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Holomorphic extensions
of representations:

(I) automorphic functions

By Bernhard Krötz and Robert J. Stanton*

Abstract

Let G be a connected, real, semisimple Lie group contained in its complex-
ification GC, and let K be a maximal compact subgroup of G. We construct
a KC-G double coset domain in GC, and we show that the action of G on the
K-finite vectors of any irreducible unitary representation of G has a holo-
morphic extension to this domain. For the resultant holomorphic extension
of K-finite matrix coefficients we obtain estimates of the singularities at the
boundary, as well as majorant/minorant estimates along the boundary. We
obtain L∞ bounds on holomorphically extended automorphic functions on
G/K in terms of Sobolev norms, and we use these to estimate the Fourier
coefficients of combinations of automorphic functions in a number of cases,
e.g. of triple products of Maaß forms.

Introduction

Complex analysis played an important role in the classical development of
the theory of Fourier series. However, even for Sl(2, R) contained in Sl(2, C),
complex analysis on Sl(2, C) has had little impact on the harmonic analysis
of Sl(2, R). As the K-finite matrix coefficients of an irreducible unitary rep-
resentation of Sl(2, R) can be identified with classical special functions, such
as hypergeometric functions, one knows they have holomorphic extensions to
some domain. So for any infinite dimensional irreducible unitary representa-
tion of Sl(2, R), one can expect at most some proper subdomain of Sl(2, C) to
occur. It is less clear that there is a universal domain in Sl(2, C) to which the
action of G on K-finite vectors of every irreducible unitary representation has
holomorphic extension. One goal of this paper is to construct such a domain
for a real, connected, semisimple Lie group G contained in its complexification
GC. It is important to have a maximal domain, and towards this goal we show
that this one is maximal in some directions.
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Although defined in terms of subgroups of GC, the domain is natural also
from the geometric viewpoint. This theme is developed more fully in [KrStII]
where we show that the quotient of the domain by KC is bi-holomorphic to a
maximal Grauert tube of G/K with the adapted complex structure, and where
we show that it also contains a domain bi-holomorphic but not isometric with a
related bounded symmetric domain. Some implications of this for the harmonic
analysis of G/K are also developed there.

However, the main goal of this paper is to use the holomorphic extension
of K-finite vectors and their matrix coefficients to obtain estimates involving
automorphic functions. To our knowledge, Sarnak was the first to use this
idea in the paper [Sa94]. For example, with it he obtained estimates on the
Fourier coefficients of polynomials of Maaß forms for G = SO(3, 1). Sarnak also
conjectured the size of the exponential decay rate for similar coefficients for
Sl(2, R). Motivated by Sarnak’s work, Bernstein-Reznikov, in [BeRe99], veri-
fied this conjecture, and in the process introduced a new technique involving
G-invariant Sobolev norms. As an application of the holomorphic extension of
representations and with a more representation-theoretic treatment of invari-
ant Sobolev norms, we shall verify a uniform version of the conjecture for all
real rank-one groups. As the representation-theoretic techniques are general,
we are able also to obtain estimates for the decay rate of Fourier coefficients
of Rankin-Selberg products of Maaß forms for G = Sl(n, R), and to give a
conceptually simple proof of results of Good, [Go81a,b], on the growth rate of
Fourier coefficients of Rankin-Selberg products for co-finite volume lattices in
Sl(2, R).

It is a pleasure to acknowledge Nolan Wallach’s influence on our work by
his idea of viewing automorphic functions as generalized matrix coefficients,
and to thank Steve Rallis for bringing the Bernstein-Reznikov work to our
attention, as well as for encouraging us to pursue this project. To the referee
goes our gratitude for a careful reading of our manuscript that resulted in the
correction of some oversights, as well as a notable improvement of our estimates
on automorphic functions for Sl(3, R).

1. The double coset domain

To begin we recall some standard structure theory in order to be able
to define the domain that will be important for the rest of the paper. Any
standard reference for structure theory, such as [Hel78], is adequate.

Let g be a real, semisimple Lie algebra with a Cartan involution θ. Denote
by g = k ⊕ p the associated Cartan decomposition. Take a ⊆ p a maximal
abelian subspace and let Σ = Σ(g, a) ⊆ a∗ be the corresponding root system.
Related to this root system is the root space decomposition according to the
simultaneous eigenvalues of ad(H), H ∈ a :
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g = a ⊕ m ⊕
⊕
α∈Σ

gα;

here m = zk(a) and gα = {X ∈ g: (∀H ∈ a) [H, X] = α(H)X}. For the
choice of a positive system Σ+ ⊆ Σ one obtains the nilpotent Lie algebra
n =

⊕
α∈Σ+ gα. Then one has the Iwasawa decomposition on the Lie algebra

level
g = k ⊕ a ⊕ n.

Let GC be a simply connected Lie group with Lie algebra gC, where
for a real Lie algebra l, by lC we mean its complexification. We denote by
G, A, AC, K, KC, N and NC the analytic subgroups of GC corresponding to
g, a, aC, k, kC, n and nC. If u = k ⊕ ip then it is a subalgebra of gC and the
corresponding analytic subgroup U = exp(u) is a maximal compact, and in
this case, simply connected, subgroup of GC.

For these choices one has for G the Iwasawa decomposition, that is, the
multiplication map

K × A × N → G, (k, a, n) �→ kan

is an analytic diffeomorphism. In particular, every element g ∈ G can be
written uniquely as g = κ(g)a(g)n(g) with each of the maps κ(g) ∈ K,
a(g) ∈ A, n(g) ∈ N depending analytically on g ∈ G.

We shall be concerned with finding a suitable domain in GC on which this
decomposition extends holomorphically. Of course, various domains having
this property have been obtained by several individuals. What distinguishes
the one here is its KC-G double coset feature as well as a type of maximality.
First we note the following:

Lemma 1.1. The multiplication mapping

Φ: KC × AC × NC → GC, (k, a, n) �→ kan

has everywhere surjective differential.

Proof. Obviously one has gC = kC ⊕ aC ⊕ nC and aC ⊕ nC is a subal-
gebra of gC. Then following Harish-Chandra, since Φ is left KC and right
NC-equivariant it suffices to check that dΦ(1, a,1) is surjective for all a ∈ AC.
Let ρa(g) = ga be the right translation in GC by the element a. Then for
X ∈ kC, Y ∈ aC and Z ∈ nC one has

dΦ(1, a,1)(X, Y, Z) = dρa(1)(X + Y + Ad(a)Z),

from which the surjectivity follows.

To describe the domain we extend a to a θ-stable Cartan subalgebra h of
g so that h = a ⊕ t with t ⊆ m. Let ∆ = ∆(gC, hC) be the corresponding root
system of g. Then it is known that ∆ |a\{0} = Σ.



644 BERNHARD KRÖTZ AND ROBERT J. STANTON

Let Π = {α1, . . . , αn} be the set of simple restricted roots corresponding
to the positive roots Σ+. We define elements ω1, . . . , ωn of a∗ as follows, using
the restriction of the Cartan-Killing form to a:

(∀1 ≤ i, j ≤ n)



〈ωj , αi〉 = 0 if i 
= j

2〈ωi,αi〉
〈αi,αi〉 = 1 if αi ∈ ∆
〈ωi,αi〉
〈αi,αi〉 = 1 if αi 
∈ ∆ and 2αi 
∈ Σ
〈ωi,αi〉
〈αi,αi〉 = 2 if αi 
∈ ∆ and 2αi ∈ Σ.

Using standard results in structure theory relating ∆ and Σ one can show
that ω1, . . . , ωn are algebraically integral for ∆ = ∆(gC, hC). The last piece
of structure theory we shall recall is the little Weyl group. We denote by
Wa = NK(a)/ZK(a) the Weyl group of Σ(a, g).

We are ready to define a first approximation to the double coset domain.
We set

a1
C = {X ∈ aC: (∀1 ≤ k ≤ n)(∀w ∈ Wa) | Im ωk(w.X)| <

π

4
}

and
a0

C = 2a1
C.

On the group side we let A0
C = exp(a0

C) and A1
C = exp(a1

C). Clearly Wa leaves
each of a0

C, a1
C, A0

C and A1
C invariant.

If α ∈ a∗C is analytically integral for AC, then we set aα = eα(log a) for
all a ∈ AC. Since GC is simply connected, the elements ωj are analytically
integral for AC and so we have aωk well defined.

Next we introduce the domains

A0,≤
C = {a ∈ AC: (∀1 ≤ k ≤ n) Re(aωk) > 0},

and
A1,≤

C = (A0,≤
C )

1
2 = {a ∈ AC: (∀1 ≤ k ≤ n)| arg(aωk)| <

π

4
}.

Note that A0
C ⊆ A0,≤

C and A1
C ⊆ A1,≤

C .

Lemma 1.2. (i) For Ω ⊆ AC open, KCΩNC is open in GC. In particular,
the sets KCACNC, KCA1

CNC, KCA1,≤
C NC, KCA0

CNC and KCA0,≤
C NC are open

in GC.
(ii) KCACNC is dense in GC.

Proof. This is an immediate consequence of Lemma 1.1 as Φ is a morphism
of affine algebraic varieties with everywhere submersive differential.

Proposition 1.3. Let GC be a simply connected, semisimple, complex
Lie group. Then the multiplication mapping

Φ: KC × A0,≤
C × NC → GC, (k, a, n) �→ kan

is an analytic diffeomorphism onto its open image KCA0,≤
C NC.
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Proof. In view of the preceding lemmas, it suffices to show that Φ is
injective. Suppose that kan = k′a′n′ for some k, k′ ∈ KC, a, a′ ∈ A0,≤

C and
n, n′ ∈ NC. Denote by Θ the holomorphic extension of the Cartan involution
of G to GC. Then we get that

Θ(kan)−1kan = Θ(k′a′n′)−1k′a′n′

or equivalently
Θ(n−1)a2n = Θ((n′)−1)(a′)2n′.

Now the subgroup NC = Θ(NC) corresponds to the analytic subgroup with
Lie algebra nC =

⊕
α∈−Σ+ gα

C. As a consequence of the injectivity of the map

NC × AC × NC → NCACNC, (n, a, n) �→ nan

we conclude that n = n′ and a2 = (a′)2. We may assume that a, a′ ∈ exp(ia).
To complete the proof of the proposition it remains to show that a2 = (a′)2

for a, a′ ∈ A0,≤
C implies that a = a′. Let X1, . . . , Xn in aC be the dual basis to

ω1, . . . , ωn. We can write a = exp(
∑n

j=1 ϕjXj) and a′ = exp(
∑n

j=1 ϕ′
jXj) for

complex numbers ϕj , ϕ′
j satisfying | Im ϕj | < π

2 , | Im ϕ′
j | < π

2 . Then a2 = (a′)2

implies that
e2ϕj = a2ωj = (a′)2ωj = e2ϕ′

j

and hence ϕj = ϕ′
j for all 1 ≤ j ≤ n, concluding the proof of the proposition.

Thus every element z ∈ KCA0,≤
C NC can be uniquely written as z =

κ(z)a(z)n(z) with κ(z) ∈ KC, a(z) ∈ A0,≤
C and n(z) ∈ NC all depending

holomorphically on z. Next we define domains using the restricted roots. We
set

b0 = {X ∈ a: (∀α ∈ Σ) |α(X)| < π}.

and
b1 =

1
2
b0.

Clearly both b0 and b1 are Wa-invariant. We set b
j
C = a+ibj and Bj

C = exp(bj
C)

for j = 0, 1. Let a0 = i(a0
C∩ ia). Then, from the classification of restricted root

systems and standard facts about the associated fundamental weights, one can
verify that a0 ⊆ b0. For a comparison of these domains we provide below the
illustrations for two rank 2 algebras.

Lemma 1.4. Let ω ⊆ ib1 be a nonempty, open, Wa-invariant, convex set.
Then the set

KC exp(ω)G

is open in GC.
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Figure 1 Figure 2
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Figure 1 corresponds to sl(3, R) and Figure 2 to sp(2, R). The
region enclosed by an outer polygon corresponds to b0 while that
enclosed by an inner polygon corresponds to a0. The Hαi denote
the coroots of αi and we identify the ωi as elements of a via the
Cartan-Killing form.

Proof. Set W = Ad(K)ω. Since ω is open, convex, and Wa-invariant,
Kostant’s nonlinear convexity theorem shows that W is an open, convex set
in ip. Note that KC exp(ω)G = KC exp(W )G. Now [AkGi90, p. 4-5] shows
that the multiplication mapping

m:KC × exp(W ) × G → GC, (k, a, g) �→ kag

has everywhere surjective differential. From that the assertion follows.

For each 1 ≤ k ≤ n we write (πk, Vk) for the real, finite-dimensional,
highest weight representation of G with highest weight ωk. We choose a scalar
product 〈·, ·〉 on Vk which satisfies 〈πk(g)v, w〉 = 〈v, πk(Θ(g)−1)w〉 for all v, w ∈
Vk and g ∈ GC. We denote by vk a normalized highest weight vector of (πk, Vk).

Lemma 1.5. For all 1 ≤ k ≤ n, a ∈ A1
C and m ∈ N ,

Re
(
〈πk(θ(m)−1a2m)vk, vk〉

)
> 0.

Proof. Fix 1 ≤ k ≤ n, a and m ∈ N , and note that a2 ∈ A0
C. Now,

(1.1) 〈πk(θ(m)−1a2m)vk, vk〉 = 〈πk(a2)πk(m)vk, πk(m)vk〉.
Let Pk ⊆ a∗ denote the set of a-weights of (πk, Vk). Then (1.1) implies that
there exist nonnegative numbers cβ, β ∈ Vk, such that

〈πk(θ(m)−1a2m)vk, vk〉 =
∑

β∈Pk

cβa2β .
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Recall that
Pk ⊆ conv(Waωk).

Since a0
C is convex and Weyl group invariant, to finish the proof it suffices

to show that Re(a2ωk) > 0 for all a ∈ A1
C. But this is immediate from the

definition of a1
C.

Lemma 1.6. Let (bj)j∈N be a convergent sequence in AC and (nj)j∈N an
unbounded sequence in NC. Then the sequence(

Θ(nj)−1bjnj

)
j∈N

is unbounded in GC.

Proof. Let d(·, ·) be a left invariant metric on GC. Then

d(Θ(nj)−1b2
jnj ,1) = d(b2

jnj ,Θ(nj)),

and we see that limj→∞ d(Θ(nj)−1b2
jnj ,1) = ∞ (this follows for example by

embedding Ad(GC) into Sl(m, C), where we can arrange matters so that AC
maps into the diagonal matrices and NC in the upper triangular matrices).

Proposition 1.7. (i) KCA1
CG is open in GC.

(ii) KCA1
CG ⊆ KCA1,≤

C NC.

(iii) For all λ ∈ a∗C the mappings

A1
C × G → C, (a, g) �→ a(ag)λ,

A1
C × G → KC, (a, g) �→ κ(ag)

are analytic, and holomorphic in the first variable.

Proof. (i) appears in Lemma 1.2. For (ii) take an a ∈ A1
C. First we show

that aN ⊆ KCACNC. Fix m ∈ N and let

Ω = {a ∈ A1
C: am ∈ KCACNC}

= {a ∈ A1
C: Θ(m)−1a2m ∈ NCACNC}.

Then Ω is open and nonempty. We have to show that Ω = A1
C. Suppose the

contrary. Then there exists a sequence (aj)j∈N in Ω such that a0 = limj→∞ aj ∈
A1

C\Ω.
Let a ∈ Ω. Then by Proposition 1.3 we find unique k ∈ KC, b ∈ AC and

n ∈ NC such that am = kbn or, in other words,

Θ(m)−1a2m = Θ(n)−1b2n.

Taking matrix-coefficients with fundamental representations we thus get that

(1.2) b2ωk = 〈πk(Θ(n)−1b2n)vk, vk〉 = 〈πk(Θ(m)−1a2m)vk, vk〉
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for all 1 ≤ k ≤ n. Applied to our sequence (aj)j∈N we get elements kj ∈ KC,
bj ∈ AC and nj ∈ NC with ajm = kjbjnj . Lemma 1.5 together with (1.2)
imply that (bj)j∈N is bounded. If necessary, by taking a subsequence, we may
assume that b0 = limj→∞ bj exists in AC. Since Θ(m)−1a2

0m 
∈ NCACNC,
the sequence (nj)j∈N is unbounded in NC. Hence

(
Θ(nj)−1bjnj

)
j∈N

is an

unbounded sequence in GC by Lemma 1.6. But this contradicts the fact that(
Θ(m)−1a2

jm
)

j∈N
is bounded. Thus we have proved that aN ⊆ KCACNC

for all a ∈ A1
C. But now (1.2) together with Lemma 1.5 actually shows that

b ∈ A1,≤
C , hence aN ⊆ KCA1,≤

C NC for all a ∈ A1
C. The Bruhat decomposition

of G gives G =
⋃

w∈Wa
NwMAN with M = ZK(A). Since A1

C is NK(A)-
invariant, we get that aG ⊆ KCA1,≤

C NC. Then (ii) is now clear while (iii) is a
consequence of (ii) and Proposition 1.3.

Next we are going to prove a significant extension of Proposition 1.7. We
will conclude the proof in the following section.

Theorem 1.8. Let G be a classical semisimple Lie group. Then the
following assertions hold :

(i) KCB1
CG is open in GC;

(ii) B1
CG ⊆ KCACNC;

(iii) there exists an analytic function

B1
C × G → aC, (a, g) �→ H(ag),

holomorphic in the first variable, such that ag ∈ KC expH(ag)NC for all
a ∈ B1

C and g ∈ G;

(iv) there exists an analytic function

κ:B1
C × G → KC, (a, g) �→ κ(ag),

holomorphic in the first variable, such that ag ∈ κ(ag)ACNC for all a ∈
B1

C and g ∈ G.

Proof. (i) follows from Lemma 1.2. (ii) follows from Proposition 2.5,
Proposition 2.6 and Proposition 2.9 in the next section.

(iii) Set L = KC ∩AC and note that L is a discrete subgroup of GC. Then
the first part of the proof of Lemma 1.3 shows that we have a biholomorphic
diffeomorphism

(KC ×L AC) × NC → KCACNC, ([k, a], n) �→ kan.
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In particular, we get a holomorphic middle projection

ã:KCACNC → AC/L, kan �→ aL,

and so, by (ii), an analytic mapping

Φ̃: B1
C × G → AC/L, (a, g) �→ ã(ag).

Now aC → AC/L, via the map X �→ exp(X)L, is the universal cover of AC/L.
To complete the proof of (iii) it remains to show that Φ̃ lifts to a continuous map
with values in aC. Since exp: a1

C → A1
C is injective, Proposition 1.7 implies that

Φ̃ |A1
C×G lifts to a continuous map Ψ with values in aC. Since the exponential

function restricted to b1
C is injective (cf. Remark 1.9.), B1

C is simply connected
and so for every simply connected set U ⊆ G we get a continuous lift of Φ̃ |B1

C×U

extending Ψ |A1
C×U . By the uniqueness of liftings we get a continuous lift of Φ̃

completing the proof of (iii).

(iv) In view of (ii), we get an analytic map

κ̃:B1
C × G → KC/L, (a, g) �→ κ̃(ag)

even holomorphic in the first variable and such that ag ∈ κ̃(ag)ACNC. Thus
in order to prove the assertion in (iv), it suffices that κ̃ lifts to a continuous
map κ:B1

C × G → KC. But this is proved as in (iii).

Remark 1.9. The simply connected hypothesis on GC that has been made
is not necessary. More generally, if G is classical, semisimple and contained in
its complexification, then Theorem 1.8 is valid. Indeed, let g be a semisimple
Lie algebra with Cartan decomposition g = k ⊕ a ⊕ n, gC its complexification
and let GC be a simply connected Lie group with Lie algebra gC. As before,
let G be the analytic subgroup of GC with Lie algebra g.

Let now G1 be another connected Lie group with Lie algebra g and suppose
that G1 sits in its complexification G1,C. Write G1 = K1A1N1 for the Iwasawa
decomposition of G1 corresponding to g = k⊕a⊕n. Set B1

1,C = A1 expG1,C
(ib1).

Since GC is simply connected, we have a covering homomorphism

π:GC → G1,C.

Hence Theorem 1.8 (ii) implies that

B1
1,CG1 ⊆ K1,CA1,CN1,C.

To see that Theorem 1.8 (iii), (iv) remains true for G1 contained in G1,C one
needs that B1

1,C is simply connected. But this will follow from the fact that
expG1,C

: b1
C → B1

1,C is injective. To see this, note that this map is injective if
and only if the map

f : b1 → A1,C, X �→ expG1,C
(X)
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is injective. If f were not injective, then there would exist an element X ∈ b0,
X 
= 0, such that expG1,C

(X) = 1. Hence α(X) ∈ i2πZ for all α ∈ Σ
(cf. [Hel78, Ch. VII,§4, Prop. 4.1]), a contradiction to X ∈ b0\{0}.

The next proposition will be used in a later section. It has independent
interest as it can be considered as a principle of convex inclusions and as such
is related to Kostant’s nonlinear convexity theorem.

Suppose that E is a subset in a complex vector space V . We denote by
conv E the convex hull of E and by coneE = R+E the cone generated by E.

Proposition 1.10. Let 0 ∈ ω ⊆ b0 be a connected subset. Set bω
C = a+iω

and Bω
C = exp(bω

C). Then,

Bω
CG ⊆ KCACNC ⇒ Bconv ω

C G ⊆ KCACNC.

Proof. Fix g ∈ G. It suffices to show the existence of a holomorphic
function

fg:Bconv ω
C → aC, a �→ fg(a)

such that ag ∈ KC exp(fg(a))NC for a ∈ Bconv ω
C holds. We already know

from Theorem 1.8(iii) that a holomorphic function f̃g:Bω
C → aC with ag ∈

KC exp(f̃g(a))NC for a ∈ Bω
C exists. Now Bconv ω

C is the holomorphic hull of
Bω

C and so f̃g extends to a holomorphic mapping fg:Bconv ω
C → aC.

It remains to show that ag ∈ KC exp(fg(a))NC for a ∈ Bconv ω
C . If not,

then we find a convergent sequence (an)n∈N with limn→∞ an = a0 ∈ Bconv ω
C ,

ang ∈ KCACNC but a0g 
∈ KCACNC. Hence we find a sequence mn ∈ NC such
that

Θ(g)−1a2
ng = Θ(mn)−1fg(an)2mn

but Θ(g)−1a2
0g 
∈ NCACNC. As

(
fg(an)

)
n∈N

is bounded, we conclude (cf.
Lemma 1.6) that (mn)n∈N is unbounded, a contradiction.

2. Matrix calculations

We shall prove (ii) of Theorem 1.8 by various results about matrices. First
we shall treat the group G = Sl(m, R), m ≥ 2. Then we shall give a class of
subgroups of Sl(m, R) whose roots have a hereditary property similar to one
held by Levi factors of parabolic subgroups. This will allow us to take care
of most of the classical groups. The remaining cases are treated at the end of
this section.

Here we obviously have G ⊆ GC = Sl(m, C) with GC simply connected.
We let k = so(m, R) and choose
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a = {diag(x1, x2, . . . , xm) ∈ M(m, R):
m∑

i=1

xi = 0}

as a maximal abelian subalgebra in p = Symm(m, R) ∩ sl(m, R). Define ele-
ments εj ∈ a∗ by setting

εj(diag(x1, . . . , xm)) = xj .

Then Σ = {εi − εj : 1 ≤ i 
= j ≤ m} and we take Σ+ = {εi − εj : i < j} as a
positive system. The associated system of simple restricted roots is given by

Π = {ε1 − ε2, . . . , εm−1 − εm}.
As g is split we have Σ = ∆. In particular, the ωj , 1 ≤ j ≤ m−1 are the usual
fundamental weights and are given by

ωj = ε1 + . . . + εj , (1 ≤ j ≤ m − 1).

The Weyl group Wa of Σ(a, g) is the group of permutations on the m elements
ε1, . . . , εm.

In matrix notation the nilpotent groups N and N are given by:

N = {


1 x12 . . . x1m

1 x23 . . . x2m

. . .
...
1

 :xij ∈ R}

and

N = {


1

x21 1
...

. . . . . .
xm1 . . . xm,m−1 1

 :xij ∈ R}.

