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A new construction of the moonshine

vertex operator algebra over
the real number field

By Masahiko Miyamoto*

Abstract

We give a new construction of the moonshine module vertex operator al-
gebra V �, which was originally constructed in [FLM2]. We construct it as a
framed VOA over the real number field R. We also offer ways to transform a
structure of framed VOA into another framed VOA. As applications, we study
the five framed VOA structures on VE8 and construct many framed VOAs in-
cluding V � from a small VOA. One of the advantages of our construction is
that we are able to construct V � as a framed VOA with a positive definite
invariant bilinear form and we can easily prove that Aut(V �) is the Monster
simple group. By similar ways, we also construct an infinite series of holomor-
phic framed VOAs with finite full automorphism groups. At the end of the
paper, we calculate the character of a 3C element of the Monster simple group.

1. Introduction

All vertex operator algebras (VOAs) (V, Y,1, ω) in this paper are sim-
ple VOAs defined over the real number field R and satisfy V = ⊕∞

i=0Vi and
dimV0 = 1. CV denotes the complexification C ⊗R V of V . Throughout this
paper, v(m) denotes a coefficient of vertex operator Y (v, z)=

∑
m∈Z v(m)z

−m−1

of v at z−m−1 and Y (ω, z) =
∑

m∈Z L(m)z−m−2, where ω is the Virasoro
element of V . VOAs (conformal field theories) are usually considered over C,
but VOAs over R are extremely important for finite group theory. The most
interesting example of VOAs is the moonshine module VOA V � =

∑∞
i=0 V �

i over
R, constructed in [FLM2], whose second primary space V �

2 coincides with the
Griess algebra and the full automorphism group is the Monster simple group
M. Although it has many interesting properties, the original construction
essentially depends on the actions of the centralizer CM(θ) ∼= 21+24Co.1 of a
2B-involution θ of M and it is hard to see the actions of the other elements
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explicitly. The Monster simple group has the other conjugacy class of involu-
tions called 2A. One of the aims in this paper is to give a new construction
of the moonshine module VOA V � from the point of view of an elementary
abelian automorphism 2-group generated by 2A-elements, which gives rise to
a framed VOA structure on V �. In this paper, we will show several techniques
to transform framed VOAs into other framed VOAs. An advantage of our
ways is that we can construct many framed VOAs from smaller pieces. As
basic pieces, we will use a rational Virasoro VOA L(1

2 , 0) with central charge
1
2 , which is the minimal one of the discrete series of Virasoro VOAs. We note
that L(1

2 , 0) over R satisfies the same fusion rules as the 2-dimensional Ising
model CL(1

2 , 0) does. In particular, we will use a rational conformal vector
e∈V2 with central charge 1

2 , that is, a Virasoro element of sub VOA 〈e〉 which
is isomorphic to L(1

2 , 0). In this case, we have an automorphism τe of V defined
by

(1.1) τe :

{
1 on all 〈e〉-submodules isomorphic to L(1

2 , 0) or L(1
2 , 1

2)

−1 on all 〈e〉-submodules isomorphic to L(1
2 , 1

16) ,

whose complexification was given in [Mi1].
In this paper, we will consider a VOA (V, Y,1, ω) of central charge n

2

containing a set {ei | i=1, · · · , n} of mutually orthogonal rational conformal
vectors ei with central charge 1

2 such that the sum
∑n

i=1 ei is the Virasoro
element ω of V . Here, “orthogonal” means (ei)(1)ej = 0 for i �= j. This
is equivalent to the fact that a sub VOA T = 〈e1, · · · , en〉 is isomorphic to
L(1

2 , 0)⊗n with Virasoro element ω. Such a VOA V is called “a framed VOA”
in [DGH] and we will call the set {e1, . . . , en} of conformal vectors “a coordinate
set .” We note that a VOA V of rank n

2 is a framed VOA if and only if V is a
VOA containing L(1

2 , 0)⊗n as a sub VOA with the same Virasoro element. It is
shown in [DMZ] that V � is a framed VOA of rank 24. Our main purpose in this
paper is to reconstruct V � as a framed VOA. Another important example of
framed VOAs is a code VOA MD for an even linear code D, which is introduced
by [Mi2]. It is known that every irreducible T -module W is a tensor product
⊗n

i=1L(1
2 , hi) of irreducible L(1

2 , 0)-modules L(1
2 , hi) (hi =0, 1

2 , 1
16); see [DMZ].

Define a binary word

(1.2) τ̃(W )=(a1, · · · , an)

by ai =1 if hi = 1
16 and ai =0 if hi =0 or 1

2 . It follows from the fusion rules of
L(1

2 , 0)-modules that if U is an irreducible MD-module, then τ̃(W ) does not
depend on the choice of irreducible T -submodules W of U and so we denote it
by τ̃(U). We call it a (binary) τ -word of U since it corresponds to the actions
of automorphisms τei

. Even if U is not irreducible, we use the same notation
τ̃(U) if it is well-defined. We note that T is rational and the fusion rules are
given by

(⊗n
i=1W

i) × (⊗n
i=1U

i) = ⊗n
i=1(W

i × U i)
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for L(1
2 , 0)-modules W i, U i as proved in [DMZ]. We have to note that their

arguments also work for VOAs over R.
As we will show, if V is a framed VOA with a coordinate set {e1, · · · , en},

then there are two binary linear codes D and S of length n such that V has
the following structure:

(1) V = ⊕α∈SV α.

(2) V (0n) is a code VOA MD.

(3) V α is an irreducible MD-module with τ̃(V α)=α for every α∈S.

We will call such a framed VOA a (D, S)-framed VOA.
In order to transform structures of framed VOAs smoothly, the unique-

ness of a framed VOA structure is very useful (see Theorem 3.25). Although
the uniqueness theorem holds for framed VOAs over C (see [Mi5]), it is not
true for framed VOAs over R. In order to avoid this anomaly, we assume the
existence of a positive definite invariant bilinear form (PDIB-form). In this
setting, we are able to transform framed VOA structures as in VOAs over
C. For example, “tensor product”: for a (D, S)-framed VOA V = ⊕α∈SV α,
V ⊗r is a (D⊕r, S⊕r)-framed VOA, and “restriction”: for a subcode R of S,
ResR(V )= ⊕α∈RV α is a (D, R)-framed VOA, are easy transformations. The
most important tool is “an induced VOA IndD

E (V ).” Let us explain it for
a while. For E ⊆ D ⊆ S⊥, we had constructed “induced CMD-module”
IndD

E (CW ) from an ME-module W in [Mi3]. We apply it to a VOA and con-
struct a (D, S)-framed VOA IndD

E (W ) from an (E, S)-framed VOA W . For-
tunately, it preserves the PDIB-form. Moreover, the maximal one IndS⊥

E (W )
becomes a holomorphic VOA. As an example, we will construct the Leech
lattice VOA VΛ from V � by restricting and inducing.

We note that it is possible to construct V � over the rational number field
(even over Z[12 ]) in this way. However, we need several other conditions to get
the uniqueness theorem and we will avoid such complications.

Our essential tool is the following theorem, which was proved for VOAs
over C by the author in [Mi5].

Hypotheses I: (1) D and S are both even linear codes of length 8k.

(2) Let {V α | α∈S} be a set of irreducible MD-modules with τ̃(V α)=α.

(3) For any α, β∈S, there is a fusion rule V α × V β =V α+β.

(4) For α, β∈S−{(0n)} satisfying α �= β, it is possible to define a (D, 〈α, β〉)-
framed VOA structure with a PDIB-form on

V 〈α,β〉=MD ⊕ V α ⊕ V β ⊕ V α+β.

(4′) If S =〈α〉, MD ⊕ V α is a framed VOA with a PDIB-form.
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Theorem 3.25. Under Hypotheses I,

V =
⊕
α∈S

V α

has a structure of (D, S)-framed VOA with a PDIB-form. A framed VOA
structure on V = ⊕α∈SV α with a PDIB-form is uniquely determined up to
MD-isomorphisms.

Theorem 3.25 states that in order to construct a framed VOA, it is suf-
ficient to check the case dimZ2 S = 2. It is usually difficult to determine the
fusion rules V α × V β, but an extended [8, 4]-Hamming code VOA MH8 will
solve this problem. For example, the condition (3) may be replaced by the
following conditions on codes D and S as we will see.

Theorem 3.20. Let W 1 and W 2 be irreducible MD-modules with α =
τ̃(W 1), β= τ̃(W 2). For a triple (D, α, β), assume the following two conditions:

(3.a) D contains a self -dual subcode E which is a direct sum of k extended
[8, 4]-Hamming codes such that Eα = {γ ∈ E|Supp(γ) ⊆ Supp(α)} is a
direct factor of E or {0}.

(3.b) Dβ and Dα+β contain maximal self -orthogonal subcodes Hβ and Hα+β

containing Eβ and Eα+β, respectively, such that they are doubly even
and Hβ + E = Hα+β + E, where the subscript Sα denotes a subcode
{β∈S|Supp(β) ⊆ Supp(α)} for any code S.

Then W 1 × W 2 is irreducible.

Fortunately, these properties are compatible with induced VOAs.

Theorem 3.21 (Lemma 3.22). Assume that a triple (D, α, β) satisfies the
conditions of Theorem 3.20 for any α, β ∈ 〈δ, γ〉. Let F ⊆ 〈δ, γ〉⊥ be an even
linear code containing D. If W =MD⊕W δ⊕W γ⊕W δ+γ is a (D, 〈δ, γ〉)-framed
VOA, then

IndF
D(W ) = MF ⊕ IndF

D(W δ) ⊕ IndF
D(W γ) ⊕ IndF

D(W δ+γ)

has an (F, 〈δ, γ〉)-framed VOA structure which contains W as a sub VOA.

Corollary 4.2. Let W = MD ⊕ W δ ⊕ W γ ⊕ W δ+γ be a (D, 〈δ, γ〉)-
framed VOA with a PDIB-form and assume that a triple (D, α, β) satisfies the
condition of Theorem 3.20 for any α, β∈〈δ, γ〉. If F is an even linear subcode
of 〈α, β〉⊥ containing D, then IndF

D(W ) also has a PDIB-form.

Theorems 3.21 and 3.25 state that in order to construct VOAs, it is suffi-
cient to collect MD-modules satisfying the conditions of Hypotheses I. We will
construct such modules from the pieces of the lattice VOA ṼE8 with a PDIB-
form, which is constructed from the root lattice of type E8. We will show that
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ṼE8 is a (DE8 , SE8)-framed VOA ⊕α∈SE8
(ṼE8)α, where DE8 is isomorphic to

the second Reed Müller code RM(2, 4) [CS] and
(1.3)

SE8 =
〈
(116), (0818), ({0414}2), ({0212}4), ({01}8)

〉
=D⊥

E8
∼= RM(1, 4).

We will show that a triple (DE8 , α, β) satisfies (3.a) and (3.b) of Theorem 3.20
for any α, β∈SE8 ; see Lemma 5.1. In particular, we have

(1.4) Ṽ α
E8

× Ṽ β
E8

= Ṽ α+β
E8

for α, β∈SE8 .

We next explain a new construction of the moonshine module VOA. Set

(1.5) S� = {(α, α, α), (α, α, αc), (α, αc, α), (αc, α, α) | α∈SE8}

and D� =(S�)⊥, where αc =(116)−α. S� and D� are even linear codes of length
48. We note that D� is of dimension 41 and contains DE8

⊕3 :=DE8⊕DE8⊕DE8

as a subcode. Clearly, a triple (DE8
⊕3, α, β) satisfies the conditions of Theorem

3.20 for any α, β ∈S�. Our construction consists of the following three steps.
First, Ṽ ⊗3

E8
is a (D⊕3

E8
, S⊕3

E8
)-framed VOA with a PDIB-form and

(1.6) V 1 :=
⊕

(α,β,γ)∈S�

(Ṽ α
E8

⊗ Ṽ β
E8

⊗ Ṽ γ
E8

)

is a sub VOA of (ṼE8)⊗3 by the fusion rules (1.4). The second step is to twist
it. Set ξ1 =(1015) of length 16 and let R denote a coset module MDE8+ξ1 . To
simplify the notation, we denote R × Ṽ α

E8
by RṼ α

E8
. Set

Q =
〈
(ξ1ξ1016), (016ξ1ξ1)

〉
⊆ Z48

2 .

We induce V 1 from D⊕3
E8

to D⊕3
E8

+Q:

V 2 := Ind
D⊕3

E8
+Q

D⊕3
E8

(V 1).

V 2 is not a VOA, but we are able to find the following MD⊕3-submodules in
V 2:

W (α,α,α) := Ṽ α
E8

⊗ Ṽ α
E8

⊗ Ṽ α
E8

,

W (α,α,αc) := (RṼ α
E8

) ⊗ (RṼ α
E8

) ⊗ Ṽ αc

E8
,

W (α,αc,α) := (RṼ α
E8

) ⊗ Ṽ α
E8

⊗ (RṼ α
E8

)

and
W (αc,α,α) := Ṽ α

E8
⊗ (RṼ α

E8
) ⊗ (RṼ α

E8
)

for α∈SE8 . At the end, we extend Wχ from D⊕3 to D�.

(V �)χ := IndD�

D⊕3(Wχ)
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for χ∈S�. We will show that these MD�-modules (V �)χ satisfy the conditions
in Hypotheses I. Therefore we obtain the desired VOA

V � :=
⊕
χ∈S�

(V �)χ

with a PDIB-form.

Remark. If we construct an induced VOA IndD�

D⊕3(V 1) from V 1 directly,
then it is easy to check that it isomorphic to the Leech lattice VOA ṼΛ (see
Section 9). In particular, ṼΛ has a (D�, S�)-framed VOA structure, too.

Since V � is a (D�, S�)-framed VOA and S� = (D�)⊥, V � is holomorphic
by Theorem 6.1. It comes from the structure of V � and the multiplicity of
irreducible MD�-submodules that q−1

∑
dimV �

nqn = q−1+196884q+· · · is the
J-function J(q). We will also see that the full automorphism group of V � is the
Monster simple group (Theorem 9.5). It is also a Z2-orbifold construction from
ṼΛ (Lemma 9.6). Thus, this is a new construction of the moonshine module
VOA and the monster simple group.

In §2.5, we construct a lattice VOA ṼL with a PDIB-form. We investigate
framed VOA structures on ṼE8 in §5. In §7, we construct the moonshine VOA
V �. In Section 8, we will construct a lot of rational conformal vectors of V �

explicitly. In Section 9, we prove that Aut(V �) is the Monster simple group and
V � is equal to the one constructed in [FLM2]. In Section 10, we will construct
an infinite series of holomorphic VOAs with finite full automorphism groups.
In Section 11, we will calculate the characters of some elements of the Monster
simple group.

2. Notation and preliminary results

We adopt notation and results from [Mi3] and recall the construction of a
lattice VOA from [FLM2]. Codes in this paper are all linear.

2.1. Notation.
Throughout this paper, we will use the following notation.

αc The complement (1n)−α of a binary word α of length n.
Dβ = {α∈D | Supp(α) ⊆ Supp(β)} for any code D.
D�, S� The moonshine codes. See (1.5).
DE8 , SE8 See (1.3).
D̂ A group extension {κα|α∈D} of D by ±1.
E8, E8(m) An even unimodular lattice of type E8; also see (5.1).
Fr The set of all even words of length r.
H8 The extended [8, 4]-Hamming code.
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H(1
2 , α), H( 1

16 , β) Irreducible MH8-modules; see Def.13 in [Mi5]
or Theorem 3.16.

IndD
E (U) An induced MD-module from ME-module U ;

see Theorem 3.15.
ι(x) A vector in a lattice VOA VL =

⊕
x∈L S(H̄−)ι(x);

see §2.3.
M = M0 ⊕ M1, M0 = L(1

2 , 0), M1 =L(1
2 , 1

2).
Mβ+D A coset module⊕

(a1···an)∈β+D

(
(⊗n

i=1M
ai) ⊗ κ(a1···an)

)
; see §3.

MD A code VOA; see §3.
q(1) = ι(x)+ι(−x)∈M1 ∼= 1 ⊗ M1 ⊆ VZx with 〈x, x〉=1.
Q =

〈
(10151015016), (10150161015)

〉
.

RV α
E8

M(107)+DE8
× V α

E8
.

τ̃(W ) A τ -word (a1, · · · , an); see (1.2).
T =⊗n

i=1L(1
2 , 0)=〈e1, · · · , en〉=M(0n).

A(x, z) ∼ B(x, z) (x−z)n(A(x, z)−B(x, z))=0 for some n∈N.
θ An automorphism of VL defined by−1 on L.
ξi A binary word which is 1 in the i-th entry and 0

everywhere else.

2.2. VOAs over R and VOAs over C. At first, we will quote the following
basic results for a VOA over R from [Mi6]. In this paper, L(c, 0) and L(c, 0)C
denote simple Virasoro VOAs over R and C with central charge c, respectively.
Also, Vir denotes the Virasoro algebra over R.

Lemma 2.1. Let V be a VOA over R and UC an irreducible CV -module
with real degrees. Then UC is an irreducible V -module or there is a unique
V -module U such that CU ∼= UC as CV -modules.

Corollary 2.2. Assume that L(c, h)C is an irreducible L(c, 0)C-module
with lowest degree h∈R. Then there exists a unique irreducible L(c, 0)-module
L(c, h) such that L(c, h)C ∼= CL(c, h). In particular, CL(c, 0) ∼= L(c, 0)C.

Proof. First of all, we note that C ⊗R WC ∼= WC ⊕ WC as L(c, 0)C-
modules for any L(c, 0)C-module WC and C⊗R U ∼= U ⊕U as L(c, 0)-modules
for any L(c, 0)-module U . Therefore, for any proper L(c, 0)-module W of
L(c, h)C, CW ∼= L(c, h)C or L(c, h)C ⊕ L(c, h)C as L(c, 0)C-modules. Since
dimR(L(c, h)C)h =2, L(c, h)C is not irreducible and hence there is an irreducible
L(c, 0)-module L(c, h) such that L(c, h)C ∼= CL(c, h) by Lemma 2.1.

In particular, the number of irreducible L(c, 0)-modules is equal to the
number of irreducible L(c, 0)C-modules with real degrees.
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Corollary 2.3. The irreducible L(1
2 , 0)-modules are L(1

2 , 0), L(1
2 , 1

2) and
L(1

2 , 1
16).

Theorem 2.4. If CV is rational, then so is V . In particular, L(1
2 , 0) is

rational, that is, all modules are completely reducible.

Proof. We have to show that all V -modules are completely reducible.
Suppose this is false and let U be a minimal counterexample; that is, every
proper V -submodule of U is a direct sum of irreducible V -modules. By the
minimality, we can reduce to the case where U contains a V -submodule W

such that U/W and W are irreducible. So, we have a matrix representation of
vertex operator

Y U (v, z) =
(

Y 1(v, z) Y 2(v, z)
0 Y 3(v, z)

)
of v on U , where Y 1(v, z)∈End(W )[[z, z−1]], Y 2(v, z)∈Hom(U/W, W )[[z, z−1]]
and Y 3(v, z) ∈ End(U/W )[[z, z−1]]. By the assumption, CU is completely
reducible and so CU =CW ⊕XC as CV -modules. Hence there is a matrix P =(

IU A

0 B

)
such that PY (v, z)P−1 is a diagonal matrix

(
Y 1(v, z) 0

0 Y 4(v, z)

)
with Y 4(v, z)∈End(CU/CW )[[z, z−1]], where IU is the identity of End(CW ),
A∈Hom(CU/CW, CW ) and B∈End(CU/CW ). Denote A by A1+

√
−1A2 with

real matrices Ai (i=1, 2). By direct calculation,

−Y 1(v, z)AB−1+Y 2(v, z)B−1+AY 3(v, z)B−1 =0

and hence we have

−Y 1(v, z)A+Y 2(v, z)+AY 3(v, z)=0

and
−Y 1(v, z)A1+Y 2(v, z)+A1Y

3(v, z)=0.

Set Q=
(

IW A1

0 IU/W

)
with an identity map IU/W on U/W ; then QY (v, z)Q−1

is a diagonal matrix
(

Y 1(v, z) 0
0 Y 3(v, z)

)
, which contradicts the choice of U .

About the fusion rules, we have the following:

Lemma 2.5. Let W 1, W 2, W 3 be V -modules. Then

dim IV

(
W 3

W 1 W 2

)
≤ dim ICV

(
CW 3

CW 1 CW 2

)
.
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Proof. Clearly, if I ∈ IV

(
W 3

W 1 W 2

)
then we can extend it to an inter-

twining operator Ĩ ∈ ICV

(
CW 3

CW 1 CW 2

)
by defining I(γu, z) = γI(u, z) for

γ∈C, u∈W 1. It is easy to see that if {I1, · · · , Ik} is a basis of IV

(
W 3

W 1 W 2

)
then {Ĩ1, · · · , Ĩk} is a linearly independent subset of ICV

(
CW 3

CW 1 CW 2

)
. For,

if
∑k

i=1(ai+bi

√
−1)Ĩi(v, z)u = 0 for v∈W 1, u∈W 2, then

∑k
i=1 aiĨ

i(v, z)u=0

and
∑k

i=1 biĨ
i(v, z)u=0.

2.3. Lattice VOAs. Since we will often use lattice VOAs, we recall the
definition from [FLM2].

Let L be a lattice of rank m with a bilinear form 〈·, ·〉. Viewing H =R⊗Z L

as a commutative Lie algebra with a bilinear form 〈, 〉, we define the affine Lie
algebra {

H̄ = H[t, t−1]+RC

[C, H̄] = 0, [htn, h′tm] = δm+n,0n〈h, h′〉C

associated with H and the symmetric tensor algebra S(H̄−) of H̄−, where
H̄−=H[t−1]t−1. As in [FLM2], we shall define the Fock space

VL = ⊕x∈LS(H̄−)ι(x)

with the vacuum 1 = ι(0) and the vertex operators Y (∗, z) as follows: The
vertex operator of ι(a) (a∈L) is given by

(2.1) Y (ι(a), z) = exp

 ∑
n∈Z+

a(−n)

n
zn

 exp

 ∑
n∈Z+

a(n)

−n
z−n

 eaza

and that of a(−1)ι(0) is

Y (a(−1)ι(0), z) = a(z) =
∑

a(n)z
−n−1.

