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Holomorphic disks and three-manifold
invariants: Properties and applications

By Peter Ozsváth and Zoltán Szabó*

Abstract

In [27], we introduced Floer homology theories HF−(Y, s), HF∞(Y, s),
HF+(Y, t), ĤF (Y, s),and HFred(Y, s) associated to closed, oriented three-man-
ifolds Y equipped with a Spinc structures s ∈ Spinc(Y ). In the present paper,
we give calculations and study the properties of these invariants. The cal-
culations suggest a conjectured relationship with Seiberg-Witten theory. The
properties include a relationship between the Euler characteristics of HF± and
Turaev’s torsion, a relationship with the minimal genus problem (Thurston
norm), and surgery exact sequences. We also include some applications of
these techniques to three-manifold topology.

1. Introduction

The present paper is a continuation of [27], where we defined topologi-
cal invariants for closed, oriented, three-manifolds Y , equipped with a Spinc

structure s ∈ Spinc(Y ). These invariants are a collection of Floer homology
groups HF−(Y, s), HF∞(Y, s), HF+(Y, s), and ĤF (Y, s). Our goal here is
to study these invariants: calculate them in several examples, establish their
fundamental properties, and give some applications.

We begin in Section 2 with some of the properties of the groups, including
their behaviour under orientation reversal of Y and conjugation of its Spinc

structures. Moreover, we show that for any three-manifold Y , there are at most
finitely many Spinc structures s ∈ Spinc(Y ) with the property that HF+(Y, s)
is nontrivial.1

*PSO was supported by NSF grant number DMS-9971950 and a Sloan Research Fellow-
ship. ZSz was supported by a Sloan Research Fellowship and a Packard Fellowship.

1Throughout this introduction, and indeed through most of this paper, we will suppress
the orientation system o used in the definition. This is justified in part by the fact that our
statements typically hold for all possible orientation systems on Y (and if not, then it is easy
to supply necessary quantifiers). A more compelling justification is given by the fact that in
Section 10, we show how to equip an arbitrary, oriented-three-manifold with b1(Y ) > 0 with
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In Section 3, we illustrate the Floer homology theories by computing the
invariants for certain rational homology three-spheres. These calculations are
done by explicitly identifying the relevant moduli spaces of flow-lines. In Sec-
tion 4 we compare them to invariants with corresponding “equivariant Seiberg-
Witten-Floer homologies”HF SW

to , HF SW
from, and HF SW

red ; for the three-manifolds
studied in Section 3, compare [21], [16].

These calculations support the following conjecture:

Conjecture 1.1. Let Y be an oriented rational homology three-sphere.
Then for all Spinc structures s ∈ Spinc(Y ) there are isomorphisms2

HF SW
to (Y, s) ∼= HF+(Y, s), HF SW

from(Y, s) ∼= HF−(Y, s),

HF SW
red (Y, s) ∼= HFred(Y, s).

After the specific calculations, we turn back to general properties. In
Section 5, we consider the Euler characteristics of the theories. The Euler
characteristic of ĤF (Y, s) turns out to depend only on homological information
of Y , but the Euler characteristic of HF+ has a richer structure: indeed,
when b1(Y ) > 0, we establish a relationship between it and Turaev’s torsion
function (cf. Theorem 5.2 in the case where b1(Y ) = 1 and Theorem 5.11 when
b1(Y ) > 1):

Theorem 1.2. Let Y be a three-manifold with b1(Y ) > 0, and s be a
nontorsion Spinc structure; then

χ(HF+(Y, s)) = ±τ(Y, s),

where τ : Spinc(Y ) −→ Z is Turaev ’s torsion function. In the case where
b1(Y ) = 1, τ(s) is calculated in the “chamber” containing c1(s).

For zero-surgery on a knot, there is a well-known formula for the Turaev
torsion in terms of the Alexander polynomial; see [36]. With this, the above
theorem has the following corollary (a more precise version of which is given
in Proposition 10.14, where the signs are clarified):

Corollary 1.3. Let Y0 be the three-manifold obtained by zero-surgery
on a knot K ⊂ S3, and write its symmetrized Alexander polynomial as

∆K = a0 +
d∑

i=1

ai(T i + T−i).

a canonical orientation system. And finally, of course, orientation systems become irrelevant
if we work with coefficients in Z/2Z.

2This manuscript was written before the appearance of [19] and [20]. In the second paper,
Kronheimer and Manolescu propose alternate Seiberg-Witten constructions, and indeed give
one which they conjecture to agree with our ĤF ; see also [22].
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Then, for each i �= 0,

χ(HF+(Y0, s0 + iH)) = ±
d∑

j=1

ja|i|+j ,

where s0 is the Spinc structure with trivial first Chern class, and H is a gen-
erator for H2(Y0; Z).

Indeed, a variant of Theorem 1.2 also holds in the case where the first
Chern class is torsion, except that in this case, the homology must be appro-
priately truncated to obtain a finite Euler characteristic (see Theorem 10.17).
Also, a similar result holds for HF−(Y, s); see Section 10.5.

As one might expect, these homology theories contain more information
than Turaev’s torsion. This can be seen, for instance, from their behaviour
under connected sums, which is studied in Section 6. (Recall that if Y1 and Y2

are a pair of three-manifolds both with positive first Betti number, then the
Turaev torsion of their connected sum vanishes.)

We have the following result:

Theorem 1.4. Let Y1 and Y2 be a pair of oriented three-manifolds, and
let Y1#Y2 denote their connected sum. A Spinc structure over Y1#Y2 has
nontrivial HF+ if and only if it splits as a sum s1#s2 with Spinc structures
si over Yi for i = 1, 2, with the property that both groups HF+(Yi, si) are
nontrivial.

More concretely, we have the following Künneth principle concerning the
behaviour of the invariants under connected sums.

Theorem 1.5. Let Y1 and Y2 be a pair of three-manifolds, equipped with
Spinc structures s1 and s2 respectively. Then, there are identifications

ĤF (Y1#Y2, s1#s2)∼= H∗(ĈF (Y1, s1) ⊗Z ĈF (Y2, s2))

HF−(Y1#Y2, s1#s2)∼= H∗(CF−(Y1, s1) ⊗Z[U ] CF−(Y2, s2)),

where the chain complexes ĈF (Yi, si) and CF−(Yi, si) represent ĤF (Yi, si)
and HF−(Yi, si) respectively.

In Section 7, we turn to a property which underscores the close connection
of the invariants with the minimal genus problem in three dimensions (which
could alternatively be stated in terms of Thurston’s semi-norm; cf. Section 7):

Theorem 1.6. Let Z ⊂ Y be an oriented, connected, embedded surface of
genus g(Z) > 0 in an oriented three-manifold with b1(Y ) > 0. If s is a Spinc

structure for which HF+(Y, s) �= 0, then∣∣〈c1(s), [Z]〉
∣∣ ≤ 2g(Z) − 2.
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In Section 8, we give a technical interlude, wherein we give a variant of
Floer homologies with b1(Y ) > 0 with “twisted coefficients.” Once again, these
are Floer homology groups associated to a closed, oriented three-manifold Y

equipped with s ∈ Spinc(Y ), but now, we have one more piece of input: a mod-
ule M over the group-ring Z[H1(Y ; Z)]. This construction gives a collection
of Floer homology modules HF∞(Y, s, M), HF±(Y, s, M), and ĤF (Y, s, M)
which are modules over the ring Z[U ] ⊗Z Z[H1(Y ; Z)]. In the case where M

is the trivial Z[H1(Y ; Z)]-module Z, this construction gives back the usual
“untwisted” homology groups from [27].

In Section 9, we give a very useful calculational device for studying how
HF+(Y ) and ĤF (Y ) change as the three-manifold undergoes surgeries: the
surgery long exact sequence. There are several variants of this result. The first
one we give is the following: suppose Y is an integral homology three-sphere,
K ⊂ Y is a knot, and let Yp(K) denote the three-manifold obtained by surgery
on the knot with integral framing p. When p = 0, we let HF+(Y0) denote

HF+(Y0) =
⊕

s∈Spinc(Y0)

HF+(Y0, s),

thought of as a Z[U ] module with a relative Z/2Z grading.

Theorem 1.7. If Y is an integral homology three-sphere, then there is a
an exact sequence of Z[U ]-modules

· · · −−−→ HF+(Y ) −−−→ HF+(Y0) −−−→ HF+(Y1) −−−→ · · · ,

where all maps respect the relative Z/2Z-relative gradings.

A more general version of the above theorem is given in Section 9 which re-
lates HF+ for an oriented three-manifold Y and the three-manifolds obtained
by surgery on a knot K ⊂ Y with framing h, Yh, and the three-manifold
obtained by surgery along K with framing given by h + m (where m is the
meridian of K and h · m = 1); cf. Theorem 9.12. Other generalizations in-
clude: the case of 1/q surgeries (Subsection 9.3), the case of integer surgeries
(Subsection 9.5), a version using twisted coefficients (Subsection 9.6), and an
analogous results for ĤF (Subsection 9.4).

In Section 10, we study HF∞(Y, s). We prove that if b1(Y ) = 0, then for
any Spinc structure s, HF∞(Y, s) ∼= Z[U, U−1]. More generally, if the Betti
number of b1(Y ) ≤ 2, HF∞ is determined by H1(Y ; Z). This is no longer the
case when b1(Y ) > 2 (see [30]). However, if we use totally twisted coefficients
(i.e. twisting by Z[H1(Y ; Z)], thought of as a trivial Z[H1(Y ; Z)]-module),
then HF∞(Y, s) is always determined by H1(Y ; Z) (Theorem 10.12). This
nonvanishing result allows us to endow the Floer homologies with an absolute
Z/2Z grading, and also a canonical isomorphism class of coherent orientation
systems.
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We conclude with two applications.

1.1. First application: complexity of three-manifolds and surgeries. As
described in [27], there is a finite-dimensional theory which can be extracted
from HF+(Y ), given by

HFred(Y ) = HF+(Y )/ImUd,

where d is any sufficiently large integer. This can be used to define a numerical
complexity of an integral homology three-sphere Y :

N(Y ) = rkHFred(Y ).

An easy calculation shows that N(S3) = 0 (cf. Proposition 3.1).
Correspondingly, we define a complexity of the symmetrized Alexander

polynomial of a knot

∆K(T ) = a0 +
d∑

i=1

ai(T i + T−i)

by the following formula:

‖∆K‖◦ = max(0,−t0(K)) + 2
d∑

i=1

∣∣ti(K)
∣∣,

where

ti(K) =
d∑

j=1

ja|i|+j .

As an application of the theory outlined above, we have the following:

Theorem 1.8. Let K ⊂ Y be a knot in an integer homology three-sphere,
and n > 0 be an integer; then

n ·
∥∥∆K

∥∥
◦ ≤ N(Y ) + N(Y1/n),

where ∆K is the Alexander polynomial of the knot, and Y1/n is the three-
manifold obtained by 1/n surgery on Y along K.

This has the following immediate consequences:

Corollary 1.9. If N(Y ) = 0 (for example, if Y ∼= S3), and the sym-
metrized Alexander polynomial of K has degree greater than one, then
N(Y1/n) > 0; in particular, Y1/n is not homeomorphic to S3.

And also:

Corollary 1.10. Let Y and Y ′ be a pair of integer homology three-
spheres. Then there is a constant C = C(Y, Y ′) with the property that if
Y ′ can be obtained from Y by ±1/n-surgery on a knot K ⊂ Y with n > 0, then
‖∆K‖◦ ≤ C/n.
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It is interesting to compare these results to analogous results obtained
using Casson’s invariant. Apart from the case where the degree of ∆K is one,
Corollary 1.9 applies to a wider class of knots. On the other hand, at present,
N(Y ) does not give information about the fundamental group of Y . There are
generalizations of Theorem 1.8 (and its corollaries) using an absolute grading
on the homology theories given in [30].

Corollary 1.9 should be compared with the result of Gordon and Luecke
which states that no nontrivial surgery on a nontrivial knot in the three-sphere
can give back the three-sphere; see [13], [14] and also [6].

1.2. Second application: bounding the number of gradient trajectories.
We give another application, to Morse theory over homology three-spheres.

Consider the following question. Fix an integral homology three-sphere Y .
Equip Y with a self-indexing Morse function f : Y −→ R with only one index-
zero critical point and one index-three critical point, and g index-one and -two
critical points. Endowing Y with a generic metric µ, we then obtain a gradient
flow equation over Y , for which all the gradient flow-lines connecting index-
one and -two critical points are isolated. Let m(f, µ) denote the number of
g-tuples of disjoint gradient flowlines connecting the index-one and -two critical
points (note that this is not a signed count). Let M(Y ) denote the minimum
of m(f, µ), as f varies over all such Morse functions and µ varies over all
such (generic) Riemannian metrics. Of course, M(Y ) has an interpretation in
terms of Heegaard diagrams: M(Y ) is the minimum number of intersection
points between the tori Tα and Tβ for any Heegaard diagram (Σ,α,β) where
the attaching circles are in general position or, more concretely, the minimum
(again, over all Heegaard diagrams) of the quantity

m(Σ,α,β) =
∑
σ∈Sg

(
g∏

i=1

∣∣∣αi ∩ βσ(i)

∣∣∣) ,

where Sg is the symmetric group on g letters and |α ∩ β| is the number of
intersection points between curves α and β in Σ.

We call this quantity the simultaneous trajectory number of Y . It is easy
to see that if M(Y ) = 1, then Y is the three-sphere. It is natural to consider
the following:

Problem. If Y is a three-manifold, find M(Y ).

Since the complex ĈF (Y ) calculating ĤF (Y ) is generated by intersection
points between Tα and Tβ, it is easy to see that we have the following:

Theorem 1.11. If Y is an integral homology three-sphere, then

rkĤF (Y ) ≤ M(Y ).
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Using this, the relationship between HF+(Y ) and ĤF (Y ) (Proposition 2.1),
and a surgery sequence for ĤF analogous to Theorem 1.7 (Theorem 9.16), we
obtain the following result, whose proof is given in Section 11:

Theorem 1.12. Let K ⊂ S3 be a knot, and let Y1/n be the three-manifold
obtained by +1/n-surgery on K, then

M(Y ) ≥ 4k + 1,

where k is the number of positive integers i for which ti(K) is nonzero.

1.3. Relationship with gauge theory. The close relationship between this
theory and Seiberg-Witten theory should be apparent.

For example, Conjecture 1.1 is closely related to the Atiyah-Floer conjec-
ture (see [1] and also [32], [7]), a loose statement of which is the following. A
Heegaard decomposition of an integral homology three-sphere Y = U0 ∪Σ U1

gives rise to a space M , the space of SU(2)-representations of π1(Σ) modulo
conjugation, and a pair of half-dimensional subspaces L0 and L1 corresponding
to those representations of the fundamental group which extend over U0 and U1

respectively. Away from the singularities of M (corresponding to the Abelian
representations), M admits a natural symplectic structure for which L0 and L1

are Lagrangian. The Atiyah-Floer conjecture states that there is an isomor-
phism between the associated Lagrangian Floer homology HFLag(M ;L0, L1)
and the instanton Floer homology HF Inst(Y ) for the three-manifold Y ,

HF Inst(Y ) ∼= HFLag(M ;L0, L1).

Thus, Conjecture 1.1 could be interpreted as an analogue of the Atiyah-Floer
conjecture for Seiberg-Witten-Floer homology.

Of course, this is only a conjecture. But aside from the calculations of Sec-
tions 3 and 4, the close connection is also illustrated by several of the theorems,
including the Euler characteristic calculation, which has its natural analogue
in Seiberg-Witten theory (see [23], [37]), and the adjunction inequalities, which
exist in both worlds (compare [2] and [17]).

Two additional results presented in this paper — the surgery exact se-
quence and the algebraic structure of the Floer homology groups which follow
from the HF∞ calculations — have analogues in Floer’s instanton homology,
and conjectural analogues in Seiberg-Witten theory, with some partial results
already established. For instance, a surgery exact sequence (analogous to The-
orem 1.7) was established for instanton homology; see [9], [4]. Also, the alge-
braic structure of “Seiberg-Witten-Floer” homology for three-manifolds with
positive first Betti number is still largely conjectural, but expected to match
with the structure of HF+ in large degrees (compare [16], [21], [28]); see also [3]
for some corresponding results in instanton homology.
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However, the geometric content of these homology theories, which gives
rise to bounds on the number of gradient trajectories (Theorem 1.11 and Theo-
rem 1.12) has, at present, no direct analogue in Seiberg-Witten theory; but it is
interesting to compare it with Taubes’ results connecting Seiberg-Witten the-
ory over four-manifolds with the theory of pseudo-holomorphic curves; see [33].
For discussions on S1-valued Morse theory and Seiberg-Witten invariants,
see [34] and [15].

Gauge-theoretic invariants in three dimensions are closely related to
smooth four-manifold topology: Floer’s instanton homology is linked to Don-
aldson invariants, Seiberg-Witten-Floer homology should be the counterpart to
Seiberg-Witten invariants for four-manifolds. In fact, there are four-manifold
invariants related to the constructions studied here. Manifestations of this
four-dimensional picture can already be found in the discussion on holomor-
phic triangles (cf. Section 8 of [27] and Section 9 of the present paper). These
four-manifold invariants are presented in [31].

Although the link with Seiberg-Witten theory was our primary motivation
for finding the invariants, we emphasize that the invariants studied here re-
quire no gauge theory to define and calculate, only pseudo-holomorphic disks
in the symmetric product. Indeed, in many cases, such disks boil down to
holomorphic maps between domains in Riemann surfaces. Thus, we hope that
these invariants are accessible to a wider audience.

2. Basic properties

We collect here some properties of ĤF , HF+, HF−, and HF∞ which
follow easily from the definitions.

2.1. Finiteness properties. Note that ĤF and HF+ distinguish certain
Spinc structures on Y — those for which the groups do not vanish.

Proposition 2.1. For an oriented three-manifold Y with Spinc struc-
ture s, ĤF (Y, s) is nontrivial if and only if HF+(Y, s) is nontrivial (for the
same orientation system).

Proof. This follows from the natural long exact sequence:

· · · −−−→ ĤF (Y, s) −−−→ HF+(Y, s) U−−−→ HF+(Y, s) −−−→ · · ·
induced from the short exact sequence of chain complexes

0 −−−→ ĈF (Y, s) −−−→ CF+(Y, s) U−−−→ CF+(Y, s) −−−→ 0.

Now, observe that U is an isomorphism on HF+(Y, s) if and only if the
latter group is trivial, since each element of HF+(Y, s) is annihilated by a
sufficiently large power of U .
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Remark 2.2. Indeed, the above proposition holds when we use an arbi-
trary coefficient ring. In particular, the rank of HF+(Y, s) is nonzero if and
only if the rank of ĤF (Y, s) is nonzero.

Moreover, there are finitely many such Spinc structures:

Theorem 2.3. There are finitely many Spinc structures s for which

HF+(Y, s) is nonzero. The same holds for ĤF (Y, s).

Proof. Consider a Heegaard diagram which is weakly s-admissible for
all Spinc structures (i.e. a diagram which is s0-admissible Heegaard diagram,
where s0 is any torsion Spinc structure; cf. Remark 4.11 and, of course,
Lemma 5.4 of [27]). This diagram can be used to calculate HF+ and ĤF

for all Spinc-structures simultaneously. But the tori Tα and Tβ have only
finitely many intersection points, so that there are only finitely many Spinc

structures for which the chain complexes CF+(Y, s) and ĈF (Y, s) are nonzero.

2.2. Conjugation and orientation reversal. Recall that the set of Spinc

structures comes equipped with a natural involution, which we denote s �→ s:
if v is a nonvanishing vector field which represents s, then −v represents s.
The homology groups are symmetric under this involution:

Theorem 2.4. There are Z[U ]⊗ZΛ∗H1(Y ; Z)/Tors-module isomorphisms

HF±(Y, s) ∼= HF±(Y, s), HF∞(Y, s) ∼= HF∞(Y, s),

ĤF (Y, s) ∼= ĤF (Y, s).

Proof. Let (Σ,α,β, z) be a strongly s-admissible pointed Heegaard dia-
gram for Y . If we switch the roles of α and β, and reverse the orientation of Σ,
then this leaves the orientation of Y unchanged. Of course, the set of intersec-
tion points Tα∩Tβ is unchanged, and indeed to each pair of intersection points
x,y ∈ Tα ∩ Tβ, for each φ ∈ π2(x,y), the moduli spaces of holomorphic disks
connecting x and y are identical for both sets of data. However, switching the
roles of the α and β changes the map from intersection points to Spinc struc-
tures. If f is a Morse function compatible with the original data (Σ,α,β, z),
then −f is compatible with the new data (−Σ,β,α, z); thus, if sz(x) is the
Spinc structure associated to an intersection point x ∈ Tα ∩ Tβ with respect
to the original data, then sz(x) is the Spinc structure associated to the new
data. (Note also that the new Heegaard diagram is strongly s-admissible.)
This proves the result.
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Of course, the Floer complexes give rise to cohomology theories as well. To
draw attention to the distinction between the cohomology and the
homology, it is convenient to adopt conventions from algebraic topology, let-
ting ĤF ∗, HF+

∗ , and HF−
∗ denote the Floer homologies defined before, and

ĤF
∗
(Y, s), HF ∗

+(Y, s), and HF ∗
−(Y, s) denote the homologies of the dual com-

plexes Hom(ĈF (Y, s), Z), Hom(CF+(Y, s), Z) and Hom(CF−(Y, s), Z) respec-
tively.

Proposition 2.5. Let Y be a three-manifold with and s be a torsion Spinc

structure. Then, there are natural isomorphisms:

ĤF
∗
(Y, s) ∼= ĤF ∗(−Y, s) andHF ∗

±(Y, s) ∼= HF∓
∗ (−Y, s),

where −Y denotes Y with the opposite orientation.

Proof. Changing the orientation of Y is equivalent to reversing the orien-
tation of Σ. Thus, for each x,y ∈ Tα ∩ Tβ, and each class φ ∈ π2(x,y), there
is a natural identification

MJs
(φ) ∼= M−Js

(φ′),

where φ′ ∈ π2(y,x) is the class with nz(φ′) = nz(φ), obtained by pre-composing
each holomorphic map by complex conjugation. This induces the stated iso-
morphisms in an obvious manner.

3. Sample calculations

In this section, we give some calculations for ĤF , HF±, and HFred for
several families of three-manifolds.

3.1. Genus one examples. First we consider an easy case, where Y is the
lens space L(p, q). (Of course, this includes the case where Y is a sphere.)

We will introduce some shorthand. Let T ∞ denote Z[U, U−1], thought of
as a graded Z[U ]-module, where the grading of the element Ud is −2d. We let
T − denote the submodule generated by all elements with grading ≤ −2 (i.e.
this is a free Z[U ]-module), and T + denote the quotient, given its naturally
induced grading.

Proposition 3.1. If Y = L(p, q), then for each Spinc structure s,

ĤF (Y, s) = Z, HF−(Y, s) ∼= T −, HF∞(Y, s) ∼= T ∞, HF+(Y, s) ∼= T +.

Furthermore, HFred(Y, s) = 0.

Proof. Consider the genus one Heegaard splitting of Y . Here we can ar-
range for α to meet β in precisely p points. Each intersection point corresponds
to a different Spinc structure, and, of course, all boundary maps are trivial.
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Next, we turn to S1 × S2. Consider the torus Σ with a homotopically
nontrivial embedded curve α, and an isotopic translate β. The data (Σ, α, β)
give a Heegaard diagram for S1 × S2.

We can choose the curves disjoint, dividing Σ into a pair of annuli. If
the basepoint z lies in one annulus, the other annulus P is a periodic domain.
Since there are no intersection points, one might be tempted to think that the
homology groups are trivial; but this is not the case, as the Heegaard diagram
is not weakly admissible for s0, and also not strongly admissible for any Spinc

structure.
To make the diagram weakly admissible for the torsion Spinc structure

s0, the periodic domain must have coefficients with both signs. This can be
arranged by introducing canceling pairs of intersection points between α in β

(compare Subsection 9.1 of [27]). The simplest such case occurs when there
is only one pair of intersection points x+ and x−. There is now a pair of
(nonhomotopic) holomorphic disks connecting x+ and x− (both with Maslov
index one), showing at once that

ĤF (S1 × S2, s0) ∼= H∗(S1), HF∞(S1 × S2, s0) ∼= H∗(S1) ⊗Z T ∞,

HF+(S1 × S2, s0) ∼= H∗(S1) ⊗Z T +, HF−(S1 × S2, s0) ∼= H∗(S1) ⊗Z T −.

(We are free to choose here the orientation system so that the two disks al-
gebraically cancel; but there are in fact two equivalence class orientation sys-
tems giving two different Floer homology groups, just as there are two locally
constant Z coefficient systems over S1 giving two possible homology groups.)
Since the described Heegaard decomposition is weakly admissible for all Spinc

structures, and both intersection points represent s0, it follows that

ĤF (S1 × S2, s) = HF+(S1 × S2, s) = 0

if s �= s0.
To calculate the other homologies in nontorsion Spinc structures, we must

wind transverse to α, and then push the basepoint z across α some number
of times, to achieve strong admissibility. Indeed, it is straightforward to verify
that if h ∈ H2(S1 × S2) is a generator, then for s = s0 + n · h with n > 0,

∂∞[x+, i] = [x−, i] − [x−, i − n];

in particular,

HF−(S2 × S1, s0 + nh) ∼= HF∞(S2 × S1, s0 + nh) ∼= Z[U ]/(Un − 1).

3.2. Surgeries on the trefoil. Next, we consider the three-manifold Y

which is obtained by +n surgery on the left-handed trefoil, i.e. the (2, 3) torus
knot, with n > 6.
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Figure 1: Surgeries on the (2, 3) torus knot.

Proposition 3.2. Let Y = Y1,n denote the three-manifold obtained by
+n surgery on a (2, 3) torus knot. Then, if n > 6, there is a unique Spinc

structure s0, with the following properties:

(1) For all s �= s0, the Floer theories are trivial, i.e. ĤF (Y, s) ∼= Z, HF+(Y, s)
∼= T +, HF−(Y, s) ∼= T −, and HFred(Y, s) = 0.