For each 1 ≤ j ≤ m we set ej = (δk−j,l−j)k,l ∈ diag(m, R). Further we
associate to each ωj the element Xωj =

∑j
k=1 ej − j

m

∑m
j=1 ej .

Lemma 2.1. (i)

b0 = int
(

conv
(
{±πw.Xωj :w ∈ Wa, 1 ≤ j ≤ m − 1}

))
;

(ii)

b0 ⊆ a ∩
(

m − 1
m

m⊕
j=1

] − π, π[ej

)
.

Proof. (i) Set

b′ = int
(

conv
(
{±πwXωj :w ∈ Wa, 1 ≤ j ≤ m − 1}

))
.
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Both b0 and b′ are closed, convex and Wa-invariant. Thus by the convexity
of b0 and b′ we have to show only that b0 = b′. Now Wa rotates the extreme
points of both b0 and b′, and the extreme points of b′ are given by ±w.πXωj .
We shall prove the result by double containment.

“⊇”: By the Krein-Milman Theorem it suffices to show that ±πXωj ∈ b0

for all 1 ≤ j ≤ m−1. Every α ∈ Σ+ can be written as α =
∑m−1

j=1 δj(εj −εj+1)
with coefficients δj ∈ {0, 1}. Thus α(Xωj ) ∈ {0, 1} and the inclusion “⊇”
follows from the definition of b0.

“⊆”: Notice that ω1, . . . , ωm−1 constitute a basis of a∗. Hence every
X ∈ b0 can be written as X =

∑m−1
j=1 λjXωj with coefficients λj ∈ R. From the

definition of b′ we may assume that λj ≥ 0 for all 1 ≤ j ≤ m−1. In particular,
we see that

(ε1 − εm)(X) =
m−1∑
j=1

(εj − εj+1)(X) =
m−1∑
j=1

λj ∈ [0, π[,

concluding the proof of “⊆”.
(ii) For X = diag(x1, . . . , xm) =

∑m
j=1 xjej ∈ b0,

−π < 2x1 + x2 + . . . + xm = x1 − xm < π,

and
−π < x1 − xj < π for all 2 ≤ j ≤ m − 1.

By summing these inequalities we obtain

−(m − 1)π < mx1 < (m − 1)π,

or equivalently |x1| < m−1
m π. Similarly, |xj | < m−1

m π for all 1 ≤ j ≤ m.

Remark 2.2. Notice that a0 is strictly smaller than b0, although they
have common boundary points (cf. Figure 1). In particular, Lemma 2.1 shows
that

∂a0 ∩ ∂b0 ⊇ {π

2
(ei − ej): 1 ≤ i 
= j ≤ m − 1}.

For every 1 ≤ k ≤ m we denote by ∆k(A) the kth principal minor of a
matrix A ∈ M(m, C). For every g = (gij)1≤i,j≤m ∈ M(m, C) and 1 ≤ k ≤ m

we define g(k) ∈ M(k, C) by g(k) = (gij)1≤i,j≤k.

Proposition 2.3. Let G = Sl(m, R) with GC = Sl(m, C). Then for all
1 ≤ k ≤ m, a ∈ B0

C and g ∈ Sl(m, R) with g(k) ∈ Gl(k, R),

(i) ∆k(gagt) 
= 0;

(ii) Spec
(
(gagt)(k)

)
⊆ cone

(
conv(Spec(a))

)
.
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Proof. (i) Fixing 1 ≤ k ≤ m, a ∈ B0
C and g ∈ Sl(m, C) with

g(k) ∈ Gl(k, C), we write a = diag(r1e
iϕ1 , . . . , rmeiϕm) with ri > 0, −m−1

m π <

ϕi < m−1
m π (cf. Lemma 2.1(ii)). Set

g =

(
g(k) B

∗ ∗

)

with g(k) ∈ Gl(k, R) and B ∈ M(k × (m − k), R). Then,

∆k(gagt) = ∆k

( (
g(k) B

∗ ∗

)
diag(r1e

iϕ1 , . . . rmeiϕm)

(
gt
(k) ∗
Bt ∗

) )
= detk

(
g(k) diag(r1e

iϕ1 , . . . , rke
iϕk)gt

(k)

+B diag(rk+1e
iϕk+1 , . . . , rmeiϕm)Bt

)
.

In order to show that ∆k(gagt) 
= 0 we have to show that the k × k-matrix

X(k) = g(k) diag(r1e
iϕ1 , . . . , rke

iϕk)gt
(k) + B diag(rk+1e

iϕk+1 , . . . , rmeiϕm)Bt

is invertible.
Assume first that k ≤ m − k. Then we can write B = (B1, B2) with

B1 ∈ M(k, R) and B2 ∈ M(k × (m − 2k), R). Hence we obtain that

B diag(rk+1e
iϕk+1 , . . . , rmeiϕm)Bt = B1 diag(rk+1e

iϕk+1 , . . . , r2ke
iϕ2k)Bt

1

+B2 diag(r2k+1e
iϕ2k+1 , . . . , rmeiϕm)Bt

2.

Let 〈·, ·〉 be the usual hermitian inner product on Ck. In particular, if
v ∈ Ck, v 
= 0, then we get

〈X(k)v, v〉 = 〈diag(r1e
iϕ1 , . . . , rke

iϕk)gt
(k)v, gt

(k)v〉

+〈diag(rk+1e
iϕk+1 , . . . , r2ke

iϕ2k)Bt
1v, Bt

1v〉

+〈diag(r2k+1e
iϕ2k+1 , . . . , rmeiϕm)Bt

2v, Bt
2v〉.

So there exist numbers c1, . . . , cm ≥ 0, not all zero, such that

(2.1) 〈X(k)v, v〉 =
m∑

j=1

cje
iϕj .

Similarly one shows that (2.1) holds for the case k ≥ m − k. Now (i) follows
from (2.1) and Lemma 2.4 below.

(ii) Since X(k) = (gagt)(k), (ii) follows from (2.1).

We denote by C+ = {z ∈ C: z 
∈] −∞, 0]} the split plane in C.
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Lemma 2.4. Let ϕ1, . . . , ϕm ∈ R be such that diag(ϕ1, . . . , ϕm) ∈ b0.
Then for all sequences of nonnegative numbers c1, . . . , cm, not all zero,

m∑
j=1

cje
iϕj ∈ C+.

In particular
∑m

j=1 cje
iϕj 
= 0.

Proof. As b0 is Wa-invariant there is no loss of generality to assume that
ϕ1 ≤ . . . ≤ ϕm. Then 0 ≤ ϕj − ϕ1 < π for all 1 ≤ j ≤ m. Since

∑m
j=1 ϕj = 0

we have ϕm ≥ 0. Thus
∑m

j=1 cje
iϕj is a sum of vectors not all zero in the real

convex cone
C = {z ∈ C:ϕm − π < arg(z) ≤ ϕm}

in C. In particular
∑m

j=1 cje
iϕj is nonzero since the convex cone C is pointed

(i.e. contains no affine lines). Since 0 ≤ ϕm < m−1
m π (cf. Lemma 2.1(ii)) we

also have C\{0} ⊆ C+, concluding the proof of the lemma.

Proposition 2.5. For G = Sl(m, R),

KCB1
CG ⊆ KCACNC.

Proof. Take a ∈ B1
C and recall that a2 ∈ B0

C. First we show that aN ⊆
KCACNC. Let n ∈ N . Then Proposition 2.3(i) says that all principal minors of
the complex symmetric matrix nta2n are nonzero. Hence a theorem of Jacobi
(cf. [Koe83, p. 124]) implies that there exist unique elements b0 ∈ AC and
m ∈ NC such that

nta2n = mtb0m.

Let a0 ∈ AC be such that a2
0 = b0. Then we have

an = ka0m

with k ∈ KC given by k = anm−1a−1
0 .

Using, as before, the Bruhat decomposition G =
⋃

w∈Wa
NwMAN, to-

gether with the NK(A)-invariance of B1
C, we get that aG ⊆ KCACNC for all

g ∈ G, completing the proof.

With G = Sl(m, R) out of the way we want to use an observation that
will allow us to obtain a proof of Theorem 1.8(ii) for appropriate subgroups.
The groups that will be covered in this way are: Sp(n, R), Sp(p, q), Sp(n, C),
SU(p, q), SO∗(2n), Sl(n, C) and Sl(n, H).

Recall that a Levi subalgebra m of a standard parabolic subalgebra must
be of the form m = m(Θ) for Θ ⊆ Π. If, moreover, m is θ-stable, then the
Iwasawa decomposition for m is compatible with that of g. More generally,
for g = sl(m, R) we consider θ-stable subalgebras g1 ⊆ g with a property
that will give them Iwasawa decompositions compatible with that of g. Set
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k1 = k ∩ g1 and p1 = p ∩ g1 so that g1 = k1 ⊕ p1 is a Cartan decomposition
of g. Let a1 ⊆ p1 be a maximal abelian subspace. Since we can extend a1 to
a maximal abelian subspace of p and since all maximal abelian subspaces of p

are conjugate under Ad(K), we may assume that a1 ⊆ a. Choose a positive
system Σ+

1 of Σ1 = Σ(g1, a1). Then we can find a positive system Σ+ of Σ
such that Σ+

1 ⊆ Σ+ |a1 . Write n1 =
⊕

α∈Σ+
1

gα
1 and note that n1 ⊆ n.

We now impose the following condition on the restricted roots:

(I) Σ |a1\{0} = Σ1.

It can be checked that (I) holds for example for the standard imbeddings of
the subalgebras g1 = sp(n, R) (with 2n = m), su(p, q) (with 2p + 2q = m),
sp(p, q) (with 2p+2q = m) or so∗(2n) (with 2n = m)(in all cases the fact that
makes things work is that the restricted root system of g1 is either of type Cn

or BCn). Further examples are g1 = sl(n, C) (with 2n = m), sp(n, C) (with
2n = m) or sl(n, H) (with 4n = m) (here the explanation is that the root
system Σ1 is of type A). Set

b0
1 = {X ∈ a1: (∀α ∈ Σ1) |α(X)| < π}

and
b1
1 =

1
2
b0
1.

Then condition (I) guarantees that

(2.2) b1
1 ⊆ b1.

We denote by G1 the analytic subgroup of G which is associated to g1.
We assume that G1 is closed. Further we denote by K1, A1, N1 and N1 the
analytic subgroups of G1 corresponding to k1, a1, n1 and n1. Finally we set
B1

1,C = exp(a1 + ib1
1). In order to prove Theorem 1.8(ii) for the group G1 we

have to show that

B1
1,CG1 ⊆ K1,CA1,CN1,C

or equivalently

(2.3) (∀b ∈ B1
1,C)(∀g ∈ G1)(∃a ∈ A1,C, m ∈ N1,C), gtbg = mtam.

In view of (2.2) and the validity of (2.3) for G we deduce that for all b ∈
B1

1,C, g ∈ G1 there exist unique elements m = m(b, g) ∈ NC, a = a(b, g) ∈
AC such that gtb2g = mtam. Moreover a = a(b, g) and m = m(b, g) are
analytic functions in the variables b ∈ B1

1,C, g ∈ G1. Since we already know
that a(A1

1,C, G1) ⊆ A1,C and m(A1
1,C, G1) ⊆ N1,C (cf. Proposition 1.7), the

analyticity of both a and m implies that a(B1
1,C, G1) ⊆ A1,C and m(B1

1,C, G1) ⊆
N1,C proving (2.2).
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We summarize the above discussion with

Proposition 2.6. Assume that G is one of the groups Sl(n, R), Sp(n, R),
Sp(p, q), SU(p, q), SO∗(2n), Sl(n, C), Sl(n, H) or Sp(n, C). Then

KCB1
CG ⊆ KCACNC.

There remain the restricted root systems for g = so(p, q) and g = so(n, C).
So first we recall some facts concerning these root systems of type Bn and Dn.

Bn: The root system Bn is given by

Σ = {±εi ± εj : 1 ≤ i 
= j ≤ n} ∪ {±εi: 1 ≤ i ≤ n}.

A basis of Σ is

Π = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn}.

If g is a split real Lie algebra with restricted root system Σ, then the ωi are
the fundamental weights associated to Π and given by

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωn−1 = ε1 + . . . + εn−1, ωn =
1
2
(ε1 + . . . + εn).

Dn: The root system Dn is given by

Σ = {±εi ± εj : 1 ≤ i 
= j ≤ n}

and a basis of Σ is given by

Π = {ε1 − ε2, ε2 − ε3, . . . , εn−1 − εn, εn−1 + εn}.

If g is a split real Lie algebra with restricted root system Σ, then the ωi are
the fundamental weights:

ω1 = ε1, ω2 = ε1 + ε2, . . . , ωn−2 = ε1 + . . . + εn−2

and
ωn−1 =

1
2
(ε1 + . . . + εn−1 − εn), ωn =

1
2
(ε1 + . . . + εn).

To indicate the dependence of b0 on the root system, we shall write b0(Σ)
for b0.

Lemma 2.7. There exists b0(Dn) = b0(Bn).

Proof. This is immediate from the equality conv(Bn) = conv(Dn).

The final goal of this section is to prove the inclusion

(2.4) B1
CG ⊆ KCACNC

for G = SO(p, q) or G = SO(n, C).
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We shall repeat the strategy used for the target group of type An. So
assume for the moment that (2.4) holds for G = SO(n, n). Assume that p ≥ q

and embed G1 = SO(p, q) into SO(p, p) in the natural way (upper left corner
block). Then if we restrict Σ to a1 we get a root system of type Bq or Dq. Hence
by our restriction procedure from the preceding section and Lemma 2.7, we get
(2.4) also for the subgroup G1. Thus it suffices to prove (2.4) for G = SO(n, n)
and G = SO(n, C), with both so(n, n) and so(n, C) split.

In what follows g denotes either so(n, n) or so(n, C). We embed g into
sl(2n, R) as in the previous section. Then if we restrict the weights of sl(2n, R)
to g, we obtain a root system of type Cn or BCn. We set

b0
res = b0(Cn) = b0(BCn)

and
b1
res =

1
2
b0
res.

On the group side we define Bj
res,C = exp(a + ibj

res) for j = 0, 1. In particular
we get that

(2.5) B1
res,CG ⊆ KCACNC.

We write (πn, Vn) for the nth fundamental representation of G̃ with highest
weight ωn = 1

2(ε1 + . . . + εn). We write Pn for the set of a-weights of (πn, Vn)
and set

b(πn)0 = {X ∈ a: (∀α ∈ Pn) |α(X)| <
π

2
}.

As usual we put b(πn)1 = 1
2b(πn)0.

Lemma 2.8. The following holds:

conv(b0
res ∪ b(πn)0) ⊇ b0.

Proof. We claim that the extreme points of b0 are given by

Ext(b0) =

{
{±πei,

π
2 (±e1 ± . . . ± en)} for n ≥ 3,

{±πei} for n = 2.

In fact we have b0 = b0(Bn) by Lemma 2.7 and so Ext(b0) is invariant under
the Weyl group W(Bn) = (Z2)n � Sn. From that the claim follows.

Now we have π
2 (±e1 ± . . . ± en) ∈ b0

res and ±πei ∈ b(πn)0. Hence the
assertion of the lemma follows from the Krein-Milman theorem.

Proposition 2.9. Assume that G = SO(p, q) or G = SO(n, C). Then
for all a ∈ B1

C,
KCB1

CG ⊆ KCACNC.
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Proof. From what we have already done it is enough to prove the inclusion
for G = SO(n, n) or G = SO(n, C). By passing to a covering group if necessary
we can also replace G by G̃. Set BC(πn) = exp(a + ib(πn)1). In view of
Proposition 1.9, Lemma 2.7, (2.5) and Lemma 2.8 it remains to check that

(2.6) BC(πn)G ⊆ KCACNC.

Suppose that (2.6) is false. Then we can find a g ∈ G and a convergent sequence
(aj)j∈N in BC(πn) with limj→∞ aj = a0 ∈ BC(πn), Θ(g)−1a2

jg ∈ NCACNC for
all j ∈ N but Θ(g)−1a2

0g 
∈ NCACNC. In particular we find elements mj ∈ NC
and bj ∈ AC with

Θ(g)−1a2
jg = Θ(mj)−1bjmj .

To arrive at a contradiction we have to show that (bj)j∈N is bounded (cf.
Lemma 2.4). Let 〈·, ·〉 denote an hermitian inner product on Vn with 〈πn(g)v, w〉
= 〈v, πn(Θ(g)−1)w〉 for all g ∈ GC, v, w ∈ V . Let Q ⊆ Vn\{0} be a compact
subset. Then the definition of b(πn)0 shows that

(2.7) infv∈Q Re〈πn(Θ(g)−1a2
jg)v, v〉 > 0.

If v = πn(mj)
−1vα

‖πn(mj)−1vα‖ for a normalized weight vector vα with weight α, we
get

bα
j 〈vα, πn(mjm

−1
j )vα〉

‖πn(m−1
j )vα‖2

= 〈πn(Θ(mj)−1bjmj)v, v〉 = 〈πn(Θ(g)−1a2
jg)v, v〉

for all j ∈ N. In particular, (2.7) implies that there are constants C1, C2 > 0
such that

(∀α ∈ Pn) C1 >
|bα

j | · |〈vα, πn(mjm
−1
j )vα〉|

‖πn(m−1
j )vα‖2

> C2.

Recall that the weight spaces of the spin-representation (πn, Vn) are one-
dimensional. Hence it follows that 〈π(n)vα, vα〉 = 〈vα, vα〉 for all n ∈ NC and
all weight vectors vα ∈ Vn. For the same reason we get ‖πn(mj)(vα)‖2 ≥ 1 for
all mj . In particular we obtain that

(2.8) (∀α ∈ Pn) |bα
j | > C

for some constant C > 0. Now we have Pn = −Pn and so (2.8) actually implies
that (bj)j∈N is bounded.

It seems reasonable to expect that a better technique would show Theo-
rem 1.8 to be valid also for the exceptional groups. Thus we formulate

Conjecture A. Let G be a semisimple Lie group with G ⊆ GC and GC
simply connected. Then

B1
CG ⊆ KCACNC.
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Remark 2.10. In [KrStII] we clarify the geometry of the domain, thereby
giving more evidence for its naturality. We show that the domain KC\KCB1

CG

is bi-holomorphic to a maximal Grauert tube of K\G having complex structure
the adapted one. We also show the existence of a subdomain of KC\KCB1

CG

bi-holomorphic to a Hermitian symmetric space but not isometric.

3. Holomorphic extension of irreducible representations

We now come to our first application of the preceding construction, the
holomorphic extension of representations. Additional applications of this will
be given in subsequent sections for specific situations, such as principal series
of representations, specific groups, or eigenfunctions on (locally) symmetric
spaces. The notation from representation theory needed for this section is
standard and may be found explained in, say, [Kn86].

Notation. As per Conjecture A we shall write Ω for B1
C if G is classical,

and A1
C otherwise.

Theorem 3.1. Let G be a linear, simple Lie group and let (π, E) be an
irreducible Banach representation of G. Then for any K-finite vector v ∈ EK ,
the orbit map

G → E, g �→ π(g)v

extends to a G-equivariant holomorphic map on GΩKC.

Proof. Set V = EK , the collection of K-finite vectors of (π, E).
Casselman’s subrepresentation theorem (cf. [Wal88, 3.8]) gives the exis-

tence of a (g, K)-embedding of V into a principal series representation

(3.1) V → (IndG
Pmin

(σ ⊗ λ ⊗ 1),Hσ,λ)

where Pmin = MAN is a minimal parabolic subgroup. In the next section
we recall the standard terminology for principal series; in summary we set
πσ,λ = IndG

Pmin
(σ ⊗ λ ⊗ 1); we write (Wσ, 〈·, ·〉σ) for the representation Hilbert

space of σ; we realize Hσ,λ as a Hilbert subspace of L2(K/M, Wσ), and we use
induction from the right.

Write H for the completion of V in Hσ,λ. Let us first assume that E = H.
Fix v ∈ V and write fv:G → H ⊆ Hσ,λ, g �→ πσ,λ(g)v for the corresponding
orbit map. Then we have for all g ∈ G that

(3.2) (fv(g))(kM) = a(g−1k)λ−ρv(κ(g−1k)) (k ∈ K).

Hence it follows from either Theorem 1.8 (for Ω = B1
C) or Proposition 1.7 (for

Ω = A1
C) that analytic continuation of (3.2) gives rise to a map

f̃v:GΩKC → C∞(K/M, Wσ),
(
g �→ (kM �→ a(g−1k)λ−ρv(κ(g−1k)))

)
.(3.3)

Note that f̃v |G = fv.
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We claim that im f̃v ⊆ H. Write H⊥ for the orthogonal complement of H
in the Hilbert space L2(K/M, Wσ). Choose w ∈ H⊥. In order to show that
〈w, im f̃v〉 = {0}, we may assume that w is a K-finite, continuous function on
K/M . Consider the function

F :GΩKC → C, g �→ 〈f̃v(g), w〉 =
∫

K
a(g−1k)λ−ρ〈v(κ(g−1k)), w(k)〉σ dk,

with the equality on the right-hand side following from (3.3). Since w is a
bounded function, it is easy to see that F is holomorphic. Since F |G = 0 and
F is holomorphic we have F = 0. This concludes the proof of the claim.

Next we show that f̃v is holomorphic. Since V ⊆ C∞(K/M, Wσ) is dense
in H and because weak holomorphicity implies holomorphicity, it is enough to
show that for all w ∈ V the analytically continued matrix coefficients

πv,w:GΩKC → C, g �→ 〈f̃v(g), w〉

are holomorphic. Again (3.3) gives that

πv,w(g) =
∫

K
a(g−1k)λ−ρ〈v(κ(g−1k)), w(k)〉σ dk (g ∈ GΩKC)

and the holomorphicity of f̃v follows. Before we can deduce the general case

from the case E = H we need a little more refined information on the orbit
maps. Note that im f̃v ⊆ H∞, H∞ the G-module of smooth vectors (indeed
im f̃v ⊆ Hω, Hω the analytic vectors). Thus f̃v also induces a map f̂v:GΩKC
→ H∞. Recall that the (Fréchet) topology on H∞ is induced from the semi-
norms

H∞ � v �→ ‖dπ(u)v‖ (u ∈ U(gC)).

From the explicit formula (3.2) of the induced action, one then deduces that
f̂v is continuous. In particular f̂v is holomorphic, since it is continuous and
since for all w in the dense subspace V ⊆ (H∞)′ the function 〈f̂v, w〉 = πv,w is
holomorphic.

Finally we have to show how the general case follows from the case where
E = H. We use the Casselman-Wallach globalization theorem (cf. [Wal92,
11.6.7(2)]) which implies that the embedding (3.1) extends to a G-equivariant
topological embedding on the level of smooth vectors:

(π, E∞) → (πσ,λ,H∞
σ,λ).

Hence the Fréchet representations (π, E∞) and (πσ,λ,H∞) are equivalent. As
f̂v was shown to be holomorphic for every v ∈ V , the proof of Theorem 3.1 is
now complete.
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The holomorphic extension of the orbit map, g �→ π(g)v, raises the ques-
tion of the dependence of ‖π(g)v‖ on g. This we address in a subsequent
section. The holomorphic extension of a representation also gives rise to a
holomorphic extension of its K-finite matrix coefficients. In the next section,
we obtain estimates for the holomorphically extended matrix coefficients.

4. Principal series representations

Integral formulas. We shall look in more detail at the growth properties
of the holomorphic extension of matrix coefficients of principal series represen-
tations induced off a minimal parabolic subgroup. For now, we shall focus on
the case of spherical principal series for two reasons: we shall use these results
to obtain estimates on automorphic functions for locally symmetric spaces;
the extension to the general case requires considering Eisenstein integrals and,
albeit with many technicalities, given the holomorphic properties of the de-
compositions in Theorem 1.8, this presents no fundamentally new difficulties.

Set ρ = 1
2

∑
α∈Σ+ mαα ∈ a∗ with mα = dim gα. For λ ∈ a∗C we define a

vector space

Dλ = {f ∈ C∞(G): (∀man ∈ MAN)(∀g ∈ G) f(gman) = aλ−ρf(g)}.