Here the operator of a ⊗ tn on M(1)ι(b) is denoted by a(n) and satisfies

a(n)ι(b) = 0 for n > 0,

a(0)ι(b) = 〈a, b〉ι(b)

and the operators ea, za are given by

eaι(b) = c(a, b)ι(a+b) with some c(a, b)∈R,

zaι(b) = ι(b)z〈a,b〉.

If L is an even lattice, then we can take a suitable cocycle c(a, b) such that
eaeb =(−1)〈a,b〉ebea. The vertex operators of the other elements are defined by
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the normal product:

Y (a(n)v, z) = a(z)nY (v, z) = Resx{(x−z)na(x)Y (v, z)−(z−x)nY (v, z)a(x)}

and by extending them linearly. The definition above of vertex operator is very
general and so we may think

Y (v, z) =
∑
m∈R

v(m)z
−m−1∈End(VR⊗L){z} =

∑
j∈C

sjz
−j−1|sj ∈End(VR⊗L)


for v∈

∑
a∈R⊗ZL M(1)ι(a). The Virasoro element ω is given by

1
2

∑
i

(ai)(−1)(a
i)(−1)1

with ai, a
j ∈RL satisfying 〈ai, a

j〉=δi,j . The degree of (b1)(−i1) · · · (bk)(−ik)ι(d)
is i1+· · ·+ik + 1

2〈d, d〉 for b1, · · · , bk, d∈L. It is shown in [FLM2] that if L is
an even positive definite lattice of rank m, then (VL, Y, ι(0), ω) is a VOA of
rank m.

2.4. L(1
2 , 1

16) ⊗ L(1
2 , 1

16). In this subsection, we study a lattice L = Zx

of rank one with 〈x, x〉 = 1 and we will not use a cocycle c(a, b) since
{ι(mx) | m ∈ Z} is generated by one element ι(x). We note that VL is not
a VOA, but a super vertex operator algebra (SVOA); see [Fe]. We also note
ι(x) ∈ (VL)1

2
. As mentioned in [DMZ], there are two mutually orthogonal

conformal vectors

e+(2x) = 1
4(x(−1))

2ι(0)+ 1
4(ι(2x)+ι(−2x))

and
e−(2x) = 1

4(x(−1))
2ι(0)− 1

4(ι(2x)+ι(−2x))

with central charge 1
2 such that ω = e+(2x)+e−(2x) = 1

2(x(−1))2ι(0) is the
Virasoro element of a VOA V2Zx. Let θ be an automorphism of VL induced
from an automorphism−1 on L, which is given by

θ(x(−n1) · · ·x(−ni)ι(v)) = (−1)ix(−n1) · · ·x(−ni)ι(−v).

Note that θ is not an ordinary automorphism defined by

θ(x(−n1) · · ·x(−ni)ι(v)) = (−1)i+kx(−n1) · · ·x(−ni)ι(−v)

for wt(ι(v)) = k, because we have half integral weights here. Let (V2xZ)θ denote
the sub VOA of θ-invariants in V2xZ. We note that V2xZ has a unique invariant
bilinear form 〈 , 〉 with 〈1,1〉 = 1. Then 〈 , 〉 on (V2Zx)θ is positive definite
as we will see in the next subsection. Hence e±(2x) generates a vertex oper-
ator subalgebra 〈e±(2x)〉 isomorphic to L(1

2 , 0), since e±(2x)∈ (V2xZ)θ. So VL

contains a sub VOA T = 〈e+(2x), e−(2x)〉 ∼= L(1
2 , 0) ⊗ L(1

2 , 0). Viewing VL
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as a T -module, we see that VL is a direct sum of irreducible T -modules
L(1

2 , hi) ⊗ L(1
2 , ki) with (hi, ki = 0, 1

2 , 1
16); see §2.5. There are no 〈e±(2x)〉-

submodules isomorphic to L(1
2 , 1

16) in VL since all elements v∈VL have integral
or half integral weights. Since dim(VL)0 =1, dim(VL)1 =1 and dim(VL)1/2 =2,
VL is isomorphic to(

L(1
2 , 0)⊗L(1

2 , 0)
)
⊕

(
L(1

2 , 0)⊗L(1
2 , 1

2)
)

⊕
(
L(1

2 , 1
2)⊗L(1

2 , 0)
)
⊕

(
L(1

2 , 1
2)⊗L(1

2 , 1
2)

)
as T -modules. Since θ fixes e±(2x) and x(−1)(ι(x)−ι(−x)), it keeps the above
four irreducible T -submodules invariant. Consequently, we obtain the decom-
position:

(VL)θ ∼=
(
L(1

2 , 0) ⊗ L(1
2 , 0)

)
⊕

(
L(1

2 , 1
2) ⊗ L(1

2 , 0)
)

as T -modules. Set M ={v∈(VL)θ | (e−(2x))(1)v=0}. It is easy to see that M

contains e+(2x) and has the following decomposition:

(2.2) M = M0 ⊕ M1, M0 =
〈
e+(2x)

〉 ∼= L(1
2 , 0) and M1 ∼= L(1

2 , 1
2)

as 〈e+(2x)〉-modules. Since M is closed under the multiplications in VL, M is
an SVOA with the even part M0 and the odd part M1. We note that

(2.3) q(1) = ι(x)+ι(−x)

is a lowest degree vector of M1 and q(1)
(0)q

(1) = 2ι(0). We fix it throughout
this paper.

It follows from the definition of vertex operators that V
2Zx+

1
2x

and V
2Zx−1

2x

are irreducible V2Zx-modules. By calculating the eigenvalues of e±(2x), we have
the following table:

(2.4)

θ

e±(2x) ∈L(1
2 , 0) ⊗ L(1

2 , 0) +1

x(−1)1 ∈L(1
2 , 1

2) ⊗ L(1
2 , 1

2) −1

ι(x)−ι(−x) ∈L(1
2 , 0) ⊗ L(1

2 , 1
2) −1

ι(x)+ι(−x) ∈L(1
2 , 1

2) ⊗ L(1
2 , 0) +1

ι(±x
2 ) ∈

(
L(1

2 , 1
16) ⊗ L(1

2 , 1
16)

)
⊕

(
L(1

2 , 1
16) ⊗ L(1

2 , 1
16)

)
Fix lowest weight vectors ι(1

2x) and ι(−1
2x) of V2Zx+x/2 and V2Zx−x/2, respec-

tively. Let W (h) denote the eigenspace of e−(2x)(1) on V
L+

1
2x

with eigenvalue

h for h = 0, 1
2 , 1

16 . By restricting the actions of the vertex operator Y (v, z) of
v∈M1 to W (h), we have the following three intertwining operators:
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I
1
2 ,0(∗, z)∈ I

(
L(1

2 , 1
2)

L(1
2 , 1

2) L(1
2 , 0)

)
,(2.5)

I
1
2 ,

1
2 (∗, z)∈ I

(
L(1

2 , 0)
L(1

2 , 1
2) L(1

2 , 1
2)

)
and

I
1
2 ,

1
16 (∗, z)∈ I

(
L(1

2 , 1
16)

L(1
2 , 1

2) L(1
2 , 1

16)

)
.

Also, for v∈M0 the action of Y (v, z) to W (h) defines the following intertwining
operators:

I0,0(∗, z)∈ I

(
L(1

2 , 0)
L(1

2 , 0) L(1
2 , 0)

)
,(2.6)

I0,
1
2 (∗, z)∈ I

(
L(1

2 , 1
2)

L(1
2 , 0) L(1

2 , 1
2)

)
and

I0,
1
16 (∗, z)∈ I

(
L(1

2 , 1
16)

L(1
2 , 0) L(1

2 , 1
16)

)
,

which are actually vertex operators of elements in 〈e+(2x)〉 on L(1
2 , h)

(h=0, 1
2 , 1

16). We fix these intertwining operators throughout this paper.
We defined the above intertwining operators over R, but they are essen-

tially the same as those of (VL)C and so we recall their properties from [Mi3].

Proposition 2.6. (1) The powers of z in I0,∗(∗, z), I
1
2 ,0(∗, z) and

I
1
2 ,

1
2 (∗, z) are all integers and those of z in I

1
2 ,

1
16 (∗, z) are half -integers, that

is, in 1
2 +Z.

(2) I∗,∗(∗, z) satisfies the L(−1)-derivative property.

(3) I∗,
1
16 (∗, z) satisfies “supercommutativity”:

I0,
1
16 (v, z1)I0,

1
16 (v′, z2)∼ I0,

1
16 (v′, z2)I0,

1
16 (v, z1),(2.7)

I0,
1
16 (v, z1)I

1
2 ,

1
16 (u, z2)∼ I

1
2 ,

1
16 (u, z2)I0,

1
16 (v, z1)

and
I

1
2 ,

1
16 (u, z1)I

1
2 ,

1
16 (u′, z2)∼−I

1
2 ,

1
16 (u′, z2)I

1
2 ,

1
16 (u, z1),

for v, v′∈M0 and u, u′∈M1.

2.5. A lattice VOA with a PDIB-form. In this subsection, we will con-
struct a lattice VOA ṼL over R with a PDIB-form for an even positive definite
lattice L.
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Here a bilinear form 〈·, ·〉 on V is said to be invariant if

〈Y (a, z)u, v〉 = 〈u, Y (ezL(1)(−z−2)L(0)a, z−1)v〉 for a, u, v∈V.

It was proved in [FHL] that any invariant bilinear form on a VOA is automat-
ically symmetric and there is a one-to-one correspondence between invariant
bilinear forms and elements of Hom(V0/L(1)V1, R). Since we will only treat
VOAs V with dimV0 = 1 and L(1)V1 = 0, there is a unique invariant bilinear
form up to scalar multiplication. This bilinear form is given as follows:

the coefficient of Y (ezL(1)(−z−2)L(0)u, z−1)v at z is 〈u, v〉1.

If we construct a lattice VOA VL over R for an even positive definite lattice
L as in [FLM2], then ι(v)(2k−1)ι(v)∈S(H̄−)ι(2v)∩ (VL)0 ={0} for any element
0 �= v ∈L with 〈v, v〉= 2k and hence 〈ι(v), ι(v)〉= 〈1, (−1)kι(v)(2k−1)ι(v)〉= 0.
Namely, VL does not have a PDIB-form.

Proposition 2.7. Let L be an even positive definite lattice. Then there
is a VOA ṼL with a PDIB-form such that C ⊗ ṼL

∼= (VL)C.

Proof. A lattice VOA VL =
⊕

v∈L S(R ⊗Z L+)ι(v) constructed from a
lattice L in [FLM2] has a unique invariant bilinear form 〈 , 〉 with 〈1,1〉=1.
That is, it satisfies

〈Y (a, z)u, v〉 = 〈u, Y (ezL(1)(−z−2)L(0)a, z−1)v〉

for a, u, v∈VL; see [FHL]. Here

Y †(a, z) :=Y (ezL(1)(−z−2)L(0)a, z−1)=
∑

a†(m)z
−m−1

is the adjoint vertex operator. For v ∈ R ⊗ L, we identify v with v(−1)ι(0) ∈
(VL)1. Since L(1)v(−1)ι(0)=0 and L(0)v(−1)ι(0)=v(−1)ι(0), we have Y †(v, z)=
−z−2Y (v, z−1) and so v†(n) = −v(−n). In [FLM2], the authors used a group

extension (a cocycle c(∗, ∗)) satisfying eu′
eu = (−1)〈u

′,u〉eueu′
, euι(u′) =

c(u, u′)ι(u+u′) and evι(−v)= ι(0). In particular, for ι(v)∈(VL)k,

ι(v)(2k−1)ι(−v)= ι(−v)(2k−1)ι(v)= ι(0).

By definition, Y †(ι(v), z)=(−z−2)〈v,v〉/2Y (ι(v), z−1). We hence have (ι(v))†(n) =
(−1)k(ι(v))(2k−n−2) for ι(v)∈Vk and thus

〈ι(v)+ι(−v), ι(v)+ι(−v)〉ι(0)

= (−1)k(ι(v)+ι(−v))(2k−1)(ι(v)+ι(−v))
= (−1)k(ι(v)(2k−1)ι(−v)+ι(−v)(2k−1)ι(v)) = (−1)k2ι(0).

Similarly,
〈ι(v)−ι(−v), ι(v)−ι(−v)〉 = (−1)k+12ι(0).
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Let θ̃ be an automorphism of VL induced from−1 on L, which is given by

θ̃(v1
(−i1)

· · · vm
(−im)ι(x)) = (−1)k+mv1

(−i1)
· · · vm

(−im)ι(−x).

Then the space V + =(VL)θ̃ of θ̃-invariants is spanned by elements of the forms

v1
(−n1)

· · · v2m
(−n2m)(ι(v)+(−1)kι(−v))

and
v1
(−n1)

· · · v2m+1
(−n2m+1)

(ι(v)−(−1)kι(−v))

for all ι(v) ∈ Vk, k ∈ Z and so V + has a PDIB-form. Similarly V − :=
{v ∈ VL|θ̃(v) = −v} has a negative definite invariant bilinear form. Since
VL =V + ⊕ V − is a Z2-graded VOA, ṼL =V + ⊕

√
−1V − is also a VOA with a

PDIB-form such that CṼL =CVL
∼= (VL)C.

Clearly, if we define an endomorphism θ̄ of ṼL = V + ⊕
√
−1V − by 1 on

V + and−1 on
√
−1V −, θ̄ is an automorphism of ṼL. Since we mainly treat a

VOA with a PDIB-form, we sometimes denote the ordinary lattice VOA VL

by (ṼL)θ̄ ⊕
√
−1Ṽ −

L , where Ṽ −
L ={v∈ ṼL | θ̄(v)=−v}.

In the remainder of this paper, ṼL denotes a lattice VOA with a PDIB-
form.

2.6. L(1
2 , 0)-modules and framed VOAs. We will show the following

result.

Lemma 2.8. If V is a framed VOA with a coordinate set {e1, · · · , en},
then there are two binary linear codes D and S of length n such that V has the
following decomposition:

(1) V = ⊕α∈SV α,

(2) CV (0n) is a code VOA (MD)C,

(3) V α is an irreducible V (0n)-module with τ̃(V α)=α for α∈S.

Proof. Set P = 〈τei
| i=1, · · · , n〉 ⊆ Aut(V ), which is an elementary

abelian 2-group. Decompose V into a direct sum

V = ⊕χ∈Irr(P )V
χ

of eigenspaces of P , where Irr(P ) is the set of linear characters of P and V χ

denotes {v∈V | gv=χ(g)v for g∈P} and V 1P =V P is the set of P -invariants
and 1P is the trivial character of P . It is known by [DM2] that V χ is a nonzero
irreducible V P -module for χ∈ Irr(P ). It follows from the definition of τei

that
τ̃(V χ)=(ai) is given by (−1)ai =χ(τei

). Set S ={τ̃(V χ) | χ∈ Irr(P )} and denote
V χ by V τ̃(V χ) using a binary word τ̃(V χ). In particular, CV P is a VOA with
τ̃(CV P )=(0n) and hence it is isomorphic to a code VOA (MD)C for some even
linear binary code D. Then V has the desired decomposition.
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3. Code VOAs with PDIB-forms

In this section, we review several results from [Mi2]–[Mi5] and prove their
R-versions. We will first construct a code VOA MD with a PDIB-form for
an even linear binary code D of length n. Set M0 = L(1

2 , 0) and M1 =
L(1

2 , 1
2). As we showed in §2.4, M = M0 ⊕ M1 has a super VOA structure

(M, Y M ). Although an SVOA structure on CM is uniquely determined, an
SVOA structure on M is not unique. For example, if (M0⊕M1, Y ) is an SVOA,
then (M0 ⊕

√
−1M1, Y ) is the other SVOA. They are isomorphic together as

M0-modules. We already have a VOA structure on CM0 ⊕ CM1 and the
isomorphism v(0) +

√
−1v(1) → v(0) +v(1) defines another VOA structure on

CM0 ⊕CM1. So we choose one of them satisfying q
(1)
(0)q

(1)∈R+1 and denote it

by (M, Y M ), where q(1) is the highest weight vector of M1 given by (2.3) and
R+ ={r∈R|r > 0}.

An essential property is “super-commutativity”:

(3.1) Y M (v, z1)Y M (u, z2) ∼ (−1)ijY M (u, z2)Y M (v, z1)

for v ∈ M i and u ∈ M j (i, j = 0, 1). Here A(z1, z2) ∼ B(z1, z2) means
(z1−z2)NA(z1, z2) = (z1−z2)NB(z1, z2) for some integer N . Take n copies
M [i] =(M0)[i] ⊕ (M1)[i] of M =M0 ⊕M1 for i=1, · · · , n and set M⊗n =M [1] ⊗
· · · ⊗ M [n]. For a binary word α = (a1, · · · , an) ∈ Zn

2 , set M̃α = ⊗n
i=1(M

ai)[i],
which is a subspace of M⊗n. Define a vertex operator Y ⊗n(v, z) of v ∈M⊗n

by setting

(3.2) Y ⊗n(⊗n
i=1v

i, z)(⊗n
i=1u

i)=⊗n
i=1(Y

M [i]
(vi, z)ui)

for ui, vi ∈M [i] and extending it to the whole space M⊗n linearly. It follows
from (3.1) that for v∈M̃α, u∈M̃β, we have super commutativity:

(3.3) Y ⊗n(v, z1)Y ⊗n(u, z2) ∼ (−1)〈α,β〉Y ⊗n(u, z2)Y ⊗n(v, z1),

where 〈(ai), (bi)〉 =
∑n

i=1 aibi ∈ Z2. Viewing D as an elementary abelian
2-group with an invariant form, we will show that there is a central exten-
sion D̂={±κα | α∈D} of D by ±1 such that κακβ =(−1)〈α,β〉κβκα since D is
an even linear lattice. Actually, let ξi (i=1, · · · , n) denote a word (0i−110n−i)
and define formal elements κξi (i = 1, · · · , n) satisfying κξiκξi = κ(0n) = 1 and
κξiκξj =−κξjκξi for i �= j. For a word α=ξj1 +· · ·+ξjk

with j1 < · · ·< jk, set

(3.4) κα = κξj1κξj2 · · ·κξjk .

It is straightforward to check the following:

Lemma 3.1 ([Mi3]). For α, β,

κακβ = (−1)〈α,β〉+|α||β|κβκα∈{±κα+β}(3.5)

κακα = (−1)
k(k−1)

2 κ(0n) for |α| = k.
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In order to combine (3.3) and (3.5), set

(3.6) Mδ = M̃δ ⊗ κδ

for δ∈Zn
2 and

(3.7) MD =
⊕
δ∈D

Mδ.

Define a new vertex operator Y (u, z) of u∈MD by setting

(3.8) Y (v ⊗ κα, z)(u ⊗ κβ) = Y ⊗n(v, z)u ⊗ κακβ

for v ⊗ κα ∈Mα = M̃α ⊗ κα, u ⊗ κβ ∈Mβ and extending it linearly. We then
obtain the desired commutativity:

(3.9) Y (v, z1)Y (w, z2) ∼ Y (w, z2)Y (v, z1)

for v, w∈MD. Set ei =(1[1] ⊗ · · · ⊗ 1[i−1] ⊗ ω[i] ⊗ 1[i+1] ⊗ · · · ⊗ 1[n]) ⊗ κ(0n). It
is not difficult to see that

(3.10) ω = e1+· · ·+en

is the Virasoro element of MD and

(3.11) 1 = (1[1] ⊗ · · · ⊗ 1[n]) ⊗ κ(0n)

is the vacuum of MD, where ω[i] and 1[i] are the Virasoro element and the
vacuum of M [i], respectively. To simplify the notation, we will omit super-
scripts [i] of M [i] from now on. We have proved the following theorem, whose
complexification was proved in [Mi2].

Theorem 3.2. If D is an even binary linear code, then (MD, Y, ω,1) is
a VOA over R.

It follows from the construction that Mβ+D := ⊕α∈DMβ+α is an irre-
ducible MD-module for any β ∈Zn

2 and we will call it a coset module of MD.
From the definition of κα in (3.4), we have the following lemma.

Lemma 3.3. If g ∈Aut(D), there is an automorphism g̃ of a code VOA
MD such that g̃(ei)=eg(i) and g̃(Mα)=Mg(α).

Proof. For g ∈Aut(D), we define a permutation g1 on {M̃α | α∈D} by
g1(⊗n

i=1v
[i]) = ⊗n

i=1v
[g(i)] and an automorphism g2 of D̂ by g2(κξi1 · · ·κξit ) =

κξg(i1) · · ·κξg(it) . Combining both actions, we have an automorphism g̃=g1⊗g2

of MD =⊕α(M̃α ⊗ κα).
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Our next aim is to prove that MD has a PDIB-form 〈 , 〉 with 〈1,1〉=1.
Set W ={v∈MD|(ei)(m)v=0 for all m ≥ 2, i=1, · · · , n}.

Lemma 3.4. 〈 , 〉 on W is positive definite.

Proof. Set

(3.12) q̃α = (q(a1) ⊗ · · · ⊗ q(an))

for α = (a1, · · · , an)∈D, where q(1) is the highest weight vector of M1 given
by (2.3) and q(0) denotes the vacuum of M0. It is easy to see that

(3.13) qα = q̃α ⊗ κα

is a lowest degree element of Mα. Since Mα
∼= ⊗n

i=0L(1
2 , ai

2 ) and MD =
⊕α∈DMα, {qα : α ∈ D} spans W . Let kα denote half of the weight of α.
For α, β, we have

〈qα, qβ〉1 = 〈qα
(−1)1, qβ〉1= Resz{z−1Y (((−1)kαz−2kα)qα, z−1)qβ}

= (−1)kαqα
(2kα−1)q

β = δα,β22kα .

Thus, { 1
2kα qα|α∈D} is an orthonormal basis of W .

