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The homotopy type
of the matroid grassmannian

By Daniel K. Biss

1. Introduction

Characteristic cohomology classes, defined in modulo 2 coefficients by
Stiefel [26] and Whitney [28] and with integral coefficients by Pontrjagin [24],
make up the primary source of first-order invariants of smooth manifolds.
When their utility was first recognized, it became an obvious goal to study
the ways in which they admitted extensions to other categories, such as the
categories of topological or PL manifolds; perhaps a clean description of char-
acteristic classes for simplicial complexes could even give useful computational
techniques. Modulo 2, this hope was realized rather quickly: it is not hard to
see that the Stiefel-Whitney classes are PL invariants. Moreover, Whitney was
able to produce a simple explicit formula for the class in codimension i in terms
of the i-skeleton of the barycentric subdivision of a triangulated manifold (for
a proof of this result, see [13]).

One would like to find an analogue of these results for the Pontrjagin
classes. However, such a naive goal is entirely out of reach; indeed, Milnor’s
use of the Pontrjagin classes to construct an invariant which distinguishes be-
tween nondiffeomorphic manifolds which are homeomorphic and PL isomorphic
to S7 suggested that they cannot possibly be topological or PL invariants [19].
Milnor was in fact later able to construct explicit examples of homeomor-
phic smooth 8-manifolds with distinct Pontrjagin classes [20]. On the other
hand, Thom [27] constructed rational characteristic classes for PL manifolds
which agreed with the Pontrjagin classes, and Novikov [23] was able to show
that, rationally, the Pontrjagin classes of a smooth manifold were topological
invariants. This led to a surge of effort to find an explicit combinatorial ex-
pression for the rational Pontrjagin classes analogous to Whitney’s formula for
the Stiefel-Whitney classes. This arc of research, represented in part by the
work of Miller [18], Levitt-Rourke [15], Cheeger [8], and Gabrièlov-Gelfand-
Losik [10], culminated with the discovery by Gelfand and MacPherson [12] of
a formula built on the language of oriented matroids.
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Their construction makes use of an auxiliary simplicial complex on which
certain universal rational cohomology classes lie; this simplicial complex can
be thought of as a combinatorial approximation to BOk. Our main result is
that this complex is in fact homotopy equivalent to BOk, so that the Gelfand-
MacPherson techniques can actually be used to locate the integral Pontrjagin
classes as well. Equivalently, the oriented matroids on which their formula
rests entirely determine the tangent bundle up to isomorphism.

A closer examination of these ideas led MacPherson [16] to realize that
they actually amounted to the construction of characteristic classes for a new,
purely combinatorial type of geometric object. These objects, which he called
combinatorial differential (CD) manifolds, are simplicial complexes furnished
with some extra combinatorial data that attempt to behave like smooth struc-
tures. The additional combinatorial data come in the form of a number of
oriented matroids; in the case that we begin with a smooth triangulation of
a differentiable manifold, these oriented matroids can be recovered by playing
the linear structure of the simplices and the smooth structure of the manifold
off of one another. For a somewhat more precise discussion of this relationship,
see Section 3.

The world of CD manifolds admits a purely combinatorial notion of bun-
dles, called matroid bundles. As one would expect, a k-dimensional CD man-
ifold comes equipped with a rank k tangent matroid bundle; moreover, ma-
troid bundles admit familiar operations such as pullback and Whitney sum.
There is a classifying space for rank k matroid bundles, namely the geometric
realization of an infinite partially ordered set (poset) called the MacPherso-
nian MacP(k,∞); this is the “combinatorial approximation to BOk” alluded
to above. The MacPhersonian is the colimit of a collection of finite posets
MacP(k, n), which can be viewed as combinatorial analogues of the Grassman-
nians G(k, n) of k-planes in Rn. In fact, there exist maps

π : G(k, n) −→ ‖MacP(k, n)‖

compatible with the inclusions G(k, n) ↪→ G(k, n + 1) and MacP(k, n) ↪→
MacP(k, n + 1), as well as G(k, n) ↪→ G(k + 1, n + 1) and MacP(k, n) ↪→
MacP(k + 1, n + 1), and therefore giving rise to maps

π : BOk = G(k,∞) −→ ‖MacP(k,∞)‖

and
π : BO −→ ‖MacP(∞,∞)‖.

The first complete construction of the maps π was given in [4]; for earlier
related work, see [11] or [16]. Because it will always be clear from the context
what k and n are, the use of the symbol π to denote each of these maps should
cause no confusion.
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In view of this recasting of the Gelfand-MacPherson construction, one
would expect the map π : BOk → ‖MacP(k,∞)‖ to induce a surjection on
rational cohomology. This turns out to be the case; for a detailed discussion
of this point of view; see [3]. Of course, when appropriately reinterpreted in
this language, the Gelfand-MacPherson result is stronger: it actually provides
explicit formulas for elements pi ∈ H4i(‖MacP(k,∞)‖, Q) such that π∗(pi) is
the ith rational Pontrjagin class. Nonetheless, this work indicates that further
understanding the cohomology of the MacPhersonian would have two benefits.
First of all, it would constitute a foothold from which to begin a systematic
study of CD manifolds; indeed, the first step in the standard approach to the
study of any category in topology or geometry is an analysis of the homotopy
type of the classifying space of the accompanying bundle theory. Secondly, it
might point the direction for possible further results concerning the application
of oriented matroids to computation of characteristic classes.

Accordingly, the MacPhersonian has been the object of much study (see,
for example, [1], [5], or [22]). Most recently, Anderson and Davis [4] have
been able to show that the maps π induce split surjections in cohomology
with Z/2Z coefficients; thus, one can define Stiefel-Whitney classes for CD
manifolds. However, none of these results establishes whether the CD world
manages to capture any purely local phenomena of smooth manifolds, that is,
whether it can see more than the PL structure. The aim of this article is to
prove the following theorem.

Theorem 1.1. For every positive integer n or for n = ∞, and for any
k ≤ n, the map

π : G(k, n) → ‖MacP(k, n)‖

is a homotopy equivalence.

Of course, in the case n = ∞, this result implies that the theory of matroid
bundles is the same as the theory of vector bundles. This gives substantial
evidence that a CD manifold has the capacity to model many properties of
smooth manifolds. To make this connection more precise, we give in [6] a
definition of morphisms that makes CD manifolds into a category admitting a
functor from the category of smoothly triangulated manifolds. Furthermore,
these morphisms have appropriate naturality properties for matroid bundles
and hence characteristic classes, so many maneuvers in differential topology
carry over verbatim to the CD setting. This represents the first demonstration
that the CD category succeeds in capturing structures contained in the smooth
but absent in the topological and PL categories, and suggests that it might
be possible to develop a purely combinatorial approach to smooth manifold
topology.
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Furthermore, our result tells us that the integral Pontrjagin classes lie in
the cohomology of the MacPhersonian; thus, it ought to be possible to find
extensions of the Gelfand-MacPherson formula that hold over Z. That is,
the integral Pontrjagin classes of a triangulated manifold depend only on the
PL isomorphism class of the manifold enriched with some extra combinatorial
data, or, equivalently, on the CD isomorphism class of the manifold.

Corollary 1.2. Given a matroid bundle E over a cell complex B, there
are combinatorially defined classes pi(E) ∈ H4i(B, Z), functorial in B, which
satisfy the usual axioms for Pontrjagin classes (see, for example, [21]). Further-
more, when M is a smoothly triangulated manifold , the underlying simplicial
complex of M accordingly enjoys the structure of a CD manifold, whose tangent
matroid bundle is denoted by T . Then

pi(M) = pi(T ).