The group G acts on Dλ by left translation in the arguments, i.e., we obtain
a representation (πλ,Dλ) of G given by (πλ(g)f)(x) = f(g−1x) for g, x ∈ G,
f ∈ Dλ. Besides this realization we shall need the standard realizations of
these representations that are called the compact (resp. noncompact) picture.
The compact realization has for Hilbert space

Kλ = Dλ |K
L2(K) ⊆ L2(K),

while the noncompact realization has

Nλ = Dλ |N
L2(N, a(n)−2 Re(λ) dn) ⊆ L2(N, a(n)−2Re(λ) dn).

The representations (πλ,Kλ) and (πλ,Nλ) are continuous representations of G.
Moreover, the mapping

f |K → f |N (f ∈ Dλ)

extends to a unitary equivalence (πλ,Kλ) → (πλ,Nλ), provided L2(K) is ob-
tained from a normalized Haar measure on K and L2(N) is obtained from a
Haar measure dn which satisfies

∫
N a(n)−2ρ dn = 1. For λ ∈ ia∗ the represen-

tations (πλ,Kλ) and (πλ,Nλ) are unitary. We will write (πλ,Hλ) if we do not
want to emphasize a particular realization.

We recall that for (π,H) a continuous representation of a Lie group G

on some Hilbert space H, a vector v ∈ H is called analytic if the orbit map
fv:G → H, g �→ π(g)v is analytic. Suppose that G is contained in its universal
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complexification GC, and denote by g �→ g the complex conjugation in GC with
respect to the real form G. Then for every analytic vector v ∈ H there exists
a left G-invariant open neighborhood U of 1 ∈ GC with U = U such that fv

extends to a holomorphic map f̃v:U → H, g �→ π(g)v. With π∗ denoting the
contragradient representation one has

(4.1) 〈π(g)v, v〉 = 〈v, π(g)∗v〉
for all g ∈ U .

For G a Lie-group, K < G a compact subgroup, and (π, V ) a continuous
representation of G on some topological vector space V , the representation
(π, V ) is called K-spherical if V K 
= {0}, V K = {v ∈ V : (∀k ∈ K)π(k)v = v}.
For all λ ∈ a∗C the induced representation (πλ,Dλ) is K-spherical, dimDK

λ = 1
and the function

f0:G → C, x �→ a(x)λ−ρ

is a generator of DK
λ . Moreover we have

(∀g, x ∈ G) (πλ(g)f0)(x) = a(g−1x)λ−ρ.

In the other realizations one has v0 = f0 |K = 1K ∈ KK
λ , and w0 = f0 |N ∈ NK

λ

given by w0(n) = a(n)λ−ρ.

Proposition 4.1. Let (πλ,Kλ) be the compact realization of a spherical
principal series representation with parameter λ ∈ a∗C and let v0 = 1K ∈ KK

λ .
Then the orbit map

F :G → Kλ, g �→ πλ(g)v0

extends to a holomorphic map

F̃ :GΩKC → Kλ

on the open domain GΩKC ⊆ GC.

Remark. Note that a slight modification of Theorem 3.1 to representations
of finite length implies the proposition. But we shall give here a more direct
proof avoiding the heavy machinery of representation theory.

Proof. We consider the map

Φ: G × K → C, (g, k) �→ a(g−1k)λ−ρ

and note that Φλ(g, ·) = F (g). By Proposition 1.7 and Theorem 1.8 the
function Φ extends to an analytic map

Φ̃: GΩKC × K → C, (z, k) �→ a(z−1k)λ−ρ

which is holomorphic in the first argument. It is obvious that Φ̃(z, ·) ∈ L2(K)
for all z ∈ GΩKC. Let P :L2(K) → Kλ denote the orthogonal projection and
define

F̃ :GΩKC → Kλ, z �→ P (Φ̃(z, ·)).
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Then F̃ |G = F and it remains to show that F̃ is holomorphic. For that however
it suffices to show that

GΩKC → C, z �→ 〈F̃ (z), f〉

is holomorphic for all f ∈ Dλ |K ⊆ C∞(K). But this in turn follows from

〈F̃ (z), f〉 =
∫

K
a(z−1k)λ−ρf(k) dk

by the compactness of K, the continuity of Φ̃ and the holomorphy of Φ̃(·, k).

If λ ∈ a∗C and (πλ,Kλ) is the induced representation realized in the com-
pact picture, then the matrix coefficient of the K-fixed vector with itself is the
familiar zonal spherical function,

(4.2) ϕλ(g) = 〈πλ(g−1)v0, v0〉.

The holomorphic extension to GΩKC of πλ(g−1)v0 gives a holomorphic
extension of the matrix coefficient ϕλ(g). However, this is not the largest
domain of analyticity for ϕλ(g). Since we will estimate the norm of πλ(g−1)v0

by means of ϕλ(g), in order to obtain optimal estimates on the norm it will be
important to have an expression that represents ϕλ(g) in its entire domain of
holomorphy. In terms of the pairing in the compact realization, ϕλ(g) is given
by the well-known integral formula

ϕλ(g) =
∫

K
a(gk)λ−ρ dk.

By the K-bi-invariance of ϕλ and in light of Proposition 1.7, this defin-
ing integral formula for the spherical function can be extended to KCΩKC.
But in general the integral formula need not extend to any larger domain (cf.
Example 4.3). There are a couple of reasons for this. First, the integrand
k �→ a(a−1k)λ−ρ becomes singular if a leaves A1

C, and secondly, it is no longer
possible to take holomorphic square roots (the ρ-exponent frequently involves
a square root). We shall present an alternative integral formula valid on a
domain about twice as large and this will be crucial for the estimates on the
norm of πλ(g−1)v0.

To state the result we recall the notation Ω, viz. if G is classical, then
Ω = B1

C and otherwise Ω = A1
C. Consistent with this and the notation B0

C
(resp. A0

C), we use Ω2 = B0
C if G is classical and otherwise set Ω2 = A0

C.

Theorem 4.2. Let λ ∈ a∗C and ϕλ be the spherical function with param-
eter λ associated to G/K.

(i) The spherical function ϕλ extends to a KC-bi -invariant function on
KCΩ2KC ⊆ GC which is holomorphic when restricted to Ω2.
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(ii) (∀b ∈ A)(∀a ∈ exp(ia) ∩ Ω),

ϕλ(ba2) =
∫

K
a(bak)λ−ρ · a(ak)λ−ρ · a(ak)−2Re λ dk.

In particular, for λ ∈ ia∗ we get for all a ∈ exp(ia) ∩ Ω

ϕλ(a2) =
∫

K
|a(ak)2(λ−ρ)| dk.

(iii) (∀b ∈ A)(∀a ∈ exp(ia) ∩ Ω),

ϕλ(ba2) =
∫

N
a(ban)λ−ρ · a(an)λ−ρ · a(an)−2Re λ dn.

In particular, for λ ∈ ia∗, for all a ∈ exp(ia) ∩ Ω,

ϕλ(a2) =
∫

N
|a(an)2(λ−ρ)| dn.

Proof. (i) It suffices to show that ϕλ |A extends to a holomorphic function
on Ω2. We will work with the compact realization (πλ,Kλ). Let a ∈ A. Then
(2.1) implies that

(4.3) (∀a ∈ A) ϕλ(a2) = 〈πλ(a−1)v0, πλ(a−1)∗v0〉.

We now analytically continue the right-hand side of (4.3). Recall from [Kn86,
p. 170] that for f ∈ Dλ and x, g ∈ G one has

(4.4) (πλ(g)∗f)(x) = a(gx)−2 Re λf(gx).

Hence πλ(g)∗f = a(g·)−2Re λπλ(g−1)f for all g ∈ G. Similarly as in Proposi-
tion 4.1 one shows that g �→ π(g)∗v0 extends to a holomorphic Kλ-valued map
on GΩKC. Thus Proposition 4.1 implies that the function

A → C, a �→ 〈πλ(a−1)v0, πλ(a−1)∗v0〉

extends to a holomorphic function on Ω. Since we have a unique holomorphic
square root on Ω2, namely

Ω2 → Ω, a = exp(X) �→
√

a = exp(
1
2
X),

the assertion of (i) now follows from (4.3).

(ii) In view of the proof of (i), (ii) is immediate from the analytic extensions
of (4.3) and (4.4) to exp(ia) ∩ Ω.

(iii) This is proved as (ii) is by use of the noncompact realization (πλ,Nλ)
instead of (πλ,Kλ).
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Example 4.3. We explicate the theorem for the group G = Sl(2, R).
Clearly G ⊆ GC = Sl(2, C) and GC is simply connected. We let k = so(2),

a = {
(

x 0
0 −x

)
:x ∈ R} and n = {

(
0 n

0 0

)
:n ∈ R}.

For z ∈ C∗, x ∈ C and θ ∈ C we set

az =

(
z 0
0 z−1

)
∈ AC, nx =

(
1 x

0 1

)
∈ NC

and

kθ =

(
cos θ sin θ

− sin θ cos θ

)
∈ KC.

Then

A0
C = B0

C = {az: Re(z) > 0} and A1
C = {az: | arg(z)| <

π

4
}.

Since ω = ω1 = ρ, we may identify a∗C with C by means of the isomorphism

R → a∗, λ �→ λω.

Let us consider the spherical function with parameter λ ∈ ia∗. Then
Proposition A.1(i) in the appendix shows that (4.2), the defining integral for-
mula for ϕλ, extends to A1

C and we have

(4.5) (∀az ∈ A1
C) ϕλ(az) =

1
2π

∫ 2π

0

dθ

(z2 + sin2 θ( 1
z2 − z2))

1
2
−λ

.

It is easy to see that it is no longer possible to take consistently an analytic
square root of (z, θ) �→ z2 + sin2 θ( 1

z2 − z2) if | arg(z)| becomes larger than π
4 .

Also as this function has zeros, the integrand of the integral expression above
becomes singular (although in this case the singularity is integrable). On the
other hand Theorem 4.2(ii), (iii), together with Proposition A.1 imply, for all
−π

2 < ϕ < π
2 , r > 0, that

ϕλ(areiϕ)

=
1
2π

∫ π

−π

dθ

(r2eiϕ + sin2 θ( 1
r2 e−iϕ − r2eiϕ))

1
2
−λ(e−iϕ + sin2 θ(eiϕ − e−iϕ))

1
2
+λ

and
ϕλ(areiϕ) =

∫ ∞

−∞

dx

(r2eiϕ + 1
r2 e−iϕx2)

1
2
−λ(e−iϕ + eiϕx2)

1
2
+λ

.

If one examines the integral over K, one sees that the second factor is identi-
cally 1 when evaluated on the real group A, so that it comes into play only on
the complex domain.
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An upper estimate. We can give a soft upper estimate along the convex
hull of extreme points of the domain.

Proposition 4.4. Let (πλ,Hλ) be a unitary principal series representa-
tion of G. Let ω be b0 if G is classical and a0 otherwise. If a, b ∈ ω, then

sup0≤t≤1 ϕλ

(
exp(i(ta + (1 − t)b))

)
≤ max{ϕλ(exp(ia)), ϕλ(exp(ib))}.

Proof. Set S[0,1] = {z ∈ C: Re z ∈ [0, 1]} and X = {za+(1−z)b: z ∈ S[0,1]}.
Then

S[0,1] → X, z �→ g(z) = za + (1 − z)b

defines a bi-holomorphism of complex manifolds with boundary. We set

f :S[0,1] → C, z �→ ϕλ(exp(ig(z))).

Then f is holomorphic on intS[0,1] and we claim that f is bounded. In fact,
we have

f(z) = 〈πλ(exp(Im g(z)))πλ(exp(−i
1
2

Re g(z)))v0, πλ(exp(−i
1
2

Re g(z)))v0〉,

and so by the unitarity of πλ

|f(z)| ≤ 〈πλ(exp(−i
1
2

Re g(z)))v0, πλ(exp(−i
1
2

Re g(z)))v0〉 = f(Re z).

This implies our claim and so the assertion of the proposition follows from the
Phragmen-Lindelöf principle.

A radial lower estimate. A precise estimate of the nature of the singular-
ity along the entire boundary of Ω appears difficult. However, for an approach
to the boundary along the direction of roots (or co-roots), we can obtain esti-
mates. In this regard see Remark 5.5. We recall our standing hypothesis that
G is a semisimple Lie group contained in its complexification GC.

Let H ∈ a and assume that there is a θ-invariant sl(2, R)-triple
{H, X, θ(X)} ⊆ g, i.e., [H, X] = 2X, [H, θ(X)] = −2θ(X), [X, θ(X)] = H.

We shall want to give estimates for the radial behaviour

ϕλ(exp(i
π

2
(1 − ε)H))

for ε → 0 provided that π
2 H ∈ ∂b0 and (πλ,Hλ) is unitarizable. We do this

by restriction of the representation to a subgroup isomorphic to Sl(2, R) or
PSl(2, R). The triple gives

g0 = spanR{H, X, θ(X)},

a θ-stable subalgebra of g isomorphic to sl(2, R). Its Cartan decomposition
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is given by g0 = k0 ⊕ p0 with k0 = k ∩ g0 and p0 = p ∩ g0. Further, we set
a0 = RH. We denote the analytic subgroups of G corresponding to g0, a0 and
k0 by G0, A0 and K0.

We write Ĝ0 for the set of equivalence classes of unitary irreducible rep-
resentations of G0 (the unitary dual of G0). Since G0 is semisimple and thus
of type I, there is a natural T1-topology on Ĝ0, the hull-kernel topology, which
we denote by τhk, and a Borel measure µ on Ĝ0 such that

(πλ |G0 ,Hλ) =
( ∫ ⊕

Ĝ0

πσ ⊗ I dµ(σ),
∫ ⊕

Ĝ0

Hσ⊗̂Vσ dµ(σ)
)

.

Here (πσ,Hσ) denotes a representative of σ ∈ Ĝ0. In particular, v0 ∈ HK
λ

disintegrates as

v0 =
∫

Ĝ0

vσ
0 dµ(σ)

with 1 = ‖v0‖2 =
∫
Ĝ0

‖vσ
0 ‖2 dµ(σ). As each vσ

0 is K0-fixed, for all σ with
vσ
0 
= 0,

(∀g ∈ G0) ϕ0
σ(g) =

1
‖vσ

0 ‖2
〈πσ(g−1)vσ

0 , vσ
0 〉

defines a spherical function on G0.
In particular we get for all a ∈ A0

(4.6)

ϕλ(a) = 〈πλ(a−1)v0, v0〉 =
∫

Ĝ0

〈πσ(a−1)vσ
0 , vσ

0 〉 dµ(σ) =
∫

Ĝ0

ϕα
σ(a)‖vσ

0 ‖2dµ(σ).

Proposition 4.5. Let G be a semisimple Lie group with Lie algebra g

and assume that G ⊆ GC. Suppose that {H, X, θ(X)} with H ∈ a forms an
sl(2, R)-triple in g. Assume that π

2 H ∈ ∂b0 and that (πλ,Hλ) is unitarizable.
Then we have

ϕλ(exp(i
π

2
(1 − ε)H)) ≥ C| log ε|

for 0 < ε ≤ 1 and a constant C > 0.

Proof. Write Y0 = {σ ∈ Ĝ0:πσ is K-spherical}. From the well-known de-
tails of the unitary dual of G0 we know that there is a natural parametrization
iR∪ ]0, 1[→ Y0. Moreover if we equip iR∪ ]0, 1[ with its Euclidean topology,
then this parametrization becomes continuous (this essentially follows from
the fact that the assignments σ �→ ϕ0

σ(a) are continuous with respect to the
Euclidean topology; cf. the technique of [Wal92, 14.12.3]). In particular this
parametrization induces the (possibly) stronger Euclidean topology τe on Y0.
Hence if

⋃
n∈N Qn is an exhaustion of (Y0, τe) by compact sets, then

⋃
n∈N Qn

defines an exhaustion of quasicompact Borel sets of (Y0, τhk). So we can find
a Qn with

∫
Qn

vσ
0 dµ(σ) 
= 0. It follows from (4.6) that we have

ϕλ(exp(i
π

2
(1 − ε)H)) =

∫
Y0

ϕ0
σ(exp(i

π

2
(1 − ε)H))‖vσ

0 ‖2 dµ(σ)
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for ε > 0. In particular we get that

ϕλ(exp(i
π

2
(1 − ε)H)) ≥

∫
Qn

ϕ0
σ(exp(i

π

2
(1 − ε)H))‖vσ

0 ‖2 dµ(σ)

for ε > 0. Since Qn is compact, Theorem 5.1 (to follow) implies that there is
a constant C ≥ 0 such that ϕ0

σ(exp(iπ
2 (1 − ε)H)) ≥ C| log ε| for all σ ∈ Qn.

Hence we get that

ϕλ(exp(i
π

2
(1 − ε)H)) ≥ C| log ε|

∫
Qn

‖vσ
0 ‖2 dµ(σ),

proving the theorem.

Set Σ0 = {α ∈ Σ: 2α 
∈ Σ}. Let α ∈ Σ0 and Hα ∈ a be the corresponding
co-root, i.e., Hα ∈ [gα, g−α] ∩ a such that α(Hα) = 2.

Corollary 4.6. Suppose that G is one of the groups Sl(n, R), Sl(n, C),
Sl(n, H), Sp(n, R), SO∗(2n) or SU(p, q). Let α ∈ Σ0 and Hα be its co-root.
Assume that (πλ,Hλ) is unitarizable. Then there exists a constant C, depend-
ing only on λ, such that

ϕλ(exp(i
π

2
(1 − ε)Hα)) ≥ C| log ε|

for 0 < ε ≤ 1.

Proof. Since all restricted root systems are either of type An, Cn or BCn

we have π
2 Hα ∈ ∂b0. Then the assertion follows from Proposition 4.5.

5. Real rank one

Singularity of spherical functions. We consider Lie algebras of real rank
one. For these we are able to obtain sharp asymptotic behaviour of the holo-
morphically extended spherical functions.

As g has real rank one, dim a = 1. As is the custom, we set p = dim gα,
q = dim g2α, and c = 1

4(p+2q) . Here n = g−α ⊕ g−2α and [g−α, g−2α] = {0}.
We have the familiar formula for all n = exp(X + Y ) = exp(X) exp(Y ),

X ∈ g−α, Y ∈ g−2α:

(5.1) a(n)ρ = [(1 + c‖X‖2)2 + 4c‖Y ‖2]
p+2q

4 .

Here ‖Z‖2 = −κ(Z, θZ) for all Z ∈ g with κ denoting the Cartan-Killing form
of g. Computations involving a(n)ρ have appeared many times. We include the
following computations only because they involve the holomorphic extension
of a(n)ρ and for this we have no convenient reference.
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Let Aα ∈ a be defined by α(Aα) = 1. For convenience we shall identify
aC and a∗C with C by means of the isomorphisms

C → aC, z �→ zAα,

C → a∗C, λ �→ λα.

Thus, ϕλ(ez) := ϕλ( exp zAα).
Let Ωg ⊆ a denote b0 if g is classical and a0 otherwise.
Here and henceforth we use the notation f(ε) � g(ε) for two positive

valued functions f(ε), g(ε) if there exist constants c1, c2 > 0 such that c1f(ε) ≤
g(ε) ≤ c2f(ε) for all ε.

Theorem 5.1. Let G be a connected Lie group of real rank one contained
in its universal complexification GC.

(i) For all λ ∈ ia∗ the maximal tube domain of definition of ϕλ ◦ expA is
given by

Tλ,max = b0
C.

(ii) For X ∈ ∂b0, and a fixed λ ∈ a∗C, there exist a C > 0 such that for ε → 0,
ε > 0

|ϕλ(exp(±i(1 − ε)X)| ≤ C


| log ε| for p = 1, q = 0,

ε−p+1 for p > 1, q = 0,

| log ε| for q = 1,

ε−q+1 for q > 1.

If in addition λ ∈ ia∗, then

|ϕλ(exp(±i(1 − ε)X)| �


| log ε| for p = 1, q = 0,

ε−p+1 for p > 1, q = 0,

| log ε| for q = 1,

ε−q+1 for q > 1.

Remark 5.2. For some λ ∈ a∗C\ia∗ it can happen that Tλ,max = aC; i.e.,
the spherical function ϕλ |A extends holomorphically to AC. Simply consider
G = Sl(2, C). Then g ∼= so(3, 1), which in our previous notation corresponds
to the case p = 2 and q = 0. The explicit formula for spherical functions on
complex groups specialized to Sl(2, C) then reads

ϕλ(ez) =
1
λ

e(λ)z − e−(λ)z

ez − e−z
.

Hence we see that Tλ,max = b0
C for λ 
∈ Z while for λ ∈ Z one has Tλ,max = aC.

The proof of Theorem 5.1 is computational and is presented in lemmas
for the various cases.
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With our parametrization it follows from (5.1) and Theorem 4.2(iii) that
for all λ ∈ ia∗, ϕ ∈ Ωg,

ϕλ(e−iϕ) = e−iλϕ

×
∫

Rp

∫
Rq

dX dY

[(1+ceiϕ‖X‖2)2+4ce2iϕ‖Y ‖2]
p+2q

4 −λ
2 [(1+ce−iϕ‖X‖2)2+4ce−2iϕ‖Y ‖2]

p+2q
4 + λ

2

.

Using polar coordinates we thus obtain

ϕλ(e−iϕ) = c̃e−iλϕ

×
∫ ∞

0

∫ ∞

0

up−1vq−1du dv

[(1 + eiϕu2)2 + e2iϕv2]
p+2q

4
−λ

2 [(1 + e−iϕu2)2 + e−2iϕv2]
p+2q

4
+λ

2

for a constant c̃ depending on only p and q. Finally with the substitution
r = u2, s = v2 we arrive at

ϕλ(e−iϕ) = Ce−iλϕ(5.2)

×
∫ ∞

0

∫ ∞

0

r
p−2
2 s

q−2
2 dr ds

[(1 + eiϕr)2 + e2iϕs]
p+2q

4
−λ

2 [(1 + e−iϕr)2 + e−2iϕs]
p+2q

4
+λ

2

for all λ ∈ ia∗, ϕ ∈ Ωg and a constant C which is independent of λ. We
distinguish three cases.

Case 1: p = 1, q = 0. In this case we have G = Sl(2, R), the root system
is split (i.e. ∆ = Σ), and so ω = ω1 = 1

2α. Hence

a0
C = b0

C = {z ∈ C: | Im z| < π}
and (5.2) boils down to (∀λ ∈ iR)(∀ − π < ϕ < π),

(5.3) ϕλ(e−iϕ) = Ce−iλϕ
∫ ∞

0

dr
√

r(1 + eiϕr)
1
2
−λ(1 + e−iϕr)

1
2
+λ

.

Lemma 5.3. For p = 1, q = 0 and λ ∈ ia∗, Tλ,max = b0
C = a0

C. Moreover,
for a fixed λ the asymptotics at the boundary are given by

ϕλ(e−i(π−ε)) � | log ε|
for ε → 0, ε > 0.

Proof. This is immediate from (5.3).

Case 2: p > 1, q = 0. Here g = so(p + 1, 1) is a classical Lie algebra and
so Ωg = b0. We have ω = ω1 = α and so a0

C = {z ∈ C: | Im z| < π
2 } and

b0
C = 2a0

C. Formula (5.2) simplifies to

(5.4) ϕλ(e−iϕ) = e−iλϕ
∫ ∞

0

r
p−2
2 dr

(1 + eiϕr)
p
2
−λ(1 + e−iϕr)

p
2
+λ

for all λ ∈ iR and −π < ϕ < π.
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Lemma 5.4. For p > 1, q = 0 and for all λ ∈ ia∗, Tλ,max = b0
C = 2a0

C =
{z ∈ C: | Im z| < π}. Moreover, for a fixed λ the asymptotics at the boundary
are given by

ϕλ(e−i(π−ε)) � 1
εp−1

for ε → 0, ε > 0.

Proof. We will estimate ϕλ(e−i(π−ε)) for ε → 0 (ε > 0). Since the un-
bounded contribution to the integral is local (at r = 1) we may henceforth
assume that λ = 0. Then (5.4) gives

ϕ0(e−i(π−ε)) =
∫ ∞

0

r
p−2
2 dr

|(1 + ei(π−ε)r)|p

�
∫ 2

0

r
p−2
2 dr

|1 + (−1 + iε)r|p

�
∫ 2

0

r
p−2
2 dr

(|1 − r| + rε)p

�
∫ 1

−1

(r + 1)
p−2
2 dr

(|r| + (r + 1)ε)p

�
∫ 1

2

−1
2

dr

(|r| + ε)p

� ε−(p−1).