Let V = ⊕∞
i=0Vi be a VOA satisfying dimV0 = 1 and L(1)V1 = 0. Set

B=RL(1)⊕RL(0)⊕RL(−1). Since B ∼= sl2(R) as Lie algebras and L(1)V1 =0,
V is a direct sum of irreducible B-modules. If U is an irreducible B-submodule
of V and u is a lowest degree vector of U with degree k, then
(3.14)

〈u, v〉1 = 〈u(−1)1, v〉1 = Resz(Y (((−1)kz−2k)u, z−1)z−1v = (−1)ku(2k−1)v

for any v∈Vk. Also we obtain

〈L(−1)iv, L(−1)ju〉= 〈L(−1)i−1v,(3.15)

L(1)L(−1)ju〉= (2kj+j2−j)〈L(−1)i−1v, L(−1)j−1u〉

and (2kj+j2−j) > 0 for i, j > 0. Thus 〈 , 〉 on V is positive definite if and
only if

(3.16) u(2k−1)u∈(−1)kR+1

for every nonzero homogeneous element u∈Vk satisfying L(1)u=0.
We first prove an R-version of Theorem 4.5 in [Mi3].

Proposition 3.5. Let V be a framed VOA with a coordinate set
{e1, · · · , en}. If τ̃(V ) = (0n) and V has a PDIB-form, then there is an even
linear code D of length n such that V is isomorphic to a code VOA MD.
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Proof. Since τ̃(V )=(0n), τei
=1 and so we can define automorphisms σei

for i=1, · · · , n, where σei
is defined by exp(2π

√
−1(ei)(1)) on V ; see [Mi1]. We

note that the eigenvalues of (ei)(1) on V are in Z/2. Set Q=〈σei
| i=1, · · · , n〉,

which is an elementary abelian 2-group. Let

V = ⊕χ∈Irr(Q)V
χ

be the decomposition of V into the direct sum of eigenspaces of Q, where
Irr(Q) is the set of linear characters of Q. Since dimV0 = 1 and V χ is an
irreducible V Q-module by [DM2], we have V Q =T and V χ ∼= ⊗n

i=1L(1
2 , hi

2 ) as
T -modules, where hi∈{0, 1} is defined by χ(σei

)=(−1)hi . Identifying χ and a
binary word (hi), V χ ∼= Mχ =M̃χ ⊗ κχ as T -modules. Since all weights of V χ

are integers, the weight of χ is even, say 2kχ. Let pχ ∈V χ be a lowest degree
vector with 〈pχ, pχ〉=22kχ . We identify pχ with q̃χ⊗ κ̃χ, see q̃χ at (3.12). Since
q̃χ
(2kχ−1)q̃

χ =2kχ1, we have

2kχ1= 〈q̃χ ⊗ κ̃χ, q̃χ ⊗ κ̃χ〉1(3.17)

= 〈1, (−1)k(q̃χ ⊗ κ̃χ)(2kχ−1)q̃
χ ⊗ κ̃χ〉1

= 22kχ〈1, (−1)kκ̃χκ̃χ〉1.

Hence κ̃χκ̃χ =(−1)kχ κ̃0 for any χ, which determines a cocycle uniquely and it
coincides with (3.5). This completes the proof of Proposition 3.5.

As a corollary, we have:

Corollary 3.6. For an even linear code D, MD has a PDIB-form. In
particular, if α is even, then a coset module MD+α also has a PDIB-form.

Proof. It is sufficient to show that there is a VOA V with a PDIB-form
such that V contains MD. Since MD is a sub VOA of MS if D ⊆ S and we
can also embed MD

∼= MD ⊗ 1 ⊆ MD ⊗MD, we may assume that D is the set
of all even words of length 2n. Let {x1, · · · , xn} be an orthonormal basis of a
Euclidian space of dimension n and set

(3.18) L =

{
n∑

i=1

aixi | ai∈Z,
n∑

i=1

ai ≡ 0 (mod 2)

}
.

Clearly, L is an even lattice and ṼL denotes a lattice VOA with a PDIB-form.
Since ṼL contains 2n mutually orthogonal rational conformal vectors

(3.19) e(2xi)± = 1
4((xi)(−1))

21 ± 1
4(ι(2xi)+ι(−2xi)) (i=1, · · · , n)

with central charge 1
2 , ṼL is a framed VOA. Since 〈v, 2xj〉 ∈ 2Z for v ∈L and

j =1, · · · , n, (2.4) implies τ̃(ṼL)=(02n) and hence ṼL is isomorphic to a code
VOA MS for some even linear code S of length 2n by Proposition 3.5. It is
easy to see dim(MS)1 =n(2n−1) and so S is the set of all even words of length
2n. Hence MD has a PDIB-form.
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Lemma 3.7. If a VOA V contains a code VOA MD and D contains a
codeword δ of weight 2, then CV contains an automorphism g satisfying

g = (−1)〈β,δ〉 on Mβ for β∈D.

In particular, g coincides with σei
σej

on MD if Supp(δ)={i, j}.

Proof. Let α ∈ D be a codeword of weight 2, say α = (110n−2), then
(Mα)1 �= 0. Set E = {(00), (11)}, then M〈α〉 = ME ⊗

(
L(1

2 , 0)⊗n−2
)

and ME is
isomorphic to V2Zx with 〈x, x〉=1 as given in §2.4. Let v be an element of V1

corresponding to x(−1)1. Define g = exp(2π
√
−1v(0)). Since v ∈ V1 and ME is

rational, v(0) acts on V semisimply and g is an automorphism of V satisfying
the desired conditions.

We propose one conjecture.

Conjecture 1. If V is a (D, S)-framed VOA and β ∈ D, then there is
an automorphism g of V such that g=

∏
i∈Supp(β) σei

on MD.

3.1. MD-modules. We recall the structures of irreducible CMD-modules
from [Mi3]. Let W be an irreducible MD-module with τ̃(W ) = µ. Then CW

is a CMD-module and CW =W ⊕ W as MD-modules. Since we have defined

nonzero intertwining operators I0,∗(v, z) and I
1
2 ,∗(u, z) over R in §2.4, we have

an R-version of Theorem 5.1 in [Mi3]:

Theorem 3.8. Let (W, Y W ) be an irreducible MD-module with τ̃(W )=µ

and {Xi | i=1, · · · , m} the set of all nonisomorphic irreducible T -submodules
of W . Set Dµ = {α ∈D|Supp(α) ⊆ Supp(µ)} and let D̂µ denote a group ex-
tension {±κα|α∈Dµ} given by (3.4). Then there are irreducible RD̂µ-modules
Qi and representations φi : D̂µ → End(Qi) satisfying φi(−κ(0n)) = −IQi for
i=1, · · · , m such that W ∼= ⊕m

i=1(X
i ⊗ Qi) as MDµ

-modules.

Here the vertex operator Y W (qα, z) of qα = (⊗n
i=1q

(ai)) ⊗ κα ∈ Mα on
⊕m

j=1(X
j ⊗ Qj) is given by

⊕m
j=1

(
⊗n

i=1I
ai/2,∗(q(ai), z) ⊗ φj(κα)

)
for α=(a1, · · · , an). See (3.13), §2.2 and §2.3 for qα and ⊗n

i=1I
ai/2,∗(q(ai), z).

Before we study MD-modules, we explain the structure of a 2-group D̂. An
important property of our cocycle is that if a maximal self-orthogonal subcode
H of Dµ is doubly even (for example, an extended [8, 4]-Hamming code), then
Ĥ ={±κα | α∈H} is an elementary abelian 2-group and hence every irreducible
RĤ-representation is linear. If χ : D̂µ → End(Q) is an irreducible RD̂µ-module
with χ(−κ(0n)) =−IQ, then K := Ker(χ) is in the center of D̂µ. Since Ĥ is a
maximal normal abelian subgroup of D̂µ, Ĥ/K is a maximal normal abelian
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subgroup of D̂µ/K. Since D̂µ/K has a faithful irreducible representation, the
center Z(D̂µ/K) is cyclic and so is of order 2. Hence D̂µ/K is an extra-special
2-group and Q|H is a direct sum of distinct Ĥ-irreducible modules.

In the remainder of this section, we use the following notation:

B(D) :=
{

β∈Zn
2 | one of the maximal self-orthogonal

subcodes of Dβ is doubly even

}
.

Corollary 3.9. If H is a doubly even code and W is an irreducible
MH -module with τ̃(W )=(1n), then W is also irreducible as a T -module.

Lemma 3.10. Let W be an irreducible MD-module with τ̃(W ) ∈ B(D).
Then CW is an irreducible CMD-module.

Proof. Let H be a maximal self-orthogonal doubly even subcode of Dτ̃(W ).
Since CW ∼= W ⊕ W as MD-modules and W is a direct sum of distinct
MDµ

-modules, we may assume Dµ = D and W ∼= X⊗ Q, where X is an ir-
reducible MH -module and Q is an irreducible RD̂-module by Theorem 3.8. As
mentioned above, Q|Ĥ is a direct sum of distinct linear Ĥ-modules and CQ|Ĥ
is a direct sum of distinct irreducible CĤ-modules. Hence CQ is an irreducible
CD̂-module and so CW is an irreducible CMD-module.

Corollary 3.11. If ICMD

(
CW 3

CW 1 CW 2

)
�= 0, then IMD

(
W 3

W 1 W 2

)
�= 0

for MD-modules W 1, W 2 and W 3.

Proof. Choose 0 �= I(∗, z)∈ICMD

(
CW 3

CW 1 CW 2

)
. By restricting I(∗, z) on

W 1 and W 2, we have a nonzero intertwining operator Ĩ(∗, z)∈IMD

(
W 3 ⊕ W 3

W 1 W 2

)
.

Taking the first entry and the second entry of CW 3 =W 3 ⊕
√
−1W 3, we have

two intertwining operators Ĩ1(∗, z) and Ĩ2(∗, z) in IMD

(
W 3

W 1 W 2

)
and one of

them at least is nonzero.

One of the attributes of lattice VOAs and their modules is that we can
find all MD-modules inside of them in some sense. This fact is very useful in
studying the fusion rules among MD-modules. For example, one obtains:

Lemma 3.12. If W 1, W 2 are MD-modules, then W 1 × W 2 is nonzero.

Proof. By Corollary 3.11, we may assume that all VOAs are considered
over C, and so we omit the subscript C. If W 1 × W 2 = 0, then (W 1)⊗2 ×
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(W 2)⊗2 = 0 as (MD)⊗2-modules. We may hence assume that τ̃(W 1) =
(12h+2k02s+2t) and τ̃(W 2) = (02h12k12s02t) by rearranging the order. Set
α = τ̃(W 1), β = τ̃(W 2) and n = 2(h+k+s+t). Let Fr denote the set of all
even words of length r. We may also assume that D= 〈α, β〉⊥. Set D1 = 〈α〉⊥
and D2 = 〈β〉⊥. Clearly, D1 =F2h+2k ⊕ F2s+2t. Generally, MF2r

is isomorphic
to a lattice VOA VN(r), where N(r)= {

∑r
i=1 aixi | ai ∈Z,

∑
ai ≡ 0 (mod 2)}

with an orthonormal basis {x1, · · · , xr} as we showed in the proof of Corollary
3.6. An irreducible VL-module VL+

x1+···+xr
2

is isomorphic to L(1
2 , 1

16)⊗2r ⊗ Q as

L(1
2 , 0)⊗2r-modules and Q is an irreducible F̂n-module. Since F̂n is a direct sum

of an extra-special 2-group and a group of order 2, Q|Ĥ contains all irreducible

Ĥ-modules on which−κ(0n) acts as−1. It is easy to see that MD ⊆ MD1 and
MD1 ∼= VN(h+k) ⊗ VN(s+t) and W 1 ⊆ V{N(h+k)+

1
2 (x1+···xh+k)} ⊗ VN(s+t). Simi-

larly, we can find W 2 in VRL. It follows from the definition of vertex operators
that there are v∈W 1 and u∈W 2 such that Y (v, z)u �= 0. Since commutativity
holds for Y (v, z) and Y (u, z) for u∈MD and v∈W 1, we have an intertwining

operator Y (∗, z)∈IMD

(
VRL

W 1 W 2

)
by restriction. Namely, W 1×W 2 is nonzero.

An irreducible V -module X is called a “simple current” if W × X is irre-
ducible for any irreducible V -module W .

Corollary 3.13. If X is an irreducible MD-module with τ̃(X)∈B(D),
then the fusion product

Mα+D × X

is an irreducible MD-module for any α.

Proof. Since CX is an irreducible CMD-module by Lemma 3.10
and CMα+D is a simple current, CMα+D × CX is also irreducible. If

I

(
U

Mα+D X

)
�= 0, then τ̃(U)= τ̃(X)∈B(X) and so CU is irreducible and

CU =CMα+D ×CX. Hence dim I

(
U

Mα+D X

)
≤ dim I

(
CU

CMα+D CX

)
=1

and so Mα+D × X =U .

Lemma 3.14. Let (W, Y W ) be an irreducible MD-module with τ̃(W ) = µ

and let W = ⊕r
i=0U

i be the decomposition of W into the direct sum of distinct
homogeneous MDµ

-submodules U i. Then U i is irreducible and Y W is uniquely
determined by U i for any i.

Proof. Let X be an irreducible T -submodule of U0 and set X∼=⊗n
i=1L(1

2 , hi)
(hi = 0, 1

2 , 1
16). By the fusion rule of L(1

2 , 0)-modules, U0 is homogeneous
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as a T -module; that is, every irreducible T -submodule of U0 is isomorphic
to X. By Proposition 4.1 in [DM2], {v(m)u | u ∈ CX, v ∈ CMα, α ∈ D}
spans CW . On the other hand, if α = (ai) �∈ Dµ, then the irreducible CT -
submodule generated by v(m)u is isomorphic to ⊗n

i=1CL(1
2 , hi+ ai

2 ) and hence〈
v(m)u | u∈X, v∈CMα, α∈D

〉
∩ CU0 = CX, which proves CU0 = CX and

U0 =X. We also have that
〈
v(m)u | u∈U0, v∈Mα+Dµ

〉
is an irreducible MDµ

-
module U j for some j by the same arguments, which we denote by Uα. Corol-
lary 3.13 implies that Mα+Dµ

× U0 is irreducible. Considering the image of
Y (v, z) from U0, we have a nonzero intertwining operator Y (v, z) : U0 →
Uα[[z, z−1]] for v ∈ Mα+Dµ

. We hence conclude Mα+Dµ
× Uβ = Uα+β. That

is, if one of the {U i | i = 1, · · · , r} is given, then the other U j ’s are uniquely
determined as MDµ

-modules. Assume that there is another MD-module S

such that S|MDµ

∼= ⊕β∈D/Dµ
Uβ as MDµ

-modules. Denote the restriction of
Y W (∗, z) on Uβ by Iα,β(∗, z) : Uβ → Uα+β and that of Y S(∗, z) on Uβ by

Jα,β(∗, z) : Uβ → Uα+β for v ∈ Mα+Dβ
. Since dim I

(
Uα+β

MDµ+α Uβ

)
= 1,

there are scalars λβ,β+α such that Jα,β(v, z) = λβ,β+αIα,β(v, z) for any
v∈Mα+Dµ

. For each α, let A(α) be a |D/Dµ|×|D/Dµ|-matrix whose (β, β+α)-
entry is λβ,β+α for any β ∈D/Dµ and 0 otherwise. Since {Y W (v, z)|v ∈MD}
and {Y S(v, z)|v∈MD} satisfy mutual commutativity and associativity, respec-
tively, A : D/Dµ → M(|D/Dµ| × |D/Dµ|, R) is a regular representation. We
are hence able to reform A(α) into a permutation matrix by changing the ba-
sis. Therefore we may assume Jα,β = Iα,β and so W is isomorphic to S as an
MD-module.

Combining the arguments above, we have the following theorem:

Theorem 3.15. Let W be an irreducible ME-module with τ̃(W ) = µ ∈
B(E). Let D be an even code containing E such that 〈D, µ〉 = 0. Assume
that there is a maximal self -orthogonal (doubly even) subcode H of Eµ such
that H is also a maximal self -orthogonal subcode of Dµ. Then there is a
unique irreducible MD-module X containing W as an ME-submodule. Here
the subscript Sµ denotes {α∈S|Supp(α) ⊆ Supp(µ)} for any code S.

We will call X in Theorem 3.15 an induced MD-module and denote it by
IndD

E (W ).
We next quote the results about an extended [8, 4]-Hamming code VOA

CVH8 from [Mi2]. Here an extended [8, 4]-Hamming code H8 is a subspace of Z8
2

spanned by {(18), (1404), (12021202), ({10}4)}, which is isomorphic to the Reed
Müller code RM(1, 3). Let {e1, · · · , e8} be a coordinate set of an extended
[8, 4]-Hamming code VOA MH8 . Let W be an irreducible MH8-module. If
τ̃(W ) = (08), then CW is isomorphic to a coset module CMH8+α for some
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α ∈ Z8
2 and hence W is isomorphic to MH8+α. We denote it by H(1

2 , α). If
τ̃(W ) = (18), then there is a linear representation χ : Ĥ8 → {±1} such that
CW is isomorphic to (L(1

2 , 1
16)⊗8) ⊗ Cχ. If we fix a basis {α1, α2, α3, α4}

of H8, then there is a word β such that χ(καi

) = (−1)〈β,αi〉. In particular,

χ is realizable over R and so W is isomorphic to (L(1
2 , 1

16)⊗8) ⊗ Rχ, which

we denote by H( 1
16 , β). We should also note that H( 1

16 , β) depends on the

choice of the basis of H8. So, we fix a basis {(18), (1404), (12021202), ((10)4)}
of H8 throughout this paper. We should also note that CH(h, α) is denoted
by H(h, α) in [Mi5]. Reforming the results in [Mi5] into those for VOAs over
R by a similar argument as in §2.2, we have the following result.

Theorem 3.16. Let W be an irreducible MH8-module. If τ̃(W ) = (08),
then W is isomorphic to one of

{H(1
2 , α) | α∈Z8

2}.
If τ̃(W )=(18), then W is isomorphic to one of

{H( 1
16 , α) | α∈Z8

2}.
H(1

2 , α) ∼= H(1
2 , β) if and only if α+β∈H8 and H( 1

16 , α) ∼= H( 1
16 , β) if and only

if α+β∈H8. H(1
2 , α) is a coset module MH8+α and H( 1

16 , β) is isomorphic to
L(1

2 , 1
16)⊗8 as an L(1

2 , 0)⊗8-module.

In [Mi5], the author obtained the fusion rules among

{CH(r, α) | r= 1
2 , 1

16 , α∈Z8
2}.

Since H8 is doubly even, we have the following by Lemma 2.5 and Lemma 3.12.

Lemma 3.17.

H(1
2 , α) × H(1

2 , β) = H(1
2 , α+β),

H( 1
16 , α) × H(1

2 , β) = H( 1
16 , α+β)

and
H( 1

16 , α) × H( 1
16 , β) = H(1

2 , α+β).

We next show that MH8 contains the other two coordinate sets. To sim-
plify the notation, we will choose another cocycle of Ĥ8 for a while. We
have already fixed a basis {α1, · · · , α4} of H8. Set κ̄α = κa1α1 · · ·κa4α4 for
α =

∑4
i=1 aiαi ∈H8. Note that H8 contains 14 words of weight 4. For such a

codeword (or a 4 points set) β=(b1 · · · b8), let

q̄β = 1
4(⊗8

i=1q
(bi)) ⊗ κ̄α∈(MH8)2.

It follows from a direct calculation that

sα = 1
8(e1+· · ·+e8)+ 1

8

∑
β∈H8, |β|=4

(−1)(α,β)q̄β
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is a conformal vector with central charge 1
2 for every word α∈Z8

2 as we showed
in [Mi2]. Clearly, sα = sβ if and only if α+β ∈H8. It is also straightforward
to check that 〈sα, sβ〉= 0 if and only if α+β is an even word. Therefore we
have two new coordinate sets {d1, · · · , d8} and {f1, · · · , f8} in MH8 . Set Td =
〈d1, · · · , d8〉 and Tf = 〈f1, · · · , f8〉. With MH8 a Td-module and a Tf module,
⊕(a1,··· ,a8)∈H8

(
⊗8

i=1L(1
2 , ai

2 )
) ∼= MH8 . Therefore there is an automorphism σ

of MH8 such that σ(ei) = di and σ(di) = fi for every i, which is obtained
by rearrangment of the orders of {di} and {fi}. Viewing an MH8-module
as a Td-module and a Tf -module, we have the following correspondence (see
Proposition 2.2 and Lemma 2.7 in [Mi5]):

Lemma 3.18. There is an automorphism σ of MH8 such that

σ(H(1
2 , (08)))∼= H(1

2 , (08)),

σ(H(1
2 , ξ1))∼= H( 1

16 , (08)),

σ(H( 1
16 , (08)))∼= H( 1

16 , ξ1)

and
σ(H( 1

16 , ξ1))∼= H(1
2 , ξ1),

where ξ1 denotes (107). In particular, σ(q(18))(3) acts on H( 1
16 , (08)) as −q

(18)
(3) ,

where q(18) =
(
(⊗8

i=1q
(1)) ⊗ κ(18)

)
.

Since all codewords of H8 are in B(H8), we have the following as a corol-
lary.

Corollary 3.19. H(1
2 , α) and H( 1

16 , α) are all simple currents.

We will next prove the following important theorem.

Theorem 3.20. Let W 1 and W 2 be irreducible MD-modules with α =
τ̃(W 1), β = τ̃(W 2). For a triple (D, α, β), the following two conditions are
assumed :

(3.a) D contains a self-dual subcode E which is a direct sum of k extended
[8, 4]-Hamming codes such that Eα = {γ ∈ E|Supp(γ) ⊆ Supp(α)} is a
direct factor of E or {0}.

(3.b) There are maximal self -orthogonal subcodes Hβ and Hα+β of Dβ and
Dα+β containing Eβ and Eα+β, respectively, such that they are doubly
even and

Hβ+E = Hα+β+E,

where the subscript Sα denotes a subcode {β∈S|Supp(β) ⊆ Supp(α)} for
any code S.