We have not been able to find an especially illuminating explicit formu-
lation of this result, which would of course be extremely appealing. It is also
interesting to note that it is does not seem clear that this combinatorial descrip-
tion of the Pontrjagin classes is rationally independent of the CD structure.

The plan of our proof is very simple. First of all, the compatibility of
the various maps π implies that it suffices to check our result for finite n

and k. We then stratify the spaces ‖MacP(k, n)‖ into pieces corresponding to
the Schubert cells in the ordinary Grassmannian. It can be shown that these
open strata are actually contractible, and furthermore that ‖MacP(k, n)‖ is
constructed inductively by forming a series of mapping cones. Moreover, it is
not too hard to see that the map from G(k, n) to ‖MacP(k, n)‖ takes open
cells to open strata. Thus, to complete the argument, all we need to do is show
that the open strata are actually “homotopy cells,” that is, that they are cones
on homotopy spheres of the appropriate dimension. This forms the technical
heart of the proof.

Because the idea of applying oriented matroids to differential topology is
a relatively new one, it is instinctual to reinvent the wheel and introduce from
scratch all necessary preliminaries from combinatorics. Since this has already
been done more than adequately, we try to shy away from this tendency;
however, our techniques rely on some subtle combinatorial results that have
not been used before in the study of CD manifolds, and accordingly we provide
a brief introduction to oriented matroids in Section 2. Armed with these
definitions, we give in Section 3 a motivational sketch of the general theory
of CD manifolds and matroid bundles. Then, in Section 4, we describe the
combinatorial analogue of the Schubert cell decomposition, and explain why
in order to complete the proof, it suffices to show that certain spaces are
homotopy equivalent to spheres and sit inside ‖MacP(k, n)‖ in a particular
way. Finally, in Section 5, we actually prove these facts.
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2. Combinatorial preliminaries

In this section, we provide a brief introduction to the ideas we will use
from the theory of oriented matroids. For a more a comprehensive survey of
the combinatorial side of the study of CD manifolds, see [2] or [4]; for com-
plete details of the constructions and theorems we describe, [7] is the standard
reference. Probably the best summary of the basic definitions concerning CD
manifolds can be found in MacPherson’s original exposition [16].

An oriented matroid is a combinatorial model for a finite arrangement
of vectors in a vector space. To motivate the definition, first suppose we are
furnished with a finite set S and a map ρ : S → V to a vector space V over R

such that the set ρ(S) spans V . We may then consider the set M of all maps
S → {+,−, 0} obtained as compositions

S
ρ−→ V

�−→ R
sgn−→ {+,−, 0}

where � : V → R is any linear map. In general, an oriented matroid is an
abstraction of this setting: it remembers the information (S, M) without as-
suming the existence of an ambient vector space V .

The data encoded by the pair (S, M) can be reinterpreted in the following
way. A (nonzero) linear map � : V → R divides V into three components:
a hyperplane �−1(0), the “positive” side �−1(R+) of the hyperplane, and the
“negative” side �−1(R−). The oriented matroid simply keeps track of what
partition of S is induced by this stratification of V . Thus, roughly speaking, the
information contained in (S, M) allows us to read off two types of information
about S. First of all, since we are able to see which subsets of S lie in a
hyperplane in V , we can tell which subsets of S are dependent. Secondly,
because we can see on which side of any hyperplane a vector lies, given two
ordered bases of V contained in S, we can determine whether they have equal
or opposite orientations. Incidentally, the presence of the word “oriented” in
the term “oriented matroid” refers to the latter: an ordinary matroid is more
or less an oriented matroid which has forgotten how to see whether two bases
carry the same orientation, or, equivalently, on which side of the hyperplane
�−1(0) an element lies.

Definition 2.1. An oriented matroid on a finite set S is a subset M ⊂
{+,−, 0}S satisfying the following axioms:

1. The constant zero function is an element of M .

2. If X ∈ M , then −X ∈ M .

3. If X and Y are in M , then so is the function X ◦ Y defined by

(X ◦ Y )(s) =

{
X(s) if X(s) �= 0
Y (s) otherwise.
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4. If X, Y ∈ M and s0 is an element of S with X(s0) = + and
Y (s0) = −, then there is a Z ∈ M with Z(s0) = 0 and for all s ∈ S

with {X(s), Y (s)} �= {+,−}, we have Z(s) = (X ◦ Y )(s).

Elements of the set M are referred to as covectors.

These four axioms all correspond to familiar maneuvers on vector spaces;
indeed, suppose that S is actually a subset of a vector space V and that X and
Y arise from linear maps �X , �Y : V → R. The first axiom simply states that
the zero map V → R is linear. The second axiom means that −�X : V → R is
linear. The element X ◦ Y ∈ M from the third axiom is induced by the map
A�X + �Y , for any A large enough that A�X dominates �Y , that is, for any

A > max
{ |�Y (s)|
|�X(s)| , s ∈ S, �X(s) �= 0

}
.

Lastly, the element Z of the fourth axiom is induced by the linear map
�Z = −�Y (s0)�X + �X(s0)�Y .

An oriented matroid arising from a map ρ : S → V as above is said to
be realizable. Not all oriented matroids are realizable, but many constructions
that are familiar in the realizable setting have analogues for arbitrary oriented
matroids. In particular, there is a well-defined notion of the rank of an oriented
matroid, and we may form the convex hull of a subset of an oriented matroid.

Definition 2.2. Let M be an oriented matroid on the set S. A subset
{s1, . . . , sk} ⊂ S is said to be independent if there exist covectors X1, . . . , Xk

∈ M with Xi(sj) = δij . Here, δij denotes the Kronecker delta:

δij =

{
+ if i = j

0 otherwise.

The rank of an oriented matroid is the size of any maximal independent subset
(one can show that this is well-defined). An element s ∈ S is said to be in the
convex hull of a subset S′ ⊂ S if for every covector X ∈ M with X(S′) ⊂ {+, 0},
we have X(s) ∈ {+, 0}. An element s ∈ S is said to be a loop of M if for every
covector X ∈ M, we have X(s) = 0. In the case that M is realized by the
map ρ : S → V, this is equivalent to the condition that ρ(s) = 0. An element
s ∈ S is said to be a coloop of M if there is a covector X ∈ M with X(s) = +
and X(s′) = 0 for all s′ �= s. In the realizable case, this is equivalent to the
condition that the set ρ(S\{s}) lies in a hyperplane of V.

There is one slightly more subtle concept that will be the basis of all our
work.
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Definition 2.3. Let M and M ′ be two oriented matroids on the same
set S. Then M ′ is said to be a specialization or weak map image of M (denoted
M � M ′) if for every X ′ ∈ M ′ there is an X ∈ M with X(s) = X ′(s) whenever
X ′(s) �= 0.

This is the case, for example, if M and M ′ are both realizable oriented
matroids, and if the vector arrangement M ′ is in more “special position” than
that of M ; that is, if one can produce a realization of M ′ from a realization
of M by forcing additional dependencies. For example, in Figure 1 below, the
oriented matroid realized by the left-hand arrangement of vectors specializes to
the oriented matroid realized by the right-hand arrangement. More precisely,

v�4�

v�3�

v�1�
v�2� v�2�

v�3�

v�1�

v�4�

Figure 1: A specialization of realizable oriented matroids

this relation holds whenever the space of realizations ρ : S → V of M ′, which
can be viewed as a subspace of V S , and accordingly comes with a natural
topology, intersects the closure of the space of realizations of M .

