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van den Ban-Schlichtkrull-Wallach
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nonsymmetric domains

By Richard Penney*

Introduction

Let X = G/K be a homogeneous Riemannian manifold where G is the
identity component of its isometry group. A C∞ function F on X is harmonic
if it is annihilated by every element of DG(X), the algebra of all G-invariant
differential operators without constant term. One of the most beautiful results
in the harmonic analysis of symmetric spaces is the Helgason conjecture, which
states that on a Riemannian symmetric space of noncompact type, a function
is harmonic if and only if it is the Poisson integral of a hyperfunction over
the Furstenberg boundary G/Po where Po is a minimal parabolic subgroup.
(See [14], [17].) One of the more remarkable aspects of this theorem is its
generality; one obtains a complete description of all solutions to the system
of invariant differential operators on X without imposing any boundary or
growth conditions.

If X is a Hermitian symmetric space, then one is typically interested in
complex function theory, in which case one is interested in functions whose
boundary values are supported on the Shilov boundary rather than the Fursten-
berg boundary. (The Shilov boundary is G/P where P is a certain maximal
parabolic containing Po.) In this case, it turns out that the algebra of G in-
variant differential operators is not necessarily the most appropriate one for
defining harmonicity. Johnson and Korányi [16], generalizing earlier work of
Hua [15], Korányi-Stein [19], and Korányi-Malliavin [18], introduced an invari-
ant system of second order differential operators (the HJK system) defined on
any Hermitian symmetric space. In [9], we noted that this system could be
defined entirely in terms of the geometric structure of X as

HJK(f) = −
∑

�2f(Zi, Zj)R(Zi, Zj)|T 01
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where � denotes covariant differentiation, R is the curvature operator, T 01 is
the bundle of anti-holomorphic tangent vectors, and Zi is a local frame field
for T 10 that is orthonormal with respect to the canonical Hermitian scalar
product H on T 10. (It is easily seen that HJK does not depend on the choice
of the Zi.) Thus, HJK maps C∞(D) into sections of HomC(T 01, T 01). (See [9]
for more details.) A C∞ function f is said to be Hua-harmonic if HJK(f) = 0.

In [16] the following results were proved in the Hermitian symmetric case:

(a) All Hua-harmonic functions are harmonic.

(b) The boundary hyperfunctions are constant on right cosets of P and hence
project to hyperfunctions on the Shilov boundary.

(c) Every Hua-harmonic function on X is the Poisson integral of its boundary
hyperfunction over the Shilov boundary.

(d) If X is tube-type then Poisson integrals of hyperfunctions are harmonic.

We remark that statement (d) is false in the general Hermitian symmetric
case [4].

Thus, in the tube case, these results yield a complete description of all
solutions to the Hua system, while in the nontube case, we lack only a char-
acterization of those hyperfunctions on the Shilov boundary whose Poisson
integrals are Hua-harmonic.

Since the Hua system is meaningful for any Kähler manifold X, it seems
natural to ask to what extent these results are valid outside of the symmetric
case. One might, for example, consider homogeneous Kähler manifolds. There
is a structure theory for such manifolds that was proved in special cases by
Gindikin and Vinberg [13] and in general by Dorfmeister and Nakajima [10]
that states that every such manifold admits a holomorphic fibration whose base
is a bounded homogeneous domain in Cn, and whose fiber is the product of a
flat, homogeneous Kähler manifold and a compact, simply connected, homoge-
neous, Kähler manifold. It follows that one should first consider generalizations
to the class of bounded homogeneous domains in Cn.

This problem was considered in [9] and [25]. In both of these works, how-
ever, extremely restrictive growth conditions were imposed on the solutions: in
[9] the solutions were required to be bounded and in [25] an H2 type condition
was imposed.

The technical difficulties involved in eliminating these growth assumptions
at first seem daunting. In the nonsymmetric case, K can be quite small.
Thus, arguments which are based on concepts such as K-finiteness and bi-K
invariance tend not to generalize. Entirely new proofs must be discovered.
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The most problematic issues, however, come from the the boundary. In
general, G may have no nontrivial boundaries in the sense of Furstenberg.
Hence, it is not at all clear how to even define the Furstenberg boundary. The
Shilov boundary is, of course, meaningful. However, in the symmetric case,
the Shilov boundary is a homogeneous space for K, hence a manifold. In the
solvable case it is almost certainly false that the Shilov boundary is a manifold.
All that is known is that there is a nilpotent subgroup N of G, of nilpotence
degree at most 2, which acts on the Shilov boundary in such a way that there
is a dense, open orbit which we call the principal open subset. The principal
open subset is well understood and easily described. Its complement in the
Shilov boundary is, to our knowledge, completely unstudied outside of the
symmetric case. This does not cause difficulties for bounded or H2 solutions
since the corresponding boundary hyperfunctions are functions and we only
need to know them a.e. Understanding general unbounded solutions seems to
require being able to describe their boundary values on this potentially singular
and poorly understood set. In fact, it is not at all clear how to define the notion
of a hyperfunction (or even a distribution) on the Shilov boundary, much less
the boundary hyperfunction for a solution.

There is, however, a work of N. Wallach [31] and two works of E. van
den Ban and H. Schlichtkrull ([1] and [2]) which provide some hope of at least
understanding the solutions with distributional boundary values. To describe
these results, let τ(x) be the Riemannian distance in X from x to the base
point xo = eK. A result of Oshima and Sekiguchi [24] says that the boundary
hyperfunction of a harmonic function F is a distribution if and only if there
are positive constants A and r (depending on F ) such that

(0.1) |F (x)| ≤ Aerτ(x)

for all x ∈ X. In [31], using (G, K) modules, Wallach showed that any har-
monic function satisfying 0.1 has an “asymptotic expansion” as x approaches
the Furstenberg boundary. This was then used to give a new proof of the
Oshima-Sekiguchi theorem mention above. Unfortunately, it is not clear how to
generalize Wallach’s proof since, as mentioned above, proofs based on
K-finiteness tend not to generalize.

However, in [1], van den Ban and H. Schlichtkrull proved the existence
of the asymptotic expansions in a somewhat different context using a proof
based on the structure of the algebra of invariant differential operators. The
boundary distribution occurs as one of the coefficients in the expansion. Ac-
tually, in [1], a finite set of these coefficients was singled out as a collection
of boundary distributions. It was then shown how to choose one particular
boundary distribution whose Poisson integral is F , providing another proof
of the Oshima-Sekiguchi theorem. It is the proof of [1] that motivates our
techniques.
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In [2] it was shown that F is uniquely determined by the restrictions of
its boundary distributions to any open subset of the boundary. In this case,
however, one needs all of the boundary functions, not just the particular one
mentioned above. Similar uniqueness theorems hold in the class of hyperfunc-
tions due to results of Oshima [23].

Thus, in the nonsymmetric case, one might hope to:
(1) Prove the existence of a distribution asymptotic expansion for Hua-

harmonic functions satisfying 0.1 as x approaches the principal open subset of
the Shilov boundary.

(2) Choose a particular finite subset of the coefficients to be the boundary
distributions which uniquely determine the solution.

(3) Describe the inverse of the boundary map (the “Poisson transforma-
tion”).

(4) Describe the image of the boundary map.
In this work we carry out the first three steps of above the program and

make progress on the fourth. Specifically, in the general case it is still possible
to write G = ANLK where A is an R split algebraic torus, NL is a unipotent
subgroup normalized by A, K is a maximal compact subgroup. (See §2 for
details.) Then L = ANL acts simply-transitively on D, allowing us to identify
D with L. As an algebraic variety,

L = NL × (R+)d ⊂ NL × R
d

where d is the rank of X. Under this identification, NL is contained in the
topological boundary of ANL. We use NL as a substitute for the Furstenberg
boundary. In the semi-simple case this amounts to restricting to a dense, open,
subset of the Furstenberg boundary.

We prove that any Hua-harmonic function that satisfies 0.1 has an as-
ymptotic expansion as a → 0 with coefficients from the space of Schwartz
distributions on NL. We then single out a set of at most 2d of these coeffi-
cients which serve as the boundary values and show that the boundary values
uniquely determine the solution. Finally, we give an inductive construction,
based on our work [26], of a Poisson transformation that “reconstructs” F from
its boundary values. (See the remark following the proof of Proposition 3.5.)

Actually, all of the above statements hold, with “Schwartz distribution”
replaced by “distribution” under the weaker assumption that for all compact
sets K ⊂ NL, there is a constant CK such that

(0.2) sup
n∈K

|F (na)| ≤ CKerτ(a)

for all a ∈ A, except that in this case our construction of the Poisson
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kernel does not work since there seems to be no way of defining the integrals
we require.

We also prove a version of the Johnson-Korányi result relating to the
projection of the boundary distribution to the Shilov boundary. The Johnson-
Korányi result that in the semi-simple tube case, the Hua-harmonic functions
are Poisson integrals of hyperfunctions over the Shilov boundary follows (The-
orem 3.9).

Concerning the fourth step, as mentioned above, the description of the
space of boundary values for the Hua system is unknown, even for a Hermitian-
symmetric domain of nontube type. (The Johnson-Korányi result shows that
in the tube case, the space of boundary values is just the space of all hyper-
functions on the Shilov boundary.) In [4], Berline and Vergne conjectured that
this space could be characterized as null space of a “tangential” Hua system,
although, to our knowledge, this conjecture has never been resolved.

However, in the symmetric case, it is possible to describe the boundary
values for the “H2

HJK” functions–which are Hua-harmonic functions satisfying
an H2 like condition. (See Section 5 below.) In [5], the current author, together
with Bonami, Buraczewski, Damek, Hulanicki, and Trojan, showed that for
a nontube type Hermitian symmetric domain, the H2

HJK harmonic functions
are pluri-harmonic; i.e., they are complex linear combination of the real and
imaginary parts of H2 functions. Theorem 5.2 states that this same result holds
in the nonsymmetric case, at least for domains that are sufficiently nontube-like
(Definition 2.1). Hence, in the H2, nontube case, we may totally forget the Hua
system and consider instead the problem of describing the boundary values of
the pluri-harmonic functions. The H2 boundaries in the nonsymmetric tube
case were studied in [25].

The ability to generalize this result to the nonsymmetric case is, we feel, a
significant accomplishment. The symmetric space proof utilized the symmetry
of the domain in many ways, but most significantly in its use of the full force of
the Johnson-Korányi theorem for tube domains. Explicitly, it required knowing
that Poisson integrals are Hua-harmonic. It is a result of [25] that this result
is equivalent to the symmetry of the domain. One seems to require entirely
new techniques (such as asymptotic expansions) to avoid its use in the general
case.

We should also mention that our section on asymptotic expansions is quite
general. The proofs, while inspired by those in [1] and [2], which were, in turn,
inspired by those in [31], are in actuality, quite different (and somewhat less
involved) since we do not have as much algebraic machinery at our disposal.
It is our expectation that this theory will have far reaching implications in
many other contexts. It has already found application in [27]. We expect it to
play a major role in understanding the Helgason program for other systems of
equations and other boundaries as well.
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Remarks on notation. Throughout this work, we will usually denote Lie
groups by upper case Roman letters, in which case the corresponding Lie al-
gebra will automatically be denoted by the corresponding upper case script
letter. The main exceptions to this rule will be abelian Lie groups which will
be identified with their Lie algebras. We also use “C” to denote a generic
constant which may change from line to line.

1. Asymptotic expansions

Let V be a complete topological vector space over C. Let C =
C∞((−∞, 0],V), given the topology of uniform convergence on compact sub-
sets of functions and their derivatives. For r ∈ R, let Co

r be the set of F ∈ C
such that

{e−rtF (t) | t ∈ (−∞, 0]}

is bounded in V. Let ‖ · ‖m, m ∈ Λ, be a family of continuous semi-norms
on V that defines its topology. We equip Co

r with the topology defined by the
semi-norms

(1.1)

‖F‖r,m = sup
t∈(−∞,0]

e−rt‖F (t)‖m

‖F‖k,n,m = sup
−k≤t≤0

‖F (n)(t)‖m

where k ∈ N and
n ∈ No = N ∪ {0}.

We let
Cr = ∩s<rCo

s

given the inverse limit topology. It is easily seen that Cr is complete. The space
Cr is used since, unlike Co

r , it is closed under multiplication by polynomials.
Let F and G belong to C.

We say that
F ∼r G

if F − G ∈ Cr. Note that F ∼r G implies that F ∼s G for all s < r.
Let I ⊂ C be finite. An exponential polynomial with exponents from I is

a sum

(1.2) F (t) =
∑
α∈I

nα∑
n=0

eα·ttnFα,n



ASYMPTOTIC EXPANSIONS 717

where Fα ∈ V and nα ∈ No. In this case, we set

Fα(t) =
nα∑

n=0

tnFα,n

which is (by definition) a V valued polynomial. We also consider the case
where I ⊂ C is countably infinite, in which case 1.2 is considered as a formal
sum which we refer to as an exponential series.

Definition 1.1. Let F ∈ C and let F̌ be an exponential series as in 1.2.
We say that G ∼ F̌ if

(a) for all r ∈ R, there is a finite subset I(r) ⊂ I such that G ∼r Fr where

(1.3) Fr(t) =
∑

α∈I(r)

eαtFα(t)

and

(b) I = ∪rI(r). In this case, we say that F̌ is an asymptotic expansion for F .

Remark. In formula 1.3, any term corresponding to an index α with
re α ≥ r belongs to Cr and may be omitted. Thus, we may, and will, take

I(r) to be contained in the set of α ∈ I where re α < r.
We note the following lemma, which is a simple consequence of Lemma 3.3

of [1].

Lemma 1.2. If the function from 1.2 belongs to Cr, then Fα(t) = 0 for all
re α < r and all t ∈ R.

