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Semistable sheaves in positive characteristic

By Adrian Langer*

Abstract

We prove Maruyama’s conjecture on the boundedness of slope semistable
sheaves on a projective variety defined over a noetherian ring. Our approach
also gives a new proof of the boundedness for varieties defined over a charac-
teristic zero field. This result implies that in mixed characteristic the moduli
spaces of Gieseker semistable sheaves are projective schemes of finite type. The
proof uses a new inequality bounding slopes of the restriction of a sheaf to a
hypersurface in terms of its slope and the discriminant. This inequality also
leads to effective restriction theorems in all characteristics, improving earlier
results in characteristic zero.

0. Introduction

Let k be an algebraically closed field of any characteristic. Let X be a
smooth n-dimensional projective variety over k with a very ample divisor H.
If E is a torsion-free sheaf on X then one can define its slope by setting

µ(E) =
c1E · Hn−1

rkE
,

where rkE is the rank of E. Then E is semistable if for any nonzero subsheaf
F ⊂ E we have µ(F ) ≤ µ(E).

Semistability was introduced for bundles on curves by Mumford, and later
generalized by Takemoto, Gieseker, Maruyama and Simpson. This notion was
used to construct the moduli spaces parametrizing sheaves with fixed topo-
logical data. As for the construction of these moduli spaces the boundedness
of semistable sheaves is a fundamental problem equivalent for these moduli
spaces to be of finite type over the base field (see [Ma2, Th. 7.5]).

*The paper was partially supported by a Polish KBN grant (contract number
2P03A05022).
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In the curve case the problem is easy. In higher dimensions this problem
was successfully treated in characteristic zero using the Grauert-Mülich the-
orem with important contributions by Barth, Spindler, Maruyama, Forster,
Hirschowitz and Schneider. In positive characteristic Maruyama proved the
boundedness of semistable sheaves on surfaces and the boundedness of sheaves
of rank at most 3 in any dimension.

In another direction Mehta and Ramanathan proved their restriction the-
orem saying that the restriction of a semistable sheaf to a general hypersurface
of a sufficiently large degree is still semistable. This theorem is valid in any
characteristic but the result does not give any information on the degree of this
hypersurface. It was well known that an effective restriction theorem would
prove the boundedness. In the characteristic zero case such a theorem was
proved by Flenner. Ein and Noma tried to use a similar approach in positive
characteristic but they succeeded only for rank 2 bundles on surfaces.

About the same time as people were studying the boundedness of semistable
sheaves, Bogomolov proved his famous inequality saying that

∆(E) = 2 rkE c2E − (rkE − 1)c2
1E

is nonnegative if E is a semistable bundle on a surface over a characteristic
zero base field. This result can easily be generalized to higher dimensions by
the Mumford-Mehta-Ramanathan restriction theorem. Bogomolov’s inequal-
ity was generalized by Shepherd-Barron [SB1], Moriwaki [Mo] and Megyesi
[Me] to positive characteristic but only in the surface case. The higher dimen-
sional version of this inequality follows only from the boundedness of semistable
sheaves (see [Mo], the proof of Theorem 1), which is what we want to prove.

In this paper we prove the boundedness of semistable sheaves and
Bogomolov’s inequality in positive characteristic. Moreover, we prove effec-
tive restriction theorems. Our methods also give new proofs of these results in
characteristic zero.

Our approach to these problems is through a theorem combining the
Grauert-Mülich type theorem and Bogomolov’s inequality at the same time.
To explain the basic idea let us state a special case of our Theorems 3.1 and
3.2. We say that E is strongly semistable if either char k = 0 or char k > 0
and all the Frobenius pull backs of E are semistable.

Theorem 0.1. Assume that n ≥ 2. Let E be a strongly semistable tor-
sion-free sheaf. Let µi (ri) denote slopes (respectively : ranks) of the Harder -
Narasimhan filtration of the restriction of E to a general divisor D ∈ |H|.
Then ∑

i<j

rirj(µi − µj)2 ≤ Hn · ∆(E)Hn−2.

In particular, ∆(E)Hn−2 ≥ 0.
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Let us note that theorems of this type do not immediately give even
the usual Mumford-Mehta-Ramanathan theorem. However, together with
Kleiman’s criterion, this theorem gives the boundedness of semistable sheaves
on surfaces. Later we will prove a much stronger theorem (see Section 3) im-
plying the boundedness of all semistable pure sheaves with bounded slopes
and fixed Hilbert polynomial in all dimensions and in any characteristic (see
Theorem 4.1). In fact, we prove a stronger statement of boundedness in mixed
characteristic, which was conjectured by Maruyama (see [Ma1, Question 7.18],
[Ma2, Conj. 2.11]). Then a standard technique (see [HL, Ch. 4]; see also [Ma3])
implies the following corollary.

Theorem 0.2. Let R be a universally Japanese ring. Let f : X → S be a
projective morphism of R-schemes of finite type with geometrically connected
fibers and let OX(1) be an f -ample line bundle. Then for a fixed polynomial
P there exists a projective S-scheme MX/S(P ) of finite type over S, which
uniformly corepresents the functor

MX/S(P ) : {schemes over S}o → {sets}

defined by

(MX/S(P ))(T ) =


S-equivalence classes of families of pure semistable

sheaves on the fibres of T ×S X → T which are

flat over T and have Hilbert polynomial P

 .

Moreover, there is an open scheme M s
X/S(P ) ⊂ MX/S(P ) that universally

corepresents the subfunctor of families of geometrically stable sheaves.

Universally Japanese rings are also called Nagata rings. In the above
theorem semistability is defined by means of the Hilbert polynomial. Apart
from that exception semistability in this paper is always defined using the
slope.

Let us also remark that quotients of semistable points in mixed charac-
teristic are uniform categorical and universally closed but not necessarily uni-
versal. Therefore the moduli space MX/S(P ) does not in general universally
corepresent MX/S(P ) (but it does in characteristic 0). However, M s

X/S(P )
universally corepresents the corresponding subfunctor, because in this case the
corresponding quotient is in fact a PGL(m)-principal bundle in fppf topology
(but not in étale topology; see [Ma1, Cor. 6.4.1]).

As a final application of our theorems we give a new effective restriction
theorem, which works in all characteristics (see Section 5). In characteristic
zero our result is a stronger version of Bogomolov’s restriction theorem (see
[HL, Th. 7.3.5]). It has immediate applications to the study of moduli spaces
of Gieseker semistable sheaves.



254 ADRIAN LANGER

The paper is organized as follows. In Section 1 we recall some basic facts
and prove some useful inequalities. In Section 2 we explain that Frobenius pull
backs of semistable sheaves are semistable (although the notion of semistability
has to be altered) and we use it to explain some basic properties of the Harder-
Narasimhan filtrations in positive characteristic. Section 3 is the heart of the
paper and it contains formulations and proofs of our restriction theorem and a
few versions of Bogomolov’s inequality. We prove our theorems by induction on
the rank of a sheaf. In Section 4 we use these results to prove the boundedness
of semistable sheaves. In Section 5 we prove effective restriction theorems in
all characteristics. In Section 6 we further study semistable sheaves in positive
characteristic.

Notation used in this paper is consistent with that in the literature. For
basic notions, facts and history of the problems we refer the reader to the
excellent book [HL] by Huybrechts and Lehn.

1. Preliminaries

Let X be a normal projective variety of dimension n and let OX(1) be a
very ample line bundle. Let [x]+ = max(0, x) for any real number x. If E is
a torsion-free sheaf then µmax(E) denotes the maximal slope in the Harder-
Narasimhan filtration of E (counted with respect to the natural polarization).

