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On contact Anosov flows

By Carlangelo Liverani*

Abstract

Exponential decay of correlations for C4 contact Anosov flows is estab-
lished. This implies, in particular, exponential decay of correlations for all
smooth geodesic flows in strictly negative curvature.

1. Introduction

The study of decay of correlations for hyperbolic systems goes back to the
work of Sinai [36] and Ruelle [32]. While many results were obtained through
the years for maps, some positive results have been established for Anosov flows
only recently. Notwithstanding the proof of ergodicity, and mixing, for geodesic
flows on manifolds of negative curvature [15], [1], [35], the first quantitative
results consisted in the proof of exponential decay of correlations for geodesic
flows on manifolds of constant negative curvature in two [4], [23], [30] and three
[26] dimensions. The proof there is group theoretical in nature and therefore
ill suited to generalizations of the nonconstant curvature case.1 The conjecture
that all Axiom A mixing flows exhibit exponential decay of correlations had
already been proven false by Ruelle [34], [27] who produced piecewise constant
ceiling suspensions with arbitrarily slow rates of decay.

The next advance was due to Chernov [3] who put forward the first dy-
namical proof showing sub-exponential decay of correlations for geodesic flows
on surfaces of variable negative curvature. The basic idea was to construct a
suitable stochastic approximation of the flow (see also [20] for a generalization
of such a point of view).

*It is a pleasure to thank Lai-Sang Young for many discussions on the subject without
which this paper would not exist. I also profited from several conversations with V. Baladi,
D. Dolgopyat, F. Ledrappier and S. Luzzatto. In addition, I thank M. Pollicott and the
anonymous referees for pointing out several imprecisions in previous versions. I acknowledge
the partial support of the ESF Programme PRODYN and the hospitality of Courant Institute
and I.H.E.S. where part of the paper was written.

1Although some partial results for slowly varying curvature were obtained by perturbative
techniques [4].
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The last substantial advance in the field is due to the work of Dolgopyat
[7], [8], [9]. He was able to use the thermodynamics formalism [36], [33],
[28] and elaborate the necessary estimate on the Perron-Frobenius operator to
control the Laplace transform of the correlation function. As a consequence
he established exponential decay of correlations for all Anosov flows with C1

strong stable and unstable foliations. He also gave conditions for fast decay of
correlations (for C∞ observable) in more general cases.

Unfortunately, C1 strong stable and unstable foliations seem to be a quite
rare phenomenon for higher dimensional Anosov flows [29], [10], [37]. One is
therefore led to think that, unless some further geometrical structure is present,
Anosov flows decay typically slower than exponentially.

The simplest geometrical structure that can be considered is certainly a
contact structure, geodesic flows in particular. In this case an explicit formula
by Katok and Burns [16] provides an approximation to the temporal function
which is the real quantity on which some smoothness is required. An improve-
ment on the error term for the above formula, that can be found in this paper
(Appendix B, Lemma B.7), shows that, for a contact Anosov flow, if the strong
foliations are τ -Hölder, with τ >

√
3−1, then the temporal function is likely to

be C1 (see Remark B.8). On the other hand, geodesic flows that are a-pinched2

have foliations that are C2
√

a ([18] and Appendix B; see also [13], [11] for more
complete results on such an issue). Dolgopyat’s results would then, at best,
imply that any geodesic flow in negative curvature which is a-pinched, with
a > 1 −

√
3

2 , enjoys exponential decay of correlations.
Given the fact that the above numbers do not look particularly inspiring it

is then natural to guess that all Anosov contact flows exhibit exponential decay
of correlations. This is exactly what is proved in the present paper (Theorem
2.4).

To obtain such a result I built on Dolgopyat’s work and on the results
in [2] where a functional space is introduced over which the Perron-Frobenius
operator can be studied directly, without any coding, contrary to the previous
approaches by Dolgopyat, Chernov and Pollicott.

Over such a space all the thermodynamics quantities studied by Dolgopyat
have a particularly simple analogy with a specially transparent interpretation.
It is then possible to establish a spectral gap for the generator of the flow and
this, in turn, implies exponential decay of correlations.

The simplification of the approach is considerable as is testified by the
length of the (self-contained) proof. In addition, the transparency of the rel-
evant quantities allows us to recognize that in certain cases the results of

2That is, such that there exists C > 0 for which −C ≤ sectional curvatures < −aC; clearly
it must be a ∈ (0, 1). Recall that here we are considering higher dimensional manifolds,
geodesic flows on surfaces always have C1 foliations.
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Dolgopyat can be dramatically improved. To keep the exposition as simple
as possible I have chosen to restrict it to the main case in which new results
can be obtained: spectral properties of contact Anosov flows with respect to
the contact volume. This allows choice of a function space simpler than the
one needed in the general case (see [2] for a more general choice of the Banach
space that would accommodate any Anosov flow with respect to any equilib-
rium measure).

The plan of the paper is as follows. Section 2 starts by describing the type
of flows under consideration and the key objects used in the proof. Then the
main result is stated precisely (Theorem 2.4). After that a proof of the result
is presented. The proof is complete provided one assumes Lemma 2.7, Lemma
2.9 and Proposition 2.12. Lemma 2.7 is proven in Section 3 as is Lemma 2.9.
Section 5 contains the proof of Proposition 2.12 modulo an inequality, Lemma
5.2, which is proven in Section 6.

Finally, for the reader’s convenience, the paper contains three appendices.
Appendix A contains a collection of needed–but already well established–facts
on Anosov flows. Appendix B is devoted to the discussion of known–and less
known–properties of Contact flows. Appendix C contains a few technical facts
about averages that will certainly not surprise the experts but needed to be
proven somewhere.

2. Statements and results

We will consider a C4, 2d+1 dimensional, connected compact Riemannian
manifold M and a C4 flow3 Tt : M → M defined on it which satisfies the
following conditions.

Condition 1. At each point x ∈ M there exists a splitting of the tangent
space TxM = Es(x) ⊕ Ec(x) ⊕ Eu(x). The splitting is invariant with respect
to Tt, Ec is one dimensional and coincides with the flow direction; in addition
there exists A, µ > 0 such that

‖dTtv‖ ≤ Ae−µt‖v‖ for each v ∈ Es and t ≥ 0,

‖dTtv‖ ≥ Aeµt‖v‖ for each v ∈ Eu and t ≤ 0.

That is, the flow is Anosov.

Condition 2. There exists a C2 one-form α on M, such that α ∧ (dα)d is
nowhere zero, which is left invariant by Tt (that is α(dTtv) = α(v) for each
t ∈ R and tangent vector v ∈ T M). In other words Tt is a contact flow.

3That is, T0 = Id and Tt+s = Tt ◦ Ts for each t, s ∈ R.
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Remark 2.1. From now on I will assume M to be a Riemannian manifold
with the Riemannian volume being the same as the contact volume α∧ (dα)d.
This is not really necessary, yet it is convenient and can be done without loss
of generality.

With a slight abuse of notation let us define on C1(M, C) the following
group of operators

Ttϕ := ϕ ◦ Tt ; Ltf := f ◦ T−t.(2.1)

The operator Lt specifies the evolution of the densities and therefore should
determine the statistical properties of the system. Unfortunately, the spectral
properties of Lt on C1(M, C) are not well connected to the statistical properties
of the map. To establish such a connection it is necessary to enlarge the space.
In order to do so we must define weaker norms. Clearly such norms will need
to have a relation with the dynamical properties of the system.

The simplest way to embed the dynamics of a system into the topology is
to introduce a dynamical distance. In our case several natural possibilities are
available: for each σ ∈ R let

d+
σ (x, y) :=

∫ ∞

0
eσtd(Ttx, Tty) dt; d−σ (x, y) :=

∫ 0

−∞
e−σtd(Ttx, Tty) dt,(2.2)

where d(·, ·) is the Riemannian metric of M.

Remark 2.2. Note that d+
σ and d−σ are distances only if σ is sufficiently

small (that is, negative and larger, in absolute value, than the absolute values
of all the Lyapunov exponents); otherwise they are only pseudo-distances.4

In the present article we are interested only in the special cases of (2.2)
considered in the following lemma (the trivial proof is left to the reader).

Lemma 2.3. Choose λ ∈ (0, µ) and let ds := d+
λ and du := d−λ . Then du

is a pseudo-distance on M and du(T−tx, T−ty) ≤ e−λtdu(x, y). In addition,
du, restricted to any strong-unstable manifold, is a smooth function and it is
equivalent to the restriction of the Riemannian metric, while points belong-
ing to different unstable manifolds are at an infinite distance. The analogous
properties hold for ds.

We can now start to describe the spaces on which we will consider the
operators Tt and Lt. First of all let us fix δ > 0 so that it will be sufficiently
small (how small will be specified later in the paper) and define

Hs,β(ϕ) := sup
ds(x,y)≤δ

|ϕ(x) − ϕ(y)|
ds(x, y)β

; |ϕ|s,β := |ϕ|∞ + Hs,β(ϕ).(2.3)

4That is, they can attain the value +∞.
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Definition 1. In the following by the Banach space Cβ
s (M, C) ⊂ C0(M, C)

we will mean the closure of C1(M, C) with respect to the norm | · |s,β . Similar
definitions hold with respect to the metric du and the Riemannian metric d

(given the space of Hölder function Cβ).

Let us also define the unit ball Dβ := {ϕ ∈ Cβ
s (M, C) | |ϕ|s,β ≤ 1}. For a

given β < 1, and f ∈ C1(M, C), let

‖f‖w := sup
ϕ∈D1

∫
M

ϕf ; ‖f‖ := ‖f‖s + ‖f‖u ;(2.4)

‖f‖s := sup
ϕ∈Dβ

∫
M

ϕf ; ‖f‖u := Hu,β(f).

Let B(M, C) and Bw(M, C) be the completion of C1(M, C) with respect
to the norms ‖·‖ and ‖·‖w respectively. Note that such spaces are separable by
construction and are all contained in (Cβ)∗, the dual of the β-Hölder functions.

It is well known that the strong stable and unstable foliations for an
Anosov flow are τ -Hölder (see Appendices A, B for quantitative estimates of
τ and Remark B.4 for the use of τ in this paper). Moreover the Jacobian of
the holonomies associated to the stable and unstable foliations are τ -Hölder.
From now on we will assume5

β < τ2.(2.5)

The main result of the paper is the following.

Theorem 2.4. For a C4 Anosov contact flow Tt satisfying Conditions 1
and 2 the operators Lt form a strongly continuous group on B(M, C).6 In
addition, there exists σ, C1 > 0 such that, for each f ∈ C1,

∫
f = 0, the

following holds true

‖Ltf‖ ≤ C1e
−σt|f |C1 .

Clearly the above theorem implies exponential decay of correlations for
C1 functions:∫

fϕ ◦ Tt =
∫

Lt

[
f −

∫
f

]
ϕ +

∫
f

∫
ϕLt1 =

∫
f

∫
ϕ + O(e−σt|f |C1 |ϕ|s,β).

In fact, a standard approximation argument extends the result to all
Hölder functions.

5The square is needed only in Lemma 4.3. In fact, employing the strategy used in [2, §3.6],
and refining Lemma B.7, it may be possible to replace τ2 by τ . I do not pursue this possibility
since it would complicate the proofs without any substantial addition to the present results.

