literature. One common set is

E = Γk((t))[1p ], E† = Γk((t))
con [1p ], R = Γk((t))

an,con.

The peculiar-looking notation we have set up will make it easier to deal sys-
tematically with a number of additional rings to be defined in Chapter 3.

2.4. More on Bézout rings. Since ΓK
an,con is a Bézout ring, as are trivially

all discrete valuation rings, it will be useful to record some consequences of the
Bézout property.

Lemma 2.3. Let R be a Bézout ring. If x1, . . . , xn ∈ R generate the unit
ideal, then there exists a matrix A over R with determinant 1 such that A1i = xi

for i = 1, . . . , n.

Proof. We prove this by induction on n, the case n = 1 being evident.
Let d be a generator of (x1, . . . , xn−1). By the induction hypothesis, we can
find an (n − 1) × (n − 1) matrix B of determinant 1 such that B1i = xi/d

for i = 1, . . . , n − 1; extend B to an n × n matrix by setting Bnn = 1 and
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Bin = Bni = 0 for i = 1, . . . , n − 1. Since (d, xn) = (x1, . . . , xn) is the unit
ideal, we can find e, f ∈ R such that de − fxn = 1. Define the matrix

C =


d 0 · · · 0 xn

0 1 · · · 0 0
...

. . .
...

0 0 · · · 1 0
f 0 · · · 0 e

 ; that is, Cij =



d i = j = 1
1 2 ≤ i = j ≤ n − 1
e i = j = n

xn i = 1, j = n

f i = n, j = 1
0 otherwise.

Then we may take A = CB.

Given a finite free module M over a domain R, we may regard M as a
subset of M ⊗R Frac(R); given a subset S of M , we define the saturated span
SatSpan(S) of S as the intersection of M with the Frac(R)-span of S within
M ⊗R Frac(R). Note that the following lemma does not require any finiteness
condition on S.

Lemma 2.4. Let M be a finite free module over a Bézout domain R. Then
for any subset S of M , SatSpan(S) is free and admits a basis that extends to
a basis of M ; in particular, SatSpan(S) is a direct summand of M .

Proof. We proceed by induction on the rank of M , the case of rank 0 being
trivial. Choose a basis e1, . . . , en of M . If S ⊆ {0}, there is nothing to prove;
otherwise, choose v ∈ S \ {0} and write v =

∑
i ciei. Since R is a Bézout ring,

we can choose a generator r of the ideal (c1, . . . , cn). Put w =
∑

i(ci/r)ei;
then w ∈ SatSpan(S) since rw = v. By Lemma 2.3, there exists an invertible
matrix A over R with A1i = ci/r. Put yj =

∑
i Ajiei for j = 2, . . . , n; then w

and the yj form a basis of M (because A is invertible), so that M/ SatSpan(w)
is free. Thus the induction hypothesis applies to M/ SatSpan(w), where the
saturated span of the image of S admits a basis x1, . . . ,xr. Together with w,
any lifts of x1, . . . ,xr to M form a basis of SatSpan(S) that extends to a basis
of M , as desired.

Note that the previous lemma immediately implies that every finite torsion-
free module over R is free. (If M is torsion-free and φ : F → M is a surjection
from a free module F , then ker(φ) is saturated, so that M ∼= F/ ker(φ) is free.)
A similar argument yields the following vitally important fact.

Proposition 2.5. Let R be a Bézout domain. Then every finite locally
free module over R is free.

Proof. Let M be a finite locally free module over R. Since Spec R is
connected, the localizations of M all have the same rank r. Choose a surjection
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φ : F → M , where F is a finite free R-module, and let N = SatSpan(ker(φ)).
Then we have a surjection M ∼= F/ ker(φ) → F/N , and F/N is free. Tensoring
φ with Frac(R), we obtain a surjection F⊗RFrac(R) → M⊗RFrac(R) of vector
spaces of dimensions n and r. Thus the kernel of this map has rank n − r,
which implies that N has rank n − r and F/N is free of rank r.

Now localizing at each prime p of R, we obtain a surjection Mp → (F/N)p

of free modules of the same rank. By a standard result, this map is in fact a
bijection. Thus M → F/N is locally bijective, hence is bijective, and M is free
as desired.

The following lemma is a weak form of Galois descent for Bézout rings;
its key value is that it does not require that the ring extension be finite.

Lemma 2.6. Let R1/R2 be an extension of Bézout domains and G a group
of automorphisms of R1 over R2, with fixed ring R2. Assume that every
G-stable, finitely generated ideal of R1 contains a nonzero element of R2. Let
M2 be a finite free module over R2 and N1 a saturated G-stable submodule of
M1 = M2⊗R2 R1 stable under G. Then N1 is equal to N2⊗R2 R1 for a saturated
submodule (necessarily unique) N2 of M2.

Proof. We induct on n = rankM2, the case n = 0 being trivial. Let
e1, . . . , en be a basis of M2, and let P1 be the intersection of N1 with the span of
e2, . . . , en; since N1 is saturated, P1 is a direct summand of SatSpan(e2, . . . , en)
by Lemma 2.4 and hence also of M1. By the induction hypothesis, P1 =
P2 ⊗R2 R1 for a saturated submodule P2 of M2 (necessarily a direct summand
by Lemma 2.4). If N1 = P1, we are done. Otherwise, N1/P1 is a G-stable,
finitely generated ideal of R1 (since N1 can be identified with finitely generated
by Lemma 2.4), and so contains a nonzero element c of R2. Pick v ∈ N1

reducing to c; that is, v − ce1 ∈ SatSpan(e2, . . . , en).
Pick generators w1, . . . ,wm of P2; since P2 is a direct summand of

SatSpan(e2, . . . , en), we can choose x1, . . . ,xn−m−1 in M2 so that e1,w1, . . . ,

wm,x1, . . . ,xn−m−1 is a basis of M2. In this basis, we may write v = ce1 +∑
i diwi +

∑
i fixi, where c is the element of R2 chosen above. Put y =

v −
∑

i diwi. For any τ ∈ G, we have yτ = ce1 +
∑

i f τ
i xi, and so on one

hand, yτ − y is a linear combination of x1, . . . ,xn−m−1. On the other hand,
yτ −y belongs to N1 and so is a linear combination of w1, . . . ,wm. This forces
yτ − y = 0 for all τ ∈ G; since G has fixed ring R2, we conclude y is defined
over R2. Thus we may take N2 = SatSpan(y,w1, . . . ,wm).

Note that the hypothesis that every G-stable finitely generated ideal of
R1 contains a nonzero element of R2 is always satisfied if G is finite: for any
nonzero r in the ideal,

∏
τ∈G rτ is nonzero and G-stable, and so belongs to R2.
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2.5. σ-modules and (σ,∇)-modules. The basic object in the local study
of p-adic differential equations is a module with connection and Frobenius
structure. In our approach, we separate these two structures and study the
Frobenius structure closely before linking it with the connection. To this end,
in this section we introduce σ-modules and (σ,∇)-modules, and outline some
basic facts of what might be dubbed “semilinear algebra”. These foundations,
in part, date back to Katz [Ka] and were expanded by de Jong [dJ].

For R an integral domain in which p �= 0, and σ a ring endomorphism of R,
we define a σ-module over R to be a finite locally free R-module M equipped
with an R-linear map F : M ⊗R,σ R → M that becomes an isomorphism over
R[1p ]; the tensor product notation indicates that R is viewed as an R-module
via σ. Note that we will only use this definition when R is a Bézout ring, in
which case every finite locally free R-module is actually free by Proposition 2.5.
Then to specify F , it is equivalent to specify an additive, σ-linear map from M

to M that acts on any basis of M by a matrix invertible over R[1p ]. We abuse
notation and refer to this map as F as well; since we will only use the σ-linear
map in what follows (with one exception: in proving Proposition 6.11), there
should not be any confusion induced by this.

Now suppose R is one of ΓK , ΓK [1p ], ΓK
con, Γ

K
con[

1
p ] or ΓK

an,con for K = k((t)).
Let Ω1

R be the free module over R generated by a single symbol du, and let
d : R → Ω1

R be the O-linear derivation given by the formula

d

(∑
i

xiu
i

)
=

∑
i

ixiu
i−1 du.

We define a (σ,∇)-module over R to be a σ-module M plus a connection
∇ : M → M ⊗R Ω1

R (i.e., an additive map satisfying the Leibniz rule ∇(cv) =
c∇(v) + v ⊗ dc for c ∈ R and v ∈ M) that makes the following diagram
commute:

M
∇ ��

F

��

M ⊗ Ω1
R

F⊗dσ
��

M
∇ �� M ⊗ Ω1

R.

Warning: this definition is not the correct one in general. For larger rings
R, one must include the condition that ∇ is integrable. That is, writing ∇1

for the induced map M ⊗R Ω1
R → M ⊗R ∧2Ω1

R, we must have ∇1 ◦ ∇ = 0.
This condition is superfluous in our context because Ω1

R has rank one, so ∇1

is automatically zero.
A morphism of σ-modules or (σ,∇)-modules is a homomorphism of the

underlying R-modules compatible with the additional structure in the obvi-
ous fashion. An isomorphism of σ-modules or (σ,∇)-modules is a morphism



A P -ADIC LOCAL MONODROMY THEOREM 111

admitting an inverse; an isogeny is a morphism that becomes an isomorphism
over R[1p ].

Direct sums, tensor products, exterior powers, and subobjects are defined
in the obvious fashion, as are duals if p−1 ∈ R; quotients also make sense
provided that the quotient R-module is locally free. In particular, if M1 ⊆ M2

is an inclusion of σ-modules, the saturation of M1 in M2 is also a σ-submodule
of M1; if M1 itself is saturated, the quotient M2/M1 is locally free and hence
is a σ-module.

Given λ fixed by σ, we define the twist of a σ-module M by λ as the
σ-module with the same underlying module but whose Frobenius has been
multiplied by λ.

We say a σ-module M is standard if it is isogenous to a σ-module with
a basis v1, . . . ,vn such that Fvi = vi+1 for i = 1, . . . , n − 1 and Fvn = λv1

for some λ ∈ R fixed by σ. (The restriction that λ is fixed by σ is included
for convenience only.) If M is actually a (σ,∇)-module, we say M is standard
as a (σ,∇)-module if the same condition holds with the additional restriction
that ∇vi = 0 for i = 1, . . . , n (i.e., the vi are “horizontal sections” for the
connection). If v is a nonzero element of M such that Fv = λv for some λ,
we say v is an eigenvector of M of eigenvalue λ and slope vp(λ).

Warning: elsewhere in the literature, the slope may be normalized differ-
ently, namely as vp(λ)/vp(q). (Recall that q = pf .) Since we will hold q fixed,
this normalization will not affect our results.

From Lemma 2.6, we have the following descent lemma for σ-modules.
(The condition on G-stable ideals is satisfied because R1/R2 is an unramified
extension of discrete valuation rings.)

Corollary 2.7. Let R1/R2 be an unramified extension of discrete valua-
tion rings, and let σ be a ring endomorphism of R1 carrying R2 into itself. Let
Galσ(R1/R2) be the group of automorphisms of R1 over R2 commuting with σ;
assume that this group has fixed ring R2. Let M2 be a σ-module over R2 and
N1 a saturated σ-submodule of M1 = M2 ⊗R2 R1 stable under Galσ(R1/R2).
Then N1 = N2 ⊗R2 R1 for some σ-submodule N2 of M2.

3. A few more rings

In this chapter, we define a number of additional auxiliary rings used in
our study of σ-modules. Again, we advise the reader to skim this chapter on
first reading and return to it as needed.

3.1. Cohen rings. We proceed to generalizing the constructions of Sec-
tion 2.3 to valued fields. This cannot be accomplished using Witt vectors
because k((t)) and its finite extensions are not perfect. To get around this, we



112 KIRAN S. KEDLAYA

fix once and for all a levelwise continuous Frobenius lift σ0 on Γk((t)) carrying
Γk((t))

con into itself; all of our constructions will be made relative to the choice
of σ0.

Recall that a valued field K is defined to be an algebraic extension of
k((t)) admitting subextensions k((t)) ⊆ L ⊆ M ⊆ N ⊆ K such that:

(a) L = k1/pm

((t)) for some m ∈ {0, 1, . . . ,∞};

(b) M = kM ((t)) for some separable algebraic extension kM/k1/pm

;

(c) N = M1/pn

for some n ∈ {0, 1, . . . ,∞};

(d) K is a separable totally ramified algebraic extension of N .

We will associate to each valued field K a complete discrete valuation ring ΓK

unramified over O, equipped with a Frobenius lift σ0 extending the definition
of σ0 on Γk((t)). This assignment will be functorial in K.

Let C be the category of complete discrete valuation rings unramified over
O, in which morphisms are unramified morphisms of rings (i.e., morphisms
which induce isomorphisms of the value groups). If R0, R1 ∈ C have residue
fields k0, k1 and a homomorphism φ : k0 → k1 is given, we say the morphism
f : R0 → R1 is compatible (with φ) if the diagram

R0
f ��

��

R1

��
k0

φ �� k1

commutes.

Lemma 3.1. Let k1/k0 be a finite separable extension of fields, and take
R0 ∈ C with residue field k0. Then there exists R1 ∈ C with residue field k1

and a compatible morphism R0 → R1.

Proof. By the primitive element theorem, there exists a monic separable
polynomial P (x) over k0 and an isomorphism k1

∼= k0[x]/(P (x)). Choose a
monic polynomial P (x) over R0 lifting P (x) and set R1 = R0[x]/(P (x)). Then
the inclusion R0 → R0[x] induces the desired morphism R0 → R1.

Lemma 3.2. Let k0 → k1 → k2 be homomorphisms of fields, with k1/k0

finite separable. For i = 0, 1, 2, take Ri ∈ C with residue field ki. Let f : R0 →
R1 and g : R0 → R2 be compatible morphisms. Then there exists a unique
compatible morphism h : R1 → R2 such that g = h ◦ f .

Proof. As in the previous proof, choose a monic separable polynomial
P (x) over k0 and an isomorphism k1

∼= k0[x]/(P (x)). Let y be the image of
x + (P (x)) in k1, and let z be the image of y in k2.
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Choose a monic polynomial P (x) over R0 lifting P (x), and view R0 as a
subring of R1 and R2 via f and g, respectively. By Hensel’s lemma, there exist
unique roots α and β of P (x) in R1 and R2 reducing to y and z, respectively,
so that h must satisfy h(α) = β if it exists. Then R0[x]/(P (x)) ∼= R1 by the
map sending x + (P (x)) to α and R0[x]/(P (x)) ↪→ R2 by the map sending
x + (P (x)) to β; so there exists a unique h : R1 → R2 such that h(α) = β, and
this gives the desired morphism.

Corollary 3.3. If k1/k0 is finite Galois, and Ri ∈ C has residue field
ki for i = 0, 1, then for any compatible morphism f : R0 → R1, the group of
f -equivariant automorphisms of R1 is isomorphic to Gal(k1/k0).

Proof. Apply Lemma 3.2 with k0 → k1 the given embedding and k1 → k1

an element of Gal(k1/k0); the resulting h is the corresponding automorphism.

Corollary 3.4. If k1/k0 is finite separable, φ is an endomorphism of k1

mapping k0 into itself, Ri ∈ C has residue field ki for i = 0, 1, and f : R0 → R1

is a compatible morphism, then any compatible endomorphism of R0 (for φ)
admits a unique f -equivariant extension to R1.

Proof. If e : R0 → R0 is the given endomorphism, apply Lemma 3.2 with
g = f ◦ e.

For m a nonnegative integer, let Om be a copy of O. Then the assignment
k1/pm

� Om is functorial via the morphism σi
0 compatible with k1/pm →

k1/pm+i

; thus we can define O∞ as the completed direct limit of the Om. For any
finite separable extension kM of k1/pm

, choose OM in C according to Lemma 3.1,
to obtain a compatible morphism Om → OM ; note that OM is unique up to
canonical isomorphism by Lemma 3.2. Moreover, this assignment is functorial
in kM (again by Lemma 3.2); so again we may pass to infinite extensions by
taking the completed direct limit.

Now suppose K is a nearly finite valued field, and that L, m, M, kM , N, n

are as in the definition of valued fields; note that these are all uniquely deter-
mined by K. Define OM associated to kM as above, define ΓM as the ring of
power series

∑
i∈Z aiu

i, with ai ∈ OM , such that |ai| → 0 as i → −∞, and
identify ΓM/πΓM with M = kM ((t)) via the map

∑
i aiu

i 
→
∑

i ait
i. Define

ΓN as a copy of ΓM , but with ΓM embedded via σn
0 (which makes sense since

n < ∞), and identify the residue field of ΓN with N compatibly. Define ΓK as
a copy of ΓN with its residue field identified with K via some continuous k

1/pn

M -
algebra isomorphism K ∼= N (which exists because both fields are power series
fields over k

1/pn

M by the Cohen structure theorem). Once this choice is made,
there exists a levelwise continuous O-algebra morphism ΓN → ΓK compatible
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with the embedding N ↪→ K. The assignments of ΓM , ΓN , ΓK are functorial,
again by Lemma 3.2, so again we may extend the definition to infinite K by
completion.

Note that if K/k((t)) is nearly finite, then ΓK is equipped with a levelwise
topology, and the embeddings provided by functoriality are levelwise contin-
uous. Moreover, σ0 extends uniquely to each ΓK by Corollary 3.4, and the
functorial morphisms are σ0-equivariant.

If k and K are perfect and O = C(k) = W (k), then ΓK is canonically
isomorphic to the Witt ring W (K). Under that isomorphism, σ0 corresponds
to the Witt vector Frobenius, which sends each Teichmüller lift to its p-th
power. For general O, we have ΓK ∼= W (K) ⊗W (k) O.

We will often fix a field K (typically k((t)) itself) and write Γ instead of
ΓK . In this case, we will frequently refer to ΓL for various canonical extensions
L of K, such as the separable closure Ksep, the perfect closure Kperf , and the
algebraic closure Kalg. In all of these cases, we will drop the K from the
notation where it is understood, writing Γperf for ΓKperf

and so forth.

3.2. Overconvergent rings. Let K be a valued field. Let vK denote the
valuation on K extending the valuation on k((t)), normalized so that vK(t) = 1.
Again, let q = pf , and put σ = σf

0 on ΓK . We define a subring ΓK
con of ΓK

of “overconvergent” elements; the construction will not look quite like the
construction of Γk((t))

con from Section 2.3, so we must check that the two are
consistent.

First assume K is perfect. For x ∈ ΓK [1p ], write x =
∑∞

i=m πi[xi], where
mvp(π) = vp(x), each xi belongs to K and the brackets denote Teichmüller
lifts. For n in the value group of O, we define the “partial valuations”

vn(x) = min
vp(πi)≤n

{vK(xi)}.

These partial valuations obey two rules analogous to those for their näıve
counterparts, plus a third that has no analogue:

vn(x + y) ≥ min{vn(x), vn(y)},
vn(xy) ≥ min

m
{vm(x) + vn−m(y)},

vn(xσ) = qvn(x).

Again, equality holds in the first two lines if the minimum is achieved exactly
once.

For each r > 0, let ΓK
r denote the subring of x ∈ ΓK such that

limn→∞(rvn(x) + n) = ∞. On ΓK
r [1p ] \ {0}, we define the function

wr(x) = min
n

{rvn(x) + n};

then wr is a nonarchimedean valuation by the same argument as for wnaive
r

given in Section 2.3. Define ΓK
con = ∪r>0ΓK

r .
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The rings ΓK
r will be quite useful, but one must handle them with some

caution, for the following reasons:

(a) The map σ : ΓK → ΓK sends ΓK
con into itself, but does not send ΓK

r into
itself; rather, it sends ΓK

r into ΓK
r/q.

(b) The ring ΓK
con is a discrete valuation ring, but the rings ΓK

r are not.

(c) The ring ΓK
r is complete for wr, but not for the p-adic valuation.

For K arbitrary, we want to define ΓK
con as Γalg

con ∩ ΓK . This intersection
is indeed a discrete valuation ring (so again its fraction field is obtained by
adjoining 1

p), but it is not clear that its residue field is all of K. Indeed, it is
a priori possible that the intersection is no larger than O itself! In fact, this
pathology does not occur, as we will see below.

To make that definition, we must also check that Γalg
con ∩ Γk((t)) coincides

with the ring Γk((t))
con defined earlier. This is obvious in a special case: if

σ0(u) = up, then u is a Teichmüller lift in Γalg
con, and in this case one can

check that the partial valuations and näıve partial valuations coincide. In
general they do not coincide, but in a sense they are not too far apart. The
relationship might be likened to that between the näıve and canonical heights
on an abelian variety over a number field.

Put z = uσ/uq − 1. By the original definition of σ on Γk((t)), vp(z) > 0
and z ∈ Γk((t))

con . That means we can find r > 0 such that q−1rvnaive
n (z) + n > 0

for all n; for all s ≤ q−1r, we then have wnaive
s (uσ/uq) = 0.

Lemma 3.5. Choose r > 0 such that q−1rvnaive
n (z) + n > 0 for all n. For

x =
∑

i xiu
i in Γk((t))

r,naive, if 0 < s ≤ qr and wnaive
s (x) ≥ c, then wnaive

s/q (xσ) ≥ c.

Proof. We have

wnaive
s/q (xσ

i (ui)σ) = wnaive
s/q (xiu

qi(uσ/uq)i)

= wnaive
s/q (xiu

qi) + wnaive
s/q ((uσ/uq)i)

= wnaive
s (xiu

i)

since wnaive
s/q (uσ/uq) = 0 whenever s/q ≤ r/q.

Given that wnaive
s (x) ≥ c, it follows that wnaive

s (xiu
i) ≥ c for each i,

and by the above argument, that wnaive
s/q (xσ

i (ui)σ) ≥ c. We conclude that
wnaive

s/q (xσ) ≥ c, as desired.

Lemma 3.6. Choose r > 0 such that q−1rvnaive
n (z) + n > 0 for all n. For

x =
∑

i xit
i ∈ Γk((t))

r,naive and 0 < s ≤ r, if svnaive
j (x) + j ≥ c for all j ≤ n, then

svj(x) + j ≥ c for all j ≤ n.
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Proof. Note that v0 = vnaive
0 , so that the desired result holds for n = 0;

we prove the general result by induction on n. Suppose, as the induction
hypothesis, that if svnaive

j (x) + j ≥ c for all j < n, then svj(x) + j ≥ c for all
j < n. Before deducing the desired result, we first study the special case x = u

in detail (but using the induction hypothesis in full generality).
Choose i large enough that

vp([t] − (uσ−i

)qi

) > n.

Then

vn(u) ≥ min{vn([t]), vn(u − [t])}
= min{1, vn(u − (uσ−i

)qi

)}.

Applying σi yields

qivn(u) ≥ min{qi, vn(uσi − uqi

)}.

Since u ∈ Γk((t))
r,naive and wnaive

r (u) = r trivially, we may apply Lemma 3.5 to
u, uσ, . . . , uσi−1

in succession to obtain

wnaive
r/qi (uσi

) ≥ r.

Since wnaive
r/qi (uqi

) = r, we conclude that wnaive
r/qi (uσi − uqi

) ≥ r.

Let y = (uσi − uqi

)/π. Then for j ≤ n − vp(π),

(r/qi)vnaive
j (y) + j = (r/qi)vnaive

j+vp(π)(yπ) + j + vp(π) − vp(π)

≥ wnaive
r/qi (yπ) − vp(π)

≥ r − vp(π).

By the induction hypothesis, we conclude that (r/qi)vn−vp(π)(y)+n− vp(π) ≥
r − vp(π), and so (r/qi)vn(yπ) + n ≥ r. From above, we have

qivn(u) ≥ min{qi, vn(uσi − uqi

)}
≥ min{qi, qi − qin/r}
= qi − qin/r.

Thus rvn(u) + n ≥ r. Since vn(u) ≤ 1, we also have svn(u) + n ≥ s for
s ≤ r; that is, the desired conclusion holds for the special case x = u. By
the multiplication rule for partial valuations (and the same argument with u

replaced by u−1), we also have svn(ui) + n ≥ si for all i.
With the case x = u in hand, we now prove the desired conclusion for gen-

eral x. We are given svnaive
j (x) + j ≥ c for j ≤ n; by the induction hypothesis,

all that we must prove is that svn(x) + n ≥ c.
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The assumption svnaive
j (x) + j ≥ c implies that svnaive

j (xiu
i) + j ≥ c for

all j ≤ n, which is to say, if vp(xi) ≤ n then si + vp(xi) ≥ c. For j = vp(xi),
we have

svn(xiu
i) + n = svn−j(ui) + n − j + j

≥ si + j

≥ c.

We conclude that svn(x) + n ≥ c, completing the induction.

We next refine the previous result as follows.

Lemma 3.7. Choose r > 0 such that rvnaive
n (z) + n > 0 for all n. If

x ∈ Γk((t)), then for any s ≤ r, minj≤n{svnaive
j (x) + j} = minj≤n{svj(x) + j}

for all n. In particular, wnaive
s (x) = ws(x) if either one is defined.

That is, the näıve valuations wnaive
s are not so simple-minded after all; as

long as s is not too large, they agree with the more canonically defined ws.

Proof. Lemma 3.6 asserts that minj≤n{svj(x)+ j} ≥ minj≤n{svnaive
j (x)+

j}, so it remains to prove the reverse inequality, which we do by induction on
n. If minj≤n{svnaive

j (x) + j} is achieved by some j < n, then by the induction
hypothesis,

min
j≤n

{svnaive
j (x) + j} = min

j≤n−vp(π)
{svnaive

j (x) + j}

≥ min
j≤n−vp(π)

{svj(x) + j}

≥ min
j≤n

{svj(x) + j}.