Lemma 1.3. Suppose G ∼ F̃ as in Definition 1.1, where all of the Fα(t)
for α ∈ I are nonzero. Then I(r) = {α ∈ I | re α < r}. In particular, the set
of such α is finite.

Proof. Let r < s. Then F ∼r F̌r and F ∼r F̌s. Hence Dr = F̌r − F̌s ∈ Cr.
Then Dr is an exponential polynomial with index set

(I(r) ∪ I(s)) \ (I(r) ∩ I(s)).

Lemma 1.2 shows that this set is disjoint from re α < r, implying that it
is disjoint from I(r). Hence I(r) ⊂ I(s). It then follows that I(s) \ I(r) is
disjoint from {re α < r}. Hence {α ∈ I | re α < r} ∩ I ⊂ I(r), which proves
our lemma.

Corollary 1. Let F ∈ C. Suppose that for each r ∈ R, there is an
exponential polynomial Sr such that F ∼r Sr. Then there is an exponential
series F̌ such that F ∼ F̌ .
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Proof. Each Sr may be written

Sr(t) =
∑

α∈I(r)

eαtSr
α(t)

where I(r) is a finite subset of C such that Sr
α(t) �= 0 for all α ∈ I(r). As

before, we may assume that for all α ∈ I(r), re α ≤ r. Then from the proof of
Lemma 1.3, for r < s, I(r) ⊂ I(s). Lemma 1.2 then implies that Sr

α(t) = Ss
α(t)

for α ∈ I(r).
Our corollary now follows: we let I be the union of the I(r) and let

Fα(t) = Sr
α(t)

where r is chosen so that α ∈ I(r). The previous remarks show that this is
independent of the choice of r.

The following is left to the reader. The minimum exists due to Corol-
lary 1.3.

Proposition 1.4. Suppose that F ∈ C has an asymptotic expansion with
exponents I. Then F ∈ Cr where

r = min{ re α | α ∈ I, Fα �= 0}.

Furthermore, suppose that there is a unique α ∈ I with re α = r and that for
this α, Fα is independent of t. Then

lim
t→−∞

e−αtF (t) = Fα.

We consider a differential equation on C of the form

(1.4) F ′(t) = (Q0 + Q(t))F (t) + G(t)

where G ∈ C,

Q(t) =
d∑

i=1

eβitQi,

(1.5) 1 ≤ β1 ≤ β2 ≤ · · · ≤ βd,

and the Qk are continuous linear operators on V. We also assume that Q0 is
finitely triangularizable, meaning that

(a) There is a direct sum decomposition

(1.6) V =
q∑

i=1

V i

where the V i are closed subspaces of V invariant under Q0.



ASYMPTOTIC EXPANSIONS 719

(b) For each i there is an αi ∈ C and an integer ni such that

(Q0 − αiI)ni
∣∣
Vi = 0.

(c) αi �= αj for i �= j.

For the set of exponents we use I = {αi} + Io where

Io = {
∑

j

βjkj | kj ∈ No}.

The first main result of this section is the following:

Theorem 1.5. Let F ∈ Cr satisfy 1.4. Assume that G has an asymptotic
expansion with exponents from I ′. Then F has an asymptotic expansion with
exponents from I ′′ = ({αi} ∪ I ′) + I0.

Proof. From Corollary 1.3 it suffices to prove that for all n ∈ N, there is
an exponential polynomial Sn(t) with exponents from I ′′ such that

F (t) − Sn(t) ∈ Cr+n.

We reason by induction on n. Let

P (t) =
∑

i

e(βi−1)tQi

so that Q(t) = etP (t). Note βi − 1 ≥ 0 for all i.
We apply the method of Picard iteration to 1.4. Explicitly, 1.4 implies

that

(1.7) F (t) = etQ0F (0) −
∫ 0

t
e(t−s)Q0esP (s)F (s) ds −

∫ 0

t
e(t−s)Q0G(s) ds.

We begin with the term on the far right. Let

G(t) = RG
u (t) + G(t)u

where u > max{r + 1, re αi}, RG
u ∈ Cu, and

(1.8) G(t)u =
∑

α∈I′(u)

Gα(t)eαt

is an exponential polynomial.
Let Bi = (Q0 − αiI)

∣∣
Vi

. On V i,

(1.9) etQ0 = eαitAi(t)

where

Ai(t) = etBi =
ni∑

j=0

Bj
i

tj

j!
.
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It follows that the integrals in the following equality converge where the su-
perscript indicates the ith component in the decomposition 1.6.
(1.10)∫ 0

t
e(t−s)Q0(RG

u )i(s) ds = eαitAi(t)Gi
o −

∫ t

−∞
eαi(t−s)Ai(s − t)(RG

u )i(s) ds

where

Gi
o =

∫ 0

−∞
e−sαiAi(s)(RG

u )i(s) ds.

The second term on the right in 1.10 is easily seen to belong to Cu and the Gi
o

term will become part of S1. Note that its exponents belong to I ⊂ I ′′.
On the other hand, replacing G(s) in 1.7 with Gα(s)ieαs from 1.8 produces

a term of the form
eαitHi(s)e(−αi+α)s

∣∣s=t

s=0

where Hi is a V-valued polynomial. Both terms are exponential polynomials
with exponents from I ′′ which become part of S1.

Next we consider the second term on the right in 1.7. Its ith component
is

(1.11)

−
∫ 0

t
e(t−s)αiesAi(t − s)(P (s)F (s))i ds

=
ni∑

k=0

ni∑
j=0

tkeαit

∫ 0

t
sje(1−αi)sCk,j(P (s)F (s))i ds

where the Ck,j are continuous operators on V i.
Since s → P (s)F (s) belongs to Cr, it follows that for each v < r and each

m ∈ No there is a constant Mv,m such that

(1.12) ‖Ck,j(P (s)F (s))i‖m ≤ Mv,mevs

for all s < 0. Hence, 1.11 is bounded in ‖ · ‖m by

C(|t|N + 1)(e(v+1)t + et( re αi))

where C and N are positive constants. It follows that the left side of 1.11
belongs to Cr+1 if re αi ≥ r + 1.

On the other hand, if re αi < r + 1, then we may express the right side
of 1.11 as

eαitHi(t) +
∫ t

−∞
e(t−s)αiesAi(t − s)(P (s)F (s))i ds

where

Hi(t) = −
∫ 0

−∞
es(−αi+1)Ai(t − s)(P (s)F (s))i ds.
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(Note that the integrals converge in the topology of V since we may choose
v > re αi − 1 in 1.12.) The Hi term is an exponential polynomial which
becomes part of S1 and the other term belongs to Cr+1. It now follows that
there does indeed exist an exponential polynomial S1(t) with exponents from
I ′′ such that F (t) − S1(t) ∈ Cr+1.

Next suppose by induction that we have proved the existence of an ex-
ponential polynomial Sn such that Rn = F − Sn ∈ Cr+n for some n. We
provisionally define

(1.13) Sn+1(t) = etQ0F (0)−
∫ 0

t
e(t−s)Q0esP (s)Sn(s) ds−

∫ 0

t
e(t−s)Q0G(s)u ds

where u is greater than both r + n + 1 and re αi for all i. Then from (inteq)
F − Sn+1 = Rn+1 where

Rn+1(t) = −
∫ 0

t
e(t−s)Q0esP (s)Rn(s) ds +

∫ 0

t
e(t−s)Q0RG

u (s) ds.

Now, we project onto V i as before and split the argument into two cases,
depending on whether or not re αi ≥ r+n+1. An argument virtually identical
to that above shows that in each case, Rn+1 is the sum of an exponential
polynomial, which becomes part of Sn+1, and an element of Cr+1. We leave
the details to the reader.

From this point on, until we begin discussing multi-variable expansions,
we assume that F ∈ Cr satisfies 1.4 where G = 0 so that I ′′ = {αi} + Io.

Proposition 1.6. For all n ∈ No, F (n) ∈ Cr and

F (n) ∼
∑
α∈I

eαtFn
α (t)

where
Fn

α (t) = e−αt dn

dtn
(eαtFα)(t).

Proof. Let Ṽr be the space of all elements F ∈ Cr for which F (n) ∈ Cr for
all n ∈ No, topologized via the semi-norms

F → ‖F (n)‖s,m

where m ∈ N, n ∈ No, ‖ · ‖s,m is as in 1.1, and s < r. It is easily seen that Ṽr

is complete.
Now, let F ∈ Cr satisfy 1.4. Pointwise multiplication by the Qi and by

eβit defines continuous mappings of Cr into itself. Hence, from 1.4, F ′ ∈ Cr.
It then follows by differentiation of 1.4 and induction that F (n) ∈ Cr for all n.
Hence, F ∈ Ṽr.



722 RICHARD PENNEY

For F ∈ Ṽr, let M(F ) be the mapping of (−∞, 0] into Ṽr defined by

(1.14) M(F )(t) : s → F (t + s)

for t ∈ (−∞, 0]. It is easily seen that in fact M(F ) ∈ Cr(Ṽ). Furthermore, if
F satisfies 1.4, then

M(F )′(t) = Q0M(F )(t) +
d∑

i=1

eβitQ̃iM(F )(t)

where
Q̃i = eβisQi.

It follows from Theorem 1.5 that M(F ) has an asymptotic expansion as
a Ṽ-valued map. It is easily seen that if F ’s asymptotic expansion is as in 1.2,
then

M(F )(t) ∼
∑
α∈I

eαteαsM(Fα)(t).

Since
d

ds
is continuous on Ṽ, it follows that

M(F )(n)(t) ∼
∑
α∈I

eαt dn

d sn
(eαsM(Fα)) (t).

Our result follows by letting t = 0 in the above formula.

From Proposition 1.6 and Lemma 1.2, we may formally substitute F ’s
asymptotic expansion 1.2 into 1.4 and equate coefficients of eαt for α ∈ I. We
find that for α ∈ I,

(1.15) F ′
α(t) + αFα(t) = Q0Fα(t) +

m∑
i=1

∑
β∈I,β+βi=α

QiFβ(t).

A partial ordering on I implies that γ � α if γ − α ∈ Io.

Definition 1.7. Let F ∼ F̌ be as in 1.2. We say that Fα(t) is a leading
term and α a leading exponent if α is minimal in I under � with respect to
the property that Fα(t) �= 0.

From the definition of I, for all α ∈ I, there is an i such that α � αi. Since
the set of αi is finite, it follows that each α dominates a leading exponent.

Let α be a leading exponent. Then 1.15 implies that

(1.16) F ′
α(t) + αFα(t) = Q0Fα(t).

Since Q0 is finitely triangularizable, the solution to this differential equation is

Fα(t) = e(Q0−αI)tFα(0).
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Hence, Fα(0) uniquely determines Fα(t). Since Fα(t) is a polynomial, there is
an N such that

0 = F (N)
α (0) = (Q0 − αI)NFα(0).

Hence, α = αi for some i and Fα(0) ∈ V i. Thus all of the leading exponents
come from the αi. It also follows that if Q0 is diagonalizable, then the Fα(t)
are constant for all leading exponents α. In fact, we have the following:

Proposition 1.8. The asymptotic expansion of F is uniquely determined
by the elements Fαi(0).

Proof. According to the above discussion, the given data are sufficient to
determine the leading terms. If there is an α such that Fα(t) is not determined,
then there is a minimal such α. But then 1.15 shows that Fα(t) satisfies a
differential equation of the form(

d

dt
+ (Q0 − αI)

)
Fα(t) = G(t)

where G is known. Since α is not one of the αi, the differential operator on the
left side of this equality has no kernel in the space of V valued polynomials,
showing that Fα is uniquely determined.

Definition 1.9. Let F satisfy 1.4. Then the set of terms in the asymptotic
expansion of the form Fαi(0) is referred to as the set of boundary values for F

and is denoted BV(F ).

It should be noted that if αi is a leading exponent, then Fαi(0) is a nonzero
boundary value but not conversely; i.e., not all nonzero boundary values Fαi(0)
need be leading terms. They will be leading terms if either (a) αi is minimal
with respect to the partial ordering on I or (b) αi  αj implies Fαj (t) = 0.

In the next section we will need to consider asymptotic expansions in
several variables. Let

V(d) = C∞((−∞, 0]d,V)

with the topology of uniform convergence of functions and their derivatives
on compact subsets of (−∞, 0]d. For F ∈ V(d), we define F̃ ∈ C∞((−∞, 0],
V(d − 1)) by

(1.17) F̃ (t1)(t2, . . . , td) = F (t1, t2, . . . , td),

and Cr(d) ⊂ V(d) inductively by

Cr(d) = Cr((−∞, 0], Cr(d − 1)),

and multiple asymptotic expansions inductively as follows:
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Definition 1.10. Let F ∈ Cr(d). We say that F has a d-variable asymptotic
expansion if

(a) F̃ has a Cr(d − 1)-valued asymptotic expansion

F̃ (t1) ∼
∑

α1∈I1

nα1∑
0

tn1eα1t1Gα1,n

where I1 ⊂ C.

(b) Each Gα1,n has a d − 1-variable, V-valued asymptotic expansion

Gα1,n(t) ∼
∑

α∈I(α1)

∑
|N |≤n(α)

tNeα·tFα

where t ∈ (−∞, 0]d−1 and, for each α1 ∈ I1, I(α1) ⊂ Cn−1.

In this case,

(1.18)

F (t) ∼
∑
α∈I

∑
|N |≤m(α)

tneα·tFα,n

=
∑
α∈I

eα·tFα(t)

where
I = {(α1, . . . , αd) ∈ C

d | (α2, . . . , αd) ∈ I(α1)},
m(α) = max{nα1 , n(α2, . . . , αn)}.