Theorem 1.1 (Kleiman’s criterion; see [HL, Th. 1.7.8]). Let {Et} be a
family of coherent sheaves on X with the same Hilbert polynomial P . Then the
family is bounded if and only if there are constants Ci, i = 0, . . . ,deg P , such
that for every Et there exists an Et-regular sequence of hyperplane sections
H1, . . . , Hdeg P , such that h0(Et|⋂

j≤i Hj
) ≤ Ci.

Lemma 1.2 (see [HL, Lemma 3.3.2]). Let E be a torsion-free sheaf of
rank r. Then for any E-regular sequence of hyperplane sections H1, . . . , Hn

the following inequality holds for i = 1, . . . , n:

h0(Xi, E|Xi
)

r deg(X)
≤ 1

i!

[
µmax(E|X1)

deg(X)
+ i

]i

+

,

where Xi ∈ |H1| ∩ · · · ∩ |Hn−i|.

Lemma 1.3. Let ri be positive real numbers and µi any real numbers for
i = 1, . . . , m. Set r =

∑
ri. Then∑

i<j

rirj(µi − µj)2 ≥ r1rm

r1 + rm
r(µ1 − µm)2.
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Proof. For m = 1, 2 the inequality is easy to check. For m = 3 the required
inequality is equivalent to

r1(µ1 − µ2)2 + r3(µ2 − µ3)2 ≥ r1r3

r1 + r3
(µ1 − µ3)2.

If we set a = µ1 − µ2 and b = µ2 − µ3 then this is equivalent to(
1
r1

+
1
r3

)
(r1a

2 + r3b
2) ≥ (a + b)2.

But this inequality follows from

r1

r3
a2 +

r3

r1
b2 ≥ 2

√
r1

r3
a2 · r3

r1
b2 = 2|ab|.

This proves the lemma for m = 3.
Now assume that m ≥ 3. Set r′1 = r1, r′2 =

∑m−1
i=2 ri, r′3 = rm, µ′

1 = µ1,
µ′

2 =
∑m−1

i=2 riµi/(
∑m−1

i=2 ri) and µ′
3 = µm. Then using the inequality for m = 3

we get∑
i<j

rirj(µi − µj)2 = r(
∑

riµ
2
i ) − (

∑
riµi)2 ≥ r(

∑
r′i(µ

′
i)

2) − (
∑

r′iµ
′
i)

2

=
∑
i<j

r′ir
′
j(µ

′
i − µ′

j)
2 ≥ r′1r

′
3

r′1 + r′3
r(µ′

1 − µ′
3)

2

=
r1rm

r1 + rm
r(µ1 − µm)2.

Lemma 1.4. Let ri be positive real numbers and µ1 > µ2 > · · · > µm real
numbers. Set r =

∑
ri and rµ =

∑
riµi. Then∑

i<j

rirj(µi − µj)2 ≤ r2(µ1 − µ)(µ − µm).

Proof. Note that

∑
i<j

rirj(µi − µj)2 = r

m−1∑
i=1

∑
j≤i

rj(µj − µ)

 (µi − µi+1)

 .

Using
∑

j≤i rjµj ≤ (
∑

j≤i rj)µ1 and simplifying we obtain the required in-
equality.

Let pi = (xi, yi), i = 0, 1, . . . , l, be some points in the plane and assume
that x0 < x1 < · · · < xl. Let us set ri = xi − xi−1 and µi = (yi − yi−1)/ri, and
assume that µ1 ≥ µ2 ≥ · · · ≥ µl. Let P be the polygon obtained by joining pi

to pi+1 for i = 0, . . . , l − 1 and pl to p0. By assumption, P is the convex hull
conv(p0, . . . , pl) of points p0, . . . , pl.
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Lemma 1.5. Let P and P ′ be two such convex polygons (possibly degen-
erated) and assume that they have the same beginning and end points (i.e.,
p0 = p′0 and pl = p′l′). If P ′ is contained in P then∑

riµ
2
i ≥

∑
r′i(µ

′
i)

2.

Proof. We prove the lemma by induction on l′.
If l′ = 1 then the inequality follows from∑

riµ
2
i ≥ (

∑
riµi)2∑

ri
.

Assume that l′ = k ≥ 2 and the lemma holds for all pairs of polygons
with l′ < k. In this case for each nonnegative number α let us set p′0(α) = p′0,
p′i(α) = (x′

i, y
′
i +α) for i = 1, . . . , l′−1 and p′l(α) = p′l. Then the corresponding

sequence µ′
i(α) is still decreasing. Consider the largest nonnegative α such that

the polygon P ′′ = conv(p′0(α), . . . , p′l′(α)) is still contained in P . Then there
exists a vertex p′j(α), j �= 0, l′, which lies on the (upper) boundary of P .

Now let us note that∑
r′i(µ

′
i(α))2 = r′1

(
µ′

1 +
α

r′1

)2

+ r′2(µ
′
2)

2 + · · ·

· · · + r′l′−1(µ
′
l′−1)

2 + r′l′

(
µ′

l′ −
α

r′l′

)2

≥
∑

r′i(µ
′
i)

2

because µ′
1 ≥ µ′

l′ . Therefore the inequality for the pair P and P ′′ is stronger
than the one for P and P ′. But the inequality for P and P ′′ follows (by
summing) from the inequalities for two pairs of smaller polygons, which hold
by the induction assumption.

2. Semistability of Frobenius pull backs

In this section we assume that X is a smooth n-dimensional projective
variety defined over an algebraically closed field k of characteristic p > 0.

Let X(i) = X×Spec k Spec k, where the product is taken over the ith power
of an absolute Frobenius map on Spec k. Then the factorization of the absolute
Frobenius morphism F : X → X gives the geometric Frobenius morphism
Fg : X → X(1).

If E is a coherent sheaf on X and ∇ : E → E ⊗ ΩX is an integrable
k-connection then one can define its p-curvature ψ : Derk(X) → EndX(E) by
ψ(D) = (∇(D))p − ∇(Dp) (note that ψ is not an OX -homomorphism, but it
is p-linear).
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If E is a coherent sheaf on X(1) then one can construct a canonical con-
nection ∇can on F ∗

g E (by using the usual differentiation in tangent directions).
Now let us recall Cartier’s theorem (see, e.g., [Ka, Th. 5.1]).

Theorem 2.1 (Cartier). There is an equivalence of categories between
the category of quasi -coherent sheaves on X(1) and the category of quasi -
coherent OX -modules with integrable k-connections, whose p-curvature is zero.
This equivalence is given by E → (F ∗

g E,∇can) and (G,∇) → ker∇.

Gieseker [Gi] gave examples of semistable bundles whose Frobenius pull
backs are no longer semistable. However, Theorem 2.1 allows for inseparable
descent and it allows us to explain the behaviour of semistable sheaves under
Frobenius pull-backs.

Let us recall that a coherent OX -sheaf E with a W -valued operator η :
E → E ⊗W is called η-semistable if the inequality on slopes is satisfied for all
nonzero subsheaves of E preserved by η.

Proposition 2.2. A coherent sheaf E on X(1) is semistable with respect
to H if and only if the sheaf F ∗

g E is ∇can-semistable with respect to F ∗
g H.

Lemma 2.3. Let E be a torsion-free sheaf with a k-connection ∇. Assume
that E is ∇-semistable and let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E be the usual
Harder -Narasimhan filtration. Then the induced maps Ei → (E/Ei)⊗ΩX are
OX-homomorphisms and they are nonzero for i = 1, . . . , m − 1.

Lemma 2.3 together with Proposition 2.2 lead to the following lemma
proved by N. Shepherd-Barron (and many others).

Corollary 2.4 (see [SB2, Prop. 1]). Let E be a semistable torsion-free
sheaf such that F ∗E is unstable. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = F ∗E
be the Harder -Narasimhan filtration. Then the OX -homomorphisms Ei →
(E/Ei) ⊗ ΩX induced by ∇can are nontrivial.