Suppose then that minj≤n{svnaive
j (x) + j} is achieved only for j = n. Put

x =
∑

xiu
i; by definition, vnaive

n (x) is the smallest integer i with vp(xi) ≤ n.
In fact, we must have vp(xi) = n, or else we have svnaive

j (x)+j < svnaive
n (x)+n

for j = vp(xi). Therefore vn(xiu
i) = vnaive

n (xiu
i) = i.

For j < n, svnaive
j (x − xiu

i) + j = svnaive
j (x) + j > si + n. On the other

hand, vnaive
n (x) = vnaive

n (xiu
i) = i and vnaive

n (x − xiu
i) > i. Thus for all j ≤ n,

svnaive
j (x − xiu

i) + j > si + n;

by Lemma 3.6, svn(x − xiu
i) + n > si + n and so vn(x − xiu

i) > i = vn(xiu
i).

Therefore vn(x) = vn(xiu
i) = i, so that

min
j≤n

{svj(x) + j} ≤ svn(x) + n = si + n = min
j≤n

{svnaive
j (x) + j},

yielding the desired inequality.
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Corollary 3.8. Γalg
con ∩ Γk((t)) = Γk((t))

con .

We now define ΓK
con = Γalg

con ∩ ΓK , and Corollary 3.8 assures us that this
definition is consistent with our prior definition for K = k((t)). To show that
Γalg

con ∩ ΓK is “large” for any K, we need one more lemma, which will end up
generalizing a standard fact about Γk((t))

con .

Lemma 3.9. For any valued field K, ΓK
con is Henselian.

Proof. By a lemma of Nagata [N, 43.2], it suffices to show that if P (x) =
xd + a1x

d−1 + · · · + ad is a polynomial over ΓK
con such that a1 �≡ 0 (mod π)

and ai ≡ 0 (mod π) for i > 1, then P (x) has a root y in ΓK
con such that

y ≡ −a1 (mod π). By replacing P (x) by P (−x/a1), we may reduce to the
case a1 = −1; by Hensel’s lemma, P has a root y in ΓK congruent to 1 modulo
π, and P ′(y) ≡ dyd−1 − (d − 1)yd−2 ≡ 1 (mod π).

Choose a constant c > 0 such that vn(ai) ≥ −cn for all n, and define
the sequence {yj}∞j=0 by the Newton iteration, putting y0 = 1 and yj+1 =
yj − P (yj)/P ′(yj). Then {yj} converges π-adically to y; we now show by
induction on j that vn(yj) ≥ −cn for all n and all j. Namely, this is obvious
for y0, and given vn(yj) ≥ −cn for all n, it follows that vn(P (yj)) ≥ −cn,
vn(P ′(yj)) ≥ −cn, and vn(1/P ′(yj)) ≥ −cn (the last because v0(P ′(yj)) = 0).
These together imply vn(yj+1) ≥ −cn for all n, completing the induction. We
conclude that y ∈ ΓK

con and ΓK
con is Henselian, as desired.

We can now prove the following.

Proposition 3.10. For any valued field K, ΓK
con has residue field K.

Proof. We have already shown this for K = k((t)) by Corollary 3.8. If
K/k((t)) is nearly finite, then K uniquely determines L, m, M, kM , N, n as in
the definition of valued fields. Now M = kM ((t)) for some finite extension kM

of k1/pm

, so that Corollary 3.8 also implies that ΓM
con has residue field M . Also,

N = M1/pn

for some integer n, so that for any x ∈ M , we can find y ∈ ΓM
con

which lifts xpn

, and then yσ−n ∈ ΓN
con lifts x.

Choose a monic polynomial P over ΓN
con lifting a monic separable polyno-

mial P for which K ∼= N [x]/(P (x)) (again, possible by the primitive element
theorem). By Hensel’s lemma P has a root y in ΓK , and ΓK ∼= ΓN [y]/(P (y)).
But since Γalg

con is Henselian and P has coefficients in Γalg
con, y ∈ Γalg

con. Thus the
residue field of ΓK

con contains N and y, and hence is all of K.
This concludes the proof for K nearly finite over k((t)). A general valued

field K is the union of its nearly finite valued subfields K1, and ΓK
con contains

(but does not equal) the direct limit of the ΓK1
con. Thus its residue field contains

the union of the K1, and hence is equal to K.
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If L/K is a finite extension of valued fields, then ΓL is a finite unramified
extension of ΓK . The minimal polynomial over ΓK of any element of ΓL

con has
coefficients in ΓK ∩ ΓL

con = ΓK
con; hence ΓL

con is integral over ΓK
con. In fact it is

a finite unramified extension of henselian discrete valuation rings.

3.3. Analytic rings: generalizing the Robba ring. In this section, we
generalize the construction of the Robba ring. Besides the classical case where
K is a finite extension of k((t)), we will be especially interested in the case
K = k((t))alg, which will give a sort of “maximal unramified extension” of the
standard Robba ring. (That ring also appears in [Bg], as the ring B̃†

rig.)

Proposition 3.11. Suppose the valued field K is either

(a) nearly finite over k((t)) or
(b) perfect.

Then there exists r0 > 0 such that for 0 < r < r0, ΓK
r = Γalg

r ∩ ΓK has units
congruent to every nonzero element of K.

Proof. For (a), there is no harm in assuming K/k((t)) is finite separable.
Let u be a lift to ΓK

con of a uniformizer u of K, and choose r0 > 0 so that u is
a unit in ΓK

r . Let O′ be the integral closure of O in ΓK ; its residue field is the
integral closure k′ of k in K.

For any ci ∈ O′, the series 1 +
∑∞

i=1 ciu
i converges with respect to wr

(hence levelwise) to a unit of ΓK
r , because we can formally invert the series

and the result also converges with respect to wr. Any nonzero element of K

can be written as a nonzero element of k′ times a power of u times a series in
u with leading term 1, thus can be lifted as an invertible element of O′ times
a power of u times a series of the form 1 +

∑∞
i=1 ciu

i. The result is invertible
in ΓK

r , as desired.
For (b), we can choose any r0 > 0, since every Teichmüller lift belongs

to ΓK
r .

Note that the conclusion of the proposition need not hold for other valued
fields. For example, it fails for K = k((t))sep if σ0(u) = up for some u ∈ Γk((t))

con

lifting t: define a sequence {yi}∞i=1 of elements of K by setting yi to be a
root of yp

i − yi = u−i. Then it can be shown that yi has a lift in ΓK
r only if

r < 1
i (p/(p − 1))2, and so there is no way to choose r uniformly.
For the rest of this section, we assume that the hypotheses of Proposi-

tion 3.11 are satisfied. Recall that for 0 < s ≤ r, we have defined the valuation
ws on ΓK

r [1p ] by

ws(x) = min
n

{n + svn(x)},

the minimum taken as n runs over the value group of O. We define a corre-
sponding norm | · |s by |x|s = p−ws(x).
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While ΓK
r is complete under | · |r, ΓK

r [1p ] is not, and so we can attempt to
complete it. In fact, we can define a Fréchet topology on ΓK

r [1p ] using the ws

for 0 < s ≤ r, and define ΓK
an,r as the Fréchet completion of ΓK

r [1p ]. That is,
ΓK

an,r consists of equivalence classes of sequences of elements of ΓK
r [1p ] which

are simultaneously Cauchy for all of the norms | · |s.
Set ΓK

an,con = ∪r>0ΓK
an,r. Echoing a warning from the previous section, we

note that ΓK
an,con admits an action of σ, but each ΓK

an,r is mapped not into itself,
but into ΓK

an,r/q. More precisely, we have wr/q(xσ) = wr(x) for all x ∈ ΓK
an,r.

In case K = k((t)), we defined another ring called ΓK
an,con in Section 2.3.

Fortunately, these rings coincide: for r sufficiently small, by Corollary 3.8 we
have ΓK

r = ΓK
r,naive and so ΓK

an,r = ΓK
an,r,naive by Proposition 2.2.

Since ΓK
an,con is defined from ΓK

con by a canonical completion process, it
inherits as much functoriality as is possible given the restricted applicability
of Proposition 3.11. For example, if L/K is a finite totally ramified extension,
then ΓL

an,con is an integral extension of ΓK
an,con; in fact, one has a canonical

identification of ΓL
an,con with ΓL

con ⊗ΓK
con

ΓK
an,con, which in case L/K is Galois

gives an action of Gal(L/K) on ΓL
an,con with fixed ring ΓK

an,con. Likewise, if K

is perfect, then the union ∪LΓL
an,r running over all nearly finite subextensions

L of K is dense in ΓK
an,r for each r > 0, so ∪LΓL

an,con is dense in ΓK
an,con.

We can extend the functions vn to ΓK
an,r by continuity: if xi → x in the

Fréchet topology, then vn(xi) either stabilizes at some finite value or tends to
+∞ as i → ∞, and we may put vn(x) = limi→∞ vn(xi). Likewise, we can
extend the functions ws to ΓK

an,r by continuity, and again one has the formula

ws(x) = min
n

{n + svn(x)},

as n runs over the value group of O. One also has

lim
n→±∞

(n + svn(x)) = ∞

for any 0 < s < r. For n → −∞, this follows from the corresponding limiting
statement for s = r. For n → ∞, note that if the limit did not tend to infinity,
x could not be written as a limit under | · |s of elements of ΓK

r [1p ].
It is not so easy to prove anything about the ring ΓK

an,con just from the
above definition, since it is inconvenient even to write down elements of this
ring. To this end, we isolate a special class of elements, which we call semi-
units, and use them as building blocks to represent more general ring elements.

We define a semi-unit of ΓK
r (resp. of ΓK

an,r) as an element u of ΓK
r (resp.

of ΓK
an,r) which is either zero, or which satisfies the following conditions:

(a) vn(u) = ∞ for n < 0;

(b) v0(u) < ∞;

(c) rvn(u) + n > rv0(u) for n > 0.
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In particular, if u ∈ ΓK
r , then u is a semi-unit if either u = 0 or u is a unit in ΓK

r ,
hence the terminology; more generally, in ΓK

an,r, the nonzero semiunits form a
multiplicative group. In particular, under the condition of Proposition 3.11,
every element of K lifts to a semi-unit in ΓK

r . Note that if u is a semi-unit in
ΓK

an,r, it is also a semi-unit in ΓK
an,s for any 0 < s < r. Also be aware that if

K/k((t)) is infinite, a semi-unit u in ΓK
an,r need not belong to ΓK

r even though
vp(u) ≥ 0. (If R is the subring of x ∈ ΓK

an,r with vp(x) ≥ 0, then R/πR is
isomorphic to the completion of K with respect to vK .)

If K is perfect, we define a strong semi-unit of ΓK
r (resp. of ΓK

an,r) as an
element u of ΓK

r (resp. of ΓK
an,r) which is either zero, or satisfies the following

conditions:

(a) vn(u) = ∞ for n < 0;

(b) v0(u) < ∞;

(c) vn(u) = v0(u) for n > 0.

Every Teichmüller lift is a strong semi-unit, so every element of K lifts to a
strong semi-unit in ΓK

r .
Let {ui}∞i=−∞ be a doubly infinite sequence of semi-units in ΓK

r (resp. in
ΓK

an,r). Then we say {ui} is a semi-unit decomposition of x in ΓK
r (resp. in ΓK

an,r)
if wr(uiπ

i) ≤ wr(ujπ
j) whenever i > j and ui, uj �= 0, and if

∑N
i=−M uiπ

i con-
verges to x in the Fréchet topology as M, N → ∞. We express this more suc-
cinctly by saying that

∑
uiπ

i is a semi-unit decomposition of x. Analogously,
if K is perfect and the ui are strong semi-units, we say

∑
uiπ

i is a strong
semi-unit decomposition of x if v0(ui) < v0(uj) whenever i > j and ui, uj �= 0,
and if

∑N
i=−M uiπ

i converges to x in the Fréchet topology as M, N → ∞.

If
∑

uiπ
i is a semi-unit decomposition of x ∈ ΓK

an,r, then for each i such
that ui �= 0, we may set n = ivp(π) and obtain rvn(x) + n = rvn(uiπ

i) + n;
that is, vn(x) = vn(uiπ

i). Since rvn(x) + n → ∞ as n → ∞ for any x ∈ ΓK
an,r,

we must then have ui = 0 for i sufficiently large. There is no analogous
phenomenon for strong semi-unit decompositions, however: for each i such
that ui �= 0, we set n = ivp(π) and obtain vn(x) = vn(uiπ

i), but vn(x) may
continue to decrease forever as n → ∞, and so the ui need not eventually
vanish.

Lemma 3.12. Each element x of ΓK
r admits a semi-unit decomposition.

If K is perfect, each element x of ΓK
r admits a strong semi-unit decomposition.

Proof. Without loss of generality (dividing by a suitable power of π), we
may reduce to the case where x �≡ 0 (mod π). We define a sequence of semi-
units {yi}∞i=0 such that x ≡

∑j
i=0 yiπ

i (mod πj+1), as follows. Let y0 be a
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semi-unit congruent to x modulo π. Given y0, . . . , yj , let yj+1 be a semi-unit
congruent to (x −

∑j
i=0 yiπ

i)/πj+1 modulo π.
The sum

∑∞
i=0 yiπ

i now converges to x, but we do not have the necessary
comparison between wr(yiπ

i) and wr(yjπ
j), so we must revise the decompo-

sition. We say i is a corner if wr(yiπ
i) = minj≤i{wr(yjπ

j)}. We now set
ui = 0 if i is not a corner; if i is a corner, let l be the next largest corner (or
∞ if there is none), and put ui =

∑l−1
j=i yjπ

j−i. By the definition of a corner,
wr(yjπ

j−i) > wr(yi) for i < j < l, so that ui is a semi-unit. Moreover, if i and
j are corners and i > j, then wr(uiπ

i) = wr(yiπ
i) ≤ wr(yjπ

j) = wr(ujπ
j); and

the sum
∑∞

i=0 uiπ
i is merely the sum

∑∞
i=0 yiπ

i with the terms regrouped, so
it still converges to x. Thus

∑∞
i=0 uiπ

i is a semi-unit decomposition of x.
If K is perfect, we perform the revision slightly differently. We say i is a

corner if v0(yi) < v0(yj) for all j < i. Again, we set ui = 0 if i is not a corner,
and if i is a corner and l is the next largest corner, we set ui =

∑l−i
j=i yjπ

j−i.
Clearly ui is a strong semi-unit for each i, and the sum

∑∞
i=0 uiπ

i converges to
x. If i > j are corners, then v0(ui) = v0(yi) < v0(yj) = v0(uj). Thus

∑∞
i=0 uiπ

i

is a strong semi-unit decomposition of x.

Proposition 3.13. Every element of ΓK
an,r admits a semi-unit decompo-

sition.

Proof. For x ∈ ΓK
an,r, let

∑∞
l=0 xl be a series of elements of ΓK

r [1p ] that
converges under | · |r to x, such that wr(xl) < wr(xl+1). (For example, choose
x0 such that wr(x − x0) > wr(x), then choose x1 such that wr(x − x0 − x1) >

wr(x − x0), and so forth.)
For l = 0, 1, . . . and i ∈ Z, we define elements yil of ΓK

r [1p ] recursively in l,
such that for any l, only finitely many of the yil are nonzero, as follows. Apply
Lemma 3.12 (after multiplying by a suitable power of π) to produce a semi-unit
decomposition of x0 + · · · + xl −

∑
j<l

∑
i yijπ

i. For each of the finitely many
terms uiπ

i of this decomposition with ui �= 0 and wr(uiπ
i) < wr(xl+1), put

yil = ui; for all other i, put yil = 0. Then

wr

x0 + · · · + xl −
∑
j≤l

∑
i

yijπ
i

 ≥ wr(xl+1).

In particular, the doubly infinite sum
∑

l

∑
i yilπ

i converges under | · |r to x.
If we set zi =

∑
l yil, the series

∑
i ziπ

i converges under | · |r to x.
Note that wr(xl) ≤ wr(yilπ

i) < wr(xl+1) whenever yil �= 0. Thus for any
fixed i, the values of wr(yilπ

i), taken over all l such that yil �= 0, form a strictly
increasing sequence. If j is the first such index, we then have wr(yijπ

i) <

wr(
∑

l>j yilπ
i), and so zi is a semi-unit.

Define ui to be zero if wr(ziπ
i) > wr(zjπ

j) for some j < i; otherwise, let
l be the smallest integer greater than i such that wr(zlπ

l) ≤ wr(ziπ
i) (or ∞ if
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none exists), and put ui =
∑l−1

j=i zjπ
j−i. Then the series

∑
i uiπ

i also converges
under | · |r to x, and if ui �= 0, then ui is a semi-unit and wr(uiπ

i) = wr(ziπ
i).

It follows that wr(uiπ
i) ≤ wr(ujπ

j) whenever i > j and ui, uj �= 0. This in
turn implies that if ui �= 0 and n = vp(πi), then vn(uiπ

i) = vn(x).
We finally check that

∑
i uiπ

i converges under | · |s for 0 < s < r. The fact
that svn(x) + n → ∞ as n → ±∞ implies that svvp(πi)(uiπ

i) + vp(πi) → ∞
as i → ±∞. Since ui is a semi-unit, ws(uiπ

i) = svvp(πi)(uiπ
i) + vp(πi), so

ws(uiπ
i) → ∞ as i → ±∞. Thus the sum

∑
i uiπ

i converges under | · |s for
0 < s < r, and the limit must equal x because the sum converges to x under
| · |r. Therefore

∑
i uiπ

i is a semi-unit decomposition, as desired.

Proposition 3.14. If K is perfect, every element of ΓK
an,r admits a strong

semi-unit decomposition.

Proof. As in the previous proof, for x ∈ ΓK
an,r, let

∑∞
l=0 xl be a series of

elements of ΓK
r [1p ] that converges under | · |r to x, such that wr(xl) < wr(xl+1).

For l = 0, 1, . . . and i ∈ Z, we define elements yil of ΓK
r [1p ] recursively in l,

such that for any l, only finitely many of the yil are nonzero, as follows. Apply
Lemma 3.12 to produce a strong semi-unit decomposition of x0 + · · · + xl −∑

j<l

∑
i yijπ

i. For each of the finitely many terms uiπ
i of this decomposition

with ui �= 0 and wr(uiπ
i) < wr(xl+1), put yil = ui; for all other i, put yil = 0.

Then

wr

x0 + · · · + xl −
∑
j≤l

∑
i

yijπ
i

 ≥ wr(xl+1).

In particular, the doubly infinite sum
∑

l

∑
i yilπ

i converges under | · |r to x.
If we set zi =

∑
l yil, the series

∑
i ziπ

i converges under | · |r to x.
Note that wr(xl) ≤ wr(yilπ

i) < wr(xl+1) whenever yil �= 0. Thus for
any fixed i, the values of v0(yil), taken over all l such that yil �= 0, form a
strictly increasing sequence. If j is the first such index, we then have v0(yij) <

v0(
∑

l>j yil), and so zi is a strong semi-unit.
Define ui to be zero if v0(zi) ≥ v0(zj) for some j < i; otherwise, let l be

the smallest integer such that v0(zl) < v0(zi) (or ∞ if none exists), and put
ui =

∑l−1
j=i zjπ

j−i. Then the series
∑

i uiπ
i also converges under | · |r to x, and

if ui �= 0, then ui is a strong semi-unit and v0(ui) = v0(zi). It follows that
v0(ui) < v0(uj) whenever i > j and ui, uj �= 0. This in turn implies that if
ui �= 0 and n = vp(πi), then vn(uiπ

i) = vn(x).
We finally check that

∑
i uiπ

i converges under | · |s for 0 < s < r, by the
same argument as in the previous proof. Namely, the fact that svn(x)+n → ∞
as n → ±∞ implies that svvp(πi)(uiπ

i) + vp(πi) → ∞ as i → ±∞. Since ui is
a strong semi-unit, ws(uiπ

i) = svvp(πi)(uiπ
i) + vp(πi), so that ws(uiπ

i) → ∞
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as i → ±∞. Thus the sum
∑

i uiπ
i converges under | · |s for 0 < s < r, and

the limit must equal x because the sum converges to x under | · |r. Therefore∑
i uiπ

i is a strong semi-unit decomposition, as desired.

Although (strong) semi-unit decompositions are not unique, in a certain
sense the “leading terms” are unique. To make sense of this remark, we first
need a “leading coefficient map” for K.

Lemma 3.15. For K a valued field, there exists a homomorphism λ :
K∗ → (kalg)∗ such that λ(c) = c for all c ∈ kalg ∩ K and λ(x) = 1 if
vK(x − 1) > 0.

For instance, if K = k((t)), we could take λ(x) to be the leading coefficient
of x.

Proof. There is no loss of generality in enlarging K, so we may assume
K = k((t))alg. Define t0 = t, and for i > 0, let ti be an i-th root of ti−1. With
this choice, for any d ∈ Q we can define td as ti!di for any i ≥ d; the expression
does not depend on i.

Now for each x ∈ K∗, there exists a unique c ∈ (kalg)∗ such that

vK

( x

ctvK(x)
− 1

)
> 0;

set λ(x) = c.

Choosing a map λ as in Lemma 3.15, we define the leading terms map
Lr : ΓK

an,r → ∪∞
n=1k

alg[t1/n, t−1/n] as follows. For x ∈ ΓK
an,r nonzero, find a finite

sum y =
∑

j ujπ
j such that each uj is a semi-unit, wr(ujπ

j) = wr(x) for all j

such that uj �= 0, and wr(x − y) > wr(x). Then put Lr(x) =
∑

j λ(uj)tv0(uj);
this definition does not depend on the choice of y. Moreover, the leading terms
map is multiplicative; that is, Lr(xy) = Lr(x)Lr(y).

We define the upper degree and lower degree of a nonzero element of
∪∞

n=1k
alg[t1/n, t−1/n] as the largest and smallest powers of t, respectively, oc-

curring in the element; we define the length of an element as the upper degree
minus the lower degree. We extend all of these definitions to ΓK

an,r through the
map Lr.

Warning: if K is not nearly finite over k((t)), then the subring of x ∈
ΓK

an,con with vn(x) = ∞ for n < 0 is a complete discrete valuation ring con-
taining ΓK

con, but it is actually much bigger than ΓK
con. In fact, its residue field

is the completion of K with respect to the valuation vK .
As noted earlier, a theorem of Lazard asserts that ΓK

an,con is a Bézout
ring (every finitely generated ideal is principal) for K = k((t)); the same is
true for K a nearly finite extension of k((t)), since K ∼= k′((t′)) for some
uniformizer t′ and some field k′. We will generalize the Bézout property to
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ΓK
an,con for K/k((t)) infinite in Section 3.6; for now, we deduce from Lemma 2.6

the following descent lemma for σ-modules. (The condition on G-stable ideals
is satisfied because G = Gal(L/K) here is finite.)

Corollary 3.16. Let L/K be a finite Galois extension of valued fields
nearly finite over k((t)). Let M be a σ-module over ΓK

an,con and N a saturated
σ-submodule of M ⊗ΓK

an,con
ΓL

an,con stable under Gal(L/K). Then N is equal to
P ⊗ΓK

an,con
ΓL

an,con for some saturated σ-submodule P of M .

3.4. Some σ-equations. We record here the behavior of some simple equa-
tions involving σ. For starters, we have the following variant of Hensel’s lemma.

Proposition 3.17. Let R be a complete discrete valuation ring, unram-
ified over O, with separably closed residue field, and let σ be a q-power Frobe-
nius lift. For c0, . . . , cn ∈ R with c0 not divisible by π and x ∈ R, define
f(x) = c0x + c1x

σ + · · · + cnxσn

. Then for any x, y ∈ R for which f(x) ≡ y

(mod π), there exists z ∈ R congruent to x modulo π for which f(z) = y.
Moreover, if R has algebraically closed residue field, then the same holds if any
of c0, . . . , cn is not divisible by π.

Proof. Define a sequence {zl}∞l=1 of elements of R such that z1 = x,
zl+1 ≡ zl (mod πl) and f(zl) ≡ y (mod πl); then the limit z of the zl will have
the desired property. Given zl, put al = (y−f(zl))/πl, and choose bl ∈ R such
that

c0bl + c1b
q
l (π

σ/π)l + · · · + cnbqn

l (πσn

/π)l ≡ al (mod π);

this is possible because either R has algebraically closed residue field, or c0 �= 0
and the polynomial at left must be separable. Put zl+1 = zl + πlbl; then
f(zl+1) ≡ f(zl) + f(πlbl) ≡ y (mod πl+1), as desired.

We next consider similar equations over some other rings. The following
result will be vastly generalized by Proposition 5.11 later.

Proposition 3.18. Suppose x ∈ Γalg
con (resp. x ∈ Γalg

an,con with vn(x) = ∞
for n < 0) is not congruent to 0 modulo π. Then there exists a nonzero y ∈ Γalg

con

(resp. y ∈ Γalg
an,con with vn(y) = ∞ for n < 0) such that yσ = xy.