In the calculation above we used the first order approximation ei(π−ε) ≈ −1+iε

for ε > 0, ε → 0 which, as one easily convinces oneself, is justified.

Case 3: p > 1, q > 0. In this case we have ω = ω1 = 2α and so a0
C =

{z ∈ C: | Im z| < π
4 }. Formula (5.2) and Theorem 4.2(iii) then imply for all

λ ∈ iR, −π
4 < ϕ < π

4 and t > 0 that

ϕλ(t−1e−iϕ) = Ct
p+2q

2 e−iλϕ(5.5)

×
∫ ∞

0

∫ ∞

0

r
p−2
2 s

q−2
2 dr ds

[(1 + t2eiϕr)2 + t4e2iϕs]
p+2q

4
−λ

2 [(1 + e−iϕr)2 + e−2iϕs]
p+2q

4
+λ

2

.

In particular (5.5) implies that ϕλ◦logA extends to a holomorphic function
on b0

C = 2a0
C. Again, this turns out to be the maximal domain, as we will show

below.

Lemma 5.5. For p > 1, q > 0 and for all λ ∈ ia∗, Tλ,max = b0
C = 2a0

C =
{z ∈ C: | Im z| < π

2 }. Moreover, for a fixed λ the asymptotics at the boundary



672 BERNHARD KRÖTZ AND ROBERT J. STANTON

are given by

ϕλ(e−i(π−ε)) �
{

1
εq−1 if q > 1,

| log ε| if q = 1,

for ε → 0, ε > 0.

Proof. We will estimate ϕλ(ei(π
2
−ε)) for ε → 0, ε > 0. Since the un-

bounded contribution of the integral is local (near r = 0 and s = 1), we may
henceforth assume that λ = 0. Then (5.5) gives that

ϕ0(e−i(π
2
−ε)) �

∫ ∞

0

∫ ∞

0

r
p−2
2 s

q−2
2 ds dr

|(1 + ei(π
2
−ε)r)2 + ei(π−2ε)s| p+2q

2

�
∫ ∞

0

∫ ∞

0

r
p−2
2 s

q−2
2 ds dr

|1 + 2rei(π
2
−ε) + ei(π−2ε)r2 + ei(π−2ε)s| p+2q

2

�
∫ 1

2

0

∫ 2

0

r
p−2
2 s

q−2
2 ds dr

|1 + 2r(i + ε) + (−1 + i2ε)r2 + (−1 + i2ε)s| p+2q
2

�
∫ 1

2

0

∫ 2

0

r
p−2
2 s

q−2
2 ds dr

|(1 + 2rε − r2 − s) + i2(r + ε(r2 + s))| p+2q
2

�
∫ 1

2

0

∫ 2

0

r
p−2
2 s

q−2
2 ds dr∣∣∣|1 + 2εr − r2 − s| + 2|ε(r2 + s) + r|

∣∣∣ p+2q
2

�
∫ 1

2

0

∫ 1

−1

r
p−2
2 (s + 1)

q−2
2 ds dr(

|2εr − r2 − s| + 2ε(r2 + s + 1) + 2r
) p+2q

2

�
∫ 1

2

0

∫ 1

−1

r
p−2
2 ds dr(

|2εr − r2 − s| + 2ε(r2 + s + 1) + 2r
) p+2q

2

.

Elimination of the absolute value in the integrand gives

ϕ0(e−i(π
2
−ε)) �

∫ 1
2

0

∫ 2εr−r2

−1

r
p−2
2 ds dr(

2εr − r2 − s + 2ε(r2 + s + 1) + 2r
) p+2q

2

+
∫ 1

2

0

∫ 1

2εr−r2

r
p−2
2 ds dr(

s − 2εr + r2 + 2ε(r2 + s + 1) + 2r
) p+2q

2

�
∫ 1

2

0

∫ 2εr−r2

−1

r
p−2
2 ds dr(

2εr − r2 + 2ε(r2 + 1) + 2r + s(−1 + 2ε)
) p+2q

2

+
∫ 1

2

0

∫ 1

2εr−r2

r
p−2
2 ds dr(

− 2εr + r2 + 2ε(r2 + 1) + 2r + s(1 + 2ε)
) p+2q

2
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�
∫ 1

2

0

r
p−2
2 dr

(2ε + 2r + 4εr2)
p+2q

2
−1

�
∫ 1

2

0

r
p−2
2 dr

(r + ε)
p+2q

2
−1

� ε−
p+2q

2
+1

∫ 1
2

0

r
p−2
2 dr

( r
ε + 1)

p+2q
2

−1

� ε−
p+2q

2
+1ε

p−2
2

∫ 1
2

0

(
r
ε

) p−2
2 dr

( r
ε + 1)

p+2q
2

−1

� ε−
p+2q

2
+1ε

p−2
2 ε

∫ 1
2ε

0

r
p−2
2 dr

(r + 1)
p+2q

2
−1

� ε−q+1
∫ 1

2ε

0

r
p−2
2 dr

(r + 1)
p+2q

2
−1

� ε−q+1
∫ 1

2ε

1
r−qdr

�
{

1
εq−1 if q > 1,

| log ε| if q = 1.

We remark that in order to obtain upper estimates only, the assumption
that λ ∈ ia∗ was not used in view of the degree of generality of the formula in
Theorem 4.2(iii). Collecting the preceding results we have proved Theorem 5.1.

Everything that we will have proved about radial limits, namely Theo-
rem 5.1 and Theorem 4.5, is consistent with the following conjecture.

Conjecture B. Let α ∈ Σ0 and Hα ∈ a be the corresponding co-root; i.e.,
Hα ∈ [gα, g−α] ∩ a such that α(Hα) = 2. Let cα ∈ R such that cαHα ∈ ∂b0.
Further, set mα = dim gα for all α ∈ Σ. Then for all α ∈ Σ0 and λ ∈ a∗C we
have

|ϕλ(exp(i(1 − ε)cαHα))| �
{

1
εmα−1 if mα > 1,

| log ε| if mα = 1.

Remark 5.6. Correspondence with G. Heckman and E. Opdam suggests
that the nature of the singularity of the holomorphically extended spherical
function in co-root directions might be obtained from properties of the mon-
odromy associated to solutions of the system of invariant differential operators.

Lower estimates. In a later application to automorphic functions we will
also need lower estimates for the norm of the K-fixed vector in the holomor-
phically continued region, for all ε > 0, not only at the singularity. The result
is obtained in a way similar to the preceding.
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Proposition 5.7. Let (πλ,Hλ) be a unitary spherical principal series
representation of a group G of real rank one. Let X ∈ ∂b1 and set

(v0)ε = πλ(exp(i(1 − ε)X))v0.

Then there exists a constant C independent of λ such that

‖(v0)ε‖2 = |ϕλ(exp(−2i(1 − ε)X))| ≥ C

{
e(π−7ε)|λ| for q = 0,

εe(π
2
−21ε)|λ| for q > 0,

for all 0 < ε ≤ 1.

Proof. As usual we restrict ourselves to the case of λ imaginary.

Case 1: q = 0. Here we have that

‖(v0)ε‖2 = ϕλ(ei(π−ε)) = e−iλ(π−ε)
∫ ∞

0

r
p−2
2

|(1 + ei(π−ε)r)
p
2
−λ|2

.

By the Weyl group invariance of ϕλ we have ϕλ = ϕ−λ and so we may
assume that λ ∈ iR+, i.e., λ = i|λ|. Then we get

‖(v0)ε‖2 ≥ e(π−ε)|λ|
∫ 1

2

0

r
p−2
2 dr

|(1 + ei(π−ε)r)
p
2
−λ|2

.

If z is a complex number, then we write −π ≤ arg(z) < π for the argument
of z and m(z) for the modulus of z. Then for 0 ≤ r ≤ 1

2 we have 0 ≤
arg(1 + ei(π−ε)r) < 3ε and m(1 + ei(π−ε)r) ≤ 2. Hence

1

|(1 + ei(π−ε)r)
p
2
−λ|2

≥ 2−
p
2 e−6ε|λ|

and the assertion of the proposition for q = 0 follows.

Case 2: q > 0. Here we have that

‖(v0)ε‖2 = ϕλ(ei(π
2
−ε))

= e−iλ(π
2
−ε)

∫ ∞

0

∫ ∞

0

r
p−2
2 s

p−2
2 dr ds

|
(
(1 + ei(π

2
−ε)r)2 + sei(π−2ε)

) p+2q
4

−λ
2 |2

.

By the Weyl group invariance of ϕλ we may assume that λ ∈ iR+ and hence
get

‖(v0)ε‖2 ≥ e(π
2
−ε)|λ|

∫ 1
2

0

∫ ε

0

r
p−2
2 s

p−2
2 dr ds∣∣∣((1 + ei(π

2
−ε)r)2 + sei(π−2ε))

p+2q
4

−λ
2

∣∣∣2 .

Now for 0 ≤ r ≤ ε and 0 ≤ s ≤ 1
2 we have 0 ≤ arg((1 + ei(π

2
−ε)r)2 +

sei(π−2ε)) ≤ 10ε and m((1 + ei(π
2
−ε)r)2 + sei(π−2ε)) ≤ 2. Hence the assertion

follows as in Case 1.
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6. Invariant seminorms

Bernstein and Reznikov, in [BeRe99], introduced the notion of a maxi-
mal invariant seminorm associated to Sobolev norms of vectors in representa-
tions. For the K-fixed vector of spherical principal series representations for
G = Sl(2, R) they coupled this with some estimates on the holomorphically
extended spherical functions into a beautiful technique to get estimates on
Rankin-Selberg integrals for Maaß forms.

We shall extend their technique in several directions. First, by using a
more representation theoretic viewpoint we will be able to treat the case of
real rank one groups. When specialized to G = Sl(2, R) this will allow us to
get a small improvement over the corresponding results in [BeRe99]. Secondly,
in Section 9 we are able to consider some higher rank groups for which we
obtain estimates on triple products of Maaß forms. These higher rank results
are likely new, but should be viewed as a sample of the technique rather than
as sharp results.

Definition 6.1. (cf. [BeRe99, App. A]).
(a) Let V be a real or complex vector space and (Ni)i∈I a family of semi-

norms on it. Then

(infi∈I Ni)(v): = inf∑
i∈I

vi=v

∑
i∈I

Ni(vi)

also defines a seminorm on V and satisfies infi∈I Ni ≤ Nj for every j ∈ I.

(b) Let G be a semigroup acting on V and N :V → [0,∞[ a single semi-
norm. Then for g ∈ G define a seminorm Ng by Ng(v) = N(g · v). As in (a)
one obtains a seminorm NG by setting

NG = infg∈G Ng.

Definition 6.2. Let (π,H) be a unitary representation of a Lie group G

on some Hilbert space H. Let {X1, . . . Xn} be a basis of g. Then the kth

Sobolev norm on H∞ is defined by

Sk(v) =
∑

0≤m1+...+mn≤k

‖dπ(Xm1
1 . . . Xmn

n )v‖ (v ∈ H∞).

It is easy to see that a different choice of basis leads to an equivalent seminorm.
We remark that Sk, k > 1, is usually not G-invariant. As in (b) above, we set

SG
k (v) = infg∈G Sk(π(g)v).

Then it is a natural problem to estimate SG
k (·) for the various representa-

tions of G. Fix an irreducible unitary representation of a semisimple Lie group
G having a nonzero K-fixed vector v0. Let v ∈ Hλ,K be a K-finite vector.
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Recall from Proposition 4.1 that the orbit map G → Hλ, g �→ πλ(g)v extends
to a holomorphic map on GΩKC. Write Ω = AΩi with Ωi ⊆ exp(ia), and
notice that Ωi has compact closure. We shall show for real rank one groups
that SG

k (πλ(a)v) is comparable to ‖πλ(a)v‖ uniformly in a ∈ Ω for all K-finite
vectors. Similar results will be obtained for holomorphic discrete series in Sec-
tion 8. But first we explain how for spherical principal series the case of an
arbitrary K-finite vector v can be reduced to the spherical vector v0.

Reduction to a spherical vector.

Lemma 6.3. Let G = KAN be any Iwasawa decomposition and set
L = AN . Suppose that (πλ,Hλ) is an irreducible unitary representation of a
semisimple Lie group G having a nonzero K-fixed vector v0.

(i) The K-spherical vector v0 is L-cyclic, i.e. Hλ = spanC{πλ(L)v0}.

(ii) If Hλ,K denotes the K-finite vectors of (πλ,Hλ), then

Hλ,K = dπλ(U(lC))v0,

where l denotes the Lie algebra of L.

Proof. (i) This follows from πλ(L)v0 = πλ(G)v0 and the irreducibility of
(πλ,Hλ).

(ii) This is immediate from (i).

Let (π,H) be a Hilbert representation of G. For a closed subgroup L < G

write H∞
L for the smooth vectors for π |L. If π is irreducible, then from the

Casselman-Wallach theory of smooth globalizations of Harish-Chandra mod-
ules (cf. [Wal92, Ch. 11]) one has that H∞ = H∞

K .

If H < G is a subgroup, denote by Sk,H the kth Sobolev norm for the
representation π |H . In particular, the Fréchet topology on H∞ is also induced
by the Sobolev norms (Sk,K)k∈N.

Lemma 6.4. Let G = KAN be any Iwasawa decomposition and set
L = AN . Suppose that (πλ,Hλ) is an irreducible unitary representation of a
semisimple Lie group G having a nonzero K-fixed vector v0.

(i) For every k ∈ N there exist an l ∈ N and a constant C > 0 such that

(∀a ∈ Ωi) Sk(πλ(a)v0) ≤ CSl,L(πλ(a)v0).

(ii) For every v ∈ Hλ,K and k ∈ N there exist an l ≥ k and a constant C > 0
such that

(∀a ∈ Ωi) Sk(πλ(a)v) ≤ CSl,L(πλ(a)v0).



HOLOMORPHIC EXTENSIONS OF REPRESENTATIONS I 677

Proof. (i) We identify U(gC) with S(gC). Then the natural grading of
S(gC) yields a direct sum decomposition U(gC) =

⊕
k∈N U(gC)k. Fix a norm

‖ · ‖ on gC and take its natural extension to S(gC). For any g ∈ GC, Ad(g)
maps U(gC)k to itself boundedly, so has a norm, say, ‖Ad(g)‖k. If X ∈ U(gC)k

with ‖X‖ = 1, then

‖Xπλ(a)v0‖ = ‖πλ(a)(Ad(a)−1X)v0‖ ≤ ‖Ad(a−1)‖k supY ∈U(gC)k

‖Y ‖≤1

‖πλ(a)Y v0‖.

Here C = supa∈Ωi
‖Ad(a±1)‖k is finite by the relative compactness of Ωi.

Hence from Lemma 6.3 there exist an l ∈ N and an r > 0 such that

‖Xπλ(a)v0‖ ≤ C supY ∈U(gC)k

‖Y ‖≤1

‖πλ(a)Y v0‖ ≤ C supZ∈U(lC)l

‖Z‖≤r

‖πλ(a)Zv0‖.

Now as l is normalized by a, we get that

‖Xπλ(a)v0‖ ≤ C2 supZ∈U(lC)l

‖Z‖≤r

‖Zπλ(a)v0‖ ≤ C ′Sl,L(πλ(a)v0)

for some constant C ′ independent of X.

(ii) By Lemma 6.3(ii) there exists an X ∈ U(lC) such that v = Xv0. Since
a normalizes l the assertion follows now from (i).

Throughout this section we shall follow the custom that a constant ‘C’
depends on any quantifiers preceding it in the statement. Thus in the previous
result (ii), ‘C’ depends on πλ, k, and v but not on a.

Compressing Sobolev norms. For any choice of positive roots Σ+ we set
a+ = {X ∈ a: (∀α ∈ Σ+) α(X) > 0} and a− = −a+, and, on the group side,
let A± = exp(a±).

Lemma 6.5. Let (π,H) be a unitary representation of G and v ∈ H∞.
Then for k ∈ N0,

(i) SA+

k,N (v) = ‖v‖;

(ii) SG
k,AN (v) = SG

k,A(v).

Proof. (i) Let {X1, . . . , Xs} be a basis of root vectors of n corresponding
to roots α1, . . . , αs ∈ Σ+. Then for any v ∈ H∞

Sl,N (v) = ‖v‖ +
∑

1≤m1+...+ms≤l

‖dπ(Xm1
1 · ·Xms

s )v‖.

For a = exp(X) ∈ A, X ∈ a,



678 BERNHARD KRÖTZ AND ROBERT J. STANTON

Sl,N (π(a)v)

= ‖π(a)v‖ +
∑

1≤m1+...+ms≤l

‖dπ(Xm1
1 · ·Xms

s )π(a)v‖

= ‖v‖ +
∑

1≤m1+...+ms≤l

‖π(a)dπ((Ad(a−1)X1)m1 · ·(Ad(a−1)Xs)ms)v‖

= ‖v‖ +
∑

1≤m1+...+ms≤l

e
−

∑s

j=1
mjαj(X)‖dπ(Xm1

1 · ·Xms
s )v‖.

If we choose X ∈ a+,

SA+

l,N (v) ≤ infa∈A+ Sl,N (π(a)v) ≤ inft>0 Sl,N (π(exp(tX))v)

= inft>0

(
‖v‖ +

∑
1≤m1+...+ms≤l

e
−t

∑s

j=1
mjαj(X)‖dπ(Xm1

1 · ·Xms
s )v‖

)
= ‖v‖.

On the other hand, clearly ‖v‖ ≤ SA+

k (v). Thus ‖v‖ = SA+

l,N (v) completing the
proof of (i).

(ii) One has the obvious inequality Sk,AN (v) ≥ Sk,A(v), so that SG
k,AN (v) ≥

SG
k,A(v). On the other hand,

SG
k,AN (v) ≤ infg∈G Sk,AN (π(g)v)

≤ infh∈A+ Sk,AN (π(h)v)

= Sk,A(v),

so that SG
k,AN (v) ≤ SG

k,A(v).

The case of G = Sl(2, R). Our goal is to estimate SG
k (π(a)v0) for all a ∈ Ωi.

In this section we shall present extensive details for G = Sl(2, R) as this will
be the model for the proof later for rank one groups. Here we will consider
an irreducible unitary spherical principal series representation (πλ,Hλ). The
complementary series and nonspherical principal series representations can be
shown similarly. Discrete series however will be obtained rather differently in
Section 8.

We identify N with R via the mapping nx �→ x (see Appendix A for
notation). We are going to work in the noncompact realization of πλ on

L2(N) = L2(R). With g−1 =

(
a b

c d

)
the action of πλ(g) is given by

(6.1) (πλ(g)f)(x) = |cx + d|λ−1f

(
ax + b

cx + d

)
for all f ∈ L2(R) and x ∈ R. For this module one has

H∞
λ = {f ∈ C∞(R): |x|λ−1f(

1
x

) ∈ C∞(R)}.
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We use a usual basis for the Lie algebra of g:

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
, F =

(
0 0
1 0

)
.

Then a = RH, n = RE and n = RF . With U = E − F we have k = RU .
Differentiating (6.1) one obtains the formulas

dπλ(H) = (λ − 1) − 2x
d

dx
,(6.2)

dπλ(E) = − d

dx
,(6.3)

dπλ(F ) = (1 − λ)x + x2 d

dx
,(6.4)

dπλ(U) = (λ − 1) − (1 + x2)
d

dx
,(6.5)

dπλ(E + F ) = (1 − λ)x − (1 − x2)
d

dx
.(6.6)

We also define the radial operators by

(Rjf)(x) = (xj dj

dxj
f)(x)

and define the radial Sobolev norms by

Sk,rad(f) =
k∑

j=0

‖Rjf‖.

From the action of dπλ(H) and Rj it is clear that there exists a constant C > 0,
depending on k and λ, such that for all f ∈ S(R)

(6.7)
1
C

Sk,rad(f) ≤ Sk,A(f) ≤ CSk,rad(f).

As remarked by the referee, in (6.2) and (6.4) the coefficient of the deriva-
tive term has a zero; consequently Sk(v) cannot be majorized by Sk,AN (v) or
by Sk,A(v) in general. However, we shall show in the next proposition that
there is such a relationship for the G−invariant Sobolev norms.

Proposition 6.6. Let G = Sl(2, R) and (πλ,Hλ), λ ∈ ia∗, be an irre-
ducible unitary spherical principal series representation. Then for every k ∈ N0

there exists a C > 0 such that for v ∈ H∞
λ ,

SG
k (v) ≤ CSG

k,A(v).

Proof. The A action on K/M ∼= S1 has two fixed points, corresponding
to the two Bruhat cells. In the noncompact realization N they become the
origin and the point at infinity. We shall estimate SG

k (f) by using first a cut-
off function at infinity, n, and an elementary estimate there. Near the origin
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a dilated cutoff localizes sufficiently high derivatives of f to get an estimate.
Away from the fixed points, motivated by an argument in [BeRe99] and classi-
cal Littlewood-Paley theory, we use a family of suitably dilated cutoff functions
which compress the n derivatives in the definition of G-invariant norm to radial
derivatives thereby obtaining the desired estimate.

For j ∈ Z we denote by Ij the set {x ∈ R: 2−j−1 ≤ |x| ≤ 2−j+1}. For a
function ψ on R we write ψj(x) = ψ(2jx). Notice that if ψ is supported in I0

then ψj is supported in Ij , and

supp(ψj) ∩ supp(ψj+1) ⊆ ±[
1

2j+1
,

1
2j

].

We take a smooth, nonnegative function ϕ supported in I0 and such that for
every m ∈ N0,

m∑
j=0

ϕj(x) =


0 if |x| ≤ 2−m−1,

1 if 2−m ≤ |x| ≤ 1,

0 if 2 ≤ |x|.
Choose a nonnegative function τ ∈ C∞(R) with support in {x ∈ R:

1 ≤ |x|} such that (τ + ϕ)(x) = 1 for |x| ≥ 1. Finally for each m ∈ N define
the function τm ∈ C∞

c (R) by τm = 1 − τ − ∑m
j=0 ϕj . Notice that supp τm ⊆

{x ∈ R: |x| ≤ 2−m} and τm(x) = 1 for |x| ≤ 2−m−1. From the properties of
the ϕj and τ it is easy to see that for any l ≥ 1, τ

(l)
m (x) = −2lmϕ(l)(2mx).

Let f ∈ H∞
λ . Since

1 = τ + 1 − τ

= τ + τm +
m∑

j=0

ϕj

= τ + ϕ + τm +
m∑

j=1

ϕj ,

then

f = (τ + ϕ)f + τmf +
m∑

j=1

ϕjf.

For any choices of g, g1, . . . , gm ∈ G, using the definition of SG
k , we get

(6.8) SG
k (f) ≤ Sk((τ + ϕ)f) + Sk(πλ(g)(τmf)) +

m∑
j=1

Sk(πλ(gj)(ϕjf)).

First we consider the term Sk((τ +ϕ)f). From an examination of formulas
(6.2)–(6.4) one sees that Sk((τ + ϕ)f) ≤ CSk,N ((τ + ϕ)f) for all f ∈ H∞

λ .
(Throughout this proof C will denote a constant depending only on k, τ , ϕ

and λ.) Hence we have

Sk((τ + ϕ)f) ≤ CSk,N ((τ + ϕ)f) ≤ CSk,N (f)
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for all f ∈ H∞
λ . Majorizing this term in (6.8) we get

(6.9) SG
k (f) ≤ CSk,N (f) + Sk((πλ(g)τmf)) +

m∑
j=1

Sk(πλ(gj)(ϕjf))

for all f ∈ H∞
λ .

Next we specify a good choice of the elements g, g1, . . . , gm ∈ G. For every
t > 0 denote by bt the element

bt =

(
1√
t

0
0

√
t

)
∈ A.

From (6.1) it follows that

(πλ(bt)f)(x) = t
1
2
(1−λ)f(tx)

for all t > 0 and x ∈ R. Take gj = b2−j for all 1 ≤ j ≤ m and g = b2−(m+1) .
Notice that for every m all the πλ(gj)(ϕjf) are supported in [−2, 2], as is
πλ(g)(τmf). For any smooth function h supported in [−2, 2] we can conclude
from the formulas (6.2)–(6.5) that Sk(h) ≤ CSk,N (h). Using this in (6.9) we
get

(6.10) SG
k (f) ≤ CSk,N (f) + CSk,N (πλ(g)(τmf)) + C

m∑
j=1

Sk,N (πλ(gj)(ϕjf))

for all f ∈ H∞
λ .