Note that Shepherd-Barron’s proof is much less elementary and it uses
Ekedahl’s results on quotients by foliations in positive characteristic.

Let us fix a collection of nef divisors D1, . . . , Dn−1. The maximal
(minimal) slope in the Harder-Narasimhan filtration of E (with respect to
(D1, . . . , Dn−1)) is denoted by µmax(E) (µmin(E), respectively). Since it will
usually be clear which polarizations are used, we suppress D1, . . . , Dn−1 in the
notation.

Set

Lmax(E) = lim
k→∞

µmax((F k)∗E)
pk
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and

Lmin(E) = lim
k→∞

µmin((F k)∗E)
pk

.

Note that the sequence µmax((F k)∗E)
pk (µmin((F k)∗E)

pk ) is weakly increasing (respec-
tively: decreasing), so its limit exists (though we do not yet know if it is finite).
Moreover, Lmax(E) ≥ µmax(E) and Lmin(E) ≤ µmin(E). Let us also remark
that if E is semistable then Lmax(E) = µ(E) (or Lmin(E) = µ(E)) if and only
if E is strongly semistable.

Let us also set

α(E) = max(Lmax(E) − µmax(E), µmin(E) − Lmin(E)).

Corollary 2.5. Let A be a nef divisor such that TX(A) is globally gen-
erated. Then for any torsion-free sheaf E of rank r

α(E) ≤ r − 1
p − 1

AD1 . . . Dn−1.

Proof. First we prove that if E is semistable then µmax(F ∗E)−µmin(F ∗E)
≤ (r − 1)AD1 . . . Dn−1 (cf. [SB2, Cor. 2]). To prove this take the Harder-
Narasimhan filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = F ∗E. By Corollary 2.4
µmin(Ei) ≤ µmax((F ∗E/Ei)⊗ΩX). By assumption ΩX embeds into a direct sum
of copies of OX(A), so that µmax((F ∗E/Ei)⊗ΩX) ≤ µmax((F ∗E/Ei)⊗OX(A)).
Summing inequalities µ(Ei/Ei−1) ≤ µ(Ei+1/Ei) + AD1 . . . Dn−1 yields the
required inequality.

Now we get µmax((F k)∗E)
pk ≤ µmax + r−1

p−1AD1 . . . Dn−1 by simple induction.
Passing to the limit yields the required inequality for Lmax(E) − µmax(E).
Similarly one can show that the corresponding inequality holds for µmin(E) −
Lmin(E).

In Section 6 we prove a much stronger version of Corollary 2.5 (see Corol-
lary 6.2).

2.6. Let E be a torsion-free sheaf. We say that E has an fdHN property
(“finite determinacy of the Harder-Narasimhan filtration”) if there exists k0

such that all quotients in the Harder-Narasimhan filtration of (F k0)∗E are
strongly semistable.

If E has an fdHN property (we say that “E is fdHN” for short) and E• is
the Harder-Narasimhan filtration of (F k)∗E for some k ≥ k0, then F ∗(E•) is
the Harder-Narasimhan filtration of (F k+1)∗E.

Let E be a torsion-free sheaf and let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E be the
Harder-Narasimhan filtration of E. To any sheaf G we may associate the point
p(G) = (rkG, deg G) in the plane. Now consider the points p(E0), . . . , p(Em)
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and connect them successively by line segments connecting the last point with
the first one. The resulting polygon HNP(E) is called the Harder-Narasimhan

polygon of E (see [Sh]).
Let us recall that HNP(E) lies above the corresponding polygon obtained

from any other filtration of E with torsion free quotients (see, e.g., [Sh, Th. 2]).
If char k = p then we may associate to E a sequence of polygons HNPk(E),

where HNPk(E) is defined by contracting HNP((F k)∗E) along the degree axis
by the factor 1/pk. By the above remark the polygon HNPk(E) is contained
in HNPk+1(E). Moreover, all these polygons are bounded, by Corollary 2.5.
Therefore there exists the limit polygon HNP∞(E). Using it one can define
µi∞(E) and ri∞(E) in the obvious way.

Note that E is fdHN if and only if there exists k0 such that HNPk0(E) =
HNP∞(E).

Theorem 2.7. Every torsion-free sheaf is fdHN.

Proof. The proof is by induction on rank. For rank 1 the assertion is
obvious. Assume that the theorem holds for every sheaf of rank less than r

and let E be a rank r sheaf. Let 0 = p0∞, p1∞, . . . , p(l−1)∞, pl∞ = (r, deg E) be
the vertices of HNP∞(E). Let 0 = E0k ⊂ E1k ⊂ · · · ⊂ Elkk = (F k)∗E be the
Harder-Narasimhan filtration of (F k)∗E and let pik denote the corresponding
vertices of HNPk(E). For every j = 0, . . . , l there exists a sequence {pijk}
which tends to pj∞.

Claim 2.7.1. There exists k0 such that Ei1k = (F k−k0)∗Ei1k0 for all
k ≥ k0.

Proof. First let us note that for every ε > 0 there exists k(ε) such that
||pijk−pj∞|| < ε for k ≥ k(ε). If we take ε < 1 then rkEi1k = r1∞ for k ≥ k(ε).

Let us take k ≥ k(ε) and consider HNP∞(Ei1k). If the first line segment
s of HNP∞(Ei1k) lies on the line segment p0∞p1∞ then by the induction as-
sumption there exists l and a subsheaf G of (F l)∗Ei1k ⊂ (F k+l)∗E such that
the point p(G) lies on p0∞p1∞. Then E is fdHN since (F k+l)∗E/G is fdHN by
the induction assumption.

Therefore we can assume that the segment s lies below p0∞p1∞. In par-
ticular there exists l such that the line segment p0∞pi1(k+l) lies above s. Then
there exists j > i1 such that

µmax((F l)∗(Ejk/E(j−1)k)) > µmax((F l)∗Ei1k).

Otherwise, µmax((F k+l)∗E) ≤ µmax((F l)∗Ei1k), a contradiction.
There also exists a saturated subsheaf G ⊂ (F l)∗Ejk containing

(F l)∗E(j−1)k such that

µ(G/(F l)∗E(j−1)k) = µmax((F l)∗(Ejk/E(j−1)k)).
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Consider the point p(G) = (rkG, deg G
pk+1 ). Then HNPk+l(E) contains the small-

est convex polygon W containing HNPk(E) and p(G). Here we again use the
fact that any polygon whose vertices are saturated subsheaves of a fixed sheaf
lies below the Harder-Narasimhan polygon.

But the difference of areas of W and HNPk(E) is at least

1
2

(
µ(G/(F l)∗E(j−1)k)

pk+l
−

µ((F l)∗(Ejk/E(j−1)k)
pk+l

)
>

1
2

(
µ(Ei1k)

pk
− µ(Ejk)

pk

)
≥ 1

2
(µ1∞ − µ2∞ − 3ε).

On the other hand, the difference of areas of HNP∞(E) and HNPk(E) is at
most rε. So for sufficiently small ε we get a contradiction.

It is easy to make the above procedure more efficient.
By the claim, pi1k = p1∞ for k ≥ k0 and hence Ei1k0 is strongly semistable

(since p1∞ is the first nonzero vertex of HNP∞(E) and HNPk0(E) is convex).
Since (F k0)∗E/Ei1k0 is fdHN by the induction assumption, the sheaf E is also
fdHN.