We are now ready to define the basic objects of study, the MacPhersonians.

Definition 2.4. The MacPhersonian MacP(k, n) is the poset of rank k

oriented matroids on the set {1, . . . , n}, where the order is given by M ≥ M ′

if and only if M � M ′. MacP(k,∞) is the colimit over all n of the maps
MacP(k, n) ↪→ MacP(k, n+1), defined by taking a rank k oriented matroid on
{1, . . . , n} and producing one on {1, . . . , n+1} by declaring n+1 to be a loop.
Moreover, the maps MacP(k, n) ↪→ MacP(k + 1, n + 1) defined by declaring
n+1 to be a coloop induce maps MacP(k,∞) → MacP(k +1,∞). The colimit
over all k is denoted MacP(∞,∞).

Since the content of this article consists in a study of the homotopy type of
the MacPhersonian and related posets, we will need to establish some general
facts about the topology of posets. As in the introduction, for any poset P, we
denote by ‖P‖ its nerve. This is the simplicial complex whose vertices are the
elements of P, and whose k-simplices are chains pk > pk−1 > · · · > p0 in P.
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Definition 2.5. Let f : P → Q be a map of posets, and fix q ∈ Q. Denote
by P l

q the subset of ‖P‖ consisting of the interior of each simplex whose maxi-
mal vertex lies in f−1(q), and let P u

q denote the subset made up of the interior
of each simplex whose minimal vertex lies in f−1(q).

Proposition 2.6. Let f : P → Q be any map of posets, and q any
element of Q. Then there are deformation retractions P l

q → ‖f−1(q)‖ and
P u

q → ‖f−1(q)‖.

Proof. We carry out the argument only for the case of P l
q; the analogous

statement for P u
q follows by reversing the orders of both P and Q. The basic

strategy of the proof is to collapse P l
q onto ‖f−1(q)‖ one cell at a time. More

precisely, given a maximal open cell C of P l
q\‖f−1(q)‖, its closure in ‖P‖ is

an α-simplex which corresponds to some saturated chain p0 > · · · > pα in P ,
with f(p0) = q. Then since by assumption C is not contained in ‖f−1(q)‖, it
must be the case that for some β ≤ α, we have f(pβ−1) = q and f(pβ) < q.
In particular, the (α − β)-simplex pβ > · · · > pα is precisely C̄\P l

q; denote its
interior by C ′. The result follows from an induction on cells along with the
fact that C̄\(C ∪C ′) = ∂C̄\C ′ is a deformation retract of C̄\C ′, and thus that
P l

q\C is a deformation retract of P l
q.

Lastly, recall the following basic result of Quillen [25].

Proposition 2.7 (Quillen’s Theorem A). Let f : P → Q be a poset map. If
for each q ∈ Q, the space ∥∥f−1({q′ ∈ Q|q′ ≥ q})

∥∥
is contractible, then ‖f‖ is a homotopy equivalence.

We now present an alternate characterization of oriented matroids that is
especially well-suited to analysis of the MacPhersonian. If ρ : S → V is a real-
ization of a rank k oriented matroid, then for either orientation of V , we obtain
a map χ : Sk → {+,−, 0} by defining χ(s1, . . . , sk) = sgn(det(ρ(s1), . . . , ρ(sk)));
that is, although the determinant itself depends on a choice of basis (or, more
precisely, on an identification of

∧k V with R), its sign depends only an an ori-
entation of V (or, equivalently, on an orientation of

∧k V ). Moreover, it is easy
to see that the map χ depends only on the oriented matroid determined by
ρ. The following definition generalizes this to the setting of arbitrary oriented
matroids.

Definition 2.8. A chirotope of rank k on a set S is a map χ : Sk →
{+,−, 0} such that:

1. χ is not identically zero.
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2. For all s1, . . . , sk ∈ S and σ ∈ Σk, we have

χ(sσ(1), . . . , sσ(k)) = sgn(σ)χ(s1, . . . , sk).

3. For all s1, . . . , sk, t1, . . . , tk ∈ S such that χ(s1, . . . , sk) ·χ(t1, . . . , tk) �= 0,
there exists an i such that χ(ti, s2, . . . , sk) ·χ(t1, . . . , ti−1, s1, ti+1, . . . , tk)
= χ(s1, . . . , sk) · χ(t1, . . . , tk).

Of course, to every realization of an oriented matroid in a vector space V ,
one can associate two (opposite) chirotopes, one for each orientation of V . The
analogous statement can also be shown for general oriented matroids.

Proposition 2.9 (See [7]). There is a two-to-one correspondence between
the set of rank k chirotopes on the set S and the set of rank k oriented matroids
on S. For any oriented matroid M , the two chirotopes χ1

M and χ2
M correspond-

ing to it satisfy

χ1
M (s1, . . . , sk) = −χ2

M (s1, . . . , sk)

for all (s1, . . . , sk) ∈ Sk. Moreover, if M and M ′ both have rank k, then
M � M ′ if and only if M and M ′ admit chirotopes χM and χM ′ satisfying
χM (s1, . . . , sk) = χM ′(s1, . . . , sk) whenever χM ′(s1, . . . , sk) �= 0.

Finally (recall [4]) there exists a map π : G(k, n) → ‖MacP(k, n)‖. Al-
though in Section 3, we will indicate a conceptual proof of the existence of such
a map, for our purposes it will be necessary to have a much more hands-on
approach, which we outline here. Let {ζ1, . . . , ζn} denote the standard basis
of Rn; it is orthonormal in the standard inner product. The first step in the
construction of π is the observation that for any k-plane V ⊂ Rn, the stan-
dard inner product on Rn defines an orthogonal projection ℘ : Rn → V . This,
in turn, gives rise to a rank k (realizable) oriented matroid on n elements—
namely, the one realized by the images {℘(ζ1), . . . , ℘(ζn)} of the n standard
basis vectors in Rn. In this way, we produce a (lower semi-continuous) map
of sets µ : G(k, n) → MacP(k, n). Our goal is to use this map to produce the
continuous map π.

In [4], this is done by constructing a simplicial subdivision of G(k, n) refin-
ing the decomposition of G(k, n) into the fibers µ−1(M), using the fact that the
fibers are semi-algebraic and a result of Hironaka [14], and then defining a map
from the barycentric subdivision of this simplicial structure to ‖MacP(k, n)‖
by taking nerves. There is, however, a less technologically intensive argument.

Let P be a poset, and fix a point p ∈ ‖P‖; it is in the interior of a unique
simplex, which corresponds to some chain in P , whose maximal element is
an element ν(p) of P . This defines a map ν : ‖P‖ → P. So far, we have
only been considering the discrete topology on our posets; however, the lower-
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semicontinuity of the map µ : G(k, n) → MacP(k, n) suggests that this map
might have more geometric meaning in some other setting. In fact, there is
another topology on P, which better captures the homotopy type of ‖P‖.

Definition 2.10. Let P be a poset. An order ideal in P is a subset Q ⊂ P

with the property that if q ∈ Q and p ≤ q then p ∈ Q. The order topology on
P is the topology generated by declaring that each order ideal in P be closed.

In this topology, the map ν is always continuous; moreover, the following
result is not hard to verify.

Proposition 2.11 (See [17]). For any poset P endowed with the order topol-
ogy, the map ν : ‖P‖ → P is a weak homotopy equivalence.