(2) ĤF (Y, s0) is freely generated by three elements a, b, c where gr(b, a) =
gr(b, c) = 1.

(3) HF+(Y, s0) is freely generated by elements y, and xi for i ≥ 0, with
gr(xi, y) = 2i, U+(xi) = xi−1, U+(x0) = 0.

(4) HF−(Y, s0) is freely generated by elements y, and xi for i < 0, with gr(xi, y)
= 2i + 1, U−(xi) = xi−1.

(5) HFred(Y, s0) ∼= Z.

Before proving this proposition, we introduce some notation and several
lemmas. For Y we exhibit a genus 2 Heegaard decomposition and attaching
circles (see Figure 1), where k = n + 6, and where the spiral on the right-hand
side of the picture meets the horizontal circle k − 2 times. For a general dis-
cussion on constructing Heegaard decompositions from link diagrams see [12].

The picture is to be interpreted as follows. Attach a one-handle con-
necting the two little circles on the left, and another one handle connecting
the two little circles on the right, to obtain a genus two surface. Extend the
horizontal arcs (labeled α1 and α2) to go through the one-handles, to obtain
the attaching circles. Also extend β2 to go through both of these one-handles
(without introducing new intersection points between β2 and αi). Note that
here α1, α2, β1 correspond to the left-handed trefoil: if we take the genus 2
handlebody determined by α1, α2, and add a two-handle along β1 then we get
the complement of the left-handed trefoil in S3. Now varying β2 corresponds
to different surgeries along the trefoil.
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We have labeled α1 ∩ β1 = {x1, x2, x3}, α2 ∩ β1 = {v1, v2, v3}, α1 ∩ β2 =
{y1, y2}, and α2 ∩ β2 = {w1, . . . , wk}. Let us also fix basepoints z1, . . . , zk−2

labeled from outside to inside in the spiral at the right side of the picture.
Since H1(Yn; Z) ∼= Z/nZ, the intersection points {xi, wj}, {vi, yj} of Tα ∩ Tβ

can be partitioned into n equivalence classes; cf. Subsection 2.6 of [27]. As n

increases by 1, the number of intersection points in Tα∩Tβ increases by 3. We
will use the following:

Lemma 3.3. For n > 6 the points {x1, w9}, {x2, w8}, and {x3, w7} are
in the same equivalence class, and all other intersection points are in different
equivalence classes. By varying the base point z among the {z5, . . . , zk−2}, the
Floer homologies in all Spinc structures are obtained.

Proof. From the picture, it is clear that (for some appropriate orientation
of {α1, α2} and {β1, β2}) we have:

[α1] · [β1] =−1,

[α2] · [β1] =−1,

[α1] · [β2] = 2,

[α2] · [β2] =n + 2.

Thus, if {[α1], B1, [α2], B2} is a standard symplectic basis for H1(Σ2), then

[β1]≡−B1 − B2,

[β2]≡ 2B1 + (n + 2)B2

in H1(Σ)/〈[α1], [α2]〉. It follows that H1(Yn) ∼= Z/nZ is generated by B1 =
−B2 = h.

We can calculate, for example, ε({x1, wi}, {x2, wi}) as follows. We find a
closed loop in Σ2 which is composed of one arc a ⊂ α1, and another in b ⊂ β1,
both of which connect x1 and x2. We then calculate the intersection number
(a − b) ∩ α1 = 0, (a − b) ∩ α2 = −1. It follows that a − b = h in H1(Y ). So,
ε({x1, wi}, {x2, wi}) = h.

Proceeding in a similar manner, we calculate:

ε({x2, wi}, {x3, wi}) =h,

ε({y1, vi}, {y2, vi}) = 3h,

ε({yi, v1}, {yi, v2}) =−h,

ε({yi, v2}, {yi, v3}) =−h,

ε({xi, w1}, {xi, w2}) =h,

ε({xi, w2}, {xi, w3}) =−2h,

ε({xi, wj}, {xi, wj+1}) =h
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Figure 2: Domain belonging to φ and i = 3.

for j = 3, . . . , k − 1. Finally, ε({y1, v3}, {x1, w3}) = 0, as these intersections
can be connected by a square.

It follows from this that the equivalence class containing {x1, w9} contains
three intersection points: {x1, w9},{x2, w8}, and {x3, w7}.

Finally, note that szi+1(x)−szi
(x) = εβ∗

2 , for some fixed ε = ±1, according
to Lemma 2.18 of [27], and β∗

2 generates H2(Y ; Z), according to the intersection
numbers between the αi and βj calculated above.

We can identify certain flows as follows:

Lemma 3.4. For all 3 ≤ i ≤ k−2 there are a φ ∈ π2({x3, wi}, {x2, wi+1})
and a ψ ∈ π2({x1, wi+2}, {x2, wi+1}) with µ(φ) = 1 = µ(ψ). Moreover,

#M̂(φ) = #M̂(ψ) = ±1.

Furthermore, nzr
(φ) = 0 for r < i − 2, and nzr

(φ) = 1 for r ≥ i − 2. Also,
nzr

(ψ) = 1 for r ≤ i − 2, and nzr
(ψ) = 0 for r > i − 2.

Proof. We draw the domains D(φ) and D(ψ) belonging to φ and ψ in
Figures 2 and 3 respectively, where the coefficients are equal to 1 in the shaded
regions and 0 otherwise. Let δ1, δ2 denote the part of α2, β2 that lies in the
shaded region of D(φ). Once again, we consider the constant almost-complex
structure structure Js ≡ Sym2(j).

Suppose that f is a holomorphic representative of φ, i.e. f ∈ M(φ), and
let π : F −→ D denote the corresponding 2-fold branched covering of the
disk (see Lemma 3.6 of [27]). Also let f̂ : F −→ Σ denote the corresponding
holomorphic map to Σ. Since D(φ) has only 0 and 1 coefficients, it follows
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Figure 3: Domain belonging to ψ and i = 3.

that F is holomorphically identified with its image, which is topologically an
annulus. This annulus is obtained by first choosing � = 1 or 2 and then cutting
the shaded region along an interval I ⊂ δ� starting at wi+1. Let c ∈ [0, 1)
denote the length of this cut. Note that by uniformization, we can identify the
interior of F with a standard open annulus A◦(r) = {z ∈ C

∣∣r < |z| < 1} for
some 0 < r < 1 (where, of course, r depends on the cut-length c and direction
� = 1 or 2).

In fact, given any � = 1, 2 and c ∈ [0, 1), we can consider the annular
region F obtained by cutting the region corresponding to φ in the direction
δ� with length c. Once again, we have a conformal identification Φ of the
region F ⊂ Σ with some standard annulus A◦(r), whose inverse extends to the
boundary to give a map Ψ: A(r) −→ Σ. For a given � and c let a1, a2, b1, b2

denote the arcs in the boundary of the annulus which map to α1, α2, β1, β2

respectively, and let ∠(aj), ∠(bj) denote the angle spanned by these arcs in
the standard annulus A(r). A branched covering over D as above corresponds
to an involution τ : F −→ F which permutes the arcs: τ(a1) = a2, τ(b1) = b2.
Such an involution exists if and only if ∠(a1) = ∠(a2) in which case it is unique
(see Lemma 9.3 of [27]). According to the generic perturbation theorem, if the
curves are in generic position then these solutions are transversally cut out. It
follows that µ(φ) = 1.

We argue that for � = 1 and c → 1 the angles converge to ∠(a1) → 0,
∠(a2) → 2π. To see this, consider a map Θ: D −→ Σ, which induces a
conformal identification between the interior of the disk and the contractible
region in Σ corresponding to � = 1 and c = 1. One can see that the continuous
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extension of the composite Φc ◦ Θ, as a map from the disk to itself converges
to a constant map, for some constant on the boundary. (It is easy to verify
that the limit map carries the unit circle into the unit circle, and has winding
number zero about the origin, so it must be constant.) Thus, as c �→ 1, both
curves a1 and b2 converge to a point on the boundary of the disk, proving the
above claim. In a similar way, for � = 2 and c → 1 the angles converge to
∠(a1) → 2π, ∠(a2) → 0.

Now suppose that for c = 0 we have ∠(a1) < ∠(a2). Then the signed sum
of solutions with � = 1 cuts is equal to zero, and the signed sum of solutions
with � = 2 cuts is equal to ±1. Similarly if for c = 0 we have ∠(a2) < arg(a1),
then the signed sum of solutions with � = 1 cuts is equal to ±1, and the signed
sum of solutions with � = 2 cuts is equal to zero. This finishes the proof for φ,
and the case of ψ is completely analogous.

Although the domains φ and ψ do not satisfy the boundary-injectivity
hypothesis in Proposition 3.9 of [27], transversality can still be achieved by
the same argument as in that proposition. For example, consider φ, and sup-
pose we cut along � = 1, so that the map f induced by some holomorphic
disk u is two-to-one along part of its boundary mapping to α2. Then, it
must map injectively to the β-curves so, for generic position of those curves,
the holomorphic map u is cut out transversally. Arguing similarly for the
� = 1 cut, we can arrange that the moduli space M(φ) is smooth. The same
considerations ensure transversality for ψ.

Note also that we have counted points in M̂(φ) and M̂(ψ), for the family
Js ≡ Sym2(j), but it follows easily that the same point-counts must hold for
small perturbations of this constant family.

Proof of Proposition 3.2. Consider the equivalence class containing the
elements {x1, w9}, {x2, w8}, and {x3, w7}, denoted a, b, and c respectively.
Let s0 denote the Spinc structure corresponding to this equivalence class and
the basepoint z5. According to Lemma 3.4, in this Spinc structure we have

∂∞[a, j] = ±[b, j − 1], ∂∞[c, j] = ±[b, j − 1].

From the fact that (∂∞)2 = 0, it follows that ∂∞[b, j] = 0. The calculations
for s0 follow.

Varying the basepoint zr with r = 6, . . . , k − 2, we capture all the other
Spinc structures. According to Lemma 3.4, with this choice,

∂∞[a, j] = ±[b, j], ∂∞[c, j] = ±[b, j − 1].

This implies the result for all the other Spinc structures.

More generally let Ym,n denote the oriented 3-manifold obtained by a +n

surgery along the torus knot T2,2m+1. (Again we use the left-handed versions of
these knots, so that, for example, +1 surgery would give the Brieskorn sphere
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Figure 4: +n surgery on the (2, 5) torus knot.

Σ(2, 2m + 1, 4m + 3).) In the following we will compute the Floer homologies
of Ym,n for the case n > 6m.

First note that Ym,n admits a Heegaard decomposition of genus 2. The
corresponding picture is analogous to the m = 1 case, except that now β1 and
β2 spiral more around α1, α2; see Figure 4 for m = 2. In general the β1 curve
hits both α1 and α2 in 2m + 1 points, β2 intersects α1 in 2m points and α2 in
n + 6m points. Let x1, . . . , x2m+1 denote the intersection points of α1 ∩ β1,
labeled from left to right. Similarly let w1, . . . , wn+6m denote the intersec-
tion points of α2 ∩ β2 labeled from left to right. We also choose basepoints
z1, z2, . . . , zn+4m in the spiral at the right-hand side, labeled from outside to
inside.

Lemma 3.5. If n > 6m, then there is an equivalence class containing only
the intersection points ai = {xi, w8m+2−i} for i = 1, . . . , 2m + 1. Furthermore
if st denotes the Spinc structure determined by this equivalence class and base-
point z5m+t, for 1 − m ≤ t ≤ n − m, then in this Spinc structure,

• ∂∞[a2v+1, j] = ±[a2v, j] ± [a2v+2, j − 1], for t < m − 2v,

• ∂∞[a2v+1, j] = ±[a2v, j] ± [a2v+2, j] for t = m − 2v,

• ∂∞[a2v+1, j] = ±[a2v, j − 1] ± [a2v+2, j], for t > m − 2v,

where 0 ≤ v ≤ m, and a0 = a2m+2 = 0.



1176 PETER OZSVÁTH AND ZOLTÁN SZABÓ

Proof. This is the same argument as in the m = 1 case, together with the
observation that if φ ∈ π2(a2v+1, a2�), and � �= v or v + 1, and µ(φ) = 1, then
the domain D(φ) contains regions with negative coefficients (so the moduli
space is empty). Moreover, since (∂∞)2 = 0, it follows that ∂∞([a2v, i]) = 0.

Note that st+1− st ∈ H2(Ym,n) is the Poincaré dual of the meridian of the
knot. Since the meridian of the knot generates H1(Ym,n) = Z/nZ, it follows
that {st| 1−m ≤ t ≤ n−m} = Spinc(Ym,n); i.e. we get all the Spinc structures
this way. Now a straightforward computation gives the Floer homology groups
of Ym,n:

Corollary 3.6. Let Y = Ym,n denote the three-manifold obtained by +n

surgery on the (2, 2m + 1) torus knot. Suppose that n > 6m, and let st denote
the Spinc structures defined above. For m − 1 < t ≤ n − m the Floer theories
are trivial, i.e. ĤF (Ym,n, st) ∼= Z, HFred(Ym,n, st) = 0, HF+(Ym,n, st) ∼= T +,
and HF−(Ym,n, st) ∼= T −. For −m + 1 ≤ t < 0, the Floer homologies of st

are isomorphic to the corresponding Floer homologies of s−t. Furthermore for
0 ≤ t ≤ m − 1,

(1) ĤF (Ym,n, st) is generated by a, b, c with gr(b, a) = 1+2vm,t+2t, gr(b, c) =
1 + 2vm,t.

(2) HF+(Ym,n, st) is generated by xi, yj , for 0 ≤ i, 0 ≤ j ≤ vm,t, gr(yj , xi) =
2(j − i + t) and U+(xi) = xi−1, U+(x0) = 0, U+(yi) = yi−1, U+(y0) = 0.

(3) HF−(Ym,n, st) is generated by xi, yj , for i < 0, 0 ≤ j ≤ vm,t, gr(yj , xi) =
2(j − i + t) − 1 and U−(xi) = xi−1, U−(yi) = yi−1, U−(y0) = 0.

(4) HFred(Ym,n, st) is generated by yj , for 0 ≤ j ≤ vm,t, gr(yi, yj) = 2i − 2j,

where vm,t = �m−t−1
2 �, i.e. the greatest integer less than or equal to

(m − t − 1)/2.

Remark 3.7. The symmetry of the Floer homology under the involution
on the set of Spinc structures ensures that s0 comes from a spin structure. If
n is odd, there is a unique spin structure. With some additional work one can
show that, regardless of the parity of n, s0 can be uniquely characterized as
follows. Let Xm,n be the four-manifold obtained by adding a two-handle to the
four-ball along the (2, 2m + 1) torus knot with framing +n. Then, s0 extends
to give a Spinc structure r over Xm,n with the property that 〈c1(r), [S]〉 = ±n,
where S is a generator of H2(Xm,n; Z). This calculation, which is done in [30],
follows easily from the four-dimensional theory developed in [31].

In fact, Lemma 3.5 can be used to prove that for any Spinc structure on
Ym,n, HF∞(Ym,n, s) ∼= T ∞. Actually, it will be shown in Section 10 that for
any rational homology three-sphere, HF∞(Y, s) ∼= T ∞.
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4. Comparison with Seiberg-Witten theory

4.1. Equivariant Seiberg-Witten Floer homology. We recall briefly the
construction of equivariant Seiberg-Witten Floer homologies HF SW

to , HF SW
from

and HF SW
red . Our presentation here follows the lectures of Kronheimer and

Mrowka [16]. For more discussion, see [3] for the instanton Floer homology
analogue, and also [11], [21], [38].

Let Y be an oriented rational homology 3-sphere, and s ∈ Spinc(Y ). After
fixing additional data (a Riemannian metric over Y and some perturbation)
the Seiberg-Witten equations over Y in the Spinc structure s give a smooth
moduli space consisting of finitely many irreducible solutions γ1, . . . , γk and a
smooth reducible solution θ.

The chain-group CF SW
to is freely generated by γ1, . . . , γk and [θ, i], for

i ≥ 0. Let S denote this set of generators. The relative grading is given by

gr(γj , [θ, i]) = dim (M(γj , θ)) − 2i, gr(γj , γi) = dim (M(γj , γi))

where M(γj , θ) (resp. M(γj , γi)) denotes the Seiberg-Witten moduli space of
flows from γj to θ (resp. γj to γi).

Definition 4.1. For each x, y ∈ S with gr(x, y) = 1 we define an incidence
number c(x, y) ∈ Z, in the following way:

(1) If x = [θ, i], then c(x, y) = 0,

(2) c(γj , γi) = #M̂(γj , γi),

(3) c(γj , [θ, 0]) = #M̂(γj , θ),

(4) c(γj , [θ, i]) = #(M̂(γj , θ) ∩ µ(pt)i),

where M̂ denotes the quotient of M by the R action of translations, and
∩ µ(pt)i denotes cutting down by a geometric representative for µ(pt)i in a
time-slice close to θ (measured using the Chern-Simons-Dirac functional). We
define the boundary map ∂to on CF SW

to by

∂to(x) =
∑

{y∈S| gr(x,y)=1}
c(x, y) · y.

It follows from the broken flowline compactification of two-dimensional
flows, modulo the R action, that (CF SW

to , ∂to) is a chain complex. Let HF SW
to

denote the corresponding relative Z graded homology.
Similarly we can define the chain complex (CF SW

from, ∂from). CF SW
from is freely

generated by γ1, . . . , γk and [θ, i], for i ≤ 0. Let S′ denote this set of generators.
The relative grading is determined by

gr([θ, i], γj) = dim (M(θ, γj)) + 2i, gr(γj , γi) = dim (M(γj , γi)) .
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Definition 4.2. For each x, y ∈ S′ with gr(x, y) = 1 we define an incidence
number c′(x, y) ∈ Z, in the following way:

(1) If y = [θ, i], then c′(x, y) = 0,

(2) c′(γj , γi) = #M̂(γj , γi),

(3) c′([θ, 0], γj) = #M̂(θ, γj),

(4) If i < 0, then c′([θ, i], γj) = #(M̂(θ, γj) ∩ µ(pt)−i).

We define the boundary map ∂from on CF SW
from by

∂from(x) =
∑

{y∈S′| gr(x,y)=1}
c′(x, y) · y.

Again this gives a chain complex and we denote its homology by HF SW
from.

We also have a chain map

f : CF SW
to −→ CF SW

from

given by f(γj) = γj , f([θ, i]) = 0. Let f∗ denote the induced map between the
Floer homologies, and define

HF SW
red = HF SW

to /(Kerf∗).

One reason to introduce these equivariant Floer homologies is that the
irreducible Seiberg-Witten Floer homology (generated only by γ1, . . . , γk) is
metric dependent. Analogy with equivariant Morse theory suggests that the
equivariant theories are metric independent. Indeed the following was stated
by Kronheimer and Mrowka, [16].

Conjecture 4.3. For oriented rational homology 3-spheres Y and Spinc

structures s ∈ Spinc(Y ) the equivariant Seiberg-Witten Floer homologies
HF SW

to (Y, s), HF SW
from(Y, s), and HF SW

red (Y, s) are well -defined, i.e. they are in-
dependent of the particular choice of metrics and perturbations.

4.2. Computations. In this subsection we will compute HF SW
to , HF SW

from

and HF SW
red for the 3-manifolds studied in Section 3, and for a particular choice

of perturbations of the Seiberg-Witten equations. First, note that lens spaces
all have trivial Seiberg-Witten Floer homology, since they admit metrics with
positive scalar curvature; in particular, HF SW

to (L(p, q), s), HF SW
from(L(p, q), s)

and HF SW
red (L(p, q), s) are isomorphic to T +, T −, and 0 respectively. Note

that all the 3-manifolds Y = Ym,n from Section 3 are Seifert-fibered so we can
use [25] to compute their Seiberg-Witten Floer homology.
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Proposition 4.4. Let Y = Ym,n denote the oriented 3-manifold obtained
by +n surgery along the torus knot T2,2m+1. Suppose also that n > 6m. Then
for each s ∈ Spinc(Y ),

HF SW
to (Y, s) ∼= HF+(Y, s), HF SW

from(Y, s) ∼= HF−(Y, s),

HF SW
red (Y, s) ∼= HFred(Y, s),

where the isomorphisms are between relative Z-graded Abelian groups, and
HF SW

to (Y, s), HF SW
from(Y, s), HF SW

red (Y, s) are computed using a reducible con-
nection on the tangent bundle induced from the Seifert fibration of Y , and an
additional perturbation.

Proof. First note that Ym,n is the boundary of the 4-manifold described by
the plumbing diagram in Figure 5, where the number of −2 spheres in the right
chain is n + 4m + 1. This gives a description of Ym,n as the total space of an
orbifold circle bundle over the sphere with 3 marked points with multiplicities
2, 2m+1, k respectively, where k = n+4m+2. The circle bundle N has Seifert
data

N = (−2, 1, m + 1, k − 1),

and the canonical bundle is K = (−2, 1, 2m, k − 1).
Now we can apply [25] to compute the irreducible solutions, relative grad-

ings and the boundary maps.
Let us recall that for the unperturbed moduli space there is a 2 to 1 map

from the set of irreducible solutions to the set of orbifold divisors E with E ≥ 0
and

degE <
deg(K)

2
,

where the preimage consists of a holomorphic and an anti-holomorphic solu-
tion, that we denote by C+(E) and C−(E) respectively. Note that C+(E),
C−(E) lie in the Spinc structures determined by the line bundles E, K ⊗ E−1

respectively.
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In order to simplify the computation we will use a certain perturbation
of the Seiberg-Witten equation. Using the notation of [26] this perturbation
depends on a real parameter u, and corresponds to adding a two-form iu(∗dη)
to the curvature equation, where η is the connection form for Y over the
orbifold. Now holomorphic solutions C+(E) correspond to effective divisors
with

degE <
deg(K)

2
− u

deg(N)
2

,

and anti-holomorphic solutions C−(E) correspond to effective divisors with

degE <
deg(K)

2
+ u

deg(N)
2

.

According to [18] the expected dimension of the moduli space between the
reducible solution θ and C±(E) is computed by

dimM(θ, C±(E)) = 1 + 2

(∑
i∈I±

χ(E ⊗ N i)

)
,

where χ(E ⊗ N i) denotes the holomorphic Euler characteristic of the bundle
E ⊗ N i, and I± ⊂ Z is given by the inequalities

degE < deg(E ⊗ N i) <
deg(K)

2
∓ u

deg(N)
2

.

Returning to our examples let E(a, b) denote the divisor (0, 0, a, b). It is
easy to see that C−(E(a, b)) and C−(E(a + 1, b − 2)) are in the same Spinc

structure. Also C−(E(0, b)) and C+(E(0, 2m − 2 − b)) are in the same Spinc

structure. From now on let s0 denote the Spinc structure given by the line
bundle E(0, m − 1), and st corresponds to the line-bundle E(0, m − 1 + t).
Clearly st ≡ st+n, because H1(Y, Z) = Z/nZ.

Since

degE(a, b) =
a

2m + 1
+

b

k
, degK =

2m − 1
4m + 2

− 1
k
,

for all st with n/4 ≤ |t| ≤ n/2 the unperturbed moduli space (with u = 0)
has no irreducible solutions. It follows that HF SW

to (Y, st) and HF SW
from(Y, st)

are generated by [θ, i] and we have the corresponding isomorphisms with T +,
T − respectively.

Clearly the J action maps st to s−t, so in the light of the J symmetry in
Seiberg-Witten theory, it is enough to compute the equivariant Floer homolo-
gies for 0 ≤ t ≤ n/4. For these Spinc structures let us fix a perturbation with
parameter u satisfying

deg(K) − udeg(N) = −ε,

where ε > 0 is sufficiently small. This perturbation eliminates all the holomor-
phic solutions. It still remains to compute the anti-holomorphic solutions.
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First let 0 ≤ t ≤ m − 1. Since

degE(a, b) =
a

2m + 1
+

b

k
, degK =

2m − 1
4m + 2

− 1
k
,

the irreducible solutions in st are δr = C−(E(r, m − 1 − t − 2r)) for 0 ≤ r ≤
m−1−t

2 . It is easy to see from [25], see also [26], that the irreducible solutions
and θ are all transversally cut out by the equations.

Computing the holomorphic Euler characteristic we get χ(E ⊗ N2i) = 1,

for 0 < 2i ≤ m − 1 − t − 2r, χ(E ⊗ N2i+1) = −1, for m − 1 − t − 2r <

2i + 1 ≤ 2(m − r) − 1, and χ(E ⊗ N j) = 0 for all other j ∈ I−, where
E = E(r, m − 1 − t − 2r). The dimension formula then gives

dimM(θ, δr) = −2t − 2r − 1.

As a corollary we see that ∂from is zero, since all these moduli spaces have
negative formal dimensions, and relative gradings between the irreducible gen-
erators are even. In CF SW

to the relative gradings between all the generators
are even, so ∂to is trivial as well. Now the isomorphism between HF SW

to (Y, st)
and HF+(Y, st) corresponds to mapping [θ, i] to xi, and δr to yr. Similarly the
isomorphism between HF SW

from(Y, st) and HF−(Y, st) corresponds to mapping
[θ, i] to xi−1, and δr to yr. Furthermore HF SW

red is freely generated by δr and
the map δr → yr gives the isomorphism with HFred.

Now suppose that m−1 < t ≤ n/4. Then there are no irreducible solutions
for the perturbed equation. So HF SW

to and HF SW
from are generated by [θ, i] and

we have the corresponding isomorphisms with T +, T − respectively.
For −n/4 ≤ t < 0 we get the analogous results by replacing u with −u.

5. Euler characteristics

In this section, we analyze the Euler characteristics of the Floer homology
theories. In Subsection 5.1, we show that the Euler characteristic of ĤF is
determined by H1(Y ; Z). After that, we turn to the study of HF+ for three-
manifolds with b1 > 0.