Proof. Put R = Γalg
con (resp. let R be the subring of x ∈ Γalg

an,con with
vn(x) = ∞ for n < 0) and let S be the completion of R. By Proposition 3.17,
we can find nonzero y ∈ S such that yσ = xy; we need to show that y ∈ R.
Choose r > 0 and c ∈ R such that rvn(x)+n ≥ c for all n. We then show that
r(q − 1)vn(y) + n ≥ c by induction on n. Now,

qvn(y) = vn(yσ) ≥ min
m≤n

{vm(x) + vn−m(y)}.
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If the minimum is achieved for m = 0 (which includes the base case n = 0),
then (q − 1)vn(y) ≥ v0(x), so r(q − 1)vn(y) + n ≥ rv0(x) + n ≥ c. If the
minimum is achieved for some m > 0, then by the induction hypothesis

r(q − 1)vn(y) ≥ r(q − 1)
q

vm(x) +
r(q − 1)

q
vn−m(y)

≥ (q − 1)(c − m)
q

+
(c − n + m)

q

≥ (q − 1)(c − n)
q

+
(c − n)

q
≥ c − n,

so that r(q − 1)vn(y) + n ≥ c. Thus the induction goes through, and demon-
strates that y ∈ R, as desired.

Finally, we consider a class of equations involving the analytic rings. We
suppress K from all superscripts for convenience, writing Γcon for ΓK

con and so
forth.

Proposition 3.19. Let K be a valued field (satisfying the condition of
Proposition 3.11 in case Γan,con is referenced).

(a) Assume K is separably closed (resp. algebraically closed). For λ ∈ O
a unit and x ∈ Γcon (resp. x ∈ Γan,con), there exists y ∈ Γcon (resp.
y ∈ Γan,con) such that yσ − λy = x. Moreover, if x ∈ Γcon[1p ], then any
such y belongs to Γcon[1p ].

(b) Assume K is perfect. For λ ∈ O not a unit and x ∈ Γcon (resp. x ∈
Γan,con), there exists y ∈ Γcon (resp. y ∈ Γan,con) such that yσ − λy = x.
Moreover, we can take y nonzero in Γan,con even if x = 0.

(c) For λ ∈ O not a unit and x ∈ Γan,con, there is at most one y ∈ Γan,con

such that λyσ − y = x, and if x ∈ Γcon, then y ∈ Γcon as well.

(d) For λ ∈ O not a unit and x ∈ Γan,con such that vn(x) ≥ 0 for all n, there
exists y ∈ Γan,con such that λyσ − y = x.

Proof. (a) If x ∈ Γcon, then Proposition 3.17 implies that there exists
y ∈ Γ such that yσ − λy = x. To see that in fact y ∈ Γcon, note that if
vn(y) ≤ 0, the fact that

qvn(y) = vn(yσ) = vn(λy + x) ≥ min{vn(x), vn(y)}
implies that qvn(y) ≥ vn(x); while if vn(y) > 0, the fact that

vn(y) = vn(λy) = vn(yσ − x) ≥ min{qvn(y), vn(x)}
implies that vn(y) ≥ vn(x), which also implies qvn(y) ≥ vn(x). Hence y ∈ Γcon

and wqr(y) ≥ wr(x).
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For x ∈ Γan,con (with K algebraically closed), choose r > 0 such that
x ∈ Γan,r, and let x =

∑∞
i=−∞ uiπ

i be a strong semi-unit decomposition. As
above, there exists yi ∈ Γan,qr with yσ

i − λ(π/πσ)iyi = ui(π/πσ)i such that
vn(yi) = ∞ for n < 0 and wqr(yi) ≥ wr(ui). This implies that

∑∞
i=−∞ yiπ

i

converges with respect to | · |s for 0 < s ≤ r; let y be its Fréchet limit. Then

yσ − λy =
∑

i

yσ
i (πi)σ − λyiπ

i

=
∑

i

λyiπ
i + uiπ

i − λyiπ
i

=
∑

i

uiπ
i = x,

so that y is the desired solution.
To verify the last assertion, we may assume k is algebraically closed and

πσ = π. Suppose x ∈ Γcon[1p ] and y ∈ Γan,con satisfy yσ − λy = x. By what
we have shown above, there also exists z ∈ Γcon[1p ] such that zσ − λz = x, so
that (y − z)σ = λ(y − z). This equation yields qvn(y − z) = vn(y − z) for all
n, and so vn(y − z) = 0 or ∞ for all n. We cannot have vn(y − z) = 0 for
all n, and so there is a smallest such n; we may assume n = 0 without loss of
generality. Then every solution w of wσ = λw in Γan,con with vn(w) = ∞ for
n < 0 is congruent to some element of O modulo π. In particular, we can find
c0, c1, · · · ∈ O such that

∑l
j=0 cjπ

j ≡ y − z (mod πl+1), since once c0, . . . , cl

have been computed, we can take w = (y−z)π−l−1−
∑l

j=0 cjπ
j−l−1, and there

must be some cl+1 ∈ O congruent to w modulo π. Thus y − z ∈ O ⊆ Γcon[1p ],
and so y ∈ Γcon[1p ].

(b) If x ∈ Γcon, then the series

∞∑
i=0

λσ−1 · · ·λσ−i

xσ−i−1

converges π-adically to an element y ∈ Γ satisfying

yσ − λy =
∞∑
i=0

λλσ−1 · · ·λσ−i+1
xσ−i −

∞∑
i=0

λλσ−1 · · ·λσ−i

xσ−i−1

=
∞∑
i=0

λλσ−1 · · ·λσ−i+1
xσ−i −

∞∑
i=1

λλσ−1 · · ·λσ−i+1
xσ−i

= x.

To see that in fact y ∈ Γcon, choose r > 0 and c ≤ 0 such that wr(x) ≥ c;
that is, rvn(x) + n ≥ c for all n ≥ 0. If vn(x) ≤ 0, then rvn(xσ−i

) + n =
(r/qi)vn(x) + n ≥ rvn(x) + n ≥ c; if vn(x) ≥ 0, then rvn(xσ−i

) + n ≥ 0 ≥ c. In
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any case, we have wr(xσ−i

) ≥ c for all i. Since wr(λσ−i

) = wr(λ) > 0 for all i,
we conclude that the series defining y converges under | · |r, and so its limit y

in Γ must actually lie in Γcon.
Suppose now that x ∈ Γan,con; by Proposition 3.14, there exists a strong

semi-unit decomposition x =
∑

n πnun of x. Let N be the largest value of n

for which v0(un) ≥ 0, and put

x− =
N∑

n=−∞
πnun, x+ =

∞∑
n=N+1

πnun.

As above, we can construct y+ ∈ Γan,con with vn(y+) = ∞ for n sufficiently
small, such that yσ

+ − λy+ = x+. As for x−, let m be the greatest integer less
than or equal to N for which um �= 0. For any fixed r, wr(xσi

− ) = wr((umπm)σi

)
for i sufficiently large. The series

−
∞∑
i=0

(λλσ · · ·λσi

)−1xσi

−

then converges under | · |r, since

wr((λλσ · · ·λσi

)−1xσi

− ) = −(i + 1)wr(λ) + wr(xσi

− )

= −(i + 1)wr(λ) + rqiv0(um) + mvp(π)

tends to infinity with i. Since this holds for every r, the series converges in
Γan,con to a limit y−, which satisfies

yσ
− − λy− = −

∞∑
i=0

(λσ · · ·λσi+1
)−1xσi+1

− +
∞∑
i=0

(λσ · · ·λσi

)−1xσi

−

= −
∞∑
i=1

(λσ · · ·λσi

)−1xσi

− +
∞∑
i=0

(λσ · · ·λσi

)−1xσi

−

= x−.

We conclude that y = y+ + y− satisfies yσ − λy = x.
To prove the final assertion, let u be any strong semi-unit with v0(u) > 0,

and set

y =
∞∑
i=0

λσ−1 · · ·λσ−i

uσ−i−1
+

∞∑
i=0

(λλσ · · ·λσi

)−1uσi

;

then the above arguments show that both series converge and yσ −λy = u−u

= 0.

(c) We prove the second assertion first. Namely, assume x ∈ Γcon and
y ∈ Γan,con satisfy λyσ − y = x; we show that y ∈ Γcon. First suppose 0 <

vn(y) < ∞ for some n < 0. Then

vn(y) = vn(y + x) = vn(λyσ) ≥ vn(yσ) = qvn(y),
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a contradiction. Thus vn(y) is either nonpositive or ∞ for all n < 0. We
cannot have vn(y) ≤ 0 for all n, since for some r > 0 we have rvn(y) + n → ∞
as n → −∞. Thus vn(y) = ∞ for some y. (Beware: this is not enough a
priori to imply that y ∈ Γcon[1p ] if K is infinite over k((t)).) Choose n minimal
such that vn(y) < ∞. If n < 0, then vn(y) = vn(y + x) = vn(λyσ) = ∞, a
contradiction. Thus n ≥ 0. We can now show that y is congruent modulo πi

to an element of Γcon, by induction on i. The base case i = 0 is vacuous; given
y ≡ yi (mod πi) for yi ∈ Γcon, we have

y = −x + λyσ ≡ −x + λyσ
i (mod πi+1).

Thus the induction follows. Since y is the π-adic limit of elements of Γcon, we
conclude y ∈ Γcon.

For the first assertion, suppose x ∈ Γan,con and y1, y2 ∈ Γan,con satisfy
λyσ

i − yi = x for i = 1, 2. Then λ(y1 − y2)σ − (y1 − y2) = 0; by the previous
paragraph, this implies vn(y1 − y2) = ∞ for n < 0. But then vp(y1 − y2) =
vp(λ) + vp((y1 − y2)σ), a contradiction unless y1 − y2 = 0.

(d) Since vn(x) ≥ 0 for all n, we have vn(xσi

) = qivn(x) ≥ vn(x) for all
nonnegative integers i. Thus ws(xσi

) ≥ ws(x) for all s, so the series

y = −
∞∑
i=0

λλσ · · ·λσi−1
xσi

converges with respect to each of the norms | · |s, and

λyσ − y = −
∞∑
i=0

λλσ · · ·λσi

xσi+1
+

∞∑
i=0

λλσ · · ·λσi−1
xσi

= −
∞∑
i=1

λλσ · · ·λσi−1
xσi

+
∞∑
i=0

λλσ · · ·λσi−1
xσi

= x,

and so y is the desired solution.

3.5. Factorizations over analytic rings. We assume that the valued field
K satisfies the conditions of Proposition 3.11, so that the ring Γan,con = ΓK

an,con

is defined. As noted earlier, Γan,con is not Noetherian even for K = k((t)), but
in this case Lazard [L] proved that Γan,con is a Bézout ring, that is, a ring in
which every finitely generated ideal is principal. In this section and the next,
we generalize Lazard’s result as follows.

Theorem 3.20. Suppose the conclusion of Proposition 3.11 is satisfied
for the valued field K and the positive number r. Then every finitely generated
ideal in Γan,r = ΓK

an,r is principal. In particular, every finitely generated ideal
in Γan,con is principal.



130 KIRAN S. KEDLAYA

Our approach resembles that of Lazard, with “pure elements” standing
in for the divisors in his theory. The approach requires a number of auxiliary
results on factorizations of elements of Γan,con; for the most part (specifically,
excepting Section 6.1), only Theorem 3.20 will be used in the sequel, not the
auxiliary results.

For x ∈ Γan,r nonzero, define the Newton polygon of x as the lower convex
hull of the set of points (vn(x), n), minus any segments of slopes less than −r on
the left end and/or any segments of nonnegative slope on the right end of the
polygon; see Figure 1 for an example. Define the slopes of x as the negatives
of the slopes of the Newton polygon of x. (The negation is to ensure that
the slopes of x are positive.) Also define the multiplicity of a slope s ∈ (0, r]
of x as the positive difference in y-coordinates between the endpoints of the
segment of the Newton polygon of slope −s, or 0 if there is no such segment.
If x has only one slope s, we say x is pure (of slope s). (Beware: this notion
of slope differs from the slope of an eigenvector of a σ-module introduced in
Section 2.5, and the Newton polygon here does not correspond to either the
generic or special Newton polygons we define later.)

n

vn

Figure 1: An example of a Newton polygon

Lemma 3.21. The multiplicity of s as a slope of x is equal to s times
the length (upper degree minus lower degree) of Ls(x), where Ls is the leading
terms map in Γan,s.

Proof. Let
∑

i uiπ
i be a semi-unit decomposition of x. Let S be the set

of l which achieve minl{ws(ulπ
l)}, and let i and j be the smallest and largest

elements of S; then Ls(x) =
∑

l∈S λ(ul)tv0(ul) and the length of Ls(x) is equal
to v0(ui) − v0(uj).

We now show that the endpoints of the segment of the Newton polygon of x

of slope −s are (v0(ui), vp(πi)) and (v0(uj), vp(πj)). First of all, for n = vp(πi),
we have svn(x)+n = sv0(ui)+ivp(π) = ws(uiπ

i); likewise for n = vp(πj). Next,
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we note that ws(x) ≥ minl{ws(ulπ
l)} = ws(uiπ

i). Thus for any n, svn(x)+n ≥
ws(uiπ

i); this means that the line through (v0(ui), vp(πi)) and (v0(uj), vp(πj))
is a lower supporting line for the set of points (vn(x), n). Finally, note that for
n < vp(πi),

svn(x) + n ≥ min
l<i

{svn(πlul) + n}

≥ min
l<i

{ws(πlul)}

> ws(x);

while for n > vp(πj),

svn(x) + n ≥ min{min
l∈[i,j]

{svn(πlul) + n}, min
l /∈[i,j]

{svn(πlul) + n}}

≥ min{min
l∈[i,j]

{svn(πlul) + n}, min
l /∈[i,j]

{ws(πlul)}}.

For l ∈ [i, j], n > vp(πl) and ul is a semi-unit, so that svn(πlul) + n >

ws(πlul) ≥ ws(x); for l /∈ [i, j], ws(πlul) > ws(x) by the choice of i and j.
Putting the inequalities together, we again conclude svn(x) + n > ws(x).

Therefore the endpoints of the segment of the Newton polygon of x of
slope −s are (v0(ui), vp(πi)) and (v0(uj), vp(πj)). Thus the multiplicity of s as
a slope of x is vp(πj)− vp(πi) = s(v0(ui)− v0(uj)), which is indeed s times the
length of Ls(x), as claimed.

Corollary 3.22. Let x and y be nonzero elements of Γan,r. Then the
multiplicity of a slope s of xy is the sum of its multiplicities as a slope of x

and of y.

Proof. This follows immediately from the previous lemma and the multi-
plicity of the leading terms map Ls.

Corollary 3.23. The units of Γan,con are precisely those x �= 0 with
vn(x)
= ∞ for some n.

Proof. A unit of Γan,con must also be a unit in Γan,r for some r, and a
unit of Γan,r must have all slopes of multiplicity zero. (Remember, in Γan,r,
any slopes greater than r are disregarded.) If vn(x) < ∞ for all n, then x has
infinitely many different slopes, so it still has slopes of nonzero multiplicity in
Γan,r for any r, and so can never become a unit.

We again caution that the condition vn(x) = ∞ does not imply that
x ∈ Γcon[1p ], if K is not finite over k((t)).

It will be convenient to put elements of x into a standard (multiplicative)
form, and so we make a statement to this effect as a lemma.
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Lemma 3.24. For any x ∈ Γan,r nonzero, there exists a unit u ∈ Γan,r

such that ux admits a semi -unit decomposition
∑

i uiπ
i with u0 = 1 and ui = 0

for i > 0. Moreover, for such u,

(a) v0(ux) = 0;

(b) wr(ux) = 0;

(c) rvn(ux) + n > 0 for n > 0;

(d) the Newton polygon of ux begins at (0, 0).

Proof. By Proposition 3.13, we can find a semi-unit decomposition
∑

i u′
iπ

i

of x; then u′
i = 0 for i sufficiently large. Choose the largest j such that u′

j �= 0,
and put u = π−j(u′

j)
−1. Then ux admits the semi-unit decomposition

∑
i uiπ

i

with ui = u′
i+j/u′

j , so that u0 = 1 and ui = 0 for i > 0.
To verify (a), note that rv0(ux) ≥ mini{rv0(uiπ

i)} ≥ 0, and the minimum
is only achieved for i = 0: for i < 0, rv0(uiπ

i) > wr(uiπ
i) ≥ 0 since

∑
i uiπ

i is
a semi-unit decomposition of ux. Thus rv0(ux) = 0, whence (a).

To verify (b), note that wr(ux) ≥ mini{wr(uiπ
i)} = 0, whereas wr(ux) ≤

rv0(ux) = 0 from (a).
To verify (c), note that for n > 0 and m = vp(πi), rvn(uiπ

i) + n >

rvm(uiπ
i) + m ≥ wr(uiπ

i) ≥ 0, so that rvn(ux) + n ≥ mini≤0{rvn(uiπ
i) + n}

> 0.
To verify (d), first note that the line through (0, 0) of slope −r is a lower

supporting line of the set of points (vn(ux), n), since rvn(ux)+n ≥ wr(ux) ≥ 0
for n ≤ 0. Thus (0, 0) lies on the Newton polygon, and the slope of the segment
of the Newton polygon just to the right of (0, 0) is at least −r. We also have
rvn(ux) + n > 0 for n > 0, so the slope of the segment of the Newton polygon
just to the left of (0, 0), if there is one, must be less than −r. Thus the first
segment of slope at least −r does indeed begin at (0, 0), as desired.

The next lemma may be viewed as a version of the Weierstrass preparation
theorem.

Lemma 3.25. Let x be a nonzero element of Γan,r whose largest slope is
s1 with multiplicity m > 0. Then there exists y ∈ Γan,r, pure of slope s1 with
multiplicity m, which divides x.

Proof. If x is pure of slope s1, there is nothing to prove. So assume that
x is not pure, and let s2 be the second largest slope of x.

By Lemma 3.24, there exists a unit u ∈ Γan,r such that ux admits a semi-
unit decomposition

∑
i uiπ

i with u0 = 1 and ui = 0 for i > 0, the slopes of x

and ux occur with the same multiplicities, and the first segment of the Newton
polygon of ux has left endpoint (0, 0). Since that segment has slope −s1 and
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multiplicity m, its right endpoint is (m/s1,−m). Put M = −m/vp(π); then
ws1(uMπM ) = 0 and ws1(uiπ

i) > 0 for i < M .
We first construct a sort of “Mittag-Leffler” decomposition of ux. Put

X = uxπ−Mu−1
M , and set y0 = z0 = 1. Given yl and zl for some l, let

∑
i wiπ

i

be a semi-unit decomposition of X − ylzl. Put

yl+1 = yl +
∑

v0(wi)<0

wiπ
i,

zl+1 = zl +
∑

v0(wi)≥0

wiπ
i.

Given s with s2 < s < s1, put cs = ws(X − 1), so that cs > 0. We show that
for each l, ws(yl −1) ≥ cs, ws(zl −1) ≥ cs, and ws(X −ylzl) ≥ (l+1)cs. These
inequalities are clear for l = 0. If they hold for l, then

ws(yl+1 − 1) ≥ min{ws(yl − 1), ws(yl+1 − yl)}
≥ min{cs, (l + 1)cs} = cs,

and similarly ws(zl+1 − 1) ≥ cs. As for the third inequality, note that

X − yl+1zl+1 = X − ylzl + yl(zl − zl+1) + zl+1(yl − yl+1)

= (yl − 1)(zl − zl+1) + (zl+1 − 1)(yl − yl+1)

since X − ylzl = (yl+1 − yl) + (zl+1 − zl). Since ws(yl − yl+1) ≥ (l + 1)cs and
ws(zl − zl+1) ≥ (l + 1)cs, we conclude that

ws(X − yl+1zl+1) ≥ min{ws((yl − 1)(zl − zl+1)), ws((zl+1 − 1)(yl − yl+1))}
≥ min{cs + (l + 1)cs, cs + (l + 1)cs}
= (l + 2)cs,

as desired. This completes the induction.
We do not yet know that either {yl} or {zl} converges in Γan,r; to get to

that point, we need to play the two sequences off of each other. Suppose s3

satisfies s2 < s3 < s1. Note that to get from yl to yl+1, we add terms of the form
wiπ

i, with wi a semi-unit, for which v0(wi) < 0 but sv0(wi)+vp(πi) ≥ (l+1)cs

for s2 < s < s1. This implies that

sv0(wi) + vp(πi) ≥ (l + 1)cs3

for all s ≤ s3. In particular, ws(yl+1 − yl) → ∞ as l → ∞, so that {yl}
converges to a limit y in Γan,s for any s ≤ s3. Moreover, for s ≤ s3,

ws(yl+1 − 1) ≥ min{ws(yl − 1), ws(yl+1 − yl)}
≥ min{ws(yl − 1), (l + 1)cs3}

and so by induction on l, ws(yl−1) ≥ cs3 . Hence y and each of the yl are units
in Γan,s3 , for any s3 < s1.
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On the flip side, to get from zl to zl+1, we add terms of the form wiπ
i,

with i a semi-unit, for which v0(wi) > 0 but sv0(wi) + vp(πi) ≥ (l + 1)cs for
s2 < s < s1. This implies that sv0(wi) + vp(πi) ≥ (l + 1)cs3 for all s ≥ s3. As
in the previous paragraph, we deduce ws(zl+1 − zl) → ∞ and ws(zl − 1) > 0
for s2 < s ≤ r.

Put z = Xy−1 in Γan,s3 . Since ws3(yl) = 0 for all l,

ws3(zl − z) = ws3(yylzl − yylz)

= ws3(y(ylzl − X) + (y − yl)X)

≥ min{ws3(y(ylzl − X)), ws3((y − yl)X)}

and both terms in braces tend to infinity with l. Thus zl → z under | · |s3 .
For s3 ≤ s ≤ r, since svn(zl − z) + n ≥ (l + 1)cs3 and svn(zl) + n → ∞ as

n → ±∞, for any given l we have svn(z) + n ≥ (l + 1)cs3 for all but finitely
many n. Since this holds for any l, we have svn(z) + n → ∞ as n → ±∞. As
we already have z ∈ Γan,s3 , this is enough to imply z ∈ Γan,r. Meanwhile, put

al = X(1 + (1 − z) + · · · + (1 − z)l) = y(1 − (1 − z)l+1),

so that ws(al − y) = (l + 1)ws(1− z) for s2 < s < s1. In particular, for each n,
vn(am − y) → ∞ as m → ∞, and so the inequalities

vn(al − y) ≥ min{vn(al − al+1), . . . , vn(am−1 − am), vn(am − y)}

for each m yield, in the limit as m → ∞, the inequality

vn(al − y) ≥ min{vn(al − al+1), vn(al+1 − al+2), . . . }.

Now ws(al+1−al) = ws(X(1−z)l+1) = ws(X)+(l+1)ws(1−z) for s2 < s ≤ r,
and so svn(al+1 − al) + n ≥ ws(X) + (l + 1)ws(1 − z). We conclude that

svn(al − y) + n ≥ ws(X) + (l + 1)ws(1 − z),

so that svn(y) + n ≥ ws(X) + (l + 1)ws(1 − z) for all but finitely many n.
Therefore svn(y)+n → ∞ as n → ±∞ for s2 < s ≤ r. Again, since we already
have y ∈ Γan,s3 , we deduce that y ∈ Γan,r.

Since y is a unit in Γan,s for any s < s1, it has no slopes less than s1. Since
ws(1− z) > 0 for s2 < s ≤ r, z has no slopes greater than s2. Since the slopes
of y and z together must comprise the slopes of x, y must have s1 as a slope
with multiplicity m and no other slopes, as desired.

A slope factorization of a nonzero element x of Γan,r is a Fréchet-convergent
product x =

∏N
j=1 xj for N a positive integer or ∞, where each xj is pure and

the slopes sj of xj satisfy s1 > s2 > · · · .

Lemma 3.26. Every nonzero element of Γan,r has a slope factorization.
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Proof. Let x be a nonzero element of Γan,r with slopes s1, s2, . . . . By
Lemma 3.25, we can find y1 pure of slope s1 dividing x such that x/y1 has
largest slope s2. Likewise, we can find y2 pure of slope s2 such that y2 divides
x/y1, y3 pure of slope s3 such that y3 divides x/(y1y2), and so on.

If there are N < ∞ slopes, then x and y1 · · · yN have the same slopes, so
that x/(y1 · · · yN ) must be a unit u, and x = (uy1)y2 · · · yN is a slope factoriza-
tion. Suppose instead there are infinitely many slopes; then si → 0 as i → ∞.
By Lemma 3.24, for each i we can find a unit ai such that aiyi admits a semi-
unit decomposition

∑
j uijπ

j with ui0 = 1 and uij = 0 for j > 0. For j < 0,
svn(uijπ

j) + n is minimized for n = vp(πj) < 0 because uij is a semi-unit; for
i sufficiently large, s ≥ si, so that

svvp(πj)(uijπ
j) + vp(πj) =

s

si
(sivvp(πj)(uijπ

j) + vp(πj)) +
(

s

si
− 1

)
(−vp(πj))

≥
(

s

si
− 1

)
vp(π),

which tends to infinity as i → ∞. Hence ws(aiyi − 1) → ∞ as i → ∞; if we
put zj =

∏j
i=1 aiyi, then {zj} converges to a limit z, and {x/zj} converges to

a limit u, such that uz = x. The slopes of z coincide with the slopes of x; so
u must be a unit, and (ua1y1)

∏
i>1(aiyi) is a slope factorization of x.

Lemma 3.27. Let x be an element of Γan,r which is pure of slope s and
multiplicity m. Then for every y ∈ Γan,r, there exists z ∈ Γan,r such that :

(a) y − z is divisible by x;

(b) ws(z) ≥ ws(y);

(c) vn(z) = ∞ for n < 0.