3. Restriction to hypersurfaces and Bogomolov’s inequality

Notation. Let k be an algebraically closed field of any characteristic.
Let X be a smooth projective variety of dimension n ≥ 2 over k and let
D1, . . . , Dn−1 be nef divisors on X such that the 1-cycle D1 . . . Dn−1 is numer-
ically nontrivial. Set d = D2

1D2 . . . Dn−1 ≥ 0.
Let E be a rank r torsion-free sheaf on X. Set ∆(E) = 2rc2(E) −

(r − 1)c1(E)2, µ = µ(E), µmin = µmin(E) and µmax = µmax(E). For simplicity
we usually ignore the dependence of slopes on the collection (D1, . . . , Dn−1).

In the following, F always denotes the absolute Frobenius morphism or
identity if the characteristic is zero. If char k = p > 0 then we already defined
Lmax(E) and Lmin(E) in Section 2. If char k = 0 then we set Lmax(E) =
µmax(E) and Lmin(E) = µmin(E).

Corollary 2.5 and Theorem 2.7 imply that Lmax(E) and Lmin(E) are well
defined rational numbers. For simplicity, we set Lmax = Lmax(E) and Lmin =
Lmin(E).

For any pair G, G′ of nontrivial torsion free sheaves we set

ξG′,G =
c1(G′)
rkG′ − c1(G)

rkG
.
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Now choose a nef divisor A on X such that TX(A) is globally generated.
Then we set

βr(A;D1, . . . , Dn−1) =


0 if char k = 0,(

r(r − 1)
p − 1

AD1 . . . Dn−1

)2

if char k = p.

To simplify notation, we usually write βr = βr(A;D1, . . . , Dn−1).
Let Num(X) = Pic(X)⊗R/ ∼, where ∼ is an equivalence relation defined

by L1 ∼ L2 if and only if L1AD2 . . . Dn−1 = L2AD2 . . . Dn−1 for all divisors
A. Then we define an open cone

K+ = {D ∈ Num(X) : D2D2 . . . Dn−1 > 0

and DD1 . . . Dn−1 ≥ 0 for all nef D1}.

As in the surface case, by the Hodge index theorem, this cone is “self-dual” in
the following sense:

D ∈ K+ if and only if DLD2 . . . Dn−1 > 0 for all L ∈ K+ − {0}.

Theorem 3.1. Assume that D1 is very ample and the restriction of E

to a general divisor D ∈ |D1| is not µ-semistable (with respect to (D2|D, . . . ,

Dn−1|D)). Let µi (ri) denote slopes (respectively : ranks) of the Harder -
Narasimhan filtration of E|D. Then

(3.1.1)
∑
i<j

rirj(µi − µj)2 ≤ d∆(E)D2 . . . Dn−1 + 2r2(Lmax − µ)(µ − Lmin).

The inequality in Theorem 3.1 is sharp for unstable sheaves. Equality
holds, e.g., for OPn(k) ⊕OPn(−k). For semistable sheaves of rank 2 it can be
slightly improved (see (3.10.1)).

The following theorems generalize Bogomolov’s instability theorem.

Theorem 3.2. Let E be a strongly (D1, . . . , Dn−1)-semistable torsion-free
sheaf. Then

∆(E)D2 . . . Dn−1 ≥ 0.

Theorem 3.3. If E is (D1, . . . , Dn−1)-semistable then

(3.3.1) D2
1D2 . . . Dn−1 · ∆(E)D2 . . . Dn−1 + βr ≥ 0.

Theorem 3.4. If D2
1D2 . . . Dn−1 · ∆(E)D2 . . . Dn−1 + βr < 0 then there

exists a saturated subsheaf E′ ⊂ E such that ξE′,E ∈ K+.
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Strategy of the proof. Let T i(r), i = 1, . . . , 4 denote the statement: Theo-
rem 3.i holds for all sheaves of rank ≤ r on any smooth variety. Let T 5(r) de-
note the statement: Theorem 3.2 holds if D1, . . . , Dn−1 are ample and rkE ≤ r.

We will prove that T 1(r) implies T 5(r), T 5(r) implies T 3(r), T 3(r) implies
T 4(r), T 4(r) implies T 2(r) and finally T 2(r) implies T 1(r + 1). Since T 1(1) is
trivial this will prove all the theorems at the same time by simple induction.

Proofs.

3.5. T 1(r) implies T 5(r).

Let us assume that D1, . . . , Dn−1 are very ample, E is strongly semistable
and ∆(E)D2 . . . Dn−1 < 0. Then Lmax = Lmin = µ and T 1(r) implies that the
restriction of E to D1 is semistable. Since (F k)∗E is also strongly semistable
the restriction of (F k)∗E to a general element of |D1| is also semistable. There-
fore the restriction of E to a very general element of |D1| is strongly semistable.
By induction, the restriction of (F l)∗E to a very general complete intersection
Xi = |D1| ∩ · · · ∩ |Di| is strongly semistable for i = 1, . . . , n − 1.

Now without loss of generality we can assume that X is a surface, E

is locally free (because ∆(E∗∗) ≤ ∆(E) and E∗∗ is locally free on a smooth
surface) and the restriction of E to a very general curve C ∈ |D1| is strongly
semistable. Then T 5(r) follows from Bogomolov’s inequality if char k = 0 and
from [Mo, Th. 1] if char k = p. However, we prefer to give a different proof,
which does not depend on the characteristic of the base field. We use the
method of Y. Miyaoka in [Mi].

On a curve, bundles associated to representations of a strongly semistable
bundle are strongly semistable (see [Mi, §§5 and 6]). Therefore SkrE|C is
strongly semistable. The standard short exact sequence

0 → SkrE(−kc1E) ⊗OX(−H1)−→SkrE(−kc1E)−→SkrE(−kc1E)|C → 0

gives

h0(SkrE(−kc1E)) ≤ h0(SkrE(−kc1E − H1)) + h0(SkrE(−kc1E)|C)

= h0(SkrE(−kc1E)|C),

where the last equality follows from the strong semistability of SkrE with
respect to D1. Recall that h0(G) ≤ [deg G + rkG]+ for any semistable vector
bundle G over a curve. Hence h0(SkrE(−kc1E)) = O(kr). Similarly, by Serre
duality h2(SkrE(−kc1E)) = h0((SkrE(−kc1E))∗ ⊗ ωX) = O(kr).

On the other hand, the Riemann-Roch theorem gives

χ(X, SkrE(−kc1E)) = − rr∆(E)
2(r + 1)!

kr+1 + O(kr),

and we get a contradiction.
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3.6. T 5(r) implies T 3(r).

First we need to prove the following:

Claim. If D1, . . . , Dn−1 are ample then

(3.6.1) D2
1D2 . . . Dn−1 · ∆(E)D2 . . . Dn−1 + r2(Lmax − µ)(µ − Lmin) ≥ 0.

Proof. By Theorem 2.7 there exists k such that all the quotients in the
Harder-Narasimhan filtration of (F k)∗E are strongly semistable. Let 0 = E0 ⊂
E1 ⊂ · · · ⊂ Em = (F k)∗E be the corresponding Harder-Narasimhan filtration.
Set Fi = Ei/Ei−1, ri = rkFi, µi = µ(Fi). Then by the Hodge index theorem

∆((F k)∗E)D2 . . . Dn−1

r
=

∑ ∆(Fi)D2 . . . Dn−1

ri

− 1
r

∑
i<j

rirj

(
c1Fi

ri
− c1Fj

rj

)2

D2 . . . Dn−1

≥
∑ ∆(Fi)D2 . . . Dn−1

ri
− 1

rd

∑
i<j

rirj(µi − µj)2.

By T 5(r)
∆(Fi)D2 . . . Dn−1 ≥ 0,

and so combining the above inequality with Lemma 1.4, we get

d∆((F k)∗E)D2 . . . Dn−1

r

≥ −r(µmax((F k)∗E) − µ((F k)∗E))(µ((F k)∗E)) − µmin((F k)∗E))).

Division by p2k yields the required inequality (we do not need to pass with k

to infinity since we used Theorem 2.7).