6In fact the only place in which the C4 hypothesis is used is in the estimate (C.5). With
a bit more work, adoption of the alternative approach used in [2, Sub-lemma 3.1.3], it is
possible to reduce the needed smoothness to C3, possibly C2+α, but to reduce it further some
new ideas seem to be needed.
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Corollary 2.5. For each α ∈ (0, 1) there exists Cα > 0 such that, for
each f, ϕ ∈ Cα, ∣∣∣∣∫ fϕ ◦ Tt −

∫
f

∫
ϕ

∣∣∣∣ ≤ Cα|f |Cα |ϕ|Cαe−
ασ

2−α
t.

Remark 2.6. Note that Theorem 2.4 does not imply that L1 is a quasi-
compact operator nor that it enjoys a spectral gap. This is a reflection of the
impossibility, with the ideas at hand, to investigate directly the time one map
and indicates that the result must be pursued in a more roundabout way.

The proof of Theorem 2.4 is achieved via a careful study of the spectral
properties of the generator of the group. The first step consists in the following
result proven in Section 3.

Lemma 2.7. The operators Lt extend to a group of bounded operators on
B(M, C) and Bw(M, C); they form a strongly continuous group. In addition,
for each β′ < β there exists a constant B ≥ 0 such that, for each f ∈ Bw(M, C),
t ≥ 0,

‖Ltf‖w ≤ ‖f‖w

and, for each f ∈ B(M, C), t ≥ 0,

‖Ltf‖ ≤ ‖f‖; ‖Ltf‖ ≤ 3e−λβ′t‖f‖ + B‖f‖w.

From now on let β′ be fixed.
Accordingly the spectral radius of Lt, t ≥ 0, is bounded by one. In

addition, it is possible to define the generator X of the group. Clearly, the
domain D(X) ⊃ C2(M, C) and, restricted to C2(M, C), it is nothing but the
action of the vector field defining the flow.

The spectral properties of the generator depend on the resolvent R(z) =
(zId − X)−1. It is well known (e.g. see [5]) that for all z ∈ C, �(z) > 0, the
following holds:

R(z)f =
∫ ∞

0
e−ztLtfdt.(2.6)

Thanks to (2.6) it is possible to obtain the analogue of Lemma 2.7 for the
resolvent.

Lemma 2.8. For each z ∈ C, �(z) = a > 0,

‖R(z)‖w ≤ a−1 ; ‖R(z)‖ ≤ a−1 ; ‖R(z)nf‖ ≤ 3
(a + λβ′)n

‖f‖ + a−nB‖f‖w.
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Proof. The first two inequalities follow directly from formula (2.6) and
the first two inequalities of Lemma 2.7:

‖R(z)f‖ ≤
∫ ∞

0
e−at‖Ltf‖ dt ≤ a−1‖f‖.

By induction one easily obtains the formula

R(z)nf =
1

(n − 1)!

∫
R+

tn−1e−ztLtfdt.(2.7)

Again, by Lemma 2.7

‖R(z)nf‖≤ 1
(n − 1)!

∫ ∞

0
tn−1e−at(3e−λβ′t‖f‖ + B‖f‖w)

≤ 3‖f‖
(a + λβ′)n

+ a−nB‖f‖w.

The next basic result (proven in Section 4) is a compactness property for
the operators R(z).

Lemma 2.9. For each a = �(z) > 0 the operator R(z), seen as an opera-
tor from B(M, C) to Bw(M, C), is compact.

Proposition 2.10. For each a = �(z) > 0 the operator R(z), seen as an
operator on B(M, C), is quasi -compact, has spectral radius a−1 and essential
spectral radius bounded by (a + λβ′)−1.

Proof. The bound on the spectral radius of R(z) follows trivially from the
second inequality of Lemma 2.8. By the third inequality of Lemma 2.8, Lemma
2.9 and the usual Hennion’s argument [12] based on Nussbaum’s formula [25],
it follows that the essential spectral radius is bounded by (a + λβ′)−1. Let
us recall the argument. Nussbaum’s formula asserts that if rn is the inf of
the r such that {R(z)nf}‖f‖≤1 can be covered by a finite number of balls of
radius r, then the essential spectral radius of R(z) is given by lim infn→∞ n

√
rn.

Let B1 := {f ∈ B | ‖f‖ ≤ 1}. By Lemma 2.9, R(z)B1 is relatively compact
in Bw. Thus, for each ε > 0 there are f1, . . . , fNε

∈ R(z)B1 such that R(z)B1 ⊆⋃Nε

i=1 Uε(fi), where Uε(fi) = {f ∈ B | ‖f − fi‖w < ε}. For f ∈ R(z)B1 ∩Uε(fi),
Lemma 2.8 implies that

‖R(z)n−1(f − fi)‖≤
3

(a + λβ′)n−1
‖f − fi‖ +

B

an−1
‖f − fi‖w

≤ a−n+1

{
3

(1 + λβ′a−1)n−1
+ Bε

}
.

Choosing ε = (1 + λβ′a−1)−n+1 we can conclude that for each n ∈ N the
set R(z)n(B1) can be covered by a finite number of ‖ · ‖-balls of radius
(3 + B)(a + λβ′)−n+1.
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For each ζ ∈ R+ let Uζ := {z ∈ C | �(z) > −ζ}. Proposition 2.10 implies
the following corollary.7

Corollary 2.11. The spectrum σ(X) of the generator is contained in
the left half -plane. The set σ(X) ∩ Uλβ′ consists of, at most, countably many
isolated points of point spectrum with finite multiplicity. Zero is the only eigen-
value on the imaginary axis and has multiplicity one.

Proof. If Fz(w) := z −w−1, then σ(X) = Fz(σ(R(z))). Thus the essential
spectrum of X must lie outside

⋃
	(z)>0{w ∈ C | |z − w| ≤ a + λβ′}. This is

exactly Uλβ′ .

Since Lt1 = 1, and the space V0 := {f ∈ C1(M, C); |
∫

f = 0}B(M,C)
is

invariant, it follows that σ(X) = {0} ∪ σ(X|V0). Next, suppose Xf = ibf for
some b ∈ R and f ∈ V0, f �= 0; then R(z)f = (z + ib)−1f ; thus for z = a − ib

(see equation (3.2)),

‖f‖u ≤ |z + ib|
a + βλ

‖f‖u =
a

a + βλ
‖f‖u.

That is, ‖f‖u = 0. Let {fn} ⊂ C1 be an approximating sequence for f , ϕ ∈ Dβ,
and t ∈ R+; then∣∣∣∣∫ fϕ

∣∣∣∣ =
∣∣∣∣e−ibt

∫
fTtϕ

∣∣∣∣ ≤ ∣∣∣∣∫ fnTtϕ

∣∣∣∣ + ‖f − fn‖.

Contact Anosov flows are mixing (see Corollary B.6); hence limt→∞
∫

fnTtϕ

= 0. The arbitrariness of t and n implies then
∫

fϕ = 0; that is, ‖f‖s = 0,
which implies the contradiction f ≡ 0.

The above result, although rather interesting, does not suffice to inves-
tigate the statistical properties of the system. To do so it is necessary to
exclude the presence of the spectrum near the imaginary axis (apart from 0).
This follows from the next result proven in Sections 5, 6.

Proposition 2.12. There exists b∗ > 0, c̄ > 1 and ν ∈ (0, 1) such that
for each z = a + ib, a ∈ [c̄−1, c̄], |b| ≥ b∗, the spectral radius of R(z) is bounded
by νa−1. More precisely, there exists c∗ > 0 such that, for n̄ = �c∗ ln |b|�,

‖R(z)n̄‖ ≤
(ν

a

)n̄
.

Corollary 2.13. There exists ζ1 < 0 such that σ(X) ∩ Uζ1 = {0}.

7This is the equivalent of the statement that the Laplace transform of the correlation
function can be extended to a meromorphic function in a neighborhood of the imaginary
axes; see [28].
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Proof. By the same argument from the beginning of Corollary 2.11,
with ζ0 = min{λβ′, ν−1 − 1}, we see that Uζ0 ∩ σ(X) ⊂ {z ∈ C | �(z) ∈
[−ζ0, 0], |�(z)| ≤ b∗}. By Corollary 2.11 it follows that Uζ0 ∩ σ(X) contains
only finitely many points and from this the result follows.

To conclude we need to transfer the knowledge gained on the spectrum
of X into an estimate on the behavior of the semigroup. A typical way to do
so would be to use the Weak Spectral Mapping Theorem ([24, p. 91]) stating
that, for all t ∈ R, σ(Tt) = exp(tσ(X)), provided the semigroup is polynomially
bounded for all times. Unfortunately, our semigroup grows exponentially in
the past. Thus we need to argue directly. For this purpose a silly preliminary
fact is needed.

Lemma 2.14. For each z ∈ ρ(X) (the resolvent set) and f ∈ D(X2) the
following holds true:

‖R(z)f − z−1f − z−2Xf‖ ≤ |z|−2‖R(z)‖ ‖X2f‖.

Proof. This follows from the identity R(z)f = z−1f+z−2Xf+z−2R(z)X2f ,
for all f ∈ D(X2).

Next notice that, for each a > 0 and f ∈ D(X2) ∩ C0(M, C),8

Ltf =
1
2π

lim
w→∞

∫ w

−w
db eat+ibtR(a + ib)f.(2.8)

We can now conclude the section with the proof of Theorem 2.4.

Proof of Theorem 2.4. Let ν1 = max{ν, 4c∗

3+4c∗ } and

3ω = min{ζ1, (ν−1
1 − 1)c̄}.9

First of all by equation (3.2) it follows that

‖Ltf‖u ≤ e−λβt‖f‖u,(2.9)

and so we need only worry about the stable part of the norm.

8Just notice that, for f ∈ D(X2), ‖R(z)f‖∞ ≤ |z|−1(‖X2f‖ + ‖Xf‖ + ‖f‖) (see Lemma
2.14). Hence for each x ∈ M, a > 0, R(a + ib)f(x) is in L2 as a function of b. This means
that for f ∈ D(X2) and x ∈ M one can apply the inverse Laplace transform formula and
obtain the formula (2.8) point-wise. Note that this implies only that the limit in (2.8) takes
place in the L2([0,∞], e−atdt) sense as a function of t. On the other hand Ltf is a continuous
function of t and, again by Lemma 2.14, R(a+ ib)f − 1

a+ib
f is in L1(R,B), as a function of b.

From this it follows that the limit in (2.8) converges in the B norm for each t ∈ R+.
9The constants ν, c∗, c̄ are defined in Proposition 2.12; ζ1 is defined in Corollary 2.13.
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Since
∫

f = 0, Corollary 2.13 implies that the function R(z)f is analytic
in the domain {�(z) ≥ −ζ1}. Then M := supa∈[−2ω,0]; |b|≤b∗ ‖R(a+ ib)f‖ < ∞;
moreover, for a ∈ [−2ω, 0] and |b| ≥ b∗,

R(a + ib) = [Id + (a − c̄)R(c̄ + ib)]−1 R(c̄ + ib).

To see that the above formula is well defined consider that, by hypothesis and
Lemma 2.8,

‖(a − c̄)R(c̄ + ib)‖ ≤ (1 +
|a|
c̄

) ≤ 1/3 + 2/3ν−1
1 .

In addition, for n̄ = �c∗ ln |b|� Proposition 2.12 implies

‖(a − c̄)n̄R(c̄ + ib)n̄‖ ≤
[
ν1

(
1 +

|a|
c̄

)]n̄

≤
[
2
3

+
ν1

3

]n̄

.