Furthermore, the definitions have been rigged in such a way that the map
µ : G(k, n) → MacP(k, n) is continuous when we endow MacP(k, n) with the
order topology. We now have the following diagram

G(k, n) �����

µ
�������������

‖MacP(k, n)‖
ν∼

��
MacP(k, n)

in which the right-hand map is a weak homotopy equivalence and the dashed
map is the map π we would like to construct. However, it is well-known that if
X is a CW complex and f : Y → Z is a weak homotopy equivalence, then the
map f∗ : [X, Y ] → [X, Z] is a bijection; here [A, B] denotes the set of homotopy
classes of maps from A to B. Thus, we can make the following definition.

Definition 2.12. The map π : G(k, n) → ‖MacP(k, n)‖ is a map chosen
to make the above diagram homotopy commutative. There is precisely one
such map up to homotopy.

This approach fails to give one essential property of π which follows di-
rectly from Hironaka’s result, namely, the fact that π can be chosen so that the
above triangle commutes on the nose. We will use this fact heavily throughout,
so without further mention, we always assume

ν ◦ π = µ.

The image of the map µ is precisely the subposet MacPreal(k, n) consisting of
all realizable oriented matroids. Thus, by our conventions, the image of the
map π is contained in the space ‖MacPreal(k, n)‖. Our techniques actually give
us the following result.
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Corollary 2.13. Both maps in the composition

G(k, n) → ‖MacPreal(k, n)‖ ↪→ ‖MacP(k, n)‖
are homotopy equivalences.

Our proof of Theorem 1.1 carries over verbatim to show that the map
G(k, n) → ‖MacPreal(k, n)‖ is a homotopy equivalence as well; we leave it to
the reader to verify this. The reader should be warned that there are two
different conceivable definitions of MacPreal(k, n). That is, it must certainly
be some partial order on the set of realizable rank k oriented matroids on
{1, . . . , n}. However, for two realizable oriented matroids M and M ′, we could
either say M ≥ M ′ if M � M ′ as in Definition 2.3, or we could say that M ≥
M ′ if the space of realizations of M ′ is contained in the closure of the space of
realizations of M . These two definitions are not the same: the second is strictly
more restrictive than the first. We use the symbol MacPreal(k, n) to denote
the former definition, that is, a full subposet of MacP(k, n); Corollary 2.13 is
true for either definition, but is substantially more useful for future purposes
in the definition we use, so we will henceforth ignore the smaller poset.

3. Interlude: the connection with vector bundles
over smooth manifolds

We now provide a brief motivation for the definitions given in the previous
section. Suppose B is a finite simplicial complex, and ξ : E → B is a rank k

vector bundle over B. Then for n sufficiently large, we can find global sections
s1, . . . , sn of ξ such that for every point p ∈ B, the vectors s1(p), . . . , sn(p) span
Ep = ξ−1(p). This setup therefore gives rise to a rank k realizable oriented
matroid on the set S = {s1, . . . , sn} for every p ∈ B. Moreover, one can check
that we could have actually chosen the sections si in such a way that the ma-
troid stratification of B they determine is a simplicial subdivision of B. In this
situation, if ∆ and ∆′ are two simplices in this subdivision with ∆′ ⊂ ∂∆, and
if M and M ′ are the corresponding oriented matroids, then we have M � M ′.
That is, we obtain a map of posets from the set of simplices of B to MacP(k, n).
Taking geometric realizations gives a map B → ‖MacP(k, n)‖, since the nerve
of the poset of simplices of B is simply the barycentric subdivision of B itself.

One can show (see [4]) that the homotopy class of the composition

B −→ ‖MacP(k, n)‖ ↪→ ‖MacP(k,∞)‖
depends only on the isomorphism class of the vector bundle ξ, and not on the
choice of sections. This gives us a map, natural in B,


isomorphism classes

of rank k

vector bundles over B


 −→ [B, ‖MacP(k,∞)‖] .
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Incidentally, we accordingly obtain an alternate, more functorial construction
of the map π : G(k,∞) → ‖MacP(k,∞)‖ as the colimit over all sufficiently
large n of the maps G(k, n) → ‖MacP(k,∞)‖ induced by the tautological
k-plane bundle γk over G(k, n). (It is not hard to see that they are compatible
up to homotopy.) Thus, it is reasonable to think of ‖MacP(k,∞)‖ as the
representing object of a theory of combinatorial vector bundles, usually referred
to as matroid bundles. Theorem 1.1 tells us that the theory of matroid bundles
is actually the same as the theory of ordinary vector bundles.

The natural source for matroid bundles lies in the world of CD manifolds.
To appropriately situate these ideas, we provide a brief sketch of the theory
of CD manifolds. This is not intended to be comprehensive, and has no direct
mathematical bearing on the proof of our main theorem, but will, we hope, be
of some motivational value. Again, for a more complete discussion, see [16].
Consider, then, a simplicial complex B, a smooth k-manifold M , and a smooth
triangulation η : B → M . This means that η is a homeomorphism which is
smooth on closed simplices. In other words, for any l-simplex ∆ of B, there
are a linear embedding ι : ∆ ↪→ Rl, an open neighborhood U ⊂ Rl of ι(∆),
and a smooth immersion η̃ : U → M with η̃ ◦ ι = η|∆.

Now, pick a point p ∈ B, and let ∆ be the unique simplex whose interior
contains p. Recall that Star(∆) is the subcomplex of B generated by the
closed simplices which contain ∆. Let ∆′ be a maximal simplex of Star(∆),
so that p is contained in the closure ∆̄′ of ∆′. By the definition of a smooth
triangulation, we can differentiate the restriction of η to ∆̄′ at p to obtain a
linear map

d(η|∆̄′)p : Tp∆̄′ → Tη(p)M.

There is then a unique linear map f : ∆̄′ → Tη(p)M with f(p) = 0 and
dfp = d(η|∆̄′)p; piecing these together gives a simplex-wise linear map F∆ :
Star(∆) → Tη(p)M . The images under F∆ of the vertices of Star(∆) give rise
to a realizable oriented matroid of rank k, and the basic philosophy of the
subject is that these oriented matroids alone carry a great deal of information
about the smooth structure of the manifold.

So far, of course, we have only managed to produce a family of oriented
matroids parametrized by the points p of M , which can hardly be described
as a purely combinatorial object. However, much as in the construction of a
matroid bundle from a vector bundle already discussed, if the initial smooth
triangulation is “suitably generic,” the corresponding matroid stratification
of M turns out to be a cell complex refining B. Furthermore, as one would
expect, if σ and σ′ are two cells satisfying σ′ ⊂ ∂σ and with corresponding
matroids M and M ′, then we have M � M ′.

A CD manifold structure of dimension k on a simplicial complex B with n

vertices is a generalization of this: it is a cell complex B̂ refining B and a map
from the poset of cells of B̂ to MacP(k, n) satisfying certain additional axioms
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that obviously hold in the setting outlined above. It then becomes apparent
that every CD manifold gives rise to an associated tangent matroid bundle;
one of the primary benefits of Theorem 1.1 is the fact that this matroid bundle
actually arises from a vector bundle, and therefore that all the information
(most notably, all characteristic classes) encoded in the tangent bundle of a
smooth manifold can be extracted from the combinatorial remnants of the
smooth structure provided by the oriented matroids.