Let α, β ∈ I. We say that α ∈ I is minimal if re α < re β in the lexico-
graphic ordering, for all β ∈ I, β �= α. If I is the index set for an asymptotic
expansion and I ∈ Rd then I always has a minimal element, although I might
not have a minimal element in general. The following proposition follows from
induction on Proposition 1.4.

Proposition 1.11. Let F have an asymptotic expansion as in 1.18 and
let α = (α1, . . . , αn) be a minimal element of I. Suppose also that Fα is
independent of t. Then

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

e−α·tF (t) = Fα

where the limit converges in V.

We also note the next result which follows by induction from Lemma 1.3.

Lemma 1.12. Let r ∈ R. The set I(r) of α ∈ I with re αi < r, 1 ≤ i ≤ d,
is finite.
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2. Homogeneous domains

In this section, we discuss those structural features of Siegel domains to be
used. These results are, for the most part, well known. Our basic references are
[12] and [30], although we will at times refer the reader to some of our papers
where the results are presented in notation similar to our current needs. In
particular, the summary given on p. 86–91 and p. 94–97 of [9] covers many of
the essentials. The reader should not interpret such references as a claim of
originality on our behalf.

Any bounded, homogeneous domain in Cn (and hence, every Hermitian
symmetric space of noncompact type) may be realized as a Siegel domain
of either type I or II. Explicitly, let M be a finite-dimensional real vector
space with dimension nM and let Ω ⊂ M be an open, convex cone that does
not contain straight lines. The subgroup of Gl(M) that leave Ω invariant is
denoted GΩ. We say that Ω is homogeneous if GΩ acts transitively on Ω via
the usual representation of Gl(M) on M. (We denote this representation by
ρ.) In this case, Vinberg showed that there is a a triangular subgroup S of GΩ

that acts simply transitively on Ω. This subgroup may be assumed to contain
the dilation maps

(2.1) δ(t) : v → tv

for all t > 0.
Suppose further that we are given a complex vector space Z and a

Hermitian symmetric, bi-linear mapping BΩ : Z × Z → Mc. We shall as-
sume that

(a) BΩ(z, z) ∈ Ω for all z ∈ Z,

(b)BΩ(z, z) = 0 implies z = 0.

The Siegel domain D associated with these data is defined as

(2.2) D = {(z1, z2) ∈ Z ×Mc : im z2 − BΩ(z1, z1) ∈ Ω}.
The domain is said to be type I or II, depending upon whether or not Z is
trivial. The terms “tube type” and “type I” are synonyms.

The Bergman-Shilov boundary B of D is defined as

B = {(z1, z2) ∈ Z ×Mc | im z2 = BΩ(z1, z1)}.
This is the principal open subset of the Shilov boundary referred to in the
introduction.

Suppose further that we are given a complex linear algebraic representa-
tion σ of S in Z such that

(2.3) BΩ(σ(s)z, σ(s)w) = ρ(s)BΩ(z, w) for all z, w ∈ Z.
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The group S then acts on D by

(2.4) s(z, w) = (σ(s)z, ρ(s)w).

We let M act on D by translation:

(2.5) x(z, w) = (z, w + x), x ∈ M.

Finally, we let Z act by

(2.6) z0(z, w) = (z + z0, w + 2iBΩ(z, z0) + iBΩ(z0, z0)).

These actions generate a completely solvable group L which acts simply
transitively on D. Specifically, the group Nb generated by the actions 2.5 and
2.6 is isomorphic to Z ×M with the product

(2.7) (z1, m1)(z0, m0) = (z1 + z0, m1 + m0 + 2 im BΩ(z1, z0)).

Then L is the semi-direct product Nb ×s S where the S action on Nb is as
defined by formula 2.4.

The above product is the Campbell-Hausdorff product on Nb defined by
the Lie bracket

(2.8) [(z1, m1), (z0, m0)] = (0, 4 im BΩ(z1, z0)).

A Siegel domain with the structures defined above is referred to as homo-
geneous. It is a fundamental result that every bounded homogeneous domain
in Cn is biholomorphic to a homogeneous Siegel domain ([12]). It is important
to note that D contains a type I domain Do as a closed submanifold which is
defined by z1 = 0. The subgroup

(2.9) T = MS

acts simply transitively on Do.
We will also use a slight variant on the above construction. Suppose

that in addition to the above data we are given a real vector space X and an
M-valued symmetric real bilinear form RΩ satisfying conditions (a) and (b)
below condition 2.1. Let D ⊂ Xc × Z ×Mc be the set of points (x + iy, z, w)
such that

(2.10) im w − RΩ(x, x) − BΩ(z, z) ∈ Ω.

Such domains are bi-holomorphic with Siegel II domains. To see this, extend
RΩ to an Mc-valued, Hermitian-linear, mapping Rc

Ω on Z ′ = Xc. Let φ be the
bi-holomorphism of Z ′ ×Z ×Mc into itself defined by

φ(z′, z, w) = (z′, z, 2w − iRc
Ω(z′, z′)).
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Then, as the reader can check, φ transforms D onto the Siegel II domain defined
by Ω, Z ′ ×Z, and Rc

Ω + BΩ.
Let co ∈ Ω be a fixed base point. We use bo = (0, ico) ∈ D as the base

point for D. The map g → g · bo identifies L and D. We also identify L with
the real tangent space of L at bo.

Let P be the complex subalgebra of Lc corresponding to T 01 and let
J : L → L be the complex structure so that P is the −i eigenspace of J . Then
J satisfies the “J-algebra” identity:

(2.11) J([X, Y ] − [JX, JY ]) = [JX, Y ] + [X, JY ].

Also
J : Z → Z,

J : S → M,

J : M → S.

It follows that S and M are isomorphic as linear spaces. In fact, from the
comments following Lemma (2.1) of [9],

(2.12)

JX = −dρ(X)co X ∈ S,

m = dρ(Jm)co m ∈ M,

JX = iX X ∈ Z
where i is the complex multiplication of Z, ‘dρ’ is the representation of S
obtained by differentiating ρ and co is the base point in Ω.

We shall require a description of an L-invariant Riemannian structure on
the domain. Koszul ([20, Form. 4.5]) showed that the Bergman structure is
defined by a scalar product of the form

(2.13) g(X, Y ) = µ([JX, Y ])

where µ is an explicitly described element of M∗ ⊂ L∗. We assume only that
µ ∈ M∗ is such that 2.13 defines an L-invariant Kähler structure on D.

Since g is J-invariant,

µ([JX, JY ]) = −µ([J2X, Y ]) = µ([X, Y ]).

The scalar product g is the real part of the Hermitian scalar product on
Lc defined by

gHer(X, Y ) = g(X, Y ) + ig(X, JY ).

We will also make use of the Hermitian scalar product gc on Lc defined by

(2.14) gc(Z, W ) =
1
2
g(Z,W )

where g is extended to Lc by complex bilinearity.
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In [9], we describe a particular decomposition

S = A + NS

where A is a maximal, R-split torus in S and NS is the unipotent radical
of S. The rank d of D is, by definition, the dimension of A. This splitting
has the property that for all A ∈ A, the operators ad A are symmetric with
respect to g on L. In particular, we may decompose L into a direct sum of
joint eigenspaces for the adjoint action of A.

An element λ ∈ A∗ is said to be a root of A if there is a nonzero element
X ∈ L such that

[A, X] = λ(A)X

for all A ∈ A. For λ ∈ A∗, the set of X that satisfies the above equation is
denoted Lλ and is referred to as the root space for λ. Then

(2.15) [Lλ,Lβ] ⊂ Lλ+β.

There is an ordered basis λ1, λ2, . . . , λd for A∗ consisting of roots for which
the root space of λi is a one-dimensional subspace Mii of M. All of the other
roots are one of the following types

(a) βij = (λi − λj)/2 where i < j,

(b) β̃ij = (λi + λj)/2,

(c) λi/2.

We let ∆S be the set of roots of type (a), ∆M be the set of roots of type (b)
and ∆Z be the set of roots of type (c).

The root spaces for roots of types (a), (b), and (c) belong, respectively,
to S, M and Z and are denoted, respectively, by Sij , Mij and Zi, which is a
complex subspace of Z. We let dij = dji denote the dimension of Mij , which
for i < j, is also the dimension of Sij . We let fi be the dimension (over C)
of Zi. In the irreducible symmetric case, the dij are constant as are the fi,
although these dimensions are not constant in general. In particular, some
may be 0.

We define
NS =

∑
1≤i<j≤d

Sij .

The operator J maps each Sij onto Mij . We note for future reference
that from 2.15

(2.16) [Zi,Zj ] ⊂ Mij .

The ordered basis of A that is dual to the basis formed by {λi} is denoted
{Ai} and the span of Ai is denoted Sii. For each i we let Ei = −JAi ∈ Mii.
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Then

(2.17) [Ai, Ei] = Ei.

For each 1 ≤ i ≤ d, we set

(2.18) µi = 〈Ei, µ〉 = g(Ai, Ai) = g(Ei, Ei).

The element

E =
r∑
1

Ei

plays a special role:

JE =
r∑
1

Ai.

It follows that

(2.19)
ad JE

∣∣
M=I,

ad JE
∣∣
Z =I/2.

The first equality tells us that JE is the infinitesimal generator of the one-
parameter subgroup t → δ(t). Since

δ(t)co = tco

we see that dρ(JE)co = co. Hence

E = −J(JE) = dρ(JE)co = co.

Thus, E is the base point of Ω. In particular, E ∈ Ω.
It follows from formulas 2.11 and 2.19 that for m ∈ M and X ∈ S,

(2.20)
m = [Jm, E],

X = J [X, E].

We say that a permutation σ of the indices {1, 2, . . . , d} is compatible if

∆S = {(λσ(i) − λσ(j))/2 | |1 ≤ i < j ≤ d}.

This is equivalent to saying that for i < j, (λσ(j) − λσ(i))/2 is not a root. If σ

is compatible, then we may replace the sequence λi with λσ(i) in the preceding
discussion. This has the effect of replacing Mij and Sij with Mσ(i)σ(j) and Sij

with Sσ(i)σ(j) respectively.

Definition 2.1. We say that λi is singular if (λi − λj)/2 is not a root for
all j > i. We say that the root sequence is terminated if there is an index dτ

such that the set of singular roots is just {λi | dτ ≤ i ≤ d}. We refer to dτ as
the point of termination and say that D is nontube-like if dτ = d and λi/2 is
a root for all 1 ≤ i ≤ d.
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Lemma 2.2. There is a compatible permutation σ such that {λσ(i)} is
terminated.

Proof. Our lemma follows from the simple observation that if λi is singular
where i < d, then the permutation that interchanges i and i+1 is compatible.

From now on, we assume that the λi are terminated. This has the conse-
quence that Sij = 0 if dτ ≤ i < j ≤ d.

We define,

(2.21)

S1∗ =
∑
1≤m

S1m,

N1∗ =
∑
1<m

S1m,

M1∗ =
∑
1<m

M1m,

S>1 =
∑

Sij (1 < i ≤ j ≤ r),

M>1 =
∑

Mij (1 < i ≤ j ≤ r),

Z>1 =
∑

2≤i≤f

Zi.

Then S1∗ is a Lie ideal in S and S>1 is a complimentary Lie sub-
algebra. Also, M1∗ is ad (S) invariant. We identify M>1 with the quotient
M/(RE1 + M1∗). The image Ω>1 in M>1 of the cone Ω is a cone which is
homogeneous under S/S1∗ = S>1. In fact, Ω is the orbit of c>1 in M>1 under
S>1 where

c>1 =
d∑
2

Ei.

The data BΩ

∣∣(Z>1 ×Z>1), M>1 and Ω>1 define a Siegel domain on which

L>1 = (Z>1 ×M>1) ×s S>1 ⊂ L

acts simply transitively.
The group

L1∗ = (Z1 ×M1∗) ×s S1∗

also acts simply transitively on a Siegel domain. Explicitly, for X, Y ∈ S1∗,
there is a scalar R(X, Y ) such that

[X, [Y, E1]] = R(X, Y )E1.

Similarly, for z, w ∈ Z1,

BΩ(z, w) = Bo
Ω(z, w)E1
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where Bo
Ω is a C-valued Hermitian form on Z1. Then L1∗ acts simply transi-

tively on the Siegel II domain D1∗ ⊂ ((S1∗)c ×Z1 × C) defined below formula
2.10 by these forms. This domain is in fact equivalent with the unit ball in
Cd1+f1+1.

We note the following (well known) description of the open S-orbits on
M. Lacking a good reference, we include the proof. Note that it follows that
E = EΩ, yielding yet more notation for the base point co ∈ Ω.

Proposition 2.3. Each open ρ-orbit O in M contains a unique point of
the form

(2.22) EO =
d∑
1

εiEi

where εi = ±1.

Proof. We reason by induction on the dimension d of A. If d = 1, then
M = R and S = R+, and so the result is clear.

Now suppose that the theorem is true for all ranks less than d.
Next, let O ⊂ M be an open S-orbit and let M ∈ O. We claim first that

there is a unique n ∈ N1∗ such that

ρ(n)M = aE1 + Mo

where Mo ∈ M>1 and a ∈ R. To see this, write

(2.23) M = aE1 + W + Mo

where a ∈ R, W ∈ M1∗ and Mo ∈ M>1.
Let N ∈ N1∗. Then, ad (N) maps M>1 into M1∗ and M1∗ into M11.

Thus,

(2.24) ρ(expN)M = aE1 + ad (N)W +
ad (N)2

2
Mo

+ [W + ad (N)Mo] + Mo

where the term in brackets is the M1∗ component of ρ(expN)M . We need to
show that there is a unique N ∈ N1 that makes this term zero. This will be
true if ad (Mo)|N1∗ has rank k where k = dimM1∗ = dimN1∗.