Estimating Sk,N (πλ(g)(τmf)), we use Leibniz on τmf and L∞ estimates
on τ

(j)
m = −2jmϕ(j)(2mx). From (6.3) one sees that Sk,N (h) =

∑k
l=0 ‖h(l)‖.

Then

(6.11)

Sk,N (πλ(g)(τmf)) =
k∑

l=0

‖ dl

dxl
2−

(m+1)
2

(1−λ)(τmf)(2−(m+1)·)‖

=
k∑

l=0

|2−
(m+1)

2
(1−λ)|

×
[∫ ∣∣∣∣ l∑

n=0

2−(m+1)l

(
l

l − n

)
τ (l−n)
m (2−(m+1)x)f (n)(2−(m+1)x)

∣∣∣∣2 dx

] 1
2

≤
k∑

l=0

|2−
(m+1)

2
(1−λ)|

×
l∑

n=0

[ ∫
|x|≤2

∣∣∣∣2−(m+1)l

(
l

l − n

)
τ (l−n)
m (2−(m+1)x)f (n)(2−(m+1)x)

∣∣∣∣2 dx

] 1
2

=
k∑

l=0

∣∣∣∣2 (m+1)
2

λ

∣∣∣∣ l∑
n=0

[ ∫
|y|≤ 1

2m

∣∣∣∣2−(m+1)l

(
l

l − n

)
τ (l−n)
m (y)fn(y)

∣∣∣∣2 dy

] 1
2
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≤
k∑

l=0

|2
(m+1)

2
λ|

l∑
n=0

(
l

l − n

)
‖2(l−n)mϕ(l−n)‖∞

2(m+1)l

[ ∫
|y|≤ 1

2m

|f (n)(y)|2 dy

] 1
2

=
k∑

n=0

|2
(m+1)

2
λ| 1

2mn

k∑
l=n

(
l

l − n

)
‖ϕ(l−n)‖∞

2l

[ ∫
|y|≤ 1

2m

|f (n)(y)|2 dy

] 1
2

=
k∑

n=0

|2
(m+1)

2
λ| 1

2(m+1)n

k−n∑
j=0

(
j + n

n

)
‖ϕj‖∞

2j

[ ∫
|y|≤ 1

2m

|f (n)(y)|2 dy

] 1
2

≤
( k∑

j=0

‖ϕ(j)‖∞
j!2j

) k∑
n=0

k!
n!2(m+1)n

[ ∫
|y|≤ 1

2m

|f (n)(y)|2 dy

] 1
2

.

Now k is fixed and each of the at most k derivatives f (n) is in L2, hence the
integrals can be made uniformly small. So for each f we can choose an m so
that the last line above is at most ‖f‖. Then we have

SG
k (f) ≤ CSk,N (f) + C‖f‖ + C

m∑
j=1

Sk,N (πλ(gj)(ϕjf))

for any f ∈ H∞
λ . Thus from (6.10) we obtain

(6.12) SG
k (f) ≤ CSk,N (f) + C‖f‖ + C

k∑
l=0

m∑
j=1

‖ dl

dxl
(2−

j
2
(1−λ)ϕf(2−j ·))‖.

As in (6.11), using Leibniz on ϕf , L∞ estimates on ϕ(j), and majorizing the
binomial coefficients, we get

k∑
l=0

m∑
j=1

‖ dl

dxl
(2−

j
2 ϕf(2−j ·))‖ ≤ C

k∑
l=0

m∑
j=1

( ∫
I0

2−j−2l|f (l)(2−jx)|2 dx

) 1
2

(6.13)

= C
k∑

l=0

m∑
j=1

( ∫
Ij

2−2l|f (l)(x)|2 dx

) 1
2

≤ 4C
k∑

l=0

m∑
j=1

( ∫
Ij

|xlf (l)(x)|2 dx

) 1
2

≤ 4CSk,rad(f) ≤ 4CSk,A(f),

where the last inequality follows from (6.7) and again C depends only on τ , ϕ,
k and λ. Thus we get from (6.12) and (6.13) that

SG
k (f) ≤ CSk,N (f) + C‖f‖ + CSk,A(f) ≤ C‖f‖ + CSk,AN (f)

for all f ∈ H∞
λ . Now,

SG
k ≤ CSG

k,AN

and, by Lemma 6.5(ii), SG
k ≤ CSG

k,A as was to be shown.
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In G = Sl(2, R) the element

k0 =
1√
2

(
1 1
−1 1

)
is in K and is a square root of the Weyl group element. It will turn out that
k0 provides a uniform minimizer for Sobolev norms.

Theorem 6.7. Let G = Sl(2, R) and (πλ,Hλ), λ ∈ ia∗, be an irreducible
unitary spherical principal series representation. Then for every k ∈ N0 there
exists a C > 0, depending on k and λ, such that for all a ∈ Ωi

Sk,A(πλ(k0)πλ(a)v0) ≤ C‖πλ(a)v0‖.

In particular, for all a ∈ Ωi

SG
k (πλ(a)v0) ≤ C‖πλ(a)v0‖.

Proof. In view of Proposition 6.6 the second assertion follows from the
first one. To prove the first assertion notice that

(6.14) (πλ(k0)f)(x) = |x + 1|λ−1f

(
x − 1
x + 1

)
for all f ∈ L2(R).

We parametrize Ωi with aε and a−1
ε , where

aε =

(
ei π

4
(1−ε) 0
0 e−i π

4
(1−ε)

)
for 0 < ε ≤ 1. Then, in the noncompact realization, πλ(aε)v0 is of the form
c(λ, ε)fε where

fε(x) =
1

(1 + eiπ(1−ε)x2)
1
2
−λ

and c(λ, ε) is a constant depending on λ and ε, and is uniformly bounded in ε

(as can be seen from §5). Notice that the poles of fε, as ε → 0, are at x = ±1.
Thus if we take a smooth cut-off function τ ∈ C∞

c (R) with, say, τ |[−2,2] = 1,
then
(6.15)
Sk,A(πλ(k0)fε) ≤ Sk,A(πλ(k0)τfε)+Sk(πλ(k0)(1−τ)fε) ≤ Sk,A(πλ(k0)τfε)+C.

Here C is a positive constant independent of ε because, on the support of
(1− τ), one has ‖(1− τ)fε‖ � ‖(1− τ)x−1‖, with similar results on the norms
of derivatives.

With gε = τfε, in view of (6.7), (6.14) and (6.15), it suffices to show that

Sk,rad(πλ(k0)gε) ≤ C‖πλ(aε)v0‖
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for all ε and some constant C > 0. By the radial Sobolev norms and the
estimate in Lemma 5.3, ‖gε‖ � ‖πλ(aε)v0‖ �

√
| log ε|, it is enough to show

that
‖Rjπλ(k0)gε‖ ≤ Cj

√
| log ε|

for all j ≥ 1.
For f ∈ C∞

c (R) and from (6.14),

(R1πλ(k0)f)(x) = 2x|x + 1|λ−1 1
(x + 1)2

f ′
(

x − 1
x + 1

)
+ε(x)(λ − 1)x|x + 1|λ−2f

(
x − 1
x + 1

)
with ε(x) = 1 for x > −1 and ε(x) = −1 for x < −1. Disregarding the sign
function ε(x), and using induction we have

(Rjπλ(k0)f)(x) = xj
j∑

m=0

cmf j
m(x)

for some constants cm independent of f , and where

f j
m(x) = |x + 1|λ−1−j−mf (m)

(
x − 1
x + 1

)
.

Thus to estimate Sk,rad(πλ(k0)gε) =
∑k

j=0 ‖Rjπλ(k0)gε‖ we must show that

(6.16) |〈xjgj
ε,m, xjgj

ε,n〉| ≤ C| log ε|

for all m, n ≤ j.
Now, consider an expression of the form |〈xjf j

m, xjf j
n〉| where

(6.17)

|〈xjf j
m, xjf j

n〉| ≤
∫

R
x2j |x + 1|−2−m−n−2j |f (m)

(
x − 1
x + 1

)
| |f (n)

(
x − 1
x + 1

)
| dx

= 2
∫

R

∣∣∣∣x + 1
1 − x

∣∣∣∣2j ∣∣∣∣x + 1
1 − x

+ 1
∣∣∣∣−m−n−2j

|f (m)(x)f (n)(x)| dx

= 2−(m+n)−2j+1
∫

R
|x + 1|2j |1 − x|m+n |f (m)(x)f (n)(x)| dx.

Next, as ε → 0, the functions gε have poles at x = 1 and x = −1.
Similarly, as ε → 0, g

(m)
ε (x) has poles only at x = ±1 and of order at most

m+ 1
2 . Examining (6.17) with f = gε we see that the factor |x+1|2j |1−x|(m+n)|

cancels poles. In particular

|x + 1|2j |1 − x|m+n|g(m)
ε (x)g(n)

ε (x)|

has poles at x = ±1 for ε → 0 of order no more than that of gε. This establishes
(6.16) and concludes the proof of the theorem.
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Remark 6.8. (a) The second estimate, SG
k (πλ(a)v0) ≤ C‖πλ(a)v0‖, in

Theorem 6.7 is optimal in the sense that by G-invariance one has ‖v‖ ≤ SG
k (v)

for any smooth vector v in a unitary representation (π,H) of G.

(b) One can modify the proof of Theorem 6.7 to give the more general
result

(∀a ∈ Ωi) Sk,A(πλ(k0)πλ(a)v) ≤ C‖πλ(a)v‖
for an arbitrary K-finite vector v.

(c) The estimate SG
k (πλ(aε)v0) ≤ C

√
| log ε| in Theorem 6.7 is a little

sharper than the estimate (0.5) in [BeRe99], viz. SG
k (πλ(aε)v0) ≤ C| log ε|.

(d) Theorem 6.7 can be easily generalized to complementary series using
the results on spherical functions in Theorem 4.2.

Part of the method for G = Sl(2, R) generalizes to all groups of real rank
one. For example, the element k0 ∈ K can be found in these groups and gives
a uniform minimizer for Sk,A.

Lemma 6.9. Let g be a semisimple Lie algebra with Iwasawa decomposi-
tion g = k ⊕ a ⊕ n. Suppose that the restricted root system Σ satisfies one of
the following assumptions:

(1) Σ is of type A1 or BC1, i.e., g is of real rank one;

(2) Σ is of type Cn or BCn for n ≥ 2.

Then there exists a k0 ∈ K such that

Ad(k0)a ⊆ k ⊕ n = k ⊕ n.

Proof. First recall that all maximal abelian subspaces in p are conjugate
under Ad(K).

Suppose that (1) is satisfied. Then a is one-dimensional. Pick a nonzero
root vector Xα ∈ gα. Then e = R(Xα − θ(Xα)) is a maximal abelian subspace
in p which lies in k ⊕ n. Hence there exists a k0 ∈ K such that Ad(k0)a = e.

Suppose then that (2) is satisfied. Since Σ is of type Cn or BCn we
can find a maximal set γ1, . . . , γn of long strongly orthogonal roots. But via
sl(2, R)-reduction, the assertion follows from the already established rank one
case above.

We shall make the standing assumption, for the rest of this subsection,
that G has real rank one. We need to make the element k0 more explicit. Let β

denote the long positive root. Then we have β = α if q = 0, otherwise β = 2α.
Choose an sl(2, R)-triple {E, F, H} in g such that E lies in the root space gβ,
F = −θE and such that

H = [E, F ] [H, E] = 2E [H, F ] = −2F.



686 BERNHARD KRÖTZ AND ROBERT J. STANTON

With U = E − F we choose

k0 = exp(
π

4
U).

Then
Ad(k0)−1H = E + F.

Notice that
Ωi = {exp(iϕH)|ϕ ∈] − π

4
,
π

4
[}

and introduce elements aε by

aε = exp(i
π

4
(1 − ε)H).

Proposition 6.10. Suppose that G is of real rank one and that (π,H)
is an irreducible unitary representation with K-spherical vector v0. Then for
all k ∈ N0 there exists a constant C > 0 such that

(∀a ∈ Ωi) Sk,A(π(k0)π(a)v0) ≤ C
k∑

j=0

|aβ + a−β|jSj(π(a)v0).

Proof. Sk,A is given by

Sk,A(v) =
k∑

j=0

‖Hjv‖.

We are going to prove the proposition by induction on k. As the case
k = 0 is obvious, we start with the case k = 1, so that

S1,A(v) = ‖v‖ + ‖Hv‖.

For a ∈ Ωi we obtain

Hπ(k0)π(a)v0 = π(k0)(E + F )π(a)v0 = π(k0)π(a)(a−βE + aβF )v0

= π(k0)π(a)
(
(aβ + a−β)F + a−β (E − F )︸ ︷︷ ︸

∈k

)
v0

= π(k0)π(a)
(
(aβ + a−β)F

)
v0

= π(k0)
(
a−β(aβ + a−β)F

)
π(a)v0.

Using the unitarity of π we get

S1,A(π(k0)π(a)v0) = ‖π(a)v0‖ + ‖Hπ(k0)π(a)v0‖
= ‖π(a)v0‖ + |aβ + a−β| ‖Fπ(a)v0‖.

Since ‖Fπ(a)v0‖ ≤ CS1(π(a)v0), the proof of the k = 1 case is complete.
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Suppose that the statement holds for k − 1. We must show that

‖Hkπ(k0)π(a)v0‖ ≤ C
k∑

j=0

|aβ + a−β|jSj(π(a)v0).

As before we have

Hkπ(k0)π(a)v0 = π(k0)(E + F )kπ(a)v0 = π(k0)π(a)(a−βE + aβF )kv0.

Now we must arrange the expressions (a−βE + aβF )k in an appropriate way.
With U = E − F ,

(a−βE + aβF )k =
(
(aβ + a−β)F + a−βU)k.

Now using repeatedly the fact

(∀X ∈ U(gC)j) UXv0 = ([U, X] + XU)v0 = [U, X]v0,

with [U, X] ∈ U(gC)j−1, we obtain elements Zj,a ∈ U(gC)j , uniformly bounded
depending on a, such that

(a−βE + aβF )kv0 =
k∑

j=0

(aβ + a−β)jZj,av0

just as in the k = 1 case.

In (6.6) one can see that the derivative term of E + F has coefficient
vanishing precisely at x = ±1, the eventual poles of fε. This is the key to the
proof of Theorem 6.7. For the other rank one groups the singularity of fε lies
on a hypersurface, such as ‖x‖ = ±1, and this cannot be dominated by a single
operator E + F , nevertheless an argument of this type will be developed.

N vector fields from principal series representations. Before we can com-
plete our discussions for the rank one case, we first have to provide some simple
facts related to the Bruhat decomposition. The facts collected below hold for
an arbitrary semisimple Lie group.

For every k ∈ K we write λk:K/M → K/M, xM �→ kxM for the left
translation on K/M . There is the standard action of G on K/M by

G × K/M → K/M, (g, kM) �→ κ(gk)M.

Then every X ∈ g defines a vector field X̃ on K/M via

X̃m =
d

dt

∣∣∣∣
t=0

κ(exp(tX)m)

for all m ∈ M . Write pk: g → k for the projection along a+n and pk/m: g → k/m

for the composition of pk and the quotient mapping k → k/m.
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Lemma 6.11. For all X ∈ g and m = kM ∈ K/M ,

X̃m = dλk(1)pk/m(Ad(k−1)X).

Proof. By definition we have that

X̃m =
d

dt

∣∣∣∣
t=0

κ(exp(tX)k)M =
d

dt

∣∣∣∣
t=0

κ(k exp(t Ad(k−1)X))M.

Set Y = Ad(k−1)X. Then there exist smooth curves Yk(t) ∈ k, Ya(t) ∈ a,
Yn(t) ∈ n such that

exp(tY ) = exp(Yk(t)) exp(Ya(t)) exp(Yn(t))

for all t ∈ R. Differentiation at t = 0 yields

Y = Y ′
k (0) + Y ′

a(0) + Y ′
n(0)

and so Y ′
k
(0) = pk(Y ). Hence we get that

X̃m =
d

dt

∣∣∣∣
t=0

κ(k exp(Yk(t)) exp(Ya(t)) exp(Yn(t)))M

= dλk(1)
d

dt

∣∣∣∣
t=0

κ(exp(Yk(t)))M

= dλk(1)pk/m(Ad(k−1)X).

The Bruhat decomposition of G

G =
⋃

w∈W
NwMAN

gives the familiar decomposition of the flag manifold into Schubert cells

K/M =
⋃

w∈W
κ(NwM)/M.

Lemma 6.12. For all m ∈ κ(N)M/M ⊆ K/M ,

TmK/M = {X̃m:X ∈ n}.

Proof. This result is known but we include it for completeness. In view
of Lemma 6.11, it suffices to show that for k = nman, n ∈ N, m ∈ M, a ∈ A,

n ∈ N ,
pk(Ad(k−1)n) + m = k

or equivalently
Ad(k−1)n + m + a + n = g.

By the special choice of k,
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Ad(k−1)n + m + a + n = Ad(man)−1
(

Ad(n−1)n + Ad(man)(m + a + n)
)

= Ad(man)−1(n + m + a + n) = g.

Lemma 6.13. Let (πλ,Hλ) be a spherical principal series representation
of G realized in L2(K/M). Then for all m ∈ κ(N)M/M ⊆ K/M ,

spanC{{dπλ(X)m:X ∈ n} ∪ {1}} ⊇ Tm(K/M).

Proof. Recall that the G-action on Hλ is given by

(πλ(g)f)(kM) = f(κ(g−1k)M)a(g−1k)λ−ρ.

Hence we get for all X ∈ g that

(dπλ(X)f)(kM) =
d

dt

∣∣∣∣
t=0

f(κ(exp(−tX)k)M)a(exp(−tX)k)λ−ρ

= −(X̃f)(kM) + f(k)(λ − ρ)
(
pa(Ad(k−1)X)

)
with pa: g → a the projection along k + n. In view of Lemma 6.12, this
concludes the proof of the lemma.

Truncation at infinity. Recall that G is a semisimple Lie group of real
rank one and (πλ,Hλ), λ ∈ ia∗, a unitary principal series representation of G

which is realized on L2(N), with N ∼= Rp ⊕ Rq.
For 0 < ε ≤ 1 let aε ∈ Ωi be as before. Define a function on Rp ⊕ Rq by

fε(X, Y ) =
1

[(1 + ei(π
2
−ε)‖X‖2)2 + ei(π−2ε)‖Y ‖2]

p+2q
4

−λ
2

·

Then, in the noncompact realization of πλ on L2(N), the vector πλ(aε)v0

is of the form c(λ, ε)fε where c(λ, ε) is a constant depending only on λ and ε

and uniformly bounded in ε (cf. §5).
In order to estimate Sk(πλ(aε)v0) first we show that the behaviour at

infinity does not contribute to the singularity as ε → 0.

Lemma 6.14. Let (πλ,Hλ), λ ∈ ia∗, be a unitary spherical principal
series representation of a semisimple Lie group G of real rank one. Let k ∈ N.
Then there exists a constant C > 0 depending on λ and k such that

(∀a ∈ Ωi) Sk(πλ(a)v0) ≤ CSk,N (τπλ(a)v0)

for a function τ ∈ C∞
c (N) with support in B: = {Z ∈ N : ‖Z‖ ≤ 2}.

Proof. To begin we use the compact realization of Hλ as L2(K/M). Then
H∞

λ = C∞(K/M) and the topology on H∞
λ is induced from the usual Sobolev

norms (Sk,K)k≥0 and, in addition, each Sk is equivalent to Sk,K .
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The Bruhat decomposition gives

K/M = κ(N)M/M ∪ {w}

where Wa = {1, w}. Recall that

(πλ(a)v0)(k) = a(a−1k)λ−ρ.

Let ϕ ∈ C∞(K/M) with ϕ ≡ 1 in a small neighborhood of w. We claim that
we can make supp ϕ small enough so that

Sk,K(ϕπλ(a)v0) ≤ C

for all a ∈ Ωi. In fact, we have (πλ(a)v0)(w) = e(λ−ρ)(log wa−1w) from which our
claim easily follows.

In order to estimate Sk(πλ(a)v0) we have just seen that we can truncate
the function πλ(a)v0 away from infinity. In particular, we claim that there
exists a constant C > 0 such that

Sk(πλ(a)v0) ≤ CSk,N ((1 − ϕ)πλ(a)v0)

for all a ∈ Ωi. In fact it follows from Lemma 6.13 that, uniformly for all a ∈ Ωi,

Sk,K(πλ(a)v0) ≤ Sk,K((1 − ϕ)πλ(a)v0) + Sk,K(ϕπλ(a)v0)

≤ CSk,N ((1 − ϕ)πλ(a)v0) + C.

Now set τ = 1−ϕ so that τ is in C∞
c (N) and we can arrange the support

so that supp τ ⊆ B.

Local estimates for invariant Sobolev norms. As before G denotes a
semisimple Lie group of real rank one and (πλ,Hλ), λ ∈ ia∗, a unitary principal
series representation of G realized on L2(N).

Recall that a = RAα and define for t > 0 the elements bt = exp(log tAα)
∈ A. Then for f ∈ L2(N),

(πλ(bt)f)(X, Y ) = t
p+2q

2
−λf(tX, t2Y )

for all t > 0 and (X, Y ) ∈ Rp ⊕ Rq. Also note the action of N on L2(N):

(πλ(Y )f)(X) = f(X − Y )

for all X, Y ∈ N . We also will use the notation u = ‖X‖ and v = ‖Y ‖ for
(X, Y ) ∈ Rp ⊕ Rq.

Our goal is now to obtain estimates for SG
k (f) for functions with support

in the ball B = {Z ∈ N : ‖Z‖ ≤ 2}. Especially we are interested in estimating
SG

k (τfε). Now for ε → 0 the singularity of fε lies on the sphere u = 1 for q = 0
while for q > 0 the singularity lies on u = 0 and v = 1. This makes it necessary
to distinguish the cases q = 0 and q > 0.
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For a multi-index γ = (γ1, . . . , γp+q) ∈ Np+q
0 we set |γ| = γ1 + . . . + γp+q

and define the differential operator

∂γ =
∂γ1

∂Xγ1
1

· · ∂γp

∂X
γp
p

· ∂γp+1

∂Y
γp+1

1

· · ∂γp+q

∂Y
γp+q
q

.

The case of q = 0. N = Rp in this case and the singularities of fε for
ε → 0 lie on the sphere u = 1.

Lemma 6.15. Suppose that q = 0 and let B = {X ∈ Rp: ‖X‖ ≤ 2}. Then
for every k ∈ N0 there exists a constant C > 0 depending on k and λ such that

SG
k (f) ≤ C

∑
|γ|≤k

‖ |u − 1||γ|∂γf‖

for all smooth functions f with support in B.

Proof. The proof is very similar to the proof of Proposition 6.6, just more
technical and with more notation. We present the details for the case p = 2,
the general case simply having more spherical coordinate variables.

Let τ1, . . . , τn be smooth nonnegative functions with
∑n

i=1 τi = 1 on B.
Then for any smooth function f with support in B the definition of the invari-
ant Sobolev norms implies that

(6.18) SG
k (f) ≤

n∑
i=1

Sk(πλ(gi)(τif))

for any choice of g1, . . . , gn ∈ G.
Recall that for all smooth functions h with support in 16B we have

Sk(h) ≤ CSk,N (h)

for a constant C depending only on k and λ. If we choose our elements gi such
that supp(πλ(gi)τi) ⊆ 16B, we get from (6.18) that

(6.19) SG
k (f) ≤ C

n∑
i=1

Sk,N (πλ(gi)(τif)).

Next we make a good choice of functions τi and elements gi. We start
with the τi.

Let ϕ(x) be the one variable function from the proof of Proposition 6.6.
For any j ∈ N0 define a function on Rp by

ϕj(X) = ϕ(2j(1 − u))

and notice that

(6.20) suppϕj ⊆ {X ∈ Rp: 2−j−1 ≤ |u − 1| ≤ 2−j+1} .
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From now on we use the fact that p = 2. Then elements X ∈ R2 are
written in polar coordinates as X = (u cos 2πθ, u sin 2πθ) with θ ∈ R. Now
choose a nonnegative smooth function ψ(θ) with support in [0, 2] such that∑

m∈Z
ψ(m + ·) = 1.