4. Schubert stratification and its consequences

We first briefly recall the definition of the Schubert cells in the Grassman-
nian of k-planes in Rn. Here, when we write Rn, a choice of coordinates is
implicit, and these are used in defining the cells. Of course, all that is actually
needed to define the Schubert cells is a complete flag of subspaces 0 = V0 ⊂
V1 ⊂ · · · ⊂ Vn−1 ⊂ Vn = Rn with dimVi = i; the standard basis {ζ1, . . . , ζn} de-
termines these data by setting Vi to be the span of the set {ζ1, . . . , ζi}. Now, for
any k-dimensional subspace V of Rn, we have an associated sequence of integers
0 = dim(V0∩V ) ≤ dim(V1∩V ) ≤ · · · ≤ dim(Vn−1∩V ) ≤ dim(Vn∩V ) = k. The
Schubert stratification of G(k, n) is obtained by letting each stratum consist of
all k-planes whose corresponding sequence of integers is some fixed sequence.
More formally, let 1 ≤ d1 < d2 < · · · < dk ≤ n be a sequence of integers.
The corresponding open Schubert cell Dd1,...,dk

⊂ G(k, n) is then the set of all
k-planes V ⊂ Rn with

dim(Vdi
∩ V ) = i

and

dim(Vdi−1 ∩ V ) = i − 1

for all i = 1, . . . , k. One can verify that Dd1,...,dk
is an open cell of dimension∑

i(di − i).
Our analysis of the geometry of ‖MacP(k, n)‖ proceeds by analogy with

the Schubert stratification of G(k, n). We first define a stratification of the
poset MacP(k, n), and later explain how to lift it to a stratification of the
geometric realization.

Definition 4.1. Fix a sequence of integers 1 ≤ d1 < · · · < dk ≤ n. We
let Ed1,...,dk

denote the stratum of rank k oriented matroids M on the set
{a1, . . . , an} having the property that for all i,

rankM{adi
, adi+1, . . . , an} = k − i + 1

and

rankM{adi+1, adi+2, . . . , an} = k − i.
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These sets Ed1,...,dk
give us a stratification of MacP(k, n) whose pieces are

indexed by k-element subsets of {1, . . . , n}. Let us examine the stratification
more carefully. Consider the Gale order [9], or majorization order, on the set
of k-element subsets of {1, . . . , n}: we say that {d′1, . . . , d′k} ≤ {d1, . . . , dk} in
this order if d′1 < · · · < d′k and d1 < · · · < dk and d′i ≤ di for all i. It is a basic
fact that for any rank k oriented matroid M on the set {a1, . . . , an}, the set of
independent k-element subsets of {a1, . . . , an} has a unique maximal element
in this order; this can be seen easily by using an induction argument and the
chirotope axioms. From this fact, we can reinterpret the Schubert stratification
of the MacPhersonian.

Proposition 4.2. Let M ∈ MacP(k, n) and suppose that {ad1 , . . . , adk
}

is the maximal basis for M in the Gale order. We then have M ∈ Ed1,...,dk
.

Proof. Since {adi
, . . . , adk

} and {adi+1 , . . . , adk
} are independent for M ,

it must certainly be the case that rankM{adi
, adi+1, . . . , an} ≥ k − i + 1 and

rankM{adi+1, adi+2, . . . , an} ≥ k − i. On the other hand, if rankM{adi
, adi+1,

. . . , an} > k − i + 1, then there must be an independent set {ad′
i−1

, . . . , ad′
k
} ⊂

{adi
, . . . , an} which could be completed to a basis {ad′

1
, . . . , ad′

k
}. This basis

would then not precede {ad1 , . . . , adk
} in the Gale order, which is a contradic-

tion. Hence, rankM{adi
, adi+1, . . . , an} = k − i + 1 and, by a similar argument

rankM{adi+1, adi+2, . . . , an} = k − i.

As a result, if M � M ′ and M ∈ Ed1,...,dk
and M ′ ∈ Ed′

1,...,d
′
k
, then it must

be the case that {ad′
1
, . . . , ad′

k
} is a basis for M ′ and hence also for M , and thus

that {d′1, . . . , d′k} ≤ {d1, . . . , dk}. In other words, the Schubert stratification
gives rise to a poset map MacP(k, n) →

(
n
k

)
, where

(
n
k

)
denotes the Gale-

ordered poset of k-element subsets of {1, . . . , n}.
We are now ready to define the stratification of the geometric realiza-

tion of MacP(k, n); the strata will, again, be indexed by k-element subsets of
{1, . . . , n}.

Definition 4.3. Recall that there is a map ν : ‖MacP(k, n)‖ → MacP(k, n).
Let ed1,...,dk

⊂ ‖MacP(k, n)‖ denote the space ν−1(Ed1,...,dk
).

We must now check that if we have a k-plane V ⊂ Rn which is an element
of Dd1,...,dk

, then its corresponding oriented matroid is in Ed1,...,dk
. Indeed, let

Wi denote the span of {ζi+1, . . . , ζn}, that is, the orthogonal complement in
Rn of Vi. Then we need only show that for all i, we have dim(im(Wi → V )) =
k− dim(Vi ∩V ). By restricting to V the orthogonal projection of Rn onto Wi,
we obtain a short exact sequence

0 −→ Vi ∩ V −→ V −→ im(V → Wi) −→ 0.
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The result then follows from the fact that dim(im(V → Wi)) = dim(im(Wi →
V )), which holds because if we fix choices of bases for V and Wi, then the
matrices of these two linear transformations are transpose to one another.
This allows us to make the following observation.

Proposition 4.4. The map µ : G(k, n) → MacP(k, n) sends the open
Schubert cell Dd1,...,dk

to Ed1,...,dk
. Consequently, π : G(k, n) → ‖MacP(k, n)‖

sends Dd1,...,dk
to the open stratum ed1,...,dk

.

Proof. The first sentence follows directly from the discussion above. As
for the second sentence, let p ∈ Dd1,...,dk

. Notice that by Proposition 4.2,
the matroid stratification given by the fibers of µ is subordinate to the Schu-
bert stratification of G(k, n) into the Dd1,...,dk

. The map π strictly speaking
takes as its domain the barycentric subdivision of a simplicial decomposition
of G(k, n) subordinate to the stratification of G(k, n) provided by the map µ,
as explained in Section 2. Denote by ∆G the poset of simplices of G(k, n) in
this decomposition. The point p is in the interior of some simplex in ‖∆G‖,
which corresponds to a chain in ∆G. But the open simplex corresponding to
the maximal element of this chain is certainly contained in Dd1,...,dk

, and so
the maximal element of the chain it is mapped to in MacP(k, n) is contained
in Ed1,...,dk

. Therefore, π(p) ∈ ed1,...,dk
.

Now, we would like to study the geometric structure of the stratum
ed1,...,dk

. Consider the oriented matroid Md1,...,dk
on the set {a1, . . . , an} whose

only basis is the set {ad1 , . . . , adk
}. In other words, Md1,...,dk

is realized by any
map ρ : {a1, . . . , an} → V to a rank k vector space taking {ad1 , . . . , adk

} to a
basis and ac to the zero vector for every ac �∈ {ad1 , . . . , adk

}. One easily sees by
examining chirotopes that Md1,...,dk

is a specialization of every other element
of Ed1,...,dk

. Therefore, the space ‖Ed1,...,dk
‖ is contractible, because it is a cone

over the space ‖Ed1,...,dk
\{Md1,...,dk

}‖.
Moreover, recall that the Schubert stratification gives rise to a poset map

MacP(k, n) →
(
n
k

)
. In this language, we may identify ed1,... ,dk

with the space
P l
{d1,...,dk}. Thus, by Proposition 2.6, ‖Ed1,...,dk

‖ is a deformation retract of
ed1,...,dk

. The above observation then tells us that ed1,... ,dk
is contractible.