Accordingly,

‖ [Id + (a − c̄)R(c̄ + ib)]−1 ‖

≤
∞∑

n=0

‖(a − c̄)nR(c̄ + ib)n‖

≤
∞∑

k=0

‖[(a − c̄)n̄R(c̄ + ib)n̄]k‖
n̄−1∑
j=0

‖[(a − c̄)R(c̄ + ib)]j‖

≤ 9
2(1 − ν1)2

|b|c
∗ ln[ 1

3
+ 2

3ν1
] ≤ 9

2(1 − ν1)2
|b|1/2.

Thus there exists M1 > 0 such that, for a ∈ [−2ω, 0] and b ∈ R,

‖R(a + ib)‖ ≤ M1

√
|b| + M.(2.10)

To conclude we use (2.8) and shift the contour of integration. For each
f ∈ D(X2) ∩ C0,

Ltf =
1

2πi

∫
−2ω+iR

dz eztR(z)f =
1

2πi

∫
−2ω+iR

dz ezt

(
R(z) − 1

z

)
f.

By Lemma 2.14 and (2.10) we have that for each ϕ ∈ Dβ and f ∈ D(X2)∩C0,∣∣∣∣∫
M

Ltfϕ

∣∣∣∣ ≤ 1
2π

∫
R

db

∥∥∥∥R(−2ω + ib)f − 1
−2ω + ib

f

∥∥∥∥ e−2ωt

≤ C
{
‖X2f‖ + ‖Xf‖ + ‖f‖

}
e−2ωt.

We have thus completed the proof for all f ∈ D(X2) ∩ C0; to obtain the
announced result for f ∈ C1 a standard approximation argument suffices. Let
φ : R+ → R+ be a C∞ function such that supp(φ) ⊂ (0, 1) and

∫
φ = 1. For

each ε > 0 define φε(t) := ε−1φ(ε−1t) and, for each f ∈ B(M, C),

fε :=
∫ ∞

0
φε(t)Ltf.



ON CONTACT ANOSOV FLOWS 1285

Clearly fε ∈ D(Xn) ∩ C1 for each n ∈ N. More to the point,

‖X2fε‖ ≤
∫

|φ′′
ε(t)|‖Ltf‖ ≤ ε−2|φ′′|L1 |f |C1 .

In addition, if f ∈ C1,

‖fε − f‖ ≤
∫

φε(t)|f ◦ T−t − f |Cβ ≤ ε1−β|f |C1 sup
t∈[0,1]

|T−t|C1 .

Accordingly, for each f ∈ C1(M, C),
∫

f = 0, we have

‖Ltf‖ ≤ ‖Ltfε‖ + ‖f − fε‖ ≤ C1e
−2ωtε−2|f |C1 + C2ε

1−β|f |C1 ,

and the desired results follow by choosing ε = e−2ω(3−β)−1t; hence σ =
2ω(1 − β)(3 − β)−1.

3. Proofs: the Lasota-Yorke inequality

Proof of Lemma 2.7. By Lemma 2.3, for each α ∈ (0, 1]

|Ttϕ|∞ = |ϕ|∞; Hs,α(Ttϕ) ≤ e−λαtHs,α(ϕ).(3.1)

The first inequalities of Lemma 2.7 are immediate since, for f ∈ C1(M, C) and
ϕ ∈ Dβ or ϕ ∈ D1, ∫

M
ϕLt f =

∫
M

fTtϕ.

In addition, again by Lemma 2.3

‖Ltf‖u = Hu,β(Ltf) ≤ e−βλtHu,β(f) = e−λβt‖f‖u.(3.2)

To conclude the argument we need the averaging operator10

As
δϕ(x) :=

1
ms(W s

δ (x))

∫
W s

δ (x)
ϕ(z)ms(dz).(3.3)

The basic properties of such an operator consist in the following

Sub-lemma 3.1. There exists C > 0 such that for each ϕ ∈ Dβ,

|As
δϕ − ϕ|∞≤Cδβ|ϕ|s,β ,

Hs,β(As
δϕ − ϕ)≤ (2 + Cδ)Hs,β(ϕ) + Cδ1−β|ϕ|∞,

Hs,1(As
δϕ)≤Cδ−1|ϕ|∞.

10By W s
δ (x) we mean a ball of radius δ, centered at x, with respect to the metric obtained

by restricting the Riemannian metric to W s(x). By ms we designate the corresponding
volume form.
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The above sub-lemma is hardly surprising, yet its proof is a bit technical
and it is postponed to Appendix C. By Sub-Lemma 3.1 it follows that, given
ϕ ∈ Dβ and f ∈ C1,∫

M
fϕ=

∫
M

f{ϕ − As
δϕ} +

∫
M

fAs
δϕ ≤ |ϕ − As

δϕ|s,β‖f‖s + |Aδϕ|s,1‖f‖w

≤ (C(δβ + δ1−β)|ϕ|∞ + (2 + Cδ)Hs,β(ϕ))‖f‖s + Cδ−1‖f‖w.

Accordingly, remembering (3.1), for each ϕ ∈ Dβ,∫
M

Ltfϕ=
∫
M

fTtϕ ≤ (C(δβ + δ1−β)|ϕ|∞

+(2 + Cδ)Hs,β(ϕ ◦ Tt))‖f‖s + Cδ−1‖f‖w

≤ (C(δβ + δ1−β)|ϕ|∞ + (2 + Cδ)e−λβtHs,β(ϕ))‖f‖s + Cδ−1‖f‖w.

We start by requiring 2 + Cδ ≤ 3, then let T0 ∈ R+ be such that 3e−λβT0 ≤
e−λβ′T0 ; at last we choose δ so that C(δβ + δ1−β) ≤ e−λβ′T0 . Thus, for each
t ≤ T0,

‖Ltf‖s ≤ 3e−λβ′t‖f‖s + Cδ−1‖f‖w,(3.4)

‖LT0f‖s ≤ e−λβ′T0‖f‖s + Cδ−1‖f‖w.

For each t ∈ R+ we write t = kT0 + s, k ∈ N, s ∈ (0, T0), and we use (3.4)
iteratively to obtain

‖Ltf‖s ≤ 3e−λβ′t‖f‖s + B‖f‖w(3.5)

with B = Cδ−1(1 − e−λβ′T0)−1.
The strong continuity of the group follows trivially since, for each f ∈

C1(M, C),11

lim
t→0

‖Ltf − f‖ = 0

and C1(M, C) is dense in B(M, C) and Bw(M, C) by construction.

4. Proofs: Quasi-compactness of the resolvent

Proof of Lemma 2.9. The idea is to introduce approximate operators
Rε(z) (close in norm to R(z) as operators from B(M, C) to Bw(M, C)) and
then consider the following sequence of maps (for some τ2 ≥ β∗ > β > 0):

B(M, C) Id�−→ Cβ(M, C)∗
Id
↪→ Cβ∗(M, C)∗

Rε(z)�−→ Bw(M, C).(4.1)

11Indeed, |f ◦ T−t − f |∞ + Hu,β(f ◦ T−t − f) → 0 as t → 0.
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The first map is clearly continuous since for each ϕ ∈ Cβ(M, C) and
f ∈ B(M, C) one has ∫

M
fϕ ≤ ‖f‖ |ϕ|s,β ≤ ‖f‖ |ϕ|Cβ

and thus ‖f‖(Cβ)∗ ≤ ‖f‖. The second is well known to be compact. Hence it
suffices to prove that the last map is continuous; the compactness of Rε(z) as
an operator from B to Bw immediately follows. Let us postpone the proof of
this fact to Lemma 4.4.

To define the approximate operators we introduce the averaging operator

Au
εf(x) := Zε(x)

∫
W u

ε (x)
f(ξ)mu(dξ),(4.2)

where Zε(x) is determined by the equation Au
ε1 = 1. We set Rε(z) := R(z)Au

ε .

Sub-lemma 4.1. The operators Rε(z) satisfy12

|||R(z) − Rε(z)||| ≤ Cεβ.

Proof. For each f ∈ C1(M, C) and ϕ ∈ C0(M, C), we have∣∣∣∣∫
M

Au
εfϕ −

∫
M

fϕ

∣∣∣∣≤ |ϕ|∞
∫
M

dxZε(x)
∫

W u
ε (x)

dξ|f(ξ) − f(x)|

≤Cεβ‖f‖u|ϕ|∞.

Accordingly, ‖Au
εf −f‖w ≤ Cεβ‖f‖; that is, |||Au

ε −Id||| ≤ Cεβ. From Lemma
2.8 it follows that |||Rε(z) − R(z)||| ≤ Ca−1εβ.

From Sub-Lemma 4.1 and the compactness of Rε(z) the compactness of
R(z) : B(M, C) → Bw(M, C) is obvious since the compact operators form a
closed set.

In the previous lemma we postponed the proof of Lemma 4.4. Before
giving such a proof some preparatory work is needed.

Definition 2. Given an operator B : B → B we define B∗ : B∗ → B∗ as
usual. Notice that if ϕ ∈ Dβ ⊂ B∗ and B∗ϕ ⊂ L∞ then, for each f ∈ C1,
Bf ∈ L1, one has ∫

Bfϕ =
∫

fB∗ϕ.(4.3)

Similar definitions hold for Bw and D1.

12By ||| · ||| we mean the norm of an operator viewed as an operator from B(M, C) to
Bw(M, C).



1288 CARLANGELO LIVERANI

Remark 4.2. In the following we will never need to investigate the duals
B∗, B∗

w; it will suffice to consider elements of Dβ and D1. Accordingly we will
always use (4.3).

Next we isolate a result needed in the present argument but useful also in
the following.

Lemma 4.3. There exists c > 0 such that for each α ∈ (0, τ2), ϕ ∈ D1,
z ∈ C with |b| = |�(z)| > 1 and a = �(z) > 0, Au∗

ε R(z)∗ϕ ∈ Cα. More
precisely,

|Au∗
ε R(z)∗ϕ|Cα ≤ c(|b| + ε−1)|ϕ|s,1.

Proof. Let f ∈ C1(M, C) and ϕ ∈ D1; then∫
M

Rε(z)fϕ =
∫
M

fRε(z)∗ϕ

where Rε(z)∗ = Au∗
ε R(z)∗,

R(z)∗ϕ(x) =
∫ ∞

0
e−ztTtϕ(x) dt(4.4)

by the definition of Lt. On the other hand in Appendix C it is shown that

Au∗
ε ϕ(x) =

∫
W u

ε (x)
Z̃ε(x, ξ)ϕ(ξ)mu(dξ)(4.5)

for some appropriate τ -Hölder function Z̃ε (see Lemma C.2). Since by (4.4)

d

dt
(R(z)∗ϕ) ◦ Tt

∣∣∣∣
t=0

= zR(z)∗ϕ − ϕ

it follows that R(z)∗ϕ is Hölder along the strong stable direction and differen-
tiable along the flow direction. Let us set ϕ∗ := R(z)∗ϕ.

Let x, y be two points on the same strong stable manifold, and let Ψ be
the stable holonomy between W uc(x) and W uc(y). According to Lemma C.1,
d(z,Ψ(z)) ≤ Cd(x, y)τ holds for each z ∈ W u

δ (x). Moreover, |1 − JΨ(z)| ≤
Cd(x, y)τ .

If δτ2 ≥ d(x, y)τ2 ≥ ε then (see Lemma C.2)

|Au∗
ε ϕ∗(x) − Au∗

ε ϕ∗(y)| ≤ 2c̄|ϕ|∞d(x, y)αε−τ2
.