Now assume that E is (D1, . . . , Dn−1)-semistable. Let us fix an ample
divisor H and set Hi(t) = Di + tH. Then the Harder-Narasimhan filtration of
E with respect to (H1(t), . . . , Hn−1(t)) is independent of t for small positive t.

To prove it let us consider the set S of slopes of all subsheaves of E

considered as polynomials in t. The coefficients of these polynomials are the
slopes of subsheaves of E with respect to some polarizations depending only
on D1, . . . , Dn−1 and H. Therefore they are bounded from the above (by some
constant C) and there exists the maximal polynomial W1 in S with respect to
the lexicographic order on coefficients. Take any other polynomial W2 ∈ S and
write W1(t) = a0 + a1t + · · ·+ an−1t

n−1, W2(t) = b0 + b1t + · · ·+ bn−1t
n−1. By

the choice of W1 there exists i such that aj = bj for j < i and ai > bi. Then
ai ≥ bi + 1

r and

W1(t) − W2(t) =
∑
j≥i

(aj − bj)tj ≥ ti(ai − bi + t
∑

j≥i+1

(aj − C)tj−i−1)
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for any positive t. Set Mi = | inft∈[0,1](
∑

j≥i+1(aj − C)tj−i−1)| and M =
maxiMi. Then

W1(t) − W2(t) ≥ ti
(

1
r
− tMi

)
for t ∈ (0, 1). In particular, if t ∈ (0, 1

Mr ) then W1(t) > W2(t) (note that
1

Mr ≤ 1). Therefore the sheaf of maximal rank among the sheaves correspond-
ing to W1 is the maximal (H1(t), . . . , Hn−1(t))-destabilizing subsheaf of E for
all t ∈ (0, 1

Mr ).
Now we can proceed by induction to prove the corresponding statement

for the Harder-Narasimhan filtration.
Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Em = E be the corresponding filtration. Since

E is (D1, . . . , Dn−1)-semistable, we have

µD1,...,Dn−1(E)≥µD1,...,Dn−1(E1) = lim
t→0

µH1(t),...,Hn−1(t)(E1)

≥ lim
t→0

µH1(t),...,Hn−1(t)(E) = µD1,...,Dn−1(E).

Therefore

lim
t→0

µmax,H1(t),...,Hn−1(t)(E) = lim
t→0

µH1(t),...,Hn−1(t)(E1) = µD1,...,Dn−1(E).

Similarly,
lim
t→0

µmin,H1(t),...,Hn−1(t)(E) = µD1,...,Dn−1(E).

Applying inequality (3.6.1) and Corollary 2.5 to (H1(t), . . . , Hn−1(t)) and pass-
ing with t to 0 yields the required inequality (3.3.1).

3.7. T 3(r) implies T 4(r).

By T 3(r) E is not (D1, . . . , Dn−1)-semistable. Let E′ be the maximal
destabilizing subsheaf of E (with respect to (D1, . . . , Dn−1)). Set E′′ = E/E′,
r′ = rkE′, r′′ = rkE′′. Note that

∆(E)D2 . . . Dn−1

r
+

rr′

r′′
ξ2
E′,ED2 . . . Dn−1

=
∆(E′)D2 . . . Dn−1

r′
+

∆(E′′)D2 . . . Dn−1

r′′

and
βr

r
≥ βr′

r′
+

βr′′

r′′
.

Therefore either ξ2
E′,ED2 . . . Dn−1 > 0 or one of the numbers d∆(E′)D2 . . .

Dn−1 + βr′ and d∆(E′′)D2 . . . Dn−1 + βr′′ is negative. Then we proceed by
induction as in Bogomolov’s proof of the same theorem in characteristic 0 (see
the proof of Theorem 7.3.3, [HL]).
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3.8. T 4(r) implies T 2(r).

Assume that ∆(E)D2 . . . Dn−1 < 0 and choose a nef (or ample) divisor
H1 such that H2

1D2 . . . Dn−1 > 0. Let us try to apply T 4(r) to (F l)∗E. The
inequality

H2
1D2 . . . Dn−1 · ∆((F l)∗E)D2 . . . Dn−1 + βr < 0

is equivalent to

l >
1
2

logp

(
− βr

H2
1D2 . . . Dn−1 ∆(E)D2 . . . Dn−1

)
.

So for large l there exists a saturated torsion free subsheaf E′ of (F l)∗E
such that ξE′,(F l)∗E ∈ K+. By the ”self-duality” of K+ mentioned before
Theorem 3.1, ξE′,(F l)∗ED1 . . . Dn−1 > 0. Hence the sheaf E is not strongly
(D1, . . . , Dn−1)-semistable.

3.9. T 2(r − 1) implies T 1(r).

Let Π denote the complete linear system |D1|. Let Z = {(D, x) ∈ Π×X :
x ∈ D} be the incidence variety with projections p : Z → Π and q : Z → X.
Let Zs denote the scheme theoretic fibre of p over the point s ∈ Π. Let
0 ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Em = q∗E be the relative Harder-Narasimhan filtration
with respect to p. By definition this means that there exists a nonempty open
subset U of Π such that all factors Fi = Ei/Ei−1 are flat over U and such
that for every s ∈ U the fibres (E•)s form the Harder-Narasimhan filtration of
Es = q∗E|Zs

.
Usually, the relative Harder-Narasimhan filtration is defined only with

respect to one p-ample divisor but it is obvious that one can define it with
respect to the collection of divisors if D2, . . . , Dn−1 are ample (this case is
already sufficient to prove our theorems). The usual construction fails for
the collection of nef divisors but in this case we can use the same trick as in
3.6. Namely, the relative Harder-Narasimhan filtration of q∗E with respect
to p and the collection (q∗H2(t), . . . q∗Hn−1(t)) is independent of t for small
positive t. Then grouping the quotients with the same slope with respect to
(q∗D2, . . . , q

∗Dn−1) (on the fibres of p), we get the required filtration.
One can easily see that this relative Harder-Narasimhan filtration is the

Harder-Narasimhan filtration of q∗E with respect to

(p∗OΠ(1))dimΠq∗(D2 . . . Dn−1).

Indeed, for any sheaf G the slope of G|Zs
on a general fibre Zs of p is equal

to the slope of G with respect to (p∗OΠ(1))dim Πq∗(D2 . . . Dn−1). Since by the
construction the restriction Fi|Zs

is semistable for s ∈ U , the sheaves Fi are
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semistable with respect to (p∗OΠ(1))dimΠq∗(D2 . . . Dn−1). Now the required
assertion follows from the fact that the corresponding sequence of slopes is
strictly decreasing.

By Theorem 2.7 applied to q∗E with respect to

(p∗OΠ(1))dim Πq∗(D2 . . . Dn−1)

there exists k such that all the quotients in the Harder-Narasimhan filtration
of (F k)∗(q∗E) = q∗((F k)∗E) are strongly semistable.

By Lemma 1.5 the inequality (3.1.1) applied to (F k)∗E implies the in-
equality (3.1.1) for E. Therefore we can assume that all the Fi’s are strongly
semistable with respect to (p∗OΠ(1))dim Πq∗(D2 . . . Dn−1).

Let Λ ⊂ Π be a general pencil. Set Y = p−1(Λ). Then the restriction
q|Y is the blow up of X along the base locus B of Λ. If n ≥ 3 then B is
a smooth, connected variety. Let N be the exceptional divisor of q|Y . Then
there exist integers bi and divisors Mi such that c1(Fi|Y ) = (q|Y )∗Mi + biN . If
n = 2 then B consists of d distinct points. Let N1, . . . , Nd be the exceptional
divisors of q|Y . As above there exist integers bij and divisors Mi such that
c1(Fi|Y ) = (q|Y )∗Mi +

∑
j bijNj . Set bi =

∑
j bij/d. Then

(3.9.1) µi =
c1(Fi|Y )p∗OΛ(1)q∗D2 . . . q∗Dn−1

ri
=

MiD1 . . . Dn−1 + bid

ri
.