We now must analyze the geometric procedure of attaching the stratum
ed1,...,dk

to smaller strata. Let S denote the poset Ed1,...,dk
\{Md1,...,dk

}, and, as
usual, ‖S‖ its geometric realization. Also, let

X =
⋃

{d′
1,...,d

′
k}<{d1,...,dk}

Ed′
1,...,d

′
k

and Y = X ∪ Ed1,...,dk
. Recall that ‖Ed1,... ,dk

‖ is a cone over ‖S‖. This of
course immediately tells us the homotopy type of ‖Ed1,... ,dk

‖ and ed1,... ,dk
, but

in order to better understand their geometry, we need to come to grips with
the homotopy type of ‖S‖ as well.
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Let N =
∑k

i=1(di − i). The open Schubert cell Dd1,...,dk
is then an

N -dimensional real affine space. Now, recall that we constructed the map
π by first defining a map µ : G(k, n) → MacP(k, n) and then finding a simpli-
cial decomposition of G(k, n) subordinate to the stratification by fibers of µ.

The composition

G(k, n)
µ−→ MacP(k, n) −→

(
n

k

)

defines a map from the poset ∆G of simplices of G(k, n) in this decompo-
sition to

(
n
k

)
. Then application of Proposition 2.6 to the space ∆Gl

{d1,... ,dk}
tells us that the open cell Dd1,...,dk

= π−1(ed1,...,dk
) deformation retracts onto

π−1(‖Ed1,...,dk
‖).

Furthermore, µ−1(Md1,...,dk
) is a single vertex pd1,...,dk

, corresponding to
the plane spanned by the basis vectors ζd1 , . . . , ζdk

. Let 1 denote the two
element poset {0 < 1}. Then we get a map from the poset ∆D ⊂ ∆G of
simplices of π−1(‖Ed1,... ,dk

‖) to 1 by sending pd1,...,dk
to 0 and every other

simplex to 1. Now, we can apply Proposition 2.6 to ∆Dl
1 to see that the

space π−1(‖S‖) is a deformation retract of π−1(‖Ed1,...,dk
‖\{pd1,...,dk

}). Thus,
π−1(‖S‖) is a homotopy SN−1; hereafter, we will refer to it simply as S̃N−1.

Proposition 4.5. The map π|S̃N−1 : S̃N−1 → ‖S‖ is a homotopy equiva-
lence.

We postpone the proof to Section 5. Assuming this result, we have a
complete homotopy-theoretic charactarization of the pair (‖Ed1,... ,dk

‖, ‖S‖).
What remains to be established is the relationship between the homotopy
type of ‖Y ‖ and those of ‖X‖, ‖Ed1,... ,dk

‖, and ‖S‖. Our intuition, in analogy
with the case of the Grassmannian, is that ‖Y ‖ ought to be recovered as the
mapping cone of a map ‖S‖ → ‖X‖, obtained by “sliding” ‖S‖ toward ‖X‖ in
the space ‖X∪S‖. In other words, we would like for the deformation retraction
‖X ∪ S‖\‖S‖ → ‖X‖ whose existence is guaranteed by Proposition 2.6 to
extend to a retraction ‖X ∪ S‖ → ‖X‖. We do not actually construct such
a deformation retraction. However, the following result is enough to give us
what we need.

Proposition 4.6. The inclusion X ↪→ X ∪ S induces a homotopy equiv-
alence on geometric realizations.

Again, we postpone the proof to Section 5. Using this result, we can easily
explain the proof of Theorem 1.1.

Proof of Theorem 1.1. This is an induction on the (Gale-ordered) cells.
Indeed, let A ⊂ G(k, n) denote π−1(‖X‖), the union of the open cells Dd′

1,...,d
′
k

with {d′1, . . . , d′k} < {d1, . . . , dk}. We may assume by induction that the map
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π|A : A → ‖X‖ is a homotopy equivalence; the base case of this induction
is simply the fact that D1,...,k

∼= ‖E1,...,k‖ ∼= ∗, the one-point space. For the
inductive step, we need to verify that π is still a homotopy equivalence after
we attach the cell Dd1,...,dk

to A to obtain B ⊂ G(k, n) and the stratum ed1,...,dk

to ‖X‖ to obtain ‖Y ‖.
In other words, we have a map of pairs π : (B, A) → (‖Y ‖, ‖X‖), and we

know that π|A is a homotopy equivalence. We build on this fact by covering
‖Y ‖ by spaces we can understand using Propositions 4.5 and 4.6 and then
studying the behavior of π on the pullback of this cover.

We cover ‖Y ‖ by two subsets, U and L, defined by

U := ‖Y ‖\‖X‖

and

L := ‖Y ‖\‖Md1,...,dk
‖.

By Proposition 2.6, the inclusion ‖Ed1,...,dk
‖ ↪→ U is a homotopy equivalence,

and so U is contractible. Moreover, π−1(U) = Dd1,...,dk
which is of course also

contractible. Thus, the map π|π−1(U) is a homotopy equivalence.
Secondly, again by Proposition 2.6, the inclusion ‖X∪S‖ ↪→ L is an equiv-

alence. Moreover, by Proposition 4.6, the inclusion ‖X‖ ↪→ L is a homotopy
equivalence. Furthermore, π−1(L) = B\{π−1(pd1,...,dk

)} and so the inclusion
A ↪→ π−1(L) induces an equivalence. Therefore, we have a commutative square

A� �

��

π|A �� ‖X‖� �

��
π−1(L)

π|π−1(L)�� L

where the two vertical maps are equivalences, and the top map is an equivalence
by induction, so the bottom map must be a homotopy equivalence as well.

Lastly, π−1(U ∩L) = S̃N−1, and, by Proposition 2.6, the inclusion ‖S‖ ↪→
U ∩ L is an equivalence. Also, by Proposition 4.5, the map π|π−1(U∩L) is
a homotopy equivalence. Therefore, the map π|B : B → ‖Y ‖ induces an
equivalence on all the opens and intersections of a cover of the target space,
and is therefore an equivalence itself. This completes the inductive step and
the proof.

5. Proofs of Propositions 4.5 and 4.6

Throughout, we study a fixed stratum Ed1,...,dk
. As in the previous section,

denote the poset Ed1,...,dk
\{Md1,...,dk

} by S and its geometric realization by ‖S‖.
To complete the proof of Theorem 1.1, it suffices to prove Propositions 4.5
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and 4.6. We begin with Proposition 4.5, that is, the statement that the map
π|S̃N−1 : S̃N−1 → ‖S‖ is a homotopy equivalence.

To address this issue, we will need to introduce more notation. Suppose
we are given a rank k oriented matroid M on the set {a1, . . . , an} for which
{ad1 , . . . , adk

} is a basis; let χ be a chirotope for M , normalized by the assump-
tion χ(ad1 , . . . , adk

) = +. We can then associate a k-tuple (τ1
c , . . . , τk

c ) of ele-
ments of {+,−, 0} to each ac, by defining τ j

c = χ(ad1 , . . . , adj−1 , ac, adj+1 , . . . , adk
).

(Thus, we have τ j
di

= δj
i , the Kronecker delta.) In the realizable case, these

k-tuples are very easy to understand: if ρ is any realization of the oriented
matroid (or, in fact, of the oriented matroid obtained by deleting all ele-
ments except {ac, ad1 , . . . , adk

}), then in the inner product for which the basis
{ρ(a1), . . . , ρ(ad)} is orthonormal, we have τ j

c = sgn(〈ρ(ac), ρ(adj
)〉).