Proof. Put M = m/vp(π). By Lemma 3.24, there exists a unit u ∈ Γan,r

such that xu admits a semi-unit decomposition
∑0

i=−M xiπ
i with x0 = 1 and

sv0(x−M ) = m. Note that

wr(x−Mπ−M ) = rv−m(x−Mπ−M ) − m = m
(r

s
− 1

)
.

Let
∑

i yiπ
i be a semi-unit decomposition of y.

We define the sequence {cl}∞l=0 of elements of Γan,r such that vn(cl) = ∞
for n < 0, wr(cl) ≥ −l(vp(π) + m(r/s − 1)), ws(cl) ≥ −lvp(π), and

cl ≡ π−l (mod x).

Put c0 = 1 to start. Given cl, let
∑

i uiπ
i be a semi-unit decomposition of cl;

since vn(cl) = ∞ for n < 0, we have ui = 0 for i < 0. Now set

cl+1 = π−1(cl − uxx−1
−MπMu0).
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The congruence cl+1 ≡ π−1cl ≡ π−l−1 (mod x) is clear from the definition.
Since uxx−1

−MπM ≡ 1 (mod π), the term in parentheses has positive valuation,
and so vn(cl+1) = ∞ for n < 0. Since ws(ux) = ws(x−Mπ−M ) = 0 and
ws(u0) ≥ ws(cl), we have ws(cl+1) ≥ ws(π−1cl) ≥ −(l + 1)vp(π). Finally,
wr(u0) ≥ wr(cl), wr(ux) = 0 and wr(x−Mπ−M ) = m(r/s − 1), so that

wr(cl+1) ≥ wr(π−1) + min{wr(cl), wr(uxx−1
−MπMu0)}

≥ −vp(π) + wr(cl) − m(r/s − 1)

≥ −(l + 1)(m(r/s − 1) + vp(π)).

We wish to show that
∑−1

i=−∞ yic−i converges, so that its limit is congruent
to

∑−1
i=−∞ yiπ

i modulo x. To this end, choose t > 0 large enough that

trvp(π) > m(r/s − 1) + vp(π).

Then (1/t)vn(y) + n → ∞ as n → −∞, and so in particular there exists c > 0
such that (1/t)vn(y) ≥ −n − c for n < 0. For n = vp(πi) where i < 0 and
yi �= 0, we have vn(y) = v0(yi), and thus v0(yi) ≥ −tivp(π) − tc. Then

wr(yic−i) = wr(yi) + wr(c−i)

= rv0(yi) + wr(c−i)

≥ −trivp(π) − trc + i(m(r/s − 1) + vp(π))

which tends to infinity as i → −∞. Thus
∑−1

i=−∞ yic−i converges under | · |r;
since vn(yic−i) = ∞ for n < 0, the sum also converges under | · |s for 0 < s < r.
Now, the sum has a limit z′ ∈ Γan,r; put z = z′ +

∑∞
i=0 yiπ

i. Then y − z =∑−1
i=−∞ yi(πi−c−i); since each term in the sum is divisible by x, so is the sum.

This verifies (a). To verify (b), note that ws(yic−i) ≥ ws(yiπ
i) for i < 0; so

ws(z′) ≥ ws(y), and clearly ws(z − z′) ≥ ws(y), so that ws(z) ≥ ws(y). To
verify (c), simply note that each term in the sum defining z satisfies the same
condition.

3.6. The Bézout property for analytic rings. Again, we assume that the
valued field K satisfies the conditions of Proposition 3.11, so that Γan,con =
ΓK

an,con is defined. With the factorization results of the previous section in hand,
we now focus on establishing the Bézout property for Γan,con (Theorem 3.20).
We proceed by establishing principality of successively more general classes of
finitely generated ideals, culminating in the desired result.

Lemma 3.28. Let x and y be elements of Γan,r, each with finitely many
slopes, and having no slopes in common. Then the ideal (x, y) is the unit ideal.

Proof. We induct on the sum of the multiplicities of the slopes of x and
y; the case where either x or y has total multiplicity zero is vacuous, as then
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x or y is a unit and so (x, y) is the unit ideal. So we assume that both x and
y have positive total multiplicity.

If x is not pure, then by Lemma 3.26 it factors as x1x2, where x1 is
pure and x2 is not a unit. By the induction hypothesis, the ideals (x1, y) and
(x2, y) are the unit ideal; in other words, x1 and x2 have multiplicative inverses
modulo y. In that case, so does x = x1x2, and so (x, y) is the unit ideal. The
same argument applies in case y is not pure.

It thus remains to treat the case where x and y are both pure. Let s and t

be the slopes of x and y, and let m and n be the corresponding multiplicities.
Put M = m/vp(π) and N = n/vp(π). Without loss of generality, we may
assume s < t. By Lemma 3.24, we can find units u and v such that ux and vy

admit semi-unit decompositions ux =
∑0

i=−M xiπ
i and vy =

∑0
i=−N yiπ

i.
Put

X = uxπMx−1
−M , Y = vyπNy−1

−N , z = X − Y.

We can read off information about the Newton polygon of z by comparing
wr(X) with wr(Y ); see Figure 2 for an illustration. (In both diagrams, the
dashed lines have slope −r.) If wr(X) < wr(Y ) (left side of Figure 2), then
the highest vertex of the lower convex hull of the set of points (vl(z), l) occurs
at (vm(X), m) and the lowest vertex has positive y-coordinate. Moreover, the
slope of the first segment of the lower convex hull is at least −s. Thus the sum
of all multiplicities of z is strictly less than m, and y and z have no common
slopes, so the induction hypothesis implies that (x, y) = (y, z) is the unit ideal.

n

vn vn

n

Figure 2: The Newton polygons of X = uxπMx−1
−M and Y = vyπNy−1

−N

If wr(X) ≥ wr(Y ) (right side of Figure 2), then the highest vertex of the
lower convex hull of the set of points (vl(z), l) occurs at (vn(Y ), n) and the
lowest vertex has positive y-coordinate. Moreover, (vm(X), m) is also a vertex
of the lower convex hull, and the line joining it to (vn(Y ), n) is a support line of
the lower convex hull. Thus the segment joining the two points is a segment of
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the lower convex hull, of slope less than −t; the remainder of the lower convex
hull consists of segments of slope at least −s, of total multiplicity less than
m. By Lemma 3.26, z factors as z1z2, where z1 is pure of some slope greater
than t, and z2 has all slopes less than or equal to s and total multiplicity less
than m. By the induction hypothesis, (x, z1) and (y, z2) both equal the unit
ideal. But (y, z1) = (x, z1) since z1 divides z = uxπMx−1

−M − vyπNy−1
−N ; thus

(y, z1z2) = (y, z) = (x, y) is also equal to the unit ideal.
We conclude that the induction goes through for all x and y. This com-

pletes the proof.

Lemma 3.29. Let x and y be elements of Γan,r with x, y pure of the same
slope s. Then (x, y) is either the unit ideal or is generated by a pure element
of slope s.

Proof. (Thanks to Olivier Brinon for reporting an error in a previous
version of this proof.) Assume without loss of generality that vp(x) = vp(y) =
0. We induct on the multiplicity m of s as a slope of x; put M = m/vp(π).

Pick r′ with r < r′ < r0, so that the conclusion of Proposition 3.11 applies
to r′ as well as to r. Since Γr′ [1p ] is dense in Γan,r, we can find an element
z ∈ Γr′ with wr(z−x) > wr(x)+(1−s/r)m. Choose a semiunit decomposition∑

i≥0 x′
iπ

i of z in Γr′ , and put x′ =
∑M

i=0 x′
iπ

i; then x′ is pure of slope s and
multiplicity m, and

∑M
i=0 x′

iπ
i is a semiunit decomposition of x′ in Γr′ . Put

c = wr(x′ − x) − wr(x) > 0.
Put y0 = y. Given yl such that yl ≡ y (mod x), if yl = 0, set yl+1 = yl;

otherwise, choose y′l ∈ Γr′ with wr(y′l − yl) ≥ wr(yl) + c. Put y′l,0 = y′l. Given
y′l,n ∈ Γr′ with y′l,n ≡ y′l (mod x′), if y′l,n = 0 or y′l,n has total multiplicity
less than m, set y′l,n+1 = y′l,n. Otherwise, choose a semiunit decomposition∑

j u′
jπ

j of y′l,n in Γr′ , and put

y′l,n+1 = y′l,n −
∑
j≥M

u′
jπ

j−M (x′
M )−1x′

=
∑
j<M

u′
jπ

j +
∑
j≥M

u′
jπ

j(1 − (x′
M )−1π−Mx′),

so that wr′(y′l,n+1 −
∑

j<M u′
jπ

j) ≥ (1 − s/r′)vp(π) + wr′(y′l,n). In particular,
if wr′(u′

jπ
j) < wr′(y′l,n) + (1 − s/r′)vp(π) for some j < M , then the Newton

polygon of y′l,n+1 has a vertex at height jvp(π) that blocks the presence of
a vertex at any height ≥ m. In particular, by Lemma 3.21, y′l,n+1 has total
multiplicity less than m.

Consequently, either the sequence {y′l,n}∞n=0 stabilizes, or wr′(y′l,n) → ∞
as n → ∞. Since wr(z) ≥ (r/r′)wr′(z) for any z ∈ Γr′ , we can choose n such
that one of the following is true:
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(a) wr(y′l,n) < wr(yl) + c and y′l,n = y′l,n+1;

(b) wr(y′l,n) ≥ wr(yl) + c.

In either case, put yl+1 = yl+x(y′l,n−y′l)/x′. In case (a), the total multiplicity of
yl+1 is less than m (by Lemma 3.21 as above). We may then apply Lemma 3.26
to factor yl+1 = z1z2, where z1 has no slopes equal to s and z2 is either a unit
or pure of slope s. By Lemma 3.28, x is coprime to z1, so (x, y) = (x, yl+1) =
(x, z2). Since z2 has multiplicity less than m, we may apply the induction
hypothesis to prove the lemma in this case.

In case (b), repeat the construction; if we never land in case (a), then
wr(yl) → ∞ as l → ∞. Since vp(yl) ≥ 0 for each l, the sequence {yl} converges
to zero in Γan,r. We may thus take z =

∑∞
l=0(yl − yl+1)/x to produce an

element z ∈ Γan,r with xz = y. Thus the ideal (x, y) is generated by x, proving
the desired result.

Corollary 3.30. For x, y ∈ Γan,r with x pure of slope s, the ideal (x, y)
is principal.

Proof. By Lemma 3.27, there exists z ∈ Γan,r such that y − z is divisible
by x and vn(z) = ∞ for n < 0. Thus z has only finitely many slopes. By
Lemma 3.26, we can factor z as z1z2, where z1 is pure of slope s and z2 has no
slopes equal to s. Then (x, z2) is the unit ideal, so that (x, y) = (x, z) = (x, z1),
which is principal by Lemma 3.29.

Lemma 3.31 (Principal parts theorem). Let sn be a decreasing sequence
of positive rationals with limit 0, and suppose xn ∈ Γan,r is pure of slope sn

for all n. Then for any sequence yn of elements of Γan,r, there exists y ∈ Γan,r

such that y ≡ yn (mod xn) for all n.

Proof. As in the proof of Lemma 3.26, we can replace each xn with
itself times a unit, in such a way that

∏
n xn converges. Put x =

∏
n xn

and un = x/xn. By Lemma 3.29, xn is coprime to each of x1, . . . , xn−1. By
Corollary 3.30, the ideal (xn,

∏
i>n xi) is principal, but if it were not the unit

ideal, any generator would both be pure of slope sn and have all slopes less
than sn. Thus xn is coprime to

∏
i>n xi, hence also to un.

We construct a sequence {zn}∞n=1 such that unzn ≡ yn (mod xn) and∑
unzn converges for the Fréchet topology; then we may set y =

∑
unzn and

be done. For the moment, fix n and choose vn with unvn ≡ yn (mod xn).
For s > sn, we have |1−xn|s < 1, and so the sequence cm = −1−(1−xn)−

· · ·− (1−xn)m is Cauchy for the norm | · |s, and |1+ cmxn|s = |1−xn|m+1
s → 0

under |·|s. In particular, for any ε > 0, there exists m such that |1+cmxn|s < ε

for sn−1 ≤ s ≤ r.
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Now choose εn > 0 such that εn|unvn|s < 1/n for sn−1 ≤ s ≤ r (with n

still fixed), choose m as above for ε = εn, and put zn = vn(1 + cmxn). Then
unzn ≡ unvn ≡ yn (mod xn). Moreover, for any s > 0, we have s ≥ sn−1 for
sufficiently large n since the sn tend to zero. Thus for n sufficiently large,

|unzn|s = |unvn(1 + cmxn)|s
< εn|unvn|s < 1/n.

Hence
∑

n unzn converges with respect to | · |s for 0 < s ≤ r, and its limit y

has the desired property.

At long last, we are ready to prove the generalization of Lazard’s result,
that Γan,r is a Bézout ring.

Proof of Theorem 3.20. By induction on the number of generators of the
ideal, it suffices to prove that if x, y ∈ Γan,r are nonzero, then the ideal (x, y)
is principal.

Pick a slope factorization
∏

j yj of y. By Corollary 3.30, we can choose a
generator dj of (x, yj) for each j, such that dj is either 1 or is pure of the same
slope as yj . As in the proof of Lemma 3.26, we can choose the dj so that

∏
j dj

converges. Since the dj are pairwise coprime by Lemma 3.28, x is divisible by
the product of any finite subset of the dj , and hence by

∏
j dj .

Choose aj and bj such that ajx+bjyj = dj , and apply Lemma 3.31 to find
z such that z ≡ aj

∏
k 
=j dk (mod yj) for each j. Then zx −

∏
j dj is divisible

by each yj , so it is divisible by y, and so
∏

j dj generates the ideal (x, y). Thus
(x, y) is principal and the proof is complete.

Corollary 3.32. For K a finite extension of k((t)), the ring ΓK
r [1p ] is a

Bézout ring.

Proof. For x, y ∈ ΓK
r [1p ], Theorem 3.20 implies that the ideal (x, y) be-

comes principal in ΓK
an,r. Let d be a generator; then d must have finite total

multiplicity, and so belongs to ΓK
r [1p ].

Put x′ = x/d and y′ = y/d, so that (x′, y′) becomes the unit ideal in ΓK
an,r.

By Lemma 3.26, x′ factors in ΓK
an,r as a1 . . . al, where each ai is pure. Since

each of those factors has finite total multiplicity, each lies in ΓK
r [1p ].

Since (x′, y′) is the unit ideal in ΓK
an,r, so is (ai, y

′) for each i. That is, there
exist bi and ci in ΓK

an,r such that aibi + ciy
′ = 1. Since ai is pure, Lemma 3.27

implies that ci ≡ di (mod ai) for some di with finite total multiplicity, which
thus belongs to ΓK

r [1p ]. Now diy
′ ≡ 1 (mod ai), and ei = (diy

′−1)/ai has finite
total multiplicity, so itself lies in ΓK

r [1p ]. We now have the relation aiei+diy
′ = 1

within ΓK
r [1p ], so that (ai, y

′) is the unit ideal in ΓK
r [1p ]. Since this is true for

each i, (x′, y′) is also the unit ideal and so (x, y) = (d).
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We conclude that any ideal generated by two elements is principal. By
induction, this implies that ΓK

r [1p ] has the Bézout property.

One presumably has the same result if K is perfect, but it does not follow
formally from Theorem 3.20, since ΓK

r is not Fréchet complete in ΓK
an,r. That

is, an element of ΓK
an,r of finite total multiplicity need not lie in ΓK

r . So one
must repeat the arguments used to prove Theorem 3.20 working within ΓK

r [1p ];
as we have no use for the result, we leave this to the reader.

4. The special Newton polygon

In this chapter, we construct a Newton polygon for σ-modules over Γan,con,
the “special Newton polygon”. (A quite similar construction has been given
by Hartl and Pink [HP].) More precisely, we give a slope filtration over Γalg

an,con

that, in case the σ-module is quasi-unipotent, is precisely the filtration that
makes it quasi-unipotent. The special Newton polygon is a numerical invariant
of this filtration.

Throughout this chapter, we assume K is a valued field satisfying the
condition of Proposition 3.11. The choice of K will only be relevant once or
twice, as most of the time we will be working with Γalg

an,con = Γk((t))alg

an,con . When
this is the case, we will also assume k is algebraically closed and that πσ = π.

We will use without further comment the facts that every element of
Γalg

an,con has a strong semi-unit decomposition (Proposition 3.14) and that Γan,con

and Γalg
an,con are Bézout rings (Theorem 3.20). In particular, any σ-module over

Γan,con or Γalg
an,con is free by Proposition 2.5, and so admits a basis.

4.1. Properties of eigenvectors. Recall that we call a nonzero element v
of a σ-module M an eigenvector if there exists λ ∈ O[1p ] such that Fv = λv.
Also recall that if v an eigenvector, the slope of v is defined to be vp(λ).
(Beware: this differs from the notion of slope used in Section 3.5.) Our method
of constructing the special Newton polygon of a σ-module over Γalg

an,con is to
exhibit a basis of eigenvectors after enlarging O suitably. Before proceeding,
it behooves us to catalog some basic properties of eigenvectors of σ-modules
over Γalg

an,con. Some of these assertions will also hold more generally over Γan,con

(i.e., for arbitrary K), so we distinguish between Γan,con and Γalg
an,con in the

statements below.
For M a σ-module over Γan,con, we say v ∈ M is primitive if v extends

to a basis of M . By Lemma 2.3, if e1, . . . , en is a basis of M and v =
∑

ciei,
then v is primitive if and only if the ci generate the unit ideal.

Lemma 4.1. Let M be a σ-module over Γalg
an,con. Then every eigenvector

of M is a multiple of a primitive eigenvector.
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Proof. Suppose Fv = λv. Choose a basis e1, . . . , en, put v =
∑

i ciei,
and let I be the ideal generated by the ci. Then I is invariant under σ and
σ−1. By Theorem 3.20, I is principal; if r is a generator of I, then rσ is also
a generator. Put rσ = cr, with c a unit, and write c = µd, with µ ∈ O[1p ],
v0(d) < ∞ and vn(d) = ∞ for n < 0. By Proposition 3.18, there exists a unit
s ∈ Γalg

an,con such that sσ = ds; then (r/s)σ = µ(r/s). Therefore
∑

i s(ci/r)ei is
a primitive eigenvector of M of which v is a multiple, as desired.

A sort of converse to the previous statement is the following.

Proposition 4.2. For M a σ-module over Γalg
an,con, if M contains an

eigenvector of eigenvalue λ ∈ O[1p ], then it contains an eigenvector of eigen-
value λµ for any µ ∈ O.

Proof. Let v ∈ M be an eigenvector with Fv = λv. If µ is a unit,
there exists a unit c ∈ O such that cσ = µc. If µ is not a unit, then by
Proposition 3.19(b) there exists a nonzero c ∈ Γalg

an,con such that cσ = µc. In
either case, we have F (cv) = cσλv = λµ(cv).

Proposition 4.3. Let 0 → M1 → M → M2 → 0 be an exact sequence
of σ-modules over Γalg

an,con. Assume M1 and M2 have bases v1, . . . ,vm and
w1, . . . ,wn of eigenvectors such that the slope of vi is less than or equal to the
slope of wj for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Then the exact sequence splits over
Γalg

an,con.

Proof. Choose a basis v1, . . . ,vm,x1, . . . ,xn of M such that xj projects
onto wj in M2 for j = 1, . . . , n. Suppose Fvi = λivi for some λi ∈ O[1p ].

Then Fxj = µjxj +
∑m

i=1 Aijvi for some µj ∈ O[1p ] and Aij ∈ Γalg
an,con. If

yj = xj +
∑m

i=1 cijvi, then

Fyj = µjyj +
m∑

i=1

(λic
σ
ij − µjcij + Aij)vi.

By Proposition 3.19(a) and (b), we can choose cij ∈ Γalg
an,con for each i, j so that

λic
σ
ij − µjcij + Aij = 0. For this choice, v1, . . . ,vm,y1, . . . ,yn form a basis of

eigenvectors, so that the exact sequence splits as desired.

Proposition 4.4. Let M be a σ-module over Γan,con with a basis
w1, . . . ,wn such that Fwi = µiwi +

∑
j<i Aijwj for some µi ∈ O[1p ] and

Aij ∈ Γan,con. Then any eigenvector of M has slope at least mini{vp(µi)}.
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Proof. Let v be any eigenvector of M , with Fv = λv. Write v =
∑

i biwi

for some bi ∈ Γan,con. Suppose that vp(λ) < vp(µi) for all i. Then∑
i

λbiwi = Fv =
∑

i

bσ
i µiwi +

∑
i

bσ
i

∑
j<i

Aijwj .

Comparing the coefficients of wn yields λbn = µnbσ
n, which implies bn = 0

by Proposition 3.19(c). Then comparison of the coefficients of wn−1 yields
λbn−1 = µn−1b

σ
n−1, so that bn−1 = 0. Continuing in this fashion, we deduce

b1 = · · · = bn = 0, a contradiction. Thus vp(λ) ≥ vp(µi) for some i, as desired.

Recall that a sequence (a1, . . . , an) of real numbers is said to majorize
another sequence (b1, . . . , bn) if a1 + · · · + an = b1 + · · · + bn and for i =
1, . . . , n − 1, the sum of the i smallest of a1, . . . , an is less than or equal to
the sum of the i smallest of b1, . . . , bn. Note that two sequences majorize each
other if and only if they are equal up to permutation.

Proposition 4.5. Let M be a σ-module over Γan,con with a basis
v1, . . . ,vn of eigenvectors, with Fvi = λivi for λi ∈ O[1p ]. Let w1, . . . ,wn

be a basis of M such that Fwi = µiwi +
∑

j<i Aijwj for some µi ∈ O[1p ] and
Aij ∈ Γan,con. Then the sequence vp(µ1), . . . , vp(µn) majorizes the sequence
vp(λ1), . . . , vp(λn).

Proof. Assume without loss of generality that vp(λ1) ≥ · · · ≥ vp(λn).
Note that vp(µ1) + · · ·+ vp(µn) = vp(λ1) + · · ·+ vp(λn) since both are equal to
the slopes of primitive eigenvectors of ∧nM . Note also that ∧iM satisfies the
conditions of Proposition 4.4 for all i, using the exterior products of the wj

as the basis and the corresponding products of the µj as the diagonal matrix
entries. (More precisely, view the exterior products as being partially ordered
by the sum of indices; any total ordering of the products refining this partial
order satisfies the conditions of the proposition.) Since vn−i+1 ∧ · · · ∧ vn is an
eigenvector of ∧iM of slope vp(λn−i+1) + · · · + vp(λn), by Proposition 4.4 this
slope is greater than or equal to the smallest valuation of an i-term product
of the µj , i.e., the sum of the i smallest of vp(µ1), . . . , vp(µn). This is precisely
the desired majorization.

Corollary 4.6. Let M be a σ-module over Γan,con. If v1, . . . ,vn and
w1, . . . ,wn are bases of M such that Fvi = λivi and Fwi = µiwi for some
λi, µi ∈ O[1p ], then the sequences vp(λ1), . . . , vp(λn) and vp(µ1), . . . , vp(µn) are
permutations of each other.

Finally, we observe that the existence of an eigenvector of a specified slope
does not depend on what ring of scalars O is used, so long as the value group
of O contains the desired slope.
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Proposition 4.7. Let M be a σ-module over Γalg
an,con. Suppose λ ∈ O[1p ]

occurs as the eigenvalue of an eigenvector of M⊗OO′ for some finite extension
O′ of O. Then λ occurs as the eigenvalue of an eigenvector of M .

Proof. Since k here is algebraically closed, we can choose a basis µ1, . . . , µm

of O′ over O consisting of elements fixed by σ. (Namely, let π′ be a uniformizer
of O′ fixed by σ, and take µi = (π′)i−1.) Given an eigenvector v over O′[1p ]
with Fv = λv, we can write v = µ1w1 + · · · + µmwm for a unique choice of
w1, . . . ,wm ∈ M . Now

0 = Fv − λv = µ1(Fw1 − λw1) + · · · + µm(Fwm − wm).

Since the representation 0 = µ1(0) + · · · + µm(0) is unique, we must have
Fwi = λwi for i = 1, . . . , m. Since v is nonzero, at least one of the wi must
be nonzero, and it provides the desired eigenvector within M .

4.2. Existence of eigenvectors. In this section, we prove that every
σ-module over Γalg

an,con has an eigenvector.

Proposition 4.8. For every σ-module M over Γalg
an,con, there exist λ ∈ O0

and v ∈ M , both nonzero, such that Fv = λv.

Note that once this assertion is established for a single λ, it holds for all
λ ∈ O of sufficiently high valuation by Proposition 3.19(b).

Proof. Let v denote the valuation on k((t))alg normalized so that v(t) = 1.
Let e1, . . . , en be a basis for M , and suppose Fei =

∑
j Aijej . Choose r > 0

so that the entries of Aij all lie in Γalg
an,r, and let c be an integer less than

min{wr(A), wr((A−1)σ−1
)}. For 0 < s ≤ r, we define the valuations ws on M

in terms of the basis e1, . . . , en. That is, ws(
∑

i ciei) = mini{ws(ci)}.
Notice that for λ ∈ O0 and u a strong semi-unit,

v0(u) ≥ −c + vp(λ)
(q − 1)r

⇐⇒ v0(u)r ≤ −vp(λ) + v0(u)qr + c

=⇒ wr(uei) < wr(λ−1F (uei)),

v0(u) ≤ qc + qvp(λ)
(q − 1)r

⇐⇒ v0(u)r ≤ vp(λ) + v0(u)r/q + c

=⇒ wr(uei) < wr(λF−1(uei)).