Suppose instead d(x, y)τ2 ≤ ε. Let Ψ̂ : W u(x) → W u(y) be the weak stable
holonomy ({Ψ̂(ξ)} = W sc(ξ) ∩ W u(y)). The distance along the flow between
Ψ̂(ξ) and Ψ(ξ) is nothing but the temporal distance ∆(y, ξ) (see definition
at the end of App. A or Figure 2, App. B). Accordingly, Lemma B.7 yields
d(Ψ̂(ξ),Ψ(ξ)) ≤ Cd(x, y)τ2

. In addition, W uc
ε−cεd(x,y)τ2 (y) ⊂ Ψ(W uc

ε (x)) ⊂
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W uc
ε+cεd(x,y)τ2 (y).13 This, together with the uniform transversality between the

unstable manifold and the flow direction, implies that the symmetric difference
between W u

ε (y) and Ψ̂(W u
ε (x)) has a volume bounded by a ε−1d(x, y)α times

the volume of W u
ε (x). Finally, it is easy to verify that JΨ̂ = JΨ. Hence,

remembering Lemma C.2,

|Au∗
ε ϕ∗(x) − Au∗

ε ϕ∗(y)|

≤ C

{
|ϕ|∞d(x, y)α(ε−1 + |b|) +

∫
W u

ε (x)
Z̃ε(x, ξ)|ϕ∗(Ψ(ξ)) − ϕ∗(ξ)|mu(dξ)

}
≤ C

{
|ϕ|∞(ε−1 + |b|) + Hs,1(ϕ)

}
d(x, y)α.

To conclude note that the arguments in the proof of Sub-Lemma 3.1 hold
unchanged for Au∗

ε instead of As
ε. Accordingly,

Hu,α(Au∗
ε ϕ∗) ≤ Cε−1|ϕ∗|∞ ≤ Cε−1|ϕ|∞.

A direct computation shows∣∣∣∣ d

dt
(Au∗

ε ϕ∗) ◦ Tt

∣∣∣∣
t=0

∣∣∣∣
∞

≤ C

(
|ϕ∗|∞ +

∣∣∣∣ d

dt
(ϕ∗) ◦ Tt

∣∣∣∣
t=0

∣∣∣∣
∞

)
≤ C|b| |ϕ|∞.

Since any point in a δ-neighborhood of x can be reached by a path along the
stable, unstable and flow directions of length less than const.δ, the lemma
follows.

We are finally able to prove the continuity of the operator Rε : Cβ∗(M, C) →
Bw(M, C).

Lemma 4.4. For each ε > 0 and z ∈ C, �(z) > 0, the operators Rε(z)
are bounded operators from Cβ∗(M, C)∗ to Bw(M, C).

13By introducing a coordinate system in which W uc(x) and W s(x) are linear spaces one
can represent W uc(y) as {(ξ, F (ξ))} where, by the Hölder continuity of the unstable foliation
and the fact that U(ξ) := DξF , one has ‖U(ξ)‖ ≤ c‖F (ξ)‖τ . And, by the Hölder continuity of
the unstable holonomy, ‖F (ξ)‖ ≤ cd(x, y)τ . Thus, setting γ(t) = (vt, F (vt)), with v := z−x,
and z′ := (z, F (z)), one can estimate

dist(y, z′) =

∫ 1

0

‖γ′(t)‖dt =

∫ 1

0

√
〈(v, U(vt)v), g((vt, F (vt)))(v, U(vt)v)〉dt

=

∫ 1

0

√
〈(v, 0), g((vt, 0))(v, 0)〉 + O(d(x, z)2d(x, y)τ2) dt = d(x, z)(1 + O(d(x, y)τ2

)

where g is the matrix defining the Riemannian metric. On the other hand one can represent
W s(z) as {(G(ζ), ζ)}, where V (ζ) := DζG is bounded in norm by cετ . Setting Ψ(z) =:
(a, b) = (a, F (a)) = (G(b), b) we see that ‖b‖ ≤ cd(x, y)τ . Hence (provided d(x, z) ≥ d(x, y)τ )

dist(z′, Ψ(z)) ≤ c dist((a, 0), z) ≤
∫ 1

0
‖V (bt)b‖dt ≤ c d(x, z)τd(x, y)τ ≤ c d(x, z)d(x, y)τ2

.
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Proof. By Lemma 4.3 it follows that, for each f ∈ C1 and ϕ ∈ D1,∫
M

Rε(z)fϕ ≤ |f |(Cβ∗ )∗ |Rε(z)∗ϕ|Cβ∗ ≤ C(|z| + ε−1)|ϕ|s,1|f |(Cβ∗ )∗

which means ‖Rε(z)f‖w ≤ C(|z|+ ε−1)|f |(Cβ∗ )∗ and the required result follows
by an obvious density argument.

5. Proofs: Resolvent bounds for large �(z)

Proof of Proposition 2.12. Lemma 2.8 states that, for each m, n ∈ N and
f ∈ C1(M, C),

‖R(z)n+mf‖≤ 3
(a + λβ′)m

‖R(z)nf‖ + a−mB‖R(z)nf‖w(5.1)

≤ 3
(a + λβ′)man

‖f‖ + a−mB‖R(z)nf‖w.

Hence all we need is to estimate more precisely the weak norm of R(z)nf .
By (4.2),∫

fϕ =
∫

Au
δ fϕ + O(δβ‖f‖u|ϕ|∞) =

∫
fAu∗

δ ϕ + O(‖f‖u|ϕ|∞).(5.2)

Thus, for each k, l ∈ N, k + l = n, and ϕ ∈ D1 plus equation (5.2),∫
M

R(z)nfϕ=
∫
M

R(z)kfR(z)∗lϕ

=
∫
M

R(z)kfAu∗
δ R(z)∗lϕ + a−lO(‖R(z)kf‖u).

To continue let

Φl(ϕ) := Au∗
δ R(z)∗lϕ.

Thus, taking into account (2.7) and (2.9), we obtain∫
M

R(z)nfϕ =
∫
M

R(z)kfΦl(ϕ) + a−n(1 + a−1λβ)−kO(‖f‖u).(5.3)

Lemma 5.1. There exists c > 0 such that, for each l ∈ N and ϕ ∈ D1,

Hs,β(Φl(ϕ)) ≤ c|b|a−l|ϕ|s,1.

Proof. The proof follows immediately from Lemma 4.3 and formulae (2.7),
(3.1).



ON CONTACT ANOSOV FLOWS 1291

The above estimate is not particularly impressive and clearly it can have
some interest only if we can get good bounds on |Φl(ϕ)|∞. This can be achieved
by using an inequality due to Dolgopyat.14

Lemma 5.2 (the Dolgopyat inequality). There exist c∗, c1, γ > 0 such
that, for each ϕ ∈ R(z)∗(D1) and l ≥ �c∗ ln |b|�, the following holds:

al|Φl(ϕ)|∞ ≤ c1|b|−γl|ϕ|s,1.

The proof of the above lemma can be found in Section 6.
Since equation (3.1) implies that, for each q ∈ N, aqR(z)∗qϕ ∈ Ds,1 and

Hs,β(R(z)∗qϕ) ≤ (a + βλ)−qHs,β(ϕ) by Lemma 5.2 and Lemma 5.1, it follows
that

|R(z)∗kΦl(ϕ)|s,β ≤ c4{(1 + a−1λβ)−k|b| + |b|−γl}a−n|ϕ|s,1.

Choose l := �c∗ ln b�; then there exist c′ > 0 and ν0 ∈ (0, 1) such that when
k = �c′ ln b�, equation (5.3) yields

‖R(z)nf‖w ≤ c5a
−nνn

0 ‖f‖.(5.4)

The proposition follows by (5.1), (5.4), when m = n = n̄/2 (hence c∗ =
2(c∗ + c′)), c̄ = 2, ν ∈ (

√
ν0, 1) and b∗ such that c5(ν0ν

−2)n ≤ 1.

6. Dolgopyat inequality

This section is devoted to the proof of Lemma 5.2. The strategy is based
on the representation (2.7) (actually on the obvious adjoint representation
obtained by (4.4)) and a careful estimate of the corresponding integral.

The following simple preliminary lemma shows that we need to worry
about only a part of the integral defining Φl(ϕ).

Lemma 6.1. There exists ν∗ < 1 such that∣∣∣∣∣ 1
(l − 1)!

∫ e−1a−1l

0
tl−1e−ztAu∗

δ (Ttϕ)dt

∣∣∣∣∣ ≤ νl
∗a

−l|ϕ|∞.

The straightforward proof is left to the reader.
Thus we can limit ourselves to consideration of

1
(l − 1)!

∫ ∞

e−1a−1l
tl−1e−ztAu∗

δ (Ttϕ).

14Actually the original Dolgopyat estimate, [7], holds for the L2 norm and it is done for
a different operator in a different functional space, yet the key cancellation mechanism due
to the oscillations of the exponential and the nonjoint integrability of the foliation remain
substantially identical in the two settings.
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To continue, it is useful to localize in time. To do so we introduce a C∞ function
p : R → R such that 0 ≤ p ≤ 1, supp(p) ⊂ [−1/2, 3/2] and with the property
that

∑∞
k=−∞ p(t − k) = 1 for each t ∈ R. Using such a partition of unity and

setting p0 := �a−1e−1l�, we can write∣∣∣∣∫ ∞

0
tl−1e−ztAu∗

δ (Ttϕ)
∣∣∣∣

≤

∣∣∣∣∣∣
∞∑

k=p0

∫
R

tl−1e−ztp(t − k)Au∗
δ (Ttϕ)

∣∣∣∣∣∣ + νl
∗a

−l(l − 1)!|ϕ|∞.

Let us analyze each of the above addenda separately.
For each k ∈ N (see (4.5)),∫

R
tl−1e−ztp(t − k)Au∗

δ (Ttϕ)

=
∫

R
p(t − k)tl−1e−zt

∫
TkW u

δ (x)
Z̃(x, T−kξ)ϕ(Tt−kξ)JuT−k(ξ),

where by JuTt we designate the unstable Jacobian of the map Tt.
To compute the above quantity it is convenient to localize in space as well.

To this end we fix a sequence of smooth partitions of unity. There exists cd > 0
such that, for each r ∈ (0, 1) one can consider a C4 partition of unity {φr,i}q(r)

i=1

enjoying the following properties:15

(i) For each i ∈ {1, . . . , q(r)}, there exists xi ∈ M such that φr,i(ξ) = 1 for
all ξ ∈ Br(xi) (the ball of radius r centered at xi) and φr,i(ξ) = 0 for all
ξ �∈ Bcdr(xi);

(ii) There exists a K > 0 such that for each r, (i) holds16

‖φ′
r,i(x)‖ ≤ Kr−1χBcdr(xi)(x);

(iii) There exists C > 0 such that q(r) ≤ Cr−2d−1.

Accordingly, we can write∫
R

tl−1e−ztp(t − k)Au∗
δ (Ttϕ) =

q(r)∑
i=1

e−zk

∫
R
p(t)(t + k)l−1e−zt

×
∫

TkW u
δ (x)

φr,i(Ttξ)Z̃(x, T−kξ)ϕ(Ttξ)JuT−k(ξ).

From now on we will assume b > 0, the case b < 0 being identical.