In [36], Turaev defines a torsion function

τY : Spinc(Y ) −→ Z,

which is a generalization of the Alexander polynomial. This function can be
calculated from a Heegaard diagram of Y as follows. Fix integers i and j

between 1 and g, and consider corresponding tori

Ti
α = α1 × .. × α̂i × · · · × αg and Tj

β = β1 × .. × β̂j × · · · × βg

in Symg−1(Σ) (where the hat denotes an omitted entry). There is a map σ

from Ti
α∩Tj

β to Spinc(Y ), which is given by thinking of each intersection point
as a (g−1)-tuple of connecting trajectories from index-one to index-two critical
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points. Moreover, orienting αi, there is a distinguished trajectory connecting
the index-zero critical point to the index-one critical point ai corresponding to
αi; similarly, orienting βj , there is a distinguished trajectory connecting the
critical point bj corresponding to the circle βj to the index-three critical point
in Y . This (g + 1)-tuple of trajectories then gives rise to a Spinc structure in
the usual manner (modifying the upward gradient flow in the neighborhoods
of these trajectories). Thus, we can define

∆i,j(s) = ±
∑

{x∈Ti
α∩Tj

β

∣∣σ(x)=s}

ε(x),

where ε(x) is the local intersection number of Ti
α and Tj

β at x, and the overall
sign depends on i, j and g. (It is straightforward to verify that this geometric
interpretation is equivalent to the more algebraic definition of ∆i,j given in [36];
see for instance Section 7 from [29].)

Choose i and j so that both α∗
i and β∗

j have nonzero image in H2(Y ; R).
When b1(Y ) > 1, Turaev’s torsion is characterized by the equation

τ(s) − τ(s + α∗
i ) − τ(s + β∗

j ) + τ(s + α∗
i + β∗

j ) = ∆i,j(s),(1)

and the property that it has finite support. (To define β∗
j here, let C be a

curve in Σ with βi ∩ C = δi,j , and let β∗
j be Poincaré dual to the induced

homology class in Y .) When b1(Y ) = 1, we need a direction t in H2(Y ; R),
which we think of as a component of H2(Y ; R) − 0. Then, τt is characterized
by the above equation and the property that τt has finite support amongst
Spinc structures whose first Chern class lies in the component of t.

For a three-manifold Y with Spinc structure s, the chain complex CF+(Y, s)
can be viewed as a relatively Z/2Z-graded complex (since the grading indeter-
minacy d(s) is always even). Alternatively, this relative Z/2Z grading between
[x, i] and [y, j] is calculated by orienting Tα and Tβ, and letting the relative
degree be given by the product of the local intersection numbers of Tα and Tβ

at x and y. This relative Z/2Z-grading can be used to define an Euler char-
acteristic χ(HF+(Y, s)) (when the homology groups are finitely generated),
which is well-defined up to an overall sign.

In this section, we relate the Euler characteristics of HF+(Y, s) with
Turaev’s torsion function, when c1(s) is nontorsion. (The case where c1(s)
is torsion will be covered in Subsection 10.6, after more is known about HF∞;
related results also hold for HF−, cf. Subsection 10.5.)

The overall sign on χ(HF+(Y, s)) will be pinned down once we define an
absolute Z/2Z grading on HF+(Y, s) in Subsection 10.4.

5.1. Euler characteristic of ĤF . We first dispense with this simple
object.
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Proposition 5.1. The Euler characteristic of ĤF is given by

χ(ĤF (Y, s)) =
{

1 if b1(Y ) = 0
0 if b1(Y ) > 0

.

Proof. Both cases follow from the observation that χ(ĤF (Y, s)) is inde-
pendent of the Spinc structure s. To see this, note that for any βj , we can
wind normal to the α so that (Σ,α,β, z) and (Σ,α,β, z′) are both weakly s-
admissible, where z and z′ are two choices of basepoint which can be connected
by an arc which meets only βj . Now, both ĤF (Y, s) and ĤF (Y, s+PD[β∗

j ]) are
calculated by the same equivalence class of intersection points, using the base-
point z in the first case and z′ in the second. This changes only the boundary
map, but leaves the (finitely generated) chain groups unchanged, hence leaving
the Euler characteristic unchanged.

The result for b1(Y ) > 0 then follows from this observation, together with
Theorem 2.3.

For the case where b1(Y ) = 0, recall that the Heegaard decomposition
gives Y a chain complex with g one-dimensional generators corresponding to
the α (each of which is a cycle), and g two-dimensional generators correspond-
ing to the β. On the one hand, the determinant of the boundary map is the
order of the finite group H1(Y ; Z) (which, in turn, is the number of distinct
Spinc structures over Y ); on the other hand, this determinant is easily seen
to agree with the intersection number #(Tα ∩Tβ) =

∑
s∈Spinc(Y ) χ(ĤF (Y, s)).

The result follows from this, together with s-independence of χ(ĤF (Y, s)).

5.2. χ(HF+(Y, s)) when b1(Y ) = 1 and s is nontorsion. Our aim is to
prove the following:

Theorem 5.2. Suppose b1(Y ) = 1. If s is a nontorsion Spinc structure,
then HF+(Y, s) is finitely generated, and indeed,

χ(HF+(Y, s)) = ±τt(Y, s),

where τt is Turaev ’s torsion function, with respect to the component t of
H2(Y ; R) − 0 containing c1(s).

As usual, the Euler characteristic appearing above can be thought of as
the Euler characteristic of HF+(Y, s) as a Z-module; or, alternatively, we could
consider HF+(Y, s, F) with coefficients in an arbitrary field F.

The proof of Theorem 5.2 occupies the rest of the present subsection.
Let s be a nontorsion Spinc structure on Y . Let H be the generator of

H2(Y ; Z) with the property that

〈c1(s), H〉 < 0.
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Figure 6: Winding transverse to α. We have pictured, once again, the cylindri-
cal neighborhood of γ, and an α-curve obtained by winding six times transverse
to γ. The basepoint z is placed in the third region, and intersection points cor-
responding to some β are labeled. The multiplicities correspond to the domain
of a flow connecting x+

5 to x−
5 .

After handleslides, we can arrange that the periodic domain P corresponding
to H contains α1 with multiplicity one in its boundary.

Choose a curve γ transverse to α1 and disjoint from all other αi for i > 1,
oriented so that α1 ∩ γ = +1. (Note that PD[γ] = α∗

1.) This curve has the
property, then, that

〈PD[γ], H〉 = −1.

Let Tγ = γ × α2 × · · · × αg. Winding α1 n times along γ, we obtain a new
α-torus, which we denote Tα(n). For each intersection point x ∈ Tγ ∩ Tβ we
obtain 2n intersection points in Tα(n) ∩ Tβ

x±
1 , . . . ,x±

n ,

which we order with decreasing distance to γ, with a sign ± indicating which
side of γ they lie on (− indicates left, + indicates right). We call the points
in Tα(n) ∩ Tβ γ-induced: equivalently, a γ-induced intersection point between
Tα(n) and Tβ is a g-tuple of points in Σ, one of which lies in the winding
region about γ. It is easy to see that x+

i and x−
i lie in the same equivalence

class: indeed, there is a canonical flow-line (with Maslov index 1) connecting
each x+

i to x−
i . Thus, (for any choice of base-point z),

sz(x+
i ) − sz(x+

j ) = (i − j)PD(γ),

sz(x+
i ) = sz(x−

i ).

Our twisting will always be done in a “sufficiently small” area, so that the
area of each component of Σ − nd(γ) − α1 − α2 − · · · − αg − β1 − · · · − βg is
greater than n times the area of nd(γ).

We will place our base-point z to the right of γ, in the
(

n
2

)th subregion of
the winding region about γ. For this choice of basepoint, if x ∈ Tγ ∩ Tβ then
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the Spinc structure induced by x±
n/2 is independent of n. Of course, the base-

point is not uniquely determined by this requirement: this region is divided
into components by the β-curves which intersect γ; but we fix any one such
region, for the time being.

Lemma 5.3. If one winds n times, and places the basepoint in the
(

n
2

)th

subregion, and lets Pn denote the corresponding periodic domain, then there is
a constant c with the property that there are basepoints w1 and w2 (near γ and
away from γ respectively), so that

nw1(Pn) ≤ c − n

2
, andnw2(Pn) ≥ c +

n

2
.

Lemma 5.4. Fix a Spinc structure s ∈ Y . Then, if n is sufficiently large,
the γ-induced intersection points of Tα(n)∩Tβ are the only ones which represent
any of the Spinc structures of the form s + k · PD[γ] for k ≥ 0.

Proof. The intersection points between Tα(n) and Tβ which are not in-
duced from γ correspond to the intersection points between the original Tα and
Tβ. So, suppose that x is an intersection point between Tα and Tβ (there are,
of course, finitely many such intersection points), and let z0 be some basepoint
outside the winding region. As we wind α1 n times, and place the new base-
point z inside the winding region as above (so as not to cross any additional
β-curves), we see that

sz(x) − sz0(x) = −n

2
PD[γ],

where we think of [γ] as a one-dimension homology class in Y . The lemma
then follows.

Let (Tα(n) ∩ Tβ)L ⊂ S denote a subset of γ-induced intersection points
where the α1 part lies to the “left” of γ, and (Tα(n) ∩ Tβ)R denotes a subset
of γ-induced intersection points where the α1 part lies to the “right” of γ.
(Note here that S denotes the subset of intersection points which induce the
given Spinc structure s over Y .) There are corresponding subgroups L+ and
R+ ⊂ CF+(Y ); similarly we have L∞ and R∞ ⊂ CF∞(Y ).

Lemma 5.5. Fix s ∈ Spinc(Y ) and an integer n sufficiently large (in com-
parison with 〈c1(s),P〉). Then, for each γ-induced pair x+ and y− inducing s,
there are at most two homotopy classes φin, φout ∈ π2(x+,y−) with Maslov in-
dex one and with only nonnegative multiplicities. Moreover, there are no such
classes in π2(y−,x+).
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Proof. Assume gr(x+,y−) is odd, and let φin
n be the class with µ(φin

n ) = 1,
whose α1 boundary lies entirely inside the tubular neighborhood of γ. We
claim that D(φin

n+2) is obtained from D(φin
n ) by winding only its α1-boundary

(and hence leaving the domain unchanged outside the winding region). This
follows from the fact that the Maslov index is unchanged under totally real
isotopies of the boundary. It follows then that the multiplicities of φin

n inside
a neighborhood of γ grow like n/2. Recall that the multiplicities of Pn inside
grow like −n/2, while outside they grow like n/2.

Now, the set of all µ = 1 homotopic classes connecting x+ to y− is given
by

φin
n + k

(
Pn − 〈c1(s),P〉

2
S

)
.

If this class is to have nonnegative multiplicities, we must have that k = 0 or
1. This proves the assertion concerning classes from x+ to y−, when φout

n =
φin

n +
(
Pn − 〈c1(s),P〉

2 S
)
.

Considering classes from y− to x+, note that all µ = 1 classes have the
form

(S − φin) + k

(
Pn − 〈c1(s),P〉

2
S

)
.

When k < 0, these classes have negative multiplicities outside γ. When k ≥ 0,
these have negative multiplicities inside the neighborhood of γ.

Proposition 5.6. Given a Spinc structure s and an n sufficiently large,
the subgroup L∞ ⊂ CF∞(Y, s) is a subcomplex.

Proof. This follows immediately from the previous lemma.

Of course, the above proposition allows us to think of R∞ as a chain com-
plex, as well, with differential induced from the quotient structure CF∞/L∞.

There is a natural map

δ : R∞ −→ L∞

given by taking the L∞-component of the boundary of each element in R∞.
This induces the connecting homomorphism for the long exact sequence asso-
ciated to the short exact sequence of complexes:

0 −−−→ L∞ −−−→ CF∞ −−−→ R∞ −−−→ 0.

To understand the homomorphism δ, let

f1 : R∞ −→ L∞

be the homomorphism induced by f1([x+
i , j]) = [x−

i , j − nz(φ)], where φ, the
disk connecting x+

i to x−
i , is supported in the tubular neighborhood of γ.
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We can define an ordering on the γ-induced intersection points represent-
ing s as follows. Let [x, i], [y, j] ∈ S × Z, then there is a unique φ ∈ π2(x,y)
with nz(φ) = i−j and ∂(D(φ))∩α1 supported inside the tubular neighborhood
of γ. We denote the class φ by φ[x,i],[y,j] and then say that

[x, i] > [y, j]

if
µ(φ[x,i],[y,j]) > 0

or if
µ(φ[x,i],[y,j]) = 0

and the area A(D(φ[x,i],[y,j])) > 0. Note that an ordering gives us a partial
ordering for elements in CF∞(Y, s): fixing ξ, η ∈ CF+(Y, s), we say that ξ < η

if each [x, i] ∈ S ×Z which appears with nonzero multiplicity in the expansion
of ξ is smaller than each [y, j] ∈ S×Z which appears with nonzero multiplicity
in the expansion of η.

In the following lemma, it is crucial to work with negative Spinc structures,
i.e. those for which 〈c1(s),P〉 < 0.

Lemma 5.7. If s is a negative Spinc structure, then the map

δ : R∞ −→ L∞

can be written as
δ = f1 + f2,

so that
f2(g) < f1(g)

for each g = [x, i] ∈ R∞.

Proof. Consider a pair of generators [x+, i] and [y−, j], for which the
coefficient of δ is nonzero, i.e. that gives a homotopy class ψ for which µ(ψ) = 1
and D(ψ) ≥ 0. Thus, by Lemma 5.5, there are two possible cases, where
ψ = φin or ψ = φout (for x+ and y−). Note also that φin = φ[x+,i][y−,j].

The case where ψ = φin, has two subcases, according to whether or not
[y−, j] = f1([x+, i]). If [y−, j] = f1([x+, i]), ψ = φ[x+,i]f1([x+,i]), and it follows
easily that #M(ψ) = 1. Since the periodic domains have both positive and
negative coefficients, the [y−, j] coefficient of f2[x+, i] must vanish. If [y−, j] �=
f1([x+, i]), then the domain of φf1([x+,i]),[y−,j] must include some region outside
the neighborhood of γ. Moreover, since

φ[x+,i],f1([x+,i]) + φf1([x+,i]),[y−,j] = ψ,
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we have that µ(φf1([x+,i]),[y−,j]) = 0; but since the support of the twisting region
is sufficiently small, it follows that

A(φf1([x+,i]),[y−,j]) > 0;

i.e. f1([x+, i]) > [y−, j].
When ψ = φout, it is easy to see that

φ[x+,i],[y−,j] = φout − P.

It follows that µ(φ[x+,i],[y−,j]) = 1 − 〈c1(s), H(P)〉. Moreover,

φ[x+,i],f1([x+,i]) + φf1([x+,i]),[y−,j] = φ[x+,i],[y−,j],

so that µ(φf1([x+,i]),[y−,j]) = −〈c1(s), H(P)〉 > 0, by our hypothesis on s, so
that f1([x+, i]) > [y−, j].

Proposition 5.8. For negative Spinc structures s, the map δ+ : R+ −→
L+ is surjective, and its kernel is identified with the kernel of f+

1 (as a Z/d(s)Z-
graded group).

Proof. This is an algebraic consequence of Lemma 5.7.
We can define a right inverse to f1,

P1[x−
i , j] = [x+

i , j + nz(φ)],

where φ is the disk connecting x+
i to x−

i . Then, we define a map

P =
∞∑

N=0

P1 ◦ (−f2 ◦ P1)◦N .

Note that the right-hand side makes sense, since the map f2 ◦P1 decreases the
ordering (which is bounded below); so for any fixed ξ ∈ R+, there is some N

for which
(−f2 ◦ P1)◦N (ξ) = 0.

It is easy to verify that P is a right inverse for δ+.
The map sending ξ �→ ξ − P ◦ δ+(ξ) induces a map from Kerf1 to Kerδ+,

which is injective, since for any ξ ∈ Kerf1,

P ◦ δ+(ξ) = P ◦ f2(ξ) < ξ.

Similarly, the map ξ �→ ξ − P1 ◦ f1(ξ) supplies an injection Kerδ+ −→ Kerf1.
It follows that Kerf1

∼= Kerδ+.

Proposition 5.9. For negative Spinc structures, the rank HF+(Y, s) is
finite. Moreover, χ(H∗(ker δ+

s )) = χ(HF+(Y, s)).
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Proof. According to Proposition 5.8 we have the short exact sequence

0 −−−→ ker δ+ −−−→ R+ δ+

−−−→ L+ −−−→ 0,

which we compare with the short exact sequence

0 −−−→ L+ −−−→ CF+ −−−→ R+ −−−→ 0.

The result then follows by comparison of the associated long exact sequences,
and the observation that the connecting homomorphism for the second se-
quence agrees with the map on homology induced by δ+.

Proposition 5.10. Let s be a negative Spinc structure; then

χ(Kerf1(s)) = ±τt(s),

where t is the component of H2(Y, Z) containing c1(s).

Proof. The map f1 depends on a base-point and an equivalence class of in-
tersection points. However, according to Propositions 5.8 and 5.9, χ(Kerf+

1 (s))
depends on these data only through the underlying Spinc structure s (when
the latter is negative). Let χ(s) denote the Euler characteristic χ(Kerf1|s).
We fix a basepoint z as before. There is a map

Sz : Tγ ∩ Tβ −→ Spinc(Y ),

defined as follows. Given x ∈ Tγ ∩ Tβ, we have

sz(x+
1 ) + (nz(φ) − 1)α∗

1,

where φ is the canonical homotopy class connecting x+
1 and x−

1 , and α∗
1 =

PD[γ]. (In fact, it is easy to see that the above assignment is actually inde-
pendent of the number of times we twist α1 about γ.) There is a naturally
induced function (depending on the basepoint)

az : Spinc(Y ) −→ Z

by
az(s) =

∑
{x∈Tγ∩Tβ

∣∣Sz(x)=s}

ε(x),

where ε(x) is the local intersection number of Tγ ∩ Tβ at x. It is clear that

χ(s) =
∞∑

n=0

(n + 1) · az(s + n · α∗
1).

It follows that

χ(s) − χ(s + α∗
1) =

∞∑
n=0

az(s + n · α∗
1).(2)
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We investigate the dependence of az on the basepoint z. Note first that
there must be some curve βj which meets γ whose induced cohomology class β∗

j

is not a torsion element in H2(Y ; Z): indeed, any βj appearing in the expression
∂P with nonzero multiplicity has this property. Suppose that z1 and z2 are a
pair of possible base-points which can be connected by a path zt disjoint from
all the attaching circles except βj , which it crosses transversally once, with
#(βj ∩ zt) = +1. There is a corresponding intersection point w ∈ γ ∩ βj . We
orient βj so that this intersection number is negative (so that βj points in the
same direction as α1).

Now, we have two classes of intersection points x ∈ Tγ ∩ Tβ: those which
contain w (each of these has the form w × T1

α ∩ Tj
β), and those which do not.

If x lies in the first set, then

Sz1(x) = Sz2(x) + β∗
j − α∗

1;

if x lies in the second set, then

Sz1(x) = Sz2(x) + β∗
j .

Note that there is an assignment:

σ′ : T1
α ∩ Tj

β −→ Spinc(Y )

obtained by restricting Sz2 to w × (T1
α ∩ Tj

β) ⊂ Tγ ∩ Tβ, and hence a corre-
sponding map

∆′ : Spinc(Y ) −→ Z.

We have the relation that

az2(s) − az1(s + β∗
j ) = ∆′(s) − ∆′(s + α∗

1).(3)

It follows from Equations (2) and (3) that

χ(s) − χ(s + α∗
1) − χ(s + β∗

j ) + χ(s + α∗
1 + β∗

j )

=
∞∑

n=0

az2(s + nα∗
1) − az1(s + nα∗

1 + β∗
j )

=
∞∑

n=0

∆′(s + nα∗
1) − ∆′(s + (n + 1)α∗

1)

= ∆′(s)

(note that ∆′ has finite support).
It is easy to see directly from the construction that ∆′ and the term ∆1,j

from Equation (1) can differ at most by a sign and a translation with C1α
∗
1 +

C2β
∗
j , where C1 and C2 are universal constants. Since τ(s) and χ(HF+(Y, s))

are three-manifold invariants, by varying β∗
j , it follows that C2 = 0. A simple

calculation in S1 × S2 shows that C1 = 0, too. It follows that τ(s) must agree
with ±χ(HF+(Y, s)).
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Proof of Theorem 5.2. This is now a direct consequence of Propositions 5.8,
5.9 and 5.10.

5.3. The Euler characteristic of HF+(Y, s) when b1(Y ) > 1, s is nontor-
sion.

Theorem 5.11. If s is a nontorsion Spinc structure, over an oriented
three-manifold Y with b1(Y ) > 1, then HF+(Y, s) is finitely generated, and
indeed,

χ(HF+(Y, s)) = ±τ(Y, s),

where τ is Turaev ’s torsion function.

The proof in Subsection 5.2 applies, with the following modifications.

First of all, we use a Heegaard decomposition of Y for which there is a
periodic domain P containing α1 with multiplicity one in its boundary, and
with the property that the induced real cohomology class c1(s) is a nonzero
multiple of PD[α∗

1]. (This can be arranged after handleslides amongst the αi.)
The subgroup c1(s)⊥ of H2(Y ; Z) which pairs trivially with c1(s) corresponds
to the set of periodic domains P whose boundary contains α1 with multiplicity
zero. Let P2, . . . ,Pb be a basis for these domains. By winding normal to
the α2, . . . , αg, we can arrange for all of these periodic domains to have both
positive and negative coefficients with respect to any possible choice of base-
point on γ. It follows that the Heegaard diagrams constructed above remain
weakly admissible for any Spinc structure. In the present case, the proof of
Lemma 5.5 gives the following:

Lemma 5.12. Fix s and an n sufficiently large (in comparison with
〈c1(s),P〉). Then, for each γ-induced pair x+ and y− inducing s, there are
at most two homotopy classes modulo the action of c1(s)⊥, [φin], [φout] ∈
π2(x+,y−)/c1(s)⊥ with Maslov index one and with only nonnegative multi-
plicities. Moreover, there are no such classes in π2(y−,x+).

Thus, Proposition 5.6 holds in the present context. In fact, the above
lemma suffices to construct the ordering. Note that there is no longer a unique
map connecting x to y with α1-boundary near γ, with specified multiplicity at
z (the map φ[x,i][y,j] from before), but rather, any two such maps φ and φ′ differ
by the addition of periodic domains in c1(s)⊥. Thus, in view of Theorem 4.9
of [27], the Maslov indices of φ and φ′ agree. If we choose the volume form
on Σ so that all of P2, . . . ,Pg have total signed area zero (cf. Lemma 4.12
of [27]), then the ordering defined by analogy with the previous subsection is
independent of the choice of φ or φ′.

With these remarks in place, the proof of Theorem 5.2 applies, now prov-
ing that χ(s) = ±τ(s), proving Theorem 5.11.
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6. Connected sums

In the second part of this section, we study the behaviour under connected
sums, as stated in Theorem 1.5. We begin with the simpler case of ĤF , and
then turn to HF−.

6.1. Connected sums and ĤF .

Proposition 6.1. Let Y1 and Y2 be a pair of oriented three-manifolds,
and fix s1 ∈ Spinc(Y1) and s2 ∈ Spinc(Y2). Let ĈF (Y1, s1) and ĈF (Y2, s2)
denote the corresponding chain complexes for calculating ĤF . Then,

ĈF (Y1#Y2, s1#s2) ∼= ĈF (Y1, s1) ⊗Z ĈF (Y2, s2).

In light of the universal coefficients theorem from algebraic topology, the
above result gives isomorphisms for all integers k:

ĤF k(Y1#Y2, s1#s2)∼=

 ⊕
i+j=k

ĤF i(Y1, s1) ⊗ ĤF j(Y2, s2)


⊕

 ⊕
i+j=k−1

Tor(ĤF i(Y1, s1), ĤF j(Y2, s2))


for some choice of absolute gradings on the complexes. (Of course, this is
slightly simpler with field coefficients, because in that case all the Tor sum-
mands vanish.)

Note that Theorem 1.4 is an easy consequence of this result, together with
Proposition 2.1.

Proof of Proposition 6.1. Fix weakly s1 and s2-admissible pointed
Heegaard diagrams (Σ1,α,β, z) and (Σ2, ξ,η, z2) for Y1 and Y2 respectively.
Then, we form the pointed Heegaard diagram (Σ,γ, δ, z), where Σ is the con-
nected sum of Σ1 and Σ2 at their distinguished points z1 and z2, γ is the tuple
of circles obtained by thinking of α ∪ ξ as circles in Σ, and δ are obtained
in the same way from β ∪ η. We place the basepoint z in the connected sum
region. It is easy to see that (Σ,γ, δ, z) represents Y1#Y2. Moreover, there is
an obvious identification

Tγ ∩ Tδ = (Tα ∩ Tβ) × (Tξ ∩ Tη),

which is compatible with the relative gradings, in the sense that:

gr(x1 × x2,y1 × y2) = gr(x1,y1) + gr(x2,y2).

Moreover, if φ ∈ π2(x1 × x2,y1 × y2) has nz(φ) = 0, then

MJ
(1)
s #J

(2)
s

(φ) ∼= MJ
(1)
s

(φ1) ×MJ
(2)
s

(φ2),
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where φi ∈ π2(xi,yi) is the class with nzi
(φi) = 0 (where zi ∈ Σi is the

connected sum point), and J
(1)
s and J

(2)
s are families which are identified with

Sym(g)(j1) and Sym(g)(j2) near the connected sum points. So we can form their

connected sum J
(1)
s #J

(2)
s . Now, µ(φ) = 1 and M(φ) is nonempty, so that the

dimension count forces one of M(φi) to be constant. The proposition follows.

6.2. Connected sums and HF−. We have seen how ĤF behaves under
connected sum (Proposition 6.1), and this suffices to give a nonvanishing result
for HF+ under connected sums (Theorem 1.5). The purpose of the present
subsection is to give a more precise description of the behaviour of HF− and
HF∞ under connected sum. (Note that HF+ can be readily determined from
HF− and HF∞, using the long exact sequence connecting these three Z[U ]-
modules.)

Note that CF−(Y, s), viewed as a Z/2Z-graded chain complex, is finitely
generated as a module over the ring Z[U ].