On the other hand (q|Y )∗(Ei|Y ) ⊂ E, so that∑
j≤i MjD1 . . . Dn−1∑

j≤i rj
≤ µmax.

Hence

(3.9.2)
∑
j≤i

bjd ≥
∑
j≤i

rj(µj − µmax).

Since (p∗OΠ(1))dim Πq∗(D2 . . . Dn−1) is numerically nontrivial, T 2(r−1) implies
that ∆(Fj)(p∗OΠ(1))dim Π−1q∗(D2 . . . Dn−1) ≥ 0 for every j. Therefore

d∆(E)D2 . . . Dn−1

r

=
∑ d∆(Fi|Y )(q|Y )∗(D2 . . . Dn−1)

ri

−d

r

∑
i<j

rirj

(
c1(Fi|Y )

ri
− c1(Fj |Y )

rj

)2

(q|Y )∗(D2 . . . Dn−1)

≥ d

r

∑
i<j

rirj

(
d

(
bi

ri
− bj

rj

)2

−
(

Mi

ri
− Mj

rj

)2

D2 . . . Dn−1

)

≥ 1
r

∑
i<j

rirj

(
d2

(
bi

ri
− bj

rj

)2

−
(

MiD1 . . . Dn−1

ri
− MjD1 . . . Dn−1

rj

)2
)

,
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where the last inequality follows from the Hodge index theorem. Using (3.9.1)
and simplifying one can see that the last expression in the above inequality is
equal to

2
∑

dbiµi −
1
r

∑
i<j

rirj(µi − µj)2.

By (3.9.2)∑
dbiµi =

∑
i

(
∑
j≤i

dbj)(µi − µi+1) ≥
∑

i

(
∑
j≤i

rj(µj − µmax))(µi − µi+1)

=
∑

riµ
2
i − rµ2 + r(µ − µmax)(µ − µmin)

=
∑
i<j

rirj

r
(µi − µj)2 + r(µ − µmax)(µ − µmin).

Therefore we obtain

d∆(E)D2 . . . Dn−1

r
≥

∑
i<j

rirj

r
(µi − µj)2 + 2r(µ − µmax)(µ − µmin).

Remarks 3.10.

(3.10.1) Let E be a rank 2 vector bundle on a surface. Assume that E is
semistable and the restriction to a general curve C ∈ |D1| is not semistable.
In this situation Ein [Ei] and Noma [No] proved that (µ1 − µ2)2 ≤ d∆(E)/3.
From our proof one can immediately get a slightly worse inequality (µ1−µ2)2 ≤
d∆(E)D2 . . . Dn−1 for n-dimensional variety. In this case it is also possible to
improve slightly our method to get (µ1 − µ2)2 ≤ d∆(E)D2 . . . Dn−1/3.

(3.10.2) If ∆(E)D2 . . . Dn−1 = 0 then by Theorem 3.1 the restriction of a
strongly semistable sheaf to a very general complete intersection in |D1| ∩ · · ·
∩ |Di| is strongly semistable for i = 1, . . . , n − 1. In the surface case this was
also proved by Moriwaki (see [Mo, Cor. C.3]). This fact is interesting since
semistable vector bundles with vanishing Chern classes play an important role
in understanding algebraic varieties. In characteristic zero they correspond to
flat bundles.

It is not clear if there exists a restriction theorem for strongly semistable
sheaves if ∆(E)D2 . . . Dn−1 > 0.

(3.10.3) There are several papers by N. Shepherd-Barron, A. Moriwaki
and T. Nakashima exploring rank 2 and 3 vector bundles. (These ranks are
always very special in proofs of the Bogomolov type inequalities.) They prove
slightly more precise versions of Bogomolov’s inequality in this case and use
it to prove vanishing theorems and Reider-type theorems on adjoint linear
systems in positive characteristic. Some of these results were proved earlier by
T. Ekedahl, who used different methods.
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Theorem 3.2 was conjectured by A. Moriwaki in [Mo] and proved in the
surface case (using boundedness of semistable sheaves on surfaces). A special
case of Theorem 3.4 (see 3.8) was proved in the surface case by G. Megyesi
[Me], who used Moriwaki’s result. The statement in 3.8 was also conjectured in
the higher dimensional case. The papers [Mo] and [Me] were preceded by the
paper [SB1] of N. Shepherd-Barron, who proved analogous results for rank 2
vector bundles on surfaces.

(3.10.4) Bogomolov proved his instability theorem only for surfaces in
characteristic zero. The higher dimensional case can then be reduced to the sur-
face case by the Mumford-Mehta-Ramanathan restriction theorem (see [Mi]).
This reduction is no longer possible in positive characteristic.

Theorems 3.1, 3.2 and Lemma 1.3 imply the following corollary.

Corollary 3.11. Assume that D1 is very ample. Let D be a very general
divisor in |D1|. Then

r

2
(Lmax(E|D)−Lmin(E|D))2 ≤ d∆(E)D2 . . . Dn−1 + 2r2(Lmax − µ)(µ−Lmin).

As in characteristic zero one can see that Theorem 3.4 implies the follow-
ing stronger theorem (which in characteristic zero is due to Bogomolov; see
Theorem 7.3.4, [HL]).

Theorem 3.12. If

∆(E)D2 . . . Dn−1

+ inf
{

βr(A;D, D2, . . . Dn−1)
D2D2 . . . Dn−1

: D is nef and D2D2 . . . Dn−1 > 0
}

< 0

then there exists a saturated subsheaf E′ ⊂ E such that ξE′,E ∈ K+ and

ξ2
E′,ED2 . . . Dn−1 ≥ −∆(E)D2 . . . Dn−1

r2(r − 1)
.

Note that in the statement of the above theorem we do not use D1.

4. Boundedness of pure sheaves

Let H1, . . . , Hn−1 be very ample divisors and let A be a nef divisor such
that TXl

(A) is globally generated for a very general complete intersection Xl

in |H1| ∩ · · · ∩ |Hl| and all 0 ≤ l ≤ n − 2. It is easy to see that one can always
find a divisor A satisfying these assumptions.

Set βr = β(r;A, H1, . . . , Hn−1) and let us recall that [x]+ = max(0, x).
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Theorem 4.1. Let µmax,l (µmin,l) denote the maximal (respectively : min-
imal) slope of the restriction of E to a very general complete intersection in
|H1| ∩ · · · ∩ |Hl|, 1 ≤ l ≤ n − 1. Then

µmax,l−µmin,l ≤
rl/2 − 1
r −√

r

(√
2[d∆(E)H2 . . . Hn−1]+ + 2

√
βr

)
+rl/2(µmax−µmin).

Proof. By Corollary 3.11,

r

2
(Lmax(E|X1) − Lmin(E|X1))

2 ≤ d∆(E)H2 . . . Hn−1

+ 2r2(Lmax − µ)(µ − Lmin)

≤ d∆(E)H2 . . . Hn−1 + 2r2

(
Lmax − Lmin

2

)2

.

Since Lmax(E|X1) − Lmin(E|X1) ≥ µmax,1 − µmin,1 and Lmax − Lmin ≤ µmax −
µmin + 2

√
βr/r (by Corollary 2.5),

µmax,1 − µmin,1 ≤

√
2
r
d∆(E)H2 . . . Hn−1 + 4r

(
1
2
(µmax − µmin) +

√
βr

r

)2

≤
√

2
r
d[∆(E)H2 . . . Hn−1]+ + 2

√
βr

r
+

√
r(µmax − µmin),

where the last inequality follows from
√

a + b2 ≤
√

[a]+ + |b|. The inequality
in Theorem 4.1 is obtained by repetitive use of this inequality. If we pass to
the hyperplane section we may need to change A required in Corollary 3.11,
so we need to use assumptions appearing at the beginning of Section 4.