15It is an easy exercise to verify that partitions with the properties below do exist.
16Here, and in the following, χA is the characteristic function of the set A.
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In the following we choose ρ ∈ (0, τ/8) and we fix

r := b−; � :=
1 − τ + 2ρ

2 − τ
.(6.1)

It is useful to partition T kW u
δ (x) into submanifolds. For each xi let us consider

the connected pieces of T kW u
δ (x)∩Bθcdr(xi) intersecting Bcdr(xi) (θ is specified

shortly). Call them {W u
k,i,m}. Among such local manifolds discard the ones

such that ∂W u
k,i,m �⊂ ∂Bθcdr(xi); see Figure 1. Clearly, if W is a discarded

manifold, then T−kW belongs to a θcdrλ
−k-neighborhood of ∂W u

δ (x); hence
the total measure of the preimages of the discarded manifolds is bounded by
const.λ−k. The constant θ is chosen so that if ξ ∈ W u

k,i,m ∩ Bcdr(xi), then
W s

δ (ξ) ∩ W u
k,i,j �= ∅, for all j.

Let us define W uc
k,i,m := ∪t∈[−2,2]TtW

u
k,i,m.

�

��
��

·
W u

δ (x) Tk
����

���

������
�	

discarded

W u
k,i,m

xi

Bcdr(xi) Bθcdr(xi)

Figure 1: The manifolds W u
k,i,m.

For each ξ ∈ W uc
k,i,j let t(ξ) be such that Tt(ξ)ξ ∈ W u

k,i,j and let u(ξ) :=
Tt(ξ)ξ. Then∫

R
tl−1e−ztp(t − k)Au∗

δ (Ttϕ) =
∑
ij

e−zkkl−1

∫
W uc

k,i,j

p(t(ξ))(6.2)

×
(

1 +
t(ξ)
k

)l−1

e−zt(ξ)Z̃(x, T−ku(ξ))ϕ(ξ)φr,i(ξ)JuT−k(u(ξ))

+ kl−1e−akO(λ−k|ϕ|∞).

Next, for each W uc
k,i,j let Ψk,i,j be the stable holonomy between W uc

k,i,j and
W uc

k,i,0. By the general theory of the holonomy maps (see Appendix A) it follows
that Ψk,i,j is a τ -Hölder function with τ -Hölder Jacobian JΨk,i,j .

Notice that T−kW
u
k,i,j has size smaller than 2cdλ

−kr and thus (see Lemma
C.2)

Z̃(x, T−ku(ξ)) = Zk,i,j + O(λ−kτrτ ).

To simplify notation we introduce the functions

Fk,i,j(ξ) =p(t(ξ))
(

1 +
t(ξ)
k

)l−1

φr,i(ξ)JuT−k(u(ξ))e−at(ξ)Zk,i,j ,(6.3)

F̂k,i,j(ξ) =Fk,i,j(Ψk,i,j(ξ)))JΨk,i,j(ξ).
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Using the above formulae we can rewrite (6.2) as

(6.4)∫
R

tl−1p(t − k)e−ztAu∗
δ (Ttϕ) =

∑
ij

e−zkkl−1

∫
W uc

k,i,0

e−ibt(Ψk,i,j(ξ))F̂k,i,j(ξ)ϕ(ξ)

+ kl−1e−akO(λ−kτ |ϕ|∞ + rHs,1(ϕ)).

The last preparatory step is to apply Schwartz inequality. More precisely,
for each k, i, we can compute∣∣∣∣∣∣

∫
W uc

k,i,0

ϕ(ξ)

∑
j

e−ibt(Ψk,i,j(ξ))F̂k,i,j(ξ)

∣∣∣∣∣∣ ≤ C|ϕ|∞r(d+1)/2(6.5)

×

∑
j,j′

∫
W uc

k,i,0

e−ibg0
j,j′ (ξ)F̂k,i,j(ξ)F̂k,i,j′(ξ)

 1
2

,

where

g0
j,j′(ξ) := t(Ψk,i,j(ξ)) − t(Ψk,i,j′(ξ)).(6.6)

We are finally approaching the end of the story; to conclude we must only show
that the above integral is small.

Let us perform the sum on j′ for each j. With fixed j it is convenient to
express the integral on the manifold W uc

k,i,j :∫
W uc

k,i,0

e−ibg0
j,j′ (ξ)F̂k,i,j(ξ)F̂k,i,j′(ξ) =

∫
W uc

k,i,j

e−ibgj,j′ (ξ)Fk,i,j(ξ)Fk,i,j,j′(ξ)

where

gj,j′(ξ) := t(ξ) − t(Ψk,i,j,j′(ξ)),(6.7)

Ψk,i,j,j′(ξ) := Ψk,i,j′ ◦ Ψ−1
k,i,j(ξ),

Fk,i,j,j′(ξ) :=Fk,i,j′(Ψk,i,j,j′(ξ))JΨk,i,j′ ◦ Ψ−1
k,i,j(ξ);

clearly Ψk,i,j,j′ is nothing less than the holonomy between W uc
k,i,j and W uc

k,i,j′ .
Finally, it is convenient to divide the sum over j′ into two parts: the sum

over nearby manifolds and the sum over manifolds at a useful distance. Let us
be more precise.

Let yk,i,j := W s
2cdr(xi) ∩ W uc

k,i,j . We define the sets of indexes Ak,i,j :=
{j′ | d(yk,i,j , yk,i,j′) < b−ς} and Bk,i,j := {j′ | d(yk,i,j , yk,i,j′) ≥ b−ς}. In the
following we choose

ς :=
1 − 4ρ

2 − τ
.(6.8)
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Notice the the assumption ρ < τ/6 implies that b−ς is much smaller than r, as
b increases.

The first step is to estimate the sum with indexes in Ak,i,j . To do so we
need the next lemma whose proof is postponed to the end of the section.

Lemma 6.2. For each ε > 0, let W uc
ε be an unstable disk of radius ε. Then

there exist constants C, r0 > 0 such that for each k ∈ N, r1 > 0 and x ∈ M,
where {Wj} are the connected components of TkW

uc
ε ∩ B2r1(x),∑

j∈Ω

sup
ξ∈Wj

Ju
ξ T−k ≤ C ms(W s

r1+λ−kr0
(x)),

where Ω := {j | Wj ∩ W s
r1

(x) �= ∅}.

We then require

λ−lr0 ≤ b−ς .(6.9)

Using the above lemma and standard distortion arguments we readily obtain∣∣∣∣∣∣
∑

j′∈Ak,i,j

∫
W uc

k,i,j

e−ibgj,j′Fk,i,jFk,i,j,j′

∣∣∣∣∣∣ ≤ CJuT−k(yk,i,j)b−dςrd+1.(6.10)

We are then left with the estimate of the indexes in Bk,i,j . To this end
it is useful to make a connection with the temporal function introduced at the
end of Appendix A and shown pictorially in Figure 2, Appendix B. For each
ξ ∈ W uc

k,i,j ,
17

gj,j′(ξ) = t(Ψk,i,j,j′(ξ)) − t(ξ) = ∆(yk,i,j′ , T−t(yk,i,j)u(ξ)) − t(yk,i,j) + t(yk,i,j′).
(6.11)

All the above work was just preparation to apply the following lemma
(the proof can be found at the end of the section).

Lemma 6.3. For each function G ∈ Cα(W uc
k,i,j), 0 < α < 1, j′ ∈ Bk,i,j ,

and with φ̄(u) := φi,r(u)φi,r(Ψk,i,j,j′(u)), the following holds:∣∣∣∣∣
∫

W uc
k,i,j

du e−ibgj,j′ (u)G(u)φ̄(u)

∣∣∣∣∣ ≤ Cb−αρrd+1|G|Cα .

17To apply Figure 2 to the present case set: y = yk,i,j′ , x = yk,i,j and y′ = T−t(yk,i,j)u(ξ).
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Remembering (6.3), (6.4), (6.5), (6.7), using (6.10) with Lemma 6.3 and
taking (A.3) into account we obtain18

(6.12)∣∣∣∣∫
R

tl−1p(t − k)e−ztAu∗
δ (Ttϕ)(x)

∣∣∣∣ ≤ Ckl−1e−ak
∑

i

|ϕ|∞r
d+1
2

×

∑
j

JuT−k(yk,i,j)
{

rd+1b−dς + r2d+1b−αρl
} 1

2

+ Ckl−1e−akb−ρ|ϕ|s,1

≤ Ckl−1e−ak

{∑
i

|ϕ|∞r
d+1
2 [r3d+1b−αρl]

1
2 + b−ρ|ϕ|s,1

}
≤ Ckl−1e−akb−

αρ

2 l
1
2 |ϕ|s,1.

We can finally sum over k and the result follows.
We are left with the postponed proofs.

Proof of Lemma 6.2. Note that the Jacobian of Tk must be equal to
one; on the other hand it must also be equal to the product of the stable and
unstable Jacobian times a function θ which expresses the “angle” between the
stable and unstable manifold (and hence it is Hölder). Thus, with {ξj} =
Wj ∩ W s

2r1
(x), ∑

j∈Ω

Ju
ξj

T−k =
∑
j∈Ω

θ(T−kξj)Js
T−kξj

Tk.

Now, consider T−kW
s
r1

(x), which clearly will intersect W uc at the points T−kξj ,
j ∈ Ω. Obviously, the disks Dj ⊂ T−kW

s
r1

(x), centered at T−kξj and with ra-
dius r0 sufficiently small, but depending only on T , will all be disjoint. More-
over the diameter of each TkDj must be smaller than λ−kr0. This means that
∪j∈ΩTkDj is a collection of disjoint sets contained in the disk W s

r1+λ−kr0
(x).

In addition, by the usual distortion arguments, there exists c > 0 such that

Js
T−kξj

Tk ≤ c ms(TkDj).

Again, by distortion,∑
j∈Ω

sup
ξ∈Wj

Ju
ξ T−k ≤ c2|θ|∞

∑
j∈Ω

ms(TkDj) ≤ Cms(Dr1+λ−kr0(x)).

18If we choose α < τ2, then∑
j′∈Bk,i,j

|φ̄−1Fk,i,jFk,i,j,j′ |Cα ≤ Cl
∑

j′∈Bk,i,j

|JuT−kJuT−k ◦ Ψk,i,j,j′ |Cα

≤ Cl
∑

j′∈Bk,i,j

|JuT−kJuT−k ◦ Ψk,i,j,j′ |∞ ≤ ClrdJuT−k(yk,i,j).
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Proof of Lemma 6.3. The lemma rests on smoothness estimates for gj,j′

which, in turn, are obtained by estimates on ∆. Indeed, by Figure 2 again, it
follows that for each ξ, η ∈ W uc

k,i,j (see also footnote 17),

gj,j′(ξ) − gj,j′(η) = ∆(Ψk,i,j,j′(T−t(yk,i,j)u(η)), T−t(yk,i,j)u(ξ))(6.13)

= ∆(Ψk,i,j,j′(η), Tt(η)−t(ξ)ξ).

For each y ∈ W uc
k,i,j define wj′(y) ∈ Es(y) by expy(wj′(y)) = Ψk,i,j,j′(y). Then

the normalized vectors ŵj′(y) := wj′(y)|wj′(y)|−1 are uniformly continuous
functions. It follows that there exists a uniformly smooth coordinate system
{u1, u2, . . . , ud+1} := {u1, ū)} for W uc

k,i,j such that dα(∂u1 , ŵj′(y)) ≥ c−‖∂u1‖
for all y ∈ W uc

k,i,j . Without loss of generality we can assume t(u) = ud+1. Let
v(u) := ‖∂u1‖−1∂u1 . All that is needed in the following are bounds on the
dependence of gjj′ from the coordinate u1 with the other coordinates fixed.