Choose λ ∈ O0 of large enough valuation so that −c + vp(λ) < qc + qvp(λ),
and let d be a rational number such that d(q− 1)r ∈ (−c + vp(λ), qc + qvp(λ)).

Define functions a, b, f : M → M as follows. Given w ∈ M , write w =∑n
i=1 ziei, let zi =

∑
m πmui,m be a strong semi-unit decomposition for each i,
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let xi be the sum of πmui,m over all m such that v0(ui,m) < d, and put yi =
zi − xi. Put a(w) =

∑n
i=1 xiei, b(w) =

∑n
i=1 yiei, and

f(w) = λ−1b(w) − F−1a(w).

(Note: the definitions of a, b, f depend on the choices of semi-unit decompo-
sitions above, but this does not cause any trouble.) From the inequalities
tabulated above, we have

wr(λF−1a(w)) ≥ wr(a(w)) + ε, wr(λ−1Fb(w)) ≥ wr(b(w)) + ε

for ε = min{wr(A), wr((A−1)σ−1} − c > 0. Therefore

wr(f(w)) = wr(λ−1b(w) − F−1a(w))

≥ wr(λ−1w),

wr(F (f(w)) − λf(w) + w) = wr(Fλ−1b(w) − a(w) − b(w) + λF−1a(w) + w)

= wr(λ−1Fb(w) + λF−1a(w))

≥ wr(w) + ε

for all nonzero w ∈ M .
Now define sequences {vl}∞l=0 and {wl}∞l=0 as follows. First choose T ∈

k((t))alg of valuation d, and set

v0 = λ−1[T ]e1 + [T 1/q]F−1e1,

where the brackets again denote Teichmüller lifts. Then define vl and wl

recursively by the formulas

wl = Fvl − λvl, vl+1 = vl + f(wl).

For each l, vl is defined over Γalg
an,rq and wl is defined over Γalg

an,r. By the final
remark of the previous paragraph, we have

wr(vl+1 − vl) = wr(f(wl)) ≥ wr(λ−1wl)

and

wr(wl) = wr(Fvl − λvl)

= wr(Fvl−1 + Ff(wl−1) − λvl−1 − λf(wl−1))

= wr(Ff(wl−1) − λf(wl−1) + wl−1)

≥ wr(wl−1) + ε.

Thus wr(wl) is a strictly increasing function of l that tends to ∞, and wr(vl+1−
vl) also tends to ∞ with l.

We claim that in the Fréchet topology, wl converges to 0 and so vl con-
verges to a limit v, from which it follows that Fv − λv = liml→∞ wl = 0. We
first show that ws(λF−1a(wl)) → ∞ as l → ∞ for 0 < s ≤ qr.
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Let a(wl) =
∑

i,m πmal,i,mei be a strong semi-unit decomposition, in
which we must have v0(al,i,m) < d whenever al,i,m �= 0. Then

ws(λF−1a(wl)) ≥ ws(λ(A−1)σ−1
) + ws(a(wl)σ−1

)

= ws(λ(A−1)σ−1
) + ws/q(a(wl))

= ws(λ(A−1)σ−1
) + min

i,m
{mvp(π) + (s/q)v0(al,i,m)}

≥ ws(λ(A−1)σ−1
) + min

i,m
{mvp(π) + rv0(al,i,m)}

+ min
i,m

{(−r + s/q)v0(al,i,m)}

> ws(λ(A−1)σ−1
) + wr(a(wl)) − (r − s/q)d.

In particular, ws(λF−1a(wl)) → ∞ as l → ∞.
We next show that ws(λ−1Fb(wl)) → ∞ as l → ∞ for 0 < s ≤ r. Let

b(wl) =
∑

i,m πmbl,i,mei be a strong semi-unit decomposition, necessarily with
v0(bl,i,m) ≥ d whenever bl,i,m �= 0. Then

ws(λ−1Fb(wl)) ≥ ws(λ−1A) + ws(b(wl)σ)

= ws(λ−1A) + wsq(b(wl))

= ws(λ−1A) + min
i,m

{mvp(π) + sqv0(bl,i,m)}.

Choose e > 0 large enough so that s(q − 1)e + ws(λ−1A) > 0. If v0(bl,i,m) < e,
then

mvp(π) + sqv0(bl,i,m) = mvp(π) + rv0(bl,i,m) + (sq − r)v0(bl,i,m)

≥ wr(b(wl)) + h,

where h = (sq−r)d if sq−r ≥ 0 and h = (sq−r)e if sq−r < 0. If v0(bl,i,m) ≥ e,
then

mvp(π) + sqv0(bl,i,m) = mvp(π) + sv0(bl,i,m) + s(q − 1)v0(bl,i,m)

≥ ws(b(wl)) + s(q − 1)e.

Suppose lim inf l→∞ ws(b(wl)) < L for some L < ∞. For l sufficiently
large, we have ws(λF−1a(wl)) ≥ L and wr(b(wl)) ≥ L−h−ws(λ−1A); by the
previous paragraph, this implies

ws(b(wl+1)) ≥ ws(wl+1)

= ws(Fvl+1 − λvl+1)

= ws(Fvl + Ff(wl) − λvl − λf(wl))

= ws(wl + Ff(wl) − λf(wl))

a(wl) = ws(λ−1Fb(wl) + λF−1a(wl))

≥ min{ws(λ−1A) + ws(b(wl)) + s(q − 1)e, L}.
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We first deduce from this inequality that ws(b(wl)) is bounded below: pick
any l, choose C < L such that ws(b(wl)) > C, then note that ws(b(wl+1)) ≥
min{L, C + ws(λ−1A) + s(q − 1)e} > C. If we put M = lim inf ws(b(wl)),
we thus have −∞ < M < L. However, in the inequality above, the limit
inferior of the left side is M , while the limit inferior of the smaller right side is
min{L, M + ws(λ−1A) + s(q − 1)e} > M . This contradiction shows that no L

can exist as above, and so ws(b(wl)) → ∞ and ws(λ−1Fb(wl)) → ∞.
From ws(λF−1a(wl)) → ∞ for 0 < s ≤ qr, and ws(λ−1Fb(wl)) → ∞

for 0 < s ≤ r, we conclude that ws(a(wl)) → ∞ and ws(b(wl)) → ∞ for
0 < s ≤ r. Thus wl converges to 0 in the Fréchet topology, and vl converges
to a limit v satisfying Fv = λv.

Finally, we check that v �= 0. First note that wr(λ−1[T ]e1) = dr − vp(λ),
while

wr(v0 − λ−1[T ]e1) = wr([T 1/q]F−1e1)

≥ dr/q + c

> dr − vp(λ)

by our choice of d. Therefore wr(v0) = dr − vp(λ). On the other hand,

wr(λ−1w0) = wr(λ−1Fv0 − v0)

= wr(λ−2F [T ]e1 + λ−1[T ]e1 − λ−1[T ]e1 − [T 1/q]F−1e1)

= wr(λ−2F [T ]e1 − [T 1/q]F−1e1)

≥ min{rdq + c − 2vp(λ), rd/q + c}.

We have just checked that the second term in braces is greater than dr−vp(λ) =
wr(v0). As for the first term,

rdq + c − 2vp(λ) − (dr − vp(λ)) = dr(q − 1) + c − vp(λ)

is positive, again by the choice of d. Therefore wr(λ−1w0) > wr(v0).

Since we showed earlier that wr(wl) is a strictly increasing function of l,
we have wr(λ−1wl) ≥ wr(λ−1w0) for l ≥ 0. We also showed earlier that
wr(vl+1 − vl) ≥ wr(λ−1wl) for l ≥ 0. Thus wr(vl+1 − vl) ≥ wr(λ−1w0)
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for each l, and so wr(vl − v0) ≥ wr(λ−1w0). It follows that wr(v − v0) ≥
wr(λ−1w0) > wr(v0); in particular, v �= 0, so that λ and v satisfy the desired
conditions.

Corollary 4.9. Every σ-module M over Γalg
an,con admits a basis v1, . . . ,vn

such that vi is an eigenvector in M/ SatSpan(v1, . . . ,vi−1) for i = 1, . . . , n.

Proof. By the proposition and Lemma 4.1, every σ-module over Γalg
an,con

contains a primitive eigenvector. The corollary now follows by induction on
the rank of M .

Corollary 4.10. The set of slopes of eigenvectors of M , over all finite
extensions of O, is bounded below.

Proof. Combine the previous corollary with Proposition 4.4.

4.3. Raising the Newton polygon. In the previous section, we produced
within any σ-module over Γalg

an,con a basis on which F acts by a triangular
matrix. By Proposition 4.5, if there is a basis of eigenvectors, the valuations
of the diagonal entries of this matrix majorize the slopes of the eigenvectors.
Thus to produce a basis of eigenvectors, we need to “raise the Newton polygon”,
i.e., find eigenvectors whose eigenvalues have smaller slopes than the ones we
started with. In this section, we carry this process out by direct computation
in an important special case; the general process, using this case in some basic
steps, will follow in the next section.

By a Puiseux polynomial over a field K, we shall mean a formal expression
of the form

P (z) =
∑
i∈I

ciz
i

where I is a finite set of nonnegative rationals and ci ∈ K for each i ∈ I. If K

has a valuation vK , we define the Newton polygon of a Puiseux polynomial, by
analogy with the definition for an ordinary polynomial, as the lower convex hull
of the set of points (−i, vK(ci)). In fact, for some integer n, P (zn) is an ordinary
polynomial; by comparing the Newton polygons of P (z) and P (zn), and using
the usual theory of Newton polygons of polynomials over fields complete with
respect to a valuation, we obtain the following result.

Lemma 4.11. Let P (z) be a Puiseux polynomial over the t-adic comple-
tion of k((t))alg. Then P has a root of valuation l if and only if the Newton
polygon of P has a segment of slope l.

For x ∈ Γalg
an,con a strong semi-unit, we refer to v0(x) as the valuation of x.
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Lemma 4.12. Let n be a positive integer, and let x =
∑n

i=0 uiπ
i for some

strong semi -units ui ∈ Γalg
an,con of negative (or infinite) valuation, not all zero.

Then the system of equations

aσ = πa, πbσn

= b − ax(1)

has a solution with a, b ∈ Γalg
an,con not both zero.

Proof. For i ∈ {0, . . . , n} for which ui �= 0, l ∈ Z and m ∈ R+, put

f(i, l, m) = (v0(ui) + mq−l)q−n(i+l),

Note that for fixed i and m, f(i, l, m) approaches 0 from below as l → +∞, and
tends to +∞ as l → −∞. Thus the minimum h(m) = mini,l{f(i, l, m)} is well-
defined. Observe that the map h : R+ → R is continuous and piecewise linear
with everywhere positive slope, and h(qm) = q−nh(m) because f(i, l+1, qm) =
q−nf(i, l, m). Since f(i, l, m) takes negative values for fixed i, l and small m,
h(m) < 0 for some m, implying h(qjm) < 0 for all j ∈ Z, so that h takes only
negative values. We conclude that h is a continuous increasing bijection of R+

onto R−.
Pick t ∈ R+ at which h changes slope, let S be the finite set of ordered

pairs (i, l) for which f(i, l, t) < q−nh(t), and let T be the set of ordered pairs
(i, l) for which f(i, l, t) < 0; then T is infinite (and contains S), but the values
of l for pairs (i, l) ∈ T are bounded below. For each pair (i, l) ∈ T , put
s(i, l) = �logqn(h(t)/f(i, l, t))�. This function has the following properties:

(a) s(i, l) ≥ 0 for all (i, l) ∈ T ;

(b) f(i, l, t)qns(i,l) ∈ [h(t), q−nh(t)) for all (i, l) ∈ T ;

(c) (i, l) ∈ S if and only if (i, l) ∈ T and s(i, l) = 0;

(d) for any e > 0, there are only finitely many pairs (i, l) ∈ T such that
s(i, l) ≤ e.

For c ∈ R, let Uc be the set of z ∈ Γalg
an,con such that vm(z) = ∞ for m < 0

and vm(z) ≥ c for m ≥ 0. Then the function

r(z) =
∑

(i,l)∈T

πs(i,l)uσ−ni−nl+ns(i,l)

i zσ−ni−(n+1)l+ns(i,l)
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is well-defined (by (d) above, the series is π-adically convergent) and carries
Ut into Uh(t) because for z ∈ Ut and m ≥ 0,

vm

(
uσ−ni−nl+ns(i,l)

i zσ−ni−(n+1)l+ns(i,l)
)
≥ q−ni−nl+ns(i,l)v0(ui)

+ min
j

{q−ni−(n+1)l+n(s,i,l)vj(z)}

≥ qns(i,l)q−n(i+l)(v0(ui) + tq−l)

= qns(i,l)f(i, l, t)

≥ h(t).

The reduction of r(z) modulo π is congruent to a finite sum over pairs (i, l) ∈ S,
so it is a Puiseux polynomial in the reduction of z. Since s(i, l) = 0 for all
(i, l) ∈ S and the values −ni − (n + 1)l are all distinct (because i only runs
over {0, . . . , n}), we get a distinct monomial modulo π for each pair (i, l) ∈ S.

We now consider the Newton polygon of the Puiseux polynomial given by
the reduction of r(z) − w, for w ∈ Uh(t). It is the convex hull of the points
(−q−ni−(n+1)l, v0(ui)q−ni−nl) for each (i, l) ∈ S, together with (0, v0(w)). The
line y = tx + h(t) either passes through or lies below the point corresponding
to (i, l), depending on whether f(i, l, t) is equal to or strictly greater than h(t).
Moreover, (0, v0(w)) lies on or above the line because v0(w) ≥ h(t). Since h

changes slope at t, there must be at least two points on the line; therefore
the Newton polygon has a segment of slope t. By Lemma 4.11, the Puiseux
polynomial has a root of valuation t. In other words, there exists z ∈ Ut with
v0(z) = t such that r(z) ≡ w (mod π).

As a consequence of the above reasoning, we see that the image of Ut is
dense in Uf(t) with respect to the π-adic topology. Since Ut is complete, Ut

must surject onto Uf(t). Moreover, we can take w = 0 and obtain z0 ∈ Ut with
v0(z0) = t such that r(z0) ≡ 0 (mod π); in particular, z0 is nonzero modulo
π. We may then obtain z1 ∈ Ut such that r(z1) = r(z0)/π. Put z = z0 − πz1;
then z �≡ 0 (mod π) and so is nonzero, but r(z) = 0.

Now set a =
∑∞

l=−∞ πlzσ−l

; the sum converges in Γalg
an,con because for

s > 0, ws(πlzσ−l

) ≥ lvp(π) + rq−lt and the latter tends to ∞ as l → ±∞
(because t > 0). Then

ax =
n∑

i=0

∞∑
l=−∞

πi+luiz
σ−l

=
∑

(i,l)∈T

πi+luiz
σ−l

+
∑

(i,l)/∈T

πi+luiz
σ−l

.

Let A and B denote the two sums in the last line; then vm(B) ≥ 0 for all m, so
by Proposition 3.19(d) (with σ replaced by σn), B can be written as πbσn

1 − b1

for some b1 ∈ Γalg
an,con. On the other hand, we claim that A can be rewritten as
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r(z) + πbσn

2 − b2 for

b2 =
∑

(i,l)∈T

i+l−s(i,l)∑
j=1

πi+l−juσ−nj

i zσ−l−nj

=
∑

(i,l)∈T

i+l−s(i,l)−1∑
k=0

πk+s(i,l)
(
uσ−ni−nl+ns(i,l)

i zσ−ni−(n+1)l+ns(i,l)
)σnk

(via the substitution k = i + l − s(i, l) − j); we must check that this series
converges π-adically and that its limit is overconvergent. Note that as l → +∞
for i fixed, f(i, l, m) is asymptotic to v0(ui)q−n(i+l). Therefore i + l − s(i, l) is
bounded, so that the possible values of k are uniformly bounded over all pairs
(i, l) ∈ T . This implies on one hand that the series converges π-adically (since
l is bounded below over pairs (i, l) ∈ T and s(i, l) → +∞ as l → +∞), and on
the other hand that vm(b2) is bounded below uniformly in m (since the quantity
in parentheses in the second sum belongs to Uh(t)), so that b2 ∈ Γalg

an,con.
Having shown that the series defining b2 converges, we can now verify that

b2 − πbσn

2 = r(z) − A: the quantity on the left is the sum over pairs (i, l) ∈ T

of a sum over k which telescopes, leaving the term k = 0 minus the term
k = i + l − s(i, l), or

πs(i,l)uσ−ni−nl+ns(i,l)

i zσ−ni−(n+1)l+ns(i,l) − πi+luiz
σ−l

,

which when summed over pairs (i, l) ∈ T yields r(z) − A.
Since r(z) = 0 by construction, we have πbσn

= b− ax for b = −(b1 + b2).
Thus (a, b) constitutes a solution of (1), as desired.

We apply the previous construction to study the system of equations

aσ = πa, πbσn

= b − ac,(2)

where c ∈ Γalg
an,con is given. Notice that replacing c by c+πn+1yσn − y does not

alter whether (2) has a solution: for any a such that aσ = πa, if πbσn

= b−ac,
then

π(b − ay)σn

= (b − ay) − a(c + πn+1yσn − y).

We begin by analyzing (2) in a restricted case.

Lemma 4.13. For any positive integer n and any c ∈ Γalg
an,con such that

vm(c) ≥ −1 for all m and vm(c) = ∞ for some m, there exist a, b ∈ Γalg
an,con

not both zero, satisfying (2).

Proof. By multiplying c by a power of π, we may reduce to the case where
vm(c) = ∞ for m < 0. Define the sequences c0, c1, . . . and d0, d1, . . . as far as
is possible by the following iteration. First put c0 = c and d0 = 0. Given ci, if
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v0(ci) < −1/qn, stop. Otherwise, let di be a strong semi-unit congruent to ci

modulo π and put ci+1 = (ci + πn+1dσn

i − di)/π. Note that vm(ci) ≥ −1 and
vm(di) ≥ −1/qn for all m ≥ 0 and all i.

If the iteration never terminates, then we have c + πn+1dσn − d = 0 for
d =

∑∞
i=0 diπ

i. In this case, apply Proposition 3.19(b) to produce a nonzero
such that aσ = πa and set b = ad to obtain a solution to (2).

If the iteration terminates at cl, set d =
∑l−1

i=0 diπ
i, so that πlcl = c +

πn+1dσn − d. Let
∑∞

j=0 ujπ
j be a strong semi-unit decomposition of cl, nec-

essarily having v0(u0) < −1/qn. Put e =
∑∞

j=n+1 uσ−n

j πj−n−1 and set x =
cl − πn+1eσn

+ e. Then

x =
n∑

j=1

πjuj +

u0 +
∞∑

j=n+1

uσ−n

j πj−n−1

 ,

and the quantity in parentheses is a strong semi-unit of the same valuation as
u0, since v0(u0) < −1/qn ≤ v0(uσ−n

j ) for all j. Thus x satisfies the condition
of Lemma 4.12, and so there exist a′, b′ ∈ Γalg

an,con not both zero so that

(a′)σ = πa′, π(b′)σn

= b′ − a′x.

We obtain a solution of (2) by setting a = a′, b = a′d − πla′e + πlb′.

We now analyze (2) in general by reducing to the special case treated
above.

Lemma 4.14. For any positive integer n and any c ∈ Γalg
an,con, there exist

a, b ∈ Γalg
an,con not both zero such that (2) holds.

Proof. Let
∑

i uiπ
i be a strong semi-unit decomposition of c, and let

N be the smallest integer such that v0(uN ) < 0, or ∞ if there is no such
integer. By Proposition 3.19(d), there exists y ∈ Γalg

an,con such that πn+1yσn −
y +

∑N−1
i=−∞ uiπ

i = 0.
If N = ∞, then in fact πn+1yσn − y + c = 0, so we obtain a solution of

(2) by choosing a nonzero with aσ = πa via Proposition 3.19(b), and setting
b = ay. Suppose hereafter that N < ∞.

For each i ≥ N for which ui �= 0, set ti = �logqn(−v0(ui))�, so that
−1 ≤ v0(uσ−nti

i ) < −1/qn for all such i. Then the sum

z =
∞∑

i=N

ti∑
j=1

uσ−nj

i πi−(n+1)j

is π-adically convergent: −v0(ui) grows at most linearly in i, so that ti grows
at most logarithmically and i− (n + 1)ti → ∞ as i → ∞. Moreover, since ti is
bounded below, v0(uσ−nj

i πi−(n+1)j) is as well; thus the sum z is in Γalg
an,con.
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Put c′ = c + πn+1(y − z)σn − (y − z); then

c′ =
∞∑

i=N

uiπ
i +

ti∑
j=1

uσ−nj

i πi−(n+1)j −
ti∑

j=1

uσ−n(j−1)

i πi−(n+1)(j−1)


=

∞∑
i=N

uσ−nti

i πi−(n+1)ti ,

so that vm(c′) ≥ −1 for all m. By Lemma 4.13, there exist a′, b′ ∈ Γalg
an,con not

both zero such that

(a′)σ = πa′, π(b′)σn

= b′ − a′c′;

we obtain a solution of (2) by setting a = a′, b = b′ + a′(y − z).

We now prove our basic result on raising the Newton polygon, i.e., reduc-
ing the slope of an eigenvector.

Proposition 4.15. Let m and n be positive integers, and let M be a
σ-module over Γalg

an,con admitting a basis v1, . . . ,vn,w such that for some
ci ∈ Γalg

an,con,

Fvi = vi+1 (i = 1, . . . , n − 1),

Fvn = πv1,

Fw = π−mw + c1v1 + · · · + cnvn.

Then there exists y ∈ M such that Fy = y.

This will ultimately be a special case of our main results; what makes
this case directly tractable is that if SatSpan(v1, . . . ,vn) does not admit an
F -stable complement in M (i.e., is not a direct summand of M in the category
of σ-modules), then the map y 
→ Fy − y is actually surjective, as predicted
by the expected behavior of the special Newton polygon.

Proof. Suppose y = dw + b1v1 + · · · + bnvn satisfies Fy = y, or in other
words

dw +
n∑

i=1

bivi = π−mdσw +
n∑

i=1

dσcivi +
n−1∑
i=1

bσ
i vi+1 + πbσ

nv1.

Comparing coefficients in this equation, we have bσ
i = bi+1 − dσci+1 for i =

1, . . . , n − 1, as well as πbσ
n = b1 − dσc1 and dσ = πmd. If we use the first
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n relations to eliminate b2, . . . , bn, we get

bσn

1 = bσn−1

2 − dσn

cσn−1

2

= bσn−2

3 − dσn−1
cσn−2

3 − dσn

cσn−1

2

...

= bσ
n − dσ2

cσ
n − · · · − dσn

cσn−1

2

= π−1b1 − d(πm−1c1 + π2mcσ
n + π3mcσ2

n−1 + · · · + πnmcσn−1

2 ).

Let c′ be the quantity in parentheses in the last line. We have shown that if
Fy = y has a nonzero solution, then the system of equations

dσ = πmd, πbσn

1 = b1 − πc′d(3)

has a solution with b1, d not both zero. Conversely, from any nonzero solution
of (3) we may construct a nonzero y ∈ M such that Fy = y, by using the
relations bσ

i = bi+1 − dσci+1 to successively define b2, . . . , bn.
By Proposition 3.19(b), we can find e ∈ Γalg

an,con nonzero such that eσ =
πm−1e; we will construct a solution of (3) with d = ae for some a such that
aσ = πa. Namely, put c = πc′e, and apply Lemma 4.14 to find a, b ∈ Γalg

an,con,
not both zero, such that

aσ = πa, πbσn

= b − ac.

Then b1 = b and d = ae constitute a nonzero solution of (2); as noted above,
this implies that there exists y ∈ M nonzero with Fy = y, as desired.

4.4. Construction of the special Newton polygon. We now assemble the
results of the previous sections into the following theorem, the main result of
this chapter.

Theorem 4.16. Let M be a σ-module over Γalg
an,con. Then M can be ex-

pressed as a direct sum of standard σ-submodules.

As the proof of this theorem is somewhat intricate, we break off parts of
the argument into separate lemmas. In these lemmas, a “suitable extension”
of O[1p ] means one whose value group contains whatever slope is desired to
be the slope of an eigenvector. By Proposition 4.7, proving the existence of
an eigenvector of prescribed slope over a single suitable extension implies the
same over any suitable extension.

Lemma 4.17. Let M be a σ-module over Γalg
an,con of rank 1, and suppose

F acts on some generator v via Fv = cv. Then M contains an eigenvector,
and any primitive eigenvector has slope vp(c).

Note that vn(c) = ∞ for some n by Corollary 3.23, so that vp(c) makes
sense.



A P -ADIC LOCAL MONODROMY THEOREM 155

Proof. The existence of an eigenvector of slope vp(c) follows from Propo-
sition 3.18. The uniqueness of the slope follows from Corollary 4.6.

For M of rank 1, we call this unique slope the slope of M . Note that if
0 → L → M → N → 0 is an exact sequence of σ-modules and L, M, N have
ranks l, m, n, respectively, then the slope of ∧mM is the sum of the slopes of
∧lL and ∧nN . (This assertion will be vastly generalized by Proposition 5.13
later.)