To show this, note that from the following identity, the set X of all X ∈
M>1 such that rank(ad (X)|N1∗) = k, is S>1-invariant and is nonempty since
it contains E1.

ad (ρ(s)X) = ρ(s) ad (X)ρ(s−1).

Hence, X is a Zariski-dense, open subset of M>1 which must, therefore, in-
tersect the image of O in M>1, which is just the S>1 orbit of Mo. Our claim
follows.
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Thus, we may assume that W in formula 2.23 is zero. From the inductive
hypothesis, there is a unique s1 ∈ S>1 such that

ρ(s1)Mo =
d∑
2

εiEi

where εi = ±1. Thus, we may assume that Mo has this form.
Finally, we note that in 2.23, a �= 0 since otherwise, [A1, Mo] = 0, which

implies that the dimension of the S-orbit of M is less than that of M. This
allows us to transform Mo into a point of the form stipulated in the proposition
using a unique element of the one-parameter subgroup generated by A1. Our
proposition follows.

Lemma 2.4. Let O be an open ρ orbit in M and let EO ∈ O be as in
Proposition 2.3. Let dm denote Lebesgue measure on M and let ds be a fixed
Haar measure on S. Then there is a constant CO such that∫

O
f(m) dm = CO

∫
S

χρ(s)f(ρ(s)EO) ds

for all integrable functions f on O.

Proof. Let Λ(f) be the value of the quantity on the left of the above
equality. Then, for all so ∈ S,

Λ(f ◦ ρ(so)) = χρ(s−1
o )Λ(f).

The quantity on the right side of the above equality satisfies the same
invariance property. It follows from the uniqueness of Haar measure that the
left and right sides are equal up to a multiplicative constant that depends only
on the orbit in question. We normalize ds so that this constant is 1 for Ω.

Remark. It can be shown that CO is independent of O. We will not,
however, need this fact.

Our main application of the above proposition will be to orbits of ρ’s
contragredient representation, ρ∗ in M∗. The root functionals of A on M∗

are the negatives of those on A. Hence the corresponding ordered basis
for A∗ is −λd,−λd−1, . . . ,−λ1 and the corresponding ordered basis for A is
−Ad,−Ad−1, · · · − A1.

We define elements E∗
j ∈ M∗ by

〈Ei, E
∗
j 〉 = δijµi.

We use the element
E∗ =

∑
j

E∗
j
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as the base point for Ω∗. (It is known that this element belongs to Ω∗.) Given
an open ρ∗ orbit O, the element corresponding to EO in Proposition 2.3 will
be denoted E∗

O.
If Lo is any vector subspace of L, we set

PLo = spanC{X + iJX |X ∈ Lo}.

Then P splits as
P = PT ⊕ PZ .

Our first use of these constructs will be to prove the following:

Proposition 2.5. The submanifold Do is totally geodesic in D.

Proof. Let X and Y be vector fields on D that are tangent to Do on Do.
To show that Do is totally geodesic, it suffices to show that �XY is also tangent
to Do. By homogeneity, it suffices to prove this at the base point bo for left-
invariant vector fields on L.

Let
Z = (X − iJX)/2 and W = (Y − iJY )/2.

Then Z and W belong to Q where

Q = P.

Now,

(2.25)
�XY = �Z+Z(W + W )

= �ZW + �ZW + �ZW + �ZW.

It suffices to show that each of these terms is in Tc.
In [9], we computed a formula for the connection on left-invariant vector

fields on D. To state this formula, let QT and QZ be, respectively, the conju-
gates of PT and PZ . Let πQ be the projection to Q along P. For each Z ∈ Q,
we define an operator M(Z) : Q → Q by

M(Z)(W ) = πQ([Z, W ]).

We also define M∗(Z) : Q → Q by

gc(M∗(Z)W1, W2) = gc(W1, M(Z)W2),

where W1 and W2 range over Q. These operators extend uniquely to operators
(still denoted M and M∗) which map Lc into itself and satisfy

M(Z)W = M(Z)W,

M∗(Z)W = M∗(Z)W.
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The significance of M and M∗ is that they describe the connection. Specif-
ically, on p. 85, [9], we showed that for Z and W in Q,

�ZW = M(Z)W,

�Z(W ) = −M∗(Z)W.

From formula 2.25, and the observation that the connection is real, the
statement that Do is totally geodesic will follow if we can show that for Z ∈ QT ,
M(Z) and M∗(Z) both map QT into QT . The first statement follows from the
fact that Tc is a subalgebra and the second follows from the next easily verified
observations, where the orthogonal compliment is with respect to gc in Q.

Q⊥
T = QZ , [QT ,QZ ] ⊂ Z.

Next we compute the Laplace-Beltrami operator ∆D for D. We choose a
g-orthonormal basis Xα

ij for each Mij and let Y α
ij = JXα

ij be the corresponding
orthogonal basis for Sij , where 1 ≤ α ≤ dij = dim(Mij). We assume that this
basis is chosen so that Xα

ii = µ
−1/2
i Ei. Hence Y α

ii = µ
−1/2
i Ai.

Similarly, we choose a C-basis Xα
j for Z where 1 ≤ α ≤ fj = dimC(Zj)

that is orthonormal with respect to gHer and let Y α
j = JXα

j so that the Xα
j ,

together with the Y α
j , form a real orthonormal basis for Z.

From [22, p. 86], ∆DF is the contraction of �2F . Hence

(2.26)

∆Df = −
∑

α,i≤j

�2f(Xα
ij , X

α
ij) + �2f(Y α

ij , Y α
ij )

−
∑
α,i

�2f(Xα
i , Xα

i ) + �2f(Y α
i , Y α

i )

= [Ao −
∑

α,i≤j

(Xα
ij)

2 + (Y α
ij )2 −

∑
α,i

(Xα
i )2 + (Y α

i )2]f

where
Ao =

∑
α,i≤j

�Xα
ij
Xα

ij + �Y α
ij

Y α
ij +

∑
α,i

�Xα
i
Xα

i + �Y α
i

Y α
i .

Lemma 2.6. The component of ∆D which is tangent to A is

(2.27) D =
∑

i

µ−1
i (A2

i − (1 + di + fi)Ai)

where di =
∑

j>i dij

Proof. It is clear from 2.26 that the second order term of ∆ is as stated. To
compute the first order term, we note that since ∆ is formally self adjoint with
respect to the Riemannian volume form, the operator in formula 2.26 must
be formally self adjoint with respect to left invariant Haar measure on L. Let
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χL be the modular function for L. Then the formal adjoint of a left-invariant
vector field X is

X∗ = −X − dχL(X).

It follows from formula 2.26 that

∆D =∆∗
D

=∆D − 2Ao

− 2
∑

α,i≤j

dχL(Xα
ij)X

α
ij + dχL(Y α

ij )Y α
ij −2

∑
α,i

dχL(Xα
i )Xα

i + dχL(Y α
i )Y α

i .

Note that there is no constant term since ∆D annihilates constants. Thus,
since dχL is trivial on the nilradical and Yii = µ

−1/2
i Ai, the above equality

simplifies to
∆D = ∆D − 2Ao − 2

∑
i

µ−1
i dχL(Ai)Ai.

Our lemma follows since

−dχL(Ai) = Tr ad Ai

=
∑
j<k

djk
λj − λk

2
(Ai) +

∑
j≤k

djk
λj + λk

2
(Ai) +

∑
j

2fj
λj

2
(Ai)

= 1 +
∑
j<k

djkλj(Ai) + fi = 1 + di + fi.

Lemma 2.7. Let EP = JE − iE ∈ P. Then

M(EP)Z =

{
Z (Z ∈ QT )
Z

2
(Z ∈ QZ).

Proof. Let Z ∈ QT . Then Z = X − iJX where X ∈ S. Hence

[EP , Z] = [JE − iE, X − iJX]

= [JE − iE, X + iJX] − 2i[JE − iE, JX]

= −2i[JE, JX] mod P
= −2iJX mod P
= (X − iJX) − (X + iJX) mod P
= X − iJX mod P.

Thus, M(EP) is the identity on QT .
Since M centralizes Z, for Z ∈ QZ ,

M(EP)Z = [EP , Z] = [JE, Z].

Our lemma follows from formula 2.19.
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Corollary 1.

R(EP , EP)Z =
{ −2Z (Z ∈ QT )

−Z (Z ∈ QH)
.

Proof. This follows immediately from the next formula which is a special
case of Theorem (1.9), page 86 of [9]. (Note that from the previous lemma,
M∗(EP) = M(EP).) Also,

R(EP , EP) = − M∗(EP)M(EP) + M(EP)M∗(EP)

− M∗(M(EP)EP) − M(M(EP)EP).

The following result is the main step in the characterization of H2
HJK.

Theorem 2.8.The Laplace-Beltrami operator for Do is a linear combina-
tion of Hua operators on D.

Proof. Let ∆o be the differential operator on L defined by

∆of = −gc(HJK(f)EP , EP))

where EP is as above. The identity

gc(R(Z,W )X, Y ) = gc(R(X, Y )Z, W )

shows that
∆of = −

∑
Cij�2f(Zi, Zj)

where
Cij = gc(R(EP , EP)Zi, Zj)

and where Zi is a gc-orthonormal basis of P.
Choosing this basis so that {Z1, . . . , Zn} ⊂ QT and {Zn+1 . . . Zd} ⊂ QZ ,

we see that

∆of = −
n∑
1

2�2f(Zi, Zi) −
d∑

n+1

�2f(Zi, Zi)

= ∆Dof + ∆Df.

(Note that from Proposition 2.5 the Do connection is obtained by restriction
from the D connection.) Hence

∆Do = ∆o − ∆D.

This proves the lemma since, from Proposition (1.4) of [9], ∆D is a Hua oper-
ator, while ∆o is, by definition, a Hua operator.

For later purposes, we will require an explicit description of ∆Do − ∆D.
From formulas 2.26 and 2.27 and the analogous formulas for ∆Do , we see that

(2.28) ∆Do − ∆D = ∆H − A′
o
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where

(2.29) ∆H =
∑
α,i

(Xα
i )2 + (Y α

i )2

and

(2.30) A′
o =

∑
i

fi

µi
Ai.

3. Hua boundary values

We will apply the results from Section 1 to the eigenvalue problem for
the “strongly diagonal Hua operators” as defined in [9, Ths. (2.18) and (3.6)].
It follows from (2.10) and (2.16) of [9] that Xii and Yii in [9] equal what we
have called Ei and Ai respectively, while ci = (Ai, Ai) = µi. Then Xα

ij and

Y α
ij in [9] equal our µ

1/2
i Xα

ij and µ
1/2
i Y α

ij respectively. The Xα
j and Y α

j from [9]
correspond to our elements of the same name.

Thus, in our current notation, in the tube case the strongly diagonal Hua
operators are

HJKT
k = µ−1

k

(
∆k − dk + 2

µk
Ak −

∑
i<k

dik

µi
Ai

)

where dk =
∑

k<j dkj and

(3.1)
∆k =2µ−1

k (A2
k + E2

k)

+
∑

i<k,α

(Y α
ik)2 + (Xα

ik)
2 +

∑
k<j,α

(Y α
kj)

2 + (Xα
kj)

2.

In the general Siegel II case, the diagonal Hua operators are defined by

(3.2) HJKk = HJKT
k − fk

µ2
k

Ak + µ−1
k

(∑
α

(Xα
k )2 + (Y α

k )2
)

where HJKT
m is as in 3.1. We consider the above equalities as defining elements

of A(L) which then act as left invariant differential operators on C∞(L).
Actually, we will need to consider these operators acting on more general

spaces which are most easily described in terms of (right) induced representa-
tions. Specifically, suppose that G is a Lie group and Go a closed subgroup.
Let πo be a differentiable representation of Go in a complete topological vec-
tor space V. Let C∞(G, πo) be the subspace of C∞(G,V) consisting of those
functions F such that

F (gog) = πo(go)F (g)
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for all g ∈ G and go ∈ Go. We give C∞(G,V) the topology of uniform con-
vergence of functions and their derivatives on compact subsets of G and give
C∞(G, πo) the subspace topology.

We define the C∞, right-induced, representation

π∞
G = ind∞πo = ind∞(Go, G, πo)

of G acting on C∞(G, πo) by

πG(g1)F (g) = F (gg1).

We make use of several simple observations which are well known and
easily checked. First, suppose that Go is normal in G and G1 is a closed
subgroup such that GoG1 = G. Then restriction defines a topological vector
space isomorphism

(3.3) C∞(G, πo) → C∞(G1, πo

∣∣Go ∩ G1)

which intertwines the G1 actions. Furthermore

πG(g2)F (g) = πo(gg2g
−1)F (g)

for all g2 ∈ G2 and g ∈ G. If X ∈ G2, then

(3.4) πG(X)F (g) = πo( Ad (g)X)F (g).

(We typically use the same symbol to denote the representation of the Lie
algebra obtained by differentiating a representation of the corresponding Lie
group.)

Now, suppose that πo is a differentiable representation of NL on V. We
identify A with Rd via the mapping t → a(t) where for t = (t1, . . . , td),

a(t) = exp

(∑
i

tiAi

)
.

The isomorphism 3.3 then identifies C∞(L, πo) with C∞(Rd,V). We say that
F ∈ C∞(L, πo) = C∞(Rd,V) is diagonally Hua-harmonic if F is annihilated
by the image of the strongly diagonal Hua system under πL.
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Cases of particular interest are:

(a) πo is the right regular representation of NL in V = C∞(NL). Then πL

is the right regular representation of L in C∞(L).

(b) πo is the right regular representation of NL in the space of distributions
V = D(NL) on NL.

(c) πo is the right regular representation of NL in the space of Schwartz
distributions V = S ′(NL) on NL.