Now, arrange these k-tuples of τc’s into an n × k matrix τ(M) whose
(c, j)-entry is τ j

c . The effect of a specialization M � M ′ on these matrices is
obviously to set some (possibly empty) collection of nonzero entries to zero.
That is, if we partially order the set of all n×k matrices over the set {+,−, 0}
by setting A ≥ A′ whenever A and A′ agree in all nonzero entries of A′, then
the map τ from oriented matroids to matrices becomes a poset map.

Proof of Proposition 4.5. The proof proceeds by induction on the cells
in the Gale order. The first two cases are {d1, . . . , dk} = {1, . . . , k}, for which
S̃N−1 = ‖S‖ = S = ∅, and {d1, . . . , dk} = {1, 2, . . . , k−1, k+1}. In this second
case, S = {M+, M−}, where for M+ (resp. M−), the only elements that are
not loops are ad1 , . . . , adk

, ac, and ac is parallel (resp. antiparallel) to adk
. Of

course π|S̃N−1 is then a homotopy equivalence.
For the inductive step, our strategy is to cover ‖S‖ by two spaces whose

homotopy types we can identify (in fact, they will be contractible) and the
homotopy type of whose intersection we can also understand, by induction.
The behavior of π with respect to this cover will then be almost obvious.

So, pick a pair (c, di) such that c = di−1 and c �∈ {d1, . . . , dk}. Such a pair
will exist since {d1, . . . , dk} �= {1, . . . , k}. Let S+ ⊂ S denote the set consisting
of all oriented matroids M such that τ i

c(M) ≥ 0 and S− ⊂ S the set of all
M with τ i

c(M) ≤ 0. Equivalently, let A+ (resp. A−) denote the n × k matrix
whose only nonzero element other than the obligatory + in the (dj , j) slot for
all j = 1, . . . , k is a + (resp. −) in the (c, i) slot. Then

S+ =
⋃

A≥A+

τ−1(A)

and

S− =
⋃

A≥A−

τ−1(A).
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The induction tells us precisely that π|π−1(S+∩S−) is a homotopy equiva-
lence. Indeed, consider the permutation σ ∈ Σn that transposes c and di. It
acts on both MacP(k, n) and G(k, n), and because the action permutes fibers of
the map µ : G(k, n) → MacP(k, n), we get the following commutative square:

G(k, n)

π

��

σ �� G(k, n)

π

��
‖MacP(k, n)‖ σ �� ‖MacP(k, n)‖.

Now,

σ
(
S+ ∩ S−)

= Ed1,...,di−1,c,di,...,dk
\{Md1,...,di−1,c,di+1,...,dk

} .

and

σ
(
π−1(S+ ∩ S−)

)
= Dd1,...,di−1,c,di+1,...,dk

\π−1(Md1,...,di−1,c,di+1,...,dk
).

This is because if M ∈ S, then σ(M) contains {ad1 , . . . , adi−1 , ac, adi+1 , . . . , adk
}

as a basis, and it is the maximal basis of σ(M) if and only if {ad1 , . . . , adk
} is not

a basis. But {ad1 , . . . , adk
} is not a basis of σ(M) if and only if {ad1 , . . . , adi−1 ,

ac, adi+1 , . . . , adk
} is not a basis of M, i.e., if and only if M ∈ S+ ∩ S−. Thus

σ−1 ◦
(
π|π−1(S+∩S−)

)
◦σ is a homotopy equivalence by induction, and therefore

π|π−1(S+∩S−) is as well.
Now, Dd1,...,dk

admits a canonical coordinate system, whose axes are para-
metrized by the pairs (c′, dj) with c′ ∈ {1, 2, . . . , dj}\{d1, . . . , dj} and j ∈
{1, . . . , k}. We can then describe π−1(‖S+‖) as the subspace of Dd1,...,dk

con-
sisting of all elements other than the origin for which the (c, di)-coordinate is
nonnegative. Thus, π−1(‖S+‖) is contractible, and similarly, π−1(‖S−‖) is as
well.

We must now show that ‖S+‖ and ‖S−‖ are contractible. This will again
be an induction, this time on dk. The base case is dk = k +1. In this situation,
the fact is essentially obvious, and can in any case be seen from the fact that
all such oriented matroids are realizable (for a proof of this, see [7]).

To see the general case, pick any element c′ ∈ {1, 2, . . . , dk}\{d1, d2, . . . ,

dk, c}. Let S+
0 ⊂ S+ denote the subposet consisting of all oriented matroids for

which ac′ is a loop. By induction,
∥∥S+

0

∥∥ is contractible. Let P+
0 ⊂ S+ denote

the subposet consisting of all oriented matroids specializing to some element
of S+

0 , that is, all oriented matroids for which {ad1 , . . . , adk
, ac′} are not the

only elements that are not loops. We can easily see by Quillen’s Theorem A
that the inclusion S+

0 ↪→ P+
0 induces an equivalence, that is, that

∥∥P+
0

∥∥ is
contractible. To check this, we must show that for all M ∈ P+

0 , the poset

{M ′ ∈ S+
0 |M � M ′}

is contractible. But this poset has a unique maximal element, namely the
oriented matroid obtained by replacing with ac′ a loop in M. Thus,

∥∥P+
0

∥∥ is
contractible.
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We are now prepared to show that the entirety of ‖S+‖ is contractible.
To see this, set A := S+\P+

0 . That is, A consists of all the oriented ma-
troids in S+ for which {ad1 , . . . , adk

, c′} are the only elements which are not
loops. Then by Proposition 2.6, the space ‖S+‖\‖A‖ deformation retracts
onto

∥∥P+
0

∥∥ and is hence contractible. Let B ⊂ S+ denote the poset consisting
of oriented matroids for which ac′ is not a loop, and the only element out-
side of {ad1 , . . . , adk

, ac′} which permitted to not be a loop is ac; moreover, if
ac is not a loop then it is requited to be parallel to adi

. Thus, B ∼= A × 1.

We now cover ‖S+‖ by two subsets, ‖S+‖\‖A‖ and ‖B‖. The intersection is
‖B‖\‖A‖ which is homotopy equivalent to ‖B‖ by Proposition 2.6, and thus
the inclusion ‖S+‖\‖A‖ ↪→ ‖S+‖ induces a homotopy equivalence, and ‖S+‖
is therefore contractible.

The proof that ‖S−‖ is contractible is identical; equivalently, one can
simply observe that the map f : S+ → S− which replaces ac by an element an-
tiparallel to it is an isomorphism of posets and thus induces a homeomorphism
on nerves.

So, to obtain our main result, we need only prove Proposition 4.6. The
proof comes in several steps; the first is essentially a simplified version of the
argument used to demonstrate Proposition 4.5.

Proposition 5.1. Fix M ∈ MacP(k, n). The poset

SM := {M ′ ∈ S|M � M ′}

is either empty or contractible.