Then W 1 × W 2 is irreducible.
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Proof. Suppose the conclusion is false and choose D as a minimal coun-
terexample. If α = 0 or β = 0, then W 1 or W 2 is a coset module and the
assertion follows from Corollary 3.13, since τ̃(W i)∈B(D). By the assumption
(3.a), the weight of α is a multiple of eight. We may assume α = (18r08s)

and β �= 0. Let Q be an irreducible MD-module so that 0 �= I

(
Q

W 1 W 2

)
.

Clearly τ̃(Q) = α+β. By the assumption (3.a), there is a self-dual subcode
E = Eα ⊕ Eαc of D such that E is a direct sum of extended [8, 4]-Hamming
codes.

(1) Assume first that Eβ = {γ ∈E|Supp(γ) ⊆ Supp(β)} is a direct factor
of E; that is, E = Eβ ⊕ Eβc . Let U i be an irreducible ME-submodule of W i

for each i = 1, 2. By Theorem 3.16, U1 ∼= (⊗r
i=1H( 1

16 , αi)) ⊗ (⊗s
j=1H(1

2 , βj))
as ME-modules and hence U1 × U2 is an irreducible ME-module. Since Q

contains U1 × U2 as an ME-module, Q is uniquely determined as an
MD-module. Since Q is a direct sum of distinct irreducible ME-submodules

and the restrictions I

(
Q

W 1 W 2

)
→ I

(
Q

U1 U2

)
→ I

(
U1 × U2

U1 U2

)
are injec-

tive, we have W 1 × W 2 =Q.

(2) We assume that Eβ is not a direct factor of E. By the assumption (3.b),
there are maximal self-orthogonal (doubly even) subcodes Hβ and Hα+β of Dβ

and Dα+β containing Eβ and Eα+β, respectively, such that Hβ+E =Hα+β+E.
Set D′=Hβ+D. It is easy to check that (D′, α, β) satisfies (3.a) and (3.b).

Assume that D �= D′. Let X1 and X2 be irreducible MD′-submodules of
W 1 and W 2, respectively. By the minimality of D, X1 × X2 is irreducible.
Since Q contains a submodule isomorphic to X1 × X2 as an MD′-module and
D′

α+β contains Hα+β, Q is uniquely determined. Since Q contains only one
irreducible submodule isomorphic to X1 × X2, we have W 1 × W 2 = Q and
D=Hβ+E.

(2.1) We claim that W 2 and Q are irreducible as ME-modules.
First, note that τ̃(Q) = α+β and D = Hβ +E = Hα+β +E. Since the

proofs are almost the same, we will prove the assertion only for W 2. Since
Hβ contains Eβ and D = Hβ + E, we obtain Dβ = Hβ. If P is an irre-
ducible MHβ -submodule of W 2, then W 2 =IndD

Hβ(P ) and P is irreducible as a
T -module. In particular, P is irreducible as an MEβ

-module. Since τ̃(P )=β,
IndE

Eβ
(P ) is an irreducible ME-submodule of W 2. On the other hand, since

D/Hβ ∼= E/Eβ, we have dim(IndE
Eβ

(P )) = dim(IndD
Hβ(P )) = dimW 2 so that

W 2 is an irreducible ME-module, which proves the claim.

(2.2) Let U1 be an irreducible ME-submodule of W 1. Since τ̃(U1) = α

and Eα is a direct sum of E, U1 is a simple current. Since W 2 and U are
both irreducible ME-modules by the claim above, U1 × W 2 is irreducible.
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Furthermore, since

(3.20) 0 �= dim IMD

(
Q

W 1 W 2

)
≤ dim IME

(
Q

U1 W 2

)
≤ 1,

we have U1 × W 2 ∼= Q as ME-modules. Fix a nonzero intertwining operator

I1(∗, z)∈IME

(
Q

U1 W 2

)
.

For I(∗, z) ∈ IMD

(
Q

U1 W 2

)
, there is a scalar λ ∈ R such that I(v, z) =

λI1(v, z) for v∈U1. Since Y Q(u, z)I(v, z) ∼ I(v, z)Y 2(u, z), we have

Y Q(u, z)I1(v, z)=I1(v, z)Y 2(u, z)

for u∈MD and v ∈U1. Since the coefficients of {I1(v, z)w | v ∈U1, w ∈W 2}
spans Q, Y Q(u, z) is uniquely determined by Y 2(u, z) and hence the action of
MD on Q is uniquely determined. Thus W 1 × W 2 =Q by (3.20).

We now arrive at the main result of this section, which is an R-version of
Theorem 6.5 in [Mi5]:

Theorem 3.21. Let W =MD ⊕W δ ⊕W γ ⊕W δ+γ be a (D, 〈δ, γ〉)-framed
VOA and let F be an even linear subcode of 〈δ, γ〉⊥ containing D. Assume that
〈δ, γ〉 ⊆ B(D), Dµ contains a maximal self -orthogonal (doubly even) subcode
of Fµ for any µ∈〈δ, γ〉 and

(3.21) IndF
D(Wα) × IndF

D(W β) = IndF
D(Wα+β)

for α, β∈〈δ, γ〉. Then

IndF
D(W ) := MF ⊕ IndF

D(W δ) ⊕ IndF
D(W γ) ⊕ IndF

D(W δ+γ)

has an (F, 〈δ, γ〉)-framed VOA structure, which contains W as a sub VOA.

We will also prove that if MD⊕W δ is a (D, 〈δ〉)-framed VOA and IndF
D(W δ)

× IndF
D(W δ) = MF , then MF ⊕ IndF

D(W δ) is an (F, 〈δ〉)-framed VOA. Before
we prove Theorem 3.21, we note that the conditions of Theorem 3.21 including
the fusion rule (3.21) follow from the conditions of Theorem 3.20.

Proposition 3.22. Assume the triple (D, α, β) satisfies the conditions of
Theorem 3.20 for any α, β∈〈δ, γ〉. Then IndF

D(Wα)×IndF
D(W β)=IndF

D(Wα+β)
for α, β∈〈δ, γ〉.

Proof of Theorem 3.21. Set V =IndF
D(W ). For simplicity, we denote IndF

D

by Ind. Let Y W (v, z)∈End(W )[[z, z−1]] be the given vertex operator of v∈W .
For α′, β′∈S =〈δ, γ〉, let

Jα′,β′
(v, z)∈IMD

(
Wα′+β′

Wα′
W β′

)
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be the restriction of Y W (v, z) on W β′
for v∈Wα′

and α′, β′∈S =〈δ, γ〉. Since
Theorem 11.9 in [DL] implies that a natural restriction

φ : IMF

(
Ind(W γ′

)
Ind(Wα′

) Ind(W β′
)

)
→ IMD

(
W γ′

Wα′
W β′

)
is injective and the multiplicity of Wα′ × W β′

in Ind(Wα′+β′
) is one, we can

choose

Iα′,β′
(∗, z)∈IMF

(
Ind(Wα′+β′

)
Ind(Wα′

) Ind(W β′
)

)
such that Iα′,β′

(v, z)u = Jα′,β′
(v, z)u for any v ∈ Wα′

and u ∈ W β′
. Define

Y (v, z) ∈ End(V )[[z, z−1]] by Y (v, z)u = Iα′,β′
(v, z)u for v ∈ Ind(Wα′

) and
u ∈ Ind(W β′

). Note that Y (v, z)u = Y W (v, z)u for u, v ∈ W . Moreover, the
powers of z in Y (v, z) are all integers since 〈τ̃(Ind(W )), F 〉 = 0 by Proposi-
tion 2.6. For u, v ∈W , we have Y (u, z1)Y (v, z2) ∼ Y (v, z2)Y (u, z1). We also
have that Y (v, z)|Ind(W β) is at least an intertwining operator for v∈V and so
Y (v, z1)Y (u, z2) ∼ Y (u, z2)Y (v, z1) for u∈MF and v∈ Ind(Wα). Hence

(3.22) T u,u′
:= {w∈ Ind(W ) | Y (u′, z)Y (u, x)w ∼ Y (u, x)Y (u′, z)w}

is an MF -module for u, u′ ∈W . Since T u,u′
contains W , it coincides with V .

Namely, {Y (u, z) | u∈W ∪MD} satisfies mutual commutativity on V . Clearly,
{Y (v, z) | v∈MD ∪W} generates vertex operators for all elements of V by the
normal products and hence {Y (v, z)|v∈V } satisfies mutual commutativity by
Dong’s lemma. The other required conditions are also easy to check and so we
have a desired VOA structure on V =Ind(W ).

Lemma 3.23. Let V = ⊕α∈SV α be a (D, S)-framed VOA satisfying the
conditions of Theorem 3.20 and assume that W is an irreducible V -module.
Let W = ⊕β∈S′W β be the decomposition into the direct sum of nonzero MD-
modules W β with τ̃(W β) = β for all β ∈ S′. Then W β are all irreducible
MD-modules and there is a word γ such that S′=S+γ.

Proof. We note that MD is rational. By arguments similar to those in the
proof of Theorem 3.8, we have that W β is irreducible. We note τ̃(V α ×W β)=
α+β. Since Y (v, z)u �= 0 for 0 �= v∈V α and 0 �= u∈W β by [DL], S′ contains
γ+S for any γ∈S′. Since W is irreducible, S′ is a coset.

Hypotheses I.

(1) D and S are both even linear codes of length 8k.

(2) V is a direct sum ⊕α∈SV α of irreducible MD-modules V α satisfying
τ̃(V α)=α.

(3) For any α, β∈S, there is a fusion rule V α × V β =V α+β.
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(4) For α, β ∈ S−{(0n)} satisfying α �= β, it is possible to define a framed
VOA structure with a PDIB-form on

V 〈α,β〉=MD ⊕ V α ⊕ V β ⊕ V α+β.

As a special case, if S = 〈α〉, then we assume that V 〈α〉=MD ⊕ V α has a
framed VOA structure with a PDIB-form.

Lemma 3.24. Let V = ⊕α∈SV α be a VOA satisfying the conditions of
Hypotheses I and W = ⊕β∈S+γW β an irreducible V -module. Assume that
(D, α, β) satisfies the conditions of Theorem 3.20 for any α, β∈S+Z2γ. Then
W is uniquely determined by W β for any β∈S+γ.

Proof. Since V α×W β =Wα+β by Theorem 3.20, an MD-module structure
on W is uniquely determined by W β. By arguments similar to those in the
proof of Theorem 3.15, we have the desired conclusion.

Since the intertwining operators among L(1
2 , 0)-modules are all well-defined

over R (even over Q ), we can rewrite Theorem 4.1 of [Mi5] into the following
theorem.

Theorem 3.25. Under Hypotheses I,

V =
⊕
α∈S

V α

has a structure of (D, S)-framed VOA with a PDIB-form. A framed VOA
structure on V = ⊕α∈SV α with a PDIB-form is uniquely determined up to
MD-isomorphisms.

Proof. First, we fix vertex operators Y V α

(v, z) of v∈MD on MD-modules
V α. Set I0,α(v, z)=Y V α

(v, z). Let Y 〈α,β〉 denote a vertex operator of the VOA
V 〈α,β〉=MD⊕V α⊕V β⊕V α+β. We may assume that Y 〈α,β〉(v, z)u=Y V δ

(v, z)u

for v ∈ MD and u ∈ V δ for δ ∈ 〈α, β〉. Define Iα,0(∗, z) ∈ I

(
V α

V α MD

)
by

the skew-symmetry property: Iα,0(u, z)v = ezL(−1)Y V α

(v,−z)u for v ∈ MD

and u ∈ V α, which is equal to Y 〈α,β〉(u, z)|MD
v for any β. We also define

I(∗, z) ∈ I

(
MD

V α V α

)
by I(u′, z)u = Y 〈α,β〉(u′, z)u for u, u′ ∈ V α for some β.

We will show that this does not depend on β. Since V α × V α =MD and our
VOAs are over R, there are two possibilities of VOA structures on MD ⊕ V α

given by Y ±(v, z)=
(

0 ±I(v, z)
Iα,0(v, z) 0

)
for v∈V α. Since we also assumed

that MD ⊕V α has a PDIB-form, there is a unique VOA structure on MD ⊕V α

up to MD-isomorphism. That is, if we fix an orthonormal basis {uα
i | i∈ Iα}
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of V α, then Y 〈α,β〉(u, z)v for u, v∈V α does not depend on the choice of β. So
set Iα,α(v, z)=I(v, z). Define a nonzero intertwining operator

Iα,β(∗, z)∈I

(
V α+β

V α V β

)
for α, β ∈ S satisfying dim 〈α, β〉= 2 by Iα,β(v, z)u = Y 〈α,β〉(v, z)u for v ∈ V α

and u∈V β. Now we have Iα,β(∗, z) for all α, β∈S.
Our next step is to choose suitable scalars λα,β and define a new vertex

operator Y (v, z)∈End(V )[[z, z−1]] by

(3.23) Y (v, z)u := λα,βIα,β(v, z)u

for v∈V α and u∈V β so that {Y (v, z) | v∈V } satisfies mutual commutativity.
We note that intertwining operators already satisfy the L(−1)-derivative prop-
erty and the other conditions except mutual commutativity and so “mutual
commutativity” is the only thing we have to prove. Let {α1, · · · , αt} be a basis
of S and set Si = 〈α1, · · · , αi〉 for i = 0, 1, · · · , t and V [i] = ⊕α∈Si

V α. We will
choose λα,β inductively so that (3.23) becomes a vertex operator of VOA V [i]

by restriction to V [i] and also is a vertex operator on V [i]-module V . Since the
V α are all MD-modules, the vertex operators Y V (v, z) of v∈V [0] (∼= MD) on V

satisfy mutual commutativity and so set λ0,α =1. We next assume that there
are an integer r and scalars λα,β for α∈Sr and β ∈S such that Y (v, z) given
by (3.23) is a vertex operator of V [r] by restricting on V [r] and is also a vertex
operator of VOA V [r] on V [r]-module V . It is clear that V Sr+δ =⊕γ∈Sr

V δ+γ

is an irreducible V [r]-module for each δ ∈ S by the fusion rules and hence V

decomposes into the direct sum of irreducible V [r]-modules. It follows from
the fusion rule of MD-modules V β and Lemma 3.24, that

V δ+Sr × V γ+Sr =V δ+γ+Sr

as V [r]-modules. Decompose V [r+1] = V [r] ⊕ V αr+1+Sr as V [r]-modules. To
simplify the notation, we denote αr+1 by α. Let {γi ∈ S | i ∈ J} be a set of
representatives of cosets S/Sr+1. Since the natural restriction

π : IV [r]

(
V Sr+α+γi

V Sr+α V Sr+γi

)
→ IMD

(
V Sr+α+γi

V α V γi

)
is injective and dim IMD

(
V Sr+α+γi

V α V γi

)
=1, we can choose a nonzero intertwining

operator Iα+Sr,γi+Sr(∗, z)∈I

(
V Sr+α+γi

V Sr+α V Sr+γi

)
such that

Iα+Sr,γi+Sr(v, z)u=Iα,γi(v, z)u

for v∈V α, u∈V γi . Restricting Iα+Sr,γi+Sr(∗, z) to V α+β,γi+δ for β, δ∈Sr, we
have a scalar λα+β,γi+δ such that

Iα+Sr,γi+Sr(v, z)u=λα+β,γi+δI
α+β,γi+δ(v, z)u
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for v ∈ V α+β and u ∈ V γi+δ. We will show that V [r+1] is a VOA and V is a
module with a vertex operator Y (v, z)=Iα+Sr,ri+Sr(v, z) for v∈V Sr+α, which
proves the assertion. Set

Q = {w∈V |Y (u, z)Y (u′, x)w ∼ Y (u′, x)Y (u, z)w for u, u′∈V α}.
Since Y (∗, z) is an intertwining operator of V [r]-modules, Q is a V [r]-module.
On the other hand, by the definition of Y , Q contains V γi

for all i. Hence
Q coincides with V . In particular, {Y (u, z) | u ∈ V [r] ∪ V α} satisfies mutual
commutativity. Since V [r+1] is generated by V [r] and V α, we have the desired
result. This completes the construction of our VOA.

We next show that a framed VOA structure on V = ⊕α∈SV α is unique.
Assume that there are two VOA structures (V, Y ) and (V, Y ′) on V . Clearly,

the V 〈α,β〉 are sub VOAs of both (V, Y ) and (V, Y ′). Since dim IMD

(
V α+β

V α V β

)
=

1, there are real numbers λα,β such that Y ′(v, z)u = λα,βY (v, z)u for v ∈ V α,
u ∈ V β. Clearly λ∗,∗ is a cocycle of an elementary abelian 2-group S. We
will show that it is a coboundary so that we have the desired result. Let Ŝ

be a group extension of S by a cocycle λ∗,∗. Since both {Y (v, z)|v ∈ V } and
{Y ′(v, z)|v ∈ V } satisfy mutual commutativity, respectively, Ŝ is an abelian
2-group. By the assumption, λ(0n),β =1 and so λβ,(0n) =1 by the skew symme-
try. Since both have a PDIB-form, we may assume λα,α = 1 for all α ∈ S by
changing the basis of (V, Y ′), which implies that Ŝ is an elementary abelian
2-group and λ∗,∗ is a coboundary of S over R.

For a word α, we can define an automorphism σα of MD = ⊕β∈DMβ by

σα : (−1)〈β,α〉 on Mβ

and extend it by linearity. We will next show a relation between σα and a
fusion product Mα+D × W .

Lemma 3.26. Let W be an irreducible MD-module with β := τ̃(W ) ∈
B(D). Let H be a maximal self orthogonal (doubly even) subcode H of Dβ and
α a binary word in H⊥. Then σαW is isomorphic to W as an MD-module.

Proof. Decompose MD into M+
D ⊕ M−

D , where

M±
D ={v∈MD | σα(v)=±v}.

Set E ={γ∈D | 〈γ, α〉=0}. Clearly, M+
D =ME . Since E contains H, there is

an ME-module U such that IndD
E (U) = W by Theorem 3.15. It follows from

the definition of the induced modules that IndD
E (U) ∼= U ⊕ (M−

D × U) as ME-
modules. The actions of M−

D switch U and M−
D×U ; that is, u(m)(U) ⊆ M−

D×U

and u(m)(M
−
D × U) ⊆ U for any m ∈ Z and u ∈ M−

D . Moreover, u(m)σαv =
−u(m)v for u∈M−

D and v∈ IndD
E (U). It is easy to check that (1U ,−1M−

D×U ) on
U ⊕ M−

D × U is an isomorphism from σα(IndD
E (U)) to IndD

E (U).
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For an irreducible MD-module W , σαW is also an irreducible MD-module.
Clearly, W and σαW are isomorphic as T -modules and σα = σβ if and only
if α+β ∈ D⊥. Let α be a word satisfying Supp(α) ⊆ Supp(τ̃(W )). In this
case MD+α × W is isomorphic to W as a T -module. The following lemma is
important.

Lemma 3.27. Let W be an irreducible MD-module with τ̃(W )∈B(D) and
assume Supp(α) ⊆ Supp(τ̃(W )). Then Mα+D × W is isomorphic to σαW as
an MD-module.

Proof. Set β= τ̃(W ). Clearly, τ̃(MD+α ×W )= τ̃(σαW )=β. By Corollary
3.13, W ′ = Mα+D × W is irreducible. Let H be a maximal self-orthogonal
(doubly even) subcode of Dβ. Since an MD-module W with τ̃(W ) = β is
uniquely determined by an MH -submodule, we may assume that D is a self-
orthogonal doubly even code and Supp(D) ⊆ Supp(β). In particular, we may
also assume that W and W ′ are both isomorphic to L(1

2 , 1
16)⊗n as T -modules.

Since 1≤dim IMD

(
W ′

U W

)
≤dim IT

(
L(1

2 , 1
16)⊗n

Mγ L(1
2 , 1

16)⊗n

)
=1, an intertwining

operator of type
(

W ′

Mγ+D, W

)
is uniquely determined up to scalar multiple

for γ∈D+α. As shown in §2.4 or in [Mi5], we can choose a nonzero intertwining

operator I(∗, z)∈IT

(
L(1

2 , 1
16)⊗n

Mγ L(1
2 , 1

16)⊗n

)
by

I(qγ , z) = I(q̂γ ⊗ κγ , z) = ⊗n
i=1I

gi,
1
16 (qgi , z) ⊗ κγ ,

where γ = (g1, · · · , gn) and Igi,
1
16 (∗, z) are the fixed intertwining operators of

type
(

L(1
2 , 1

16)
L(1

2 , gi

2 ) L(1
2 , 1

16)

)
given by (2.5) and (2.6). By Theorem 3.8, there

are linear modules Rχ and Rφ of D̂={κα|α∈D} such that W ∼= L(1
2 , 1

16)⊗n ⊗
Rχ and W ′ ∼= L(1

2 , 1
16)⊗n ⊗ Rφ, respectively. By associativity of intertwining

operators, we have

I(qβ
(m)q

α, z)

= Resx{(x−z)mY W ′
(qβ, x)I(qα, z)−(−z+x)mI(qα, z)Y W (qβ, x)}

= Resx{(x−z)mI⊗n(q̂β, x)φ(κβ)I(qα, z)−(−z+x)mI(qα, z)I⊗n(q̂β, x)χ(κβ)}
for qβ ∈Mβ ⊆ MD and qα ∈Mα. In particular, for a sufficiently large N , we
obtain

0 = Resx{(x−z)NI⊗n(q̂β, x)φ(κβ)I(qα, z)−(−z+x)NI(qα, z)I⊗n(q̂β, x)χ(κβ)}.
On the other hand, as we showed in Proposition 2.6, I(∗, z) satisfies super-
commutativity:

(x−z)NI⊗n(q̂β, x)I⊗n(q̂α, z)−(−1)〈α,β〉(−z+x)NI⊗n(q̂α, z)I⊗n(q̂γ , x) = 0.
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Therefore

Resx{(x−z)Nφ(κβ)−(−1)〈α,β〉(−z+x)Nχ(κβ)} = 0

and so φ(κβ) = (−1)〈α,β〉χ(κβ) for β ∈D. Hence W ′ is isomorphic to σαW as
an MD-module.