The spaces V in (b) and (c) are particularly important. Specifically, for
F ∈ C∞(L), let F̃ : L → D(NL) be defined by

〈φ, F̃ (g)〉 =
∫

NL

φ(n)F (ng) dg

where φ ∈ C∞
c (NL). Then F̃ ∈ C∞(L, πo) where πo is the right regular

representation of NL in D(NL). Furthermore, F is diagonally Hua-harmonic
if and only if F̃ is. From the example on page 282 of [32], there are positive
constants C and r′ such that

eτ(x) ≤ C‖ Ad (x)‖r′

where ‖ · ‖ denotes the operator norm with respect to any conveniently chosen
norm on L. It follows that if F satisfies 0.1, then

F̃
∣∣A ∈ Cr(d)(S ′(NL))

where Cr(d) is as defined below formula 1.17. Similarly, if F satisfies 0.2, then

F̃
∣∣A ∈ Cr(d)(D(NL)).

Let

Hi =
µ2

i

2
πL(HJKi).

Then, according to 3.4, as an operator on C∞(Rd,V),

(3.5)

Hi = Di + e2tiπo(E2
i ) + etiπo(Zi)

+
∑
j>i

eti−tjπo(Yij) + eti+tjπo(Xij)

+
∑

1≤j<i

µi

µj
etj−tiπo(Yji) + etj+tiπo(Xji)
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where

Di =
∂2

∂t2i
− γi

∂

∂ti
−

∑
1≤j<i

djiµi

2µj

∂

∂tj

Yij =
µi

2

∑
γ

(Y γ
ij )

2

Xij =
µi

2

∑
γ

(Xγ
ij)

2

Zi =
µi

2

∑
γ

(Xγ
i )2 + (Y γ

i )2

and

(3.6) γi =
di + fi + 2

2
.

(We define Xij = Yij = 0 if (λi − λj)/2 /∈ ∆S . Similarly, we set Zi = 0 if the
space λi/2 /∈ ∆Z .)

For i = 1, . . . , d let ρi ≥ 0 and Gi ∈ Cr(d) be given. We are interested in
studying the system

(3.7) HiF = ρiF + Gi, i = 1, 2, . . . , d

for F ∈ Cr(d).
Let notation be as in 2.21. From the comments following 2.21, L>1 may be

identified with a Siegel domain. Let HJK>1 be the corresponding Hua system
for L>1 and

Ho
i =

µ2
i

2
πG(HJK>1)i−1

where i ≥ 2 and we embed A(L>1) into A(L) in the obvious manner. Formulas
3.1 and 3.2 imply

(3.8) Hi = Ho
i − δi

∂

∂t1
+ et1−tiπo(Y1i) + et1+tiπo(X1i).

Our main result is:

Theorem 3.1. Let F ∈ Cr(d) satisfy 3.7 where the Gi have a V valued
asymptotic expansion over (−∞, 0]d. Then F has an asymptotic expansion
over (−∞, 0]d.

Proof. Let A0 ∈ A be the subgroup defined by t1 = 0 and let A1 be
defined by ti = 0 for all i > 1. Let L1 = A0NL and define

π1 = ind∞(NL, L1, πo),

realized in W = C∞(Rd−1,V). Then

(3.9) πL = ind∞(L1, L, π1)
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which we realize in C∞(A1,W) = C∞(R,W) using the correspondence 3.3.
Thus, F and G1 correspond to the elements F̃ and G̃1 in C∞(R,W) defined
as in formula 1.17. Actually, F̃ and G̃ are valued in Cs(d − 1) for some s. Let

C∞(d − 1) = ∪∞
k=0C−k(d − 1),

given the direct limit topology. It is clear from formula 3.4 that for all X ∈
L1, π1(X) acts continuously on C∞(d − 1). From Definition 1.10, G̃1 has an
asymptotic expansion as a C∞(d − 1) valued map.

Equation 3.7, with i = 1, is equivalent to the C∞(d − 1) valued ordinary
differential equation DF̃ = G̃1 where

(3.10) D =
d2

dt21
− γ1

d

dt1
+ et1P1 + e2t1P2 − ρ1,

and

P1 = π1


Z1 +

∑
1<j≤d1

Y1j + X1j


 ,

P2 = π1(E2
1).

Lemma 3.2. F̃ ′ ∈ Cs((−∞, 0], C∞(d − 1)) for some s.

Proof. Let
H(t) = e−γ1tF̃ ′(t).

Then
H ′(t) = e−γ1t(F̃ ′′(t) − γ1F̃

′(t))

= e−γ1tG̃1(t) − e−γ1t
(
etP1 + e2tP2 − ρ1

)
F̃ .

Hence

H(t) = H(0) −
∫ t

0
e−γ1sG̃1(s) ds

−
∫ t

0

(
e(1−γ1)sP1 + e(2−γ1)sP2 − ρ1e

−γ1s
)

F̃ (s) ds.

Let ρ be any continuous semi-norm on C∞(d − 1). Applying the triangle in-
equality for ρ to the preceding inequality, and using the continuity of the
Pi on C∞(d − 1) together with F̃ ∈ Cr((−∞, 0], C∞(d − 1)), we see that
H ∈ Cs((−∞, 0], C∞(d − 1)) for some s.

The equation DF̃ = G̃1 is equivalent to the C∞(d− 1)×C∞(d− 1) valued
first order system

(3.11)
dY

dt1
= M0Y + et1M1Y + e2t1M2Y + Z
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where

Y =
[

F̃

F̃ ′

]
,

M0 =
[

0 1
ρ1 γ1

]
,

M1 =
[

0 0
−P1 0

]
,

M2 =
[

0 0
−P2 0

]
,

Z =
[

0
G̃1

]
.

Also Z has an expansion since G̃1 does.
Theorem 1.5, along with Lemma 3.2, implies that Y has an asymptotic ex-

pansion. Projection onto the first component shows that F̃ has an asymptotic
expansion. Let

(3.12)

F̃ (t1) ∼
∑
α∈I1

eαt1F̃α(t1),

G̃1(t1) ∼
∑
α∈I1

eαt1G̃1
α(t1).

For i > 1

(3.13) Hi = −δi
∂

∂t1
+ et1Qi + Ho

i

where δi = µid1i/(2µ1) and

Qi = π1(Y1i) + π1(X1i).

Applying Hi term-by-term to 3.12 shows that for each α ∈ I1,

(3.14)
(
−δi

d

dt1
− δiα + Ho

i − ρi

)
F̃α = −QiF̃α−1 + G̃1

α.

Write

F̃α(t1) =
nα∑
0

F̃α,ntn1 , G̃1
α(t1) =

nα∑
0

G̃1
α,ntn1 .

Then

(3.15) (Ho
i − δiα − ρi)F̃α,n = nδiF̃α,n+1 − QiF̃α−1,n + G̃1

α,n.

In particular,

(3.16) (Ho
i − δiα − ρi)F̃α,0 = −QiF̃α−1,0 + G̃1

α,0.
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We will show that each of the F̃α,k has an asymptotic expansion. If α is
any exponent, then there is an n ∈ No such that αo = α − n is an exponent,
but αo − k is not for any k ∈ No. In particular, F̃αo−1,0 = 0. Hence, from 3.16,
F̃αo,0 satisfies the Hua system on L>1 relative to the eigenvalues δiαo + ρi.
Since F̃αo,0 ∈ C∞(d − 1), it belongs to Cs(d − 1) for some s. Hence we may
assume by induction that F̃αo,0 has an asymptotic expansion over (−∞, 0]d−1

with exponents from some set I(αo) ⊂ Cd−1. If δi �= 0 for some i, we may
solve formula 3.15 for F̃αo,n+1, concluding, by induction, that F̃αo,k has an
asymptotic expansion. If all of the δi = 0, then the existence of an asymptotic
expansion for F̃αo,k follows as in the k = 0 case. Hence, F̃αo also has such an
expansion.

It now follows from formula 3.16 and induction on k, that for all k ∈ No,
F̃αo+k has an asymptotic expansion, proving our theorem.

Our next goal is to define the boundary values of a solution. For the
remainder of this section we assume that F satisfies the hypotheses of Theo-
rem 3.1 where all of the Gi = 0.

Let E ⊂ A∗ be the set of exponents for F so that

(3.17) F (t) ≈
∑

Fα(t)e〈t,α〉, α ∈ E ,

where the Fα are nonzero, V valued polynomial functions on A = Rd.
Given a constant coefficient differential operator D on C∞(A), we define

a polynomial (the characteristic polynomial) on A∗ by

D(e〈t,α〉) = pD(α)e〈t,α〉.

Let pi = pDi . Then for
α =

∑
αiλi,

(3.18) pi(α) = α2
i − γiαi − ρi −

∑
1≤j<i

djiµi

2µj
αj .

Let
E0 = {α | pi(α) = 0, i = 1, . . . , d}.

Notice that pi depends only on αj , j ≤ i. It follows that we may compute
the elements of E0 inductively. Specifically, we compute the αi+1 by solving
the equation

pi+1

(
αi+1λi+1 +

i∑
1

αiλi

)
= 0

where the terms in the summation range over the (known) roots of p1, . . . , pi.
In particular, Eo has at most 2d elements.
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Let P(Rd,V) be the space of V valued polynomials on Rd.

Definition 3.3. The boundary value map for F is the function BV : Eo →
P(Rd,V) defined by BV (F )(α) = Fα.

Remark. The above definition is not entirely consistent with Definition 1.9
where the boundary map is valued in V rather than P(Rd,V). Note, how-
ever, that when we convert an nth order equation to a first order system, our
boundary map will in fact be valued in Vn. Specifically, if F solves an nth

order equation, then its αth boundary value is the element of Vn whose kth

component is dk

dtk
(eαtFα)(0). Thus, the real difference between 1.9 and 3.3 is

the number of terms of Fα(t) utilized. Of course, if Fα(t) has degree 0, which
is the generic case, there is essentially no difference.

Our goal is to prove that F is uniquely determined by BV(F ). We first
note the following lemma.

Lemma 3.4. Suppose that D is a constant coefficient differential operator
on C∞(Rd) which does not annihilate constants. Then D is injective on the
space of polynomial functions on Rd.

Proof. This is a simple consequence of the observation that for any ho-
mogeneous polynomial P of degree d

D(P ) = D(1)P + terms of lower degree.

We leave the details to the reader.

Let
∆ = span2Z(∆S ∪ ∆M ∪ ∆Z),

∆+ = span2No
(∆S ∪ ∆M ∪ ∆Z),

where ∆· is as described below 2.15.
The following proposition proves that F is uniquely determined by its

boundary values.

Proposition 3.5. E ⊂ Eo + ∆+. Also F = 0 if and only if BV(F ) = 0.

Proof. It follows from Proposition 1.6 and the proof of Theorem 3.1 that
3.17 may be differentiated term-by-term. Applying the Hua system to 3.17
yields the equality

(3.19)

Dα
i Fα = − πo(E2

i )Fα−2λi
− πo(Zi)Fα−λi

−
∑
j>i

πo(Yij)Fα−(λi−λj) + πo(Xij)Fα−(λi+λj)

−
∑

1≤j<i

µi

µj
(πo(Yji)Fα−(λj−λi) + πo(Xij)Fα−(λi+λj))
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where
Dα

i F = e−〈t,α〉Di(e〈t,α〉F ).

Note that 3.19 expresses Dα
i Fα as a linear combination of terms Fα−β

with β ∈ ∆+. Lemma 1.12 shows that there is a β ∈ ∆+ with the property
that α′ = α − β ∈ E but α′ − γ /∈ E for any γ ∈ ∆+. Hence, from 3.19,

Dα′
i Fα′ = 0

for all i. It follows from Lemma 3.4 that if α′ /∈ Eo, Dα′
i is injective on the space

of polynomials contradicting α′ ∈ E ; hence α′ ∈ Eo, proving E ⊂ Eo + ∆+.
The preceding argument shows that if E is nonempty, then E ∩ Eo is also

nonempty. Hence, if Fα = 0 for all α ∈ Eo, then Fα = 0 for all α. We must
show that then F = 0.

Rank 1 case. For ω ∈ V∗ and g ∈ L, let

(3.20) Fω(g) = 〈F (g), ω〉.

Then Fω is a C-valued Hua-harmonic function. It suffices to show that Fω = 0
for all ω ∈ V∗. Thus it suffices to consider scalar-valued solutions.

Let G : NL × R+ → C be defined by

G(n, t) =
{

F (n exp((log t)A1)) t > 0

0 t ≤ 0
.

Then G vanishes to infinite order at 0, showing that G is C∞ on NL × R. We
apply Theorem 2 of [3] with

P = H1 − ρ1,

m = k = 2, p = 0. Comparison with equation 1 in [3] shows that the hypothe-
ses of [3] are met. It follows, then, that G is zero on a neighborhood of e in
NL ×R. Since P is analytic-hypoelliptic, it follows that F is zero, proving our
result in the rank one case.

Rank d case. We assume by induction that the result is known for all
lower ranks. We repeat the discussion leading up to 3.12. Let αo be a leading
exponent for F̃ . Then, as before, F̃αo,0 satisfies the Hua system on L>1 relative
to the eigenvalues δiαo+ρi. The set of roots of the corresponding characteristic
polynomials are

E ′
o = {(α2, . . . , αd) ∈ C

d−1 | (αo, α2, . . . , αd) ∈ E}.

and the boundary value map is

(3.21) BV′(Fαo,0)(α2, . . . , αd)(t2, . . . , td) = Fα(0, t2, . . . , td)

where α = (αo, α2, . . . , αd).
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Then, BV(F ) = 0 implies BV′(Fαo,0) = 0; hence, from the inductive
hypothesis, F̃αo,0 = 0. If any one of the δi �= 0, we can iterate formula 3.15 to
show that F̃αo = 0. If all of the δi = 0, then 3.14 shows that F̃αo(t1) satisfies
the Hua system on L>1 for all t1 ∈ R. Also

(3.22) BV′(Fαo(t1))(α2, . . . , αd)(t2, . . . , td) = eαot1Fα(t1, t2, . . . , td)

which implies once again that F̃αo = 0.
Hence, there are no leading terms in the (one variable) asymptotic expan-

sion of F̃ , showing that F̃ is asymptotic to 0. To see that F itself is zero,
notice that H1 ∈ A(L1∗). From 3.3 and 3.9

πL

∣∣L1∗ = ind∞(N1∗, L1∗, π1

∣∣N1∗).