For each ū, let us consider a partition {[aq, aq+1]} of [−2cdr, 2cdr], such
that

b(aq+1 − aq) dα(wj′(aq, ū), v((aq, ū))) = 2π.

This implies

2πc+b−1|wj′(aq, ū)|−1 ≥ aa+1 − aq ≥ 2πc−b−1|wj′(aq, ū)|−1.(6.14)

Now, since j′ ∈ Bk,i,j it follows that, by the Hölder continuity of the foliation,

|wj′(uq)| ≥ b−ς − Cb−ςτr ≥ b−ς − Cb−
1−2ρ

2−τ ≥ 1
2
b−ς(6.15)

provided b is large enough. Hence, our choices imply |aq+1−aq| << r provided
b is large.

Accordingly, if uq = (aq, ū) and u′ = (u1, ū), with u1 ∈ [aq, aq+1], where
δq = aq+1 − aq, by Lemma B.7 and (6.13) the following holds:

|gj,j′(u′) − gj,j′(uq) − (u1 − aq)dα(wj′(uq), v(uq))| ≤ C
(
|wj′(uq)|2δτ

q + |wj′(uq)|τδ2
q

)
.

(6.16)

Indeed, |wj′(uq)|τ− ≥ δq and δ
τ−
q ≥ |wj′(uq)|. This follows readily from (6.14)

and θcdr ≥ |wj′(uq)| ≥ 1
2b−ς . By (6.14), δq ≤ Cb−

1−τ+4ρ

2−τ ; therefore (6.1), (6.15)
and (6.16) yield

|gj,j′(u′) − gj,j′(uq) − (u1 − aq)dα(wj′(uq), v(uq))| ≤ Cb−1−2ρ.(6.17)
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Hence,19∫
W uc

k,i,j

du m(u)e−ibgj,j′ (u)G(u)φ̄(u)

=
∫

dū
∑

q

∫ aq+1

aq

du1 m(u1, ū)e−ibgj,j′ (u1,ū)G(u1, ū)φ̄(u1, ū)

=
∫

dū
∑

q

{
m(uq)G(uq)φ̄(uq)e−ibgj,j′ (uq)

∫ aq+1

aq

du1 e−ib(u1−aq)dα(wjj′ (uq),v(uq))

+O

(
(|G|∞b−2ρ + |G|Cαδα

q )
∫ aq+1

aq

φ̄ + |G|∞δqr
−1

∫ bq

aq

χBcdr(xi)

)}
where we have used the fact that, for each |h| ≤ δq,

d(Ψk,i,j,j′(uq),Ψk,i,j,j′(aq + h, ū)) ≤ Cδq

thanks to the Hölder continuity of the stable foliation, our choice of the pa-
rameters and since the maximal distance between u and Ψk,i,j,j′(u) is bounded
by a constant times r.20 Continuing the above chain of inequalities yields

=
∫

dū
∑

q

{
m(uq)G(uq)φ̄(uq)e−ibgj,j′ (uq)

∫ δq

0
du1 e−ibu1dα(wjj′ (uq),v(uq))

}
+|G|Cαrd+1O(b−αρ + b−

2ρ

2−τ )

=
∫

dū
∑

q

{
m(uq)G(uq)φ̄(uq)e−ibgj,j′ (uq)δq

∫ 1

0
ds e−2πis

}
+|G|Cαrd+1O(b−αρ).

Since the inner integral equals zero exactly, the lemma is proved.

Appendix A. Basic facts (Anosov flows)

In this appendix we collect, for the reader’s convenience, some information
on the smoothness properties of the invariant foliations in Anosov flows that
are used in the paper.

19Let muc(du) =: m(u)du be the measure on the manifold; clearly m is uniformly smooth.
20Here is a more detailed argument: consider a coordinate chart based at uq in which

W uc
k,i,j and W s(uq) are linear spaces. Then W s(u′), u′ = (aq + h, ū), can be represented as

{(G(ξ), ξ}ξ∈Rd and if Ψk,i,j,j′(u
′) =: (a, b), then G(b) = a. With d(t) := ‖G(bt)‖, and by the

Hölder continuity of the foliation,

|d′(t)| ≤ C‖b‖d(t)τ .

The above differential inequality yields ‖a‖ ≤ [δ1−τ
q + C‖b‖] 1

1−τ ≤ δq[1 + Cδτ−1
q r]

1
1−τ . The

result follows since r < δ1−τ
q , the maximal “angle” between W uc

k,i,j and W uc
k,i,j′ is bounded by

Crτ , and the metric in the chart is equivalent to the Riemannian metric.
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First of all, as already mentioned, for C2 Anosov flows the invariant dis-
tributions (sometimes called splittings) are known to be uniformly Hölder con-
tinuous. Let us be more precise.

For each invertible linear map L let θ(L) := ‖L−1‖−1. We define ‖ds
xTt‖ =

‖dxTt|Es
x
‖, ‖du

xTt‖ = ‖dxTt|Eu
x
‖, θ(ds

xTt) = θ(dxTt|Es
x
) and θ(du

xTt) = θ(duTt|Eu
x
).

Then the following holds ([10], [37]):

• If there exists τd such that, for each x ∈ M, and some t ∈ R+,
‖ds

xTt‖ ‖du
xTt‖τd < θ(du

xTt), then Esc ∈ Cτd .

• If there exists τd > 0 such that, for each x ∈ M, and some t ∈ R+,
θ(ds

xTt)τd θ(du
xTt) > ‖ds

xTt‖−1, then Euc ∈ Cτd .

(A.1)

Moreover the Hölder continuity is uniform (that is the τd-Hölder norm of
the distributions is bounded). The above conditions are often called
τd-pinching or bunching conditions.

The next relevant fact is that the above splittings are integrable. The
integral manifolds are the stable and unstable manifolds, respectively. Clearly,
this implies the existence of the weak stable and weak unstable manifolds as
well. They form invariant continuous foliations. Each leaf of such foliations is
as smooth as the map and it is tangent, at each point, to the corresponding
distribution, [17]. In addition, for Cr maps, the Cr derivatives of such manifolds
(viewed as graphs over the corresponding distributions) are uniformly bounded,
[14]. Finally, the foliations are uniformly transversal and Cτd .

In the case in which both distribution are C1+α, it follows by Frobenius’
theorem that the holonomy maps are C1+α (§6 of [29]). If the splitting is only
Hölder the situation is more subtle.

We will call stable holonomy any holonomy constructed via the strong sta-
ble foliations and unstable holonomy those constructed by the strong unstable
foliation. The basic result on holonomies is given by the following; see [29].

• If there exists τh > 0 such that for some t ∈ R+ and for each x ∈ M
‖ds

xTt‖ ‖du
xTt‖τh < 1, then the stable holonomies are uniformly Cτh .

• If there exists τh > 0 such that for some t ∈ R+ and for each x ∈ M
θ(ds

xTt)τh θ(du
xTt) > 1, then the unstable holonomies are uniformly Cτh .

(A.2)

The relation between smoothness of holonomies and smoothness of the
foliation (in the sense that the local foliation charts are smooth) is discussed
in detail in [29, §6]. Here we restrict ourselves to what is needed in this paper.



1300 CARLANGELO LIVERANI

This is not yet enough for our purposes: we need to talk about the smooth-
ness of the Jacobian of the holonomies between two manifolds W uc(x) and
W uc(y).21

(A.3) • The stable and unstable holonomies are absolutely continuous.

• There exists τj > 0 such that |1 − JΨ|∞ ≤ Cd(x, y)τj .

• There exists τj > 0 such that for each x ∈ M the Jacobians of
the stable holonomies are uniformly Cτj .

• There exists τj > 0 such that for each x ∈ M the Jacobian of
the unstable holonomies are uniformly Cτj .

The last, but not least important, object for which we need smoothness
information is the so-called temporal distance.

Fix any point x ∈ M and a small neighborhood Bδ(x). Consider a smooth
2d dimensional manifold W containing W u(x) and W s(x); clearly the flow is
transverse to such a manifold. On W choose a smooth coordinate system
(u, s) such that {(u, 0)} = W u(x), and {(0, s)} = W s(x). Although it is
not necessary, for further convenience we can assume that the coordinate sys-
tem, restricted to the stable and unstable manifolds, is the one given by the
exponential map (corresponding to the metric restricted to such manifolds).
Define then a coordinate system (u, t, s) in Bδ(x) as follows: T−t(ξ) ∈ W and
(u, s) are the coordinates of T−t(ξ); clearly such coordinates locally trivialize
the flow. Let y ∈ Bδ(x) ∩ W s(x) and y′ ∈ Bδ(x) ∩ W u(x). Moreover let
z′ = W u(y) ∩ W sc(y′) and z = W s(y′) ∩ W uc(y). By construction z and z′

are on the same flow orbit. Thus there exists ∆(y, y′) such that T∆(y,y′)z = z′.
The function ∆(y, y′) is called temporal distance, see Figure 2 for a pictorial
description.

In general the only thing that can be said is that the temporal distance is
as smooth as the strong stable and unstable foliation (see (A.2)), but we will
see in Appendix B that, if some geometric structure is present, more can be
said.

Appendix B. Basic facts (contact flows)

Given an odd dimensional (say 2d + 1) connected compact manifold M,
a contact form is a C1 differential 1-form such that the (2d+1)-form α∧ (dα)d

is nonzero at every point.

21These are a direct consequence of the formula [22]

JΨ(x) =
∞∏

n=0

JuT−1(TnΨ(x))

JuT−1(Tnx)
.
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Given a flow Tt on M we call it contact flow if its associated vector field
V (V (x) := d Ttx

dt

∣∣
t=0

) is such that dα(V, v) = 0 for all vector fields v and
α(V ) = 1, for some contact form α.

Clearly the contact flow preserves the contact form and hence also the
contact volume.

Let us start with some trivial facts showing that, for contact flows, a bit
more can be said about the quantities introduced in the previous appendix.

Lemma B.1. For a contact flow there exists a constant C > 0 such that,
for each x ∈ M,

C−1
0 ≤ ‖ds

xT‖θ(du
xT ) ≤ C0 ; C−1

0 ≤ ‖du
xT‖θ(ds

xT ) ≤ C0.

Proof. When v ∈ Eu(x), |v| = 1, clearly there must exist w ∈ Es(x),
|w| = 1, such that |dα(v, w)| ≥ c−|v| |w|. Accordingly,

c−|v| |w| ≤ |dα(dxTtv, dxTtw)| ≤ c+|dxTtv| |dxTtw| ≤ c+|dxTtv| ‖ds
xTt‖.

Taking the infimum on v, we have

θ(du
xTt) ‖ds

xTt‖ ≥ c−c−1
+ .(B.1)

On the other hand, given w ∈ Es(x), |w| = 1, there must be v ∈ Eu(x), |v| = 1,
such that |dα(dxTtw, dxTtv)| ≥ c−|dxTtw| |dxTtv|. Hence,

c+ ≥ c−|dxTtw| |dxTtv| ≥ c−|dxTtw| θ(du
xTt).

Taking the supremum over w, we have

‖ds
xTt‖ θ(du

xTt) ≤ c−1
− c+.(B.2)

The first inequality of the lemma is then obtained when we put together (B.1)
and (B.2). The second inequality follows similarly.

Another trivial, but helpful, property of contact flows is the following.