Theorem 4.2. Let f : X → S be a projective morphism of schemes of
finite type over an algebraically closed field k and let OX(1) be an f -ample line
bundle on X. Fix a degree d polynomial P and a real number µ0. Then the
family of purely d-dimensional sheaves on geometric fibers of f with Hilbert
polynomial P and the maximal slope bounded by µ0 is bounded.

Proof. Boundedness of torsion-free sheaves follows from Theorem 1.1,
Lemma 1.2 and Theorem 4.1. Then the proof given by Simpson in [Si] implies
boundedness for pure sheaves (see [Si], proofs of Theorem 1.1 and Proposi-
tion 3.5). Caution: the proof of this implication given in [HL] does not work
in positive characteristic.

Theorem 4.2 can also be generalized to OX -coherent Λ-sheaves, where Λ
is a sheaf of rings of differential operators (see [Si]). Below we prove a more
refined version of this theorem working in mixed characteristic but without
fixing Hilbert polynomial.
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In the following we will use the following notation. Let Xk be an
n-dimensional projective scheme over an algebraically closed field k and H =
OXk

(1) an ample divisor on Xk. Let E be a torsion-free sheaf of pure dimension
d on Xk. Then there exist integers a0(E), . . . , ad(E) such that

χ(Xk, E(m)) =
d∑

i=0

ai(E)
(

m + d − i

d − i

)
.

Definition 4.3 (Maruyama, [Ma3, Def. 1.6]). Let f : X → S be a projec-
tive morphism of noetherian schemes of relative dimension n and let OX/S(1)
be an f -very ample line bundle on X.

(1) Let SX/S(d; r, a1, . . . , ad, µmax) be the family of the classes of coherent
sheaves on the fibres of f such that E on a geometric fibre Xs is a
member of the family if E is of pure dimension d, µmax(E) ≤ µmax,
a0(E) = r, a1(E) = a1 and ai(E) ≥ ai for i ≥ 2.

(2) Let S ′
X/S(d; r, a1, a2, µmax) be the family of the classes of coherent sheaves

on the fibres of f such that E on a geometric fibre Xs is a member of
the family if E is reflexive of dimension d, µmax(E) ≤ µmax, a0(E) = r,
a1(E) = a1 and a2(E) ≥ a2.

Our definition is equivalent to Maruyama’s definition, but for simplicity
we replaced the condition on the type of E by µmax(E) ≤ µmax. Our Theorem
4.1 allows us to prove Maruyama’s conjecture on boundedness of sheaves in
mixed characteristic.

Theorem 4.4 ([Ma1, Question 7.18] and [Ma2, Conj. 2.11]). The fami-
lies SX/S(d; r, a1, . . . , ad, µmax) and S ′

X/S(d; r, a1, a2, µmax) are bounded.

Proof. Using ideas of C. Simpson and J. Le Potier (see [Si] and [Ma3,
Th. 1.8]) one can reduce to the case of a smooth morphism f and d = n (i.e.,
the sheaves are torsion-free).

We can find a nonnegative integer a such that TX/S⊗OX/S(a) is f -globally
generated. Therefore βr can be uniformly bounded for all geometric fibres of
X (it is crucial that βr not be increasing with characteristic p). The only thing
we need to check is that ∆(E)Hn−2 is bounded from the above for E in our
families. Then we can use Theorem 4.1 to proceed by induction on n (see
[Ma2, Prop. 2.5]).

Let Xs be a geometric fibre of f and set H = OXs
(1). Let E be a

rank r torsion-free sheaf on Xs. Using the Riemann-Roch theorem one can
write ∆(E)Hn−2

2r +a2(E) as a sum of 1
2r (c1E− r

2KX)2Hn−2 and some other terms
depending only on r, c1E · Hn−1 and numerical invariants of (X, H). Using
the Hodge index theorem one can bound ∆(E)Hn−2

2r +a2(E) by a polynomial in
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a1(E), r and numerical invariants of X. Therefore the condition a2(E) ≥ a2

can be replaced by ∆(E)Hn−2 ≤ CX(r, a1, a2) for some function C (which one
can write down explicitly).

This theorem implies that the moduli spaces of semistable sheaves in
mixed characteristic are projective (cf. Theorem 0.2 and [Ma3, Th. 7.6]). An-
other nontrivial corollary says that the number of different Hilbert polynomials
for sheaves in SX/S(d; r, a1, . . . , ad, µmax) and S ′

X/S(d; r, a1, a2, µmax) is finite.
Theorem 4.4 also implies existence of Bogomolov type inequality in mixed
characteristic (cf. [Ma2, Cor. 2.10] and [Mo, Th. 1]).

5. Effective restriction theorems

The notation is as in Section 3. We will need the following strenghtening
of Theorem 3.3, which also works for unstable sheaves.

Theorem 5.1. If E is a torsion-free sheaf then

(5.1.1) D2
1D2 . . . Dn−1 · ∆(E)D2 . . . Dn−1 + r2(Lmax − µ)(µ − Lmin) ≥ 0

and

(5.1.2) D2
1D2 . . . Dn−1 ·∆(E)D2 . . . Dn−1 + r2(µmax − µ)(µ− µmin) + βr ≥ 0.

Proof. (5.1.1) follows from Theorem 3.2 by the same arguments as in the
proof of Claim 3.6. The proof of (5.1.2) is similar. Namely, let 0 = E0 ⊂
E1 ⊂ · · · ⊂ Em = E be the Harder-Narasimhan filtration. Set Fi = Ei/Ei−1,
ri = rkFi, µi = µ(Fi). Then by the Hodge index theorem

∆(E)D2 . . . Dn−1

r
=

∑ ∆(Fi)D2 . . . Dn−1

ri

− 1
r

∑
i<j

rirj

(
c1Fi

ri
− c1Fj

rj

)2

D2 . . . Dn−1

≥
∑ ∆(Fi)D2 . . . Dn−1

ri
− 1

rd

∑
i<j

rirj(µi − µj)2.

By Theorem 3.3

d∆(Fi)D2 . . . Dn−1 ≥ −βri
.

Therefore the required inequality follows from Lemma 1.4 and

βr

r
≥

∑
i

βri

ri
.
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As an application of Theorem 5.1 we get the following effective restriction
theorem.

Theorem 5.2. Let E be a torsion-free sheaf of rank r ≥ 2. Assume that
E is µ-stable with respect to (D1, . . . , Dn−1). Let D ∈ |kD1| be a normal divisor
such that E|D has no torsion. If

k >

⌊
r − 1

r
∆(E)D2 . . . Dn−1 +

1
dr(r − 1)

+
(r − 1)βr

dr

⌋
then E|D is µ-stable with respect to (D2|D, . . . , Dn−1|D).

Proof. Suppose that E|D is not stable and let S be a saturated desta-
bilizing subsheaf of rank ρ. Set T = (E|D)/S. Let G be the kernel of the
composition E → E|D → T . Then we have two short exact sequences:

0 → G−→E −→T → 0

and
0 → E(−D)−→G−→S → 0.

Computing ∆(G) we get

∆(G)D2 . . . Dn−1 = ∆(E)D2 . . . Dn−1 − ρ(r − ρ)D2D2 . . . Dn−1

+ 2(rc1(T ) − (r − ρ)Dc1(E))D2 . . . Dn−1.

By assumption (rc1(T ) − (r − ρ)Dc1(E))D2 . . . Dn−1 ≤ 0, so that

∆(G)D2 . . . Dn−1 ≤ ∆(E)D2 . . . Dn−1 − ρ(r − ρ)D2D2 . . . Dn−1.