Fix j ≥ 2. For l ∈ Z we define functions on R by

ψj,l(θ) = ψ(2jθ − l).

Notice that

(6.21) suppψj,l ⊆
[

l

2j
,
l + 2
2j

]
.

As j ≥ 2 these intervals have length at most 1
2 and so these functions descend

to smooth functions on the circle R/Z. In particular, we obtain that

2j∑
l=0

ψj,l(θ) = 1

for all θ ∈ R/Z.
Now we can define our partition of unity. We fix m ≥ 2 and define for all

2 ≤ j ≤ m − 1 and 0 ≤ l ≤ 2j the functions

τj,l(X) = ϕj(X)ψj,l(θ)

where X = (u cos 2πθ, u sin 2πθ).
Recall the one-variable functions τm from Proposition 6.6. We define

functions τm,l, 0 ≤ l ≤ 2m by

τm,l(X) = τm−1(1 − u)ψm−1,l(θ) .

We claim that we have for all γ ∈ Np
0 with |γ| ≤ k

(6.22) ‖∂γτj,l‖∞ ≤ C2|γ|j

for a constant C depending only on k, ψ and ϕ. In fact it follows from (6.20)
that all the τj,l are supported away from the origin where the cartesian partial
derivatives can be dominated by spherical partial derivatives ∂

∂u and ∂
∂θ . The

claim follows then from the construction of the τm,j .
It also follows from the construction of the τj,l that we have for all choices

of j, l that

(6.23) diam(supp τj,l) ≤ 16 · 2−j .

For a fixed f as in the statement of the lemma we may assume that

m∑
j=2

2j∑
l=0

τj,l = 1 on supp f.
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Then from (6.19) we get

(6.24) SG
k (f) ≤ C

m∑
j=2

2j∑
l=0

Sk,N (πλ(gj,l)(τj,lf))

for elements gj,l ∈ G to be specified.
For each j, l we now pick an element Zj,l ∈ supp τj,l. Then define

gj,l = (−Zj,l)b2−j ∈ AN ⊆ G

and notice that

(6.25) (πλ(gj,l)h)(X) = 2−
jp
2

+λh(2−jX + Zj,l)

for all functions h and X ∈ Rp. Then (6.20), (6.21), (6.23) and (6.25) imply
that

supp[πλ(gj,l)τj,l] ⊆ 16B.

We choose m large enough such that

2m∑
j=0

Sk,N (πλ(gm,j)τm,jf) ≤ ‖f‖

holds. This is possible in view of (6.22) and (6.25). Also from (6.22) we can
obtain

SG
k (f) ≤ ‖f‖

+C
∑
|γ|≤k

m−1∑
j=0

2j∑
l=0

( ∫
2j(supp τj,l−Zj,l)

2−2j|γ|2−jp|(∂γf)(2−jX + Zj,l)|2dX

) 1
2

≤ ‖f‖ + C
∑
|γ|≤k

m−1∑
j=0

2j∑
l=0

( ∫
supp τj,l

2−2j|γ||(∂γf)(X)|2 dX

) 1
2

.

Now on supp τj,l we have 2−j ≤ 2|u − 1| by (6.20) and so it follows that

SG
k (f) ≤ ‖f‖ + C

∑
|γ|≤k

m−1∑
j=0

2j∑
l=0

( ∫
supp τj,l

|u − 1|2|γ||(∂γf)(X)|2 dX

) 1
2

(6.26)

≤ C
∑
|γ|≤k

‖ |u − 1||γ|∂γf‖,

as was to be shown.

The case of q > 0. Here we have N = Rp ⊕ Rq and the singularity of
fε lies on the sphere u = 0 and v = 1. The analog of Lemma 6.15 for this
geometry is
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Lemma 6.16. Suppose that q > 0 and let B = {Z ∈ Rp ⊕ Rq: ‖Z‖ ≤ 2}.
Then for every k ∈ N0 there exists a constant C > 0 depending on k and λ

such that

(1) SG
k (f) ≤ C

∑
|γ|≤k

‖ |u||γ|∂γf‖

and

(2) SG
k (f) ≤ C

∑
|γ|≤k

‖ |v − 1||γ|∂γf‖

for all smooth functions f with support in B.

Proof. The proof is essentially the same as the one of Lemma 6.15 and we
describe only the necessary modifications.

The partition of unity is now by the truncators

τj,l(X, Y ) = ϕ(2ju)ϕ(22j(1 − v))ψ2j,l(θ)

with θ the spherical variable of Rq. Next, as done earlier leading to (6.25),
choose

gj,l = (−Zj,l)b2−j ∈ AN

with Zj,l ∈ Rq and in the support of ϕ(22j(1−v))ψ2j,l(θ). Then in the last step
(6.26) of Lemma 6.15 we can interpret 2−j either as u or |1 − v|. Accordingly
(1) and (2) follow.

Sharp estimates for invariant Sobolev norms for real rank one.

Theorem 6.17. Let (πλ,Hλ), λ ∈ ia∗, be a unitary spherical principal
series representation of a semisimple Lie group G of real rank one. Let k ∈ N.
Then there exists a constant C > 0 depending on λ and k such that

(∀a ∈ Ωi) SG
k (πλ(a)v0) ≤ C‖πλ(a)v0‖.

Proof. For m, n ∈ N0 define a function on N = Rp × Rq by

fm,n
ε (X, Y ) =

1

[(1 + ei(π
2
−ε)‖X‖2)2 + ei(π−2ε)‖Y ‖2]

m+2n
4

−λ
2

.

Notice that fε = fp,q
ε .

In view of Lemma 6.14, it is sufficient to prove that there exists a constant
C > 0 such that

(6.27) SG
k,N

(τfp,q
ε ) ≤ C‖πλ(aε)v0)‖

for all 0 < ε ≤ 1. Here τ ∈ C∞(N) is a fixed function with support in the ball
‖Z‖ ≤ 2, Z ∈ N .
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In order to keep track of what differentiation does to the function fp,q
ε we

define a shift operator L by

L(fm,n
ε ) =

{
fm,n+2

ε for n > 0
fm+2,0

ε for n = 0.

Now for Z ∈ n the elements dπλ(Z) are the usual differentiations on
N = Rp × Rq. Consider the action of dπλ(Z) on τfm,n

ε . When applied to
τ it essentially does not increase the function for ε → 0. Applied to fp,q

ε it
increases the exponent p+2q

4 − λ
2 by 1 and multiplies with a function Pε(X, Y ),

uniformly bounded in ε, X and Y , hence can be bounded by a constant. Thus,
for every Z ∈ n and k ∈ N0 we obtain the inequality

(2) |Zkτfp,q
ε | ≤ C|τLk(fp,q

ε )|

for all 0 < ε ≤ 1 and a constant C > 0 independent of ε.
We now distinguish the cases q = 0 and q > 0. We start with the q = 0

case. In view of (6.27), (6.28) and Lemma 6.15 it is sufficient to show that

|| τ |u − 1|kfp+2k,0
ε ‖ ≤ C‖τfε‖

as ‖τfε‖ � ‖πλ(aε)v0‖. Now this estimate is proved as in Lemma 5.5.
Finally the q > 0 case is proved similarly by employing (6.27), (6.28),

Lemma 6.16 (1) and the proof of Lemma 5.6.

Remark 6.18. Using the reduction results in Lemma 6.3 and Lemma 6.4
one can prove for an arbitrary K-finite vector that

(∀a ∈ Ωi) SG
k (πλ(a)v) ≤ C‖πλ(a)v‖.

Since we do not need this result in this paper and since the proof, albeit more
complicated, is fundamentally the same, we omit the details.

However, calculations in the higher rank case prompt us to state the fol-
lowing conjecture.

Conjecture C. Let (π,H) be an irreducible unitary representation of G

and v a K-finite vector. Then there exists a constant C > 0 such that

(∀a ∈ Ωi) SG
k (π(a)v) ≤ C‖π(a)v‖.

7. Applications to automorphic forms

For completeness we recall a few notions from automorphic forms. We
denote by ‖g‖, g ∈ G, the operator norm of Ad g, and we write Z(g) for the
center of the universal enveloping algebra U(g) of g.
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Definition 7.1. (cf. [Bo97, Ch. V]). Let Γ < G be a discrete subgroup of
co-finite volume. A smooth function f :G → C is called an automorphic form
for Γ if the following conditions are satisfied:

(Aut1) f is left Γ-invariant, i.e., f(γg) = f(g) for all γ ∈ Γ, g ∈ G.

(Aut2) f is right K-finite, i.e., spanC{f(·k): k ∈ K} is a finite dimensional
subspace in C∞(G).

(Aut3) f is Z(g)-finite, i.e., Z(g)f is a finite-dimensional subspace of C∞(G).

(Aut4) f is of polynomial growth, i.e., there exists an n ∈ N and a C > 0
such that

|f(g)| ≤ C‖g‖n

for all g in a Siegel set S ⊆ G for the group Γ.

If (π,H) is a unitary representation of G, then we write H∞ for the Fréchet
submodule of smooth vectors. The space of distribution vectors H−∞ is by
definition the strong antidual of H∞. If Γ < G is a subgroup, then we write
(H−∞)Γ for the Γ-invariants of H−∞.

The following proposition is well known but, because it is crucial to the
approach used, we include its short proof.

Proposition 7.2. Let (π,H) be an irreducible unitary representation of G,
η ∈ (H−∞)Γ and v ∈ H a K-finite vector. Then the function

θv,η:G → C, g �→ 〈π(g)v, η〉 = η(π(g)v)

is an automorphic form.

Proof. Since K-finite vectors are analytic, the function θv,η is defined.
As η is Γ-invariant, (Aut1) follows, while (Aut2) is a consequence of the
K-finiteness of v. Since (π,H) is irreducible, (Aut3) is a consequence of Schur’s
Lemma. Finally, the fact that H∞ has moderate growth (cf. [Wal92, 11.5.1])
implies (Aut4).

Remark 7.3. There is also a very useful converse to Proposition 7.2, i.e.,
every automorphic form is a generalized matrix coefficient (cf. [Wal92, 11.9.2]).

Proposition 7.4. Let G be a semisimple Lie group with G ⊆ GC. Let
Γ < G be a co-compact subgroup. Let (πλ,Hλ), λ ∈ ia∗, be a unitary spherical
principal series representation. Let η ∈ (H−∞

λ )Γ define an embedding

H∞
λ → C∞(Γ\G), v �→ θv,η; θv,η(Γg) = 〈πλ(g)v, η〉.

Then for all k > 1
2 dimG there exists a constant C > 0 such that

(∀v ∈ H∞
λ ) ‖θv,η‖∞ ≤ CSk(v).
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In particular, since ‖ · ‖∞ is G-invariant

(∀v ∈ H∞
λ ) ‖θv,η‖∞ ≤ CSG

k (v).

Proof. This is the content of [BeRe99, Lemma 3.3 and Prop. B.2].

Combining Theorem 6.17, Proposition 7.4 and Remark 6.18 we obtain the
following L∞ estimate on automorphic forms.

Theorem 7.5. Let (πλ,Hλ), λ ∈ ia∗, be a unitary spherical principal
series representation of a semisimple Lie group G of real rank one. Let η ∈
(H−∞

λ )Γ. For any K-finite vector v ∈ Hλ,K there is a constant C such that for
all a ∈ Ωi

‖θπλ(a)v,η‖∞ ≤ C‖πλ(a)v‖.

Triple products of Maaß forms for real rank one. Let Γ be a co-compact
discrete subgroup of G and set Y = Γ\G and X = Γ\G/K. For λ ∈ a∗C we
have defined the K-spherical principal series representation (πλ,Dλ). If πλ is
unitarizable, then Kλ denotes the Hilbert completion of Dλ in the compact
realization. Denote by Ĝ the unitary dual of G and by Ĝs ⊂ Ĝ the subset
corresponding to the K-spherical representations, i.e., corresponding to the
unitarizable K-spherical principal series. It is then convenient to consider Ĝs

as a subset of a∗C by identifying the equivalence class of πλ with λ.
For Γ < G co-compact the Plancherel theorem for the right regular action

of G on L2(Γ\G) says

(7.1) L2(Γ\G) ∼=
⊕̂

π∈Ĝ
mπKπ.

Here mπ = dim(K−∞
π )Γ < ∞ is the multiplicity of (π,Kπ) in L2(Γ\G). If

0 
= η ∈ (K−∞
π )Γ, then the G-equivariant map

K∞
π → C∞(Γ\G), v �→ (Γg �→ 〈π(g)v, η〉)

extends (up to multiplication by a scalar) to an isometry Kπ → L2(Γ\G).
Write KK

π for the subspace of K-fixed elements and recall that dimKK
π = 1

for π ∈ Ĝs and zero otherwise. Taking K-fixed vectors in (7.1) we obtain that

(7.2) L2(Γ\G/K) ∼=
⊕̂

π∈Ĝs
mπKK

π .

We will identify L2(Γ\G/K) with a subspace of L2(Γ\G).
If v0 ∈ KK

π and η ∈ (K−∞
π )Γ, then

ψv0,η(ΓgK) = 〈π(g)v0, η〉

defines an element in C∞(Γ\G/K). The function ψv0,η is referred to as a Maaß
form.
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Let (ψn)n∈N be an orthonormal basis of Maaß forms of L2(Γ\G/K). Then
each ψn(ΓgK) is of the form 〈πλn(g)vn

0 , η〉 for a specific λn ∈ Ĝs, a unit vector
vn
0 ∈ KK

λn
and a specific η ∈ (H−∞

λn
)Γ.

Fix X0 ∈ ∂Ωi and for v ∈ Hλ,K and 0 < ε ≤ 1 set

vε = πλ(exp(i(1 − ε)X0))v.

If ψ = θv0,η is a Maaß form, then we write ψε = θ(v0)ε,η ∈ L2(Y ) for all
0 < ε ≤ 1. Now, since ψ is continuous, we have ψ2 ∈ L2(X) ⊆ L2(Y ). Hence
we get

(7.3) ψ2 =
∑
i∈I

ciψi with ci = 〈ψ2, ψi〉.

If one considers (7.3) as an identity in L2(Y ), then analytic continuation yields

ψ2
ε =

∑
i∈I

ciψi,ε,

for all 0 < ε ≤ 1. Taking norms, we get

(7.4) ‖ψ2
ε‖2 =

∑
i∈I

|ci|2‖ψi,ε‖2 =
∑
i∈I

|ci|2‖(vi
0)ε‖2.

Theorem 7.6. Let G be a simple Lie group of real rank one and Γ < G

a co-compact discrete subgroup. Then for every Maaß form ψ, the coefficients
ci of the Fourier series of ψ2 =

∑
i∈I ciψi satisfy the following estimates.

(i) If q = 0, then there exists a constant C > 0 such that for all T > 1,

∑
|λi|≤T

|ci|2eπ|λi| ≤ C ·
{

T 2p−2 if p > 1,

(log T )2 if p = 1.

(ii) If q > 0, then there exists a constant C > 0 such that for all T > 1,

∑
|λi|≤T

|ci|2e
π
2
|λi| ≤ C

{
T 2q−1 if q > 1,

T (log T )2 if q = 1.

Proof. We start the proof with the identity (7.4):

‖ψ2
ε‖2 =

∑
i∈I

|ci|2‖(vi
0)ε‖2.

Now ‖ψ2
ε‖2 ≤ ‖ψε‖2

∞‖ψε‖2 = ‖ψε‖2
∞‖(v0)ε‖2.

(i) If q = 0, then we have by Theorem 7.5 and Theorem 5.1(ii) for ε → 0+,

‖ψ2
ε‖2 ≤ C

{
ε2−2p if p > 1
| log ε|2 if p = 1
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for some constant C. On the other hand from Proposition 5.7 we get a lower
bound. Thus ∑

i∈I

|ci|2eπ|λi|e−7ε|λi| ≤ C

{
ε−2p+2 if p > 1,

| log ε|2 if p = 1.

Setting ε = 1
T and collecting the λi with |λi| ≤ T , the assertion in (i)

follows.

(ii) By Theorem 7.5, Theorem 5.1(ii) and Proposition 5.7 the proof goes
as in (i).

Remark 7.7. (a) For q = 0 and p = 1 the estimate in Theorem 7.6 (i) is a
slight improvement of that obtained by Bernstein and Reznikov (cf. [BeRe99]),
viz. (log T )3 compared to our (log T )2.

(b) For q = 0 and p = 2 (this corresponds to G/K ∼= H3), Sarnak proved
in [Sa94] that

|ci| ≤ C(|λi|2 + 1)
3
2 e−

π
2
|λi|

for all i. Our estimate in Theorem 7.5(i) yields the slight improvement to

|ci| ≤ C|λi|e−
π
2
|λi|.

(c) With a more detailed analysis one can improve on the lower estimate
in Proposition 5.7 in the case of q = 0. One can show that

‖(v0)ε‖2 = |ϕλ(exp(−2i(1 − ε)X))| ≥ Ce(π−ε)|λ|
{

| log ε| for p = 1,

ε−p+1 for p > 1,

for all 0 < ε ≤ 1. In particular, this gives a small improvement on the estimates
of the triple products.

(d) We have presented these techniques for co-compact Γ; however, they
apply equally well to finite volume but not co-compact lattices. We illustrate
this in the next section where we obtain estimates on triple products of cusp
forms.

8. G = Sl(2, R)

Analytic continuation of the discrete series. Let G = Sl(2, R) and choose
K = SO(2, R) as a maximal compact subgroup. For every m ∈ Z define a
character χm of K by setting

χm

( (
cos θ sin θ

− sin θ cos θ

) )
= eimθ (θ ∈ R).

We will identify K̂ with Z by means of the above isomorphism.
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For every k ∈ N there exists a unitary highest weight representation of G

with highest weight −k and K-weight spectrum −k,−k − 2,−k − 4, . . .. For
k ≥ 2 we obtain the discrete series which can be realized in the holomorphic
functions on the upper half-plane X = {z ∈ C: Im z > 0}. More precisely, a
unitary highest weight representation (πk,Hk) with highest weight −k, k ≥ 2,
is given by the Hilbert space

Hk = {f ∈ O(X):
∫

H
|f(z)|2 dx dy

y2−k
< ∞}

and the action

(πk(g)f)(z) = (cz + d)−kf
(az + b

cz + d

)
(g−1 =

(
a b

c d

)
).

We recall from Example 4.3 the notation A, AC, and A1
C. For ε > 0 small

we define elements aε ∈ A1
C by

aε =

(
ei π

4
(1−ε) 0
0 e−i π

4
(1−ε)

)
.

If v is a K- weight vector of (πk,Hk), then we are interested in estimating
‖πk(aε)v‖2 for ε → 0. The estimates given thus far have been related to
principal series representations. We remark that the method we shall follow
applies more generally to unitary highest weight modules of other groups.

We have found that estimates for ‖πk(aε)v‖2 are obtained more easily if
we switch to the realization on the positive real axis. For k ∈ N we define the
Hilbert space:

Wk = L2(R+, xk dx

x
) = {f : R+ → C:

∫ ∞

0
|f(x)|2xk dx

x
< ∞}.

Then for k ≥ 2 the mapping

Φk:Wk → Hk, f �→ Φk(f); Φk(f)(z) =
∫ ∞

0
eixzf(x)xk dx

x

is, by the Paley-Wiener theorem, up to multiplication by a scalar, an isomor-
phism of Hilbert spaces. Thus we can transport the G-action on Hk and ob-
tain a unitary G-action on Wk. Call this representation (ρk,Wk). Of course,
one also has a unitary highest weight representation (ρ1,W1) with highest
weight −1.

We have for all k ≥ 1

(∀a > 0)(∀f ∈ Wk) (ρk(

(
a 0
0 a−1

)
)f)(x) = akf(a2x).

For every m ∈ Z let Wm
k = {v ∈ Wk: (∀k ∈ K) πk(k)v = χm(k)v}. Then

Wk =
⊕̂∞

j=0
W−k−2j

k
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is the orthogonal decomposition of Wk into K-isotypical components. More-
over, one can show that

W−k−2j
k = C{e−xpj(x)}

with pj(x) a polynomial of degree j.
For the discrete series of Sl(2, R) we come now to their analog of Theo-

rem 5.1.

Theorem 8.1. Let (ρk,Hk) be a unitary highest weight representation
of G = Sl(2, R) with lowest weight −k ∈ −N. Then for every K-finite vector
v ∈ Wk with weight m ∈ −k − 2N0,

‖ρk(aε)v‖2 � ε−|m|.

Proof. Let m = −k− 2j. Then v is a multiple of f(x) = e−xpj(x). Hence
it suffices to show that for g(x) = e−xxn one has

‖ρk(aε)g‖2 � ε−2n−k

for every n ∈ N0.
Clearly for fixed g the map

F :A1
C → Wk; F (a)(x) = akg(a2x)

is analytic. Since F |A = ρk |A(·)g, we have that

(ρk(a)g)(x) = akg(a2x)

for all a ∈ A1
C. Therefore

‖ρ(aε)g‖2 =
∫ ∞

0
|e−a2

εx(a2
εx)n|2xk dx

x

= |aε|4n
∫ ∞

0
e−2 Re(a2

ε)xx2n+k dx

x

� (Re a2
ε)

−2n−k = (Re ei π
2
(1−ε))−2n−k � ε−2n−k.

Automorphic forms associated to the discrete series. Let Γ < G be a
lattice in G but not co-compact. Let P < G be a parabolic subgroup of G and
P = MAP NP with M = {±I} its Langlands decomposition. Call P cuspidal
for Γ if Γ ∩ NP 
= {1}.

Definition 8.2. An automorphic form f :G → C is called a cusp form if
for all cuspidal parabolic subgroups P < G,

(∀g ∈ G)
∫
(NP∩Γ)\NP

f(ng) dn = 0.
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Recall from [Bo97, Cor. 8.7] that every cusp form f :G → C belongs to
Lp(Γ\G) for all 1 ≤ p ≤ ∞.

If (π,H) is an irreducible unitary representation of G, with space of
K-finite vectors HK , set

(H−∞)Γc = {η ∈ (H−∞)Γ: θv,η is a cusp form for all v ∈ HK}.

Note that if v ∈ HK , v 
= 0, then the irreducibility of (π,H) implies that

(H−∞)Γc = {η ∈ (H−∞)Γ: θv,η is a cusp form}.

Let now η ∈ (H−∞)Γc . Then the map

HK → L2(Γ\G), v �→ θv,η

gives rise (up to scalar multiple) to an isometric embedding

H → L2(Γ\G).

For v a K-weight vector, as usual, we set vε = π(aε)v for all ε > 0 small.

Theorem 8.3. Let (πk,Hk), k ≥ 2, be a holomorphic discrete series
representation. Let η ∈ (H−∞

k )Γc and v ∈ Hk a K-weight vector of weight m.
Then for ε small the following assertions hold :

(i) ‖θvε,η‖L2(Γ\G) � ε−
|m|
2 ;

(ii) ‖θvε,η‖∞ ≤ Cε−
|m|
2 for a constant C depending only on v.

Proof. (i) is just a restatement of Theorem 8.1, since the embedding Hk →
L2(Γ\G) is (up to scalar multiple) isometric, see Proposition 7.4.

(ii) First we need a little notation. Let X1, X2, X3 be a basis of g. The nth

Sobolev norm of the representation (πk,Hk) is given by the equivalent norm

(∀v ∈ H∞
k ) Sn(v) = ‖(1 −

3∑
i=1

dπk(Xi)2)
n
2 v‖.

It follows from [BeRe99, Prop. 4.1] that

‖θv,η‖∞ ≤ CS3(v) for all v ∈ H∞
k .

Moreover since ‖ · ‖∞ is G-invariant we obtain

‖θv,η‖∞ ≤ CSG
3 (v) for all v ∈ H∞

k ,

where SG
k (·) = infg∈G Sk(πk(g)·) is the infimum seminorm (cf. Definition 6.1).