Theorem 6.2. Let Y1 and Y2 be a pair of oriented three-manifolds,
equipped with Spinc structures s1 and s2 respectively. Then there are iden-
tities:

HF−(Y1#Y2, s1#s2)∼= H∗
(
CF−(Y1, s1) ⊗Z[U ] CF−(Y2, s2)

)
,

HF∞(Y1#Y2, s1#s2)∼= H∗
(
CF∞(Y1, s1) ⊗Z[U,U−1] CF∞(Y2, s2)

)
.

Before proceeding with the proof of the above result, we give a consequence
for rational homology three-spheres Y1 and Y2, using a field F instead of the
base ring Z. In this case, since HF−(Y, s; F) is a finitely generated module over
F[U ], it splits as a direct sum of cyclic modules. Indeed, each cyclic summand
is either isomorphic to F[U ] or it has the form F[U ]/Un for some nonnegative
integer n, since if some polynomial in U , f(U), acts trivially on any element
ξ ∈ HF−(Y, s), then clearly U must divide f . We call this exponent n the
order of the corresponding generator; i.e., given a generator ξ ∈ HF−(Y, s) as
an F[U ]-module, we define its order

ord(ξ) = max{i ∈ Z≥0
∣∣U i · ξ �= 0}.

Note that by the structure of HF∞(Y, s), in any set of generators for HF−(Y, s)
there is exactly one with infinite order.

Corollary 6.3. Let F be a field, and fix rational homology spheres Y1

and Y2. Let ξi for i = 0, . . . , M resp. ηj for j = 0, . . . , N, be generators of
HF−(Y1, s1; F) resp. HF−(Y2, s2; F) as an F[U ]-module. We order these so
that ord(ξ0) = ord(η0) = +∞. Then, HF−(Y1#Y2, s1#s2; F) is generated as
an F[U ]-module by generators ξi ⊗ ηj with (i, j) ∈ {0, . . . , M} × {0, . . . , N}
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and also by generators ξi ∗ ηj for (i, j) ∈ {1, . . . , M} × {1, . . . N}. Moreover,
for all (i, j) ∈ {0, . . . M} × {0, . . . , N},

ord(ξi ⊗ ηj) = min(ord(ξi), ord(ηj)) and gr(ξi ⊗ ηj) = gr(ξi) + gr(ηj);

while for all (i, j) ∈ {1, . . . , M} × {1, . . . , N},

ord(ξi ∗ ηj) = min(ord(ξi), ord(ηj)) and gr(ξi ∗ ηj) = gr(ξi) + gr(ηj) − 1.

In particular,

χ
(
HF−

red(Y1#Y2, s1#s2)
)

= χ
(
HF−

red(Y1, s1)
)

+ χ
(
HF−

red(Y2, s2)
)
.

Proof. This is an immediate application of Theorem 6.2 and the Künneth
formula for chain complexes over the principal ideal domain F[U ]. Specifically,
we have that

HF−(Y1#Y2, s1#s2)∼=
(
HF−(Y1, s1) ⊗F[U ] HF−(Y1, s2)

)
⊕

(
HF−(Y1, s1) ∗ HF−(Y1, s2)

)
,

where A ∗ B denotes the Tor-complex, i.e.

(A ∗ B)k
∼=

⊕
i+j=k−1

TorF[U ](Ai, Bj).

It is easy to see then that for any pair of nonnegative integers m and n,

(F[U ]/Um) ⊗F[U ] (F[U ]/Un) ∼= F[U ]/Umin(m,n) ∼= TorF[U ](F[U ]/Um, F[U ]/Un);

while for any F[U ]-module M , F[U ] ⊗F[U ] M ∼= M and TorF[U ](F[U ], M) = 0.
To see the Euler characteristic statement, we proceed as follows. First,

observe that the Euler characteristic of the graded Z-module HF−(Y, s) is the
same as the Euler characteristic of the Q-vector space HF−(Y, s; Q). From
above, we have that HF−

red(Y1#Y2, s1#s2; Q) is freely generated over Q by

i, j ∈ {0, . . . , M} × {0, . . . , N} − {0, 0}

with Umξi ⊗ ηj where m ∈ 0, . . . , ord(ξi ⊗ ηj) (observe that all generators of
the form Um(ξ0 ⊗ η0) inject into HF∞(Y1#Y2, s1#s2; F)) and also generators
Um(ξi ∗ ηj) for (i, j) ∈ {1, . . . M} × {1, . . . , N} and m ∈ {0, . . . , ord(ξi ∗ ηj)}.
Observe in particular that when i, j are both nonzero, Um(ξi ⊗ ηj) has a cor-
responding element Um(ξi ∗ ηj) whose degree differs by one, so these cancel in
the Euler characteristic. The only remaining elements are those of the form
Um(ξi⊗η0) with i > 0 and m ∈ 0, .., ord(ξi), and also Un(ξ0⊗ηj) with j > 0 and
n ∈ 0, . . . , ord(ηj). These contribute χ(HF−

red(Y1, s1)) and χ(HF−
red(Y2, s2)) to

the Euler characteristic χ(HF−
red(Y1#Y2, s1#s2)) respectively.
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Before proving Theorem 6.2, we give the following special case.

Proposition 6.4. Let s0 be the Spinc structure on S2×S1 with c1(s0)=0,
and let Y be an oriented three-manifold, equipped with a Spinc structure s.
There are isomorphisms:

HF−(Y #(S2 × S1), s#s0)∼= HF−(Y, s) ⊗ ∧∗H1(S2 × S1),

HF∞(Y #(S2 × S1), s#s0)∼= HF∞(Y, s) ⊗ ∧∗H1(S2 × S1),

HF+(Y #(S2 × S1), s#s0)∼= HF+(Y, s) ⊗ ∧∗H1(S2 × S1).

For all other Spinc structures on Y #(S2 × S1), HF+ vanishes.

Proof. We consider first Spinc structures on Y #(S2 × S1) of the form
s#s0. Let (Σ,α,β, z1) be a strongly s-admissible pointed Heegaard diagram
for Y . Consider the Heegaard diagram for S2 × S1 discussed in Section 3.1,
given by (E, {αg+1}, {βg+1}, z2), where E is a genus-one surface and αg+1

and βg+1 are a pair of exact Hamiltonian isotopic curves meeting in a pair
x+ and x− of intersection points. Choose the reference point z2 so that the
exact Hamiltonian isotopy connecting the two attaching circles does not cross
z2. Recall that there is a pair of homotopy classes φ1, φ2 ∈ π2(x+, x−) which
contain holomorphic representatives, indeed both containing a unique smooth,
holomorphic representative (for any constant complex structure on E). We can
form the connected-sum diagram (Σ#α∪{αg+1},β∪{βg+1}, z), where we form
the connected-sum along the two distingushed points, and let the new reference
point z lie in the connected-sum region. This is easily seen to be strongly s#s0-
admissible. Of course T′

α ∩ T′
β = (Tα ∩ Tβ) × {x+, x−}; thus CF+(Y0, s#s0)

is generated by [x, i] ⊗ {x±}, where x ∈ Tα ∩ Tβ, and gr([x, i] ⊗ {x+}, [x, i] ⊗
{x−}) = 1, i.e. CF+(Y #(S2 × S1), s#s0) ∼= CF+(Y, s) ⊕ CF+(Y, s) (where
the second factor is shifted in grading by one). We claim that when the neck
is sufficiently long, the differential respects this splitting.

Fix x,y ∈ Tα ∩Tβ. First, we claim that for sufficiently long neck lengths,
the only homotopy classes φ′ ∈ π2(x×{x+},y×{x+}) with nontrivial holomor-
phic representatives are the ones which are constant on x+. This comes from
the following weak limit argument. Suppose there is a homotopy class φ′ ∈
π2({x, x+}, {y, x+}) with µ(φ) �= 0 for which the moduli space is nonempty
for arbitrarily large connected-sum neck-length. Then, there is a limiting holo-
morphic disk in Symg(Σ) × E. On the E factor, the disk must be constant,
since π2(x+, x+) ∼= Z (here we are in the first symmetric product of the genus
one surface), and all nonconstant homotopy classes have domains with positive
and negative coefficients. Thus, the limiting flow has the form φ × {x+} for
some φ ∈ π2(x,y) (in Symg(Σ)). Theorem 10.4 of [27] applies then to give
an identification M(φ×{x+}) ∼= M(φ′). Indeed, we have the same statement
with x− replacing x+.
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Next, we claim that (for generic choices) if φ′ ∈ π2(x×{x+},y×{x−}) is
any homotopy class with µ(φ′) = 1, which contains a holomorphic representa-
tive for arbitrarily long neck-lengths, then it must be the case that x = y, and
φ′ = {x}×φ1 or φ′ = {x}×φ2. Again, this follows from weak limits. If it were
not the case, we would be able to extract a sequence which converges to a holo-
morphic disk in Symg(Σ)×E, which has the form φ×φ1 or φ×φ2. Now, it is
easy to see that φ×{x+}∗({y}×φi) = φ′ for i = 1 or 2 (by, say, looking at do-
mains); hence, µ(φ×{x+}) = 0. It follows that as a flow in Symg(Σ), µ(φ) = 0.
Thus, there are generically no nontrivial holomorphic representatives, unless φ

is constant. Observe, of course, that #M̂({x}×φ1) = #M̂({x}×φ2) = 1, and
also nz({x} × φ1) = nz({x} × φ2). With the appropriate orientation system,
these flows cancel in the differential.

Putting these facts together, we have established that

∂′([x, i] × {x±}) = (∂[x, i]) × {x±}

(where ∂′ is the differential on CF+(Y #(S2 × S1), s#s0), and ∂ is the dif-
ferential on CF+(Y, s). Indeed, it is easy to see that the action of the one-
dimensional homology generator coming from S2×S1 annihilates [x, i]×{x−},
and sends [x, i] × {x+} to [x, i] × {x−}.

When the first Chern class of the Spinc structure evaluates nontrivially on
the S2 × S1 factor, we can make αg+1 and βg+1 disjoint, and have a Heegaard
diagram which is still weakly admissible for this Spinc structure. Since there
are no intersection points, it follows that HF+ in this case is trivial.

The proof of Theorem 6.2 is very similar to the proof of Proposition 9.8
from [27]. As in that proof, we find it convenient to subdivide the argument
into two cases depending on the first Betti number.

Proof of Theorem 6.2 when b1(Y1#Y2) = 0. First, we construct a chain
map

Γ: CF≤0(Y1, s1) ⊗Z[U ] CF≤0(Y2, s2) −→ CF≤0(Y1#Y2, s1#s2).

To this end, consider pointed Heegaard diagrams (Σ1,α,β, z1) and (Σ2, ξ,η, z2)
for Y1 and Y2 respectively. Then there is a connected-sum Heegaard triple
(Σ1#Σ2,α ∪ ξ,β ∪ ξ,β ∪ η, z). This triple describes a cobordism from
Y1#(#g2(S2 × S1))

∐
(#g1(S2 × S1))#Y2 to Y1#Y2 where g1 and g2 are the

genera of Σ1 and Σ2 respectively. In fact, we let β′ and ξ′ be exact Hamiltonian
translates of the β and ξ respectively, so that the new triple

(Σ1#Σ2,α ∪ ξ′,β ∪ ξ,β′ ∪ η, z),

is admissible. We let Θ1 ∈ Tβ∩T′
β and Θ2 ∈ Tξ∩T′

ξ denote the “top” intersec-
tion points in Symg1(Σ1) resp. Symg2(Σ2) between the tori corresponding to β
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and β′, resp. ξ and ξ′. In view of Proposition 6.4, the maps [x, i] �→ [x×Θ2, i]
and [y, j] �→ [Θ1 × y, j] give chain maps

Φ1 : CF≤0(Y1, s1) −→ CF≤0(Y1#g2(S2 × S1), s1#s0)

and
Φ2 : CF≤0(Y2, s2) −→ CF≤0(#g1(S2 × S1)Y2, s0#s2)

which are the chain maps considered in Proposition 6.4. Now, we define Γ to
be the composite of Φ1 ⊗ Φ2 with the map

F : CF≤0(Y1#
(
#g2(S2 × S1)

)
, s1#s0)⊗CF≤0(

(
#g1(S2 × S1)

)
#Y2, s0#s2)

−→ CF≤0(Y1#Y2, s1#s2)

defined by counting holomorphic triangles in the Heegaard triple considered
above. Observe that F ([x, i − 1] ⊗ [y, j]) = F ([x, i] ⊗ [y, j − 1]), so that
F ◦ (Φ1 ⊗ Φ2) is Z[U ]-bilinear, inducing the Z[U ]-equivariant chain map Γ.

Suppose that β′ is sufficiently close to the β. Then, for each intersection
point x ∈ Tα ∩ Tβ, there is a unique closest intersection point x′ ∈ Tα ∩ T′

β;
similarly, when ξ′ is sufficiently close to ξ, each intersection point y ∈ Tξ ∩Tη

corresponds to a unique closest intersection point y′ ∈ T′
ξ ∩ Tη. In this case,

there is an obvious map

Γ0 : CF≤0(Y1, s1) ⊗Z[U ] CF≤0(Y2, s2) −→ CF≤0(Y1#Y2, s1#s2)

defined by
Γ0([x, i] ⊗ [y, j]) = [x′ × y′, i + j].

The map ψ0 is not necessarily a chain map, but it is clearly an isomorphism
of relatively Z-graded groups. Indeed, we claim that when the total unsigned
area ε in the regions between the ξi and the corresponding ξ′i (resp. βi and
corresponding β′

i) is sufficiently small, then, for the induced energy filtration
on (cf. Section 9 of [27] and also Section 9 below) CF≤0(Y1#Y2, s1#s2), we
have that

Γ = Γ0 + lower order.

This is true because there is an obvious small holomorphic triangle ψ with
nz(ψ) = 0, µ(ψ) = 0, and #M(ψ) = 1 connecting x×Θ2, Θ1 ×y, and x′×y′.
The total area of this triangle is bounded by the total area ε (which we can
arrange to be smaller than any other triangle ψ′ ∈ π2(x × Θ2,Θ1 × y,w)).
Since the energy filtration is bounded below in each degree (where now we
view the complexes as relatively Z-graded modules over Z), it follows that Φ
also induces an isomorphism in each degree. Thus Γ induces an isomorphism
of Z-modules

γ : H∗
(
CF≤0(Y1, s1) ⊗Z[U ] CF≤0(Y2, s2)

)
−→ HF≤0(Y1#Y2, s1#s2).

We have chosen to work with CF−, but there is of course an identification
CF≤0 ∼= CF− of complexes. Note also that the above discussion also applies
to prove the claim for CF∞.
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For nontorsion Spinc structures s, we must use the refined filtration (again,
as in Section 9 of [27]). Specifically, given a strongly s-admissible Heegaard
diagram, choose a volume form for the surface for which all s-renormalized
periodic domains have total area zero. Now, given [x, i] and [y, j] with the
same grading, we can find some disk φ ∈ π2(x,y) with nz(φ) = i − j and
µ(φ) = 0. We then define the filtration difference to be the area of the domain
associated to φ:

F([x, i], [y, j]) = −A(D(φ)).

Since any possible choices of such disks φ, φ′ differ by a renormalized periodic
domain, it follows that the filtration defined above is independent of the choice
of disk.

When δ = d(s) is the grading indeterminacy of CF−(Y, t), the filtration of
[x, i] and [x, i+δ] agree, since they can be connected by a Whitney disk φ whose
underlying domain is a renormalized periodic domain. Thus, the filtration F
is bounded below.

Proof of Theorem 6.2 when b1(Y1#Y2) > 0. When s1#s2 is a torsion Spinc

structure, the proof given under the assumption that b1(Y1#Y2) = 0 adapts
immediately in the present context.

When s1#s2 is nontorsion, we argue first that the connected sum Y1#Y2

can be endowed with a Heegaard diagram which is both special in the above
sense (each s1#s2-renormalied periodic domain has total area zero), and it also
splits as a sum of Heegaard diagrams (Σ1#Σ2,α∪ξ,β∪η, z). This is done by
winding the α within Σ1, and the β within Σ2. As in the proof of the theorem
when b1(Y1#Y2) = 0, we consider the Heegaard triple

(Σ1#Σ2,α ∪ ξ′,β ∪ ξ,β′ ∪ η, z),

where ξ′ and β′ are obtained as sufficiently small Hamiltonian translates of
the original ξ and β, letting ε denote the total (unsigned) areas in the regions
between the original curves and their Hamiltonian translates.

We claim that even when s1#s2 is nontorsion, we can write

Γ = Γ0 + lower order,(4)

where now the lower order terms have lower order with respect to the filtration
F defined right before this proof. To see this, suppose that ψ is a holomorphic
triangle which contributes to Γ, i.e. ψ ∈ π2(x × y,Θ1 × Θ2,p × q) satisfies
µ(ψ) = 0 and D(ψ) > 0, while ψ0 ∈ π2(x×y,Θ1 ×Θ2,x′×y′) is the canonical
small triangle. Assuming that x′ × y′ �= p × q, we argue that

F([x′ × y′, i], [p × q, i − nz(ψ)]) < 0.

To see this, find some φ ∈ π2(x′ × y′,p × q) with µ(φ) = 0, so that both
ψ, ψ0 ∗ φ ∈ π2(x × y,Θ1 × Θ2,p × q) have µ(ψ) = µ(ψ0 + φ) = 0. Now, we
claim that

A(ψ) = A(ψ0 + φ),
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since the difference is a triply periodic domain, while the ξ′ and η′ are ob-
tained from ξ and η by exact Hamiltonian translation. Since A(ψ) > ε, while
A(ψ0) < ε, it follows that A(φ) is positive.

Since the refined energy filtration is bounded below, the theorem now
follows as before.

7. Adjunction inequalities

Theorem 7.1. Let Z ⊂ Y be a connected embedded two-manifold of genus
g(Z) > 0 in an oriented three-manifold with b1(Y ) > 0. If s is a Spinc structure
for which HF+(Y, s) �= 0, then∣∣〈c1(s), [Z]〉

∣∣ ≤ 2g(Z) − 2.

We can reformulate this result using Thurston’s seminorm; see [35]. If
Z =

⋃k
i=1 Zi is a closed surface with k connected components, let

χ−(Z) =
k∑

i=1

max(0,−χ(Zi)).

The Thurston seminorm of a homology class ξ ∈ H2(Y ; Z) is then defined by

Θ(ξ) = inf{χ−(Z)
∣∣Z ⊂ Y, [Z] = ξ}.

In this language, Theorem 7.1 says the following:

Corollary 7.2. If HF+(Y, s) �= 0, then
∣∣〈c1(s), ξ〉

∣∣ ≤ Θ(ξ) for all ξ ∈
H2(Y ; Z).

Proof. First observe that if Z is an embedded sphere in Y , then for each
s for which HF+(Y, s) �= 0, we have that 〈c1(s), [Z]〉 = 0. This is a direct
consequence of Theorem 7.1: attach a handle to Z to get a homologous torus
Z ′ and apply the theorem.

Now, let ∪k
i=1Zi be a representative of ξ whose χ− is minimal, labeled so

that Zi for i = 1, . . . , � are the components with genus zero. Then,

|〈c1(s), ξ〉| ≤
k∑

i=1

|〈c1(s), Zi〉| ≤
k∑

i=�+1

(2g(Zi) − 2) = Θ(ξ).

Theorem 7.1 is proved by constructing a special Heegaard diagram for Y ,
containing a periodic domain representative for Z with a particular form. The
theorem then follows from a formula which calculates the evaluation of c1(s)
on Z.

The following lemma, which is proved at the end of this subsection, pro-
vides the required Heegaard diagram for Y .
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Lemma 7.3. Suppose Z ⊂ Y is a homologically nontrivial, embedded two-
manifold of genus h = g(Z), then Y admits a genus g Heegaard diagram
(Σ,α,β), with g > 2h, containing a periodic domain P ⊂ Σ representing
[Z], all of whose multiplicities are one or zero. Moreover, P is a connected
surface whose Euler characteristic is equal to −2h, and P is bounded by β1

and α2h+1.

Moreover, we have the following result, which follows from a more general
formula derived in Subsection 7.1:

Proposition 7.4. If x = {x1, . . . , xg} is an intersection point, and z is
chosen in the complement of the periodic domain P of Lemma 7.3, then

〈c1(sz(x)), H(P)〉 = 2 − 2h + 2#(xi in the interior of P).

Proof of Theorem 7.1. If 〈c1(s), [Z]〉 = 0, then the inequality is obviously
true.

We assume that 〈c1(s), [Z]〉 is nonzero. If Z ⊂ Y is an embedded sur-
face of genus g(Z) = h, then we consider a special Heegaard decomposition
constructed in Lemma 7.3. Suppose that b1(Y ) = 1. Then this Heegaard de-
composition is weakly admissible for any nontorsion Spinc structure s: there
are no nontrivial periodic domains D with 〈c1(s), H(D)〉 = 0. Fix an intersec-
tion point x ∈ Tα ∩ Tβ which represents s. Clearly, of all xi ∈ x, exactly two
must lie on the boundary. According to Proposition 7.4, then,

〈c1(s),P〉= 2 − 2h + 2#(xi ∈ intP);
i.e.,

2 − 2h≤〈c1(s), [Z]〉.
If we consider the same inequality for −Z (or use the J invariance), we get the
stated bounds.

In the case where b1(Y ) > 1, we must wind transverse to the α1, . . . , α̂2h+1,

. . . , αg to achieve weak admissibility. Of course, we choose our transverse
curves to be disjoint from one another (and α2h+1). In winding along these
curves, we leave the periodic domain P representing S unchanged. Moreover,
each periodic domain Q which evaluates trivially on c1(s) must contain some
αj with j �= 2h + 1 on its boundary; thus, by twisting sufficiently along the
γ-curves, we can arrange that the Heegaard decomposition is weakly admissi-
ble. The previous argument when b1(Y ) = 1 then applies.

We now return to the proof of Lemma 7.3.

Proof of Lemma 7.3. The tubular neighborhood of Z, identified with
Z × [−1, 1], has a handle decomposition with one zero-handle, 2h one-handles,
and one two-handle; i.e. the tubular neighborhood admits a Morse function f

with one index-zero critical point p, 2h index-one critical points {a1, . . . , a2h},
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and one index-two critical point b1. Hence, we have a genus-2h handlebody
V2h, with an embedded circle on its boundary β1 ⊂ ∂V2h = Σ2h (the descending
manifold of b1). The circle β1 separates Σ2h, and attaching a two-handle to
V2h along β1 gives us the tubular neighborhood of Z. Choose a component
of the complement of β1, and denote its closure by F2h ⊂ Σ2h. Attaching the
descending manifold of b1 along ∂F2h = β1, we obtain a representative of [Z]
in this neighborhood.

We claim that the Morse function f can be extended to all of Y , so that
the extension has one index-three critical point and no additional index-zero
critical points. To see this, extend f to a Morse function f̃ , and first cancel
off all new index-zero critical points. This is a familiar argument from Morse
theory (see for instance [24]): given another index-zero critical point p′, there
is some index-one critical point a which admits a unique flow to p′ (if there
no such index-one critical points, then p′ would generate a Z in the Morse
complex for Y , which persists in H0(Y ); but also, the sum of the other index
zero critical points would not lie in the image of ∂, so it, too, would persist in
homology, violating the connectedness hypothesis of Y ). Thus, we can cancel
p′ and the critical point a.

Next, we argue that the extension f̃ need contain only one index three
critical point, as well. If there were two, call them q and q′, we show that
one of them can necessarily be canceled with an index two critical point other
than b1. If this could not be done, then both q and q′ would have a unique
flow-line to b1. Thus, both q and q′ would represent nonzero elements in
H3(Y, Z) ∼= H0(Y −Z). But this is impossible since the complement Y −Z is
connected, thanks to our homological assumption on Z (which ensures that Z

admits a dual circle which hits it algebraically a nonzero number of times). In
fact, the extension generically contains no flows between index i and index j

critical points with j ≥ i, hence giving us a Heegaard decomposition of Y .
Thus, Y has a handlebody decomposition Y = U0 ∪Σg

U1, where U0 is
obtained from V2h by attaching a sequence of one-handles. The attaching
regions for each of these one-handles consists of two disjoint disks in Σ2h,
which are disjoint from β1. At least one of them has one component inside
F2h and one outside. This follows from the fact that β1 is homologically trivial
in Σ2h, but homologically nontrivial in the final Heegaard surface Σ. Let
α2h+1 be the attaching circle for this one-handle. After handleslides across
α2h+1, we can arrange that all the other additional one-handles were attached
in the complement of F2h. The domain in F2h between and α2h+1 and β1

represents Z.

7.1. The first Chern class formula. Next, we give a proof of Proposi-
tion 7.4. Indeed, we prove a more general result, but first, introduce some
data associated to periodic domains.
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A periodic domain P is represented by an oriented two-manifold with
boundary Φ: F −→ Σ, whose boundary maps under Φ into α∪β. We consider
the pull-back bundle Φ∗(TΣ) over F . This bundle is canonically trivialized over
the boundary: the velocity vectors of the attaching circles give rise to natural
trivializations. We define the Euler measure of the periodic domain P by the
formula:

χ(P) = 〈c1(Φ∗TΣ; ∂), F 〉,

where c1(Φ∗TΣ; ∂) is the first Chern class of Φ∗TΣ relative to this boundary
trivialization. (It is easy to verify that χ(P) is independent of the representa-
tive Φ: F −→ Σ.)

For example, if P ⊂ Σ is a periodic domain all of whose coefficients are
one or zero, with ∂P = ∪m

i=1γi where the γi are chosen among the α and the
β, then χ(P) agrees with the usual Euler characteristic of P, thought of as a
subset of Σ.

Given a reference point x ∈ Σ, there is another quantity associated to pe-
riodic domains, obtained from a natural generalization of the local multiplicity
nx(P) defined in Section 2 of [27]. This quantity, which we denote nx(P), is
defined by:

nx(
∑

i

aiDi) =
∑

i

ai


1 if x lies in the interior of Di
1
2 if x lies in the interior of some edge of Di

or two vertices of Di are identified with x
1
4 if one vertex of Di is identified with x

0 if x �∈ Di

 .

Of course, if x lies in Σ − α1 − · · · − αg − β1 − · · · − βg, then nx(P) = nx(P).
If P has all multiplicities one or zero, and x is contained in its boundary, then
nx(P) = 1

2 .