Using the stability of E and E(−D) we get

µmax(G)−µ(G) = µmax(G)−µ(E)+
r − ρ

r
DD1 . . . Dn−1 ≤ r − ρ

r
dk− 1

r(r − 1)

and

µ(G) − µmin(G) = µ(E(−C)) − µmin(G) +
ρ

r
DD1 . . . Dn−1 ≤ ρ

r
dk − 1

r(r − 1)
.

Hence, application of (5.1.2) to G gives

−βr ≤ d∆(G) + r2(µmax(G) − µ(G))(µ(G) − µmin(G))

≤ d∆(E) − ρ(r − ρ)d2k2 + r2

(
r − ρ

r
dk − 1

r(r − 1)

) (
ρ

r
dk − 1

r(r − 1)

)
.

Therefore
dr

r − 1
k ≤ d∆(E) +

1
(r − 1)2

+ βr,

which contradicts our assumption on k.
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Remarks 5.3.

(5.3.1) Note that if E is torsion free then the restriction E|D is also tor-
sion free for a general divisor D in a base point-free linear system (see [HL,
Cor. 1.1.14] for a precise statement).

(5.3.2) In characteristic zero if r > 2 or d ≥ 2 it is sufficient to assume that
k > r−1

r ∆(E)D2 . . . Dn−1. If r = 2 and d = 1 then we need to assume that
k > (∆(E)D2 . . . Dn−1 +1)/2. Looking at the proof one can see that Theorem
5.2 can be further improved at the cost of simplicity.

(5.3.3) The idea of proof of Theorem 5.2 is similar to that of Bogomolov’s
restriction theorem (see [HL, Th. 7.3.5]). However, the proof of Bogomolov’s
restriction theorem used the Kobayashi-Hitchin correspondence, a strong ver-
sion of Bogomolov’s instability theorem (see [HL, Th. 7.3.4]; cf. Theorem 3.12)
and the semistability of representations of a semistable bundle. Each of these
facts makes this proof impossible to follow in positive characteristic.

As a corollary to Theorem 5.2 we get an effective restriction theorem for
semistable sheaves. It also explains the meaning of a “general” element of
|kD1| in previously known restriction theorems.

Corollary 5.4. Let E be a torsion-free sheaf of rank r ≥ 2. Assume that
E is µ-semistable with respect to (D1, . . . , Dn−1) and let 0 = E0 ⊂ E1 ⊂ · · · ⊂
Em = E be the corresponding Jordan-Hölder filtration of E. Set Fi = Ei/Ei−1,
ri = rkFi. Let D ∈ |kD1| be a normal divisor such that all the sheaves Fi|D
have no torsion. If

k >

⌊
r − 1

r
∆(E)D2 . . . Dn−1 +

1
dr(r − 1)

+
(r − 1)βr

dr

⌋
then E|D is µ-semistable with respect to (D2|D, . . . , Dn−1|D).

Proof. The corollary follows from Theorem 5.2 and the following inequality

∆(E)D2 . . . Dn−1

r
≥

∑ ∆(Fi)D2 . . . Dn−1

ri

(cf. the proof of Theorem 5.1).

Theorem 5.2 and Corollary 5.4 show that for a sufficiently large k the
rational map from the moduli space of Gieseker semistable sheaves on X with
fixed rank and Chern classes to the moduli space of Gieseker semistable sheaves
on a smooth divisor D ∈ |kD1| is an injective immersion on the open subset
of µ-stable locally free sheaves.
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6. Semistable sheaves in positive characteristic

In this section we assume that the base field k has a positive charac-
teristic p. Let H1, . . . , Hn−1 be ample divisors on a smooth n-dimensional
variety X. Semistability in this section denotes µ-semistability with respect to
(H1, . . . , Hn−1).

The following theorem is a special case of a theorem proved by Ramanan
and Ramanathan, [RR, Th. 3.23] (see the remark at the end of Section 4,
[RR]). In the curve case this theorem was known earlier (see, e.g., [Mi, §5] and
[Ba]).

Theorem 6.1. A tensor product of strongly semistable sheaves is strongly
semistable.

In the curve case Ilangovan-Mehta-Parameswaran and Balaji-Parameswaran
proved that if the characteristic of k is large with respect to ranks of semistable
bundles having trivial determinants then their tensor product is also semistable.
The author was informed by V. Balaji that all these bounds hold for any bun-
dles. The precise statement of the Ilangovan-Mehta-Parameswaran theorem
is: if E1 and E2 are two semistable bundles, and the sum of their ranks is less
than p + 2, then E1 ⊗E2 is again semistable. Using Corollary 5.4 one gets the
same result for torsion free sheaves in higher dimensions (although it is also
sufficient to use the Mumford-Mehta-Ramanathan restriction theorem). This
shows that if p is large with respect to r and n then the inequality in Corollary
2.5 can be improved to

α(E) ≤ r − 1
p

[µmax(ΩX)]+.

Below we prove an analogous result in all characteristics.
The next two corollaries also allow us to improve theorems in previous

sections by improving the bound for βr.

Corollary 6.2. Let E be a torsion-free sheaf of rank r. Then

α(E) ≤ r − 1
p

[Lmax(ΩX)]+.

If E is semistable then

Lmax(E) − Lmin(E) ≤ r − 1
p

[Lmax(ΩX)]+.

Proof. It is sufficient to prove the second part of the corollary. If E is
semistable then (F k)∗E is η-semistable for η : E → E⊗(ΩX⊕. . .⊕(F k−1)∗ΩX)
given by η = (∇can, . . . , (F k−1)∗∇can) (cf. Proposition 2.2). By Theorem 2.7
there exists k0 such that all the factors in the Harder-Narasimhan filtrations
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of (F k0)∗E and (F k0)∗ΩX are strongly semistable. Let 0 = E0k ⊂ E1k ⊂ · · · ⊂
Emk = (F k)∗E be the Harder-Narasimhan filtration of (F k)∗E for k ≥ k0.
Let µik be the corresponding slopes of quotients of this filtration. We fix a
nef divisor A such that TX(A) is globally generated. Then by Lemma 2.3 and
Theorem 6.1

µik ≤ µ(i+1)k+max(pk0AH1 . . . Hn−1,max{µmax((F j)∗ΩX)) : k0 ≤ j ≤ k − 1}).

Now the required inequality is obtained by summing all these inequalities,
dividing by pk and passing with k to infinity.

Applying the above corollary to ΩX , we get the following corollary.

Corollary 6.3. If p ≥ n = dimX and Lmax(ΩX) ≥ 0 then

Lmax(ΩX) ≤ p

p + 1 − n
µmax(ΩX).

In particular, if p ≥ n and µmax(ΩX) ≤ 0 then all semistable sheaves are
strongly semistable.

Note that by Corollary 2.4, if µmax(ΩX) ≤ 0 then all semistable sheaves
are strongly semistable (Corollary 6.3 gives the same assertion for p ≥ n). This
should be compared with Mori’s theorem saying that if µ(ΩX) < 0 then X is
uniruled.

One of the referees pointed out to the author that this fact was proved
already in [MR, Th. 2.1]. This fact and Bogomolov’s vanishing theorem im-
mediately imply the following proposition.

Proposition 6.4. Let (X, H) be a smooth polarized complex projective
variety and E a semistable sheaf on X. Assume that the set Σ of primes p

modulo which E is not strongly semistable is infinite. Then ΩX contains a
subsheaf F such that c1F ·Hn−1 > 0 and the Kodaira dimension of c1F is less
than or equal to the rank of F .

For rank 2 vector bundles this proposition is a special case of [SB2, Th. 5].
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