Lemma B.2. The contact form α restricted to a stable or unstable mani-
fold must be identically zero. In addition, the form dα is identically zero when
restricted to a weak stable or weak unstable manifold.

Proof. The first statement is a consequence of the invariance of α; for
example if v is a stable vector then α(v) = lim

t→+∞
α(dTtv) = 0. The second

statement is proved again by invariance. Let v, w be weak stable vectors and
write them as v = v′ +aV and w = w′ + bV where v′ and w′ are stable vectors.
Then dα(v, w) = lim

t→+∞
dα(dTtv, dTtw) = ab dα(V, V ) = 0.

Corollary B.3. The distributions are smoother than indicated in Ap-
pendix A: Eu, Es ∈ Cτd.
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Proof. Since Euc ∈ Cτd and Eu = {v ∈ Euc | α(v) = 0} the result follows
trivially.

Remark B.4. A bit more work should show that A.2 and A.3 hold with
τd instead of τh and τj . This is not important for the task at hand and we
will ignore it. Throughout the paper τ will designate the best constant (less
or equal one) for which the properties in A.1, A.2 and A.3 hold.

The first really interesting fact concerning contact flow is given by the
following result proved in [16, Th. 3.6].

Theorem B.5 (Katok-Burns). Let M be a contact manifold as above.
Let E be an ergodic component of the contact flow T which has positive measure
and nonzero Lyapunov exponents except in the flow direction. Then the flow
on E is Bernoulli.

Accordingly, by the usual Hopf argument [15], [21], the theorem is proved.

Corollary B.6. Let M be a connected, compact, contact manifold as
above and let Tt be an Anosov contact flow. Then the flow is Bernoulli (and
hence mixing).

The proof of Theorem B.5 is based, among other things, on a lemma
concerning the temporal function (see the definition at the end of the previous
appendix) which, at least for us, has an interest in itself. Since we need it in
a slightly different, stronger and more explicit form we will state and prove it
here again.

Lemma B.7. Assume α ∈ C2 and conditions (A.1), (A.2) for some t > 0.
Let v̄ ∈ Eu(x), w̄ ∈ Es(x) be such that expx(v̄) = y′ and expx(w̄) = y.22 Then

∆(y, y′) = dα(v̄, w̄) + O(‖v̄‖τ2‖w̄‖2 + ‖w̄‖τ2‖v̄‖2).

In addition,

∆(y, y′) = dα(v̄, w̄) + O(‖v̄‖τ‖w̄‖2 + ‖w̄‖τ‖v̄‖2),

provided ‖v̄‖
1

τ− ≤ ‖w̄‖ ≤ ‖v̄‖τ− , τ− := min{τ, (1 − τ)}.23

22The exponential function is with respect to the restriction of the metric to W u(x) and
W s(x), respectively.

23The latter limitation–although compatible with our needs– is certainly excessive and,
possibly, completely redundant. Yet, as will be clear from the proof, to remove it effectively
it would be necessary to have some information on the Hölder continuity of the foliation in Cr

topology, which seems not to be readily available in the literature. But it does hold true–at
least to some extent; see footnotes 24 and 28.
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Proof. Consider the coordinate system introduced at the end of Ap-
pendix A to define the temporal distance. Notice that the Euclidean metric
in such coordinates gives the right measure for the temporal distance and the
distance from x of points in W u(x) or W s(x); at the same time it is uniformly
equivalent to the Riemannian metric. We can then use it without any further
comment.

Let y = (0, 0, w) and y′ = (v, 0, 0). In coordinates the manifold W u(x) has
the form {(u, 0, 0)}, the manifold W s(x) {(0, 0, s)} and the manifolds W uc(y),
W sc(y′) have the form {(u, t, F (u))}, {(G(s), t, s}, respectively. In addition, on
the one hand the smoothness of the holonomies implies ‖F‖∞ ≤ C‖w‖τ and
‖G‖∞ ≤ C‖v‖τ . On the other hand the smoothness of the distributions implies
‖DuF‖ ≤ C‖F (u)‖τ and ‖DsG‖ ≤ C‖G(s)‖τ . Finally, the uniform smoothness
of the manifolds implies ‖F (u) − w − D0Fu‖ ≤ C‖u‖2, ‖G(s) − v − D0Gs‖ ≤
C‖s‖2.24

Our aim is to introduce a two-dimensional manifold that captures the es-
sential geometric features related to ∆. To do so we introduce two smooth
foliations: Wu := {Wu(b) | b ∈ [0, 1]}, Wu(b) := {(u, 0, bF (u))}, and Ws :=
{Ws(a) | a ∈ [0, 1]}, Ws(a) := {(aG(s), 0, s)}.25 Notice that the above
two foliations are transversal, hence for all (a, b) ∈ Σ0 := [0, 1]2 the point
{Ξ(a, b)} := Wu(b) ∩ Ws(a) is uniquely defined. In fact, if we define the
function Φ : R2d+2 → R2d by Φ(u, s, a, b) := (u − aG(s), s − bF (u)), then
Φ(Ξ(a, b), a, b) ≡ 0. Since

∂Φ
∂(u, s)

=
(

Id −aDG

−bDF Id

)
=: Id − Λ,(B.3)

‖Λ‖ < 1, provided the coordinate neighborhood has been chosen small enough,
it follows that we can apply the implicit function theorem. Accordingly Ξ is a
uniformly C4 chart for the surface Σ := Ξ(Σ0). Such a surface is bounded by the
curves γ1 := {Ξ(a, 0)} = {(av, 0, 0)}, γ2 := {Ξ(1, b)} that belong to W sc(y′),
γ3 := {Ξ(a, 1)} that belongs to W uc(y) and γ4 := {Ξ(0, b)} = {(0, 0, bw)}.
Moreover, when ẑ := Ξ(1, 1), clearly ẑ lies on the same flow orbit of z and z′. At
last, consider the curves γ ⊂ W u(y) and γ′ ⊂ W s(y′) obtained by transporting
γ3 and γ2 respectively along the flow direction.26 Clearly γ, γ3 and the flow line
between ẑ and z′ bound a two-dimensional manifold (contained in

⋃
t∈R Ttγ3);

24Actually, here we use a very rough bound on the second derivative, but one can certainly
do better. For example, since F (u) = F (0) + D0F (0)u + 1

2
D2

0F (u, u) + O(‖u‖3) ≤ C‖w‖τ ,

it must be, at least, |D2
0F | ≤ C‖w‖ τ

3 .
25These are just linear interpolations between the manifolds at x and the manifolds at y

and y′, respectively.
26The smoothness of W u(y) and γ3 imply trivially the smoothness of γ. The same consid-

erations apply to γ′.
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Figure 2: Definition of the temporal function ∆(y, y′) and related quantities

let us call it Ω′ ⊂ W uc(y); analogously we define Ω. See Figure 2 for a visual
description.27

We can now compute the required quantity. Consider the closed curve Γ
following γ1, γ′ then going from z to z′ along the flow direction and finally
coming back to x via γ and γ4 (the bold path in Figure 2). Then∫

Γ
α = ∆(y, y′).(B.4)

This is because α is identically zero when restricted to a stable or unstable
manifold (see Lemma B.2). On the other hand∫

Γ
α =

∫
∂Σ

α +
∫

∂Ω
α +

∫
∂Ω′

α =
∫

Σ
dα(B.5)

where we have used Stokes theorem and the fact that dα is identically zero
when restricted to a weak stable or unstable manifold (see Lemma B.2). To
continue, it is better to change coordinates.∫

Σ
dα =

∫
Σ0

Ξ∗dα =
∫

Σ0

dΞ(a,b)α(DΞe1, DΞe2)dadb(B.6)

=
∫

Σ0

dxα(DΞe1, DΞe2)dadb + O(‖Ξ‖∞‖DΞe1‖∞ ‖DΞe2‖∞),

27Of course the picture is a bit misleading due to a lack of dimensions. For example, the
picture does not differentiate between the d-dimensional manifold W u(y) and the curve γ.
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where we have used the fact that α is C2. By the implicit function theorem,

DΞ = −(Id − Λ)−1 ∂Φ
∂(a, b)

=
∞∑

k=0

Λk

(
G 0
0 F

)
.(B.7)

Since all the following arguments are restricted to the hypersurface t ≡ 0, from
now on we will forget the t coordinate. Accordingly,

(B.8)

DΞe1 = (Id − Λ)−1(G, 0) = (G, 0) +
∞∑

k=0

Λ2k{Λ(G, 0) + Λ2(G, 0)}

= (G, 0) + b(Id − Λ2)−1(aDG DF G, DF G)

= (G, 0) + b(a(Id − abDG DF )−1DG DF G, (Id − abDF DG)−1DF G)

=: (v, 0) + (∆uv,∆sv) =: v̄ + ∆v

DΞe2 = (0, F ) + a((Id − abDG DF )−1DG F, b(Id − abDF DG)−1DF DG F )

=: (0, w) + (∆uw,∆sw) =: w̄ + ∆w.

Since dxα is identically zero on the weak stable and weak unstable manifold
of x, we have

(B.9)

dxα(DΞe1, DΞe2) = dxα(v̄, w̄) + dxα(v̄,∆w) + dxα(∆v, w̄) + dxα(∆v,∆w)

= dxα(v̄, w̄) + O((‖v‖ + ‖∆uv‖)‖∆sw‖
+‖w‖‖∆uv‖ + ‖∆sv‖‖∆uw‖).

The last needed estimate concerns the variation of the functions F, G.

∆G(a, b) :=G(Ξs(a, b)) − v = G(Ξs(a, b)) − G(Ξs(a, 0))

=
∫ b

0
DGDΞse2 =

∫ b

0
DGw + DG∆sw;

∆F (a, b) :=F (Ξu(a, b)) − w = F (Ξu(a, b)) − F (Ξu(0, b))

=
∫ a

0
DFDΞue1 =

∫ a

0
DFv + DF∆uv.

Remembering (B.8) we can estimate

(B.10)

‖∆uv‖≤‖∆G‖ + Cab‖DG DF (v + ∆G)‖∞ ≤ C‖∆G‖∞ + Cab‖DG DFv‖∞,

‖∆sv‖≤Cb‖DF G‖∞ ≤ Cb‖DFv‖∞ + Cb‖DF∆G‖∞,

‖∆uw‖≤Ca‖DGw‖∞ + Ca‖DG∆F‖∞,

‖∆sw‖≤C‖∆F‖∞ + Cab‖DF DGw‖∞.
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Therefore,

‖∆G‖∞≤‖DG‖∞‖w‖ + C‖DG‖∞‖∆F‖∞ + C‖DG‖∞‖DF DGw‖∞
≤C‖DG‖∞‖w‖ + C‖DG‖∞‖∆F‖∞,

‖∆F‖∞≤C‖DF‖∞‖v‖ + C‖DF‖∞‖∆G‖∞.

Substituting the first in the second yields

‖∆F‖∞ ≤ C‖DF‖∞‖v‖ + C‖DF‖∞‖DG‖∞‖w‖ + C‖DF‖∞‖DG‖∞‖∆F‖∞,

that is

‖∆F‖∞≤C‖DF‖∞‖v‖ + C‖DF‖∞‖DG‖∞‖w‖,(B.11)

‖∆G‖∞≤C‖DG‖∞‖w‖ + C‖DG‖∞‖DF‖∞‖v‖.
Using estimates (B.11) and (B.10) in (B.9) yields

dxα(DΞe1, DΞe2) = dxα(v̄, w̄) + O(‖DF‖∞‖v‖2 + ‖DG‖∞‖w‖2).