Remark 1. The above lemma may look a little strange since we usu-
ally obtain relations σ(W 1) × σ(W 2) = σ(W 1 × W 2) and (Mα+D × W 1) ×
(Mα+D×W 2)=(W 1×W 2) for an automorphism σ and a coset module Mα+D,
respectively. However, if σ(W i) ∼= MD+α × W i for i = 1, 2, then W 1 × W 2

does not satisfy the condition of the above lemma by the fusion rules of
L(1

2 , 0)-modules and so σ(W 1 × W 2)=W 1 × W 2.

4. Positive definite invariant bilinear form

In our construction, “induced VOAs” play important roles. We will show
that they inherit PDIB-forms.

Theorem 4.1. Assume that Wα is an irreducible MD-module with
τ̃(Wα)=α and that (D, α, α) satisfies the conditions of Theorem 3.20. Let F

be an even code containing D such that 〈F, α〉=0. If a VOA U =MD⊕Wα has
a PDIB-form, then so does the induced VOA IndF

D(U) (= MF ⊕ IndF
D(Wα)).

Proof. Clearly, it is sufficient to prove the assertion for F = 〈α, (1n)〉⊥.
Since 〈α, (1n)〉⊥ is generated by words of weight 2, it is also sufficient to prove
the assertion for F =D+Z2β where the weight of β∈〈α〉⊥ is 2. We may assume
β = (110n−2). Since 〈β, α〉 = 0, we have Supp(β) ⊆ Supp(α) or Supp(β) ∩
Supp(α)=∅.

By the assumption, Dα contains a direct sum Eα of extended [8, 4]-
Hamming codes such that Supp(Eα)=Supp(α). Since Eα ⊆ Dα, IndF

D(Wα) is
irreducible. Set

V = MF ⊕ IndF
D(Wα).

By an argument similar to that in the proof of Theorem 3.25, we are able to
prove that V has a framed VOA structure. Since IndF

D(Wα)×IndF
D(Wα)=MF

by Lemma 3.22, there are two possibilities of VOA structures on V . Namely, if
one is (MF ⊕ IndF

D(Wα), Y ), then the other is (MF ⊕
√
−1IndF

D(Wα), Y ). Since
Wα×Wα =MD, we may assume (MF ⊕ IndF

D(Wα), Y ) contains U =MD ⊕Wα

as a sub VOA. As an MEα
-module, Wα is a direct sum ⊕i∈IW

i of distinct
irreducible MEα

-modules W i and V i = MEα
⊕ MEα+β ⊕ W i ⊕ (MEα+β × W i)

is a sub VOA of V for each i. Since (MEα
⊕ W i, Y|MEα⊕W i) is a sub VOA of

MD ⊕ Wα, (MEα
⊕ W i, Y|MEα⊕W i) has a PDIB-form.

If we once prove that a VOA structure (V i, Y ) on V i has a PDIB-form,
then W i⊕(ME+β ×W i) has an orthonormal basis with respect to Y and so we



THE MOONSHINE VERTEX OPERATOR ALGEBRA 567

have the desired result, since MD+β × Wα coincides with ⊕i∈I(ME+β × W i).
Therefore we may assume that Supp(D) = Supp(α) and D is a direct sum
E1 ⊕ · · · ⊕ Es of extended [8, 4]-Hamming codes Ei. In particular, Wα is
irreducible as a T -module, where T =M(0n). Since a VOA structure (V, Y ) on
V containing U is uniquely determined, we have to show that there exists a
VOA structure on (V, Y ) with a PDIB-form. For if (V, Y ′) is the other VOA
structure on V , then (Wα, Y ′) has a negative definite invariant bilinear form
and it is impossible for (V, Y ′) to contain U . We will divide the proof into two
cases:

(1) If Supp(β) ∩ Supp(α) = ∅, then there is a code D0 of length n−2
such that D = {(00α)|α ∈ D0}, MD = L(1

2 , 0) ⊗ L(1
2 , 0) ⊗ MD0 and MD+β =

L(1
2 , 1

2) ⊗ L(1
2 , 1

2) ⊗ MD0 . By the decompositions above, we are able to write

Wα ∼= L(1
2 , h1) ⊗ L(1

2 , h2) ⊗ W ′

and
MD+β × Wα ∼= L(1

2 , h1+ 1
2) ⊗ L(1

2 , h2+ 1
2) ⊗ W ′.

for some irreducible MD0-module W ′ and h1, h2 = 0, 1
2 , where hi + 1

2 denotes
0 if hi = 1

2 and 1
2 if hi = 0. Since L(1

2 , 0)⊗2 ⊕ L(1
2 , 1

2)⊗2 ∼= Ṽ2Zx = (V2Zx)θ ⊕√
−1(V2Zx)− for 〈x, x〉=1,

√
−1x(0) is an isomorphism from L(1

2 , h1)⊗ L(1
2 , h2)

to L(1
2 , h1+ 1

2)⊗L(1
2 , h2+ 1

2) and (x(0))2 acts diagonally on L(1
2 , h1)⊗L(1

2 , h2)
with positive eigenvalues. Let {vi | i ∈ I} be an orthogonal basis such that
each vi is in an eigenspace of (x(0))2. Then {

√
−1x(0)v

i | i ∈ I} is a basis of
L(1

2 , h1+ 1
2) ⊗ L(1

2 , h2+ 1
2) and

〈
√
−1x(0)v

i,
√
−1x(0)v

j〉=〈vi, (x(0))
2vj〉=δij〈vi, (x(0))

2vj〉 ≥ 0.

Hence IndF
D(U) has a PDIB-form.

(2) We next assume Supp(β) ⊆ Supp(α). Since D is a direct sum of
extended [8, 4]-Hamming codes and the weight of β is 2, we have to treat the
following two cases:

(2.1) Supp(β) ⊆ Supp(E1).
(2.2) D=E8 ⊕ · · · ⊕ E8 and β=(1071070n−16).

Case (2.1). By Lemma 3.18, there is an automorphism σ of MD such that
σ(Wα) is isomorphic to a coset module MD+γ . Since Supp(β) ⊆ Supp(E1) and
β has an even weight, σ(Mβ+D) is also isomorphic to a coset module Mδ+D for
some δ. Namely, σ(IndF

D(U)) is isomorphic to a code VOA M〈D,δ,γ〉. Therefore
it has a PDIB-form.

Case (2.2). We may assume that α=(1n) and β =(1071070n−16). Since
L(1

2 , 1
2)⊗L(1

2 , 1
2) has a PDIB-form and the lowest weight is an integer, we may

also assume that n=16 and α=(116). We will find such a VOA as a sub VOA
of ṼE8 in the next section. This will complete the proof of Theorem 4.1.
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Corollary 4.2. Let W =MD⊕W δ⊕W γ ⊕W δ+γ be a (D, 〈δ, γ〉)-framed
VOA with a PDIB-form and assume that a triple (D, α, β) satisfies the con-
dition of Theorem 3.20 for any α, β∈〈δ, γ〉. If F is an even linear subcode of
〈α, β〉⊥ containing D, then IndF

D(W ) also has a PDIB-form.

Proof. By Theorem 3.21, V = IndF
D(W ) is an (F, 〈α, β〉)-framed VOA

⊕γ∈〈α,β〉V
γ containing W , where V γ = IndF

D(W γ). It follows from Theorem
4.1 and from the fact that V γ ×V γ =MF by Lemma 3.22 that V γ has a PDIB-
form or a negative definite invariant bilinear form. However, since W γ has a
PDIB-form, V has a PDIB-form.

5. E8-lattice VOA

As mentioned in the introduction, we will construct the parts of V � by
using the decomposition of ṼE8 , where ṼE8 is a lattice VOA constructed from
the root lattice of type E8 with a PDIB-form; (see §2.5). The main purpose
of this section is to study five framed VOA structures of VE8 and ṼE8 . In
particular, we will show that there are codes DE8 and SE8 of length 16 such that
ṼE8 is a (DE8 , SE8)-framed VOA satisfying the conditions (1)–(4) of Hypotheses
I and triple sets (DE8 , α, β) satisfy the conditions of Theorem 3.20 for any
α, β ∈ SE8 . Incidentally, we will see that an orbifold construction from VOA
CVE8 coincides with the changing of coordinate sets of extended [8, 4]-Hamming
code sub VOAs of CVE8 .

Let E8 denote the root lattice of type E8. It is known that E8 is the
unique even unimodular positive definite lattice of rank 8. We first define four
expressions of E8, that is, lattices E8(m) : m=1, 2, 3, 4, 5. Let {x1, · · · , x8} be
an orthonormal basis and set

(5.1) E8(1) =

〈
1
2(

8∑
i=1

xi), xi ± xj | i, j =1, · · · , 8

〉

and Ñ(1)= 〈xi | i=1, · · · , 8〉, where 〈ui | i∈I〉 denotes a lattice generated by
{ui | i∈I}. It is easy to check that E8(1) is isomorphic to E8. We can define
other expressions of lattice E8 as follows:
(5.2)
E8(2) =

〈
1
2(x1−x2−x3−x4)+x5,

1
2(x5+x6+x7+x8)+x1,

xi ± xj | i, j∈{1, 2, 3, 4}, or i, j∈{5, 6, 7, 8}〉 .

E8(3) =
〈

1
2(x1−x2−x5−x6)+x3,

1
2(x1+x2−x3−x4)−x7,

1
2(−x5−x6+x7+x8)+x1, x1+x3+x5+x7, x2i−1 ± x2i, (i=1, 2, 3, 4)

〉
E8(4) =

〈
1
2(x1−x3−x5−x7)+x2,

1
2(x1−x2+x5−x6)−x3,

1
2(−x1+x2−x3−x4)−x7,

1
2(x1+x3−x6+x8)+x5, 2x1, · · · , 2x8

〉
.
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Fix m=1, 2, 3, 4 and denote E8(m) by L. Let VL be a lattice VOA constructed
from L as in [FLM2] and θ an automorphism of VL induced from−1 on L. We
note that all VL are isomorphic to VE8 . Since E8(m) contains an orthogonal
basis {2x1, · · · , 2x8} of square length 4, VL is a framed VOA with a coordinate
set I ={ei | i=1, · · · , 16} given by

(5.3) e2i−j = 1
4(xi)2(−1)1−(−1)j 1

4(ι(2xi)+ι(−2xi)) (i = 1, 2 . . . , 8 and j = 0, 1)

by [DMZ]. Since they are all in the set V θ̃
L of θ̃-invariants, we can also take

this set as a coordinate set of ṼL.
Let P (m) = 〈τei

| i=1, · · · , 16〉 ⊆ Aut(ṼL) and denote E8(m) ∩ Ñ(1) by
N(m). It is straightforward to verify that ṼN(m) contains 〈e1, · · · , e16〉 and
(ṼL)P (m) coincides with ṼN(m) by (2.4). Since (ṼL)P (m) has a PDIB-form and
τ̃((ṼL)P (m)) = (016), there is a code D(m) of length 16 such that (ṼL)P (m)

is isomorphic to a code VOA MD(m). It is also not difficult to check that
(D(m), α, β) satisfies the conditions of Theorem 3.20 for α, β ∈Sm :=D(m)⊥

and (ṼL) is a (D(m), D(m)⊥)-framed VOA satisfying Hypotheses I. However,
these are not the pieces we will use to construct V � since D(m) has a root and
(MD(m))1 �=0 for m=1, 2, 3, 4. In order to construct the moonshine VOA V �,
we need a code D without roots. To find the desired decomposition, we will
change coordinate sets. Incidentally, this process coincides with a Z2-orbifold
construction of ṼE8 from itself as we will see.

Let us explain the relation between a Z2-orbifold construction and chang-
ing the coordinate sets. It is known that a Z2-orbifold model from CVE8 is iso-
morphic to itself. Let θ be an automorphism of VL induced from−1 on L. Also,
θ fixes ι(xi)+ι(−xi) and acts as−1 on C(xi)(−1)1 and C(ι(xi)−ι(−xi)). Hence θ

acts on Mα as (−1)〈α,({01}8)〉 and hence the fixed point space M θ
D(m) is equal to

the direct sum
⊕

α∈D(m,+) Mα, where D(m,+)={α∈D(m) | 〈α, ({01}8)〉=0}.
Suppose that V = ⊕α∈SV α is a (D, S)-framed VOA satisfying Hypotheses I,
where D is a code of length 2n containing (02i1102n−2i−2) for all i=1, · · · , m.
Set β =({01}n). Assume that the twisted part of the Z2-orbifold model does
not contain any coset modules. Then the Z2-orbifold construction is corre-
sponding to the following three steps as we will see in the next example.

(1) Take a half MD(+) of MD, where D(+)={α∈D | 〈α, β〉=0}.

(2) Take an MD(+)-module V β with τ̃(V β)=β and generate MD(+)-modules
V β+γ with τ̃(V β+γ)=β+γ by V β+γ =V β × V γ for γ∈S.

(3) Define a VOA structure on Ṽ =⊕α∈〈S,β〉V
α.

If we start from E8(1), τ̃(VN(1)+v)=(116) for v = 1
2(

∑8
i=1 xi) and so S1 =〈

(116)
〉

and D(1) is the set of all even words of length 16. D(1) contains a self
dual subcode H =H1

8 ⊕H2
8 , where H i

8 are extended [8, 4]-Hamming codes and



570 MASAHIKO MIYAMOTO

Supp(H1
8 ) = {1, 2, · · · , 8} and Supp(H2

8 ) = {9, · · · , 16}. Since 〈((10)8), β〉 = 0
for any β ∈ H, we have MH ⊆ V θ

L . Therefore the decompositions of VL

and ṼL as MH -modules are exactly the same. Since D(1) consists of all
even words, the center Z(D̂(1)) is

〈
±κ(016),±κ(116)

〉
and hence there are ex-

actly two irreducible MD(1)-modules IndD(1)
H (H( 1

16 , (08)) ⊗ H( 1
16 , (08))) and

IndD(1)
H (H( 1

16 , (08))⊗H( 1
16 , ξ1)) by Theorem 3.8. The difference between them

is possibly to be judged by the action of q(116) :=((q(1))⊗16)⊗ κ(116). By Table
(2.4) and the proof of Proposition 2.7, we have q(116) = (x1)(−1) · · · (x8)(−1)1
and (xi)(−1)1 =

√
−1((q(1))⊗2) ⊗ κξ2i−1κξ2i . Since the eigenvalue of q(116) on

Rι(1
2

∑
xi) is positive,

ṼE8
∼= MD(1) ⊕ IndD(1)

H (H( 1
16 , (08)) ⊗ H( 1

16 , (08))) (5.4)

by the choice of E(1). By Lemma 3.18, there is an automorphism σ∈Aut(MH8)
such that {σ(e1), · · · , σ(e8)} is another coordinate set of MH8 satisfying
σ(H( 1

16 , (ξ1))) ∼= H(1
2 , ξ1) ∼= MH8+ξ1 and σ(H(1

2 , ξ1)) ∼= H( 1
16 , (08)). Take

a new coordinate set

J = {σ(e1), · · · , σ(e8), e9, · · · , e16}

of VE8 . Then for β ∈ D(1) with 〈β, (1808)〉 = 1, τ̃(σ(MH+β)) = (1808) and
σ(MH+α) is also a coset module for 〈α, (1808)〉=0. We also have τ̃(σ(H( 1

16 , ξ1))
⊗ H( 1

16 , ξ1))=(0818). Hence the set τ̃(VL) with respect to J is

S2 = {(016), (1808), (0818), (116)}.

Set P 2 =
〈
τσ(ei), τej

| i=1, · · · , 8, j =9, · · · , 16
〉

and define a linear code D2 by
(VL)P 2 ∼= MD2 with respect to J ; then D2 splits into a direct sum D1

2 ⊕ D2
2

such that D1
2 and D2

2 are the sets of all even words whose supports are in
{1, 2, · · · , 8} and {9, · · · , 16}, respectively. Note that this process corresponds
to an orthogonal transformation

(5.5) 1
2


1 −1 −1 −1
1 −1 1 1
1 1 −1 1
1 1 1 −1


by (2.4). Therefore this decomposition coincides with the decomposition given
by E8(2) and D(2). Note that (116)∈D2 and σ(M(116)) ∼= M(116).

We next consider the case of E8(2) and S2 =
〈
(1808), (0818)

〉
. We use

the decomposition above again by renaming J ={σ(e1), · · · , σ(e8), e9, · · · , e16}
and D2 by I ={e1, · · · , e16} and D(2), respectively. Set

I1 = {α∈D(2) | Supp(α) ⊆ {1, 2, 3, 4, 9, 10, 11, 12}} ,

I2 = {α∈D(2) | Supp(α) ⊆ {5, 6, 7, 8, 13, 14, 15, 16}} .
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It is clear that Ii contains an extended [8, 4]-Hamming code Hi for i = 1, 2.
Take a new coordinate set {f1, · · · , f4, f9, · · · , f12} of H1 and define a new
coordinate set

J = {f1, · · · , f4, e5, · · · , e8, f9, · · · , f12, e13, · · · , e16}

of VL. Then if an MH1 ⊗ MH2-module U has a τ -word

(α, β)∈{1, · · · , 4, 9, · · · , 12} ⊕ {5, · · · , 8, 13, · · · , 16}

with respect to I, then the τ -word with respect to J is either (α, β) or (αc, β).
Moreover, there is a submodule with a τ -word (14041404) with respect to J . An
example is MH1⊕H2+α, where α is a word with 〈α, (14041404)〉= 1. Therefore
we have

(5.6) D3 =
〈
D1

3 ⊕ D2
3 ⊕ D3

3 ⊕ D4
3, {1, 5, 9, 13}

〉
where Di

3 is the set of all even words in {4i−3, 4i−2, 4i−1, 4i} for i=1, · · ·, 4.
We also obtain

(5.7) S3 =
〈
(116), (1808), (14041404)

〉
.

This corresponds to the decomposition with respect to E8(3) and D3 =D(3).
D(3) also contains two orthogonal extended [8, 4]-Hamming codes H1(3) and
H2(3) whose supports are

{1, 2, 5, 6, 9, 10, 13, 14} and {3, 4, 7, 8, 11, 12, 15, 16}.

Repeating the arguments above, we have

(5.8) S4 =
〈
(116), (1808), (14041404), ({1202}4)

〉
and D4 = (S4)⊥. We have D4 = D(4) and D(4) still contains a direct sum
of 2 extended [8, 4]-Hamming codes whose supports are ({10}8) and ({01}8).
Repeating the same arguments again, we finally obtain new codes

(5.9) S5 =
〈
(116), (1808), (14041404), ({1100}4), ({10}8)

〉
and D(5)=(S5)⊥, which are not codes we can get from lattice constructions.

Let us finish the proof of Theorem 4.1. Set ξ1 =(107) so that β =(ξ1ξ1).
Consider a framed VOA structure

ṼE8
∼= MD(1) ⊕ IndD(1)

H

(
H

(
1
16 , (08)

)
⊗ H

(
1
16 , (08)

))
.

Set H = H8 ⊕ H8 and MH ⊆ MD(1). Since ṼE8 is an MH -module, it is a
direct sum of distinct irreducible MH -modules. Since D(1) is the set of all
even words, MD(1) contains H(1

2 , ξ1) ⊗ H(1
2 , ξ1) and so ṼE8 has a sub VOA
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isomorphic to(
H

(
1
2 , (08)

)
⊗ H

(
1
2 , (08)

))
⊕

(
H

(
1
2 , ξ1

)
⊗ H

(
1
2 , ξ1

))
(5.10)

⊕
(
H

(
1
16 , (08)

)
⊗ H

(
1
16 , (08)

))
⊕

(
H

(
1
16 , ξ1

)
⊗ H

(
1
16 , ξ1

))
.

This is the desired VOA in Theorem 4.1.
Set DE8 = D(5) and SE8 = S5. We note that DE8 is a Reed Müller code

RM(2, 4) and SE8 is a Reed Müller code RM(1, 4).

Lemma 5.1. Triples (RM(2, 4), α, β) satisfy the conditions (3.a) and (3.b)
of Theorem 3.20 for any α, β∈RM(1, 4).

Proof. To simplify the notation, set D=RM(2, 4) and S =RM(1, 4). The
weight enumerator of RM(1, 4) is x16 +30x8y8 +y16. If α = (016) or (116),
then for any maximal self-orthogonal (doubly even) subcodes Hβ and Hβc

of
Dβ and Dβc which are direct sums of extended [8, 4]-Hamming codes or zero,
E = Hβ ⊕ Hβc

satisfies the desired conditions. So we may assume that the
weight of α is eight. We note that Dα and Dαc are isomorphic to the extended
[8, 4]-Hamming code. Set E = Dα ⊕ Dαc and Hα = Dα. If β is (016), (116), α

or αc, then E and H(116) =E satisfy the desired conditions.
The remaining case is that all of α, β, α+β have weight eight. Say α =

(1808) and β=(14041404). We use an expression

Z16
2 = {(δ1, δ2, δ3, δ4) | δ∈Z4

2}.

Clearly, since Eγ =Hγ =Dγ is an extended [8, 4]-Hamming code for γ∈S with
|γ|=8, we have

Eα = {(δδ0404), (δδc0404) | δ∈Z4
2 even},

Eαc = {(0404δδ), (0404δδc) | δ∈Z4
2 even},

Hβ = {(δ04δ04), (δ04δc04) | δ∈Z4
2 even}

and
Hα+β = {(04δδ04), (04δδc04) | δ∈Z4

2 even}.

Since (04δδ04) − (δ04δ04) = (δδ0404) and (04δδc04) = (δ04δc04)+(δδ0404), we
obtain Hα+β+E =Hβ+E.

Proposition 5.2. ṼE8 is a (DE8 , SE8)-framed VOA with a PDIB-form.

We found a (DE8 , SE8)-framed VOA structure on ṼE8 from the (D(m), Sm)-
framed structure on ṼE8 . Although it is easy to reverse the process, there is
another important step. Namely, let

ṼE8 = ⊕α∈SmV α
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be the decomposition such that V (016) ∼= MD(m). Let β be an even word so
that 〈β〉⊥∩Sm =Sm−1. Then V + =⊕α∈SmV α is a sub VOA and we can define
the induced VOA

Ṽ m−1 = IndD(m−1)
D(m) (V +),

which is also a VOA containing MD(m−1). Thus, the above process to get an
induced VOA is a reverse step of Z2-orbifold construction. As an application,
we will explain properties of automorphisms of a lattice VOA VL for an even
lattice L in the remainder of this section. Let L2 denote the set of all elements
of L with squared length 4. As we showed, for any a∈L2, we can define two
conformal vectors

e+(a) = 1
16(a(−1))

21+ 1
4(ι(a)+ι(−a)),

e−(a) = 1
16(a(−1))

21+ 1
4(ι(a)+ι(−a)).