Lemma 4.18. Let M be a σ-module over Γalg
an,con of rank 2, and let d be

the slope of ∧2M . Then M contains an eigenvector of slope d/2 over a suitable
extension of O[1p ].

Proof. We may assume without loss of generality that d/2 belongs to the
value group of O[1p ]. Let e be the smallest integer such that M contains an
eigenvector of slope evp(π). (There is such an integer by Proposition 4.8, and
there is a smallest one by Corollary 4.10.) By twisting, we may reduce to the
case where e = 1.

Put m = 1 − (d/vp(π)) and suppose by way of contradiction that m > 0.
Choose an eigenvector v with Fv = πv, which is necessarily primitive by
Lemma 4.1; then by Lemma 4.17 applied to M/ SatSpan(v), we can find w such
that v,w form a basis of M and Fw = π−mw+cv for some c ∈ Γalg

an,con. Now by
Proposition 4.15, M contains an eigenvector v1 with Fv1 = v1, contradicting
the definition of e.

Hence m ≤ 0, which implies d ≥ vp(π). Since d/2 is also a multiple of
vp(π), we must have d/2 ≥ vp(π); by Proposition 4.2, M contains an eigenvec-
tor of slope d/2.

Lemma 4.19. Let M be a σ-module over Γalg
an,con of rank n, and let d be

the slope of ∧nM . Then M contains eigenvectors of all slopes greater than d/n

over suitable extensions of O[1p ].

Proof. We proceed by induction on n. The case n = 1 follows from
Lemma 4.17, and the case n = 2 follows from Lemma 4.18. Suppose n > 2
and that the lemma has been proved for all smaller values of n. Let s be
the greatest lower bound of the set of rational numbers that occur as slopes
of eigenvectors of M (over suitable extensions of O[1p ]). Again, the set is
nonempty by Proposition 4.8 and is bounded below by Corollary 4.10.

For each ε > 0 such that s+ε ∈ Q, over a suitable extension of O[1p ] there
exist an eigenvector v of M of slope s+ε and (by the induction hypothesis) an
eigenvector w of M/ SatSpan(v) of slope at most s′ = (d−s−ε)/(n−1)+ε. The
preimage of SatSpan(w) in M has rank 2, and so is covered by the induction
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hypothesis; it thus contains, for any δ > 0, an eigenvector of slope at most
s + ε

2
+

d − s + (n − 2)ε
2(n − 1)

+ δ

over a suitable extension of O[1p ]. Such an eigenvector is also an eigenvector of
M , so its slope is at least s. Letting ε and δ go to 0 in the resulting inequality
yields

s

2
+

d − s

2(n − 1)
≥ s,

which simplifies to s ≤ d/n, as desired.

Lemma 4.20. Let M be a σ-module over Γalg
an,con of rank n, and let d be

the slope of ∧nM . Then M contains an eigenvector of slope d/n over a suitable
extension of O[1p ].

Proof. We proceed by induction on n; again, the case n = 1 follows from
Lemma 4.17 and the case n = 2 follows from Lemma 4.18. Without loss of
generality, we may assume the value group of O contains d/n, and then that
d = 0.

By Lemma 4.19, there exists an eigenvector v of M of slope vp(π)/(n− 1)
over O[π1/(n−1)]; we may as well assume Fv = π1/(n−1)v. Let N be the
saturated span of v and its conjugates over O[1p ]; let m be the rank of N and
s the slope of ∧mN . Then m ≤ n − 1 and s ≤ mvp(π)/(n − 1). If m < n − 1,
then 0 < mvp(π)/(n − 1) < vp(π), so that s ≤ 0 and the induction hypothesis
implies that N contains an eigenvector of slope 0. The same argument applies
if m = n − 1 and s < vp(π).

Suppose instead that m = n − 1 and s = vp(π). Write v = v1 +
π−1/(n−1)v2 + · · · + π−(n−2)/(n−1)vn−1 with each vi defined over Γalg

an,con (with
no extension of O[1p ]); then v1, . . . ,vn−1 are linearly independent in N , and
we have Fvi = vi+1 for i = 1, . . . , n − 1 and Fvn−1 = πv1. In particular,
the vi must be a basis of N or else ∧n−1N would have slope less than s. The
slope of M/N is −vp(π), and so by Lemma 4.17, we can choose w ∈ M such
that Fw ≡ π−1w (mod N). Proposition 4.15 then implies that M contains
an eigenvector of slope 0, as desired.

Proof of Theorem 4.16. We proceed by induction on the rank of M . If
rankM = 1, then M is standard by Lemma 4.17. Suppose rankM = n > 1,
and that the proposition has been established for all σ-modules of rank less
than n. For any rational number c, define the O-index of c as the smallest
integer m such that mc lies in the value group of O[1p ]. The set of rational
numbers of O-index less than or equal to n which occur as slopes of eigenvectors
of M is discrete (obvious), nonempty (by Proposition 4.8), and bounded below
(by Corollary 4.10) and thus has a smallest element r.
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Let d be the slope of ∧nM . By Lemma 4.20, we have r ≤ d/n. Let s

be the O-index of r, and let λ be an element of a degree s extension O′[1p ] of
O[1p ] such that vp(λ) = r and λs ∈ O[1p ]. Choose an eigenvector v over O′[1p ]
with Fv = λv, and write v =

∑s−1
i=0 λ−iwi for wi ∈ M , so that Fwi = wi+1

for i = 0, . . . , s − 2 and Fws−1 = λsw0. Put N = SatSpan(w0, . . . ,ws−1) and
m = rankN ; then s ≥ m, and the slope of ∧mN is at most mr, since N is the
saturated span of eigenvectors of slope r.

If m = n, then also s = n and w0∧· · ·∧wn−1 is an eigenvector of ∧nM of
slope rn. Thus rn ≥ d; since r ≤ d/n as shown earlier, we conclude r = d/n,
w0, . . . ,wn−1 form a basis of M , and M is standard, completing the proof in
this case. Thus we assume m < n hereafter.

Given that m < n, we may apply the induction hypothesis to N , deducing
in particular that its smallest slope is at most r and has O-index not greater
than m. This yields a contradiction unless that slope is r, which is only possible
if the slope of ∧mN is mr. In turn, mr belongs to the value group of O[1p ]
only if m = s. Thus m = s, and since w0 ∧ · · · ∧ ws−1 is an eigenvector of N

of slope rs, the w0, . . . ,ws−1 form a basis of N , and N is standard.
Apply the induction hypothesis to M/N to express it as a sum P1⊕· · ·⊕Pl

of standard σ-submodules; note that the O-index of the slope of Pi divides the
rank of Pi, and so is at most n. If l = 1, then the slope of P1 cannot be less
than r (else the slope of ∧nM would be less than d); thus, by Proposition 4.3,
M can be split as a direct sum of N with a standard σ-module. If l > 1, let
Mi be the preimage of Pi under the projection M → M/N ; again the slope of
each Pi cannot be less than r, else the induction hypothesis would imply that
Mi contains an eigenvector of slope less than r and O-index not exceeding n, a
contradiction. Thus by Proposition 4.3 again, each Mi can be split as a direct
sum N ⊕Ni of σ-submodules, and we may decompose M as N ⊕N1⊕· · ·⊕Nl.
This completes the induction in all cases.

By Corollary 4.6, the multiset union of the slopes of the standard sum-
mands of a σ-module M over Γalg

an,con (each summand contributing its slope
as many times as its rank) does not depend on the decomposition. Thus we
define the special Newton polygon of M as the polygon with vertices (i, yi)
(i = 0, . . . , n), where y0 = 0 and yi − yi−1 is the i-th smallest slope of M

(counting multiplicity). We extend this definition to σ-modules over Γan,con by
base extending to Γalg

an,con.

5. The generic Newton polygon

In this chapter, we recall the construction of the generic Newton poly-
gon associated to a σ-module over Γ. The construction uses a classification
result, the Dieudonné-Manin classification, for σ-modules over a complete dis-
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crete valuation ring with algebraically closed residue field. This classification
does not descend very well, and so we describe some weaker versions of the
classification that can be accomplished under less restrictive conditions. These
weaker versions either appear in or are inspired directly by [dJ].

5.1. Properties of eigenvectors. Throughout this section, let R be a
discrete valuation ring with residue field k which is unramified over O. Again,
we call an element v of a σ-module M over R or R[1p ] an eigenvector if there
exists λ ∈ O or O[1p ], respectively, such that Fv = λv, and refer to vp(λ) as
the slope of v. We call an eigenvector primitive if it forms part of a basis of
M , but this definition is not very useful: every eigenvector is an O-multiple of
a primitive eigenvector of the same slope. In fact, in contrast to the situation
over Γalg

an,con, the slopes of eigenvectors over R are “rigid”.

Proposition 5.1. Let M be a σ-module over R[1p ], with k algebraically
closed. Suppose M admits a basis v1, . . . ,vn of eigenvectors. Then any eigen-
vector w is an O[1p ]-linear combination of those vi of the same slope. In
particular, any eigenvector has the same slope as one of the vi.

Proof. Suppose Fvi = λivi for some λi ∈ O[1p ], and write w =
∑

i civi

with ci ∈ R[1p ]. If Fw = µw for µ ∈ O[1p ], then equating the coefficients of
vi yields λic

σ
i = µci. If vp(λi) �= vp(µ), this forces ci = 0; if vp(λi) = vp(µ), it

forces ci ∈ O[1p ]. This proves the claim.

By imitating the proof of Proposition 4.5 using Proposition 5.1 in lieu of
Proposition 4.4, we obtain the following analogue of Corollary 4.6.

Proposition 5.2. Let M be a σ-module over R[1p ]. Suppose v1, . . . ,vn

and w1, . . . ,wn are bases of eigenvectors with Fvi = λivi and Fwi = µiwi,
for some λi, µi ∈ O[1p ]. Then the sequences vp(λ1), . . . , vp(λn) and vp(µ1), . . . ,
vp(µn) are permutations of each other.

In case M has a full set of eigenvectors of one slope, we have the following
decomposition result.

Proposition 5.3. Suppose k is algebraically closed, and let M be a
σ-module over R spanned by eigenvectors of a single slope over R ⊗O O′, for
some finite extension O′ of O. Then M is isogenous to the direct sum of
standard σ-modules of that slope.

Proof. Let s be the common slope, and let m be the smallest positive
integer such that ms is a multiple of vp(π). Since k is algebraically closed,
there exists λ ∈ O′ such that λm ∈ O. Let O′′ be the integral closure of O in
O[1p ](λ).
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Note that M is spanned over R ⊗O O′ by eigenvectors v with Fv = λv
because k is algebraically closed: if Fw = µw for some µ with vp(µ) = vp(λ),
we can find c ∈ O′ nonzero such that cσ = (λ/µ)c and obtain a new eigenvector
v = cw with Fv = λv. We next verify that M is also spanned over R ⊗O O′′

by eigenvectors v with Fv = λv. Let µ1, . . . , µn be a basis of O′ over O′′

consisting of elements fixed by σ (possible because k is algebraically closed). If
v is an eigenvector over R⊗O O′ with Fv = λv, we can write v =

∑
i µiwi for

some wi over R⊗O O′′, and we must have Fwi = λwi for each i. Thus v is in
the span of the wi, so the span of eigenvectors of eigenvalue λ over R ⊗O O′′

has full rank over R ⊗O O′, and thus has full rank over R ⊗O O′′.
Finally, we establish that M is isogenous to a direct sum of standard

σ-modules. Let v be an eigenvector of eigenvalue λ over R ⊗O O′′; we can
write v =

∑m−1
i=0 wiλ

−i for some wi ∈ M . Then Fwi = wi+1 for i = 0, . . . ,

m − 2 and Fwm−1 = λmw0, so the span of w0, . . . ,wm−1 is standard.
(Notice that w0, . . . ,wm−1 must be linearly independent: if on the contrary
their span had rank d < m, then by Lemma 5.4 below, svp(λ) would belong
to the value group of O for some s ≤ d < m, contradiction.) Let M1 be the
standard submodule just produced. Next, choose an eigenvector of eigenvalue
λ linearly independent of M1, and produce another standard submodule M2.
Then choose an eigenvector linearly independent of M1 ⊕ M2, and so on until
M is exhausted.

5.2. The Dieudonné-Manin classification. Again, let R be a discrete
valuation ring unramified over O.

Lemma 5.4. Suppose that R is complete with algebraically closed residue
field. Given elements a0, . . . , an−1 of R with a0 nonzero, let M be the σ-module
with basis v1, . . . ,vn such that

Fvi = vi+1 (i = 1, . . . , n − 1),

Fvn = a0v1 + · · · + an−1vn.

Suppose s belongs to the value group of R. Then the maximum number of
linearly independent eigenvectors of slope s in M is less than or equal to the
multiplicity m of s as a slope of the Newton polygon of the polynomial xn +
an−1x

n−1+ · · ·+a0 over R. Moreover, if m > 0, then M admits an eigenvector
of slope s.

Proof. Let l = minj{−js + vp(an−j)} (with an = 1 for consistency); then
there exists an index i such that l = −js + vp(an−j) for j = i, j = i + m, and
possibly for some values of j ∈ {i + 1, . . . , i + m − 1}, but not for any other
values.

Let λ be an element of valuation s fixed by σ. Suppose w =
∑

j cjvj

satisfies Fw = λw. Then λc1 = a0c
σ
n and λcj = aj−1c

σ
n + cσ

j−1 for j = 2, . . . , n.
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Solving for cn yields

cn = λ−1an−1c
σ
n + λ−1cσ

n−1

= λ−1an−1c
σ
n + λ−2aσ

n−2c
σ2

n + λ−2cσ2

n−2

...

= λ−1an−1c
σ
n + λ−2aσ

n−2c
σ2

n + · · · + λ−n+1aσn−2

1 cσn−1

n + λ−n+1cσn−1

1

= λ−1an−1c
σ
n + λ−2aσ

n−2c
σ2

n + · · · + λ−n+1aσn−2

1 cσn−1

n + λ−naσn−1

0 cσn

n .

In other words, f(cn) = 0, where

f(x) = −x +
an−1

λ
xσ +

aσ
n−2

λ2
xσ2

+ · · · + aσn−1

0

λn
xσn

.

The coefficients of f of minimal valuation are on xσi

, xσi+m

, and possibly some
in between.

Now suppose w1, . . . ,wm+1 are linearly independent eigenvectors of M

with Fwh = λwh for h = 1, . . . , m + 1. Write wh =
∑

j chjvj . Then
c1n, . . . , c(m+1)n are linearly independent over O0: if there were a relation∑

h dhchn = 0 with dh ∈ O0 not all zero, we would have

λ
∑

h

dhchj =

(∑
h

dhch(j−1)

)σ

+ aj−1

(∑
h

dhchn

)σ

(j = 2, . . . , n)

and successively deduce
∑

h dhchj = 0 for j = n − 1, . . . , 1. That would mean∑
h dhwh = 0, but the wh are linearly independent.

By replacing the wh with suitable O0-linear combinations, we can ensure
that the chn are in R and their reductions modulo π are linearly independent
over Fq. Now on one hand, the reduction of (λi/aσi−1

n−i )f(x) modulo π is a
polynomial in x of the form bi+mxqi+m

+ · · ·+ bix
qi

, which has only qm distinct
roots in R/πR. On the other hand, the Fq-linear combinations of the reductions
of the chn yields qm+1 distinct roots in R/πR, a contradiction.

We conclude that the multiplicity of s as a slope of M is at most m; this
establishes the first assertion. To establish the second, note that if m > 0,
then there exists cn �= 0 such that f(cn) = 0 by Proposition 3.17; letting cn

be this root, one can then solve for cn−1, . . . , c1 and produce an eigenvector v
with Fv = λv.

Using this lemma, we can establish the Dieudonné-Manin classification
theorem (for which see also Katz [Ka]). We first state it not quite in the
standard form. Note: a “basis up to isogeny” means a maximal linearly inde-
pendent set.
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Proposition 5.5. Suppose R is complete with algebraically closed residue
field. Then every σ-module M over R has a basis up to isogeny of eigenvectors
of nonnegative slopes over R⊗OO′ for some finite extension O′ of O (depending
on M).

Proof. We proceed by induction on n = rankM . Let v be any nonzero
element of M , and let m be the smallest integer such that v, Fv, . . . , Fmv are
linearly dependent. Then N = SatSpan(v, Fv, . . . , Fm−1v) is a σ-submodule
of M , and Lemma 5.4 implies that it has a primitive eigenvector v1 of nonneg-
ative slope over R⊗O O′ for some O′ (since the corresponding polynomial has
a root of nonnegative valuation there). By the induction hypothesis, we can
choose w2, . . . ,wn over R⊗OO′′ for some O′′, whose images in M/ SatSpan(v1)
form a basis up to isogeny of eigenvectors of nonnegative slopes. We then have
Fv1 = λ1v1, where we may take λ1 fixed by σ, and Fwi = λiwi + civ1 for
some λi ∈ O and ci ∈ R. Apply Proposition 3.17 to find ai ∈ R such that
λ1ci + λ1a

σ
i − λiai = 0, and set vi = λ1wi + aiv1 for i = 2, . . . , n; then

Fvi = λivi, and so v1, . . . ,vn form a basis up to isogeny of eigenvectors of
nonnegative slope over R ⊗O O′′, as desired.

From this statement we deduce the Dieudonné-Manin classification theo-
rem in its more standard form.

Theorem 5.6 (Dieudonné-Manin). Suppose R is complete with algebr-
aically closed residue field. Then every σ-module over R is canonically isoge-
nous to the direct sum of σ-modules, each with a single slope, with all of these
slopes distinct. Moreover, every σ-module of a single slope is isogenous to a
direct sum of standard σ-modules of that slope.

Proof. Let M be a σ-module over R. For each slope s that occurs in a
basis up to isogeny of eigenvectors produced by Proposition 5.5 over R⊗O O′,
let Ms be the span of all eigenvectors of M over R ⊗O O′ of slope s. Then
Ms is invariant under Gal(O′/O), so that by Galois descent, Ms descends to
a σ-submodule of M . Moreover, Ms is isogenous to a direct sum of standard
σ-modules of slope s by Proposition 5.3. This proves the desired result.

Given a σ-module M over a discrete valuation ring R unramified over O,
we can embed R into a complete discrete valuation ring over which M has
a basis up to isogeny of eigenvectors by Proposition 5.5. (First complete the
direct limit of R

σ→ R
σ→ · · · , then take its maximal unramified extension, then

complete again, then tensor with a suitable O′ over O.) By Proposition 5.2,
the slopes and multiplicities do not depend on the choice of the basis. Define
the generic slopes of M as the slopes of the eigenvectors in the basis, and
the generic Newton polygon of M as the polygon with vertices (i, yi) for i =
0, . . . , rankM , where y0 = 0 and yi − yi−1 is the i-th smallest generic slope
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of M (counting multiplicity). If M has all slopes equal to 0, we say M is
unit-root.

With the definition of the generic Newton polygon in hand, we can refine
the conclusion of Lemma 5.4 as follows.

Proposition 5.7. Given elements a0, . . . , an−1 of R with a0 nonzero, let
M be the σ-module with basis v1, . . . ,vn such that

Fvi = vi+1 (i = 1, . . . , n − 1),

Fvn = a0v1 + · · · + an−1vn.

Then the generic Newton polygon of M coincides with the the Newton polygon
of the polynomial xn + an−1x

n−1 + · · · + a0 over R.

Proof. The two Newton polygons have the same length n, and every
number occurs at least as often as a slope of the polynomial as it occurs as a
slope of M by Lemma 5.4. Thus all multiplicities must coincide.

For our purposes, the principal consequence of this fact is the following.

Proposition 5.8. Let M be a σ-module over R[1p ] with all slopes non-
negative. Then M is isomorphic to a σ-module defined over R.

Proof. We proceed by induction on n = rankM . Let v ∈ M be nonzero,
and let m be the smallest integer such that v, Fv, . . . , Fmv are linearly de-
pendent. Then Fmv = a0v + · · ·+ am−1F

m−1v for some a0, . . . , am−1 ∈ R[1p ];
by Proposition 5.7, the ai belong to R. Let N = SatSpan(v, Fv, . . . , Fm−1v);
by the induction hypothesis, M/N is isomorphic to a σ-module defined over
R. So we can choose w1, . . . ,wn−m that form a basis of M together with
v, Fv, . . . , Fm−1v, such that for i = 1, . . . , n − m, Fwi equals an R[1p ]-linear
combination of the F jv plus an R-linear combination of the wj . For λ suffi-
ciently divisible by π, the basis λv, λFv, . . . , λFm−1v,w1, . . . ,wn−m has the
property that the image of each basis vector under Frobenius is an R-linear
combination of basis vectors. This gives the desired isomorphism.

We close the section with another method for reading off the generic New-
ton polygon of a σ-module, inspired by an observation of Buzzard and Calegari
[BC, Lemma 5]. (We suspect it may date back earlier, possibly to Manin.)

Proposition 5.9. Let M be a σ-module over a discrete valuation ring R.
Suppose M has a basis on which F acts by the matrix A, where AD−1 is
congruent to the identity matrix modulo π for some diagonal matrix D over O.
Then the slopes of the generic Newton polygon of M equal the valuations of
the diagonal entries of D.
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Proof. Without loss of generality we may assume R is complete with
algebraically closed residue field. We produce a sequence of matrices {Ul}∞l=1

such that U1 = I, Ul+1 ≡ Ul (mod πl) and U−1
l AUσ

l D−1 ≡ I (mod πl); the
π-adic limit U of the Ul will satisfy AUσ = UD, proving the proposition. The
conditions for l = 1 are satisfied by the assumption that AD−1 ≡ I (mod π).

Suppose Ul has been defined. Put V = U−1
l AUσ

l D−1 − I. Define a
matrix W whose entry Wij , for each i and j, is a solution of the equation
Wij − DiiW

σ
ijD

−1
jj = Vij with min{vp(Wij), vp(DiiW

σ
ijD

−1
jj )} = vp(Vij) (such a

solution exists by Proposition 3.17). Then W and DW σD−1 are both congru-
ent to 0 modulo πl. Put Ul+1 = Ul(I + W ); then

U−1
l+1AUσ

l+1D
−1 = (I + W )−1U−1

l AUσ
l (I + W )σD−1

= (I + W )−1U−1
l AUσ

l D−1(I + DW σD−1)

= (I + W )−1(I + V )(I + DW σD−1)

≡ I − W + V + DW σD−1 = I (mod πl+1).

Thus the conditions for Ul+1 are satisfied, and the proposition follows.

5.3. Slope filtrations. The Dieudonné-Manin classification holds over ΓK

only if K is algebraically closed, and even then does not descend to ΓK
con in

general. In this section, we exhibit two partial versions of the classification that
hold with weaker conditions on the coefficient ring. One (the descending filtra-
tion) is due to de Jong [dJ, Prop. 5.8]; for symmetry, we present independent
proofs of both results.

The following filtration result applies for any K but does not descend to
Γcon.

Proposition 5.10 (Ascending generic filtration). Let K be a valued field.
Then any σ-module M over Γ = ΓK admits a unique filtration M0 = 0 ⊂ M1 ⊂
· · · ⊂ Mm = M by σ-submodules such that

1. for i = 1, . . . , m, Mi−1 is saturated in Mi and Mi/Mi−1 has all generic
slopes equal to si, and

2. s1 < · · · < sm.

Moreover, if K is separably closed and k is algebraically closed, each Mi/Mi−1

is isogenous to a direct sum of standard σ-modules.

Warning: this proof uses the object Γsep even though this has only so far
been defined for k perfect. Thus we must give an ad hoc definition here. For
any finite separable extension L over K, Lemma 3.1 produces a finite extension
of ΓK with residue field L, and Lemma 3.2 allows us to identify that extension
with a subring of Γalg. We define Γsep as the completed union of these subrings;
note that Γperf ∩ Γsep = Γ.
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Proof. By the Dieudonné-Manin classification (Theorem 5.6), M is canoni-
cally isogenous to a direct sum of σ-submodules, each of a different single slope.
By Corollary 2.7, these submodules descend to Γperf ; let M1 be the submodule
of minimum slope. It suffices to show that M1 is defined over Γ, as an induction
on rank will then yield the general result. Moreover, it is enough to establish
this when M1 has rank 1: if M1 has rank d, then the lowest slope submodule
of ∧dM is the rank 1 submodule ∧dM1, and if ∧dM1 is defined over Γ, then so
is M1.

Now suppose that M1 has rank 1; this implies by Proposition 5.7 that the
lowest slope of M belongs to the value group of O. By applying an isogeny,
twisting, and applying Proposition 5.8 we may reduce to the case where the
lowest slope is 0. Let e1, . . . , en be a basis of M and let A be the matrix such
that Fel =

∑
jl Ajlej .

Let v be an eigenvector of M over Γalg with Fv = v. We will show that v
is congruent to an element of M ⊗Γ Γsep modulo πm for each m, by induction
on m. The case m = 0 is vacuous, so assume the result is known for some
m; that is, v = w + πmx with w ∈ M ⊗Γ Γsep and x ∈ M ⊗Γ Γalg. Then
0 = Fv−v = (Fw−w) + πm(Fx−x); that is, Fx−x belongs to M ⊗Γ Γsep.
Write x =

∑
j cjej and Fx−x =

∑
djej , and let s be the smallest nonnegative

integer such that the reduction of cj modulo π lies in (Ksep)1/qs

for all j. Then
dj = −cj +

∑
l Ajlc

σ
l ; if s > 0, then writing cj = −dj +

∑
l Ajlc

σ
l shows that the

reduction of cj lies in (Ksep)1/qs−1
for all j, a contradiction. Thus s = 0, and x

is congruent modulo π to an element of M ⊗Γ Γsep, completing the induction.
We conclude that v ∈ M ⊗Γ Γsep. Thus M1 is defined both over Γperf and

over Γsep, so it is in fact defined over Γperf ∩ Γsep = Γ, as desired. This proves
the needed result, except for the final assertion. In case K is separably closed,
one can repeat the above argument over a suitable finite extension of O to show
that each Mi/Mi−1 is spanned by eigenvectors, then apply Proposition 5.3.