Proof. Throughout the argument, we assume that SM is nonempty. We
perform an induction which will follow just like the proof of Proposition 4.5,
only this time, rather than inducting on dk, we induct on the number of el-
ements of {a1, . . . , an} which are not loops in all of SM . In the base case,
there are k + 1 such elements; k of them are the ad1 , . . . , adk

, and we de-
note the (k + 1)st by ac′ . Denote by M0 the oriented matroid obtained by
replacing all the elements other than the {ad1 , . . . , adk

, ac′} in M by loops.
Then M0 admits a realization ρ0 : {a1, . . . , an} → Rk for which ρ0(adi

) = ζi,

the ith standard basis vector, each coordinate of ρ0(ac′) comes from the set
{1,−1, 0}, and of course we have ρ0(ac) = 0 for all the rest of the ac. Now, let
ρ1 : {a1, . . . , an} → Rk be the map defined by ρ1(ac) = ρ0(ac) if c �= c′ and

〈ρ1(c′), ζi〉 =

{
〈ρ0(c′), ζi〉 if di > c′

0 if di < c′,

where 〈, 〉 as usual denotes the standard inner product. Denote by M1 the
oriented matroid realized by ρ1. It is easy to see that M1 is the unique maximal
element of SM , and so

∥∥SM
∥∥ is contractible as desired.
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In the inductive step, we fix two elements c′, c′′ ∈ {1, 2, . . . , dk}\{d1, d2,

. . . , dk} such that neither ac′ nor ac′′ is always a loop in SM . Furthermore,
assume that c′ > c′′. Now, let SM

0 ⊂ SM denote the set of oriented matroids
for which ac′ is a loop. Then, by induction,

∥∥SM
0

∥∥ is contractible. Letting
PM

0 ⊂ SM denote the set of all oriented matroids in SM specializing to an
element of SM

0 , we find just as before that the inclusion SM
0 ↪→ PM

0 induces
an equivalence. This is because, once again, for all N ∈ PM

0 , the set

{M ′ ∈ SM
0 |N � M ′}

has a unique maximal element, namely the matroid obtained by replacing c′

in N by a loop.
Now, let A = SM\PM

0 . Let N0 ∈ MacP(k, n) denote the oriented matroid
obtained by replacing every element of M other than the {ad1 , . . . , adk

, ac′ , ac′′}
by a loop. It is easy to check that there is an oriented matroid N1 ∈ S satisfying
N0 � N1 and

(N1)
∣∣∣{ad1 ,...,adk

,ac′} = (N0)
∣∣∣{ad1 ,...,adk

,ac′} ,

and for which there is an x ∈ {d1, . . . , dk, c
′} with x > c′′ such that ac′′ is

either parallel or antiparallel to ax. We then let B ⊂ SM denote the poset
consisting of the oriented matroids for which all elements other than the
{ad1 , . . . , adk

, ac′ , ac′′} are loops and for which ac′′ is either parallel or antipar-
allel to ax. Then once again B ∼= A × 1 and so the inclusion of ‖B‖\‖A‖ in
‖B‖ is an equivalence. Therefore, the space

∥∥SM
∥∥ =

(∥∥SM
∥∥ \‖A‖

)
∪ ‖B‖ is

homotopy equivalent to
(∥∥SM

∥∥ \‖A‖
)

which is homotopy equivalent to ‖PM
0 ‖

and is therefore contractible. This completes the proof.

For the next step we need to introduce more notation. Fix some subset

d :=
{
{d1

1, . . . , d
1
k}, . . . , {dr

1, . . . , d
r
k}

}
⊂

(
n

k

)
and suppose it is an order ideal. Then set

Ed :=
r⋃

i=1

Edi
1,...,d

i
k
.

Proposition 5.2. Suppose as above that d ⊂
(
n
k

)
is an order ideal. Then

for all M ∈ MacP(k, n), the poset

EM
d := {M ′ ∈ Ed|M � M ′}

is either contractible or empty.

Proof. We assume throughout that EM
d is nonempty and argue by induc-

tion on d, ordered by inclusion. The base case is the example d = {{1, 2, . . . , k}}
which is, of course, trivial.
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We now carry out the inductive step. Suppose that {dr
1, . . . , d

r
k} is a

maximal element of d in the Gale order. We may then assume that EM
d ∩

Edr
1,...,dr

k
�= ∅, for otherwise we are finished by induction. We cover EM

d by two
sets,

EM
dr
1,...,dr

k
:= EM

d ∩ Edr
1,...,dr

k

and

EM
0 := EM

d \{Mdr
1,...,dr

k
}.

First of all,
∥∥∥EM

dr
1,...,dr

k

∥∥∥ is contractible because EM
dr
1,...,dr

k
contains a unique

minimal element Mdr
1,...,dr

k
. Secondly,

∥∥∥EM
dr
1,...,dr

k
∩ EM

0

∥∥∥ is either empty or con-

tractible by Proposition 5.1. If it is empty, then we have EM
d = {Mdr

1,...,dr
k
}

which is obviously contractible, and we are done.
Thus, it remains only to address the case in which

∥∥∥EM
dr
1,...,dr

k
∩ EM

0

∥∥∥ is con-

tractible by showing that
∥∥EM

0

∥∥ is contractible as well. Let d′ = d\{dr
1, . . . , d

r
k}.

Then
∥∥∥EM

d′

∥∥∥ is contractible by induction, and we have an inclusion EM
d′ ↪→ EM

0 .

We will use Quillen’s Theorem A to show that this inclusion induces an equiv-
alence. Fix N ∈ EM

0 . We need only see that the poset{
M ′ ∈ EM

d′ |N � M ′
}

is contractible. But this is precisely the poset EN
d′ , which is contractible by

induction, and we are done.

We now have all the necessary ingredients to finish our argument.

Proof of Proposition 4.6. This will follow, as usual, from Quillen’s The-
orem A. Recall that we need to show that the inclusion X ↪→ X ∪ S induces
an equivalence. By Theorem A, it suffices to check that for all M ∈ S, the set

{M ′ ∈ X|M � M ′}

is contractible. Proposition 5.2 guarantees that this space must either be empty
or contractible. By the definition of S, there must be some basis {d′1, . . . , d′k} of
M which strictly precedes {d1, . . . , dk} in the Gale order. Then Md′

1,...,d
′
k
∈ X

and M � Md′
1,...,d

′
k
. Thus, the space in question is nonempty and the proof is

complete.
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[10] A.M. Gabrièlov, I. M. Gelfand, and M. V. Losik, The combinatorial computation of
characteristic classes (Russian), Funk. Anal. i Prilozhen. 9 (1974), 54–55.

[11] I. M. Gelfand, R. M. Goresky, R. D. MacPherson, and V. V. Serganova, Combinatorial
geometries, convex polyhedra, and Schubert cells, Adv. in Math. 63 (1987), 301–316.

[12] I. M. Gelfand and R. D. MacPherson, A combinatorial formula for the Pontrjagin classes,
Bull. Amer. Math. Soc., 26 (1992), 304–309.

[13] S. Halperin and D. Toledo, Stiefel-Whitney homology classes, Ann. of Math. 96 (1972),
511–525.

[14] H. Hironaka, Triangulations of algebraic sets, in Algebraic Geometry (Arcata, CA, 1974),
pp. 165–185. A.M.S., Providence, RI, 1975.

[15] N. Levitt and C. Rourke, The existence of combinatorial formulae for characteristic
classes, Trans. Amer. Math. Soc. 239 (1978), 391–397.

[16] R. D. MacPherson, Combinatorial differential manifolds, in Topological Methods in Mod-
ern Mathematics (Stony Brook, NY, 1991), pp. 203–221, Publish or Perish, Houston, TX,
1993.

[17] M. C. McCord, Singular homology groups and homotopy groups of finite topological
spaces, Duke Math. J . 33 (1966), 465–474.



952 DANIEL K. BISS

[18] E. Y. Miller, Local isomorphisms of Riemannian, Hermitian, and combinatorial mani-
folds, Ph.D. Thesis, Harvard, 1973.

[19] J. W. Milnor, On manifolds homeomorphic to the 7-sphere, Ann. of Math. 64 (1956),
399–405.

[20] ———, Microbundles. I, Topology 3 (1964), 53–80.

[21] J. W. Milnor and J. D. Stasheff Characteristic Classes, Ann. of Math. Studies 76,
Princeton Univ. Press, Princeton, NJ, 1974.
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