Proposition 7.5. Fix a class ξ ∈ H2(Y ; Z), a base point z ∈ Σ − α1 −
· · · − αg − β1 − · · · − βg, and a point x ∈ Tα ∩ Tβ. Let P be the periodic
domain associated to z and ξ, and let s be the Spinc structure sz(x). Then the
evaluation of the first Chern class of s on ξ is calculated by

〈c1(s), ξ〉 = χ(P) + 2
∑
xi∈x

nxi
(P).

Of course, Proposition 7.4 is a special case of this result, since in that
case, two of the xi are in the boundary of P, so that nxi

= 1
2 .

To prove the proposition, we need an explicit understanding of the vector
field belonging to the Spinc structure sz(x). Specifically, consider the nor-
malized gradient vector field

	∇f

|	∇f | , restricted to the mid-level Σ of the Morse

function f (compatible with the given Heegaard decomposition of Y ). Clearly,
the orthogonal complement of the vector field is canonically identified with the
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tangent bundle of Σ. Suppose, then, that γ is a connecting trajectory between
an index-one and an index-two critical point (which passes through Σ). We
can replace the gradient vector field by another vector field v which agrees
with

	∇f

|	∇f | outside of a small three-ball neighborhood B, which meets Σ in a

disk D. Let τ be a trivialization of the two-plane field v⊥|∂D which extends
as a trivialization of TΣ|D. There is a well-defined relative first Chern class
c1(v, τ) ∈ H2(D, ∂D), which we can calculate as follows:

Lemma 7.6. For D, v, and τ as above, the relative first Chern number is
given by

〈c1(v, τ), [D, ∂D]〉 = 2

(where we orient D in the same manner as Σ = ∂U0).

Proof. Using an appropriate trivialization of the tangent bundle TY |B,
we can view the normalized gradient vector field

	∇f

|	∇f | as constant over D. Let
S = ∂B be the boundary, which is divided into two hemispheres S = D1 ∪D2,
so that the sphere D1 ∪ D contains the index-one critical point and D ∪ D2

contains the index-two critical point. We can replace
	∇f

|	∇f | by another vector
field v which agrees with the normalized gradient over S, and vanishes nowhere
in B (and hence can be viewed as a unit vector field). With respect to the
trivialization of TY |B, we can think of the vector field as a map to the two-
sphere; indeed the restriction v : D −→ S2, is constant along the boundary
circle, so it has a well-defined degree, which in the present case is one, since

−1 = degD1

(
�∇f

|�∇f |

)
+ degD

(
�∇f

|�∇f |

)
= degD1

(v)

and
0 = degD1

(v) + degD(v).

The line bundle we are considering, v⊥, then, is the pull-back of the tangent
bundle to S2, whose first Chern number is the Euler characteristic for the
sphere.

Proof of Proposition 7.5. We find it convenient to consider domains with
only nonnegative multiplicities; thus, we prove the following formula (for suf-
ficiently large m):

〈c1(s), ξ〉 = χ(P + m[Σ]) + 2

(∑
xi∈x

nxi
(P + m[Σ])

)
− 2nz(P + m[Σ]).(5)
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F

D
D−

Figure 7: The gradient flow inside a one-handle. The shaded region on the
boundary of the one-handle is a piece of F ; the disk D (with solid boundary,
in the center) goes through the index-one critical point. Its translate D− (with
dotted boundary) does not, and the subregion of F terminating in the dotted
circle, when capped off by D−, is transverse to the gradient flow.

In fact, since

χ(P + m[Σ]) =χ(P) + m(2 − 2g),∑
xi∈x

nxi
(P + m[Σ]) =mg +

∑
xi∈x

nxi
(P)

nz(P + m[Σ]) =m,

Equation (5) for any specific value of m implies the formula stated in the
proposition.

The reformulation has the advantage that for m sufficiently large, P+m[Σ]
is represented by a map Φ: F −→ Σ which is nowhere orientation-reversing,
and whose restriction to each boundary component is a diffeomorphism onto
its image (see Lemma 2.16 of [27]).

Near each boundary component of F , we can identify a neighborhood in F

with the half-open cylinder [0, 1)×S1. Suppose that the image of the boundary
component is a β curve. The β curve canonically bounds a disk in U1; this
disk D consists of points which flow (under �∇f) into the associated index-two
critical point. Of course, we can glue this disk to F along the boundary, and
correspondingly extend Φ across the disk as a map into Y , but then the gradient
�∇f vanishes at some point of the extended map. To avoid this, we can back
off from the boundary of F : we delete a small neighborhood [0, ε)×S1 from F ,
to obtain a new manifold-with-boundary F−. In these local coordinates, now,
the boundary of F− is a translate of the β curve {ε}×S1. Now, we can attach
a translate of the disk, D− and it is easy to see that (a smoothing of) the cap(
[ε, 1) × S1

)
∪ D− is transverse to the gradient flow �∇f . (See Figure 7.)

We can perform the analogous construction at the α-components of the
boundary of F , only now, the α curve bounds a disk D in U0, which consists
of points flowing out of the corresponding index-two critical point. By cutting
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out a neighborhood of the boundary, and attaching a translate of the D, we
once again obtain a cap which is transverse to the gradient flow �∇f .

Observe that if xi ∈ intP, then (if we chose the above ε sufficiently small),

nxi
(P) = #{x ∈ F−∣∣Φ(x) = xi}(6)

(with the same formula holding for z in place of xi). Moreover, if xi ∈ ∂P,
then

nxi
(P) =

1
2
#{x ∈ ∂F |Φ(x) = xi} + #{x ∈ F−|Φ(x) = xi}.(7)

By adding the caps as above to F−, we construct a closed, oriented two-
manifold F̂ and a map

Φ̂: F̂ −→ Y,

which crosses the connecting trajectories between the index-one and index-two
critical points at each point x ∈ F− which maps under Φ to xi, and similarly,
Φ̂ crosses the connecting trajectory belonging to z at those x ∈ F− which map
under Φ to z.

Away from these points, we have a canonical identification

Φ̂∗((�∇f)⊥) ∼= Φ∗(v⊥).

By the local calculation from Lemma 7.6, it follows that

〈e
(
Φ̂∗(v⊥)

)
, F̂ 〉= 〈e

(
Φ̂∗(�∇f⊥)

)
, F̂ 〉(8)

+2#{x ∈ F−|Φ(x) = xi} − 2#{x ∈ F−|Φ(x) = z}.
(Note that the term involving z follows just as in the proof of Lemma 7.6, with
the difference that now the index of the vector field v around the corresponding
critical point in U0 is +1 rather than −1, since the critical point has index zero
rather than one.)

Moreover, the Euler number of Φ̂∗(�∇f⊥) is χ(P) plus the number of disks
which are attached to F− to obtain the closed manifold F̂ (since each boundary

disk is transverse to the gradient flow, so that �∇f
⊥

is naturally identified with
the tangent bundle of the disk, which has relative Euler number one relative
to the trivialization it gets from the bounding circle). But the number of such
disks is simply #{x ∈ ∂F |Φ(x) = xi}. Combining this with Equations (6),
(7), and (8), we obtain Equation (5), and hence the proposition follows.

8. Twisted coefficients

We define here variants of the Floer homology groups constructed in [27]:
these are Floer homology groups with a “twisted coefficient system.” The
input here is a three-manifold Y equipped with a Spinc structure s, and a
module M over the group-ring Z[H1(Y ; Z)]. We begin with the definition in
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Subsection 8.1, discussing how the holomorphic triangle construction needs to
be modified in Subsection 8.2

8.1. Twisted coefficients. We give first the “universal construction”, using
the free module M = Z[H1(Y ; Z)]. We need a surjective, additive assignment
(in the sense of Definition 2.12 of [27]):

A : π2(x,y) −→ H1(Y ; Z),

which is invariant under the action of π2(Symg(Σ)).
We can construct such a map as follows. A complete set of paths for s in

the sense of Definition 3.12 of [27] gives rise to identifications for any i, j:

π2(xi,xj) ∼= π2(x0,x0),

by
φi ∗ π2(xi,xj) ∼= π2(x0,x0) ∗ φj .

These isomorphisms fit together in an additive manner, thanks to the associa-
tivity of ∗. We then use the splitting π2(x0,x0) ∼= Z × H1(Y ; Z) given by the
basepoint, followed by the natural projection to the second factor.

We can then define

∂∞[x, i] =
∑

y∈Tα∩Tβ

 ∑
φ∈π2(x,y)

#M(φ)eA(φ)[y, i − nz(φ)]

 ,

which is a finite sum under the strong admissibility hypotheses.
Analogous constructions work for CF+, CF−, and ĈF , as well (with,

once again, weak admissibility sufficing for CF+ and ĈF ).

Remark 8.1. Note that there is a “universal” coefficient system for
Lagrangian Floer homology, with coefficients in a group-ring over π1(Ω(L0, L1)).
In fact, the construction we have here is a specialization of this; in our case,
the fundamental group of the configuration space is Z ⊕ H1(Y, Z), but the Z
summand is already implicit in our consideration of pairs [x, i] ∈ (Tα∩Tβ)×Z.

It is worth noting that, although the definition of the boundary map still
depends on a coherent system of orientations o, the isomorphism class of the
chain complex as a Z-module does not; given a homomorphism µ : H1(Y ; Z) −→
Z/2Z, the map

f(eh[x, i]) = (−1)µ(h)eh[x, i](9)

gives an isomorphism from the chain complex using o to the chain complex
using o′ with δ(o, o′) = µ.

Note that as Z-modules, all of these chain complexes have a natural rel-
ative Z-grading, which lifts the obvious relative Z/d(s)Z-grading. Specifically,
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given g ⊗ [x, i] and h ⊗ [y, j] with g, h ∈ H1(Y ; Z), if we let φ be the class
with A(φ) = g − h and nz(φ) = i − j (this now uniquely specifies φ), we let
the relative grading between g ⊗ [x, i] and h ⊗ [y, j] be given by the Maslov
index of φ. In view of this, we can think of the corresponding homologies as
analogues of a construction of Fintushel and Stern, for Z graded instanton
homology (see [8]).

For any Z[H1(Y ; Z)]-module M , we have homology groups defined by

HF (Y, s;M) = H∗
(
CF (Y, s) ⊗Z[H1(Y ;Z)] M

)
(where HF can be any of HF∞, HF+, HF−, or ĤF ). The homology groups
from [27] (with “untwisted coefficients”) are special cases of this construction,
with the module M = Z, thought of as the trivial Z[H1(Y ; Z)]-module. (In
fact, when b = b1(Y ), the 2b different choices of orientation systems over Z
correspond to the 2b different module structures on Z, induced from the 2b

ring homomorphisms Z[H1(Y ; Z)] −→ Z.)
Note also that the action of H1(Y ; Z)/Tors on CF∞(Y, s) has an interpre-

tation in this system: the action of ζ ∈ H1(Y ; Z) on [x, i] ∈ CF∞(Y, s) as de-
fined in Subsection 4.2.5 of [27] can be represented by 〈∂[x, i], ζ〉, where the an-
gle brackets represent the natural pairing Z[H1(Y ; Z)]⊗(H1(Y ; Z)/Tors) → Z,

A modification of the techniques from [27] gives the following:

Theorem 8.2. Let Y be a three-manifold equipped with a Spinc structure
s and a Z[H1(Y ; Z)]-module M . Let (Σ,α,β, z) be a strongly s-admissible
Heegaard diagram for Y . Then the groups HF∞(α,β, s, M), HF+(α,β, s, M),
HF−(α,β, s, M), and ĤF (α,β, s, M) are invariant under changes of almost
complex structures and isotopies. These groups are all modules over the group-
ring Z[H1(Y ; Z)].

Independence of the complex structure follows exactly as in [27]. For
isotopy invariance, observe that an isotopy Ψt as in Subsection 7 of [27] allows
one to transfer an additive map A from π2(x,y) for x,y ∈ Tα ∩ Tβ to an
additive map on π2(x′,y′) for x′,y′ ∈ Ψ1(Tα) ∩ Tβ. Stabilization follows as
in [27], while to explain handleslide invariance, we describe how to modify the
holomorphic triangle construction to take into account the twisted coefficient
system.

8.2. Triangles and twisted coefficients. To understand the triangle con-
struction with twisted coefficients, we set up some topological preliminaries
concerning relative Spinc structures.

8.2.1. Relative Spinc structures. Continuing notation from Subsection 8
of [27], we let (Σ,α,β,γ, z) be a pointed Heegaard triple, and let Xα,β,γ be
the induced cobordism between Yα,β , Yβ,γ , and Yα,γ . Fix Spinc structures tα,β ,
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tβ,γ , tα,γ over the three boundary components, with ε(tα,β , tβ,γ , tα,γ) = 0. Fix
complete sets of paths for each of these three Spinc structures (in the sense of
Definition 3.12 of [27]). This gives us identifications

π2(x0,y0,w0) = π2(x,y,w),

where x0 and x (resp. y0 and y, resp. w0 and w) both represent tα,β (resp.
tβ,γ resp. tα,γ).

In effect, this allows us to think of π2(x0,y0,w0) as an affine space for
H2(X, Y ; Z) (cf. Proposition 8.3 of [27]), which maps onto the space of Spinc

structures extending tα,β , tβ,γ , tα,γ (cf. Proposition 8.5 of [27]). When thinking
of π2(x0,y0,w0) in this manner, we refer to it as a space of relative Spinc

structures, and denote it by Spinc(Xα,β,γ).

The subset of Spinc(Xα,β,γ) representing a fixed (absolute) Spinc structure
structure sα,β,γ will be denoted Spinc(Xα,β,γ ; sα,β,γ).

We will use this terminology for higher polygons, as well.

8.2.2. The maps with twisted coefficients. The space of relative Spinc

structures Spinc(Xα,β,γ ; sα,β,γ) (which induce a given Spinc structure sα,β,γ

over Xα,β,γ) has a natural action of H1(Yα,β ; Z) × H1(Yβ,γ ; Z) × H1(Yα,γ ; Z).
As such, it can be used to induce an H1(Yα,γ ; Z)-module from a pair Mα,β and
Mβ,γ of H1(Yα,β ; Z) and H1(Yβ,γ ; Z)-modules:

{Mα,β ⊗ Mβ,γ}sα,β,γ

=
(mα,β , mβ,γ , s) ∈ Mα,β × Mβ,γ × Spinc(Xα,β,γ , sα,β,γ)

(mα,β , mβ,γ , s) ∼ (hα,β · mα,β , hβ,γ · mβ,γ , (hα,β × hβ,γ × 0) · s) ,

where hα,β and hβ,γ are arbitrary elements of H1(Yα,β ; Z) and H1(Yβ,γ ; Z)
respectively.

Fix a Spinc structure s over Xα,β,γ , whose restriction to Yα,β and Yβ,γ is
tα,β and tβ,γ , respectively. We can now define a map

f∞
α,β,γ( · , s) : CF∞(Yα,β , tα,β ;Mα,β)⊗CF∞(Yβ,γ , tβ,γ ;Mβ,γ)

−→ CF∞(Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}s),

by the formula:

(10)

f∞
α,β,γ(mα,β [x, i] ⊗ mβ,γ [y, j]; s)

=
∑

w∈Tα∩Tβ

∑
{ψ∈π2(x,y,w)

∣∣sz(ψ)=s}

(#M(ψ)) {mα,β ⊗ mβ,γ ⊗ sz(ψ)}[w, i + j − nz(ψ)].

The braces above indicate the natural map

{· ⊗ · ⊗ ·} : Mα,β ⊗ Mβ,γ ⊗ Spinc(Xα,β,γ , s) −→ {Mα,β ⊗ Mβ,γ}s.
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The following analogue of Theorem 8.12 of [27] holds in the present con-
text:

Theorem 8.3. Let (Σ,α,β,γ, z) be a pointed Heegaard triple-diagram,
which is strongly s-admissible for some Spinc structure s over the underly-
ing four -manifold X, and fix modules Mα,β and Mβ,γ for H1(Yα,β ; Z) and
H1(Yβ,γ ; Z) respectively. Then the sum on the right-hand side of Equation (10)
is finite, giving rise to a chain map which also induces maps on homology :

F∞
α,β,γ(·, sα,β,γ) : HF∞(Yα,β , tα,β ;Mα,β) ⊗ HF∞(Yβ,γ , tβ,γ ;Mβ,γ),

−→ HF∞(Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ ),

F≤0
α,β,γ(·, sα,β,γ) : HF≤0(Yα,β , tα,β ;Mα,β) ⊗ HF≤0(Yβ,γ , tβ,γ ;Mβ,γ)

−→ HF≤0(Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ ).

The induced chain map

f+
α,β,γ(·, sα,β,γ) : CF+(Yα,β , tα,β ;Mα,β) ⊗ CF≤0(Yβ,γ , tβ,γ ;Mβ,γ)

−→ CF+(Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ )

gives a well -defined chain map when the triple diagram is only weakly admis-
sible, and the Heegaard diagram (Σ,β,γ, z) is strongly admissible for tβ,γ. In
fact, the induced map

f̂α,β,γ(·, sα,β,γ) : ĈF (Yα,β , tα,β ;Mα,β) ⊗ ĈF (Yβ,γ , tβ,γ ;Mβ,γ)

−→ ĈF (Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ )

gives a well -defined chain map when the diagram is weakly admissible. There
are induced maps on homology :

F̂α,β,γ(·, sα,β,γ) : ĤF (Yα,β , tα,β ;Mα,β) ⊗ ĤF (Yβ,γ , tβ,γ ;Mβ,γ)

−→ ĤF (Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ ),

F+
α,β,γ(·, sα,β,γ) : HF+(Yα,β , tα,β) ⊗ HF≤0(Yβ,γ , tβ,γ)

−→ HF+(Yα,γ , tα,γ ; {Mα,β ⊗ Mβ,γ}sα,β,γ )).

Independence of complex structure and isotopy invariance of this map are
exactly as in [27] (cf. Propositions 8.13 and 8.14 of [27] respectively). Associa-
tivity, on the other hand, can be given the following sharper statement.

Observe first that there is a canonical gluing

Spinc(Xα,β,γ , sα,β,γ) × Spinc(Xα,γ,δ, sα,γ,δ) −→ Spinc(Xα,β,γ,δ)

which maps onto the set of all relative Spinc structures over Xα,β,γ,δ whose
restrictions to Xα,β,γ and Xα,γ,δ represent Spinc structures sα,β,γ and sα,γ,δ re-
spectively. Thus, the set of Spinc induced structures in Xα,β,γ,δ under this map
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consists of a δH1(Y ; Z)-orbit. Using this gluing, we obtain an identification

{{Mα,β ⊗ Mβ,γ}sα,β,γ ⊗ Mγ,δ}sα,β,δ

∼=
∐

{s∈Spinc(Xα,β,γ,δ)
∣∣s|Xα,β,γ=sα,β,γ ,s|Xα,γ,δ=sα,γ,δ}

{Mα,β ⊗ Mβ,γ ⊗ Mγ,δ}s,

where {Mα,β ⊗ Mβ,γ ⊗ Mγ,δ}s denotes the H1(Yα,δ; Z)-module induced from
Mα,β , Mβ,γ , Mγ,δ and the set of relative Spinc structures inducing the given
Spinc structure s over the four-manifold Xα,β,γ,δ.

Theorem 8.4. Let (Σ,α,β,γ, δ, z) be a pointed Heegaard quadruple which
is strongly S-admissible, where S is a δH1(Yβ,δ) + δH1(Yα,γ)-orbit in
Spinc(Xα,β,γ,δ). Fix also modules Mα,β , Mβ,γ , and Mγ,δ for H1(Yα,β ; Z),
H1(Yβ,γ ; Z), H1(Yβ,γ ; Z), and H1(Yγ,δ; Z) respectively.

Then, ∑
s∈S

F ∗
α,γ,δ(F

∗
α,β,γ(ξα,β ⊗ θβ,γ ; sα,β,γ) ⊗ θγ,δ; sα,γ,δ)

=
∑
s∈S

F ∗
α,β,δ(ξα,β ⊗ F≤0

β,γ,δ(θβ,γ ⊗ θγ,δ; sβ,γ,δ); sα,β,δ),

where F ∗ = F∞, F+ or F−; also,∑
s∈S

F̂α,γ,δ(F̂α,β,γ(ξα,β ⊗ θβ,γ ; sα,β,γ) ⊗ θγ,δ; sα,γ,δ)

=
∑
s∈S

F̂α,β,δ(ξα,β ⊗ F̂β,γ,δ(θβ,γ ⊗ θγ,δ; sβ,γ,δ); sα,β,δ),

where there are coefficients in coefficients in
∐

s∈S{Mα,β ⊗Mβ,γ ⊗Mγ,δ}s over
Yα,δ.

Proof. The proof is the same as the proof of Theorem 8.16 of [27], only we
must keep track now of the homotopy classes of the corresponding triangles.

8.2.3. Handleslide invariance. With the holomorphic triangles in place,
the proof of handleslide invariance proceeds as it did in [27], with the following
remarks.

Recall that the map given by a handleslide (as in Theorem 9.5 of [27])
is induced from a Heegaard triple (Σ,α,β,γ, z), which represents the cobor-
dism Xα,β,γ obtained from [0, 1]× Y by deletion of a bouquet of circles. Here,
Yα,β

∼= Y , Yβ,γ
∼= #g(S1×S2), and Yα,γ

∼= Y . Now, our input includes an arbi-
trary Z[H1(Y ; Z)] module M . For the handleslide map, we consider the trivial
H1(Yβ,γ ; Z)-module Mβ,γ

∼= Z (so that HF≤0(Yβ,γ , M) ∼= HF≤0(#g(S1 ×S2))
is equipped with its top-dimensional generator Θβ,γ). It is easy to see that
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for this choice of Mβ,γ , there is also a canonical identification of Z[H1(Y ; Z)]-
modules

M ∼= {M ⊗ Mβ,γ},
where the pairing here uses the cobordism Xα,β,γ .

9. Surgery exact sequences

We investigate how surgeries on a three-manifold affect its invariants. We
consider first the effect on HF+ of +1 surgeries on integral homology three-
spheres, then a generalization which holds for arbitrary (closed, oriented) three-
manifolds, and then the case of fractional 1/q-surgeries on an integral homology
three-sphere. This latter case uses the homology theories with twisted coeffi-
cients. We then give analogous results for ĤF . After this, we present a surgery
formula for integer surgeries. In the final subsection, we consider a +1 surgery
formula with twisted coefficients.

9.1. +1 surgeries on an integral homology three-sphere. We start with
the case of a homology three-sphere Y . Let K ⊂ Y be a knot. Let Y0 be the
manifold obtained by 0-surgery on K, and Y1 be obtained by (+1)-surgery.
Let

HF+(Y0) ∼=
⊕

s∈Spinc(Y0)

HF+(Y0, s),

viewed as a Z/2Z-relatively graded group. In fact, we will view the homology
groups HF+(Y ) and HF+(Y1) as Z/2Z-graded, as well.

Theorem 9.1. There is a U -equivariant exact sequence of relatively Z/2Z-
graded complexes:

· · · −−−→ HF+(Y ) F1−−−→ HF+(Y0)
F2−−−→ HF+(Y1)

F3−−−→ . . . .

In fact , if HF+(Y ) and HF+(Y1) are given absolute Z/2Z-gradings so that

χ(ĤF (Y )) = χ(ĤF (Y1)) = +1, then F3 preserves degree.

The maps in Theorem 9.1 are constructed with the help of holomorphic
triangles. Thus, we must construct compatible Heegaard decompositions for
all three manifolds Y , Y0, and Y1. Exactness is then proved using a filtra-
tion on the homology groups above, together with the homological-algebraic
constructions used in establishing the surgery sequences for instanton Floer
homology (see [10], [4]). The proof occupies the rest of this subsection.

Lemma 9.2. There is a pointed Heegaard multi -diagram

(Σ,α,β,γ, δ, z)

with the properties that
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(1) the Heegaard diagrams (Σ,α,β), (Σ,α,γ), and (Σ,α, δ) de-
scribe Y , Y0, and Y1 respectively.

(2) For each i = 1, . . . , g − 1, the curves βi, γi, and δi are small
isotopic translates of one another, each pairwise intersecting in a
pair of canceling transverse intersection points (where the isotopies
are supported in the complement of z).

(3) The curve γg is isotopic to the juxtaposition of δg and βg (with
appropriate orientations).

(4) Every nontrivial multi-periodic domain has both positive and
negative coefficients.

Proof. Consider a Morse function on Y − nd(K) with one index-zero
critical point, g index-one critical points and g − 1 index-two critical points.
Let Σ be the 3/2-level of this function, α be the curves where Σ meets the
ascending manifolds of the index-one critical points in Σ, and let β1, . . . , βg−1

be the curves where Σ meets the descending manifolds of the index-two critical
points. By gluing in the solid torus in three possible ways, we get the manifolds
Y , Y0, Y1. Extending the given Morse function to the glued-in solid tori (by
introducing additional index-two and index-three critical points), we obtain
Heegaard decompositions for the manifolds Y , Y0, and Y1. We let γi and δi be
small perturbations of βi for i = 1, . . . , g−1. In this manner, we have satisfied
Properties (1)–(3).

To satisfy Property (4), we wind to achieve weak admissibility for all
Spinc structures for the Heegaard subdiagram (Σ,α,γ, z); in fact, we can use a
volume form over Σ for which all such doubly periodic domains have zero signed
area (cf. Lemma 4.12 of [27]). Then, for the {β1, . . . βg−1} and {δ1, . . . , δg−1},
we use small Hamiltonian translates of the {γ1, . . . , γg−1} (ensuring that the
corresponding new periodic domains each have zero energy). There is a triply
periodic domain which forms the homology between βg, γg, and δg in a torus
summand of Σ containing no other βi or γi (for i �= g). By adjusting the areas
of the two triangles with nonzero area, we can arrange for the signed area of
the triply periodic domain to vanish.

For i = 1, . . . , g − 1, label

y±i = βi ∩ γi, v±i = γi ∩ δi, w±
i = βi ∩ δi,

where the sign indicates the sign of the intersection point. Also, let

yg = βg ∩ γg, vg = γg ∩ δg, wg = βg ∩ δg.