Then we have:

Lemma 5.3. Let τe+(a) = τe−(a) on VL. Then τa = τe+(a), [τa, y(m)]=0 for
y∈L and

τa : ι(x) → (−1)〈x,a〉ι(x)

for x ∈ L. In particular, 〈τa | a∈L2〉 is an elementary abelian 2-subgroup of
Aut(VL). If 〈a, b〉 is odd for a, b∈L2, then τb(e±(a))=e∓(a).

Proof. Since 〈a, L〉∈Z and 〈a, a〉=4, L ⊆ 1
4Za⊕ 1

4 〈a〉
⊥. In particular, we

may view VL ⊆ V1
4Za

⊕ V1
4 〈a〉

⊥ . From Table (2.4), we have

τe±(a) :
{

1 on Ra(−1)1, Rι((1
2 +Z)a), Rι(Za)

−1 on Rι((1
4 + 1

2Z)a).

Hence [τe±(a), y(m)]=1 for y∈L and

τe±(a) : ι(x) → (−1)〈x,a〉ι(x)

for x∈L. Therefore we obtain the desired results.

Theorem 5.4. For g∈Aut(SE8), there is an automorphism g̃ of ṼE8 such
that g̃(ei)=eg(i) for all i=1, · · · , 16.

Proof. Recalling the definition of a Reed Müller code RM(1, 4), letting
F = Z4

2 be a vector space over Z2 of dimension 4 and denote (1000), (0100),
(0010), (0001) by v1, v2, v3, v4, respectively. Define 〈(ai), (bi)〉 =

∑4
i=1 aibi.

The coordinate set of a Reed Müller code RM(1, 4) is the set of all 16 vectors
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of F and RM(1, 4) consists of (016), (116) and the codewords of length eight
given by hyperplanes. It is easy to see that

Aut(RM(1, 4)) = Aut(RM(2, 4)) ∼= GL(5, 2)1
= {σ∈GL(5, 2)|σt(10000) = t(10000)}

and it is generated by

α(i) : v∈F → v+vi and

α(i, j) : v∈F → v+〈v, vj〉vi for i �= j.

Choose g∈Aut(SE8). By Lemma 3.8, we may assume g∈Aut(MDE8
) and

g(M(116)) = M(116). Set q = q(116). Since g is an even permutation, we may
assume g(κ(116))=κ(116) and g(q)=q. For an MDE8

-module W , g(W ) denotes
an MDE8

-module defined by v(n)(g(u)) = g(vg
(n)u) for v ∈ MDE8

and u ∈ W .
Clearly,

g(ṼE8) := ⊕α∈SE8
g(Ṽ α

E8
)

is a VOA with a PDIB-form. Note that g(ṼE8) contains g(MDE8
) ∼= MDE8

.
Using the backward processes according to the sequences

S5 = g(S5) ⊇ g(S4) ⊇ g(S3) ⊇ g(S2) ⊇ g(S1) = S1,
D(5) = g(D(5)) ⊆ g(D(4)) ⊆ g(D(3)) ⊆ g(D(2)) ⊆ g(D(1)) = D(1),

MD(5) = g(MD(5)) ⊆ g(MD(4)) ⊆ g(MD(3)) ⊆ g(MD(2)) ⊆ g(MD(1)) ∼= MD(1),

we obtain a coordinate set {ẽ1, · · · , ẽ16} of ṼE8 such that g(ṼE8) has the de-
composition

g(ṼE8) ∼= MD(1) ⊕ W.

Here we note that D(1) coincides with the set of all even words of length 16
and W is an irreducible MD(1)-module with τ̃(W )=(116). So W is isomorphic

to IndD(1)
E (H( 1

16 , (08)) ⊗ H( 1
16 , (08)) or IndD(1)

E (H( 1
16 , ξ1) ⊗ H( 1

16 , (08)). The

action q(7) on (ṼE8)(1
16) is equal to q(7) = g(q)(7) on g((ṼE8)(1

16)) by the def-
inition. Since the coordinates sets are changing parallel, the expression of q

by {ẽ1, · · · , ẽ16} is equal to {e1, · · · , e16}. We note that κ(116) is in the center
of D̂(1). Therefore we conclude that W ∼= IndD(1)

E (H( 1
16 , (08)) ⊗ H( 1

16 , (08))),
which coincides with (5.4). Therefore there is a VOA isomorphism

φ : ṼE8 → g(ṼE8)

such that φ(ei)= ẽi for i=1, · · · , 16. By changing the coordinate sets according
to

S1 ⊆ S2 ⊆ S3 ⊆ S4 ⊆ S5

g(S1) ⊆ g(S2) ⊆ g(S3) ⊆ g(S4) ⊆ g(S5),

respectively, we have an isomorphism φ of ṼE8 to g(ṼE8) with φ(ei) = ei for
all i. Hence we have the desired automorphism φ−1g of ṼE8 .
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6. Holomorphic VOA

Let V be a (D, S)-framed VOA with a coordinate set {ei | i=1, · · · , n}.
As we showed in [Mi5], S is orthogonal to D.

Theorem 6.1. If S =D⊥, then V is the only irreducible V -module. That
is, V is holomorphic.

Proof. Let (U, Y U ) be an irreducible V -module. Since MD is rational, U

is a direct sum of irreducible MD-modules. Decompose U into the direct sum
⊕βUβ of MD-modules such that τ̃(Uβ)=β. Choose β so that Uβ �= 0. Since
Uβ is an MD-module, β∈D⊥=S and so V β �= 0. Since

U =
〈
v(n)u | v∈V α, n∈Z, α∈S

〉
for any 0 �= u∈Uβ by [DM2],

Uβ =
〈
v(n)u | v∈MD, n∈Z

〉
for any 0 �= u ∈ Uβ and hence Uβ is an irreducible MD-module. Since the
restrictions

I

(
U

V U

)
→ I

(
U

V β Uβ

)
→ I

(
U (0n)

V β Uβ

)
are injective, we have U (0n) �= 0 and U (0n) is isomorphic to a coset module
MD+α for some word α ∈ Zn

2 . Using the skew symmetry, we can define a

nonzero intertwining operator I(∗, z)∈IMD

(
U

U V

)
with integral powers of z

by I(u, z)v=ezL(−1)Y U (v,−z)u for v∈V and u∈U . By restriction, we have a

nonzero intertwining operator Iγ(v, z)∈IMD

(
Uγ

Mα+D V γ

)
for γ ∈ S. Since

Iγ(v, z) has integral powers of z, α is orthogonal to S and so α∈S⊥=D. Hence
U (0n) is isomorphic to MD. Let q be a lowest degree vector of U (0n) correspond-
ing to the vacuum of MD. Since L(−1)q = 0, I(q, z)∈Hom(V, U [[z, z−1]]) is a
scalar and gives an MD-isomorphism of V to U . This completes the proof of
Theorem 6.1.

7. Construction of the moonshine VOA

In this section, we will construct a framed VOA V �, which is equal to the
moonshine module VOA constructed in [FLM2], as we will see in Section 9. In
Section 5, we found that ṼE8 is a (DE8 , SE8)-framed VOA with a coordinate
set {ei | i=1, · · · , 16} and SE8 =D⊥

E8
is spanned by

(7.1) {(116), (0818), ({0414}2), ({0212}4), ({01}8)}.



576 MASAHIKO MIYAMOTO

To simplify the notation, we denote DE8 and SE8 by D and S in this section,
respectively. In Lemma 5.1 and Proposition 5.2, we showed that (D, S) satisfies
the conditions in Theorem 3.20 and that ṼE8 is a (D, S)-framed VOA

(7.2) ṼE8 =
⊕
α∈S

VE8
α

satisfying the conditions of Hypotheses I.
We note that all codewords of S except (016) and (116) are of weight eight.

We define a new code S� of length 48 by

(7.3) S� =
〈
(116016016), (016116016), (016016116), (α, α, α) | α∈S

〉
.

The weight enumerator of S� is X48+3X32+120X24+3X16+1 which has another
expression:

(7.4) S� = {(α, α, α), (α, α, αc), (α, αc, α), (αc, α, α) | α∈S}.

Set D� = (S�)⊥ and call it “the moonshine code.” Now D� contains D⊕3 =
{(α, β, γ) | α, β, γ∈D} and it is easy to see that

(7.5) D� = {(α, β, γ) | α+β+γ∈D, α, β, γ is even}.

Hence D� is of dimension 41 and has no codewords of weight 2. We note that
a triple (D⊕3, α, β) satisfies the conditions (3.a) and (3.b) of Theorem 3.20 for
any α, β∈S�, since S� ⊆ S⊕3. Denote (1015) by ξ1 and set

(7.6) Q =
〈
(ξ1ξ1016), (016ξ1ξ1)

〉
.

To simplify the notation, we let R denote a coset module Mξ1+D and RW

denote a fusion product (tensor product) R × W for an MD-module W . As
explained in the introduction, our construction consists of the following steps.
First, VE8 ⊗ VE8 ⊗ VE8 is a (D⊕3, S⊕3)-framed VOA with a coordinate set

{ei ⊗ 1 ⊗ 1, 1 ⊗ ej ⊗ 1, 1 ⊗ 1 ⊗ ek | i, j, k=1, · · · , 16},

where 1 is the vacuum of VE8 . Decompose it into

(7.7) VE8 ⊗ VE8 ⊗ VE8 =
⊕

α,β,γ∈S
(VE8

α ⊗ VE8
β ⊗ VE8

γ).

By the fusion rules,

(7.8) V 1 =
⊕

(α,β,γ)∈S�

(VE8
α ⊗ VE8

β ⊗ VE8
γ)

is a sub (D⊕3, S�)-framed VOA. Using induction we obtain

(7.9) V 2 = IndD⊕3+Q
D⊕3 (V 1).
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Note that since 〈Q, S�〉 �= 0, a vertex operator of some element in V 2 does
not have integral powers of z. In particular, V 2 is not a VOA. However, as
MD⊕3-modules, we have

IndD⊕3+Q
D⊕3 (VE8

α⊗VE8
β⊗VE8

γ)

=(VE8
α⊗VE8

β⊗VE8
γ) ⊕ (RVE8

α⊗RVE8
β⊗VE8

γ)

⊕(VE8
α⊗RVE8

β⊗RVE8
γ)⊕(RVE8

α⊗VE8
β⊗RVE8

γ).

Using (7.4), define W (α,β,γ) for (α, β, γ)∈S� as follows:

W (α,α,α) = VE8
α ⊗ VE8

α ⊗ VE8
α,(7.10)

W (α,α,αc) = (RVE8
α) ⊗ (RVE8

α) ⊗ VE8
αc

,

W (α,αc,α) = (RVE8
α) ⊗ VE8

αc ⊗ (RVE8
α),

W (αc,α,α) = VE8
αc ⊗ (RVE8

α) ⊗ (RVE8
α).

Since all RVE8
α are irreducible MD-modules by Corollary 3.13, all W (α,β,γ) are

irreducible MD⊕3-modules. Induce them into

(7.11) V χ = IndD�

D⊕3(Wχ)

for χ∈S�. Finally, set

(7.12) V � =
⊕
χ∈S�

V χ.

This is the desired Fock space. We will show that V � has a (D�, S�)-framed
VOA structure.

Since (D�, α, β) satisfies the conditions of Theorem 3.20 for α, β ∈ S�, it
only remains to prove that

V 〈χ,µ〉 = MD� ⊕ V χ ⊕ V µ ⊕ V χ+µ

has a VOA structure with a PDIB-form for any µ, χ∈S� with dim 〈µ, χ〉 = 2.
We note that since MD⊕3 ⊕ W (α,α,α) and MD� ⊕ W (α,α,αc) are sub VOAs
of Ind〈D⊕3,(ξ1ξ1016)〉

D⊕3 (MD⊕3 ⊕ W (α,α,α)), they have VOA structures with PDIB-
forms. Take a sub VOA

(V 1)〈χ,µ〉 = MD⊕3 ⊕ (V 1)χ ⊕ (V 1)µ ⊕ (V 1)χ+µ

of V 1 in (7.8) and set

W 〈χ,µ〉 = MD⊕3 ⊕ Wχ ⊕ Wµ ⊕ Wχ+µ,

for χ, µ∈S�. If 〈χ, µ〉 is orthogonal to (ξ1ξ1016), then Ind〈D⊕3,(ξ1ξ1016)〉
D⊕3 ((V 1)χ,µ)

is a VOA with the desired properties and it contains W 〈χ,µ〉 as a sub VOA.
Similarly, if 〈χ, µ〉 is orthogonal to (016ξ1ξ1) or (ξ1016ξ1), then we have the
desired properties. Therefore we may assume that χ = (α, α, αc) and µ =
(β, βc, β). Set γ=αc+β. We divide the proof into two cases.
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Case (1): Assume that Supp(α) ∩ Supp(β) �= ∅. Choose t ∈ Supp(α) ∩
Supp(β). Set ξt =(0t−11015−t) and Rt =MD+ξt

. Since

(ξtξt016)+(ξ1ξ1016)∈D�, (ξt016ξt)+(ξ1016ξ1)∈D�, (016ξtξt)+(016ξ1ξ1)∈D�,

we have

IndD�

D⊕3(RtVE8
α ⊗ RtVE8

α ⊗ VE8
αc

) = IndD�

D⊕3(RVE8
α ⊗ RVE8

α ⊗ VE8
αc

),

IndD�

D⊕3(RtVE8
β ⊗ VE8

βc ⊗ RtVE8
β) = IndD�

D⊕3(RVE8
β ⊗ VE8

βc ⊗ RVE8
β),

IndD�

D⊕3(VE8
γc ⊗ RtVE8

γ ⊗ RtVE8
γ) = IndD�

D⊕3(VE8
γc ⊗ RVE8

γ ⊗ RVE8
γ).

Set
ρ1 = (ξtξt016), ρ2 = (ξt016ξt), ρ3 = (016ξtξt).

Since Supp(ρ1) ⊆ Supp(χ), Supp(ρ2) ⊆ Supp(µ) and Supp(ρ3) ⊆
Supp(χ+µ), it follows from Lemma 3.27 that

Rt(VE8)
α ⊗ Rt(VE8)

α ⊗ (VE8)
αc ∼=σρ1((V

1)(α,α,αc)),

Rt(VE8)
β ⊗ (VE8)

βc ⊗ Rt(VE8)
β ∼=σρ2(V

1)(β,βc,β),

(VE8)
γc ⊗ R1(VE8)

γ ⊗ (VE8)
γ ∼=σρ3(V

1)(γ
c,γ,γ).

Since MD⊕3⊕(V 1)(α,α,αc)⊕(V 1)(β,βc,β)⊕(V 1)(γ
c,γ,γ) has a VOA structure with a

PDIB-form, so does σµ1+µ2(MD⊕3)⊕σρ1+ρ2((V 1)(α,α,αc))⊕σρ1+ρ2((V 1)(β,βc,β))⊕
σρ1+ρ2((V 1)(γ

c,γ,γ)). Clearly, we have

σρ1+ρ2(MD⊕3)∼=MD⊕3 ,

σρ1+ρ2((V
1)(α,α,αc))∼=σρ1((V

1)(α,α,αc))
and

σρ1+µ2((V 1)(β,βc,β))∼=σρ2((V
1)(β,βc,β))

by Lemma 3.26. Since ρ1 +ρ2 +ρ3 = 0, σρ1+ρ2(V 1)(γ
c,γ,γ) ∼= σρ3(V 1)(γ

c,γ,γ).
Hence W 〈χ,µ〉=MD⊕3 ⊕W (α,α,αc) ⊕W (β,βc,β) ⊕W (γc,γ,γ) has the desired VOA
structure and so does (V �)〈χ,µ〉.

Case (2): Assume Supp(α)∩ Supp(β)=∅. Then one of {α, β, α+βc} is at
least (016) since α, β ∈S. We may assume α = (016). Note that χ = (032116).
It follows from the structure of D that there is a self dual subcode E of D⊕3

which is a direct sum
⊕6

i=1 Ei of 6 extended [8, 4]-Hamming codes Ei such
that Eδ ={µ∈E|Supp(µ) ⊆ Supp(δ)} is a direct factor of E for any δ∈〈β, βc〉.
In particular, there are ME-modules Uχ, Uµ, Uχ+µ such that

IndD�

E (Uχ) = (V �)(0
16016116),

IndD�

E (Uµ) = (V �)(β,βc,β)

and
IndD�

E (Uχ+µ) = (V �)(β,βc,βc).
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In the following, we will only prove the case |β|=8, but we are able to prove
the assertions for β=(016) or β=(116) by similar arguments. We may assume
β = (1808) and δ = (0818). As shown in Section 5, we have a VOA Ṽ

〈β,δ〉
E8

=

Ṽ
(016)
E8

⊕ Ṽ
(1808)
E8

⊕ Ṽ
(0818)
E8

⊕ Ṽ
(116)
E8

with a PDIB-form such that

Ṽ
(016)
E8

∼= IndD
F

(
H

(
1
2 , (08)

)
⊗ H

(
1
2 , (08)

))
,

Ṽ
(1808)
E8

∼= IndD
F

(
H

(
1
16 , ξ1

)
⊗ H

(
1
2 , ξ1

))
,

Ṽ
(0818)
E8

∼= IndD
F

(
H

(
1
2 , ξ1

)
⊗ H

(
1
16 , ξ1

))
and

Ṽ
(116)
E8

∼= IndD
F

(
H

(
1
16 , (08)

)
⊗ H

(
1
16 , (08)

))
,

where F = D(1808) ⊕ D(0818) is a direct sum of two extended [8, 4]-Hamming
codes. In order to simplify the notation, we omit “⊗” between H(∗, ∗) and
H(∗, ∗). As a sub VOA,

H
(

1
2 , (08)

)
H

(
1
2 , (08)

)
⊕ H( 1

16 , ξ1)H
(

1
2 , ξ1

)
⊕H

(
1
2 , ξ1

)
H

(
1
16 , ξ1

)
⊕H

(
1
16 , (08)

)
H

(
1
16 , (08)

)
has a VOA structure with a PDIB-form. Since W (016016116) is given by RṼ

(016)
E8

⊗
RṼ

(016)
E8

⊗ Ṽ
(116)
E8

=MD+ξ ⊗ MD+ξ ⊗ VE8
(116), we have

Uχ =H(1
2 , ξ1)H(1

2 , (08))H(1
2 , ξ1)H(1

2 , (08))H( 1
16 , (08))H( 1

16 , (08)).

We similarly obtain

Uµ = H( 1
16 , (08))H(1

2 , ξ1)H(1
2 , ξ1)H( 1

16 , ξ1)H( 1
16 , (08))H(1

2 , ξ1)

and
Uχ+µ = H( 1

16 , ξ1)H(1
2 , ξ1)H(1

2 , 0)H( 1
16 , ξ1)H(1

2 , 0)H( 1
16 , ξ1).

By changing the order of the components, (123456) → (243516), we have

ME
∼=H(1

2 , (08))H(1
2 , (08))H(1

2 , (08))H(1
2 , (08))H(1

2 , (08))H(1
2 , (08)),

Uχ ∼=H(1
2 , (08))H(1

2 , (08))H(1
2 , (ξ1))H( 1

16 , (08))H(1
2 , (ξ1))H( 1

16 , (08)),

Uµ ∼=H(1
2 , (ξ1))H( 1

16 , (ξ1))H(1
2 , (ξ1))H( 1

16 , (08))H( 1
16 , (08))H(1

2 , (ξ1))

and
Uχ+µ =H(1

2 , (ξ1))H( 1
16 , (ξ1))H(1

2 , (08))H(1
2 , (ξ1))H( 1

16 , (ξ1))H( 1
16 , (ξ1)).

By Lemma 3.17, there is an automorphism σ of MH8 such that

σ(H(1
2 , ξ1))∼=H( 1

16 , (08)),

σ(H( 1
16 , ξ1))∼=H(1

2 , (ξ1))

and
σ(H( 1

16 , (08)))∼=H( 1
16 , (ξ1)).
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Changing the coordinate set by {σ(e1), · · · , σ(e8)}, we have

Ṽ
(016)
E8

∼=IndD
F (H(1

2 , (08)) ⊗ H(1
2 , (08))),

Ṽ
(1808)
E8

∼=IndD
F (H(1

2 , (ξ1)) ⊗ H( 1
16 , (08))),

Ṽ
(0818)
E8

∼=IndD
F (H( 1

16 , (08)) ⊗ H(1
2 , (ξ1)))

and
Ṽ

(116)
E8

∼=IndD
F (H( 1

16 , (ξ1)) ⊗ H( 1
16 , (ξ1))).

Therefore U 〈χ,µ〉 = ME ⊕ Uχ ⊕ Uµ ⊕ Uχ+µ is a subset of ṼE8 ⊗ ṼE8 ⊗ ṼE8 .
It is also easy to check that U 〈χ,µ〉 is closed under the products given by
vertex operators. Consequently, U 〈χ,µ〉 is a VOA with a PDIB-form and so is
(V �)〈χ,µ〉=IndD�

E (U 〈χ,µ〉). This completes the construction of V �.

Corollary 7.1. V � has a PDIB-form.

Remark 2. Because of our construction, a VOA satisfying Hypotheses I is
a direct sum of the tensor product of L(1

2 , 0), L(1
2 , 1

2), L(1
2 , 1

16) and we know the
multiplicities of irreducible L(1

2 , 0)⊗n-modules by Theorem 3.8 (cf. Corollary
5.2 in [Mi3]). Hence it is not difficult to calculate its character

chV (z) = e2πiz(rank(V ))/24

( ∞∑
n=0

dimVn e2πiz

)
.