Remembering that, by definition, Ξu = aG ◦ Ξs and Ξs = bF ◦ Ξu we can use
the above estimate in (B.6), (B.4) and finally obtain

∆(y, y′) = dxα(v̄, w̄) + O(‖v‖2‖w‖ + ‖w‖2‖v‖ + ‖DF‖∞‖v‖2 + ‖DG‖∞‖w‖2).
(B.12)

Since ‖DF‖∞ ≤ C‖F‖τ
∞ ≤ C‖w‖τ2

and ‖DG‖∞ ≤ C‖v‖τ2
the first inequality

of the lemma is proved. To prove the second let us assume ‖w‖ ≥ ‖v‖, the
other situation being symmetric with respect to the exchange of the stable
and unstable directions (which corresponds to a time reversal). Remember
that DF ∈ C1; hence ‖DF‖∞ ≤ C‖w‖τ + C‖Ξu‖∞; thus

‖DF‖∞≤C‖w‖τ + C‖v‖ + C‖DG‖∞‖w‖,
‖DG‖∞≤C‖v‖τ + C‖w‖ + C‖DF‖∞‖v‖

which yields ‖DF‖∞ ≤ C‖w‖τ + C‖v‖; ‖DG‖∞ ≤ C‖v‖τ + C‖w‖.28 This
proves the lemma provided ‖v‖τ ≥ ‖w‖. Clearly this condition is less stringent
as τ decreases, while such a situation should be the worst case. Obviously
the previous estimates must have been inefficient for “large” τ . Indeed, it is
possible to do a different estimate for ∆F , ∆G. Suppose ‖v‖τ ≤ ‖w‖.

d‖F ◦ Ξu‖
da

=
〈DFDΞue1, F 〉

‖F‖ ≤ ‖DF‖‖DΞue1‖ ≤ C‖F‖τ‖G‖.

Integrating the above differential inequality (and the analogous one for G)
yields [

‖w‖1−τ − C‖G‖∞
] 1

1−τ ≤ ‖F‖∞≤
[
‖w‖1−τ + C‖G‖∞

] 1
1−τ ,[

‖v‖1−τ − C‖F‖∞
] 1

1−τ ≤ ‖G‖∞≤
[
‖v‖1−τ + C‖F‖∞

] 1
1−τ .

28Here again a better knowledge of the size of the second derivative would improve the
result; see footnote 24.
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Clearly the above equations imply ‖∆F‖ ≤ ‖w‖τ‖v‖ and ‖∆G‖ ≤ ‖v‖τ‖w‖,
provided ‖v‖1−τ ≥ ‖w‖. This implies again ‖DF‖∞ ≤ C(‖w‖τ + ‖v‖) and
‖DG‖∞ ≤ C(‖v‖τ + ‖w‖). In addition, ‖F‖∞ ≤ C‖w‖, ‖G‖∞ ≤ C‖v‖ and
‖DΞe1‖∞ ≤ C‖G‖∞ ≤ C‖v‖, ‖DΞe2‖∞ ≤ C‖w‖. Using such estimates in
(B.10), (B.9) and (B.6) yields

∆(y, y′) = dxα(v̄, w̄) + O(‖v‖2‖w‖τ + ‖w‖2‖v‖τ ).

Remark B.8. It may be possible to optimize Lemma B.7 by pushing for-
ward (or backward) the picture until d(Tkx, Tky) = d(Tkx, Tky

′); of course
one would need to be rather careful by properly estimating distortion. At any
rate, the best result one can hope for is that if τ >

√
3 − 1, then ∆(y, y′) =

dα(v, w)+o(|v|). That is, ∆ is differentiable with respect to y′ and the deriva-
tive is Cτ . We do not push matters in such a direction since it is not necessary
for the purpose at hand.

Appendix C. Averages

We start with a long overdue proof.

Proof of Sub-Lemma 3.1. Clearly

|As
δϕ|∞ ≤ |ϕ|∞; |As

δϕ − ϕ|∞ ≤ δβHs,β(ϕ).(C.1)

The estimate of the smoothness of As
δϕ is a bit more subtle; to investigate it,

it is convenient to introduce an appropriate coordinate system.
Since all the quantities are related to the same stable manifold, from now

on we will consider the Riemannian metric restricted to the stable manifold.
Given x, y belonging to the same stable manifold, we first identify the

tangent spaces at x and y by parallel transport; then we consider normal
coordinates at x and at y. Clearly in such coordinates the balls W s

δ (x) and
W s

δ (y) are actual balls of radius δ; of course this is not the case for W s
δ (y) in

the normal coordinates at x. We call Ixy : TxM → TyM the isometry that
identifies the tangent spaces and we define the map Υxy : M → M as

Υxy(z) = expy(Ixyexp−1
x (z)).

where exp is the exponential map defined by the metric on the stable manifold.
First of all notice that, by construction

Υxy(W s
δ (x)) = W s

δ (y).(C.2)

Next, to study Υxy we describe it in the normal coordinates of the point x. We
will then identify all the tangent spaces by the Cartesian structure of such a
chart. When, as usual, the Γk

ij are called the Christoffel symbols, the equation
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of parallel transport for a vector v along the curve γ reads

dvk

dt
= −

∑
ij

Γk
ijv

i dγj

dt
.

Moreover, in the normal coordinates of the point x,29

|Γk
ij(ξ)| ≤ C|ξ|.

Assuming d(x, y) ≤ δ, we are interested only in a region contained in the
ball W s

2δ(x); thus |Γk
ij |∞ ≤ Cδ. Hence, by a standard use of the Gronwald

inequality,

|Ix,yv − v| ≤ C1d(x, y)2|v|.(C.3)

Arguing in the same manner on the equations defining the geodesics, and
taking into account (C.3), we see that

d(Υxy(z), z) ≤ (1 + C2δ)d(x, y).(C.4)

This implies that the symmetric difference W s
δ (x)∆W s

δ (y) is contained
in the spherical shell W s

δ+C2d(x,y)(x)\W s
δ−C2d(x,y)(x) whose measure is propor-

tional to δd−1d(x, y).
To see that the Jacobian is close to one, a bit more work is needed. Namely,

we must linearize the geodesic equations along the geodesic. This is a standard
procedure and it is best done via the Jacobi fields [6]. By using Gronwald again,
and the fact that the manifolds are uniformly C4, we see that

|JΥxy − 1|∞ ≤ C3d(x, y).(C.5)

From this it follows immediately

Hs,1(As
δϕ) ≤ Cδ−1|ϕ|∞.(C.6)

We can then conclude by using (C.2), (C.4) and (C.5),∣∣∣∣∣
∫

W s
δ (x)

ϕ −
∫

W s
δ (y)

ϕ

∣∣∣∣∣(C.7)

≤
∫

Bδ(0)
|ϕ(ξ)ρ(x, ξ) − ϕ ◦ Υxy(ξ)ρ(y, Υxy(ξ))JΥxy(ξ)| dξ

≤
[
(1 + c2δ)βHs,β(ϕ)d(x, y)β + C4|ϕ|∞d(x, y)

]
ms(W s

δ (x)).

Next we need an estimate of how much two nearby manifolds can drift
apart.

29Clearly the smoothness of the metric will depend on the smoothness of the tangent planes
(that in our case are uniformly C3); see [17]. Accordingly Γ will be uniformly C2.
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Lemma C.1. There exists a constant C > 0 such that for each x ∈ M
and y ∈ W s

δ (x),30

dist(W u
δ (x), W u

δ (y)) ≤ Cd(x, y)τ .

Proof. Clearly d(W u
δ (x), W u

δ (y)) is bounded by the distance computed
along the stable manifold. For each ξ ∈ W u

δ (x) consider the unstable holonomy
between W sc(x) and W sc(ξ). Let {η} := W sc(ξ) ∩ W u

δ (y). By A.3 it follows
that ds(ξ, η) ≤ Cds(x, y)τ and from this the lemma is proved.

The other needed results concerning averages are all based on a sort of
change of order of integration formula. Although such a result may already
exist in some form in the literature (after all it is a sort of Fubini with respect
to a foliation with Hölder smoothness), I find it more convenient to derive it
in the following.

To proceed it is helpful to choose special coordinates in which the unstable,
or the stable manifolds, are straight. Let us do the construction for the unstable
manifold, the one for the stable being similar.

First notice that such a straightening can be only local, we can then choose
an appropriate covering {Ui} of M (appropriate means that the open sets must
be sufficiently small) and perform the wanted construction in each open set Ui.

Let U be a sufficiently small open ball. Let us choose a coordinate system
in U , since the Euclidean norm in the coordinate is equivalent to the Rieman-
nian length we will use it instead and we will, from now on, confuse U with its
coordinate representation.

It is particularly convenient to choose the chart in such a way that, given
a preferred point x̄ ∈ U , {(u, 0)}u∈Rdu = W u(x̄) and {(0, s)}s∈Rds+1 = W sc(x̄).

At this point we can define the function H : Rdu+ds+1 → Rds+1 by the
requirement

{(u, H(u, s))}u∈Rdu = W u((0, s)).

Clearly this implies H(0, s) = s; H(u, 0) = 0. We define then the change of
coordinates

Ψ(ū, s̄) = (ū, H(ū, s̄)).

In the coordinates (ū, s̄) the unstable manifolds are just all the vector spaces
of the type {(ū, a)} for some a ∈ Rds+1.

In addition, a trivial computation shows that, calling JΨ the Jacobian of
the change of coordinates Ψ, we have that JΨ(ū, s̄) is nothing else than the
Jacobian of the unstable holonomy between {(0, ξ)}ξ∈Rds+1 and {(ū, ξ)}ξ∈Rds+1 .

30Here by “dist” we mean the Hausdorff distance.
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Lemma C.2. There exists c̄ > 0 such that the kernel Z̃ε, defined in (4.5),
satisfies

|Z̃ε|Cτ ≤ c̄|Zε|∞;

moreover Z̃(x, ξ) is Lipschitz with respect to the second variable, limited to the
flow direction, with Lipschitz constant c̄|Zε|∞.

Proof. Since all the relevant quantities are local, we can compute in a
chart Ψ as above.

Let U be an open set in the chart and consider f : M2 → C supported in
U2. Then∫

M
m(dx)

∫
W u

δ (x)
f(x, ξ)mu(dξ) =

∫
{(x,ξ)∈U2 | du(x,ξ)≤δ}

f(x, ξ)mu(dξ)m(dx).

Now we set Ξδ := {(x, ξ) ∈ U2 | du(x, ξ) ≤ δ} and we change variables:
x = Ψ(u, s) and ξ = Ψ(u′, s).∫
M

m(dx)
∫

W u
δ (x)

f(x, ξ)mu(dξ) =
∫

Ξδ

f(Ψ(u, s),Ψ(u′, s))ρ(u1, s)JΨ(u, s)du′ du ds,

where ρ ◦ Ψ−1 is a uniformly τ -Hölder function. Accordingly,

Z̃ε(x, ξ) =
JΨ(x)ρ(Ψ−1(ξ))
JΨ(ξ)ρ(Ψ−1(x))

Zε(x).

The smoothness of Z̃ε(x, ξ) follows then from previous results on holonomy
smoothness and the smoothness of Zε. In turn, the latter is proved exactly
as in equation (C.7) where we exchanged the rôle of the stable and unstable
manifolds and set ϕ = 1.
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