Then, let Θβ,γ = {y+
1 , . . . , y+

g−1, yg}, Θγ,δ = {v+
1 , . . . , v+

g−1, vg}, Θβ,δ =
{w+

1 , . . . , w+
g−1, wg} denote the corresponding intersection points between Tβ∩

Tγ , Tγ ∩ Tδ and Tβ ∩ Tδ. (See Figure 9 for an illustration.)
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Figure 8: This picture takes place in the torus, with the usual edge identifica-
tions. The integers denote multiplicities for a triply periodic domain.

Proposition 9.3. The elements θβ,γ = [Θβ,γ , 0], θγ,δ = [Θγ,δ, 0], θβ,δ =
[Θβ,δ, 0] are cycles in CF∞(Tβ, Tγ), CF∞(Tγ , Tδ) and CF∞(Tβ, Tδ) respec-
tively.

Proof. Note that the three-manifolds described here are (g − 1)-fold con-
nected sums of S1 × S2, so that the result follows from Proposition 6.4 (or,
alternatively, see Section 9 of [27]).

We can reduce the study of holomorphic triangles belonging to Xβ,γ,δ to
holomorphic triangles in the first symmetric product of the two-torus, with the
help of the following analogue of the gluing theory used to establish stabiliza-
tion invariance of the Floer homology groups.

Theorem 9.4. Fix a pair of Heegaard diagrams

(Σ,β,γ, δ, z) and (E, β0, γ0, δ0, z0),

where E is a Riemann surface of genus one. We will form the connected
sum Σ#E, where the connected sum points are near the distinguished points
z and z0 respectively. Fix intersection points x,y,w for the first diagram
and a class ψ ∈ π2(x,y,w), and intersection points x0, y0, and w0 for the
second, with a triangle ψ0 ∈ π2(x0, y0, w0) with µ(ψ) = µ(ψ0) = 0. Suppose
moreover that nz0(ψ0) = 0. Then, for a suitable choice of complex structures
and perturbations, there is a diffeomorphism of moduli spaces:

M(ψ′) ∼= M(ψ) ×M(ψ0),

where ψ′ ∈ π2(x × x0,y × y0,w × w0) is the triangle for Σ#E whose domain
on the Σ-side agrees with D(ψ), and whose domain on the E-side agrees with
D(ψ0) + nz(ψ)[E].
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Proof. The proof is obtained by suitably modifying Theorem 10.4 of [27].
Suppose that u and u0 are holomorphic representatives of ψ and ψ0 re-

spectively. We obtain a nodal pseudo-holomorphic disk u ∨ u0 in the singular
space Symg+1(Σ ∨ E) specified as follows:

• At the stratum Symg(Σ) × Sym1(E), u ∨ u0 is the product map u × u0.

• At the stratum Symg−1(Σ)× Sym2(E), u∨ u0 is given by nz(ψ) pseudo-
holomorphic spheres which are constant on the first factor. More pre-
cisely, for each p ∈ ∆ for which u(p) = {z, x2, . . . , xg} (where the
xi ∈ Σ − {z} are arbitrary), there is a component of u ∨ u0 mapping
into Symg−1(Σ) × Sym2(E), consisting of the product of the constant
map {x2, . . . , xg} with the sphere in Sym2(E) which passes through
{z} × u0(p).

• The map u ∨ u0 misses all other strata of Symg+1(Σ ∨ E).

As in Theorem 10.4 of [27], we can splice to obtain an approximately holo-
morphic disk u#u0 (a triangle) in Symg+1(Σ#E). When the connected sum
tube is sufficiently long, the the inverse function theorem can be used to find
the nearby pseudo-holomorphic triangle. The domain belonging to u#u0 is
clearly given by ψ#ψ0 described above. Conversely, by Gromov’s compact-
ness (see also Proposition 10.15 of [27]), any sequence of pseudo-holomorphic
representatives ui ∈ π2(x × x0,y × y0,w × w0) for arbitrarily long connected
sum neck must limit to a pseudo-holomorphic representative for ψ′#ψ′

0, where
D(ψ′

0) − D(ψ0) = k[E] for some 0 ≤ k ≤ nz(ψ). However, since π2(E) = 0, it
follows that k = 0. Thus, the gluing map covers the moduli space.

Proposition 9.5. There are homotopy classes of triangles {ψ±
k }∞k=1 in

π2(Θβ,γ ,Θγ,δ,Θβ,δ) for the triple-diagram (Σ,β,γ, δ, z) satisfying the following
properties:

µ(ψ±
k ) = 0,

nz(ψ±
k ) =

k(k − 1)
2

.

Moreover, each triangle in π2(Θβ,γ ,Θγ,δ,Θβ,δ) is Spinc equivalent to some ψ±
k .

Furthermore, there is a choice of perturbations and complex structure on Σ
with the property that for each Ψ ∈ π2(Θβ,γ ,Θγ,δ,x) (where x ∈ Tβ ∩ Tδ) with
µ(Ψ) = 0,

#M(Ψ) =

{
±1 if Ψ ∈ {ψ±

k }∞k=1

0 otherwise.
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Proof. First observe that the space of Spinc structures over Xβ,γ,δ extend-
ing a given one on the boundary is identified with Z. In particular, modulo
doubly periodic domains for the three boundary three-manifolds, every triangle
ψ ∈ π2(Θβ,γ ,Θγ,δ,Θβ,δ) can uniquely be written as ψ1 + a[S] + b[P] for some
pair of integers a and b, where P is the generator of the space of triply periodic
domains; in fact, the integer a is determined by the intersection number nz,
and b can be determined by the signed number of times the arc in βg obtained
by restricting ψ to its boundary crosses some fixed τ ∈ βg. For the triangles
{ψ±

k } this signed count can be any arbitrary integer, and so these triangles
represent all possible Spinc-equivalence classes of triangles.

The other claims are straightforward in the case where g = 1. In this case,
the curves β, γ, δ lie in a surface of genus one, so the holomorphic triangle
can be lifted to the complex plane. Hence, by standard complex analysis, it is
smoothly cut out, and unique.

The fact that #M(ψ±
k ) = ±1 for higher genus follows from induction, and

the gluing result, Theorem 9.4. Specifically, if the result is known for genus g,
then we can add a new torus E to Σ which contains three curves β0, γ0, δ0

which are small Hamiltonian translates of one another (and the basepoint is
chosen outside the support of the isotopy). The torus E contains a standard
small triangle ψ0 ∈ π2(y+

0 , v+
0 , w+

0 ), for which it is clear that #M(ψ0) = 1.
Gluing this triangle to the {ψ±

k } in Σ, we obtain corresponding triangles in
Σ#E satisfying all the above hypotheses.

The fact that #M(Ψ) = 0 for Ψ �∈ {ψ±
k }∞k=1 follows similarly, with the

observation that the other moduli spaces of triangles on the torus are empty.

We can define the map

F1 : HF+(Y ) −→ HF+(Y0)

by summing:
F1(ξ) =

∑
s∈Spinc(Xα,β,γ)

±F+
α,β,γ(ξ ⊗ θβ,γ , s).

On the chain level, F1 is induced from a map:

f1([x, i]) =
∑

w∈Tα∩Tγ

∑
{ψ∈π2(x,Θβ,γ ,w)

∣∣µ(ψ)=0}

(#M(ψ)) · [w, i − nz(ψ)],

where #M(ψ) is calculated with respect to a particular choice of a coherent
orientation system (see Proposition 9.6 below). It is important to note here
that the sum on the right hand side will have only finitely many nonzero
elements for each fixed ξ ∈ CF+(Y ). The reason for this is that all the multi-
periodic domains have both positive and negative coefficients. Similarly, we
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define

f2([x, i]) =
∑

{ψ∈π2(x,Θγ,δ,w)
∣∣µ(ψ)=0}

(#M(ψ)) · [w, i − nz(ψ)],

letting F2 be the induced map on homology.
Observe that the maps f1 and f2 preserve the relative Z/2Z-grading.

The reason for this is that the parity of the Maslov index of a triangle ψ ∈
π2(x,y,w) depends only on the sign of the local intersection numbers of the
Tα∩Tβ, Tβ∩Tγ , and Tα∩Tγ at x, y, and w. (Although each local intersection
number is calculated using some choice of orientations on the three tori, their
product is independent of these choices.)

Proposition 9.6. For any coherent system of orientations for Y0, there
are coherent systems of orientations for the triangles defining f1 and f2 so that
the composition F2 ◦ F1 = 0.

Proof. For any system of coherent orientations, associativity, together
with Proposition 9.5, can be interpreted as saying that∑

sβ,γ,δ∈Sβ,γ,δ

f≤0
β,γ,δ(θβ,γ ⊗ θγ,δ) =

∞∑
k=1

[
Θβ,δ,−

k(k − 1)
2

]
±

[
Θβ,δ,−

k(k − 1)
2

]
(up to an overall sign), as a formal sum.

Of course, if we are using only Z/2Z coefficients, the proof is complete.
More generally, the orientation system for Yβ,δ is chosen so that Θβ,δ is

a cycle. But this leaves the orientation system over Yα,γ unconstrained, and
any choice of such orientation system determines the choice over Xα,β,γ (up
to an overall sign depending on the Spinc structure used over Yα,γ). Now, the
relative sign appearing above corresponds to the orientation of the triangles
ψ+

k vs. the triangles ψ−
k over Xβ,δ,γ , and each such pair of triangles belongs

to different δH1(Yα,δ)+ δH1(Yβ,δ)-orbits for the square Xα,β,γ,δ. Thus, we can
modify the relative sign at will. We choose it so that the terms pairwise cancel.

We can choose a one-parameter family of γ-curves γi(t) with the property
that limt�→0 γi(t) = βi for i = 1, . . . , g − 1, and limt�→0 γg(t) = δg ∗ βg (juxta-
position of curves), and we choose our basepoint z to lie outside the support
of the homotopies γi(t). We choose another one-parameter family of δ-curves
δi(t) for i = 1, . . . , g − 1 with limt�→0 δi(t) = βi. We assume that all αi are
disjoint from the βg ∩ δg. Then, if t is sufficiently small, there is a natural
partitioning of Tα ∩ Tγ(t) into two subsets, those which are nearest to points
in Tα ∩Tβ, and those which are nearest to points in Tα ∩Tδ(t). (See Figure 9
for an illustration.) Correspondingly, we have a splitting

CF+(Y0) ∼= CF+(Y ) ⊕ CF+(Y1);
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γ2(t) γ2
z

w2
α2

β2 δ2
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γ2(t)
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Figure 9: +1-surgery, g = 2. The left side takes place in an annulus, the right
side in a torus minus a disk; both are pieces of our genus two surface Σ (the cen-
tral disk missing from the annulus and the disk removed from the torus are both
indicated by large grey circles). We have curves {β1, β2}, {γ1, γ2} and {δ1, δ2}
as in Lemma 9.2, with intersection points Θβ,γ = {y+

1 , y2}, Θγ,δ = {v+
1 , v2},

and Θβ,δ = {w+
1 , w2}. The curve γ2(t) is isotopic to γ2, but it approximates the

juxtaposition of β2 and δ2. We have also pictured arcs in α1 and α2. There is
an intersection point x = {x1, x2} for Tα ∩Tδ, and its nearest point Tα ∩Tγ(t),
{x′

1, x
′
2} = ρ(x). Observe the two lightly shaded triangles: they correspond to

the canonical triangle in π2(ρ(x),Θγ,δ,x).

or, a short exact sequence of graded groups

0 −−−→ CF+(Y ) ι−−−→ CF+(Y0)
π−−−→ CF+(Y1) −−−→ 0

with splitting
R : CF+(Y1) −→ CF+(Y0),

where the maps ι, π, and R are not necessarily chain maps. Our goal is
to construct a short exact sequence as above, which is compatible with the
boundary maps.

Proposition 9.7. The map f1 is chain homotopic to a U -equivariant
chain map g1 with the property that

0 −−−→ CF+(Y )
g1−−−→ CF+(Y0)

f2−−−→ CF+(Y1) −−−→ 0

is a short exact sequence of chain complexes.

Theorem 9.1 is a consequence of this proposition; the associated long exact
sequence is the exact sequence of Theorem 9.1.

For the construction of g1, we need the following ingredients:

• lower-bounded filtrations on the CF+(Y ), CF+(Y0), and CF+(Y1), which
are strictly decreasing for the boundary maps; i.e. each chain complex is
generated by elements with ∂ξ < ξ;
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• an injection ι and splitting map R as above, both of which respect the
filtrations;

• decompositions of f1 = ι + lower order and f2 = π + lower order, where,
here, lower order is with respect to the filtrations. More precisely CF+(Y )
is generated by elements ξ with the property that f1(ξ) − ι(ξ) < ι(ξ),
and CF+(Y1) is generated by elements η with η − f2 ◦ R(η) < η;

• f2 ◦ f1 is chain homotopic to zero by a U -equivariant homotopy

H : CF+(Y ) −→ CF+(Y1)

which decreases filtrations, in the sense that R ◦ H < ι.

Following Lemma 9 of [4], we define a right inverse R′ for f2 by

R′ = R ◦
∞∑

k=0

(Id − f2 ◦ R)◦k,

and let
g1 = f1 − (∂(R′ ◦ H) + (R′ ◦ H)∂),

so that our hypotheses ensure that g1 = ι + lower order. It follows that if L

is the left inverse of ι induced from R, then L ◦ g1 is invertible, as L ◦ g1(ξ) =
ξ − N(ξ), where N decreases filtration (so we can define

(L ◦ g1)−1(ξ) =
∞∑

k=0

N◦k(ξ),

as the sum on the right contains only finitely many nonzero terms for each
ξ ∈ CF+(Y )); thus, (L ◦ g1)−1 ◦ L is a left inverse for g1.

A similar argument shows surjectivity of f2, and exactness at the middle
stage (see [4]).

We will use a compatible energy filtration on CF+(Y0) defined presently.
First, fix an x0 ∈ Tα ∩ Tβ. If [y, j] ∈ CF+(Y0), let ψ ∈ π2(x0,Θβ,γ ,y) be a
(homotopy class of a) triangle, with nz(ψ) = −j. We then define

FY0([y, j]) = −A(ψ).

(Note that π2(x0,Θβ,γ ,y) is nonempty.) As in Lemma 4.12 of [27], the topo-
logical hypothesis from Lemma 9.2 allows us to use a volume form on Σ for
which every periodic domain for Y0 has zero area: every periodic domain for
(Tβ, Tδ), (Tβ, Tγ(t)) and also the triply periodic domain for (βg, γg(t), δg) has
area zero. (For example, we can start with the area form constructed in the
proof of Lemma 9.2 for the initial, t = 0, γ-curves, and then move those curves
by an exact Hamiltonian isotopy.) Now, the real-valued function FY0 on the
generators of CF+(Y0) gives the latter group an obvious partial ordering.
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We will assume now that γg(t) is sufficiently close to the juxtaposition of
βg and δg, in the following sense. Let P be a triply periodic domain between
γg(t), βg, and δg which generates the group of such periodic domains (this is the
domain pictured in Figure 8, before γg was isotoped); and for i = 1, . . . , g− 1,
let Pi be the doubly periodic domains with ∂Pi = βi − γi(t). We let ε(t) be
the sum of the absolute areas of all these periodic domains:

ε(t) = A
(
|D(P)|

)
+

g−1∑
i=1

A
(
|D(Pi)|

)
,

where the absolute signs denote the unsigned area. Note that limt�→0 ε(t) = 0.
Also, let M be the minimum of the area of any domain in Σ−α1 − · · · −αg −
β1 −· · ·−βg − δg. We choose t small enough that ε(t) < M/2 and assume that
the absolute (unsigned) area of the periodic domain Qi with ∂(Qi) = βi−δi(t)
agrees with the absolute area of Pi.

Lemma 9.8. For sufficiently small t, the function FY0 induces a filtration
on CF+(Y0). In particular,

∂[y, j] < [y, j].

Proof. It is important to observe that the area filtration defined above is
indeed well-defined. The reason for this is that if ψ, ψ′ are a pair of homotopy
classes in π2(x0,Θβ,γ ,y) with nz(ψ) = nz(ψ′), then D(ψ) − D(ψ′) is a triply
periodic domain. It follows that it must have total area zero.

Suppose that we have a pair of generators [y, j] and [y′, j′] which are
connected by a flow φ. If ψ ∈ π2(x0,Θβ,γ ,y) is a class with nz(ψ) = −j,
then, of course, ψ + φ ∈ π2(x0,Θβ,γ ,y′) is a class with nz(ψ + φ) = −j′; thus,
FY0([y′, j′]) − FY0([y, j]) = −A(φ); but A(φ) > 0, as all of its coefficients are
nonnegative (and at least one is positive).

The filtration on CF+, together with the data ι, π, and R, endow CF+(Y )
and CF+(Y1) with a filtration as well.

Lemma 9.9. For t sufficiently small, the orderings induced on CF+(Y )
and CF+(Y1) give filtrations.

Proof. There is a natural filtration on Y , defined by FY ([x, i]) = −A(φ),
where φ ∈ π2(x0,x) is the class with nz(φ) = −i. This is a filtration, in
view of the usual positivity of holomorphic disks (see Lemma 3.2); indeed, the
filtration decreases by at least M along flows.

The filtration induced by FY0 and the map ι, defined by F ′
Y ([x, i]) =

FY0(ι[x, i]) very nearly agrees with this natural filtration, for sufficiently small t.
To see this, note that there is a unique “small” triangle ψ0 ∈ π2(x,Θβ,γ , ι(x))
which has nonnegative coefficients and is supported inside the support of
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P+P1+. . .Pg−1. Clearly, A(ψ0) < ε(t), and nz(ψ0) = 0. Now, if φ ∈ π2(x0,x)
is the class with nz(φ) = −i the juxtaposition of ψ0+φ ∈ π2(x0,Θβ,γ , ι(x)) can
be used to calculate the Y0 filtration of ι(x); thus |FY ([x, i])−F ′

Y ([x, i])| < ε(t).
In particular, since FY decreases by at least M along flowlines, FY0 ◦ ι must
decrease along flows also.

For Y1, there is another filtration, this one induced by squares. Given
[y, i] ∈ (Tα ∩ Tδ) × Z≥0, consider ϕ ∈ π2(x0,Θβ,γ ,Θγ,δ,y) with nz(ϕ) = −i,
and let

F ′′
Y1

([y, i]) = −A(D(ϕ)).

Indeed, if M ′ is the minimum area of any domain in Σ−α1−· · ·−αg − δ1(t)−
· · · − δg−1(t)− δg, then F ′′

Y1
decreases by at least M ′ along each flowline. Note

that M ′ > M − ε(t).
Now, we claim that F ′′

Y1
nearly agrees with the filtration F ′

Y1
induced by

FY0 and the right inverse R: F ′
Y1

([y, j]) = FY0(R[y, j]). Again, if we let ρ(y)
denote the point in Tα ∩ Tγ(t) closest to y ∈ Tα ∩ Tδ, there is a unique small
triangle ψ0 ∈ π2(ρ(y),Θγ,δ,y). If ψ ∈ π2(x0,Θβ,γ , ρ(y)) is a triangle with
nz(ψ) = −j (i.e. used to calculate FY0 ◦R), then, the juxtaposition ψ +ψ0 is a
square which can be used to calculate F ′′

Y1
([y, j]). But |A(ψ + ψ0) −A(ψ)| ≤

ε(t), so since F ′′
Y1

decreases by at least M ′ for nontrivial flows, it follows that
FY0 ◦ R, too, must decrease along flows.

Lemma 9.10. The maps f1 and f2 have the form:

f1 = ι + lower order, f2|ImR = π + lower order.

Proof. The map f1([x, i]) counts the number of holomorphic triangles in
homotopy classes with ψ ∈ π2(x,Θβ,γ ,y), with y ∈ Tα ∩ Tγ(t) and µ(ψ) = 0.
One of these triangles, of course, is the canonical small triangle ψ0 ∈
π2(x,Θβ,γ , ι(x)). One can calculate that #M(ψ0) = 1. This gives the ι com-
ponent of f1. Now, no other homotopy class ψ ∈ π2(x,Θβ,γ ,y) with D(ψ) ≥ 0
has its domain D(ψ) contained inside the support of P +P1 + . . .Pg−1; thus, if
M(ψ) is nonempty, then A(ψ) > M − ε(t) > M/2. Moreover, in the proof of
Lemma 9.9, we saw that if φ ∈ π2(x0,x) is the homotopy class with nz(φ) = −i,
then

|FY0(ι([x, i])) + A(φ)| < ε(t).

But now ψ+φ can be used to calculate the filtration FY0([y, i−nz(ψ)]). Thus,

FY0([y, i − nz(ψ)]) −FY0(ι[x, i]) ≤ −A(ψ) + ε(t) < 0.

Next, we consider f2. As before, if y ∈ Tα ∩ Tδ, we let ρ(y) ∈ Tα ∩
Tγ(t) denote the intersection point closest to y. Suppose that f2([ρ(y), i])
has a nonzero component in [w, j] with [y, i] �= [w, j]; thus, we have a ψ ∈



HOLOMORPHIC DISKS AND THREE-MANIFOLD INVARIANTS 1221

π2(ρ(y),Θγ,δ,w) with nz(ψ) = i − j, which supports a holomorphic triangle.
Again, ψ cannot be supported inside the support of P + P1 + · · · + Pg−1, so
A(ψ) > M/2. Fix ψw ∈ π2(x0,Θβ,γ , ρ(w)) (for Tα, Tβ, Tγ) with nz(ψw) = −j,
and ψy ∈ π2(x0,Θβ,γ , ρ(y)) with nz(ψy) = −i. Clearly, the juxtaposition
ψy + ψ ∈ π2(x0,Θβ,γ ,Θγ,δ,w) is a square whose area must agree with the
square ψw + ψ0, where ψ0 ∈ π2(ρ(w),Θγ,δ,w) is the canonical small triangle,
so that

A(ψw) = A(ψy) −A(ψ0) + A(ψ),

and hence F([ρ(y), i]) > F([ρ(w), j]).

Lemma 9.11. For sufficiently small t, there is a null -homotopy H of f2◦f1

satisfying R ◦ H < ι.

Proof. Theorem 8.16 of [27] provides the null-homotopy H: the [y, j]
coefficient of H[x, i] counts holomorphic squares ϕ ∈ π2(x,Θβ,γ ,Θγ,δ,y) with
nz(ϕ) = i − j.

Our aim here is to prove that if the [y, j] component of H[x, i] is nonzero
then ι[x, i] > R[y, j]. Now, the filtration difference between ι([x, i]) and R[y, j]
is calculated (to within ε(t)) by A(ψ), where ψ ∈ π2(x,Θβ,γ , ρ(y)) has nz(ψ) =
i−j. Adding the smallest triangle in π2(ρ(y),Θγ,δ,y) (and hence changing the
area by no more than ε(t)), we obtain another square ϕ′ ∈ π2(x,Θβ,γ ,Θγ,δ,y)
with nz(ϕ′) = i − j, whose area must agree with the area of ϕ. Now if t is
sufficiently small (ε(t) < M/4), it follows that the filtration difference between
ι[x, i] and R[y, j] is positive.

Proof of Theorem 9.1. Theorem 9.1 is now a consequence of the long exact
sequence associated to the short exact sequence from Proposition 9.7, with a
few final observations regarding the Z/2Z grading.

Orient the α1, . . . , αg, and the β1, . . . , βg−1 arbitrarily (hence inducing
orientations on the γ1, . . . , γg−1 and the δ1, . . . , δg−1). The orientation on βg

is then forced on us by the requirement that

1 = χ(ĤF (Y )) = #(Tα ∩ Tβ),

where we orient the tori Tα and Tβ in the obvious manner. Similarly, the
orientation on δg is forced so that

δg = βg ± γg.

We can orient γg so that the above sign is positive. It is then clear (by looking
at the small triangles) with these conventions that F1 preserves the absolute
Z/2Z grading, while F2 reverses it. It follows then that F3 preserves degree as
claimed.
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9.2. A generalization. Let Y be an oriented three-manifold, and let K ⊂ Y

be a knot. Let m be the meridian of K, and let h ∈ H1(∂(Y − nd(K))) be
a homology class with m · h = 1 (here, the torus is oriented as the boundary
of the neighborhood of K). We let Yh denote the three-manifold obtained by
attaching a solid torus to Y − nd(K), with framing specified by h.

Fixing a Spinc structure s0 over Y − K, we let

HF+(Yh, [s0]) =
⊕

{s

∣∣s|Y −K=s0}

HF+(Yh, s).

We define HF+(Y, [s0]) similarly.
The following is a direct generalization of Theorem 9.1 (the case where Y

is an integer homology three-sphere, and h is the “longitude” of K):

Theorem 9.12. For each Spinc structure s0 on Y − K, there exists the
U -equivariant exact sequence:

· · · −→ HF+(Y, [s0]) −→ HF+(Yh, [s0]) −→ HF+(Yh+m, [s0]) −→ · · · .

Corollary 9.13. Let Y be an integer homology three-sphere with a knot
K ⊂ Y , and let Yn be the three-manifold obtained by n surgery on K where
n > 0; then there is a U -equivariant long exact sequence

· · · −→ HF+(Y ) −→ HF+(Yn) −→ HF+(Yn+1) −→ · · · .

The proof given in the previous section adapts to this context, after a few
observations.

Note first that the map from Y to Yh defined by counting triangles is
naturally partitioned into equivalence classes. To see that the decomposition
agrees with what we have stated, we observe the following. Let X be the pair-
of-pants cobordism connecting Y , Yh, and #g−1(S2 × S1). The four-manifold
obtained by filling the last component with #g−1(D3×S1) is the cobordism Wh

from Y to Yh obtained by attaching a two-handle to Y along K with framing h.
Now, Spinc-equivalence classes of triangles for Tα, Tβ, Tγ agree with Spinc

structures on the cobordism Wh, since sz(Θβ,γ) is a torsion Spinc structure over
#g−1(S2 × S1) (which extends uniquely over #g−1(D3 × S1)). But two Spinc

structures on Y and Yh extend over Wh if and only if they agree on the knot
complement Y − K (thought of as a subset of both Y and Yh).

With this said, the maps f1 and f2 partition according to Spinc structures
on Y − K.