We will work with the realization Wk on R+ of πk. Then

dπk(U(gC)) ⊆ C[x,
d

dx
]
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which can be seen either by direct computation or as a special case of a general
result on unitary highest weight representations (cf. [KrNe00]). Set DN =
(1 − ∑3

i=1 dπk(Xi)2)N , N ∈ N0. It suffices to show that

infg∈G ‖DNπk(g)vε‖ ≤ C‖vε‖
for any K-weight vector v and a constant C depending only on v and not on ε.
We do this only for a highest weight vector v; the computation for the other
K-types is similar. Write DN =

∑N
j,l=0 ajl xj dl

dxl and note that v is given by
the function v(x) = e−x. For t > 0, ∈ R we define elements bt, ns ∈ G by

bt =

( √
t 0

0 1√
t

)
, and ns =

(
1 s

0 1

)
.

Then for all f ∈ Wk

(πk(nsbt)f)(x) = e−isxt
k
2 f(tx).

Thus, (
DNπk(nsbt)vε

)
(x) =

N∑
j,l=0

ajl xj dl

dxl

(
ak

ε t
k
2 e−a2

εtxe−isx
)

= ak
ε t

k
2

N∑
j,l=0

(−is − a2
εt)

lajl xje−a2
εtxe−isx,

and

‖DNπk(nsbt)vε‖2 = tk
N∑

j,j′,l,l′=0

ajlaj′l′(is + a2
εt)

l(is + a2
εt)

l′

×
∫ ∞

0
xj+j′e−2 Re(a2

ε)txxk dx

x

=
N∑

j,j′,l,l′=0

ajlaj′l′(is + a2
εt)

l(is + a2
εt)

l′
t−(j+j′)

× (2 Re(a2
ε))

−(j+j′+k)
∫ ∞

0
xj+j′e−xxk dx

x

≤ C
N∑

j,j′,l,l′=0

|is + a2
εt|l+l′t−(j+j′)ε−(j+j′+k).

Taking t = 1
ε we get

‖DNπk(nsbt)vε‖2 ≤ Cε−k
N∑

l,l′=0

|is +
a2

ε

ε
|l+l′ .

Finally for s = −1
ε the expression |is + a2

ε
ε | is bounded for all 0 < ε ≤ 1 and so

we see that infg∈G ‖DNπk(g).vε‖ ≤ Cε−
k
2 , completing the proof of (ii).
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Triple products in the co-compact case. We recall how to relate automor-
phic forms of weight m to automorphic functions on G/K. An automorphic
form f :G → C is called of weight m ∈ Z if

(∀k ∈ K) f(gk) = χm(k)f(g).

We identify X with G/K by means of the isomorphism G/K → X,

gK �→ g.i. For every z ∈ X and g =

(
a b

c d

)
set µ(g, z) = cz + d and

recall that µ satisfies the cocycle relation µ(g1g2, z) = µ(g1, g2 · z)µ(g2, z). For
m ∈ Z we set µm = µ−m and note that µm(k, i) = χm(k) for all k ∈ K. If
f :G → C is of weight m, then the function

(8.1) F (gK) = µm(g, i)f(g)

defines an analytic function on G/K which satisfies

(∀γ ∈ Γ) F (gK) = µm(γ, gK)
−1

F (γgK)

for all gK ∈ G/K.
We say that f :G → C is an anti -holomorphic automorphic form if

F :G/K → C is an anti-holomorphic function. In the usual notation we write
M0

k (Γ) for the anti-holomorphic cusp forms on X = G/K of weight k ∈ N.
If (πk,Hk) is a unitary highest weight representation, then we write vk for a
normalized highest weight vector. If Θvk,η is the function on G/K associated
to θvk,η via (8.1), then it can be deduced with the help of Proposition 7.2 and
[Wal92, 11.9.2] that the mapping

(H−∞
k )Γc → M0

k (Γ), η �→ Θvk,η

is an isomorphism of (finite dimensional) vector spaces.
Let f :G → C be an automorphic form of weight m. Then |f | factors to a

function on G/K which we also denote by |f |. Then (8.1) gives

(8.2) (∀z = x + iy ∈ X) |f |2(z) = y−m|F (z)|2.

Set

X0 =

(
1 0
0 −1

)
,

and define ρ ∈ a∗ by ρ(X0) = 1. In a slightly different way, we will identify a∗C
with C by means of the isomorphism

C �→ a∗C, z �→ z2ρ.

Let (πk,Hk), k ∈ N0, be a unitary highest weight representation of G

and θv,η(Γg) = 〈πk(g)v, η〉 an automorphic form of weight m. Then |θv,η|2 ∈
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L2(Γ\G/K) and as in (7.3) we have

|θv,η|2 =
∑
n∈N

cnψn

with
cn = 〈|θv,η|2, ψn〉.

As before, we are interested in estimating the coefficients cn, the so called triple
products. For this we use the strategy introduced by Bernstein and Reznikov
as used in the proof of Theorem 7.6. Of course, here we must employ the
estimates just obtained related to discrete series.

Theorem 8.4. Let Γ be a discrete co-compact subgroup of G = Sl(2, R).
Let θv,η be an automorphic form of weight m ∈ Z associated to a unitary
highest weight representation (πk,Hk), k ∈ N0, of G. If |θv,η|2 =

∑
n∈N cnψn is

the orthogonal expansion of |θv,η|2 in Maaß forms, then there exists a constant
C > 0 such that for all T > 0,∑

|λn|≤T

|cn|2eπ|λn| ≤ CT 2|m|.

Proof. We start with the identity (7.4),

‖θ2
vε,η‖2 =

∑
n∈N

|cn|2‖vn
0,ε‖2.

In view of Theorem 8.3, the left-hand side can be estimated as

‖θ2
vε,η‖2 ≤ ‖θvε,η‖2

∞‖θvε,η‖2 ≤ C1ε
−|m|ε−|m| = C1ε

−2|m|

for a constant C1 > 0 independent of ε > 0. On the other hand, from Propo-
sition 5.7,

‖vn
0,ε‖2 ≥ C2e

(π−7ε)|λn|

for a constant C2 > 0 independent of n and ε. Thus

∑
n∈N

|cn|2e(π−7ε)|λn| ≤ Cε−2|m|.

Taking ε = 1
T and collecting all cn with |λn| ≤ T prove the theorem.

Triple products for the noncocompact case. Let P1, . . . , PN be a set of
representatives of the Γ-conjugacy classes of cuspidal parabolic subgroups.
Every Pj admits a Levi decomposition Pj = MAjNj . We choose Aj such
that Lie(Aj) is orthogonal to k with respect to the Cartan-Killing form on g .
Write aj :NjAjK → Aj for the middle projection in the Iwasawa decomposition
G = NjAjK.
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For every 1 ≤ j ≤ N and s ∈ C with Re s > 1 one defines the Eisenstein
series by

Ej(Γg, s): =
∑

γ∈(Γ∩Pi)\Γ
e(1+s)ρ(log aj(γg)) (g ∈ G).

For convenience we summarize the properties of Eisenstein series needed here,
as well as the familiar structure of the Plancherel theorem for L2(Γ\G). [Bo97]
is a convenient reference. The Eisenstein series admit a meromorphic contin-
uation in the variable s to the entire complex plane (cf. [Bo97, 11.9]). The
meromorphic continuation of Ej will be also denoted by Ej . We note that
Ej(·, s), when defined, is an automorphic form in the sense of Definition 7.1
(cf. [Bo97, Th. 10.4]); Ej(·, s) has no poles on iR (cf. [Bo97, Th. 11.13]).

We normalize the inner product on Kλ such that the spherical vector
vλ
0 (g) = a(g)−λ−ρ, g ∈ G, has norm 1. Then the fact that Ej(·, s) is an

automorphic form together with [Wal92, 11.9.2] implies the existence of an
ηj,s ∈ (K−∞

s )Γ such that

(8.3) 〈σs(g)vs
0, ηj,s〉 = Ej(Γg, 2s) (g ∈ G).

Let (ρ, L2(Γ\G)) denote the right regular representation of G on L2(Γ\G).
We write L2(Γ\G)s for the G-invariant subspace generated by L2(Γ\G/K), i.e.,

L2(Γ\G)s = span{ρ(G)L2(Γ\G/K)}.
One has

(8.4) L2(Γ\G)s = L2(Γ\G)s,d ⊕ L2(Γ\G)s,c

where

(8.5) L2(Γ\G)s,d =
⊕̂

π∈Ĝs
mπKπ

with mπ < ∞ (cf. [Bo97, Th. 16.2, Th. 16.6]), and

(8.6) L2(Γ\G)s,c =
N∑

j=1

∫ ⊕

iR
Ks,j ds

(cf. [Bo97, Th. 17.7]). In (8.6) the module Ks,j is isometrically equivalent to
Ks and K∞

s,j is realized as the image of the G-equivariant embedding

(8.7) H∞
s → C∞(Γ\G), v �→ (Γg �→ 〈σs(g)v, ηj,s〉).

Let (ψn)n∈N be an orthonormal basis of L2(Γ\G)s,d∩L2(Γ\G/K) of Maaß
cusp forms. Then ψn(Γg) equals 〈σλn(g)vn

0 , η〉 for vn
0 a normalized K-fixed

vector in Kλn and some element η ∈ (K−∞
λ )Γ.

If f ∈ L2(Γ\G/K), then (8.3)–(8.7) imply that

(8.8) f =
∞∑

n=1

〈f, ψn〉ψn +
N∑

j=1

∫
R
〈f, Ej(·, 2is)〉Ej(·, 2is) ds
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and

(8.9) ‖f‖2 =
∞∑

n=1

|〈f, ψn〉|2 +
N∑

j=1

∫
R
|〈f, Ej(·, 2is)〉|2 ds.

Theorem 8.5. Let (πk,Hk) be a unitary highest weight representation of
G and f = θv,η an associated cusp form of weight m. Then |f |2 ∈ L2(Γ\G/K)
and there exists a constant C > 0 such that for all T > 0,

∑
|λn|≤T

|〈|f |2, ψn〉|2eπ|λn| +
N∑

j=1

∫ T

−T
|〈|f |2, Ej(·, 2is)〉|2eπ|s|ds ≤ CT 2|m|.

Proof. It is clear that |f | is right K-invariant. Moreover, since cusp forms
are rapidly decreasing (cf. [Bo97, Th. 7.5]), we have |f |2 ∈ L2(Γ\G/K). Hence
(8.8) gives

(8.10) |f |2 =
∞∑

n=1

〈|f |2, ψn〉ψn +
N∑

j=1

∫
R
〈|f |2, Ej(·, 2is)〉Ej(·, 2is) ds.

We analytically continue (8.10) as in the proof of Theorem 8.4. First notice
that Ej(·, 2s) corresponds via the Plancherel theorem to vs

0 ∈ Ks, our unit
K-spherical vector in Ks (cf. (8.3), (8.7)). So we define Ej,ε(·, 2s) as the element
corresponding to vs

0,ε. Now analytic continuation of (8.10) in L2(Γ\G)s gives

(8.11) |fε|2 =
∞∑

n=1

〈|f |2, ψn〉ψn,ε +
N∑

j=1

∫
R
〈|f |2, Ej(·, 2is)〉Ej,ε(·, i2s) ds.

Taking norms in (8.11) we arrive at

(8.12) ‖|fε|2‖2 =
∞∑

n=1

|〈|f |2, ψn〉|2‖vn
0,ε‖2 +

N∑
j=1

∫
R
|〈|f |2, Ej(·, 2is)〉|2‖vs

0,ε‖2 ds.

In the proof of Theorem 8.4 we showed that ‖|fε|2‖2 ≤ C1ε
−2|m|. It follows

from Proposition 5.7 that there exists a constant C2 > 0 such that ‖vs
0,ε‖2 ≥

C2e
(π−7ε)|s| and ‖vn

0,ε‖2 ≥ C2e
(π−7ε)|λn| for all s ∈ iR and n ∈ N. Thus

(8.13)
∞∑

n=1

|〈|f |2, ψn〉|2e(π−7ε)|λn| +
N∑

j=1

∫
R
|〈|f |2, Ej(·, 2is)〉|2e(π−7ε)|s| ds ≤ Cε−2|m|.

Setting ε = 1
T in (8.13) and collecting the appropriate terms prove the

theorem.
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Remark 8.6. In [Go81a,b] Good proved a special case of Theorem 8.5
with methods from analytic number theory. To be more specific, for
k > 2, k even, and f = θvk,η, i.e., |f |2(z) = yk|F (z)|2, z ∈ X, for some
(anti-)holomorphic automorphic form F on the upper half-plane X, Good
proved (cf. [Go81a, Th. 1]) the estimate given in Theorem 8.5 for such an f .
A comparison of the proofs shows the effectiveness of the representation theo-
retic approach. We should point out that the number theory normalization of
the Eisenstein series Ej(·, u) used in [Go81a] differs by a change of parameters
u = 2s − 1 from the representation theory notation used in this paper.

Estimating Fourier coefficients of holomorphic cusp forms. Let F ∈ M0
k (Γ)

be an anti-holomorphic cusp form on the upper half-plane X. Let P be a cus-
pidal parabolic subgroup for Γ. Replacing Γ with a certain G-conjugate we
may assume that

Γ ∩ N = {
(

1 n

0 1

)
:n ∈ Z}.

Then F is a holomorphic cusp form on X and as such admits a Fourier expan-
sion at infinity

F (z) =
∞∑

n=1

cne2πinz.

As before we have

∀z = x + iy ∈ X |f |2(z) = yk|F (z)|2

for some cusp form f = θvk,η associated to a unitary highest weight represen-
tation (πk,Hk) of G.

If h ∈ C∞(Γ\G) is rapidly decreasing, then we define its constant term

hP :N\G → C, Ng �→
∫
(Γ∩N)\N

h(ng) dn.

Since |f |2 is a cusp form and hence rapidly decreasing, the Rankin-Selberg
convolution theorem (cf. [Bo97, Prop. 10.10]) yields for s ∈ C with Re s > 1
that

(8.14) 〈|f |2, E(·, s)〉L2(Γ\G) = 〈(|f |2)P , e(1+s)ρ log a(·)〉L2(N\G)

with E the Eisenstein series associated to P . From (8.14) and a straightforward
calculation one gets the familiar Rankin-Selberg zeta function (cf. [Bu97, p. 71–
72])

(8.15)
1
2
(4π)

1
2
−k− s

2 Γ(k − 1
2

+
s

2
)

∞∑
n=1

|cn|2n
1
2
−k− s

2 = 〈|f |2, E(·, s)〉

for all s with Re s > 1. From Theorem 8.4 we obtain the estimate

(8.16)
∫ T

−T
|〈|f |2, E(·, 2is〉|2eπ|s| ds ≤ CT 2k.
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It was shown by Good in [Go81a, p. 544-547] (see also [Pe95, p. 121–122])
that a combination of (8.15) and (8.16) yields the following result:

Theorem 8.7. Let F (z) =
∑∞

n=1 cne2πinz be a holomorphic cusp form of
weight k ∈ N with respect to an arbitrary discrete subgroup Γ < G of co-finite

volume and the property Γ ∩ N = {
(

1 n

0 1

)
:n ∈ Z}. Then

|cn| << n
k
2
− 1

6
+ε

for every ε > 0.

Fourier coefficients of Maaß forms. We shall give yet another applica-
tion of holomorphic extension, but with a different technique. Here we view
Whittaker functions as eigenfunctions of the invariant differential operators on
the locally symmetric space and use their holomorphic extension. It is classical
that Whittaker functions have such extensions but this seems to be a new use
of it. To avoid technicalities we suppose that G = Sl(2, R) and Γ < G is a
discrete subgroup with co-finite volume. We assume that Γ admits at least one
cusp and that

Γ ∩ N = {
(

1 nc

0 1

)
:n ∈ Z}

for some c > 0. Let θv,η be a Maaß form on Γ\G/K. For an element z =

x+ iy ∈ C with y > 0 we define gz =

( √
y x√

y

0 1√
y

)
and we note that gz · i = z.

Then θv,η admits a partial Fourier series

θv,η(Γgz) = a0(y) +
∑
m∈Z
m�=0

am
√

yKs(
2π

c
|m|y)e2πi m

c
x

where s ∈ C and

Ks(y) =
1
2

∫ ∞

0
e−y(t+ 1

t
)/2ts

dt

t
(y > 0)

is the K-Bessel function.

Theorem 8.8. Let θv,η be a Maaß cusp form for G = Sl(2, R). Then the
Fourier coefficients of θv,η satisfy

(∀N ≥ 2)
∑

|m|≤N
m�=0

|am|2
m

≤ C log N.

Proof. For every m ∈ Z define a unitary character χm of the circle group
Γ ∩ N\N by

χm

( (
1 x

0 1

) )
= e2πi m

c
x.
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Then we have for all m ∈ Z, m 
= 0, the identity

(8.17) am
√

yKs(
2π

c
|m|y)e2πi m

c
x =

∫
Γ∩N\N

θv,η(ngz)χ−m(n) dn

for z = x + iy in the upper half-plane. Now we holomorphically extend both
sides of (8.17). For 0 < ε ≤ 1 recall that

aε =

(
ei π

4
(1−ε) 0
0 e−i π

4
(1−ε)

)
∈ A1

C

and yε = ei π
2
(1−ε) and note that gyε = aε. Then by analytic continuation,

am
√

yεKs(
2π

c
|m|yε) =

∫
Γ∩N\N

θv,η(naε)χ−m(n) dn

for all 0 < ε ≤ 1. For every ε define

fε: Γ ∩ N\N → C, n �→ θv,η(naε).

It follows from Theorem 7.5 that ‖θvε,η‖∞ ≤ C| log ε| 12 and so in particular fε

is bounded and belongs to L2(Γ ∩ N\N). Therefore we get that

fε(n) =
∑
m∈Z

bmχm(n)

and ∑
m∈Z

|bm|2 = ‖fε‖2
2 ≤ ‖fε‖2

∞ ≤ C| log ε|.

Since bm = am
√

yεKs(2π
c |m|yε) we thus obtain that∑

m∈Z
m�=0

|am|2|yε|
∣∣∣Ks(

2π

c
|m|yε)

∣∣∣2 ≤ C| log ε|.

In particular for all N ∈ N we get that∑
|m|≤N
m�=0

|am|2
∣∣∣Ks(

2π

c
|m|yε)

∣∣∣2 ≤ C| log ε|.

Now choose ε = 1
N . Then for all |m| ≤ N ,

|m|yε = |m|ie−i 2
N ≈ |m|i +

2|m|
N

and so by the asymptotic expansions of the Bessel functions there exists C ′ > 0
such that ∣∣∣Ks(

2π

c
|m|yε)

∣∣∣ ≥ C ′√
|m|

for |m| large. This proves the theorem.
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Remark 8.9. The Ramanujan conjecture for Maaß forms says that the
coefficients |an| grow more slowly than nε for all ε > 0. Comparison with the
result in Theorem 8.8 shows that our result is consistent with this conjecture
and that our result is essentially sharp. A little more care with obtaining an
asymptotic estimate of C log N, instead of a bound of C log N, together with a
Tauberian theorem for logarithmic means give the equivalence of such a result
with the order of the pole of the Rankin-Selberg zeta function. We thank
Wenzi Luo for an informative conversation on this topic.

9. G = Sl(3, R)

Now we are going to apply our techniques to a group of higher rank,
namely G = Sl(3, R). This group is low dimensional enough for explicit com-
putations to be possible, yet it also illustrates that the technique works in
higher rank as well. In particular, we will verify part of Conjecture B and give
a complete answer to the boundary behaviour of the analytically continued
spherical functions in the direction of the extremal rays. Finally, with these
estimates available we can give an application to triple products.

Let us briefly summarize the notation for this special case:

a = {diag(x1, x2, x3):xi ∈ R;
3∑

j=1

xj = 0}

and

A = {diag(a1, a2, a3): ai > 0;
3∏

j=1

aj = 1}.

The positive system is Σ+ = {ε1−ε2, ε1−ε3, ε2−ε3} and the associated simple
roots are given by

Π = {ε1 − ε2, ε2 − ε3}.
Here ω1 = ε1 and ω2 = ε1 + ε2. The Weyl group, Wa

∼= S3, in this case acts
as the permutation group of {ε1, ε2, ε3}.

Define 3 × 3 matrices Eij by Eij = (δk−i,l−j)k,l. Note that gεi−εj = REij .
Now n1 = gε2−ε1 and n2 = gε3−ε2 ⊕ gε3−ε1 are subalgebras of n satisfying
n = n1 + n2, with n2 abelian. The map

Φ: R3 → N, (x, y, z) �→ exp(xE21) exp(yE32) exp(zE31) =

 1
x 1
z y 1


is a diffeomorphism. We take a choice of Haar measure dn on N so that its
pullback under Φ is the product of Lebesgue measures dx dy dz.
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Lemma 9.1. For all

a = diag(a1, a2, a3) ∈ A

and
n = exp(xE21) exp(yE32) exp(zE31) ∈ N

the following assertions hold :

(i) a(an)2ω1 = a2
1 + a2

2x
2 + a2

3z
2;

(ii) a(an)2ω2 = a2
1a

2
2+a2

1a
2
3y

2+a2
2a

2
3(z+xy)2 = a−2

3 +a−2
2 y2+a−2

1 (z+xy)2.

Proof. This is elementary.

We can improve Theorem 1.8 (ii) slightly.

Lemma 9.2. For G = Sl(3, R),

B1
CG ⊆ KCA0,≤

C NC.

Proof. By the usual argument with the Bruhat decomposition it is enough
to show that B1

CN ⊆ KCA0,≤
C NC. This follows readily from Lemma 9.1 and

Lemma 2.1(i).

In view of the discussion leading to Theorem 4.2(i), we can say that all
spherical functions ϕλ, λ ∈ a∗C, extend to KCB0

CKC.
Since g is split, ρ = ω1 + ω2. Then Theorem 4.2(iii) together with

Lemma 9.1 gives the following expression for spherical functions on G =
Sl(3, R), valid for all a ∈ exp ib0 and all λ = λ1ω1 + λ2ω2 ∈ ia∗ (the only
reason we restrict ourselves to λ imaginary is to keep the following formula
manageable).
(9.1)

ϕλ(a) =
∫

R3

dx dy dz∣∣∣(a1 + a2x2 + a3z2)1−λ1(a1a2 + a1a3y2 + a2a3(z + xy)2)1−λ2

∣∣∣
For each α ∈ Σ we write Hα ∈ a for the co-root of α. Notice that

π
2 Hα ∈ ∂b0 for all α ∈ Σ.

We consider the radial limits of ϕλ in the directions of the co-roots and
the fundamental weights. We begin with the co-root directions.

Lemma 9.3. Let α ∈ Σ and Hα be the corresponding co-root. Then, for
all λ ∈ a∗C for which (πλ,Hλ) is unitarizable,

ϕλ(exp(i
π

2
(1 − ε)Hα)) ≥ C| log ε|

for a constant C = C(λ).

Proof. This is a special case of Corollary 4.6.
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Next, for the fundamental weights we have

Xω1 = diag(
2
3
,−1

3
,−1

3
) and Xω2 = diag(

1
3
,
1
3
,−2

3
)

and ±πXωj ∈ ∂b0.
For these weights we use the following interesting splitting of the spherical

functions in extremal directions.

Proposition 9.4. Let G = Sl(3, R) and X ∈ RXω1 ∩ b0. Put a =
exp(iX). Then, for all spherical functions ϕλ, λ ∈ a∗C,

ϕλ(a) = C

∫
R2

1∣∣∣(a1 + a2x2 + a3z2)1−λ1(a1a2 + a2a3z2)1−λ2

∣∣∣
× 1

(a1 + a2x2 + a3z2)Re λ1(a1a2 + a2a3z2)Re λ2
dx dz

with
C =

∫
N

′ a(n′)−ε2+ε3 dn′

and N
′ = exp(gε3−ε2).

Proof. Set b = exp(i1
2X). Let n′ = gε3−ε2 and n′′ = gε2−ε1 ⊕ gε3−ε1 and

note that n = n′ ⊕ n′′ is a direct sum of subalgebras. Hence N = N
′
N

′′ ∼=
N

′ × N
′′ with N

′ = exp(n′) and N
′′ = exp(n′′). Hence we get from Theorem

4.2(iii) that

ϕλ(b2) =
∫

N
|a(bn)2(λ−ρ)| · a(bn)−2 Re λ dn

=
∫

N
′

∫
N

′′ |a(bn′n′′)2(λ−ρ)| · a(bn′n′′)−2 Re λ dn′ dn′′.