The following filtration result applies over Γcon, not just over Γ, but re-
quires that K be perfect.

Proposition 5.11 (Descending generic filtration). Let K be a perfect
valued field over k. Then any σ-module M over Γcon = ΓK

con admits a unique
filtration M0 = 0 ⊂ M1 ⊂ · · · ⊂ Mm = M by σ-submodules such that

1. for i = 1, . . . , m, Mi−1 is saturated in Mi and Mi/Mi−1 has all generic
slopes equal to si, and

2. s1 > · · · > sm.

Moreover, if K is algebraically closed, each Mi/Mi−1 is isogenous to a direct
sum of standard σ-modules.
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Proof. By the Dieudonné-Manin classification (Theorem 5.6), M is canoni-
cally isogenous to a direct sum of σ-submodules, each of a different single slope.
By Corollary 2.7, these submodules descend to Γ; let M1 be the submodule
of maximum slope. It suffices to show that M1 is defined over Γcon, as an
induction on rank will then yield the general result. Moreover, it is enough to
establish this when M1 has rank 1: if M1 has rank d, then the lowest slope
submodule of ∧dM is the rank 1 submodule ∧dM1, and if ∧dM1 is defined over
Γcon, then so is M1.

Now suppose that M1 has rank 1; this implies that the highest slope of
M belongs to the value group of O. Choose λ ∈ O whose valuation equals
that slope. Let v1, . . . ,vn be a basis of M ⊗Γcon Γalg, in which Fv1 = λv1

and the remaining vi span the submodules of M of lower slopes. Choose
wi ∈ M ⊗Γcon Γalg

con sufficiently close π-adically to vi for i = 1, . . . , n so that the
matrix B with λwi =

∑
j BijFwj has entries in Γalg and

Bij ≡
{

1 i = j = 1
0 otherwise

(mod π);

this is possible because the congruence holds for wi = vi. Then the wi form a
basis of M ⊗Γcon Γalg

con.
Write v1 =

∑
i ciwi, so that cσ

i =
∑

j Bjicj . Since v0(B) ≥ 0, we can find
r such that wr(B) ≥ 0. We now show that rvh(ci) + h ≥ 0 for all i and h, by
induction on h. The case h = 0 holds because ci ≡ 0 (mod π). Suppose this
holds with h replaced by any smaller value. Then the equality cσ

i =
∑

j Bjicj

implies

qvh(ci) ≥ min
l,j

{vl(Bji) + vh−l(cj)}.

Choose j, l for which the minimum is achieved. If l = 0, then we must have
i = j = 1, in which case v0(B11) = 0 and qvh(c1) ≥ vh(c1), whence vh(c1) ≥ 0
and rvh(c1) + h ≥ 0 as well. If the minimum occurs for some l > 0, then

rvh(ci) + h ≥ rq−1(vl(Bji) + vh−l(cj)) + h

≥ rq−1(vl(Bji) + vh−l(cj)) + q−1h

≥ q−1(rvl(Bji) + l + rvh−l(cj) + (h − l))

≥ q−1(0 + 0) = 0

by the induction hypothesis. Therefore rvh(ci) + h ≥ 0 for all h, so that
ci ∈ Γalg

con for each i.
We conclude that v1 ∈ M ⊗Γ Γalg

con. Thus M1 is defined both over Γ
and over Γalg

con, and so it is in fact defined over Γ ∩ Γalg
con = Γcon, as desired.

This proves the desired result, except for the final assertion. In case K is
algebraically closed, one can repeat the above argument over a suitable finite
extension of O to show that each Mi/Mi−1 is spanned by eigenvectors, then
apply Proposition 5.3.
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Although we will not use the following result explicitly, it is worth pointing
out.

Corollary 5.12. Let K be a valued field, for k algebraically closed.
Then any σ-module M over ΓK

con, all of whose generic slopes are equal, is
isogenous over Γsep

con to a direct sum of standard σ-modules.

Proof. In this case, the ascending and descending filtrations coincide, and
so both are defined over ΓK ∩ Γperf

con = ΓK
con and the eigenvectors are defined

over Γsep
con⊗OO′ for some finite extension O′ of O. Thus the claim follows from

Proposition 5.3.

5.4. Comparison of the Newton polygons. A σ-module over Γcon can be
base-extended both to Γ and to Γan,con; as a result, it admits both a generic
and a special Newton polygon. In this section, we compare these two polygons.
The main results are that the special polygon lies above the generic polygon,
and that when the two coincide, the σ-module admits a partial decomposition
over Γcon (reminiscent of the Newton-Hodge decomposition of [Ka]).

Throughout this section, K is an arbitrary valued field, which we suppress
from the notation.

Proposition 5.13. Let M and N be σ-modules over Γcon. Let r1, . . . , rm

and s1, . . . , sn be the generic (resp. special) slopes of M and N .

1. The generic (resp. special) slopes of M ⊕ N are r1, . . . , rm, s1, . . . , sn.

2. The generic (resp. special) slopes of M ⊗ N are ri + sj for i = 1, . . . , m

and j = 1, . . . , n.

3. The generic (resp. special) slopes of ∧lM are ri1 + · · · + ril
for 1 ≤ i1 <

· · · < il ≤ m.

4. The generic (resp. special) slopes of M∗ are −r1, . . . ,−rm.

Proof. These results follow immediately from the definition of the generic
(resp. special) Newton slopes as the valuations of the eigenvalues of a basis of
eigenvectors of M over Γalg (resp. Γalg

an,con).

Proposition 5.14. Let M be a σ-module over Γcon. Then the special
Newton polygon lies above the generic Newton polygon, and both have the same
endpoint.

Proof. The Newton polygons coincide for M of rank 1 because M has an
eigenvector over Γalg

con by Proposition 3.18. Thus the Newton polygons of ∧nM

coincide for n = rankM ; that is, the Newton polygons of M have the same
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endpoint. By the descending slope filtration (Proposition 5.11), M admits a
basis w1, . . . ,wn over Γalg

con such that modulo SatSpan(w1, . . . ,wi−1), wi is an
eigenvector whose slope is the i-th largest generic slope of M . Let v1, . . . ,vn be
a basis of eigenvectors of M over Γalg

an,con; then by Proposition 4.5, the sequence
of valuations of the eigenvalues of the wi majorizes that of the vi. In other
words, the sequence of generic slopes majorizes the sequence of special slopes,
whence the comparison of Newton polygons.

Proposition 5.15. Let 0 → M1 → M → M2 → 0 be an exact sequence
of σ-modules over Γcon. Suppose the least generic slope of M2 is greater than
the greatest generic slope of M1. Then the special Newton polygon of M is
equal to the union of the special Newton polygons of M1 and M2.

Proof. The least generic slope of M2 is less than or equal to its least
special slope, and the greatest generic slope of M1 is greater than or equal
to its greatest special slope, both by Proposition 5.14. Thus we may apply
Proposition 4.3 over Γalg

an,con (after extending O suitably) to deduce the desired
result.

It is perhaps not surprising that when the generic and special Newton
polygons coincide, one gets a slope filtration that descends farther than usual.

Proposition 5.16. Let M be a σ-module over Γcon whose generic and
special Newton polygons coincide. Then M admits an ascending slope filtration
over Γcon.

Proof. We need to show that the ascending slope filtration of Proposi-
tion 5.10 is defined over Γcon; it is enough to verify this after enlarging O.
This lets us assume that k is algebraically closed, and that the value group
of O contains all of the slopes of M . By Theorem 4.16, we can find a basis
v1, . . . ,vn of eigenvectors of M over Γalg

an,con, with Fvi = λivi for λi ∈ O0[1p ]
such that vp(λ1) ≥ · · · ≥ vp(λn). By Proposition 5.11 (the descending slope
filtration), we can find a basis up to isogeny w1, . . . ,wn of M over Γalg

con such
that Fwi = λiwi +

∑
j<i Aijwj for some Aij ∈ Γalg

con.
Write vn =

∑
i biwi with bi ∈ Γalg

an,con; applying F to both sides, we have
λnbi = λib

σ
i +

∑
j>i bσ

j Aji for i = 1, . . . , n. By Proposition 3.19(a) and (c), we
obtain bi ∈ Γalg

con[1p ] for i = n, n − 1, . . . , 1, and so vn is defined over Γalg
con[1p ].

By repeating the above reasoning, we see that the image of vi in
M/ SatSpan(vi+1, . . . ,vn) is defined over Γalg

con[1p ] for i = n, . . . , 1. Thus the

ascending slope filtration is defined over Γalg
con[1p ]. Since it is also defined over Γ

by Proposition 5.10, it is in fact defined over Γ ∩ Γalg
con[1p ] = Γcon, as desired.
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6. From a slope filtration to quasi-unipotence

In this chapter we construct a canonical filtration of a σ-module over
Γk((t))

an,con. We do this by partially descending the special slope filtration ob-
tained over Γalg

an,con in Chapter 4. More specifically, we show that by changing
the basis over a nearly finite extension of Γan,con, we can make Frobenius act
by a matrix with entries in a nearly finite extension of Γcon, whose generic
Newton polygon coincides with the special Newton polygon, allowing the use
of Proposition 5.16. This will yield the desired filtration (Theorem 6.10), from
which we deduce the p-adic local monodromy theorem (Theorem 1.1) using the
quasi-unipotence of unit-root (σ,∇)-modules over Γcon; the latter is a theorem
of Tsuzuki [T1] (for which see also Christol [Ch]).

6.1. Approximation of matrices. We collect some results that allow us to
approximate matrices from a large ring with matrices from smaller rings. Note:
we will need the notions of slopes and Newton polygons from Section 3.5.

Lemma 6.1. Let K be a nearly finite extension of k((t)) and suppose ΓK
r

contains a unit lifting a uniformizer of K. Then for any x, y ∈ ΓK
r [1p ], x is

coprime to y + πj for all sufficiently large integers j.

Proof. Suppose on the contrary that x and y + πj fail to be coprime for
j = j1, j2, . . . . By Corollary 3.32, the ideal (x, y + πjl) in ΓK

r [1p ] is principal;
let dl be a generator. Note that (y +πji , y +πjl) contains the unit πji −πjl for
i �= l, and so it is the unit ideal; this means the dl are pairwise coprime, and x

is divisible by d1 · · · dl for any l. But x has only finite total multiplicity while
each dl has nonzero total multiplicity, a contradiction. Hence x is coprime to
y + πj for j sufficiently large, as desired.

By an elementary operation on a matrix over a ring, we mean one of the
following operations:

(a) adding a multiple of one row to another;

(b) multiplying one row by a unit of the ring;

(c) interchanging two rows.

An elementary matrix is one obtained from the identity matrix by a single ele-
mentary operation; multiplying a matrix on the right by an elementary matrix
has the same effect as performing the corresponding elementary operation.

Lemma 6.2. Pick s such that 0 < s < r, and let U be a matrix over Γalg
an,r

such that wl(det(U) − 1) > 0 for s ≤ l ≤ r. Then there exists an invertible
matrix V over ΓK

r [1p ], for some nearly finite extension K of k((t)), such that
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wl(UV − I) > 0 for s ≤ l ≤ r. Moreover, if U is defined over Γk((t))
an,r and t lifts

to a semi -unit in Γk((t))
r , then we may take K = k((t)).

Although we only will apply this when U is invertible, we need to formulate
the more general statement in order to carry out the induction.

Proof. We induct on n, the case n = 1 being vacuous. Let Mi de-
note the cofactor of Uni in U , so that det(U) =

∑
i MiUni; note that Mi =

(U−1)in det(U) in Frac(Γalg
an,r). Let d be a generator of the ideal (M1, . . . , Mn)

in Γalg
an,r. Then d divides det(U); by the hypothesis that wl(det(U)− 1) > 0 for

s ≤ l ≤ r, the largest slope of det(U) is less than s, and so the largest slope of
d is also less than s. By Lemma 3.24, there exists a unit u ∈ Γalg

an,r such that
wl(ud − 1) > 0 for s ≤ l ≤ r.

Let α1, . . . , αn be elements of Γalg
an,r such that

∑
i αiMi = ud. Choose

β1, . . . , βn−1 and β′
n ∈ ΓL

r [1p ], for some nearly finite extension L of k((t)), so
that for s ≤ l ≤ r,

wl(βi − αi) >−max
i

{wl(Mi)} (i = 1, . . . , n − 1),
and

wl(β′
n − αn) > max

i
{wl(Mi)}.

By Lemma 6.1, we can find j for which βn = β′
n + πj has the properties that

wl(βn − αn) > maxi{wl(Mi)} for s ≤ l ≤ r and (β1, . . . , βn) is the unit ideal
in ΓL

r [1p ]. (Both hold for j sufficiently large.)
By Corollary 3.32, ΓL

r [1p ] is a Bézout ring. Thus Lemma 2.3 can be applied
to produce a matrix A over ΓL

r [1p ] of determinant 1 such that Ani = βi for
i = 1, . . . , n. Put U ′ = UA−1, and let M ′

n be the cofactor of U ′
nn in U ′. Then

M ′
n = ((U ′)−1)nn det(U ′)

= (AU−1)nn det(U) det(A−1)

=
∑

i

Ani(U−1)in det(U)

=
∑

i

βiMi,

so that
M ′

n − 1 = ud − 1 +
∑

i

(βi − αi)Mi

and hence wl(M ′
n − 1) > 0 for s ≤ l ≤ r.

Apply the induction hypothesis to the upper left (n−1)×(n−1) submatrix
of U ′, let V ′ be the resulting matrix, and enlarge L if needed so that V ′

has entries in ΓL
an,r. Extend V ′ to an n × n matrix by setting V ′

nn = 1 and
V ′

ni = V ′
in = 0 for i = 1, . . . , n− 1. Then for s ≤ l ≤ r, wl((U ′V ′ − I)ij) > 0 for

1 ≤ i, j ≤ n − 1. Moreover, wl(det(V ′) − 1) > 0, so wl(det(U ′V ′) − 1) > 0 as
well.
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We now exhibit a sequence of elementary operations which can be per-
formed on U ′V ′ to obtain a new matrix W over Γalg

an,r with wl(W − I) > 0
for s ≤ l ≤ r; it may clarify matters to regard the procedure as an “approx-
imate Gaussian elimination”. First, define a sequence of matrices {X(h)}∞h=0

by X(0) = U ′V ′ and

X
(h+1)
ij =

{
X

(h)
ij i < n

X
(h)
nj −

∑n−1
m=1 X

(h)
nmX

(h)
mj i = n;

note that X(h+1) is obtained from X(h) by subtracting X
(h)
nm times the m-th row

from the n-th row for m = 1, . . . , n − 1. At each step, min1≤j≤n−1{wl(X
(h)
nj )}

increases by at least min1≤i,j≤n−1{wl((U ′V ′ − I)ij)}; thus for h sufficiently
large,

wl(X
(h)
nj ) > max

{
0, max

1≤i≤n−1
{−wl(X

(h)
in )}

}
(s ≤ l ≤ r; j = 1, . . . , n − 1).

Pick such an h and set X = Xh. Then wl((X − I)ij) > 0 for 1 ≤ i ≤ n and
1 ≤ j ≤ n − 1, wl(XinXnj) > 0 for 1 ≤ i, j ≤ n − 1, and wl(det(X) − 1) > 0.
These together imply wl(Xnn − 1) > 0.

Next, define a sequence of matrices {W (h)}∞h=0 by W (0) = X and

W
(h+1)
ij =

{
W

(h)
ij − W

(h)
in W

(h)
nj i < n

W
(h)
ij i = n;

note that W (h+1) is obtained from W (h) by subtracting W
(h)
in times the n-th

row from the i-th row for i = 1, . . . , n− 1. At each step, wl(X
(h)
in ) increases by

at least wl(X
(h)
nn − 1); thus for h sufficiently large,

wl(W
(h)
in ) > 0 (s ≤ l ≤ r; i = 1, . . . , n − 1).

Pick such an h and set W = Wh; then wl(W − I) > 0 for s ≤ l ≤ r.
To conclude, note that by construction, (U ′V ′)−1W is a product of el-

ementary matrices over Γalg
an,r of type (a). By suitably approximating each

elementary matrix by one defined over ΓK
r [1p ] for a suitable extension K of L,

we get a matrix X such that wl(U ′V ′X − I) > 0 for s ≤ l ≤ r. We may thus
take V = A−1V ′X.

We will need a refinement of the above result.

Lemma 6.3. Pick s such that 0 < s < r, and let U be a matrix over Γalg
an,r

such that wl(det(U) − 1) > 0 for s ≤ l ≤ r. Then for any c > 0, there exists a
nearly finite extension K of k((t)) and an invertible matrix V over ΓK

r [1p ] such

that wl(UV − I) ≥ c for s ≤ l ≤ r. Moreover, if U is defined over Γk((t))
an,r and

t lifts to a semi-unit in Γk((t))
r , then we may take K = k((t)).
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Proof. Put

s′ = s(1 + c/vp(π))−1.

Apply Lemma 6.2 to obtain a nearly finite extension L of k((t)) and an invert-
ible matrix V ′ over ΓL

r [1p ] (with L = k((t)) in case U is defined over Γk((t))
an,r )

such that wl(UV ′ − I) > 0 for s′ ≤ l ≤ r.
Choose semi-unit decompositions

∑
h Wijhπh of (UV ′)ij − I for 1 ≤ i,

j ≤ n. For s ≤ l ≤ r and m < 0 in the value group of O, we deduce from
ws′(UV ′ − I) > 0 that

lvm(UV ′ − I) + m = (l/s′)(s′vm(UV ′ − I) + m) − m(l/s′ − 1)

> −m(l/s′ − 1)

> vp(π)(s/s′ − 1)

= c.

Define a matrix X by Xij =
∑

h≥0 Wijhπh; then UV ′− I −X =
∑

h<0 Wijhπh,
so that for s ≤ l ≤ r,

wl(UV ′ − I − X) = min
m<0

{lvm(UV ′ − I) + m} ≥ c.

By construction, vm(X) = ∞ for m < 0 and v0(X) > 0. Thus I + X is
invertible over Γalg

an,r. Choose a matrix W over ΓK
r , for some extension K of L

(with K = k((t)) if U is defined over Γk((t))
an,r ), such that wl(W − (I +X)−1) ≥ c

for s ≤ l ≤ r. Then W is invertible over ΓK
r , and for s ≤ l ≤ r,

wl(UV ′W − I)

= wl((UV ′ − I − X)W + (I + X)(W − (I + X)−1))

≥ min{wl(UV ′ − I − X) + wl(W ), wl(I + X) + wl(W − (I + X)−1)}
≥ c.

We may thus take V = V ′W .

6.2. Some matrix factorizations. Throughout this section, we take K =
k((t)) and omit it from the notation; note also the use of the näıve partial val-
uations. Let Γu and Γan,u denote the subrings of Γcon and Γan,con, respectively,
consisting of elements x of the form

∑∞
i=0 xiu

i.

Lemma 6.4. For r > 0 and c > 0, let A be a matrix over Γan,r

such that wnaive
r (A − I) ≥ c. Then there exists a unique pair of matrices

U = I +
∑∞

i=1 Uiu
i over Γan,r and V =

∑∞
i=0 Viu

−i over Γr such that

wnaive
r (U − I) > 0, wnaive

r (V − I) > 0, and A = UV . Moreover, these matrices
satisfy wnaive

r (U − I) ≥ c and wnaive
r (V − I) ≥ c.
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Proof. Define a sequence of matrices {B(j)}∞j=0 as follows. Begin by setting

B(0) = I. Given B(j) for some j, put A(B(j))−1 =
∑∞

i=−∞ X
(j)
i ui, C(j) =∑

i≤0 X
(j)
i ui, D(j) =

∑
i>0 X

(j)
i ui, and put B(j+1) = C(j)B(j).

Since wnaive
r (A− I) ≥ c, we have wnaive

r (C(0)− I) ≥ c and wnaive
r (D(0)) ≥ c

as well. Thus wnaive
r (A(B(1))−1 − I) ≥ c, and by induction one has

wnaive
r (C(j) − I) ≥ c and wnaive

r (D(j)) ≥ c for all j. But we can do better,
by showing by induction that wnaive

r (C(j) − I) ≥ (j + 1)c and wnaive
r (D(j+1) −

D(j)) ≥ (j + 2)c for j ≥ 0. Given wnaive
r (C(j) − I) ≥ (j + 1)c, we have

A(B(j+1))−1 − I = A(B(j))−1(C(j))−1 − I

= (C(j) + D(j))(C(j))−1 − I

= D(j)(C(j))−1

= D(j) + D(j)((C(j))−1 − I).

Since D(j) has only positive powers of u, C(j+1) is equal to the sum of the
terms of D(j)((C(j))−1 − I) involving nonpositive powers of u. In particular,

wnaive
r (C(j+1) − I) ≥ wnaive

r (D(j)((C(j))−1 − I)) ≥ c + (j + 1)c = (j + 2)c;

likewise, D(j+1) − D(j) consists of terms from D(j)((C(j))−1 − I), so that
wnaive

r (D(j+1) − D(j)) ≥ (j + 2)c. This completes the induction.
Since C(j) converges to I, we see that B(j) converges to a limit V such

that wnaive
r (V − I) ≥ c. Under wnaive

r , I +D(j) also converges to a limit U such
that wnaive

r (U − I) ≥ c, and A(B(j))−1 − I − D(j) converges to 0. Therefore
AV −1 = U has entries in Γan,r,naive, and U and V satisfy the desired conditions.

This establishes the existence of the desired factorization. To establish
uniqueness, suppose we have a second decomposition A = U ′V ′ with U ′ − I

only involving positive powers of u, V ′ only involving negative powers of u,
wnaive

r (U ′ − I) > 0, and wnaive
r (V ′ − I) > 0. Within the completion of Γr[1p ]

with respect to | · |r, the matrices U, V, U ′, V ′ are invertible and (U ′)−1U =
V ′V −1. On the other hand, (U ′)−1U − I involves only positive powers of u,
while V ′V −1 − I involves no positive powers of u. This is only possible if
(U ′)−1U − I = V ′V −1 − I = 0, which yields U = U ′ and V = V ′.

The following proposition may be of interest outside of its use to prove
the results of this paper. For example, Berger’s proof [Bg, Cor. 0.3] that any
crystalline representation is of finite height uses a lemma from [Ke1] equivalent
to this.

Proposition 6.5. Let A be an invertible matrix over Γan,con. Then there
exist invertible matrices U over Γan,u and V over Γcon[1p ] such that A = UV .
Moreover, if wnaive

r (A − I) > 0 for some r > 0, there are unique choices of
U and V respectively such that U − I involves only positive powers of u, V
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involves no positive powers of u, wnaive
r (U − I) > 0 and wnaive

r (V − I) > 0; for
these U and V , min{wnaive

r (U − I), wnaive
r (V − I)} ≥ wnaive

r (A − I).

Proof. By Lemma 6.2, there exists an invertible matrix W over Γcon[1p ]
such that wnaive

r (AW − I) > 0. Apply Lemma 6.4 to write AW = U1V1 for
matrices U1 over Γan,u and V1 over Γcon, and to write (AW )−T = U2V2 for ma-
trices U2 over Γan,u and V2 over Γcon. Now I = (AW )T (AW )−T = V T

1 UT
1 U2V2,

and so V −T
1 V −1

2 = UT
1 U2 has entries in Γcon ∩Γan,u = Γu. Moreover, UT

1 U2− I

involves only positive powers of u, and so UT
1 U2 is invertible over Γu and U1 is

invertible over Γan,u. Our desired factorization is now A = UV with U = U1

and V = V1W
−1. If wnaive

r (A − I) > 0, we may take W = I above and deduce
the uniqueness from Lemma 6.4.

So far we have exhibited factorizations that separate positive and negative
powers of u. We use these to give a factorization that separates a matrix over
Γan,con into a matrix over Γcon times a matrix with only positive powers of u,
in such a way that the closer the original matrix is to being defined over Γcon,
the smaller the positive matrix will be.

Proposition 6.6. Let A be an invertible matrix over Γan,r such that
wnaive

r (A − I) > 0. Then there exists a canonical pair of invertible matri-
ces U over Γan,u and V over Γcon such that A = UV , U − I has only positive
powers of u, V − I ≡ 0 (mod π), wnaive

r (V − I) ≥ wnaive
r (A − I) and

wnaive
r (U − I) ≥ min

m≤0
{rvnaive

m (A − I) + m}.

Here “canonical” does not mean “unique”. It means that the construction
of U and V depends only on A and not on r.

Proof. Write A − I =
∑

i Aiu
i, and let X be the sum of Ai over all i for

which vp(Ai) > 0. Then

wnaive
r (A(I + X)−1 − I) ≥ wnaive

r (A − I − X) + wnaive
r ((I + X)−1)

= min
vp(Ai)≤0

{vp(Ai) + ri}

= min
m≤0

{rvnaive
m (A − I) + m}.