For example, let us show that (V �)1 =0. We first have (MD�)1 =0 since D�

has no codewords of weight 2. Also, if (V �)χ
1 �= 0 for some χ, then the weight

of χ is equal to 16 and hence χ is one of (116016016), (016116016) or (016016116).
Say χ = (116016016). Since (V �)χ = IndD�

D3
E8

(V (116)
E8

⊗ MDE8+ξ1 ⊗ MDE8+ξ1) and

D� does not contains any words of the form (α, ξ1, ξ1), the minimal weight of
(V �)χ is greater than 1, which contradicts the choice of χ. Therefore we obtain
V �

1 =0.

8. Conformal vectors

Since each rational conformal vector e∈V with central charge 1
2 gives rise

to an automorphism τe, it is very important to find such conformal vectors for
studying the automorphism group Aut(V ). Therefore we will construct several
conformal vectors of V � explicitly.

8.1.Case I. Set D1 = 〈H8 ⊕ H8, (ξ1ξ1)〉 and S =
〈
(116)

〉
, where ξ1 = (107).

Then the pair (α, β, S) satisfies the conditions (3.a) and (3.b) of Theorem 3.20
for any α, β∈S1. Set

U = H(1
2 , 0)H(1

2 , 0)⊕H(1
2 , ξ1)H(1

2 , ξ1)⊕H( 1
16 , ξ1)H( 1

16 , 0)⊕H( 1
16 , 0)H( 1

16 , ξ1).
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U is isomorphic to a sub VOA of VE8 . It is easy to see that

dim(H(1
2 , 0)H(1

2 , 0))1 = 0

and
dim(H(1

2 , ξ1)H(1
2 , ξ1))1 = dim(H( 1

16 , ξ1)H( 1
16 , 0))1

= dim(H( 1
16 , 0)H( 1

16 , ξ1))1 = 1.

Hence the weight-one space U1 of U is isomorphic to sl(2) as a Lie algebra. If we
view (H(1

2 , ξ1)H(1
2 , ξ1))1 as a Cartan subalgebra of sl(2), H( 1

16 , ξ1)H( 1
16 , 0) ⊕

H( 1
16 , 0)H( 1

16 , ξ1) contains two roots α and β. A sub VOA generated by U1

is isomorphic to a lattice VZx of type A1 with 〈x, x〉=2. Identifying α and β

with ι(x) and ι(−x), respectively, we obtain the following elements:

x(−1)1∈ (H(1
2 , ξ1) ⊗ H(1

2 , ξ1))1,

ι(x)+ι(−x)∈ (H( 1
16 , ξ1) ⊗ H( 1

16 , 0))1,

and
ι(x)−ι(−x)∈ (H( 1

16 , ξ1) ⊗ H( 1
16 , 0))1.

Take another copy of these and set

y(−1)1∈ (H(1
2 , ξ1) ⊗ H(1

2 , ξ1))1,

ι(y)+ι(−y)∈ (H( 1
16 , ξ1) ⊗ H( 1

16 , 0))1,

and
ι(y)−ι(−y)∈ (H( 1

16 , ξ1) ⊗ H( 1
16 , 0))1.

Then we have

ι(±x) ⊗ ι(±y)+ι(∓x) ⊗ ι(∓y)∈H( 1
16 , 0)H( 1

16 , ξ1)H( 1
16 , 0)H( 1

16 , ξ1)

⊕H( 1
16 , ξ1)H( 1

16 , 0)H( 1
16 , ξ1)H( 1

16 , 0)

x(−1)y(−1)1∈H(1
2 , ξ1)H(1

2 , ξ1)H(1
2 , ξ1)H(1

2 , ξ1)

and
(x(−1))

21, (y(−1))
21∈H(1

2 , 0)H(1
2 , 0)H(1

2 , 0)H(1
2 , 0).

It follows from 〈x ± y, x ± y〉=2 that

e+(x ± y)= 1
16((x ± y)(−1))

21+ 1
4(ι(x ± y)+ι(−x ∓ y))

and
e−(x ± y)= 1

16((x ± y)(−1))
21− 1

4(ι(x ± y)+ι(−x ∓ y))

are rational conformal vectors with central charge 1
2 . Therefore we obtain four

rational conformal vectors e±(x ± y) in

H(1
2 , 0)H(1

2 , 0)H(1
2 , 0)H(1

2 , 0) ⊕ H(1
2 , ξ1)H(1

2 , ξ1)H(1
2 , ξ1)H(1

2 , ξ1)

⊕H( 1
16 , 0)H( 1

16 , ξ1)H( 1
16 , 0)H( 1

16 , ξ1) ⊕ H( 1
16 , ξ1)H( 1

16 , 0)H( 1
16 , ξ1)H( 1

16 , 0).
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8.2. Case II. We treat the first component VE8 ⊗1⊗1 of VE8 ⊗VE8 ⊗VE8 .
For simplicity, we denote DE8 , SE8 and VE8 by D, S, V , respectively. For
α, β∈S with |α|= |β|= |α+β|=8, V contains a sub VOA

V 〈αc,βc〉 = MD ⊕ V αc ⊕ V βc ⊕ V α+β.

Since Dαc , Dβc and Dα+β are all isomorphic to H8, the multiplicities of the
irreducible L(1

2 , 0)⊗8-modules in V αc ⊕V βc ⊕V α+β are all one by Theorem 3.8.
Hence dim(V αc

)1 = dim(V βc

)1 = dim(V α+β)1 = 8. Since D does not contain
any words of weight 2, (MD)1 = 0 and so (MD ⊕ V αc

)1, (MD ⊕ V βc

)1 and
(MD ⊕ V α+β)1 are all commutative Lie algebras. Since V 〈αc,βc〉 is a sub VOA
of a lattice VOA V of rank 8 and hence (V 〈αc,βc〉)1 is isomorphic to sl(2)⊕8.
Let {x1, · · · , x8} be the set of positive roots of A⊕8

1 . Viewing (V α+β)1 as a
Cartan subalgebra of sl(2)⊕8 and embedding it into a lattice VOA VA⊗8

1
of root

lattice A⊗8
1 , we are able to denote the positive roots by ι(x1), · · · , ι(x8) and

the negative roots by ι(−x1), · · · , ι(−x8). In addition, we may assume

(xi)(−1)1∈V α+β
1 ,

ι(xi)+ι(−xi)∈V αc

1 ,

ι(xi)−ι(−xi)∈V βc

1

for i=1, · · · , 8.
We next treat the second and third components of VE8 ⊗ VE8 ⊗ VE8 . Set

V (γ,γ) = V γ ⊗ V γ and V (γ̄,γ̄) = RV γ ⊗ RV γ for γ ∈ S. We also set F =
{(α′, β′) | α′+β′ ∈D, α′, β′ even } and W (δ,δ) =IndF

D⊕2(V (δ,δ)) for δ. We note
that F does not contain any roots and D⊕F ⊆ D�. By a similar argument as
in the construction of the moonshine VOA,

W 〈(ᾱ,ᾱ),(β̄,β̄)〉=MD⊕2 ⊕ W (ᾱ,ᾱ) ⊗ W (β̄,β̄) ⊕ W (α+β,α+β)

has a VOA structure. By Theorem 3.25, we have a VOA

W 〈(ᾱ,ᾱ),(β̄,β̄)〉=MF ⊕ W (ᾱ,ᾱ) ⊕ W (β̄,β̄) ⊕ W (α+β,α+β).

Since the numbers of codewords in F(α,α), F(β,β) and F((α+β),(α+β)) are all

211, the multiplicities of irreducible L(1
2 , 0)⊗16-submodules are all 211−8 = 8,

where F(γ,γ) = {δ ∈ F |Supp(δ) ⊆ Supp((γ, γ))}. Hence dim(W (γ,γ)
1 ) = 8 for

γ∈{ᾱ, β̄, α+β}. We also have that

X = MF ⊕ W ( ¯116, ¯116) ⊕ W (āl,ᾱ) ⊕ W (β̄,β̄) ⊕ W (α+β,α+β)

⊕W (αc,αc) ⊕ W (βc,βc) ⊕ W (α+bec,α+βc)

has a VOA structure. If |δ| = 16, only irreducible T -submodules of W δ iso-
morphic to ⊗32

i=1L(1
2 , di

16) contribute the weight-one space for δ=(d1, · · · , d32).
Since |α+βc|= |α+β|=8, (MF⊕W (116),(116))1 =0 and (Wα+βc,α+βc⊕Wα+β,α+β)1



THE MOONSHINE VERTEX OPERATOR ALGEBRA 583

is of dimension 16. Since X is a sub VOA of a lattice VOA of rank 16,

X1 is isomorphic to sl(2)⊕16 and W
〈(ᾱ,ᾱ),(β̄,β̄)〉
1 is isomorphic to sl(2)⊕8. View-

ing (W (α+β,α+β))1 as a Cartan subalgebra and embedding it in a lattice VOA
VA⊕8

1
of the root lattice A⊕8

1 , we are able to denote the positive roots by
ι(y1), · · · , ι(y8) and the negative roots by ι(−y1), · · · , ι(−y8). Then we may
assume that

(yi)(−1)1∈ (W (α+β,α+β))1,

ι(yi)+ι(−yi)∈ (W (ᾱ,ᾱ))1
and

ι(yi)−ι(−yi)∈ (W (β̄,β̄))1

for i=1, · · · , 8.
Set

U (αc,α,α) = VE8
αc ⊗ W (ᾱ,ᾱ),

U (βc,β,β) = VE8
βc ⊗ U (β̄,β̄)

and
U (α+β,α+β,α+β) = VE8

α+β ⊗ W (α+β,α+β).

Then

U = MD⊕F ⊕ U (αc,α,α) ⊕ U (βc,β,β) ⊕ U (α+β,α+β,α+β)

is a sub VOA of V �. We have

((xi)(−1))
21∈MD,

((yi)(−1))
21∈MF ,

(xi)(−1)(yi)(−1)1∈U (α+β,α+β,α+β),

(ι(xi)+ι(−xi)) ⊗ (ι(yi)+ι(−yi))∈U (αc,α,α)

and,
(ι(xi)−ι(−xi)) ⊗ (ι(yi)−ι(−yi))∈W (βc,β,β).

By the same arguments as in the case I, we have 32 mutually orthogonal
conformal vectors

d4i−3 = 1
16((xi+yi)(−1))

21+ 1
4(ι(xi+yi)+ι(−xi−yi))

d4i−2 = 1
16((xi+yi)(−1))

21− 1
4(ι(xi+yi)+ι(−xi−yi))

d4i−1 = 1
16((xi−yi)(−1))

21+ 1
4(ι(xi−yi)+ι(−xi+yi))

d4i = 1
16((xi−yi)(−1))

21− 1
4(ι(xi−yi)+ι(−xi+yi))

in V 1, where ι(xi+yi) denotes ι(xi) ⊗ ι(yi).
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9. The automorphism group

In this section, we will prove that the full automorphism group of V � is
the Monster simple group.

Hypotheses II.
(1) V =

∑∞
i=0 Vi is a framed VOA over R with a PDIB-form 〈 , 〉.

(2) V1 =0.

We recall the following results from [Mi4].

Theorem 9.1. Under Hypotheses II, if e, f are two distinct conformal
vectors with central charge 1

2 , then

〈e, f〉 ≤ 1
12 and 〈e−f, e−f〉 ≥ 1

3 .

In particular, there are only finitely many conformal vectors with central charge 1
2 .

Proof. By a product ab = a(1)b and an inner product 〈a, b〉1 = a(3)b for
a, b∈V2, V2 becomes a commutative algebra called a Griess algebra. Decom-
pose V2 as Re ⊕ Re⊥ with Re⊥={v∈V2|〈v, e〉=0}. For a conformal vector f ,
there are r∈R and u∈Re⊥ such that

f = re+u.

Since 〈eu, e〉=〈u, e2〉=〈u, 2e〉=0, we have eu∈Re⊥ and hence

2re+2u=2f =ff ={2r2e+(uu)e}+{(uu−(uu)e)+2reu},
where (uu)e denotes the first entry of uu in the decomposition Re⊕Re⊥. Hence

r2/2+〈e, (uu)e〉=〈e, 2r2e+(uu)e〉=〈e, ff〉=〈e, 2f〉=〈e, 2re〉=r/2

and so 〈e, (uu)e〉=r(1−r)/2. On the other hand, we have
1
4 = 〈f, f〉 = r2 1

4 +〈u, u〉,
and hence 〈u, u〉= 1

4(1−r2). Since 〈e〉 ∼= L(1
2 , 0) as VOAs and every irreducible

L(1
2 , 0)-module is isomorphic to one of L(1

2 , 0), L(1
2 , 1

2), L(1
2 , 1

16), the eigenvalues
of e(1) on V are 0, 1+Z+, 1

2 , 1
2+Z+, 1

16 , 1
16+Z+. Let v be an element in Re⊥ ⊆ V2.

Since e(m)v ∈ V3−m for m ∈ Z, we have e(m)v = 0 for m = 2, 4, 5, · · · . Also
since 〈e, v〉 = 0, we have e(3)v = 0. Therefore v is a sum of highest weight
vectors of 〈e〉-modules. Hence the eigenvalues of e(1) on Re⊥ are 0, 1

2 , or 1
16 .

Consequently, we obtain

r/2−r2/2 = 〈e, (uu)e〉 = 〈e, uu〉 = 〈ue, u〉 ≤ 1
2〈u, u〉 = 1

8(1−r2)

and thus 3r2−4r+1 ≥ 0. This implies r ≥ 1 or r ≤ 1
3 . If r ≥ 1, then it

contradicts 〈u, u〉 > 0. We now have r ≤ 1
3 and so 〈e, f〉 ≤ 1

12 , which implies
〈e−f, e−f〉 ≥ 1

3 . Therefore there are only finitely many conformal vectors with
central charge 1

2 since {v∈V2|〈v, v〉=4} is a compact space.
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Theorem 9.2. If V satisfies Hypothesis II, then Aut(V ) is finite.

Proof. Suppose the theorem is false and let G be an automorphism group
of V of infinite order. Since G acts on the set J of all conformal vectors
with central charge 1

2 and J is a finite set by Theorem 9.1, we may as-
sume that G fixes all conformal vectors with central charge 1

2 . In particular,
G fixes every conformal vector ei in a coordinate set {ei|i = 1, · · · , n}. Set
P = 〈τei

| i=1, · · · , n〉. By the definition of τei
, P is an elementary abelian

2-group. Let V =⊕χ∈Irr(P )V
χ be the decomposition of V into the direct sum

of eigenspaces of P , where Irr(P ) is the set of all linear characters of P and
V χ = {v ∈ V | gv = χ(g)v ∀g ∈ P}. As we mentioned in the introduction,
τ̃(V χ) = (a1, · · · , an) ∈ Zn

2 is given by (−1)ai = χ(ei). Since G fixes all ei and
g−1τei

g = τg(ei) for g∈Aut(V ) by the definition of τei
, [G, P ]=1 and hence G

leaves all V χ invariant. In particular, G acts on V 1G . We think over the action
of G on V 1G (=V P ) for a while. Set T = 〈e1, · · · , en〉, which is isomorphic to
L(1

2 , 0)⊗n. Since dimV0 = 1, T is the only irreducible T -submodule of V iso-
morphic to L(1

2 , 0)⊗n as a T -module. By the hypotheses, V has a PDIB-form
and so V P is simple. Hence V P is isomorphic to a code VOA MD = ⊕α∈DMα

for some even linear code D. Since T is generated by {ei | i=1, · · · , n} and G

fixes all ei, G fixes all elements of T and so g∈G acts on Mα as a scalar λα(g).
Since V has a PDIB-form, we have 0 �= 〈v, v〉= 〈g(v), g(v)〉= λ2

α(g)〈v, v〉 and
hence λα(g)=±1. Since the order of D is finite, we may assume that G fixes
all elements in V P . Since V χ is an irreducible V P -module by [DM2], g ∈ G

acts on V χ as a scalar µχ(g). By the same arguments as above, we have a
contradiction.

In Lemma 3.3, we showed that we are able to induce every automorphism
of D into an automorphism of MD. We will show that we can induce every
automorphism of S� into an automorphism of V �.

Lemma 9.3. For any g∈Aut(S�), there is an automorphism g̃ of V � such
that g̃(ei)=eg(i).

Proof. By Lemma 3.3, we may assume that g is an automorphism of MD� .
Let g((V �)χ) be an MD�-module defined by v(m)(g · u)) = g · (g−1(v)(m)u) for
v∈MD� , u∈(V �)χ and m∈Z. Clearly, τ̃(g((V �)χ)=g−1(χ) and

g(V �) = ⊕χ∈S�g((V �)χ)

has a (D�, S�)-framed VOA structure by Theorem 3.25. We will prove that
there is an MD�-isomorphism

πχ : g((V �)χ) → (V �)g(χ)
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for χ∈S�. In this case, by the uniqueness theorem (Theorem 3.25), there are
scalars λχ such that an endomorphism

φ : g(V �) → V �

given by φ = ⊕χλχπχ on ⊕χg((V �)χ) is a VOA-isomorphism. Hence g̃(v) =
φ(g · v) for v∈V � becomes one of the desired automorphisms of V �.

Since S� = {(α, β, γ) | α, β, γ ∈ SE8 , β, γ = α or αc}, Aut(S�) = Σ3 ×
Aut(SE8), where Σ3 is the symmetric group on three letters. As we showed in
the proof of Theorem 5.4,

Aut(SE8) ∼= GL(5, 2)1 ={g∈GL(5, 2) | gt(10000)= t(10000)}.

In particular, g leaves D⊕3 = DE8 ⊕ DE8 ⊕ DE8 and D� invariant. Set χ =
(α, β, γ). We first assume that g ∈ Σ3. Since (V �)χ = IndD�

D⊕3(W (α,β,γ)) and
W (α,β,γ) is given by (7.10), we have g(W (α,β,γ)) ∼= W g(α,β,γ) as MD⊕3-modules
and so we have the desired isomorphism for g∈Σ3. Assume g =(h, h, h) with
h ∈ Aut(SE8). By Theorem 5.4, h(Ṽ α

E8
) ∼= Ṽ

h(α)
E8

and hence g(W (α,α,α)) ∼=
W (h(α),h(α),h(α)). For χ=(α, α, αc),

g(W (α,α,αc)) = h(RṼ α
E8

) ⊗ h(RṼ α
E8

) ⊗ h(Ṽ αc

E8
)

∼= (h(R))Ṽ h(α)
E8

⊗ (h(R))Ṽ h(α)
E8

⊗ Ṽ
h(αc)
E8

as MDE8
⊗ MDE8

⊗ MDE8
-modules. Since R ∼= MDE8+ξ1 , h(R) ∼= MDE8+ξj

,

where j = h(1) and ξj = (0j−11016−j). Since (ξ1 + ξj , ξ1 + ξj , 016) ∈ D�,
(R × h(R)) ⊗ (R × h(R)) ⊗ MDE8

is a submodule MD⊕3+(ξ1+ξj ,ξ1+ξj ,016) of MD�

and so we have the desired conclusion:

g(V �)χ = g(IndD�

D3
E8

W (α,α,αc))

= IndD�

D3
E8

(h(R))Ṽ h(α)
E8

) ⊗ (h(R))Ṽ h(α)
E8

) ⊗ (Ṽ h(αc)
E8

)

∼=IndD�

D3
E8

RṼ
h(α)
E8

⊗ RṼ
h(α)
E8

⊗ Ṽ
h(α)c

E8

∼=(V �)g(χ).

Let Λ be the Leech lattice and let VΛ be a lattice VOA constructed from Λ.
The following result easily comes from the construction of VΛ in [FLM2].

Lemma 9.4. Aut(VΛ) ∼= ((R×)⊕24)Co.0, where R×=R−{0} is the multi-
plicative group of R. (Co.0 does not mean a subgroup.)

Proof. Since (VΛ)1 is a commutative Lie algebra RΛ of rank 24 and
exp(α(0)) =

∑∞
i=0

1
i!(α(0))i is an automorphism acting on Rι(x) as a scalar

exp(〈α, x〉) for α∈ (VΛ)1 and x∈Λ, we have an automorphism group R×⊕24,
which is a normal subgroup of Aut(VΛ). On the other hand, Frenkel, Lepowsky
and Meurman [FLM2] induced g∈Aut(Λ) into an automorphism of the group



THE MOONSHINE VERTEX OPERATOR ALGEBRA 587

extension Λ̂ = {±ι(x) | x ∈ Λ} and also into an automorphism of VΛ using
cocycles. Hence VΛ has an automorphism group (R×⊕24)Co.0. Conversely,
suppose Aut(VΛ) �= (R×⊕24)Co.0 and g∈Aut(VΛ)−(R×⊕24)Co.0; then g leaves
(VΛ)1 invariant and hence it leaves a sub VOA 〈(VΛ)1〉 of free bosons invariant.
Then g acts on the lattice of highest weights of VΛ as a 〈(VΛ)1〉-module, which
is isomorphic to the Leech lattice. Multiplying an element of Co.0 :=Aut(Λ),
we may assume that g fixes all highest weight vectors {ι(x) | x∈Λ} of VΛ as a
〈(VΛ)1〉-module up to scalar multiple and so g commutes with x(0) for x∈Λ.
Consequently, g fixes all elements of (VΛ)1 and acts on Rι(x) as a scalar and
so g∈(R×⊕24), which contradicts the choice of g.

Theorem 9.5. Aut(V �) is the Monster simple group.

Proof. As we proved, the full automorphism group of V � is finite. Set
δ=τe1τe2 and decompose V � into the direct sum

V � = V + ⊕ V −

of the eigenspaces of δ, where V ± = {v ∈ V � | δ(v) = ±v}. By the definition
of τei

,
V + =

∑
α∈S�, 〈α,(11046)〉=0

(V �)α.

Set SΛ =
〈
(11046)

〉⊥ ∩ S� and DΛ =S⊥
Λ . Since

S� = {(α, β, γ) | α, β, γ∈SE8 , β, γ∈{α, αc}}

and
SE8 =

〈
(116), (1808), (1404)2, (1202)4, (10)8

〉
,

we have an expression:

SΛ =
{

(a1, · · · , a24)∈S� | ai∈{(00), (11)}
}

.

In particular, δ is equal to τe2m−1τe2m
for any m=1, · · · , 24. We note that V +

is a (D�, SΛ)-framed VOA. Since S⊥
Λ is larger than D�, we can construct an

induced VOA
Ṽ = IndDΛ

D� (V +).