Next, we observe that there are in principle many periodic domains for
the triple (Tα, Tβ, Tγ). By twisting normal to the α, however, we can arrange
that the triple is admissible. By choosing the volume form on Σ appropriately,
we can arrange that they all have zero signed area.
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We can define the filtrations as before. Fix any x0 ∈ Tα∩Tβ so that sz(x0)
restricts to s0 on Y −K. The triangle connecting x0, Θβ,γ and any intersection
point y ∈ Tα ∩ Tγ with sz(y)|Y − K = s0 is guaranteed to exist, since the
corresponding Spinc structures extend over Wh. The area of the domain of any
such triangle can be used to define FYh

([y, i]). The proof given before, then,
applies.

9.3. Fractional surgeries. There are other ways to generalize Theorem 9.1.
We consider presently the case of fractional (1/q) surgeries on an integral
homology three-sphere.

Let Y be an integer homology three-sphere, and K ⊂ Y be a knot. Let
Y0 be the manifold obtained by zero-surgery on K, and let Y1/q be obtained
by a 1/q surgery on K, where q is a positive integer.

We fix a representation

H1(Y ; Z) −→ Z/qZ

taking generators to generators, and let

HF+(Y0, Z/qZ) ∼=
⊕

s∈Spinc(Y0)

HF+(Y0, s)

denote the corresponding homology group with twisted coefficient ring (in the
sense of Section 8).

Theorem 9.14. Let Y be an integral homology three-sphere and let q be
a positive integer. Then, there is a U -equivariant exact sequence

· · · −−−→ HF+(Y0; Z/qZ) −−−→ HF+(Y1/q) −−−→ HF+(Y ) −−−→ · · · .

The proof of Lemma 9.2 in the present context gives us a generalized
pointed Heegaard diagram (Σ,α,β,γ, δ, z) with the properties:

• The Heegaard diagrams (Σ,α,β), (Σ,α,γ), and (Σ,α, δ) describe Y ,
Y0, and Y1/q respectively.

• For each i = 1, . . . , g − 1, the curves βi, γi, and δi are small isotopic
translates of one another, each pairwise intersecting in a pair of canceling
transverse intersection points.

• The curve δg is isotopic to the juxtaposition of βg with the q-fold juxta-
position of γg.

We can think concretely about CF+(Y0; Z/qZ) as follows. Let ζ = e
2πi

q ,
and fix a reference point τ ∈ γg, which we choose to be disjoint from all the
other α, β, and δ. This gives rise to a codimension-one submanifold

V = γ1 × · · · × ×γg−1 × {τ} ⊂ Tγ .
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Then, CF+(Y0; Z/qZ) is generated over Z by the basis [x, i] ⊗ ζj where of
course, x is an intersection point x ∈ Tα ∩ Tγ in the appropriate equivalence
class, i is a nonnegative integer, and j ∈ Z/qZ. The boundary map then is
given by

∂
(
[x, i] ⊗ ζj

)
(11)

=
∑

y∈Tα∩Tγ

∑
{φ∈π2(x,y)

∣∣µ(φ)=1}

(
#M̂(φ)

)
· [y, i − nz(φ)] ⊗ ζj+#(V ∩∂γ(φ)).

The quantity V ∩ ∂γ(φ) is the intersection number between the codimension-
one submanifold V ⊂ Tγ with the path in Tγ obtained by restricting φ to the
appropriate edge.

Again, we let vg be the intersection point between δg and γg. We now
have q different intersection points between δg and βg, of which we choose one,
labelled wg, in the following Proposition 9.15. We will have no need for the
q − 1 other intersection points. Let Θβ,γ , Θγ,δ, and Θβ,δ be as before.

As in Proposition 9.3, if we let θβ,δ = [Θβ,δ, 0], then θβ,δ is a cycle in
CF∞(Tβ, Tδ). Note that the three-manifold described by the pair (Σ,β, δ) is

now a sum L(q, 1)#
(
#g−1

i=1 (S1 × S2)
)

(where L(q, 1) is a lens space).

Proposition 9.15. For an appropriate choice wg ∈ βg ∩ δg for βg with
δg, there are homotopy classes of triangles {ψ±

k }∞k=1 ∈ π2(Θβ,γ ,Θγ,δ,Θβ,δ) sat-
isfying the following properties (for each k):

µ(ψ±
k ) = 0,

nz(ψ+
k ) = nz(ψ−

k ),

nz(ψ+
k ) < nz(ψ+

k+1),

Moreover, each triangle in π2(Θβ,γ ,Θγ,δ,Θβ,δ) is Spinc equivalent to some ψ±
k .

Also, the congruence class modulo q of the intersection number #(V ∩ ∂γ(ψ))
is independent of the choice of ψ ∈ π2(Θβ,γ ,Θγ,δ,Θβ,δ). Furthermore, there is
a choice of perturbations and complex structure with the property that for each
Ψ ∈ π2(x,Θγ,δ,Θβ,δ) (where x ∈ Tβ ∩ Tγ) with µ(Ψ) = 0,

#M(Ψ) =
{

±1 if Ψ ∈ {ψ±
k }∞k=1

0 otherwise.

Proof. The proof follows along the lines of Proposition 9.5. In this case,
letting P be the generating periodic domain in the torus, we have that

∂P = βg + qγg − δg.

We must choose wg so that it is the βg-δg corner point for the domain con-
taining the basepoint z. Note that ∂P meets the reference point τ ∈ γ with
multiplicity q. This proves the q independence of the intersection number
#(V ∩ ∂γ(ψ)) of the choice of ψ ∈ π2(Θβ,γ ,Θγ,δ,Θβ,δ). (See Figure 10.)
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Figure 10: The triply periodic domain in the torus relevant for 1/q surgery,
with q = 3.

Our choice of basepoint z and the intersection point Θβ,δ, from the above

proposition give us a Spinc structure tβ,δ ∈ Spinc(L(q, 1)#
(
#g−1

i=1 (S1 × S2)
)
).

We consider the chain map

f2 : CF+(Y0, Z/qZ) −→ CF+(Y1/q)

defined by
f2(ξ) =

∑
{s∈Spinc(Xα,γ,δ)

f+
α,γ,δ(ξ ⊗ θγ,δ, s).

In the present context,

f+
α,γ,δ

(
[x, i] ⊗ ζk ⊗ [y, j]; s

)
=

∑
w∈Tα∩Tδ

∑
{ψ∈π2(x,y,w)

∣∣#(V ∩∂γψ)=−k,sz(ψ)=s}

(#M(ψ)) · [w, i + j − nz(ψ)].

We define
f3 : CF+(Y1/q) −→ CF+(Y )

by
f3(ξ) =

∑
{s∈Spinc(Xα,δ,β)

∣∣s|Yβ,δ=tβ,δ}

f+
α,δ,β(ξ ⊗ θβ,δ, s).

This gives us maps:

CF+(Y0, Z/qZ)
f2−−−→ CF+(Y1/q)

f3−−−→ CF+(Y ).

It follows, once again, from associativity, together with Proposition 9.15,
that there are maps on homology F3 ◦ F2 = 0. Note that the chain ho-
motopy evaluated on ζk × [x, i] is constructed by counting squares in ϕ ∈
π2(x,Θγ,δ,Θδ,β ,y) with V ∩ ∂γ(ϕ) = −k.

We homotope the δ-curve to the juxtaposition of the βg with the q-fold
juxtaposition of γg. This gives a short exact sequence of graded groups

0 −−−→ CF+(Y0, Z/qZ) ι−−−→ CF+(Y1/q)
π−−−→ CF+(Y ) −−−→ 0.
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Figure 11: The analogue of Figure 9, only for 1/q surgery with q = 3. We
have pictured here only the part of the surface taking place in the final torus
summand, and correspondingly dropped the g subscripts. There are two α-
curves crossing the region here, labelled α and α′: the first of these meets γ

at x, the second meets β at x′. Observe the three intersection points of α ∩ δ

and the intersection point of α′ ∩ δ corresponding to x and x′ respectively.

To see the inclusion, note that each intersection point x of Tα∩Tγ corresponds
to q distinct intersection points between Tα ∩ Tδ, labelled (x1, . . . ,xq). For
each of these intersection points, there is a unique smallest triangle u1, . . . , uq,
with ui ∈ π2(x, ,Θγ,δ,xj). We claim that the q integers #(V ∩ ui) each lie
in different congruence classes modulo q. This gives the inclusion. To see
surjection, note that each intersection point of x′ ∈ Tα ∩ Tβ gives rise to a
unique intersection point ρ(x′) between Tα ∩ Tδ, which can be joined by a
small triangle in π2(ρ(x′),Θβ,δ,x′). (See Figure 11 for an illustration.)

With this said, then, the energy filtration is defined as before, calculating
the energy of classes ψ ∈ π2(x0,Θγ,δ,y). Thus we obtain the required long
exact sequence.

9.4. ĤF . Let Y be an oriented three-manifold, K ⊂ Y be a knot, and
s0 be a fixed Spinc structure over Y − K.

Theorem 9.16. For each Spinc structure s0 on Y − K, there exists the
exact sequence:

· · · −→ ĤF (Y, [s0]) −→ ĤF (Yh, [s0]) −→ ĤF (Yh+m, [s0]) −→ · · · .

Similarly, we have:

Theorem 9.17. Let Y be an integral homology three-sphere and let q be
a positive integer. Then, there is a U -equivariant exact sequence

· · · −→ ĤF (Y0; Z/qZ) −→ ĤF (Y1/q) −→ ĤF (Y ) −→ · · · .
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For the proofs of these results, Proposition 9.15 (or Proposition 9.5, for
the case of +1-surgeries) is replaced by the comparatively simpler:

Proposition 9.18. There are two homotopy classes of triangles ψ+ and
ψ− in π2(Θβ,γ ,Θγ,δ,Θβ,δ) with

µ(ψ±) = 0,

nz(ψ±) = 0,

#(∂γψ+) = #(∂γψ−) + q.

These are the only two triangles with D(ψ) ≥ 0 and nz(ψ) = 0. Also, each
moduli space consists of a single, smooth isolated point.

Proof. This now follows directly from the picture in the torus. In partic-
ular, in the present case, there is no need for Theorem 9.4.

Proof of Theorems 9.16 and 9.17. The proofs here are now obtained by
copying the earlier proofs for HF+, with the obvious notational changes.

9.5. Integer surgeries. Another generalization of Theorem 9.1 involves
integer surgeries.

Let Y be an integer homology three-sphere, and K ⊂ Y be a knot. Let
Y0 be the manifold obtained by zero-surgery on K, and let Yp be obtained by
+p surgery on K, where p is a positive integer.

Theorem 9.19. There is a surjective map Q : Spinc(Y0) −→ Spinc(Yp)
with the property that for each Spinc structure t ∈ Spinc(Yp), there is a U -equi-
variant exact sequence

· · · F1−−−→ HF+(Y0, [t])
F2−−−→ HF+(Yp, t)

F3−−−→ HF+(Y ) −−−→ · · · ,

where
HF+(Y0, [t]) =

⊕
{t0

∣∣Q(t0)=t}

HF+(Y0, t0).

Moreover, F3 preserves the Z/2Z degree, chosen so that

χ(ĤF (Yp, t)) = χ(ĤF (Y )) = 1.

In particular, there is a U -equivariant exact sequence

· · · −−−→ HF+(Y0) −−−→ HF+(Yp) −−−→
⊕p

i=1 HF+(Y ) −−−→ · · · .

Remark 9.20. Indeed, a modification of the following proof can also be
given to construct an exact sequence

. . .
F2−−−→ HF+(Y ) F3−−−→ HF+(Y−p, t)

F1−−−→ HF+(Y0, [t]) −−−→ · · · ,

where F3 preserves the Z/2Z degree.
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In another direction, Theorem 9.19 readily generalizes to the case where
Y is not an integral homology sphere. For example, if K is a null-homologous
knot in Y , there is still a notion of integral surgery, and we obtain sequences
as above, only now there is one for each fixed Spinc structure over Y .

Proof. This time, the curve δg is isotopic to the juxtaposition of the p-fold
juxtaposition of βg with the γg.

Now, we have p different intersection points between δg and γg. We choose
one (so that the analogue of Proposition 9.15 holds, for our given choice of
basepoint), and label it vg. We will have no need for the remaining p − 1
intersection points. Let wg denote the intersection point between βg and δg,
and let Θβ,γ , Θγ,δ, and Θβ,δ be as before. We have a corresponding Spinc

structure tγ,δ corresponding to Θγ,δ.
If t′ ∈ Spinc(Y0), there is a unique Spinc structure t ∈ Spinc(Yp) with the

property that there is a Spinc structure s on Xα,γ,δ with s|Y0 = t′, s|Yγ,δ = tγ,δ,
and s|Yα,δ = t. We let Q(t′) = t.

Fix a Spinc structure t over Yp. We consider the chain map

f2 : CF+(Y0) −→ CF+(Yp, t)

defined by

f2(ξ) =
∑

{s∈Spinc(Xα,β,δ)
∣∣s|Yα,δ=t, s|γ,δ=tγ,δ}

f+
α,γ,δ(ξ ⊗ θγ,δ, s).

We define f3 as follows. Consider

f3(ξ) =
∑

{s∈Spinc(Xα,δ,β)
∣∣s|Yp=t}

f+
α,δ,β(ξ ⊗ θβ,δ).

This gives us maps:

CF+(Y0, [t])
f2−−−→ CF+(Yp, t)

f3−−−→ CF+(Y ).
It follows once again from associativity, together with the analogue of

Proposition 9.15, that F3 ◦ F2 = 0.
We homotope the δ-curve to the juxtaposition of the p-fold multiple of βg

with γg. This gives a short exact sequence of graded groups

0 −−−→ CF+(Y0, [t])
ι−−−→ CF+(Yp, t)

π−−−→ CF+(Y ) −−−→ 0.

The inclusion follows as before: each intersection point x of Tα∩Tγ corresponds
to a unique intersection point between Tα and Tδ, which can be canonically
connected by a small triangle. To see surjection, note that each intersection
point of y ∈ Tα∩Tβ gives rise to p different intersection points between Tα and
Tδ, which we label (y1, . . . ,yp). Note, however, that ε(yi,yj) = (i− j)PD[β∗

g ].
Now, PD[β∗

g ] ∈ H2(Yp) is a generator, so there will always be a unique induced
intersection point representing the Spinc structure t over Yp. The rest follows
as before.
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9.6. +1 surgeries for twisted coefficients. There is also a surgery exact
sequence for +1 surgeries which uses twisted coefficients.

For simplicity, we state it in the case where we begin with a three-manifold
Y which is an integer homology sphere. In that case, if we let T be a generator
for H1(Y0; Z), then we can think of Z[H1(Y0; Z)] as Z[T, T−1]. Given any Z[U ]
module M , let M [T, T−1] denote the induced module over Z[U, T, T−1].

Theorem 9.21. There is a Z[U, T, T−1]-equivariant long exact sequence:

· · · → HF+(Y )[T, T−1]
F+

1−−−→ HF+(Y0)
F+

2−−−→ HF+(Y1)[T, T−1]
F+

3−−−→ . . .

We will think of HF+(Y0) as we did in Subsection 9.3: we fix a reference
point τ ∈ γg, and let the boundary map record, in the power of T , the multi-
plicity with which φ meets τ along its boundary, as in Equation (11) (with the
difference that now we use a formal variable T rather than a root of unity ζ).

We will similarly use a reference point τ ′ ∈ δg, again defining the boundary
map for Y1 which records the intersection with τ ′ in the power of T , to obtain
a chain complex for Y1, which we write as: CF+(Y1, Z[T, T−1]). Note that (by
contrast with the case of Y0) this has little effect on the homology. Indeed, it
is easy to construct an isomorphism of chain complexes (over Z[U, T, T−1]):

CF+(Y1) ⊗Z Z[T, T−1] ∼= CF+(Y1, Z[T, T−1]).

Moreover, it is clear that

H∗(CF+(Y1) ⊗Z Z[T, T−1]) ∼= HF+(Y1) ⊗Z Z[T, T−1].

However, this device will be convenient in constructing the chain maps.
We choose τ ′ to lie on the boundary of ψ− and τ to lie on the boundary of

ψ+ (where ψ± = ψ±
1 from Proposition 9.5), and let V , V ′ be the corresponding

codimension one subsets of Tγ and Tδ respectively. We then let

f+
1 ([x, i]) =

∑
w∈Tα∩Tγ

∑
{ψ∈π2(x,Θβ,γ .w)

∣∣µ(ψ)=0}

c(x,w, ψ) · [w, i − nz(ψ)],

and

f+
2 ([x, i]) =

∑
w∈Tα∩Tδ

∑
{ψ∈π2(x,Θγ,δ,w)

∣∣µ(ψ)=0}

c(x,w, ψ) · [w, i − nz(ψ)],

where in both cases c(x,w, ψ) ∈ Z[T, T−1] is given by

c(x,w, ψ) = (#M(ψ)) ·
(
T#(∂γψ∩V )+#(∂δψ∩V ′)

)
.

We have the following analogue of Proposition 9.6:

Proposition 9.22. The composition F+
2 ◦ F+

1 = 0.
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Proof. Observe that for the homotopy classes {ψ±
k }∞k=1 from Proposi-

tion 9.5, we have that

#(∂βψ+
k ∩ V ) + #(∂δψ

+
k ∩ V ′) = #(∂βψ−

k ∩ V ) + #(∂δψ
−
k ∩ V ′) = 1.

This implies that the formal sum∑
sβ,γ,δ∈Sβ,γ,δ

f≤0
β,γ,δ(θβ,γ ⊗ θγ,δ, sβ,γ,δ)

=
∞∑

k=1

T ⊗
([

Θβ,δ,−
k(k − 1)

2

]
−

[
Θβ,δ,−

k(k − 1)
2

])
= 0.

Thus, the proof follows from associativity as before.

Proof of Theorem 9.21. With Proposition 9.22 replacing Proposition 9.6,
the proof proceeds as the proof of Theorem 9.1.

We have also the generalization for integer surgeries:

Theorem 9.23. Let Y be an integral homology three-sphere, let K ⊂ Y be
a knot in Y , and fix a positive integer p. For each Spinc structure t ∈ Spinc(Yp),
there is a Z[U, T, T−1]-equivariant exact sequence

· · · F1−→ HF+(Y0, [t])
F2−→ HF+(Yp, t)[T, T−1] F3−→ HF+(Y )[T, T−1] −→ · · · ,

where
HF+(Y0, [t]) =

⊕
{t0

∣∣Q(t0)=t}

HF+(Y0, t0),

with the map Q : Spinc(Y0) −→ Spinc(Yp) from Theorem 9.19.

Proof. Combine the refinements from Theorem 9.19 with those of Theo-
rem 9.21.

10. Calculation of HF∞

The main result of the present section is the complete calculation of
HF∞(Y ) purely in terms of the homological data of Y . We also give the
following similar calculation of HF∞(Y ) when b1(Y ) ≤ 2. We start with the
latter construction, establishing the following:

Theorem 10.1.Let Y be a closed, oriented three-manifold with b1(Y )≤2.
Then, there is an equivalence class of orientation system over Y with the fol-
lowing property. If s0 is torsion, then

HF∞(Y ; s0) ∼= Z[U, U−1] ⊗Z Λ∗H1(Y ; Z)
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as a Z[U ] ⊗Z Λ∗(H1(Y ; Z)/Tors)-module. Furthermore, if s is not torsion,

HF∞(Y ; s) ∼= (Z[U ]/Un − 1) ⊗Z Λ∗c1(s)⊥,

where c1(s)⊥ ⊂ H1(Y ; Z) is the subgroup pairing trivially with c1(s), and n =
d(s)/2.

Remark 10.2. Of course, in the above statement, we think of the usual
cohomology H1(Y ; Z) (with constant coefficients); but it will be apparent from
the proof that for each choice of a locally constant Z coefficient system, we
obtain an orientation system for HF∞ for which the analogous isomorphism
holds: this gives an identification between locally constant Z coefficient systems
over Y and equivalence classes of orientation systems over Y .

The proof in some important special cases is given in Subsection 10.1,
and the general case is proved in Subsection 10.2. We give also the “twisted”
analogue in Subsection 10.3 which holds for arbitrary b1(Y ).

The theorem describes the module structure of HF+(Y, s0) in sufficiently
large degree, when s0 is a torsion Spinc structure and b1(Y ) ≤ 2. It also al-
lows us to pay off several other debts: first, it allows us to define an absolute
Z/2Z grading on the homology groups; then, combined with the discussion of
Section 5, it allows us to relate χ(HF−(Y, s)) to Turaev’s torsion in Subsec-
tion 10.5 (though an alternative calculation could also be given by modifying
directly the discussion in Section 5). It also allows us to extend the Euler char-
acteristic calculations for HF+ to the case where the Spinc structure is torsion;
cf. Subsection 10.6. Finally, the result allows us to identify a “standard” ori-
entation system for Y : the one for which Theorem 10.1 holds, with the usual
H1(Y ; Z) on the right-hand-side. (This justifies our practice of dropping the
coefficient system from the notation for HF∞, and the other related groups.)
Since the analogue of Theorem 10.1 in the twisted case (Theorem 10.12) holds
without restriction on the Betti numbers of Y , it can be used to identify a
canonical coherent system of orientations for any oriented three-manifold Y .

10.1. HF∞(Y ) when H1(Y ; Z) = 0 or Z.

Theorem 10.3. Theorem 10.1 holds when Y is an integer homology
three-sphere; i.e., over Z, HF∞(Y ) is freely generated by generators yi for
i ∈ Z, with Uyi = yi−1.

Theorem 10.4. Theorem 10.1 holds when the three-manifold in question,
Y0, satisfies H1(Y0) ∼= Z. More concretely, let H ∈ H2(Y0; Z) be a generator,
and let s0 denote the Spinc structure with trivial first Chern class. Then if
s = s0 ± n · H with n > 0, then HF∞(Y0, s) is freely generated by generators
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xi for i ∈ 1, . . . , n, with Uxi = xi−1, Ux1 = xn. Moreover, HF∞(Y0, s0) is
freely generated by generators xi, yi for i ∈ Z, with Uyi = yi−1, Uxi = xi−1

and gr(xi, yi) = 1; also, PD[H] · xi = yi.

The main ingredient in the proof of the above results is the following:

Proposition 10.5.Let Y be an integer homology three-sphere, and K⊂Y

be a knot ; then there is an identification:

HF∞(Y0, s) ∼= HF∞(Y, s0)/(Un − 1),

where Y0 is the three-manifold obtained by zero-surgery on K, and where the
divisibility of c1(s) is 2n.

This is proved in several steps.
We start with a Heegaard diagram (Σ,α,β, z) describing Y0, with the

property that (Σ, {α2, . . . , αg}, {β1, . . . , βg}) describes the knot complement.
Let γ be a curve which intersects α1 once and is disjoint from {α2, . . . , αg}, so
that (Σ, {γ, α2, . . . , αg}, {β1, . . . , βg}) represents Y . Indeed, we let γ2, . . . , γg

be small isotopic translates of α2, . . . αg, with γi∩αi for i = 2, . . . , g consisting
of a canceling pair of points w±

i . Such a diagram can always be found (compare
Lemma 9.2). We twist α1 along γ, and let R∞(s) resp. L∞(s) denote the
subset of CF∞(Y0, s), generated by the γ-induced intersection points to the
right, resp. the left of the curve γ. Recall that if we twist sufficiently, then
L∞(s) is a subcomplex (cf. Proposition 5.6).

We relate HF∞ for Y with H∗(R∞), as follows:

Lemma 10.6. There is an isomorphism H∗(R∞) ∼= HF∞(Y ).

Proof. Let Θα,γ ∈ Tα∩Tγ be the intersection point {γ∩α1, w
+
2 , . . . , w+

g }.
It follows as in the proof of Proposition 5.6 that there are no triangles ψ ∈
π2(Θα,γ ,x,y) with x ∈ L∞, y ∈ Tγ ∩ Tβ and D(ψ) ≥ 0, and µ(ψ) = 0.
Hence, counting holomorphic triangles whose Tα∩Tγ-vertex is Θα,γ , we obtain
a map H∗(R∞) −→ HF∞(Y ). On the chain level, this map has the form
ι+lower order, where ι[x, i] = [x′, i−nz(ψx)] where x′ is the intersection point
on Tγ ∩Tβ closest to x ∈ Tα∩Tβ, ψx is the unique small triangle (supported in
the neighborhood of γ and the support of the isotopies between γi and αi with
nonnegative multiplicities) and lower order is taken with respect to the energy
filtration on Y . Moreover, there is a relative Z-grading on both complexes,
given by the Maslov index (where we take an “in” domain for Y0). The map
preserves this grading. Moreover, there are only finitely many generators in
each degree. It follows then that the induced map is an isomorphism.
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We have seen that the map H∗(R∞) −→ H∗(L∞) naturally splits into two
pieces, δ1 and δ2, where δ1 uses the domains φin from Lemma 5.5.

Lemma 10.7. The map δ1 is an isomorphism.

Proof. This follows from the fact that on the chain level, δ1 has the form

δ1[x+, i] = [x−, i − nz(φx+,x−)] + lower order

(Lemma 5.7), together with the fact that δ1 preserves the relative Z grading.

Lemma 10.8. The map δ2 is an isomorphism.

Proof. Fix an equivalence class of intersection points between Tα ∩Tβ, all
of which are γ-induced. According to Section 5, if we wind sufficiently many
times along γ and move the basepoint z sufficiently close to γ, then 〈c1(s), H〉
can be made arbitrarily large. By moving the basepoint to change the Spinc

structure, we have that the complexes L+(s) and L+(s′) (resp. R+(s) and
R+(s′)) are identical. Moreover, if s and s′ are sufficiently positive, then the
map δ+

2 is independent of the Spinc structure.
Choose a degree i sufficiently large that Hi(R+) ∼= Hi(R∞) and Hi(L+) ∼=

Hi(L∞), and note that under these identifications, the map induced on homol-
ogy

δ+
2 : Hi(R+) −→ Hi−1(L+)

agrees with δ2. For fixed i and sufficiently large s, δ+
1 on Hi(R+(s)) vanishes.