Apply Proposition 6.5 to factor A(I + X)−1 as BC, where

min{wnaive
r (B − I), wnaive

r (C − I)} ≥ min
m≤0

{rvnaive
m (A − I) + m},

B − I involves only positive powers of u, and C involves no positive powers
of u; the desired matrices are U = B and V = C(I + X).

6.3. Descending the special slope filtration. In this section, we refine the
decomposition given by Theorem 4.16 in the case of a σ-module defined over
Γk((t))

an,con, to obtain our main filtration theorem.
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Lemma 6.7. For K a valued field and r > 0 satisfying the conclusion of
Proposition 3.11, let U be a matrix over ΓK

an,r and V a matrix over ΓK
r such

that wr(V − I) > 0 and vp(V − I) > 0. Then

min
m≤0

{rvm(UV − I) + m} = min
m≤0

{rvm(U − I) + m}.

Proof. In one direction, we have

min
m≤0

{rvm(UV − I) + m} = min
m≤0

{rvm((U − I)V + (V − I)) + m}

= min
m≤0

{rvm((U − I)V ) + m}

≥ min
m≤0,l≥0

{rvl(V ) + l + rvm−l(U − I) + (m − l)}

≥ min
m≤0

{rvm(U − I) + m},

the last inequality holding because wr(V ) = 0. The reverse direction is implied
by the above inequality with U and V replaced by UV and V −1.

The key calculation is the following proposition. In fact, it should be
possible to give a condition of this form that guarantees that a σ-module has
a particular special Newton polygon. However, we have not found such a
condition so far.

Proposition 6.8. Let K be a nearly finite extension of k((t)) and r > 0
a number for which there exists a semi -unit u in ΓK

qr lifting a uniformizer
of K. Let A be an invertible matrix over Γan,r, and suppose that there exists a
diagonal matrix D over O such that

wr(AD−1 − I) > max
i,j

{vp(Dii) − vp(Djj)}.

Then there exists an invertible matrix U over Γan,qr such that wr(U − I) > 0,
U − I involves only positive powers of u, U−1AUσD−1 is invertible over Γr

and vp(U−1AUσD−1 − I) > 0.

Proof. There is no loss of generality in assuming K = k((t)). Then
by Lemma 3.7, for s ≤ qr and x ∈ Γan,qr, ws(x) = wnaive

s (x) and
minm≤0{svm(x) + m} = minm≤0{svnaive

m (x) + m}. This allows us to apply
the results of the previous section.

Put c = maxi,j{vp(Dii)− vp(Djj)} and d = wr(AD−1 − I), and define se-
quences {Ai}, {Ui}, {Vi} for i = 0, 1, . . . as follows. Begin with A0 = A. Given
Ai, factor AiD

−1 as UiVi as per Proposition 6.6, and set Ai+1 = U−1
i AiU

σ
i , so

that Ai+1D
−1 = Vi(DUσ

i D−1).
Note that the application of Proposition 6.6 is only valid if

wr(AiD
−1 − I) > 0. In fact, we will show that

min
m≤0

{rvm(AiD
−1 − I) + m} ≥ d + i((q − 1)d − c)
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and

wr(AiD
−1 − I) ≥ d − c > 0

by induction on i. Both assertions hold for i = 0. Given that they hold for i,
we have wr(Ui − I) ≥ minm≤0{rvm(AiD

−1 − I) + m} by Proposition 6.6. On
one hand, we have

wr(DUσ
i D−1 − I) ≥ wqr(Ui − I) − c

= min
m

{qrvnaive
m (Ui − I) + m} − c

≥ min
m

{rvnaive
m (Ui − I) + m} − c

= wr(Ui − I) − c

≥ min
m≤0

{rvm(AiD
−1 − I) + m} − c

≥ d − c;

since wr(Vi−I) ≥ wr(AiD
−1−I) ≥ d−c, we conclude wr(Ai+1D

−1−I) ≥ d−c.
On the other hand, by Lemma 6.7, we have

min
m≤0

{rvm(Ai+1D
−1 − I) + m} = min

m≤0
{rvm(Vi(DUσ

i D−1) − I) + m}

= min
m≤0

{rvm(DUσ
i D−1 − I) + m}

≥ min
m≤0

{rqvm(Ui − I) + m} − c

≥ q min
m≤0

{rvm(Ui − I) + m} − c

≥ q min
m≤0

{rvm(AiD
−1 − I) + m} − c

≥ qd + qi((q − 1)d − c) − c

≥ d + (i + 1)((q − 1)d − c).

This completes the induction and shows that the sequences are well-defined.
We have now shown minm≤0{rvm(AiD

−1 − I) + m} → ∞ as i → ∞. By
Proposition 6.6, this implies wr(Ui−I) → ∞ as i → ∞, and so ws(Ui−I) → ∞
for r ≤ s ≤ qr since Ui − I involves only positive powers of u.

We next consider s ≤ r, for which ws(Vi − I) ≥ d − c > 0 for all i. By
Lemma 6.7,

min
m≤0

{svm(Ai+1D
−1 − I) + m} = min

m≤0
{svm(ViDUσ

i D−1 − I) + m}

= min
m≤0

{svm(DUσ
i D−1 − I) + m}

≥ wsq(Ui − I) − c.

For r/q ≤ s ≤ r, we already have wsq(Ui − I) − c → ∞ as i → ∞, which
yields minm≤0{svm(Ai+1D

−1 − I) + m} → ∞ as i → ∞; by similar reasoning,
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ws(Ai+1D
−1 − I) ≥ d− c for large i. By Proposition 6.6 (and the fact that the

decomposition therein does not depend on s), we deduce ws(Ui+1− I) → ∞ as
i → ∞. But now we can repeat the same line of reasoning for r/q2 ≤ s ≤ r/q,
and then for r/q3 ≤ s ≤ r/q2, and so on. Hence ws(Ui − I) → ∞ for all s > 0.

We define U as the convergent product U0U1 · · · ; note that U is invertible
because the product · · ·U−1

1 U−1
0 also converges. Moreover,

AiD
−1 = (U0 · · ·Ui−1)−1A(U0 · · ·Ui−1)σD−1

converges to U−1AUσD−1 as i → ∞. But for m ≤ 0, we already have
rvm(AiD

−1−I)+m → ∞ as i → ∞, so that vm(U−1AUσD−1−I) = ∞. Hence
U−1AUσD−1 and its inverse have entries in Γr and U−1AUσD−1 is congruent
to I modulo π, as desired.

This lemma, together with the results of the previous chapters, allows
us to deduce an approximation to our desired result, but only so far over an
unspecified nearly finite extension of k((t)).

Proposition 6.9. Let M be a σ-module over Γan,con = Γk((t))
an,con whose spe-

cial Newton slopes lie in the value group of O. Then there exists a nearly finite
extension K of k((t)) such that M ⊗Γan,con ΓK

an,con is isomorphic to M1 ⊗ΓK
con

ΓK
an,con for some σ-module M1 over ΓK

con[
1
p ] whose generic and special Newton

polygons coincide.

If k is perfect, we can take K to be separable over k((t)), but this is not
necessary for our purposes.

Proof. Pick a basis of M and let A be the matrix via which F acts on this
basis. By Theorem 4.16, there exists an invertible matrix X over Γalg

an,con such
that A = XDX−σ for some diagonal matrix D over O. Choose r > 0 such
that A is invertible over Γr and X is invertible over Γalg

an,rq.
Choose c > maxij{vp(Dii) − vp(Djj)}. By Lemma 6.3 applied to XT ,

there exists a nearly finite extension K of k((t)) and an invertible matrix V

over ΓK
r [1p ] such that wl(V X − I) ≥ 2c for r ≤ l ≤ qr. By replacing K by

a suitable inseparable extension, we can ensure that ΓK
qr contains a semi-unit

lifting a uniformizer of K.
Observe that

(V AV −σ)D−1 = (V X)D(V X)−σD−1.

Since wr(V X − I) ≥ 2c and

wr(D(V X)−σD−1 − I) ≥ wqr(V X − I) − c ≥ c,

we have wr(V AV −σD−1−I) ≥ c. By Proposition 6.8, there exists an invertible
matrix U over ΓK

an,qr such that U−1V AV −σUσD−1 has entries in ΓK
r and is

congruent to I modulo π. Put W = V −1U ; then we can change basis in M so
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that F acts on the new basis via the matrix W−1AW σ. Let M1 be the ΓK
con[

1
p ]-

span of the basis elements; by Proposition 5.9, the generic Newton slopes of
M1 are the valuations of the entries of D, so they coincide with the special
Newton slopes. Thus M1 is the desired σ-module.

By descending a little bit more, we now deduce the main result of the
paper, a slope filtration theorem for σ-modules over the Robba ring.

Theorem 6.10. Let M be a σ-module over Γan,con = Γk((t))
an,con. Then there

is a filtration 0 = M0 ⊂ M1 ⊂ · · · ⊂ Ml = M of M by saturated σ-submodules
such that :

(a) for i = 1, . . . , l, the quotient Mi/Mi−1 has a single special slope si;

(b) s1 < · · · < sl;

(c) each quotient Mi/Mi−1 contains an F -stable Γcon[1p ]-submodule Ni of the
same rank, which spans Mi/Mi−1 over Γan,con, and which has all generic
slopes equal to si.

Moreover, conditions (a) and (b) determine the filtration uniquely, and the Ni

in (c) are also unique.

Proof. Let s1 be the lowest special slope of M and m its multiplicity. We
prove that there exists a saturated σ-submodule M1 of rank m whose special
slopes all equal s1, that M1 contains an F -stable Γcon[1p ]-submodule N1 of the
same rank, which spans M1 over Γan,con, and whose generic slopes equal s1,
and that these properties uniquely characterize M1 and N1. This implies the
desired result by induction on the rank of M . (Once M1 is constructed, apply
the induction hypothesis to M/M1.)

We first establish the existence of M1. Let O′ be a Galois extension of
O to which σ extends whose value group contains all of the special slopes
of M . By Proposition 6.9, for some valued field K nearly finite and normal
over k((t)), M is isomorphic over ΓK

an,con ⊗O O′ to a σ-module M ′ defined
over ΓK

con[
1
p ] ⊗O O′ whose generic and special Newton polygons are equal. By

Proposition 5.16, M ′ admits an ascending slope filtration over ΓK
con⊗OO′, and

so M admits one over ΓK
an,con⊗OO′; let Q1 and P1 be the respective first steps

of these filtrations. Then the slope of P1 is s1 with multiplicity m. Moreover,
the top exterior power of P1 is defined both over Γalg

an,con (because the lowest
slope of ∧mM is s1m, which is in the value group of O) and over ΓK

an,con⊗OO′,
and hence over their intersection ΓK

an,con. Thus P1 is defined over ΓK
an,con.

Let K1 be the maximal purely inseparable subextension of K/k((t)) (nec-
essarily a valued field), and let M1 be the saturated span of the images of P1

under Gal(K/K1); by Corollary 3.16, M1 descends to ΓK1
an,con, and its rank is
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at least m. Also, over Γalg
an,con ⊗O O′, M1 is spanned by eigenvectors of slope

s1, so the special slopes of M1 are all at most s1 by Proposition 4.5. Thus M1

has the single slope s1 with multiplicity m.
We must still check that M1 descends from ΓK1

an,con to Γan,con. Let e1, . . . , en

be a basis of M and let v1, . . . ,vm be a basis of M1. Then we can write
vi =

∑
j cijej for some cij ∈ ΓK1

an,con. Since K1/k((t)) is purely inseparable,

Kqd

1 ⊆ k((t)) for some integer d; for any such d, F dv1, . . . , F
dvm is a basis

of M1 and F dvi =
∑

j cσd

ij F dej . Since each cσd

ij belongs to Γan,con, each F dvi

belongs to M ; thus M1 descends to Γan,con.
We next establish existence of an F -stable Γcon[1p ]-submodule N1 of M1,

having the same rank and spanning M1 over Γan,con, and having all generic
slopes equal to s1. Note that Q1, defined above, is an F -stable (ΓK

con[
1
p ]⊗OO′)-

submodule of M1 ⊗Γan,con ΓK
an,con ⊗O O′ = P1 with the properties desired of N1.

Moreover, Q1⊗ΓK
con

Γalg
con is equal to the (Γalg

con[1p ]⊗OO′)-span of the eigenvectors
of M of slope s1, which is invariant under Gal(k((t))alg/k((t))perf)×Gal(O′/O).
Thus Q1 is invariant under Gal(K/K1) × Gal(O′/O); by Galois descent, it
descends to ΓK1

con[
1
p ], and thus to Γcon[1p ] (again, by applying Frobenius repeat-

edly). This yields the desired N1.
With the existence of M1 and N1 in hand, we check uniqueness. For

M1, note that M1 ⊗Γan,con Γalg
an,con is equal to the (Γalg

an,con ⊗O O′)-span of the
eigenvectors of M of slope s1, because otherwise some eigenvector of slope s1

would survive quotienting by M1, contradicting Proposition 4.4 because the
quotient has all slopes greater than s1. This description uniquely determines
M1. For N1, note that N1⊗Γcon Γalg

con⊗OO′ is equal to the (Γalg
con[1p ]⊗OO′)-span

of the eigenvectors of M of slope s1, because it contains a basis of eigenvectors
of slope s1 by Proposition 5.11. This description uniquely determines N1.

Thus M1 and N1 exist and are unique; as noted above, induction on the
rank of M now completes the proof.

One consequence of this proposition is that if k is perfect, the lowest slope
eigenvectors of a σ-module over Γan,con are defined not just over Γalg

an,con, but
over the subring Γan,con ⊗Γcon Γsep

con. (If k is not perfect, then Γsep
con does not

really make sense, but we can replace it with Γalg
con to get a weaker but still

nontrivial statement.)

6.4. The connection to the unit-root case. In this section, we deduce
Theorem 1.1 from Theorem 6.10. To exploit the extra data of a connection
provided by a (σ,∇)-module, we invoke Tsuzuki’s finite monodromy theorem
for unit root F -crystals [T1, Th. 5.1.1], as follows. (Another proof of the
theorem appears in [Ch], and yet another in [Ke1]. However, none of these
proves the theorem at quite the level of generality we seek, so we must fiddle
a bit with the statement.)
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Recall that a valued field K/k((t)) is said to be nearly finite separable if
it is a finite separable extension of k1/pm

((t)) for some nonnegative integer m

(and that not all finite separable extensions of k((t)) are valued fields).

Proposition 6.11. Let M be a unit-root (σ,∇)-module of rank n over
Γcon = Γk((t))

con . For any nearly finite extension K of k((t)), if there exists a basis
of M⊗Γcon ΓK

con on which F acts via a matrix A with vp(A−I) > 1/(p−1), then
the kernel of ∇ on M ⊗Γcon ΓK

con has rank n over O and is F -stable. Moreover,
such a K can always be chosen which is separable over k((t)) if k is perfect,
or nearly separable if k is imperfect.

Proof. The theorem of Tsuzuki [T1, Th. 5.1.1] establishes the first asser-
tion for k algebraically closed; in fact, it produces a basis of eigenvectors in the
kernel of ∇. The first assertion in general follows from this case by a relatively
formal argument, given below. Note that the kernel of ∇ is always F -stable,
so we do not have to establish this separately.

We now treat general k by a “compactness” argument. For simplicity
of notation, let us assume K = k((t)), and let O′ be the completion of the
maximal unramified extension of the direct limit of O σ→ O σ→ · · · . Then
Tsuzuki’s theorem provides a basis v1, . . . ,vn of the kernel of ∇ over Γkalg((t))

con ,
and we must produce a basis of the kernel of ∇ over Γcon. Let e1, . . . , en be a
basis of M and put vi =

∑
j,l ci,j,lu

lej . Put dj,l = mini{vp(ci,j,l)/vp(π)}, and
whenever dj,l < ∞, write ci,j,l as πdj,lfi,j,l.

The fact that ∇vi = 0 for i = 1, . . . , n can be rewritten as a set of
“quasilinear” equations in the fi,j,l. That is, for h = 1, 2, . . . , we have equations
of the form ∑

i,j,l

gh,i,j,lfi,j,l = 0

for certain gh,i,j,l ∈ O, such that for any h and m, only finitely many of the
gh,i,j,l are nonzero modulo πm. We are given that these equations have n

linearly independent solutions over O′, and wish to prove they have n linearly
independent solutions over O.

For each finite set S of triples (i, j, l), let TS(O) (resp. TS(O′)) be the set
of functions f : S → O (resp. f : S → O′), mapping a pair (i, j, l) ∈ S to fi,j,l,
which can be extended to a simultaneous solution of any finite subset of the
equations modulo any power of π. If we put the TS into an inverse system under
inclusion on S, then the restriction maps are all surjective, and solutions to the
complete set of equations are precisely elements of the inverse limit. However,
each equation modulo each power of π involves only finitely many variables, so
TS is defined by linear conditions on the fi,j,l. Thus TS(O′) = TS(O) ⊗O O′.
Since the solutions of the system over O′ have rank n, we have rankO′ TS(O′)
= n for S sufficiently large. Thus the same holds over O, which produces n
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O-linearly independent elements of the inverse limit, hence of the kernel of ∇
over Γcon. This establishes the first assertion of the proposition for general k.

Finally, we show that K can be taken to be (nearly) separable over k((t)).
By Proposition 5.10 (where the ad hoc definition of Γsep was given), M⊗ΓconΓsep

admits a basis up to isogeny of eigenvectors w1, . . . ,wn. By the Dieudonné-
Manin classification in the form of Proposition 5.5 (and the fact that the unique
slope is already in the value group), the kernel of ∇ on M ⊗Γcon ΓK

con admits
a basis up to isogeny of eigenvectors over some unramified extension O′ of O;
by the proof of Proposition 5.10, the residue field extension of O′ over O is
separable. Thus O′ ⊆ Γsep, and so each vi in the kernel of ∇ is a Γsep[1p ]-
linear combination of the wi. Hence the vi are defined over Γsep[1p ] ∩ ΓK

con.
If k is perfect, this intersection equals ΓK1

con for K1 the maximal separable
subextension of K over k((t)). If k is imperfect, K1 may fail to be a valued
field. Instead, choose an integer i for which the maximal purely inseparable
subextension of the residue field extension of K1 over k((t)) is contained in
k1/pi

. Then the compositum K2 of K1 and k1/pi

((t)) is a nearly separable
valued field, and the vi are defined over ΓK2

con, as desired.

Theorem 1.1 follows immediately from the next theorem, which refines the
results of Theorem 6.10 in the presence of a connection, by Tsuzuki’s theorem.

Theorem 6.12. Let M be a (σ,∇)-module over Γan,con = Γk((t))
an,con. Then

the filtration of Theorem 6.10 satisfies the following additional properties:

(d) each Mi is a (σ,∇)-submodule;

(e) each Ni is ∇-stable;

(f) there exists a nearly finite separable extension K/k((t)) (separable in case
k is perfect) such that each Ni is spanned by the kernel of ∇ over ΓK

con[
1
p ];

(g) if k is algebraically closed, Ni is isomorphic over ΓK
con[

1
p ] to a direct sum

of standard (σ,∇)-modules.

Proof. Again by induction on the rank of M , it suffices to prove (d), (e),
(f), (g) for i = 1. For (d) and (e), we may assume without loss of generality (by
enlarging O, then twisting) that the special slopes of M belong to the value
group of O and that s1 = 0.

By Proposition 5.8, we can choose a basis for N1 on which F acts by
an invertible matrix X over Γcon. Extend this basis to a basis of M ; then
F acts on the resulting basis via some block matrix over Γan,con of the form(

X Y

0 Z

)
. View ∇ as a map from M to itself by identifying x ∈ M with

x ⊗ du ∈ M ⊗Γan,con Ω1; then ∇ acts on the chosen basis of M by some block
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matrix
(

P Q

R S

)
over Γan,con. The relation ∇ ◦ F = (F ⊗ dσ) ◦ ∇ translates

into the matrix equation(
P Q

R S

) (
X Y

0 Z

)
+

d

du

(
X Y

0 Z

)
=

duσ

du

(
X Y

0 Z

) (
P Q

R S

)σ

.

The lower left corner of the matrix equation yields RX = duσ

du ZRσ. We can
write X = U−1Uσ with U over Γalg

con by Proposition 5.11 (since M1 has all
slopes equal to 0) and Z = V −1DV σ with V over Γalg

an,con and D a scalar
matrix over O whose entries have positive valuation (because M1 is the lowest
slope piece of M). We can write duσ

du = µx for some µ ∈ O and x an invertible
element of Γcon; since uσ ≡ uq (mod π), we have |µ| < 1. By Proposition 3.18,
there exists y ∈ Γalg

con nonzero such that yσ = xy. Now rewrite the equation
RX = duσ

du ZRσ as

yV RU−1 = µD(yV RU−1)σ;

by Proposition 3.19(c) applied entrywise to this matrix equation, we deduce
yV RU−1 = 0 and so R = 0. In other words, M1 is stable under ∇, and (d) is
verified.

We next check that N1 is ∇-stable; this fact is due to Berger [Bg, Lemme
V.14], but our proof is a bit different. Put X1 = dX

du ; then the top left corner
of the matrix equation yields PX + X1 = duσ

du XP σ, or

yUPU−1 + yUX1U
−σ = µ(yUPU−1)σ.

By Proposition 3.19(c), each entry of yUPU−1 lies in Γalg
con, so that the entries

of P lie in Γalg
con∩Γan,con = Γcon. Thus N1 is stable under ∇, and (e) is verified.

To check (f), we must relax the simplifying assumptions. If they do happen
to hold, then N1 is a unit-root (σ,∇)-module over Γcon, so for some (nearly)
finite separable extension K of k((t)), the kernel of ∇ on N1 ⊗Γcon ΓK

con has
full rank. Without the simplifying assumptions, we only have that the kernel
of ∇ has full rank in N1 ⊗Γcon ΓK

con ⊗O O′ for some finite extension O′ of O.
However, decomposing kernel elements with respect to a basis of O′ over O
produces elements of the kernel of ∇ in N1 ⊗Γcon ΓK

con which span M , so that
the kernel has full rank over N1 ⊗Γcon ΓK

con. Thus (f) is verified.
Finally, suppose k is algebraically closed. As noted in the proof of Propo-

sition 6.11, the kernel of ∇ is always F -stable. By the Dieudonné-Manin
classification (Theorem 5.6), it is isogenous as a σ-module to a direct sum of
standard σ-modules. This gives a decomposition of N1 ⊗Γcon ΓK

con as a direct
sum of standard (σ,∇)-modules. Thus (g) is verified and the proof is complete.
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6.5. Logarithmic form of Crew ’s conjecture. An alternate formulation of
the local monodromy theorem can be given, that eschews the filtration and
instead describes a basis of the original module given by elements of the kernel
of ∇. The tradeoff is that these elements are defined not over a Robba ring, but
over a “logarithmic” extension thereof. As this is the most useful formulation
in some applications, we give it explicitly.

For r > 0, the series log(1 + x) = x − x2/2 + · · · converges under | · |r
whenever |x|r < 1. Thus if x ∈ Γcon satisfies |x − 1|r < 1, then log(1 + x) is
well-defined and log(1 + x + y + xy) = log(1 + x) + log(1 + y).

For K a valued field nearly finite separable over k((t)), choose u ∈ ΓK
con

which lifts a uniformizer of K, put ΓK
log,an,con = ΓK

an,con[log u], and extend σ

and d
du to ΓK

log,an,con as follows:

(log u)σ = q log u +
∞∑
i=1

(−1)i−1

i

(
uσ

u1
− 1

)i

d

du
(log u) =

1
u

.

Theorem 6.13. Let M be a (σ,∇)-module over Γan,con = Γk((t))
an,con. Then

for some (nearly) finite separable extension K of k((t)), M admits a basis
over ΓK

log,an,con of elements of the kernel of ∇. Moreover, if k is algebraically
closed, M can be decomposed over ΓK

log,an,con as the direct sum of standard
(σ,∇)-submodules.

Proof. By Theorem 6.12, there exists a basis v1, . . . ,vn of M over ΓK
an,con,

for some nearly finite separable extension K of k((t)), such that

∇vi ∈ SatSpan(v1, . . . ,vi−1) ⊗ Ω1.

Choose a lift u ∈ ΓK
con of a uniformizer of K, view ∇ as a map from M to

itself by identifying v ∈ M with v⊗ du, and write ∇vi =
∑

j<i Aijvi for some
Aij ∈ ΓK

an,con.
Define a new basis w1, . . . ,wn of M over ΓK

log,an,con as follows. First put
w1 = v1. Given w1, . . . ,wi−1 with the same span as v1, . . . ,vi−1 such that
∇wj = 0 for j = 1, . . . , i−1, put ∇vj = ci,1w1+· · ·+ci,i−1wi−1 and write ci,j =∑

l,m di,j,l,mul(log u)m. Now recall from calculus that every expression of the
form ul(log u)m, with m a nonnegative integer, can be written as the derivative
with respect to u of a linear combination of such expressions. (If l = −1, the
expression is the derivative of a power of log u times a scalar. Otherwise,
integration by parts can be used to reduce the power of the logarithm.) Thus
there exist ei,j ∈ ΓK

log,an,con such that d
duei,j = ci,j . Put wi = vi −

∑
j<i ei,jwj ;

then ∇wi = 0. This process thus ends with a basis w1, . . . ,wn of elements of
the kernel of ∇.
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As in the proof of Proposition 6.11, the kernel of ∇ is F -stable. Thus
if k is algebraically closed, we may apply the Dieudonné-Manin classification
(Theorem 5.6) to decompose M over ΓK

log,an,con as the sum of standard (σ,∇)-
modules, as desired.
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