Since (SΛ)⊥ = DΛ, Ṽ is a holomorphic VOA of rank 24 by Theorem 6.1. It
follows from the direct calculation that the codewords of DΛ of weight 2 are

{(11046), (0011044), · · · , (04611)}.

We assert that (IndDΛ
D� (V �)α)1 = 0 for α �= 0. Suppose false and assume

(IndDΛ
D� (V �)α)1 �= 0 for some α. Then the weight of α is 16 and so α is

one of (116032), (016116016), (032116), say α = (116032). Since (V �)α is given
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by IndD�

D⊕3
E8

(V (116)
E8

⊗MDE8+ξ1 ⊗MDE8+ξ1) and DΛ does not contain any word of

the form (∗ξ1ξ1), we have a contradiction. Consequently,

G = (Ṽ )1 = (MDΛ)1 = ⊕α∈DΛ,|α|=2(Mα)1

is a commutative Lie algebra of rank 24 and G̃ :=
〈
(Ṽ )1

〉
is a VOA of free

bosons of rank 24. We note that G has a PDIB-form 〈·, ·〉 given by v(1)u=〈v, u〉1
since Ṽ has a PDIB-form. Hence CṼ is isomorphic to a lattice VOA CVΛ of
the Leech lattice Λ by [Mo]. More precisely, we will show the following lemmas
in order to continue the proof of the theorem.

Lemma 9.6. Ṽ is isomorphic to the lattice VOA ṼΛ of the Leech lattice Λ
given in Proposition 2.7. In particular, one can choose a set of mutually orthog-
onal vectors {x1, · · · , x24} in Λ of squared length 4 such that every conformal
vector ek in a coordinate set of Ṽ is written as

e2j−i = 1
16((xj)(−1))

21+(−1)i 1
4(ι(xj)+ι(−xj))

for j =1, · · · , 24 and i=0, 1 by identifying Ṽ and ṼΛ. Moreover,

(b1b1b2b2 · · · b24b24)∈SΛ

if and only if there is (ai)∈Z24 such that

x= 1
2

24∑
i=1

aixi+ 1
4

24∑
i=1

bixi∈Λ,

where bi∈{0, 1} denotes integers and binary words, by an abuse of notation.

Proof. Set

W = {v∈ Ṽ | x(n)v = 0 for all x∈G and n > 0}.

Then the action of {x(0) | x∈G} on CW is diagonalizable since G is commuta-
tive. Let L be the set of highest weights of G̃-submodules of CW as a G̃-module.
It is easy to see that L is an even unimodular positive definite lattice without
roots since W1 =0. Hence L is the Leech lattice Λ and CṼ ∼= CVΛ.

On the other hand, Ṽ has a PDIB-form and it also has a Z2-grading

Ṽ = (V �)〈δ〉 ⊕ Ṽ −

by the definition of induced VOAs, where Ṽ − = M(11046)+D� × (V �)〈δ〉. Let θ

be an automorphism of CṼ defined by 1 on C(V �)〈δ〉 and −1 on CṼ −. Now
θ is acting on C(Ṽ )1 as −1 and so we may assume that it is equal to an
automorphism of CVΛ induced from−1 on Λ by taking a conjugate. When V =
(V �)〈δ〉⊕

√
−1Ṽ −, it is also a sub VOA of CṼ . Let ι(x) denote a highest weight
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vector for G̃ which lies in CṼ with highest weight x∈Λ. Namely, u(0)ι(x) =
〈u, x〉ι(x) for u ∈ G. We note that θ(ι(x)) = (−1)kι(x) for 〈x, x〉 = 2k. The
space W spanned by highest weight vectors for G̃ is a direct sum of irreducible
G-modules W i whose dimensions are less than or equal to 2. If dimW i = 1,
then CW i = Cι(x) for some x ∈ Λ. On the other hand, if dimW i = 2, then
CW i = Cι(x)+Cι(y). Since W i is irreducible, ι(x) and ι(y) are in the same
homogeneous space C(Ṽ )k for some k. Since CG=CṼ1

∼= CΛ, we have Zx=Zy

and so y =−x. Hence W i has a basis {aι(x)+bι(−x), cι(x)+dι(−x)} for some
a, b, c, d∈C. We may assume that a∈R. Since Ṽ has a PDIB-form, we may
also assume that { 1√

2
(aι(x)+bι(−x)), 1√

2
(cι(x)+dι(−x))} is an orthonormal basis

of W i. Therefore b=(−1)ka−1, d=(−1)kc−1 and ad+bc=(−1)k(ac−1+a−1c)=0.
Hence a2 = −c2 > 0 and we hence have c =

√
−1a and d = −

√
−1b. Since

CW i = Cι(x)+Cι(−x) and W i = CW i ∩ Ṽ , θ keeps W i invariant. Therefore
θ(aι(x)+(−1)ka−1ι(−x)) = a−1ι(x)+(−1)kaι(−x) ∈ W i, which implies a = ±1.
Hence ι(x)+(−1)kι(−x),

√
−1(ι(x)−(−1)kι(−x))∈W and

√
−1x(0)1∈G for x∈Λ.

Consequently, Ṽ coincides with the lattice VOA ṼΛ defined in Proposition 2.7
and V coincides with VΛ.

We recall the structure VZx
∼= L(1

2 , 0) ⊗ L(1
2 , 0) ⊕ L(1

2 , 1
2) ⊗ L(1

2 , 1
2) and

(L(1
2 , 1

2) ⊗ L(1
2 , 1

2))1 = R
√
−1x(−1)1 for a VOA VZx with 〈x, x〉 = 4. Since

(Ṽ )1 =(MDΛ)1 =⊕24
i=1(Mξ2i−1+ξ2i

)1, we have

e2j−e2j−1∈W ={v∈ Ṽ |x(n)v= 0 for all x∈(Ṽ )1 and n > 0}

and R(e2j−e2j−1)+
√
−1R(xj)(0)(e2j−e2j−1) is an irreducible G-submodule of L.

Hence, by the arguments above, we have

e2j−i = 1
16((xj)(−1))

21+(−1)i 1
4(ι(xj)+ι(−xj))

for some xj ∈Λ. Since

0 = (e2j−1+e2j)(1)(e2k−e2k−1) = 1
64〈xj , xk〉2(ι(xk)+ι(−xk))

for k �= j, we have 〈xj , xk〉 = 0. Namely, {x1, · · · , x24} is a set of mutually
orthogonal vectors of Λ with squared length 4. If y=

∑24
i=1 cixi∈Λ, then ci∈ 1

4Z
since 〈y, xi〉 ∈ Z. Assume that y = 1

4

∑
bixi is in Λ and set U = V〈x1,··· ,x24〉+y

and T j =〈e2j−1, e2j〉. As we showed in Section 2,

(1) bj ∈1+2Z if and only if an irreducible T j-submodule of U is isomorphic
to L(1

2 , 1
16) ⊗ L(1

2 , 1
16). In particular, (b1b1b2b2 · · · b24b24)∈SΛ.

(2) bj ∈2+4Z if and only if an irreducible T j-submodule of U is isomorphic
to L(1

2 , 1
2) ⊗ L(1

2 , 0) or L(1
2 , 0) ⊗ L(1

2 , 1
2).

(3) bi ∈4Z if and only if an irreducible T j-submodule of U is isomorphic to
L(1

2 , 0) ⊗ L(1
2 , 0) or L(1

2 , 1
2) ⊗ L(1

2 , 1
2).
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Conversely, if γ = (b1b1b2b2 · · · b24b24) ∈ SΛ, then G̃ acts on (ṼΛ)γ and so
(ṼΛ)γ ∩ W �= 0. By the arguments above, there is an element x ∈ Λ such
that ι(x) ∈ ṼΛ or ι(x)+ (−1)|x|/2ι(−x) ∈ (ṼΛ)γ . Hence there is a codeword
(a1 · · · a24)∈Z24

2 such that x= 1
2

∑
aixi+ 1

4

∑
bixi∈Λ.

Lemma 9.7. For any y ∈ Λ with squared length 4, τe(y)+ = τe(y)− in
Aut(VΛ) and τe(y)+ ∈〈±1〉⊕24 ⊆ (R×)⊕24.

Proof. Since Co.0 acts on the set of all vectors in Λ with squared length
4 transitively, we may assume that y = x1 and e(y)+ = e1 and e(y)− = e2,
where {x1, · · · , x24} is the set defined in the above lemma. By the arguments
in the proof of the above lemma, it is clear that τe(y)+ =τe(y)− . Since τe1ι(x)=
(−1)〈x1,x〉ι(x) and [τe1 , x(−n)]=0, we have τe1 ∈〈±1〉⊕24.

Returning to the proof of Theorem 9.5, we have VΛ
∼= (V �)〈δ〉 ⊕

√
−1Ṽ −.

Let θ be an automorphism of VΛ defined by 1 on (V �)〈δ〉 and −1 on
√
−1Ṽ −.

We identify (V �)〈δ〉 with V θ
Λ . Let J be the set of all rational conformal vectors

in (V �)〈δ〉 with central charge 1
2 . Set G=Aut(V �), K� =〈τe | e∈J〉 ⊆ Aut(V �),

K =〈τe | e∈J〉 ⊆ Aut((V �)〈δ〉), H =Aut(VΛ) and KΛ =〈τe | e∈J〉 ⊆ Aut(VΛ).
By Lemma 9.4, H ∼= (R×⊕24)Co.0 and CH(〈θ〉) ∼= 224Co.0. (Co.0 does not
imply a subgroup.) Clearly, K� ⊆ CG(〈δ〉) and KΛ ⊆ CH(〈θ〉).

By restricting automorphisms of V � and VΛ to (V �)〈δ〉 and V
〈θ〉
Λ , respec-

tively, we have epimorphisms π� : K� → K and πΛ : KΛ → K. By [DM2],
Ker(π�)=〈δ〉 and Ker(πΛ)=〈θ〉 ∩ KΛ. So we have the following diagram.

G = Aut(V �)

CG(δ)

K�

������

������������〈δ〉

Aut((V �)δ)
�

�
�

�
�

�

�
�

�

�
�

�

CG(δ) CH(θ)

K

1

H = Aut(VΛ)

CH(θ)

KΛ

������

������������ 〈θ〉 ∩ KΛ

First, we will show that KΛ �⊆ 224〈θ〉, where 224 denotes the elementary
normal abelian 2-subgroup 〈±1〉⊕24 of (R×)⊗24Co.0. Let g=(2, 4)(6, 8)(10, 12)
· · · (46, 48)∈S48. It is straightforward to check that g is an automorphism of S�.
By Lemma 9.3, there is an automorphism g̃∈Aut(V �) such that g̃(ei)= eg(i).
Set δ′ = τe1τe4 (= g̃(δ)) and L̃′

Λ = g(L̃Λ). By Lemma 9.7, there is a set of
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mutually orthogonal vectors {x1, · · · , x24} in Λ of squared length 4 such that

e2j−i = 1
16((xj)(−1))

2ι(0)+(−1)i 1
4(ι(xj)+ι(−xj)).

It is easy to see that γ=(081808180818)∈SΛ. Since ((V �)γ)2 �= 0, there is y∈Λ
of squared length 4 such that 〈y, xi〉 ≡ 1 (mod 2) if and only if i ∈ Supp(γ).
For each y ∈Λ, e+(y) = 1

16(y(−1))2ι(0)+ 1
4(ι(y)+ι(−y)) is a rational conformal

vector in (VΛ)〈θ,τe1 ,τe2 ,··· ,τe8〉. In particular, g(e+(y))∈(V �)〈δ〉. Since 〈y, x5〉 ≡ 1
(mod 2), we have τe(y)(ι(±x5))=−ι(±x5) and so τe(y) exchanges e9 and e10. On
the other hand, g̃ fixes e9 and exchanges e10 and e12. Hence τg̃(e(y)) exchanges
e9 and e12 and hence τg̃(e(y)) does not belong to 224 〈θ〉. Hence KΛ �⊆ 224 〈θ〉.

Since KΛ is generated by all automorphisms given by conformal vectors
in (VΛ)〈θ〉, KΛ is a normal subgroup of CH(〈θ〉) ∼= 224Co.0 and so we have
KΛ =CH(〈θ〉). Consequently, K ∼= 224Co.1, K� =O2(K�)Co.1 and O2(K�) is
of order 225, where O2(G) denotes the maximal normal 2-subgroup of G. If
O2(K�) is an abelian 2-group, then O2(K�) is an elementary 2-group of order
225 and decomposes into 〈δ〉 ⊕ N as a Co.1-module. Let y be a vector of Λ of
squared length 4 satisfying 〈y, x24〉=1. Then e±(y)∈(V �)〈δ〉 and τe+(y) fixes δ=
τe1τe2 =τe47τe48 and exchanges e47 and e48. By Lemma 9.7, τe47 , τe48 ∈O2(K�).
Since δ =τe47τe48 , we may assume e47∈N and e48 �∈N , which contradicts that
τe(y) exchanges e47 and e48. Hence O2(K�) is not abelian and hence O2(K�) is
isomorphic to a central extension of Λ/2Λ given by the inner product of Λ/2Λ,
since Co.1 acts on O2(K�)/〈δ〉 faithfully. That is, O2(K�) is an extra-special
2-group of order 225, which is denoted by 21+24. By Lemma 9.3, Aut(V �)
contains a subgroup whose restriction on {e1, · · · , e48} is isomorphic to
GL(5, 2)1 × Σ3, where Σ3 is the symmetric group on three letters and per-
mutes three components of V ⊗3

E8
, and GL(5, 2)1 denotes

{A∈GL(5, 2) | At(10000)= t(10000)}.

Set δ1 = τe1τe3 and B2 = 〈δ, δ1〉. Denote δ and δδ1 by δ0 and δ2, respectively.
Since a subgroup of GL(5, 2)1 acts on {δ0, δ1, δ2} transitively and e3 is given by
a vector of Λ of squared length 4, we have NAut(V �)(B2) ∼= 22+12+22(Σ3 ×M24)
from the structure of CAut(V �)(δ) ∼= 21+24Co.1. Similarly, all nontrivial ele-
ments of B3 =〈τe1τe2 , τe1τe3 , τe1τe5〉 are conjugate by the actions of GL(5, 2)1 ⊆
Aut(V �) and so NAut(V �)(B3) ∼= 23+6+12+18(3Σ6 ×PSL(3, 2)). By the same ar-
guments, we can calculate the normalizer of B4 = 〈τe1τe2 , τe1τe3 , τe1τe5 , τe1τe9〉.
We leave these calculation to the reader.

We will next prove that Aut(V �) is a simple group. If H is a nontrivial
minimal normal subgroup of Aut(V �), then CH(δi) is a normal subgroup of
C(δi)=21+24Co.1 for i=0, 1, 2. Hence CH(δi)=21+24Co.1 or CH(δi)=21+24 or
CH(δi)=〈δi〉. We note that δi(i=0, 1, 2) are conjugate to each other in Aut(V �)
and hence CH(δi) ∼= CH(δ0) for i=1, 2. In any case, δi∈H and so CH(δi) �= 〈δi〉
since δj ∈ 〈CH(δi) | i=1, 2, 3〉 = H. If CH(δ1) = 21+24 then P := CH(δ1) is a
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Sylow 2-subgroup of H. Since |P : CP (δ2)| = 2 and CP (δ2) is not abelian,
we have [CP (δ2), CP (δ2)] = 〈δ1〉, which contradicts [CH(δ2), CH(δ2)] = 〈δ2〉.
Therefore we have CH(δi)=21+24Co.1. Since 〈δi〉 is a characteristic subgroup
of a Sylow 2-subgroup of H, we have H = Aut(V �) and hence Aut(V �) is
a simple group. By the characterization of the Monster simple group and
the above facts, we know that Aut(V �) is the Monster simple group; see [I],
[S], [T].

As shown above, V � is a holomorphic VOA with rank 24 with (V �)1 =0 and
the Monster simple group M acts on B =V �

2 faithfully. Since the M-invariant
commutative algebraic structure on a vector space of dimension 196884 B is
unique, B is isomorphic to the Griess algebra constructed in [Gr]. We have
also proved that (V �)δ is isomorphic to (ṼΛ)θ, which means that V � is a VOA
given by a Z2-orbifold construction from the Leech lattice VOA ṼΛ. Hence V �

is equal to the moonshine module VOA constructed in [FLM2].

10. Holomorphic VOAs

In this section, we will construct an infinite series of holomorphic VOAs
whose full automorphism groups are finite. We will adopt the notation from
Section 7 and repeat the similar constructions as in Section 7.

For n=1, 2, · · · , set

S�(n) =
〈
({016}i116{016}2n−i), ({α}2n+1) | α∈SE8 , i=1, · · · , 2n

〉
.

S�(n) is an even linear code of length 16+32n and (S�(n))⊥ contains a direct
sum (DE8)⊕2n+1 of 2n+1 copies of DE8 for each n. When γ is an element of
S�(n), then there is α∈SE8 such that

γ = (β1, · · · , β2n+1),

where βi∈{α, αc}. We may assume that the number of βi satisfying βi =α is
odd. Set

W γ = ⊗2n+1
i=1 W̃ βi ,

where

W̃ βi = VE8
α if βi = α

and
W̃ βi = RVE8

αc

if βi = αc.

Set
V 3(n) =

⊕
γ∈S�(n)

W γ

and
V �(n) = Ind(S�(n))⊥

(DE8 )⊕2n+1(V 3(n)).
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Then we can show that V �(n) has a framed VOA structure by exactly the same
proof as in the construction of V �. It also satisfies (V �(n))1 =0. Moreover, it is
a holomorphic VOA by Theorem 6.1 and its full automorphism group is finite
by Theorem 9.2.

11. Characters

In this section, we will calculate the characters of the 3C element and the
2B element of the Monster simple group. By Lemma 9.3, we are able to induce
an automorphism of D� into an automorphism of V �.

11.1. 3C. Clearly, g = (1, 17, 33)(2, 18, 34) · · · (16, 32, 48) is an auto-
morphism of D�. Let g̃ be an automorphism of V � induced from g. By the
definition, g̃ acts on {ei | i=1, · · · , 48} as (1, 17, 33)(2, 18, 34) · · · (16, 32, 48).

In this subsection, we denote DE8 by D. V � contains MD⊕3 = MD ⊗
MD ⊗ MD. We view V � as an MD ⊗ MD ⊗ MD-module. Since g̃ permutes
{V χ | χ∈S�}, we obtain

ch V �(g, z) = tr g,z(V �)

= tr g,z

 ⊕
χg=χ∈S�

V χ


= tr g,z

 ⊕
α∈DE8

V (α,α,α)

 ,

where trg,z(V )=
∑

m∈Z tr(g̃)|Vm
e2πimz for V = ⊕m∈ZVm.

By the definition of V (α,α,α),

V (α,α,α) = IndD�

D⊕3(VE8
α ⊗ VE8

α ⊗ VE8
α).

It follows from the definition of induced modules that

IndD�

D⊕3(U) ∼=
⊕

µ∈D�/D⊕3

MD⊕3+µ × U

as MD⊕3-modules. Since D� ={(α, β, γ) | α+β+γ∈D, α, β, δ even }, we obtain
g̃(D⊕3+µ)=D⊕3+µ if and only if µ∈D⊕3. Hence

tr g̃,z(V (α,α,α)) = tr g̃,z(VE8
α ⊗ VE8

α ⊗ VE8
α)

= tr 1,3z(VE8
α).

Therefore,

ch V �(g̃, z) =
∑

α∈DE8

tr 1,3z(VE8
α)

= tr 1,3z(VE8) = ch VE8
(1, 3z).
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11.2. 1 and 2B. Let δ = τe1τe2 . We proved that (V �)〈δ〉 is isomorphic to
(VΛ)〈θ〉. Hence

ch ((V �)〈δ〉) = 1 + 98580q2 + · · · .

So we will calculate the character of (V �)− = {v ∈ V � | δ(v) =−v}. It follows
from the definition of τei

that

ch ((V �)−) =
∑

〈χ,(11046)〉=1

ch ((V �)χ).

Set χ=(α, β, γ) with α, β, γ∈Z16
2 . Assume 〈χ, (11046)〉=1. Then the weight of

α is 8 and so the weight of χ is 24 since χ∈S�. Consequently, dimD�
χ =7+7+4

and hence the multiplicity of every irreducible T -submodule of (V �)χ is 26. Let
U be an irreducible T -submodule of (V �)χ. It follows from the total degree
that the number of L(1

2 , 1
2) in U =⊗48

i=1L(1
2 , hi) is odd. On the other hand, let

γ be an odd word with Supp(γ) ∩ Supp(χ) = ∅. By the action of MD� , there
exists an irreducible T -submodule isomorphic to ⊗48

i=1L(1
2 , hi) with hi = 1

2 for
i∈Supp(γ), hi = 1

16 for i∈Supp(χ) and hi =0 for i �∈ Supp(χ+γ). Hence

ch((V �)χ) = 26ch {L(1
2 , 1

16)⊗24 1
2((L(1

2 , 0)+L(1
2 , 1

2))⊗24−(L(1
2 , 0)−L(1

2 , 1
2))⊗24)}

= 32q3/2
∏
n∈N

(1+qn)24

 ∏
n∈N+

1
2

(1+qn)24−
∏

n∈N+
1
2

(1−qn)24

 .

Since there are 64 codewords χ such that 〈χ, (11046)〉=1, we have

ch((V �)−) = 211q3/2
∏
n∈N

(1+qn)24

 ∏
n∈N+

1
2

(1+qn)24−
∏

n∈N+
1
2

(1−qn)24


= 211q3/2(1+24q+· · · )(48q1/2+· · · )
= 212(24q2+· · · ).

In particular, we obtain (V �)1 =0 and dim(V �)2 =196884.
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[DGH] C. Dong, R. L. Griess Jr., and G. Höhn, Framed vertex operator algebras, codes and
the moonshine module, Comm. Math. Phys. 193 (1998), 407–448.

[DL] C. Dong and J. Lepowsky, Generalized Vertex Algebras and Relative Vertex Opera-
tors, Progr. Math. 112, Birkhäuser, Boston, 1993.
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