Our argument is finished by repetition of the d = 1 argument with P = H1−ρ1

and V = H(π1).

Remark. The proof of Proposition 3.5 allows us, in principal, to construct a
mapping (the Poisson transformation) for which F = P (BV(F )). Specifically,
we assume that the Poisson transformation is known for all ranks less than d.
This allows us to construct F̃αo,0 using 3.21. If at least one δi �= 0, we then use
3.15 to construct F̃αo . If all of the δi = 0, then we use 3.22 to construct Fαo .
Thus, we need only know the Poisson transformation for the single equation

(H1 − ρ1)F = 0.

Notice that H1 ∈ A(L1∗). Reasoning as in the proof of Proposition 3.5, we
find it suffices to consider Hi acting on C∞(L1∗). As noted below formula 2.21,
L1∗ acts simply transitively on the unit ball B in Cd1+f1+1. Formula 3.2 shows
that

H1 =
µ2

1

2
HJK1

where HJK1 is the first diagonal Hua operator for the unit ball. In [26], we
defined an explicit integral transformation (the N -transformation) which trans-
forms this operator into the image of the Casmir operator of Sl(2, R) acting
in the representation space of a certain unitary representation of the universal
covering group S̃l(2, R). (See formula 24, [26].) We also computed a general
formula for the Poisson kernel for this operator. Our formula assumed that one
avoids certain “singular” eigenvalues, but these assumptions are unnecessary
since the Casmir operator on S̃l(2, R) is well understood.

From this point on we make the additional assumption that all of the
ρi = 0.

In this case 0 ∈ Eo. The element F0 is the boundary value studied in [8].
The following theorem generalizes one of the main results of [9] to the case of
unbounded solutions.
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Theorem 3.6. For all 1 ≤ i < j ≤ d,

πo(Yij)F0 = 0.

In particular, if πo(NS)F0 is a bounded subset of V then πo(n)F0 = F0 for all
n ∈ NS.

The second statement follows from the first: we note first that by an
argument similar to that in the proof of Proposition 3.5, we may assume that
V = C∞(NS). Then [7] implies that all bounded solutions to∑

i<j

YijF = 0

are constant on left cosets of NS , as desired.
For the proof of the first statement, we will do a detailed analysis of F ’s

asymptotic expansion. We prove somewhat more than required due to the
needs of the next section. Let

(3.23) βi = λi − λi+1, i < d, βd = λd.

Every element of ∆+ is a linear combination, with positive coefficients, of the
basis defined by the βi. Specifically

(3.24)
λi − λj = βi + βi+1 + · · · + βj−1,

λi + λj = βi + βi+1 + · · · + βj−1 + 2βj + · · · + 2βd.

Let
Λ = Eo ∩ spanR{λi | dτ ≤ i ≤ d}

where τ is as in Definition 2.1. For dτ ≤ i ≤ d, pi depends only on the ith

variable and those with index less than dτ . Thus, if α ∈ Λ,

0 = pi(α) = α2
i − αiγi = αi(αi − γi).

Hence,

(3.25) Λ = {
∑

αiλi | αi ∈ {0, γi}, dτ ≤ i ≤ d}.

Lemma 3.7. Let β = ν1β1 + · · · + νdβd belong to E where the νi ∈ C are
such that γi − νi /∈ −No, 1 ≤ i < dτ . Then β ∈ Λ + ∆+.

Proof. From Proposition 3.5, β − γ ∈ Eo for some γ ∈ ∆+. We replace β

with β − γ, which still satisfies our hypotheses. It suffices to show that νi = 0
for 1 ≤ i < dτ . If not, let νi be the first nonzero coefficient. Since pi depends
only on the first i variables

(3.26) 0 = pi(β) = ν2
i − νiγi = νi(νi − γi).

Hence, νi = γi, which contradicts γi − νi /∈ −No, proving our lemma.
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A similar argument proves the following.

Corollary 1. If F0 �= 0, then 0 is the minimal element of E in the sense
defined above 1.11. Furthermore, F0 is independent of t.

Proof. Let
β = ν1β1 + · · · + νdβd

belong to E . As in the proof of Lemma 3.7 we may assume that β ∈ Eo. Let k

be the first index such that νk �= 0. As in the proof of Lemma 3.7, νk = γk > 0,
proving minimality.

The independence of t follows from induction as in the proof of 3.1 together
with the comments immediately preceding Proposition 1.8.

Theorem [16] follows immediately from the following result.

Proposition 3.8. Let i < j < l and α = nlβl + · · · + ndβd where ni ∈ No

and nj ≤ 1 for j < dτ . Then

πo(Yij)Fα = 0 = Fλi−λj+α.

If α = 0, the above holds for all 1 ≤ i < j ≤ d.

Proof. Let
ε = λi − λj + α.

From formula 3.6, γi > 1 for 1 ≤ i < dτ . Hence the assumptions of Lemma 3.7
apply to ε − γ for any γ ∈ ∆+.

Case 1: dτ ≤ i. Then (λi − λj)/2 is not a root. Hence Yij = 0 and the
first equality follows. Since ε /∈ ∆+ +Λ, Lemma 3.7 shows that Fε = 0 as well,
proving our proposition in this case.

Case 2: i < dτ , j = i + 1. Then

ε = βi + α

and the expansion of ε in the basis 3.23 contains no βi+1 component. It follows
from Lemma 3.7 and 3.24 that for i < m, ε − (λi ± λm) /∈ E unless m = i + 1
and ± = − while for m < i, ε− (λm±λi) /∈ E . It is clear also that ε−mλi /∈ E
for m > 0. Hence 3.19, with α replaced by ε, reduces to a single term implying

Dε
i Fε = −πo(Yij)Fα.

Similarly, 3.19 reduces to a single term with i replaced by j = i + 1 implying

Dε
jFε = −µj

µi
πo(Yij)Fα.

Hence
Dε

jFε =
µj

µi
Dε

i Fε
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which is equivalent to

(3.27)
(

Dj −
µj

µi
Di

)
(e〈t,ε〉Fε) = 0.

From Lemma 3.4, for Fε to be nonzero, ε must be a root of the character-
istic polynomial. Hence

(3.28) pj(ε) =
µj

µi
pi(ε).

From formula 3.18 and j = i + 1

pi(λi − λj + α) = 1 − γi,

pj(λi − λj + α) = 1 + γj −
dijµj

2µi
.

Substitution into 3.28 shows that if Fε �= 0 then

(3.29) µ−1
i

(
1 − γi +

dij

2

)
= µ−1

j (1 + γj).

However, from 3.6 the term on the left is nonpositive and that on the right is
positive. This proves our proposition in this case.

General case. Now suppose by induction that

πo(Ylm)Fα = 0 = Fλl−λm+α

for all l and m such that 0 < m − l < j − i. Then

ε − (λi − λk) = λk − λj + α

which, for i < k < j is not an exponent due to the inductive hypothesis. For
j < k, this term is not an exponent due to Lemma 3.7 which also shows that
none of ε − λi, ε − 2λi and ε − (λi + λj) are exponents. Thus, 3.19 implies

(3.30) Dα
i Fε = −YijFα.

Now we apply 3.19 with α replaced by ε and i replaced by j. Then for
m < j

ε − (λm − λj) = λi − λm + α

which is not an exponent for m �= i due to Lemma 3.7 (m < i) and the
inductive hypothesis (i < m).

For j ≤ m

ε − (λj − λm) = λi − 2λj + λm + α

which is not an exponent due to Lemma 3.7 which also shows that none of
ε − λj , ε − 2λj and ε − (λj + λm) are exponents.
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Thus

(3.31) Dε
jFε = −µj

µi
YijFα.

Our result follows just as in the j = i + 1 case.

We can now recover the Johnson-Korányi result:

Theorem 3.9. Suppose that D = G/K is a symmetric, tube domain.
Then every Hua-harmonic function F on G/K is the Poisson integral of a
hyperfunction over the Shilov boundary.

Proof. Our proof is based on the argument beginning at the top of page 4
of [4]. Specifically, we write F as a limit of left K-finite functions Fk on G/K.
Since the Hua system is invariant, each of the Fk is Hua-harmonic. The Fk

are Poisson integrals of K-finite functions fk over the Furstenberg boundary
where the fk converge to a hyperfunction f whose Poisson integral is F . Since
the fk are continuous on K, they are bounded. It follows from 3.7 and 1.11
that fk = (Fk)0. Then Theorem [16] shows that πo(NS)fk = fk. The same
must therefore be true of f , showing that f projects to the Shilov boundary,
as desired.

Remark. The same argument shows that the results of [9] imply the
Johnson-Korányi result.

Corollary 1. Let

β = βi1 + βi2 + · · · + βik + nk+1λik+1
+ · · · + ndλd

where 1 ≤ i1 < i2 < · · · < im = d and dτ ≤ ik+1. Then β /∈ E unless
ij = i1 + j − 1 for all 1 ≤ j ≤ k + 1, in which case

β = λi1 + (nk+1 − 1)λik+1
+ nk+2λik+2

+ · · · + ndλd.

Proof. Let j ≤ k + 1 be maximal with respect to il = i1 + l − 1 for all
1 ≤ l ≤ j. If j ≤ k, then

β = λi1 − λi1+j + (βij+1 + βij+2 + · · · + βik + nk+1λik+1
+ · · · + ndλd)

where ij+1 > i1 + j. Proposition 3.8, with α equal to the term in parentheses,
proves that Fβ = 0. Hence, j = k + 1, proving our corollary.

4. The boundary representation

In this section we collect a number of representation theoretic facts which
are needed. Our basic reference is [32].
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In Section 3 we discussed right-induced C∞ representations. In this sec-
tion we need left-induced unitary representations. Let G be a Lie group, Go a
closed subgroup, and let π be a continuous unitary representation of Go in a
Hilbert space H(π), which we denote simply by H.

We define a character χ on Go by

χ(h) = (χGo/χG)(h)

where χG and χGo are, respectively, the modular functions for left-invariant
Haar measure on G and Go.

The representation ind(π) of G induced from π acts in a subspace space
H(ind(π)) of H-valued functions on G which satisfy

(4.1) f(gh) = χ1/2(h)π(h−1)f(g)

for all g ∈ G and h ∈ Go. For such f ,

‖f(gh)‖H = χ1/2(h)‖f(g)‖H.

It is well known that there is a unique G invariant functional I defined on the
set of continuous, compactly supported modulo Go, functions on G satisfying
the above covariance condition. Then H(ind(π)) is the completion of the set
of functions for which ‖f‖ = I(‖f‖H) < ∞.

The representation acts on such functions according to

ind(π)(go)f(g) = f(g−1
o g).

When we wish to explicitly indicate the dependence on G and Go we will write
ind(Go, G, π) instead of ind(π).

If there is a closed subgroup G1 of G which is a complement to Go then,

‖f‖2 =
∫

G1

‖f‖H(t) dt

where dt is left invariant Haar measure on G1. Hence H(ind(π)) is just
L2(G1, dt,H(π)).

Recall that if π is a continuous representation of G in a Hilbert space
H, then C∞(π) denotes the set of vectors H for which g → π(g)v is differ-
entiable as an H valued map, given the topology of uniform convergence on
compact subsets of G of such functions and all of their derivatives. We let
C−∞(π) denote the anti-dual space to C∞(π) (i.e., the space of continuous
conjugate-linear functionals). We use the scalar product to embed H linearly
into C−∞(π). The contragredient representation to π

∣∣C∞(π) defines a contin-
uous (in fact differentiable) extension of π to C−∞(π) which we continue to
denote by π. The representation of the universal enveloping algebra A(G) on
C−∞(π) obtained by differentiating π is denoted by π as well.
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Let πG = ind({e}, G, 1), the unitary left regular representation of G. It
is well known that C∞(πG) ⊂ C∞(G). We require the following result which,
while probably well known, we have not been ale to find in the literature.

Proposition 4.1. If G is unimodular, then C∞(πG) ⊂ L∞(G).

Proof. Let X1, X2, . . . , Xn be a basis for the Lie algebra of G and let

(4.2) D = X2
1 + X2

2 + · · · + X2
n.

For each natural number k, let

fk = (I − πG(D))kf.

According to Theorem 3.2 of [21] there is a function hk ∈ L1(G), independent
of f , such that

f = πG(hk)fk = hk ∗ fk.

Furthermore, Corollary 3.2 of [21] states that if k = [n/4] + 1, hk ∈ L2(G).
But, on a unimodular group, the convolution of two L2 functions is an L∞

function. This proves the proposition.

Now let
πb = ind(S, L, 1).

In this case,
χ(s) = χρ(s)χσ(s)

where
χρ(s) = det ρ(s) and χσ(s) = detσ(s).

Since L = NbS, we will extend χρ and χσ to all of L by declaring them to be
trivial on Nb.

We may identify H(πb) with L2(Nb), in which case

(4.3) πb(sho)f(h) = χ(s)−1/2f(h−1
o hs)

where s ∈ S, ho ∈ Nb, and hs = s−1hs.
We begin by describing the primary decomposition of πb. For this, for

each β ∈ M∗, let
χβ(m) = ei〈m,β〉.