Since HF+(Y, s) is zero for all sufficiently large s, it follows from the long exact
sequence induced from

0 −−−→ L+(s) −−−→ CF+(Y, s) −−−→ R+(s) −−−→ 0

that δ = δ+
1 + δ+

2 : H∗(R+(s)) −→ H∗(L+(s)) is an isomorphism. It follows
that the kernel of δ+

2 in degree i is trivial. From this, it follows in turn that the
kernel of δ+

2 is trivial in all larger degrees. Since δ+
1 decreases the degree more

than δ+
2 , it is easy to see that the cokerenel of δ+

2 in dimension i is trivial, as
well. The lemma then follows.

Proof of Proposition 10.5. Note that δ1 and and δ2 are both isomorphisms,
and

gr(δ1([x, i]), δ2([x, i])) = ±2n

for each generator [x, i] for CF+(Y, s). It follows that:

HF∞(Y0, s) ∼= H∗(R∞)/(Un − 1).

Thus, the proposition follows from Lemma 10.6.
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Proof of Theorem 10.3. Since multiplication by U is an isomorphism on
HF∞(Y, s0), Proposition 10.5 shows that HF∞(Y ) ∼= HF∞(Y1), where Y1

denotes the +1 surgery on any knot K ⊂ Y . Since any two integer homology
three-spheres can be connected by sequences of ±1 surgeries, it follows that
HF∞(Y ) ∼= HF∞(S3), which we know has the claimed form.

Proof of Theorem 10.4. This is a direct consequence of Theorem 10.3 and
Proposition 10.5 when c1(s) is nontorsion. In the torsion case, the induced
maps on homology satisfy either δ1 = δ2, or δ1 = −δ2, according to the two
possible orientation conventions for Y . The two possibilities give two different
homology groups (over Z). We define the standard orientation convention to
be the one for which δ1 = −δ2.

Finally, note that the action of h ∈ H1(Y0; Z) is given by ±δ1, as can
be easily seen from the geometric representative for the circle action (see Re-
mark 4.20 of [27]).

10.2. The general case of Theorem 10.1.

Definition 10.9. Let Z be a compact three-manifold with ∂Z = T 2. The
kernel of the map

H1(∂Z) −→ H1(Z)

is cyclic, generated by d�, where � ⊂ T 2 is a simple, closed curve. We call such
a curve � a longitude, and d the divisibility of Z.

Proposition 10.10. Suppose that b1(Z) = 1, and let h1, h2 be primitive
homology classes in H1(T 2; Z) and with h1 ·� and h2 ·� positive with h1 ·h2 = 1.
Then, if HF∞ of Yh1 and Yh2 satisfies Theorem 10.1, then so does Yh1+h2.

Proof. Recall that the Floer homologies of a rational homology three-
sphere have an absolute Z/2Z grading, specified by

χ(ĤF (Y )) = |H1(Y ; Z)|.

From the exact sequence of Theorem 9.12, we have that

· · · −−−→ HF+(Yh1)
F1−−−→ HF+(Yh2)

F2−−−→ HF+(Yh1+h2) −−−→ · · · .

The hypothesis in the sign guarantees that the degree shift occurs at F1. It
follows that HF∞(Yh1+h2) vanishes in all odd degrees. Indeed, since this is
true when we take coefficients in Z/pZ for all p; hence, HF∞(Yh1+h2) has
no torsion in even degrees. Since χ(HF∞(Y, s)/(U − 1)) = 1 for all rational
homology three-spheres, the result follows.
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Proposition 10.11. Suppose that Z is an oriented three-manifold with
torus boundary. For each h with the property that h · � = 1, there is an identi-
fication

HF∞(Y�, s) ∼= HF∞(Yh, s0)/(Un − 1)

where s0 is a torsion Spinc structure, s0|Z = s|Z , and d(s) = 2n.

Proof. We adapt the proof of Proposition 10.5 starting with

(Σ, {α2, . . . , αg}, {β1, . . . , βg})

representing the knot complement Z, and then choose α1 to represent � and γ to
represent h: i.e. (Σ,α,β) represents Y� and (Σ, {γ, α2, . . . , αg}, {β1, . . . , βg})
represents Yh. There is an added feature now, since the divisibility d of Z

could be greater than one. It is still the case that for sufficiently large wind-
ing, all the intersection points are represented from R∞(s) or L∞(s), and, as
in Lemma 5.5, all homotopy classes of maps φ with µ(φ) = 1 admitting holo-
morphic representatives (connecting any two intersection points) satisfy the
property that ∂αφ uses the central point p = α1 ∩ γ either once or zero times.
Recall δ1 is the map defined using those homotopy classes which meet p once.
Now, there is a difference map

η : (Tα ∩ Tβ) × (Tα ∩ Tβ) −→ Z/dZ,

which is defined by

η(x,y) = # (∂α1φ ∩ p) (mod d).

There are corresponding splittings

L∞(s) = L∞
1 , . . . , L∞

d andR∞(s) = R∞
1 , . . . , R∞

d ,

labeled so that η(x,y) = 1 if x ∈ R∞
i and y ∈ R∞

i+1, and δ1(R∞
i ) ⊂ L∞

i+1, with
δ2(R∞

i ) ⊂ L∞
i .

The proof of Lemma 10.6 gives us that H∗(R∞
i ) ∼= HF∞(Y, s0) (for i =

1, . . . , d). Also, analogues of Lemmas 10.7 and 10.8 still hold: both δ1 and δ2

are isomorphisms. Now, the proposition easily follows as before.

Proof of Theorem 10.1. We begin with the case where b1(Y ) = 0, and prove
the claim by induction on |H1(Y ; Z)|. The base case is, of course, Theorem 10.3.
For the inductive step, we choose a knot K ⊂ Y which represents a nontrivial
homology class. With appropriate orientation, we have that m · � > 0. If
m · � > 1, the inductive step follows from Proposition 10.10, since m can be
decomposed as m = h1 + h2 with h1 · h2 = 1, h1 · �, h2 · � > 1. Note also that
if h · � > 0, then |H1(Yh)| depends linearly on h · �.

If m · � = 1, then since K is homologically nontrivial, we must have that
d > 1. Also, |TorsH1(Y�)| = 1

d |TorsH1(Y )|. Applying Proposition 10.11 along
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a different knot in Y� which represents a generator for H1(Y�)/Tors, we see that

HF∞(Y�, s) ∼= HF∞(Y ′, s′)/(Un − 1),

where |H1(Y ′; Z)| < |H1(Y ; Z)|. Applying the proposition again, and the in-
duction hypothesis, we obtain that HF∞(Y ) ∼= Z[U, U−1].

The proof for general b1(Y ) = 1 or 2 follows from an induction on b1(Y ).
Let Y be an oriented three-manifold with b1(Y ) = 1 or 2. Choose a knot K ⊂ Y

whose image in H1(Y ; Z)/Tors is primitive. (This implies that in Y − K, the
divisibility d = 1.) If s is a nontorsion Spinc structure on Y�, then the result
follows from Proposition 10.11. The other case follows from the fact that we
have two maps δ1 and δ2 from R∞(s) to L∞(s), and both of these maps are iso-
morphisms of Z[U ]⊗ZΛ∗ (H1(Yh; Z)/Tors)-modules (between, two modules are,
in turn, isomorphic to Z[U−1] ⊗Z Λ∗H1(Yh; Z)). Now, observe that the auto-
morphism of Z[U ]⊗Z Λ∗ (H1(Yh; Z)/Tors)-module Z[U ]⊗Z Λ∗ (H1(Yh; Z)/Tors)
is determined by its action on the determinant line Λb(H1(Yh; Z)/Tors) ∼= Z,
where it is either multiplication by +1 or −1. Thus, the maps δ1 and δ2 either
cancel (for one orientation convention) or they do not (for the other one). The
convention where δ1 + δ2 = 0 is the one for which the theorem follows; it is, in
this case, the standard orientation convention for Y .

10.3. The twisted case. We state a version of Theorem 10.1 which holds
for arbitrary first Betti number.

Observe that the proof of Theorem 10.1 breaks down when b1(Y ) ≥ 3,
since now the module Z[U ]⊗Z Λ∗(Zb−1) has nontrivial automorphisms, so that
δ1 and δ2 do not necessarily cancel. Indeed, it is proved in [31] that

HF∞(T 3, s0) ∼= Z[U, U−1] ⊗Z
(
H1(T 3) ⊕ H2(T 3)

)
where s0 is the Spinc structure with c1(s0) = 0.

There is, however, a version which holds for twisted coefficient systems.
Observe first that the twisted homology group HF∞(Y, s) is a module

over the group-ring Z[H1(Y ; Z)] ⊗Z Z[U, U−1] (which can be thought of as a
ring of Laurent polynomials in b1(Y )+1 variables). To make the ring structure
respect the relative grading, we give HF∞(Y, s0) a relative Z/2Z grading.

Theorem 10.12. Let Y be a closed, oriented three-manifold. Then, there
is a unique equivalence class of orientation systems for which there is a
Z[U, U−1] ⊗Z Z[H1(Y ; Z)]-module isomorphism for each torsion Spinc struc-
ture s0 on Y :

HF∞(Y, s0) ∼= Z[U, U−1],

where the latter group is endowed with a trivial action by H1(Y ; Z).

Proof. The proof is obtained by modifying the above proof of Theo-
rem 10.1, with minor modifications, which we outline presently.
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For the case where H1(Y0; Z) ∼= Z, we adapt the proof of Theorem 10.4,
thinking of Z[H1(Y ; Z)] as Z[T, T−1]. In this case, Lemma 10.6 is replaced by
an isomorphism H∗(R∞) ∼= HF∞(Y )[T, T−1] (with the same proof). Next,
we observe that rather than having δ1 and δ2 cancel, as in the proof of The-
orem 10.4, we have that δ1 = ±δ2 · T . In fact, for some choice of orientation
convention, we can arrange for δ1 = −δ2. The result then follows easily from
the long exact sequence connecting L∞(Y, s), HF∞(Y, s), and R∞(s) when we
observe that the map

Z[T, T−1] 1−T−→ Z[T, T−1]

is injective, with cokernel Z (with trivial action by T ).
The same modifications work to prove the general case (arbitrary b1(Y ))

as well.
We now turn to the uniqueness assertion on the orientation system. For

the various equivalence classes of orientation systems, it is always true that
HF∞(Y, s0) ∼= Z[U, U−1] as a Z module. In fact, we saw (cf. Equation (9))
that as a Z module, the isomorphism class of the chain complex CF∞(Y, s0)
is independent of the choice of orientation system. Moreover, from Equa-
tion (9), it is clear that the 2b1(Y ) different equivalence classes of coherent
orientation system give rise to all 2b1(Y ) different Z[H1(Y ; Z)]-module struc-
tures on Z[U, U−1] which correspond naturally to Hom(H1(Y ; Z), Z/2Z), with
a distinguished module for which the action by H1(Y ; Z) is trivial.

Remark 10.13. In fact, the above argument shows in general that for
any Spinc structure over Y , there is an identification of Z[U, U−1] modules
HF∞(Y, s0) ∼= Z[U, U−1]. However, the action of ξ ∈ H1(Y ; Z) will, in general,
be given by multiplication by Uk, where k is given by 2k = 〈ξ ∪ c1(s), [Y ]〉.

10.4. Absolute Z/2Z gradings. With the help of Theorem 10.12, we can
define an absolute Z/2Z grading on CF∞(Y, s) (and hence all the other asso-
ciated chain complexes), for all Spinc structures, simultaneously.

We declare the nonzero generators of HF∞(Y, s) to have even degree. Note
that for a rational homology three-sphere, this orientation convention agrees
with that used before, i.e. χ(ĤF (Y )) = |H1(Y ; Z)|. (In fact, if we orient Tα

and Tβ so that the intersection number #(Tα ∩ Tβ) = |H1(Y ; Z)|, then the
Z/2Z grading at a generator [x, i] is +1 if and only if the local intersection
number of Tα and Tβ at x is +1.)

With this orientation convention, we have the following refinement of
Corollary 1.3:

Proposition 10.14.Let Y0 be an oriented three-manifold with b1(Y0)=1,
and s be a nontorsion Spinc structure; then

χ(HF+(Y0, s0 + nH)) = −τt(Y0, s),
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where t is the component containing c1(s), and the sign on τt(Y0, s) is specified
by

τ−t(s) − τt(s) = n.

In particular, if Y0 is obtained by zero-surgery on a knot K in a homology
three-sphere, whose symmetrized Alexander polynomial is

∆K = a0 +
d∑

i=1

ai(T i + T−i),

then

χ(HF+(Y0, s0 + nH) = −
d∑

j=1

ja|n|+j .

Proof. First observe that the sign comparing χ(HF+(Y0)) and τt in The-
orem 5.2 is universal, depending on the relative sign between ∆i,j and ∆′

i,j .
Checking these signs for S1 × S2, the proposition follows.

10.5. The Euler characteristic of HF−. The following is an immediate
consequence of Theorem 5.2, together with Theorem 10.4 (though a more direct
proof can be given by modifying the discussion in Section 5):

Corollary 10.15. Let Y be an oriented three-manifold with b1(Y ) = 1,
and s ∈ Spinc(Y ) be a nontorsion Spinc structure. Then, χ(HF−(Y, s)) =
τ−t(s), where t is the component of H2(Y ; Z) − 0 containing c1(s).

Proof. The short exact sequence

0 −−−→ CF−(Y, s) −−−→ CF∞(Y, s) −−−→ CF+(Y, s) −−−→ 0

induces a long exact sequence in homology

−−−→ HF−(Y, s) −−−→ HF∞(Y, s) −−−→ HF+(Y, s) −−−→ · · · ,

which shows that

χ(HF∞(Y, s)) = χ(HF+(Y, s)) + χ(HF−(Y, s)).

Moreover, Theorem 10.1 implies that

χ(HF∞(Y, s)) = n,

where 2n is the divisibility of c1(s) in H2(Y, s)/Tors. The result now follows
from the “wall-crossing formula”:

τ−t(Y, s) − τt(Y, s) = n

for Turaev’s torsion (see [36]).
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Corollary 10.16. If Y is an oriented three-manifold with b1(Y ) = 1
or 2 and s ∈ Spinc(Y ) is a nontorsion Spinc structure, then χ (HF−(Y, s)) =
±τ(s).

Proof. This follows in the same manner as the previous corollary, except
that now c1(s)⊥ is a nontrivial vector space, so that its exterior algebra has
Euler characteristic zero; thus, χ(HF∞(Y, s)) = 0.

10.6. The truncated Euler characteristic. In Theorem 5.2, we worked with
a nontorsion Spinc structure. The reason for this, of course, is in Theorem 10.1:
if s0 is torsion and Y0 is a three manifold with 0 < b1(Y ) = b ≤ 2, then in

all sufficiently large degrees i, HF+
i (Y0, s0) ∼= HF∞

i (Y0, s0) ∼= Z2b1(Y )−1
. This

shows, however, that for all sufficiently large n, the Euler characteristic of the
graded Abelian group HF+

≤n(Y0, s0) takes on two possible values, depending
on the parity of n (and the difference between the two values is 2b1(Y )−1). In
fact, we have the following:

Theorem 10.17. Let Y be a three-manifold with b1(Y ) = 1 or 2, equipped
with a torsion Spinc structure s0. When b1(Y ) = 1, then for all sufficiently
large n

χ(HF+
≤n(Y, s0)) =

{
−τ(Y ) for odd n

−τ(Y ) + 1 for even n.

When b1(Y ) = 2, then in all sufficiently large degrees,

χ(HF+
≤n(Y, s0)) = ±τ(Y ) + (−1)n.

Proof. As before, we have a short exact sequence

0 −−−→ L+ −−−→ CF+(Y0, s0) −−−→ R+ −−−→ 0,

and hence a long exact sequence:

· · · −−−→ Hi(L+) −−−→ HF+
i (Y, s0) −−−→ Hi(R+) δ−−−→ · · · .

Note that we are using a relative Z grading here, which we can do since s0 is
torsion. When i is sufficiently large, the coboundary map δ is zero, since on
HF∞, the map H∗(L∞) −→ HF∞(Y ) is an injection.

It follows that for all sufficiently large n,

χ(HF+
≤n(Y )) = χ(H≤n(L+)) + χ(H≤n(R+)).(12)

On the other hand, we still have a short exact sequence:

0 −−−→ ker f1 −−−→ R+ f1−−−→ L+ −−−→ 0,

inducing

−−−→ Hi(ker f1) −−−→ Hi(R+)
f1−−−→ Hi−1(L+) −−−→ · · · .
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Note that with the earlier grading conventions, f1 must decrease the grading
by one. Of course, ker f1 is a finite-dimensional graded vector space, so the
above gives the following relation for all sufficiently large n:

χ(ker f1) = χ(H≤n(R+)) + χ(H≤n−1(L+)).(13)

But Proposition 5.10 applied in the present case gives χ(ker f1) = τ(s0). Note
that the proof of that proposition does not really require that s be negative; it
suffices to consider the case where s + α∗

1, s + β∗
j and s + α∗

1 + β∗
j are negative,

and c1(s) is torsion. Combining this result, Equation (12), and Equation (13),
we obtain

χ(HF+
≤n(Y, s0)) = −τ(Y, s0) + (−1)nrkHn(L+, s0).

Suppose that b1(Y ) = 1. Then (according to Theorem 10.1), for all sufficiently
large n, rkHn(L+, s0) = 1 if n is even and 0 when n is odd. Similarly, when
b1(Y ) = 2, we have

rkHn(L+, s0) = rkHF∞
n (Y )/2 = 1.

10.7. On the role of nz. The “triviality” of HF∞(Y ) — its dependence
on the homological information of Y alone — underscores the importance of
the quantity nz in the construction of interesting Floer-homological invariants.

Another manifestation of this is the following. When Y is an integral
homology three-sphere, we need the base-point to define Z-grading between
intersection points. However, there is still a Z/2Z graded-theory CF ′(Y ),
which is freely generated by the transverse intersection points of Tα ∩Tβ, and
Z/2Z-graded by the local intersection number between Tα and Tβ. The map

∂x =
∑
y

∑
{φ∈π2(x,y)|µ(φ)=1}

(
#M̂(φ)

)
y

gives a well-defined boundary map, and in fact, we can consider the homology
group

HF ′(Y ) = H∗(CF ′(Y ), ∂).

However, it is a consequence of Theorem 10.3 that

HF ′
∗(Y ) ∼= Z ⊕ 0.

To see this, note that as a Z/2-graded chain complex, CF∞(Y ) is natu-
rally a (finitely generated, free) module over the ring of Laurent polynomials
Z[U, U−1]. Moreover, its quotient by the action of U and U−1 is the complex
CF ′(Y ) defined above. More algebraically, we have that

CF ′(Y ) = CF∞(Y ) ⊗Z[U,U−1] Z,
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where the homomorphism Z[U, U−1] −→ Z sends U to 1. Theorem 10.3 says
that HF∞(Y ) is a free Z[U, U−1]-module of rank one. The claim about HF ′

∗(Y )
then follows immediately from the universal coefficients theorem spectral se-
quence (see, for instance [5]).

11. Applications

In this section, we prove the remaining results (Theorems 1.8 and 1.12)
claimed in the introduction.

11.1. Complexity of three-manifolds. The theorems in the introduction
dealing with fractional surgeries are proved using surgery exact sequences with
twisted theories (Theorems 9.14 and 9.17). Consequently, we will need the
following analogue of Theorem 5.2 for the twisted theory:

Lemma 11.1. Let Y0 be a homology S1 × S2, and choose a coefficient
system corresponding to a representation

H1(Y0; Z) −→ Z/nZ.

Then, for each nontorsion Spinc structure over Y0, we have that

χ(HF+(Y0, Z/nZ; s)) = n · χ(HF+(Y0, s)) = −n · τt(Y0, s)

(where on the left the rank is a Z-module, and t here is the component of
H2(Y ; Z) − 0 containing c1(s)). Similarly, for a torsion Spinc structure s0,

χ(HF+
≤2n+1(Y0, s0; Z/nZ) = −n · τ(Y0, s0).

Proof. The proof proceeds exactly as in the proof of Theorem 5.2 (with
the sign pinned down in Proposition 10.14, and Theorem 10.17 in the case
where the Spinc structure is torsion), with the observation that now χ(Kerf1)
is multiplied by n.

We will also need the following result, which is along the lines of Section 10.

Lemma 11.2. Suppose that Y0 is a homology S1 × S2, and choose a co-
efficient system corresponding to a map H1(Y0; Z) ∼= Z −→ Z/nZ which
maps generators to generators. Then, if s0 is a torsion Spinc structure, then
HF∞

i (Y0, s0, Z/nZ) ∼= Z in all degrees.

Proof. We still have the long exact sequence

· · · → HF∞(Y0, s0, Z/nZ) → H∗(R∞, Z/nZ) δ−−−→ H∗(L∞, Z/nZ) → · · · .

We place a reference point p at the intersection of γ (the perturbing curve)
with α1. It is clear that H∗(L∞, Z/nZ) ∼= H∗(L∞) ⊗Z Z[Z/nZ]. Moreover,
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the coboundary splits as δ = δ1 − ζδ2, where ζ is a primitive nth root of
unity, and δ1 and δ2 are the maps obtained from the corresponding maps with
Z coefficients, by a base-change to Z/nZ. In particular, both δ1 and δ2 are
isomorphisms (Lemmas 10.7 and 10.8). Thus, in view of Theorem 10.1 (indeed,
we use here the special cases from Subsection 10.1), we have exactness for

0 −→ HF∞
i (Y0, s0, Z/nZ) −→ Z[Z/nZ]

1−ζ−→Z[Z/nZ]

−→HF∞
i−1(Y0, s0, Z/nZ) −→ 0.

We can now prove Theorem 1.8.

Proof of Theorem 1.8. This is an application of the U -equivariant exact
sequence of Theorem 9.14, which gives:

. . .
F1−−−→ HF+(Y0; Z/nZ) F2−−−→ HF+(Y1/n) F3−−−→ HF+(Y ) −−−→ · · · .

Now, we claim that for all sufficiently large d, the map induced by F2

ImUdHF+(Y0, Z/nZ) −→ ImUdHF+(Y1/n)

is surjective. It suffices to consider the s0-summand of HF+(Y0, Z/nZ), where
s0 is the torsion Spinc structure. There, F2 has a natural Z-graded lift. For
one parity, the corresponding HF∞(Y1/n) vanishes (so the claim is obvious).
For the other parity, in sufficiently high degree k, the image of F1 is trivial, so
that, with the help of Lemma 11.2, our exact sequence reads:

0 −→ HF+
k (Y0, s0; Z/nZ)∼=HF∞

k (Y0, s0; Z/nZ)

∼= Z F2−−−→ HF+
k (Y1/n) ∼= Z.

Since HF∞(Y ) has no torsion, it easily follows that F2 must surject onto the
generator in HF+

k (Y1/n).
From this observation, together with the U -equivariant exact sequence, it

follows that the map
HF+(Y )

UdHF+(Y ) −−−→ HF+(Y0,Z/nZ)
UdHF+(Y0,Z/nZ) −−−→ HF+(Y1/n)

UdHF+(Y1/n) .

is exact in the middle, and hence that

rk
(
HFred(Y0, Z/nZ)

)
≤ rk

(
HFred(Y )

)
+ rk

(
HFred(Y1)

)
.(14)

(Here, as in the case where b1 = 0, HFred(Y0, Z/nZ) is defined to be the
quotient of HF+(Y0, Z/nZ) by the image of HF∞(Y0, Z/nZ).)

Now, observe that if s �= s0, HF+(Y0, s; Z/nZ) is finitely generated, so
that for sufficiently large d,

HFred(Y0, s; Z/nZ) =
HF+(Y0, s; Z/nZ)

UdHF+(Y0, s, Z/nZ)
= HF+(Y0, s; Z/nZ).(15)
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For s = s0, we observe that

max(0,−χ(HF+
≤2n+1(Y0, s0; Z/nZ))) ≤ rkHF+

≤0(Y0, s0; Z/nZ).(16)

The reason for this is that for all sufficiently large n,

χ(HF+
≤2n+1(Y0, s0; Z/nZ)) = χ

(
HFred(Y0, s0; Z/nZ)

)
+χ

(
HF+

≤2n+1(Y0, s0; Z/nZ) ∩ ImHF∞(Y0, s0; Z/nZ)
)
.

The second term above is negative: owing to the algebraic structure of
HF∞(Y0, s0; Z/nZ) (the even-dimensional generators are the images of the
odd-dimensional ones under an isomorphism), there are more odd-dimensional
than even-dimensional generators coming from UdHF+(Y0, s0; Z/nZ) in
HF+

≤2n+1f(Y0, s0; Z/nZ).

The theorem is obtained by combining Inequality (14), Equation (15),
Inequality (16), and Lemma 11.1.

11.2. Gradient trajectories. We turn to the bounds on the simultane-
ous trajectory number of an integral homology three-sphere discussed in the
introduction. First, we dispense with Theorem 1.11 from the introduction:

Proof of Theorem 1.11. This is clear: if (Σ,α,β, z) is a pointed Heegaard
diagram for Y , where the αi meet the βj in general position, the intersection
corresponding chain complex ĈF (Y ) is freely generated by intersection points
Tα ∩ Tβ, and its rank is bounded below by the rank of its homology.

We turn to Theorem 1.12.

Proof of Theorem 1.12. As a first step, observe that, since

χ(HF+(Y0, s0 ± iH; Z/nZ)) = ±n · ti(K),

it follows that the rank of HF+(Y0, Z/nZ, s) is nonzero for at least 2k distinct
nontorsion Spinc structures; thus the rank of ĤF (Y0, s, Z/nZ) is also nonzero
in these Spinc structures (cf. Proposition 2.1). Moreover, from Lemma 11.2,
the rank of HF+(Y0, Z/nZ, s0) is nonzero, and hence so is the rank of
ĤF (Y0, s0, Z/nZ). Now, since for all Spinc structures,

χ(ĤF (Y0, s, Z/nZ)) = 0

(again, we use the twisted analogue of Prop. 5.1), the rank of ĤF (Y0, Z/nZ) is
at least 4k+2. The result then follows from the exact sequence of Theorem 9.17,
together with Theorem 1.11.
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