According to the Iwasawa decomposition, n′ = k′a′n′. Since k′ commutes
with b,

ϕλ(b2) =
∫

N
′

∫
N

′′ |a(bk′a′n′n′′)2(λ−ρ)| · a(bk′a′n′n′′)−2 Re λ dn′ dn′′

=
∫

N
′

∫
N

′′ |a(ba′n′n′′n′−1)2(λ−ρ)| · a(ba′n′n′′(n′)−1)−2 Re λ dn′ dn′′.

Since N ′ normalizes N
′′ in a unipotent way, that

ϕλ(b2) =
∫

N
′

∫
N

′′ |a(ba′n′′)2(λ−ρ)| · a(ba′n′′)−2 Re λ dn′ dn′′

=
∫

N
′ |a(n′)2(λ−ρ)|a(n′)−2 Re λ

×
∫

N
′′ |a(ba′n′′(a′)−1)2(λ−ρ)| · a(ba′n′′(a′)−1)−2 Re λ dn′ dn′′

=
∫

N
′ a(n′)−2ρ

∫
N

′′ |a(ba′n′′(a′)−1)2(λ−ρ)| · a(ba′n′′(a′)−1)−2 Re λ dn′ dn′′.
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Now the Jacobian of the map N
′′ → N

′′
, n′′ �→ a′n′′(a′)−1 is given by (a′)γ

with γ = −((ε1 − ε2) + (ε1 − ε3)). Hence,

ϕλ(b2) =
∫

N
′ a(n′)−(ε2−ε3) dn′

∫
N

′′ |a(bn′′)2(λ−ρ)| · a(bn′′)−2Re λ dn′′.

Finally Lemma 9.1 gives∫
N

′′ |a(bn′′)2(λ−ρ)| · a(bn′′)−2 Re λ dn′′

=
∫

R2

1∣∣∣(a1 + a2x2 + a3z2)1−λ1(a1a2 + a2a3z2)1−λ2

∣∣∣
× 1

(a1 + a2x2 + a3z2)Re λ1(a1a2 + a2a3z2)Re λ2
dx dz,

concluding the proof of the proposition.

Lemma 9.5. Let λ ∈ aC. Then for j = 1, 2,

|ϕλ(exp(±iπ(1 − ε)Xωj ))| ≤ C
1
ε

for a constant C > 0. Furthermore if λ ∈ ia∗, then

|ϕλ(exp(±iπ(1 − ε)Xωj ))| �
1
ε
.

Proof. Notice that sε1−ε3(Xω1) = −Xω2 (i.e. for Sl(3, R) π1 is contragre-
dient to π2) so that we have to consider only the radial limits in the direction
of ±Xω1 . We restrict ourselves to the case of −Xω1 . Then Proposition 9.4
gives

ϕλ(exp(iπ(1 − ε)Xω1))

= C(λ)
∫

R2

1

|(ei 2
3
π(1−ε) + e−i 1

3
π(1−ε)x2 + e−i 1

3
π(1−ε)z2)1−λ1 |

× 1

|(ei 1
3
π(1−ε) + e−i 2

3
π(1−ε)z2)1−λ2 |(e−i 2

3
π(1−ε) + ei 1

3
π(1−ε)x2 + ei 1

3
π(1−ε)z2)Re λ1

× 1

(e−i 1
3
π(1−ε) + ei 2

3
π(1−ε)z2)Re λ2

dx dz.

Hence we get

ϕλ(exp(iπ(1 − ε)Xω1)) = C(λ)
∫

R2

|ei 1
3
π(1−ε)(λ2−λ1)|ei 2

3
π(1−ε)(Re λ2−Re λ1)

|(eiπ(1−ε) + x2 + z2)1−λ1 |

× 1
|(1 + e−iπ(1−ε)z2)1−λ2 |(e−iπ(1−ε) + x2 + z2)Re λ1(1 + eiπ(1−ε)z2)Re λ2

dx dz.

We see that the singularity of the integral is located at x2 + z2 = 1 and
z2 = 1.
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Let us assume now that λ ∈ ia∗. The upper estimate for general λ ∈ a∗C
will be proved in the same way.

So for fixed λ ∈ ia∗ we get

ϕλ(exp(−iπ(1 − ε)Xω1)) �
∫ 2

0

∫ 2

0

dx dz

|(eiπ(1−ε) + x2 + z2)(eiπ(1−ε) + z2)|

�
∫ 2

0

∫ 2

0

dx dz

|(−1 + iε + x2 + z2)(−1 + iε + z2)|

�
∫ 2

0

∫ 2

0

dx dz

(ε + |1 − x2 − z2|)(ε + |1 − z2|)

�
∫ 2

0

∫ 1

−1

dx dz

(ε + |x2 + z2 + 2z|)(ε + |z|)

�
∫ 2

0

∫ 1

0

dx dz

(ε + x2 + z2 + 2z)(ε + z)

�
∫ 1

0

dz

(ε + z2 + 2z)(ε + z)

�
∫ 1

0

dz

(ε + z)2

� 1
ε
.

Putting these results together we have

Theorem 9.6. Let G = Sl(3, R) and (πλ,Hλ) be a unitarizable principal
series representation of G. Then for the associated spherical functions:

(i) If X ∈ ∂b0, then there exists a constant C ≥ 0 such that

|ϕλ(exp(±i(1 − ε)X))| ≤ C
1
ε
;

(ii) If X = ±πXωj ∈ a, j = 1, 2, and λ ∈ ia∗, then

|ϕλ(exp(i(1 − ε)X))| � 1
ε
;

(iii) If X ∈ ∂b0, then for a constant C > 0

|ϕλ(exp(i(1 − ε)X))| ≥ C| log ε|;

(iv) For all λ ∈ ia∗ the domain b0
C = a + ib0 is the maximal connected tube

domain a + iω ⊆ aC, ω ⊆ a, containing 0 such that ϕλ |A extends holo-
morphically to exp(a + iω).
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Proof. For the proof it is helpful to keep Figure 1 in mind.

(i) For X an extreme point, the assertion is Lemma 9.5. The general case
follows from Proposition 4.4 (cf. Figure 1).

(ii) Lemma 9.5.

(iii) For a co-root direction this inequality is Lemma 9.3. For Xωj this
follows from (ii). An arbitrary X ∈ ∂b0 is a convex combination of co-roots
and Xωj (cf. Figure 1) so that the result follows from Phragmen-Lindelöf as in
the proof of Proposition 4.4.

(iv) In view of (iii), this follows from Proposition 4.4 (cf. Figure 1).

Remark 9.7. Theorem 9.6 gives an almost complete description of the
boundary behaviour for the spherical functions for G = Sl(3, R). Generally we
expect the following for generic λ ∈ a∗C:

|ϕλ(exp(i(1 − ε)X))| �
{

1
ε for X ∈ ∂b0 extremal
| log ε| for X ∈ ∂b0 not extremal.

Lower estimates. For G = Sl(3, R) the best lower estimates one can get
for spherical functions are in the direction of the fundamental weights. We
illustrate only this case.

Proposition 9.8. For G = Sl(3, R) and X ∈ b0 an extreme point, i.e.,
X = ±πXωj , there exists a constant C > 0 such that

|ϕλ(exp(i(1 − ε)X))| ≥ Ce(1−ε) supw∈Wa
w. Im λ(−iX)

for all λ ∈ a∗C.

Proof. We may assume that X = πXω1 = π diag(2
3 ,−1

3 ,−1
3). In what

follows we will also see that the assumption λ ∈ ia∗ is justified. Fix 0 < ε ≤ 1
and set a = diag(a1, a2, a3) = exp(i(1 − ε)X). Recall from (9.1) that

ϕλ(a) =
∫

R3

dx dy dz∣∣∣(a1 + a2x2 + a3z2)1−λ1(a1a2 + a1a3y2 + a2a3(z + xy)2)1−λ2

∣∣∣ .
Hence the fact that a1, a2, a3 are R-collinear in C as well as that a1a2, a1a3, a2a3

are R-collinear in C implies that

ϕλ(a) ≥
∫ 1

2

0

∫ 1
2

0

×
∫ 1

2

0

dx dy dz∣∣∣(a1 + a2x2 + a3z2)1−λ1(a1a2 + a1a3y2 + a2a3(z + xy)2)1−λ2

∣∣∣
≥ Caλ1

1 (a1a2)λ2 = Ceλ(i(1−ε)X).
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Now the assertion of the proposition follows from the Weyl group invariance
of ϕλ in the λ-variable.

Estimates on automorphic forms. Here Γ denotes a co-compact discrete
subgroup of G = Sl(3, R) and (πλ,Hλ) a unitary spherical principal series
representation of G. Recall from Proposition 7.4 that each η ∈ (H−∞

λ )Γ defines
an embedding

H∞
λ → C∞(Γ\G), v �→ θv,η; θv,η(Γg) = 〈πλ(g)v, η〉

with
(∀v ∈ H∞

λ ) ‖θv,η‖∞ ≤ CSG
k (v)

for k > 4 = 1
2 dimG. As before v0 denotes the normalized K-spherical vector

of (πλ,Hλ). Fix an extremal element X ∈ b1, i.e., X = ±π
2 Xωj , and set

(v0)ε = πλ(exp(i(1 − ε)X))v0

for all 0 < ε ≤ 1. As in Section 6 we are interested in the G-invariant Sobolev
norms SG

k ((v0)ε) for ε → 0.

Proposition 9.9. Let (πλ,Hλ), λ ∈ ia∗, be a unitary principal series
representation of G = Sl(3, R) and η ∈ (H−∞

λ )Γ for a co-compact discrete
subgroup Γ < G. Then there exists a constant C > 0 such that

‖θ(v0)ε,η‖∞ ≤ Cε−
11
2

for all 0 < ε ≤ 1.

Proof. We may assume that the extreme point X ∈ b1 is −π
2 Xω1 . Since

dimG = 8, it follows from Proposition 7.4 that it suffices to estimate SG
5 ((v0)ε).

We shall show that
S5((v0)ε) ≤ Cε−

11
2

for all 0 < ε ≤ 1.
More generally, we will consider Sk((v0)ε) for an arbitrary k ∈ N0. Let

X1, · · · , X8 be a basis of g. Then

Sk(v) =
∑

m1+···+m8≤k

‖Xm1
1 · · ·Xm8

8 v‖

for all smooth vectors v.
We will work with the noncompact realization of πλ, i.e., Hλ = L2(N).

Then the vector (v0)ε is of the form c(λ, ε)Fε, where

Fε(x, y, z) =
1

(ei(π−ε) + x2 + z2)
1−λ1

2 (1 + y2 + e−i(π−ε)(z + xy)2)
1−λ2

2

and c(λ, ε) is a constant uniformly bounded in ε.
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We will use results from the proof of Proposition 9.4. We denote the
change of variables in Proposition 9.4 that yielded the splitting by (x, y, z) �→
ϕ(x, y, z). Recall that ϕ was given by a composition of two maps (x, y, z) �→
(x + yz, y, z) followed by (x, y, z) �→ (g(y)x, y, g(y)−1z) where g(y) = 1 + y2.
Then

U :L2(N) → L2(N), f �→ f ◦ ϕ

defines a unitary operator. Set

fε(x, y, z) =
1

(ei(π−ε) + x2 + z2)
1−λ1

2 (1 + e−i(π−ε)z2)
1−λ2

2

· g(y)−
1
2
+(λ1−λ2) .

Then the change of variable formula in Proposition 9.4 implies that

U(Fε)(x, y, z) = fε(x, y, z).

Define a differential operator Uj = U ◦Xj ◦U−1 for j = 1, · · · , 8. For every
k we define a seminorm Nk for functions f ∈ C∞(R3) by

Nk(f) =
∑

m1+m2≤k

‖Um1
1 · · ·Um8

8 f‖,

whenever Nk(f) < ∞. In particular, we have

(9.2) Sk(Fε) = Nk(fε)

Let B = [−2, 2]3 and let τ ∈ C∞
c (R3) with τ |B = 1. We claim that

(9.3) Nk(fε) ≤ Nk(τfε) + C

for all ε > 0 and a constant C > 0 independent of ε. Write

f(x, y, z) =
1

(1 + x2 + z2)
1−λ1

2 (1 + z2)
1−λ2

2

· g(y)−
1
2
+(λ1−λ2)

and note that f corresponds to the vector v0 after the change of variables.
Clearly we have

Nk(f) = Sk(v0) < ∞.

Now, outside the ball B we can compare fε with f and our claim (9.3) follows.
Now define the two variable function gε(x, z) by

gε(x, z) =
1

(ei(π−ε) + x2 + z2)
1−λ1

2 (1 + e−i(π−ε)z2)
1−λ2

2

.

Let τ2 ∈ Cc(R2) be such that τ2 |[−2,2]2 = 1. Then it follows from (9.2) and
(9.3) that there exists a constant C > 0 such that

Sk((v0)ε) ≤ C + C
∑

j+l≤k

‖ ∂j

∂xj

∂l

∂zl
τ2gε‖L2(R2).
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The same computation as in Lemma 9.5 then leads to

Sk((v0)ε) � ε−
1+2k

2 .

Specializing to k = 5 proves the proposition.

Remark 9.10. (a) The estimate in Proposition 9.9 is certainly not opti-
mal. The conjectured optimal estimate would be

‖θ(v0)ε,η‖∞ ≤ C‖(v0)ε‖ � 1√
ε
.

The major technical difficulty arises from the singularities of the spherical
vector (v0)ε for ε → 0 considered as a function on N . In the rank one case
the singular locus always is a compact variety, whereas in this case the singular
locus lies on a complicated unbounded variety. This is reminiscent of the theory
of intertwining operators in rank one versus higher rank. The technique there
(essentially due to Gindikin-Karpelevic and later Schiffmann) is the origin of
the change of variables used in Proposition 9.4 but here it did not lead to a
simple product structure.

Triple products. For a co-compact discrete subgroup Γ < G recall that
Y = Γ\G, X = Γ\G/K and there is the Plancherel decomposition

L2(Y ) ∼=
⊕̂

π∈Ĝ
mπHπ

and
L2(X) ∼=

⊕̂
π∈Ĝs

mπHK
π

where Ĝs denotes the subset of Ĝ which corresponds to the unitary spherical
representations.

As before we let (ψi)i∈I be an orthonormal basis of Maaß forms of L2(X),
also considered as an orthogonal system in L2(Y ). Note that ψi(Γg) = θvi

0,η =
〈πλi

(g)v0, η〉 for some unitary principal series representation (πλi
,Hλi

) and
η ∈ (H−∞

λi
)Γ.

Let X ∈ b1 be an extreme point; if ψ = θv0,η is a Maaß form, then
ψε = θ(v0)ε,η ∈ L2(Y ) for all 0 < ε ≤ 1. As before we have the identity

ψ2
ε =

∑
i∈I

ciψi,ε,

for all 0 < ε ≤ 1. Taking the norms, we have again

(9.4) ‖ψ2
ε‖2 =

∑
i∈I

|ci|2‖ψi,ε‖2 =
∑
i∈I

|ci|2‖(vi
0)ε‖2.

We now introduce new coordinates on a∗C by means of the simple roots;
i.e., we will write λ = λ′

1α1 +λ′
2α2. As norm on a∗C we use the maximum norm

‖λ‖ = max{|λ′
1|, |λ′

2|}.
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Theorem 9.11. Let G = Sl(3, R) and Γ < G be a co-compact discrete
subgroup. Then for every Maaß form ψ corresponding to a unitary principal
series there exists a constant C > 0 such that for all T > 1, for the coefficients
ci of the Fourier series of ψ2 =

∑
i∈I ciψi, one has∑

‖λi‖≤T

|ci|2eπ‖λi‖ ≤ CT 12.

Proof. Given the previous estimates, the pattern of proof follows that of
Theorem 7.6. and is left to the reader.

Remark 9.12. Friedberg, in [Fr87], determines precise gamma factors for
the Rankin-Selberg convolution for Γ = Sl(3, Z). By Stirling’s approximation
it is easily seen that the exponential growth of these gamma factors differs
from the exponential term in Theorem 9.11. A likely explanation for this is
that the classical Rankin-Selberg integral is computed using Eisenstein series
off a maximal parabolic subgroup. Our results have used Eisenstein series or
Maaß forms associated to the minimal parabolic. We think that any relation-
ship of the exponential factors must involve the embedding parameters of the
representation into the principal series off the minimal parabolic. We thank
the referee for bringing this point to our attention.

Generalizations to Sl(n, R). Much of what has been said so far for Sl(3, R)
can be generalized easily to G = Sl(n, R), n ≥ 3. We will be interested in the
radial limits of the spherical functions ϕλ, λ ∈ a∗C, in the imaginary direction
of the first fundamental weight

Xω1 = diag(
n − 1

n
,− 1

n
, . . . ,− 1

n
).

First we need the splitting formula for the spherical functions analogous to
Proposition 9.4. The splitting will be accomplished for the choice of subalge-
bras n′ =

⊕
α∈Σ+

α(Xω1 )=0

g−α and n′′ =
⊕

α∈Σ+

α(Xω1 )>0

g−α. Then n = n′ ⊕ n′′ and we

note that n′′ ∼= Rn−1 is abelian. The splitting formula in Proposition 9.4 then
generalizes to

(9.5)

ϕλ(exp(iπ(1 − ε)Xω1)) = C(λ, ε)
∫

Rn−1

n−1∏
j=1

1
fj(ε, xj , . . . , xn−1)

dx1 . . . dxn−1,

where

fj(ε, xj , . . . , xn−1) = |ei(π−ε) +x2
j + . . .+x2

n−1|(e−i(π−ε) +x2
j + . . .+x2

n−1)
Re λj
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for all 1 ≤ j ≤ n − 1 and C(λ, ε) is bounded when ε → 0 for a fixed λ. With
(9.5) one easily concludes as in Lemma 9.5 that

(9.6) ϕλ(exp(iπ(1 − ε)Xω1)) ≤ C
1

εn−2

for all 0 < ε ≤ 1 and a constant C only depending on λ. Also, the proof of the
lower estimate in Proposition 9.8 immediately generalizes to

(9.7) ϕλ(exp(iπ(1 − ε)Xω1)) ≥ Ceπ(1−ε) supw∈Wa
w.λ(Xω1 )

now for a constant C independent of λ. Also, the proof of Proposition 9.9
generalizes easily to G = Sl(n, R). For a co-compact subgroup Γ < G we get
that

(9.8) ‖θ(v0)ε,η‖2
∞ ≤ Cε

−(n+

[
n2−1

2

]
)

for all 0 < ε < 1. Clearly (9.5)–(9.8) also hold for ±πw.Xω1 , w ∈ Wa, instead of
πXω1 . We introduce now a norm on a∗C by setting ‖λ‖ = supw∈Wa

|λ(w.Xω1)|.
Then the method in the proof of Theorem 9.11 together with (9.5)–(9.8) give
the following estimates on triple products:

Theorem 9.13. Let G = Sl(n, R) and Γ < G be a co-compact discrete
subgroup. Then for every Maaß form ψ corresponding to a unitary principal
series the coefficients ci of the Fourier series of ψ2 =

∑
i∈I ciψi there exists a

constant C > 0 such that for all T > 1, one has

∑
‖λi‖≤T

|ci|2eπ‖λi‖ ≤ CT
2n+

[
n2−1

2

]
−2

.

Appendix A: The case G = Sl(2, R)

In this appendix we deal with the group G = Sl(2, R) where we can per-
form the most explicit computations. We think this is still of interest since it
is the guiding example on which one can make conjectures for the general case.
In particular, some of the ideas of the proofs in Section 1 are present in the
explicit computations below.

For G = Sl(2, R) note that G ⊆ GC = Sl(2, C) and GC is simply connected.
We let k = so(2),

a = {
(

x 0
0 −x

)
:x ∈ R} and n = {

(
0 n

0 0

)
:n ∈ R}.
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For z ∈ C∗, x ∈ C and θ ∈ C we set

az =

(
z 0
0 z−1

)
∈ AC, nx =

(
1 x

0 1

)
∈ NC

and

kθ =

(
cos θ sin θ

− sin θ cos θ

)
∈ KC.

Note that

A0
C = {az: Re(z) > 0} and A1

C = {az: | arg(z)| <
π

4
}.

Proposition A.1. Let G = Sl(2, R). Then the following assertions
hold :

(i) For all az ∈ A1
C and θ ∈ R,

azkθ ∈ KCaz′NC

with a′z ∈ A1
C and z′ defined by

z′ =
√

z2 + sin2 θ(
1
z2

− z2).

(ii) A1
CK ⊆ KCA1

CNC.

Proof. (i) Set I = {z ∈ C: | arg(z)| < π
4 } and fix θ ∈ R. Let Ω =

{z ∈ I: azkθ ∈ KCA1
CNC}. By Lemma 1.4 the set Ω is open and not empty.

We have to show that Ω = I. For z ∈ Ω define analytic functions z′(z), ϕ(z),
x(z) such that

azkθ = kϕ(z)az′(z)nx(z).

Writing this identity in matrix form yields(
z cos θ z sin θ

− sin θ
z

cos θ
z

)
=

(
z′ cos ϕ z′x cos ϕ + sin ϕ

z′

−z′ sinϕ −z′x sinϕ + cos ϕ
z′

)
.

Thus we get

z2 cos2 θ +
sin2 θ

z2
= (z′)2 cos2 ϕ + (z′)2 sin2 ϕ

or equivalently

(A.1) (z′)2 = z2 + sin2 θ(
1
z2

− z2).

Taking real parts in (A.1) yields

(A.2) Re(z′)2 = (1 − sin2 θ) Re(z2) + sin2 θ Re(
1
z2

) > 0.
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We conclude that

z′: I → I, z �→ z′(z): =
√

z2 + sin2 θ(
1
z2

− z2)

is a well-defined holomorphic map.
Assume that Ω 
= I. Then there exists a sequence (zn)n∈N in Ω such that

z = lim zn ∈ I\Ω.
From (A.2) we now conclude that z′ = limn→∞ z′(zn) exists in I. Now

(A.1) implies that the limits ϕ = limn→∞ ϕ(zn) and x = limn→∞ x(zn) exist.
Thus

azkθ = lim
n→∞

aznkθ = lim
n→∞

kϕ(zn)az′(zn)nx(zn) = kϕaz′nx ∈ KCA1
CNC,

contradicting azkθ 
∈ KCA1
CNC. This proves (i).

(ii) This follows from (i).

Remark A.2. (convexity theorems). For a linear semisimple Lie group G

with Iwasawa decomposition G = KAN Kostant proved two convexity theo-
rems (cf. [Kos73]): the linear convexity theorem which asserts

(A.3) (∀X ∈ a) pa(Ad(K).X) = conv(Wa.X)

with pa: p → a the orthogonal projection with respect to the Cartan-Killing
form, and the nonlinear convexity theorem which can be stated as

(A.4) (∀a ∈ A) a(aK) = exp
(

conv(Wa. log(a))
)
.

For G = Sl(2, R) a simple calculation shows that (A.3) extends to

(∀X ∈ aC) paC(Ad(K).X) = conv(Wa.X)

with paC : pC → aC the complex linear extension of pa and we conjecture that
(A.3) holds for all semisimple Lie groups G. Also it is natural to ask whether
the nonlinear convexity theorem (A.4) generalizes to elements a ∈ A1

C (this
makes sense in view of A1

CK ⊆ KCA1,≤
C NC (cf. Proposition A.1(ii))). The

answer is no and we can already see this for G = Sl(2, R). Here we have
Wa

∼= Z2 = {1, s} with s.a = a−1 for all a ∈ AC. For z, w ∈ C let

lz,w = {λz + (1 − λ)w: 0 ≤ λ ≤ 1}

be the line segment in C connecting z and w. Then Proposition A.1 shows
that for all z ∈ C∗ with | arg(z)| < π

4 that

a(azK) = {aw:w ∈ (lz2,z−2)
1
2 }.

Note that for z = eiϕ, 0 < |ϕ| < π
4 we have 1 
∈ {aw:w ∈ (lz2,z−2)

1
2 }, but

1 ∈ exp({aw:w ∈ l−iϕ,iϕ}). Thus we see that (A.4) usually does not hold for
elements a ∈ A1

C\A.
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