Let
πβ = ind(M, L, χβ).

In this case, the norm is given by

‖f‖2
β =

∫
Z×S

|f(z, 0, s)|2 dz ds < ∞

where dz is Lebesgue measure in Z.
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It follows from Proposition 2.3 that there are 2d open, ρ∗(S) orbits in M∗

where d is the rank of D. Furthermore, since the action is algebraic, the union
of these orbits is dense in M∗. For each such open orbit O, let βO ∈ O be the
explicit representative described in Proposition 2.3.

Proposition 4.2.
πb = ⊕

∑
O

πβO .

Proof. From the theorem on inducing in stages, both πb and πβ are in-
duced from the analogous representations on T . The general result will follow
from the tube case since inducing preserves direct sums. Thus, we assume that
Z = 0.

Let β = βO for some fixed orbit O. For f ∈ H(πb) and g ∈ T , we define

(4.4) fβ(g) = C
−1/2
O

∫
M

f(gm)ei〈β,m〉 dm

where dm is Lebesgue measure on M and CO is as in Proposition 2.4. Then,
for all m ∈ M and g ∈ L,

(4.5) fβ(gm) = χβ(m−1)fβ(g),

which is 4.1 for πβ.
To prove our proposition, it suffices to show that

‖f‖2 =
∑
O

‖fβO‖2

where the norm on the left is the H(πb) norm and those on the right are the
H(πβO) norms.

Formula 4.1, together with a change of variables, shows that for s ∈ S

(4.6)
C

1/2
O fβ(s) = χρ(s)1/2

∫
M

f(sms−1)ei〈β,m〉 dm

= χρ(s)−1/2f∧(−ρ∗(s)β).

From Proposition 2.4 (with ρ∗ in place of ρ)∫
S
|fβO(s)|2 ds = C−1

O

∫
S
|f∧(−ρ∗(s)βO)|2χρ(s)−1 ds

=
∫
O
|f∧(−β)|2 dβ.

It now follows from Plancherel’s theorem on M that∑
O

‖WβO(f)‖2 = ‖f‖2

which proves our proposition.
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The following lemma shows that in the tube case, the decomposition from
Proposition 4.2 is the irreducible decomposition.

Lemma 4.3. Suppose that β ∈ M∗ is such that the orbit Oβ = ρ∗(S)β is
open in M∗. Then

πβ
T = ind(M, T, χβ)

is irreducible. Furthermore, if γ ∈ M∗ also generates an open orbit Oγ , then
πβ

T is equivalent to πγ
T if and only if Oβ = Oγ.

Proof. This all follows directly from Mackey theory. Since M is normal
in T , πβ will be irreducible if and only if the isotropy subgroup of χβ is trivial
under the conjugation action of T on M∧. This is equivalent to saying that
the isotropy subgroup of β is trivial under the co-adjoint action of S on M∗.
However, the dimension of Oβ is the same as that of S, showing that the
isotropy subgroup is discrete. Since S is completely solvable, this subgroup
must then be trivial, showing irreducibility. The statement about equivalence
follows directly from Mackey theory.

In the nontube case, the πβ are reducible. Specifically from the theorem
on inducing in stages,

πβ = ind(Nb, L, πβ
Nb

)

where
πβ

Nb
= ind(M, Nb, χ

β).

Let Kβ ⊂ M be the kernel of β. Then, Kβ is central in Nb and Hβ =
Nb/Kβ is a Heisenberg group. The representation πβ

Nb
is trivial on Kβ and,

modulo Kβ, defines a representation of Hβ that is inducible from a character of
the center. Such a representation of a Heisenberg is always an infinite multiple
of an irreducible representation. Thus, we may write

πβ
Nb

= ∞ · Πβ
Nb

where Πβ
Nb

∈ Nb
∧. It follows from an argument very similar to that done in

the proof of Lemma 4.3 that

Πβ = ind(Nb, L,Πβ
Nb

)

is irreducible and

(4.7) πb = ⊕
∑
βO

∞ · ΠβO

defines the irreducible decomposition of πb.
Now assume that β = βO for some open orbit O. There is a convenient

realization of Πβ as a subrepresentation of πβ. We first extend β to Nb by
declaring it to be zero on Z.
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Next, we will describe a positive polarization for β. Let Xα
j and Y α

j be
the basis of Z described above formulas 2.26. For 1 ≤ α ≤ dj , 1 ≤ j ≤ r we
define

Zα
±j = Xα

j ∓ iY α
j .

Now,

Pβ = Mc + spanC{Zα
εjj} (1 ≤ j ≤ d, 1 ≤ α ≤ dj)

where

β =
d∑
1

εjE
∗
j .

Then Pβ is a complex subalgebra of Lc.

Lemma 4.4. The subalgebra Pβ is a totally complex, positive, polarization
for β; i.e.,

(a) [Pβ,Pβ] ⊂ kerβ,
(b) Pβ + Pβ = (Z ×M)c,

(c) Pβ ∩ Pβ = Mc,

(d) For all Z ∈ Pβ,
iβ([Z,Z]) > 0.

Proof. Properties (b) and (c) are clear. For (a), note that from the con-
tainment 2.16

(4.8) [Xα
j , Y β

j ] = cj(α, β)Ej

for some scalar cj(α, β). Formula 2.13 shows that

cj(α, β)µj = −g(Xα
j , Xβ

j ) = −δα,β .

Hence
cj(α, β) = −µ−1

j δα,β .

Similarly,

(4.9)
[Xα

j , Xβ
j ] = 0,

[Y α
j , Y β

j ] = 0.

It follows that [Zα
εjj , Z

β
εjj ] = 0, for all α and β. Part (a) now follows from the

containment 2.16 along with the observation that β is trivial on Mij .
For (d), we compute

(4.10)
[Zα

εjj , Z
α
εjj ] = [Xα

j − iεjY
α
j , Xα

j + iεjY
α
j ]

= −2iµ−1
j εjEj .
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Hence
i〈[Zα

εjj , Z
α
εjj ], β〉 = 2µ−1

j ε2
j 〈Ej , E

∗
j 〉 = 2.

The required positivity follows.

It now follows from Theorems 3.1 (p. 167) and 3.7 (p. 174) of [BE] that
the subspace Hβ

w of functions f in H(πβ) that satisfy

(4.11) (r(Z) + iβ(Z))f = 0

for all Z ∈ Pβ is a closed, invariant, irreducible, nonzero, subspace of πβ on
which πβ is equivalent to Πβ. From now on Πβ refers to this explicit realization
of Πβ.

We will require an explicit (and well known) description of the elements
of Hβ

ω. For this, we introduce a function fo : Nb → C defined by

(4.12) fo(z, m) = e−φ(z,z)−i〈m,〉

where
φ(z, w) = 〈BΩ(z, w), E∗〉.

The lemma below follows directly from 2.13 and 2.8.

Lemma 4.5. For z and w in Z

φ(z, w) =
1
4
gHer((z, 0), (w, 0)).

If h ∈ L2(S) and f ∈ H(πβ
Nb

), we define

(4.13) h ⊗ f(s(z, m)) = h(s)f(z, m)

which is an element of H(πβ).

Lemma 4.6.For any function h ∈ L2(S) the function h⊗fo belongs to Hβ
ω.

Proof. We must show that g ⊗ fo satisfies 4.11. For this, let w ∈ Zj .
Then, from 4.12 and formula 2.7

(4.14)
fo((z, m)(w, 0)) = fo(z + w, m + 2 im BΩ(z, w))

= fo(z, m)e−φ(w,w)−τ(z,w)

where
τ(z, w) = 2 re 〈BΩ(z, w), E∗〉 + 2i im 〈BΩ(z, w), β〉.

Note that if zk ∈ Zk, BΩ(zk, w) ∈ (Mjk)c. Thus

〈BΩ(zk, w), β〉 = δjkεj〈BΩ(zk, w), E∗〉.
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Hence

(4.15) τ(z, w) =
{

2φ(z, w) (εj = 1)

2φ(z, w) (εj = −1)
.

Since φ is anti-holomorphic in w our lemma follows.

Using Lemma 4.6, we can produce a dense set of elements of Hβ
ω. Specifi-

cally, for (z, w) ∈ (Z ×M), let zα, j(z, w) ∈ C denote the (α, j) coordinate of
z with respect to the basis {Xα

j }. We also set

zα,−j = zα, j .

For each double sequence of nonnegative integers

N = {N(α, j)}1≤α≤fj 1≤j≤d

we define

zN = Πα, j(zα, εjj)N(α,j).

Then we have the following proposition:

Proposition 4.7. For all h ∈ L2(S) and all sequences N as described
above, the family of functions below is orthogonal, with dense span in Hβ

ω,

{h ⊗ zNfo}.

Using 3.3, we may identify L2(S) with the representation space of

πβ
T = ind(M, T, χβ).

We leave the following lemma, which depends on the centrality of M in Nb,
to the reader.

Lemma 4.8. For all t ∈ T and h ∈ L2(S),

(πβ
T (t)h) ⊗ znfo = Πβ(t)(h ⊗ znfo).

The functions zNfo play an important role in the function theory of Nb

because they describe the eigenspace decomposition of certain differential op-
erators.

Lemma 4.9.

(4.16) πβ
Nb

(
(
Xα

j

)2 +
(
Y α

j

)2)(zNfo) = −(2N(α, j) + 1)zNfo.
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Proof. We note that(
Xα

j

)2 +
(
Y α

j

)2 = Zα
j Z

α
j − i[Xα

j , Y α
j ].

Thus, from formulas 4.1 and 4.8, the term on the left in 4.16 equals

(πβ
Nb

(Zα
j Z

α
j ) + 〈[Xα

j , Y α
j ], β〉)(zNfo) = (πβ

Nb
(Zα

j Z
α
j ) − εj)(zNfo).

In the coordinates defined by the Xα
j basis, modulo M, 1

2 πβ
Nb

(Zα
j ) is holo-

morphic differentiation while 1
2 πβ

Nb
(Zα

−j) is anti-holomorphic differentiation.
Hence

(4.17)
πβ

Nb
(Zα

εjj)z
N = 2N(α, j)zN−Λ(α,j),

πβ
Nb

(Zα
εjj)z

N = 0,

where Λ(α, j) is the sequence which is zero for all indices except (α, j) where
it is 1.

On the other hand,

fo((z, m)−1) = fo(z, m).

Thus, it follows from formula 4.14 that for w ∈ Zj

(4.18)
fo((w, 0)(z, m)) = fo((−z,−m)(−w, 0))

= fo(z, m)e−φ(w,w)−τ(z,w)

= fo(z, m)e−φ(w,w)−τ(w,z).

Recall that the Xα
j are gHer orthogonal. Hence, from Lemma 4.5 and formula

4.15,

τ(w, z) =
1
2

∑
wα, εjj zα, εjj .

Thus, differentiating formula 4.18 with respect to w at w = 0 shows that

(4.19)
πβ

Nb
(Zα

εjj)fo = 0,

πβ
Nb

(Zα
εjj)fo = −zα, εjjfo.

Hence
πβ

Nb
(Zα

εjj)z
Nfo = 2N(α, j)zN−Λ(α,j)fo,

πβ
Nb

(Zα
εjj)z

Nfo = −zN+Λ(α,j)fo.

If εj = 1 then

πβ
Nb

(
(
Xα

j

)2 +
(
Y α

j

)2)(zNfo) = πβ
Nb

(Zα
j Z

α
j − 1)(zNfo)

= (−2N(α, j) − 1)(zNfo)

and the lemma follows.



ASYMPTOTIC EXPANSIONS 759

If εj = −1 then we use the identity(
Xα

j

)2 +
(
Y α

j

)2 = Z
α
j Zα

j + i[Xα
j , Y α

j ]

= Zα
εjjZ

α
εjj + i[Xα

j , Y α
j ]

to prove the lemma as before.

5. H2
HJK

Throughout this section, D is assumed to be nontube like, as defined
in Definition 2.1 in Section 2. We identify A with A using the exponential
mapping and A with Rd using the basis A1, A2, . . . , Ad. The general element
a of A is denoted

a = a(t) = exp(t1A1 + . . . tdAd).

We consider the map a → (t1, . . . , td) as defining coordinates on A.
As mentioned in the introduction, the Hua system has a Poisson kernel

on an open dense subset of the Shilov boundary of D. Specifically, there is
a finite, positive measure dp on L/S = Nb such that every bounded Hua-
harmonic function F may be expressed in the form

(5.1) F (g) =
∫

L/S
f(gh) dp(h)

where f ∈ L∞(L/S) is uniquely determined by F . We refer to f in 5.1 as the
boundary value function of F , dp as the Poisson measure and we say that F is
the Poisson integral of f . In fact, we showed in [9] that L/S is a boundary for
the Laplace-Beltrami operator and that we may use the corresponding Poisson
measure as dp.

Under the identification L/S = Nb, dp = P dh where dh is Haar measure
on Nb and P ∈ L2(Nb) ∩ L1(Nb). Under the identification of Nb and L/S, for
h, ho ∈ Nb and s ∈ S

f(hosh) = f(hoshs−1).

We may identify L2(Nb) with the representation space of πb. Formula 4.3
shows then that 5.1 is equivalent to

(5.2) F (g) = χ(g)−1/2(πb(g−1)f, P ) = χ(g)−1/2(f, πb(g)P ).

It follows from [28, Prop. 1.1, p. 92] that v ∈ C∞(πb) if and only if the
matrix elements g → 〈π(g)v, w〉 are C∞ on L for all w ∈ H(πb). Hence, from
the ellipticity of the Laplace-Beltrami operator, P ∈ C∞(πb).

Let δ ∈ C−∞(πb) be evaluation at e:

〈f, δ〉 = f(e).
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The following is a representation theoretic formulation of the statement that
the Poisson kernel is an approximate identity.

Lemma 5.1. In the weak topology on C−∞(πb),

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

χ(a)−1/2πb(a)P = δ.

Proof. Let f ∈ C∞(πb). From 5.2, for a ∈ A,

χ(a)−1/2(f, πb(a)P ) =
∫

Nb

f(aha−1)P (h) dh.

Since the eigenvalues of ad A1 in Z + M are all nonnegative,

lim
t1→−∞

Ad (exp t1A1)h = e1(h)

converges uniformly on compact subsets of Nb. Hence, for all h ∈ Nb,

lim
t1→−∞

f(aha−1)P (h) = f(âe1(h)â−1)P (h)

where â = a(0, t2, . . . , td).
Since the restriction of πb to Nb is the regular representation of Nb, it

follows from Proposition 4.1 that f is bounded. Hence, the dominated conver-
gence theorem shows that the above limit converges in L1(Nb). Our lemma
follows when we iterate this argument and integrate, noting that

lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

Ad (a)h = e.

In the Hermitian-symmetric tube case, all Poisson integrals over L/S are
Hua-harmonic. This, however, is the only case in which this is true. Let U
be the set of f ∈ L2(Nb) for which 5.2 defines a Hua-harmonic function. The
ellipticity of the Hua system shows that U is a closed πb-invariant subspace of
L2(Nb). We refer to U as the space of L2-boundary values for the Hua system.
We define H2

HJK to be the space of all functions F as in 5.2 where f ∈ U and
remark that

H2
ω ⊂ H2

HJK

where H2
ω denotes the holomorphic H2 space for D. In particular, it follows

that U is nontrivial.
The main result of this section is the following theorem, which generalizes

the main result of [5].

Theorem 5.2. If D is nontube-like then

H2
HJK = H2

ω + H2
ω.



ASYMPTOTIC EXPANSIONS 761

For the proof, it follows from formula 4.7 that πb

∣∣U is a direct sum of
multiples of the representations ΠβO for certain open orbits O. Let β = βO for
one such orbit. As in Section 4, we realize Πβ in Hβ

ω. For each intertwining
operator

U : Hβ
ω → U

let δU ∈ C−∞(Πβ) be defined by

〈f, δU 〉 = 〈U(f), δ〉.

Then, from formula 4.3, for s ∈ S,

(5.3) Πβ(s)δU = χ(s)−1/2δU .

Note that δU determines U since

(5.4) U(f)(g) = 〈πb(g−1)U(f), δ〉 = 〈Πβ(g−1)f, δU 〉.

Let Dβ be the set of all δU where U varies over the space of continuous inter-
twining operators from Hβ

ω into πb

∣∣U .
The following proposition proves that πb

∣∣U is the product of exactly two
irreducible representations. Theorem 5.2 follows since H2

ω and H2
ω are two

closed, invariant subspaces of πb

∣∣U .

Proposition 5.3. The set Dβ is nonzero only if β = ±E∗, in which case
Dβ is one-dimensional.

For the proof, let PU = (U)∗(P ) where (U)∗ : L2(Nb) → Hω is the adjoint
of U . We note that for all f ∈ Hβ

ω,

(5.5) F : g → (f,Πβ(g)PU )χ(g)−1/2 = (U(f), πb(g)P )χ(g)−1/2

defines a Hua-harmonic function. Let

V = C−∞(Πβ).

For g ∈ L, let P̃ (g) ∈ V be defined by

〈f, P̃ (g)〉 = (f,Πβ(g)PU )χ(g)−1/2.

Then for n ∈ NL and g ∈ G,

P̃ (ng) = Πβ(n)P̃ (g).

Hence, P̃ belongs to the representation space πL = ind∞(NL, L, πo) where πo =
Πβ

∣∣NL acting on V. We realize this representation in C∞(Rd,V) using 3.3.
It is easily seen that P̃ satisfies 3.7 with ρi = 0 and Gi = 0. Furthermore,

Lemma 5.1 shows that

(5.6) lim
td→−∞

lim
td−1→−∞

. . . lim
t1→−∞

P̃ (t) = δU
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in the weak topology on V. In particular, P̃ ∈ C0(d) where Cr(d) is as defined
above Definition 1.10.

From Theorem 3.1, we obtain an asymptotic expansion

(5.7) P̃ (t) ∼
∑

P̃α(t)e〈a,α〉, α ∈ E

where the P̃α are V valued polynomials on Rd.
The key observation in the proof of Proposition 5.3 is that from 5.6,

Proposition 1.11, and Corollary 3.7,

(5.8) P̃0 = δU .

We assume that the notation of 3.7 is still in effect. Formulas 2.29, 3.4,
and Theorem 2.8 imply

(5.9)

(
−A′

o + 2
∑

etiZ̃i

)
P̃ = 0

D +
∑

i

µ−1
i etiẼ2

i + 2
∑
i<j

µ−1
i (eti−tj Ỹij + eti+tj X̃ij)


 P̃ = 0

where A′
o is as in formula 2.30, D is as in formula 2.27 and X̃ = Πβ(X) for

X ∈ A(NL).

Proposition 5.4. For 1 ≤ l ≤ d

(5.10)
P̃λl+λd

= 4(flfd)−1Z̃l Z̃dP̃0 (l �= d),

P̃2λd
= 2f−2

d Z̃2
d P̃0.

Proof. Note that
∆Nb

= 2
∑

µ−1
i Z̃i.

Applying the first equality in 5.9 to the asymptotic expansion 5.7 and equating
terms with the same exponent, we find

(5.11) (A′
o+ < A′

o, α >)P̃α = 2
∑

1≤i≤d

µ−1
i Z̃iP̃α−λi

.

Proposition 3.4 shows that if 0 �= 〈A′
o, α〉, then P̃α is independent of t if all of

the P̃α−λi
are.

In particular, for α = λl, we find (using Corollary 3.9 and Lemma 3.7)
that

flP̃λl
= 2Z̃l P̃0.

Then, using α = λl + λd with l �= d:(
fl

µl
+

fd

µd

)
P̃λl+λd

= 2µ−1
l Z̃lP̃λd

+ 2µ−1
d Z̃dP̃λl

= 4
(

µl

fl
+

µd

fd

)
(µdµl)−1Z̃l Z̃dP̃0.



ASYMPTOTIC EXPANSIONS 763

Our lemma follows since(
fl

µl
+

fd

µd

)−1 (
µl

fl
+

µd

fd

)
=

µl µd

fl fd
.

Finally, since α = 2λl

2flP̃2λl
= 2Z̃lP̃λl

= 4f−1
l Z̃2

l P̃0.

which proves our lemma.

Proposition 5.5.For 1 ≤ l < d there is an element Ml ∈ (Mld)2 ⊂ A(L)
such that

P̃λl+λd
= −(ẼlẼd + M̃l)P̃0,

P̃2λd
= −1

2
(Ẽ2

l )P̃0.

Proof. We apply the second formula in 5.9 to the asymptotic expansion
of P̃ and equate terms with the same exponent finding

(5.12)

e−〈a,α〉D(P̃αe〈a,α〉) = −
∑

µ−1
i Ẽ2

i P̃α−2λi

− 2
∑

1≤i<k≤d

µ−1
i X̃ikP̃α−(λi+λk)

− 2
∑

1≤i<k≤d

µ−1
i ỸikP̃α−(λi−λk)

where (from formula 2.26 and Lemma 2.27)

D =
∑

i

µ−1
i (A2

i − (1 + di)Ai).

The characteristic polynomial for D is

p(α) =
∑

i

µ−1
i (α2

i − (1 + di)αi).

For α = 2λd, and i ≤ j, neither α − (λi − λj) nor α − (λi + λj) is an
exponent unless i = j = d, in which case 5.12 reduces to

2µ−1
d P̃2λd

= −µ−1
d Ẽ2

dP̃0

as desired.
Now, let α = λl + λd where l < d. For i ≤ j,

α − (λi + λj) = (λl − λi) − (λj − λd).

Lemma 3.7 shows that for this term to be an exponent we must have l ≤ i and
j = d.

Also,

α − (λi − λj) = (βl + · · · + βd−1 + 2λd) − (βi + · · · + βj−1).
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Corollary 3.9, Lemma 3.7, and d = dτ show that the above expression is not
an exponent unless i = l (so that α = λj + λd). Hence 5.12 reduces to

p(λl + λd)P̃λl+λd
= −2µ−1

l X̃ldP̃0 − 2
∑
l<j

µ−1
l ỸljP̃λj+λd

.

Since Xld ∈ (Mld)2, this term may be ignored.
Assume by induction that we have proved the result for l + 1 ≤ j ≤ d. It

follows from 5.3 and 5.8 that for l < j, Ỹ α
lj P̃0 = 0. Hence, for l < j < d

Ỹ α
lj P̃λj+λd

= −Ỹ α
lj (ẼjẼd + M̃j)P̃0

= −Πβ
(

ad Y α
lj (EjEd + Mj)

)
P̃0

= −Πβ
(
Xα

ljEd + ad Y α
lj (Mj)

)
P̃0.

(Note that from 2.15, [Y α
lj , Ed] = 0.) Repeating the same argument using

[Y α
lj , Xα

lj ] = µ−1
l El, and summing over α, show that

2µ−1
l ỸljP̃λj+λd

= −µ−1
l Πβ(dljElEdP̃0 +

∑
α

ad (Y α
lj )2(Mj))P̃0.

Note that ( ad Y α
lj )2 maps M2

jd into M2
ld.

A similar argument shows

2µ−1
l ỸldP̃2λd

= −µ−1
l (dldẼlẼd +

∑
α

(X̃α
ld)

2)P̃0.

Summing the previous two formulas over j and using 5.12, we see that

p(λl + λd)P̃λl+λd
= µ−1

l dl(ẼlẼd + M̃l)P̃0

where Ml ∈ M2
ld. Our proposition follows since

p(λl + λd) = −dlµ
−1
l .

Next, we will decompose P̃α according to the decomposition from Propo-
sition 4.7. We remind the reader: For any functional φ ∈ C−∞(Πβ) and a
multi-index N as in Proposition 4.7, there is a distribution φN on S such that

〈f, φN 〉 = 〈f ⊗ zNfo, φ〉.
It is easily seen that φ = 0 if and only if φN = 0 for all N .

Proposition 5.6. For all N there is a constant KN such that P̃N
0 =

KNχ−1/2
∣∣S. In particular P̃N

0 is a C∞ function.

Proof. For φ ∈ C∞
c (T ) and s ∈ S, let

(5.13) φ̃(s) =
∫
M

φ(sm)ei〈m,β〉 dm.
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Then φ̃ ∈ C∞
c (S) and

Q̃o : φ → 〈φ̃ ⊗ zNfo, P̃0〉

is a distribution on T . From Lemma 4.8, 5.3, and 5.13

LT (s)Q̃o = χ(s)−1/2Q̃o,

RT (m)Q̃o = ei〈m,β〉Q̃o

where ∈ S, m ∈ M and LT and RT are, respectively, the left and right regular
representations of T . It follows from Theorem 5.2.2.1 of [32] that there is a
constant KN such that

〈φ̃, P̃N
0 〉 = KN

∫
SM

φ(sm)χ(s)−1/2e−i〈m,β〉

= 〈φ̃, χ−1/2
∣∣S〉

proving our proposition.

Lemma 5.7. ((Z̃lZ̃d)P̃0)N ∈ C∞(S).

Proof. For X ∈ Z there are C∞ functions φα,i on S such that for all
s ∈ S,

Ad (s−1)X =
∑

φα,i(s)Zα,εii + φα,i(s)Zα,εii

where the notation is as stated above 4.4.
Let h ∈ C∞

c (S). From the formulas below 4.19, for each multi-index N ,
there are a finite sequence of multi-indices Ni and functions ψi ∈ C∞

c (S) such
that

Πβ(X)(h ⊗ zNfo)(sn) = h(s)[πβ
Nb

( Ad (s−1)X)(zNfo)](n)

=
∑

i

(hψi ⊗ zNifo)(sn).

Iteration of this formula shows that a similar equality holds with ZlZd in
place of X. Applying this to P̃0 we see that ((Z̃lZ̃d)P̃0)N is a sum of terms
(P̃M

0 ψM ) ⊗ (zNfo) where ψM ∈ C∞(S) and the M range over a finite set of
multi-indices, proving the lemma.

Proposition 5.3 follows immediately from the next lemma, proving Theo-
rem 5.2.

Lemma 5.8. If β �= ±E∗, then KN = 0 for all N . If β = ±E∗, then
KN �= 0 if and only if N = 0.

Proof. From Proposition 5.5 and Lemma 4.8,

P̃N
λl+λd

= −KN

(
1 − 1

2
δld

)
πβ

T (ElEd + Ml)χ−1/2.
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Furthermore, for a ∈ A,

Ad a−1(M2
ld) ⊂ M2

ld ⊂ kerβ.

Hence, if a = a(t), where t ∈ Rd,

πβ
T (El)χ−1/2(a) = i〈 Ad (a−1)(El), β〉χ−1/2(a) = iµlεle

−tlχ−1/2(a).

Thus,

(5.14) P̃N
λl+λd

(a) = KN

(
1 − 1

2
δld

)
µlµdεlεde

−td−tlχ−1/2(a).

On the other hand, from Proposition 5.4

P̃λl+λd
=

(
1 − 1

2
δld

)
4µlµd(flfd)−1e−td−tlπβ

Nb
(Zl Zd)P̃0.

Thus, from Lemma 4.9, and formula 4.3, for all a ∈ A,

P̃N
λl+λd

(a) = C(l, d)[πβ
Nb

(Z̃lZ̃d)P̃0]N (a)

= KNC(l, d)χ−1/2(a)
fl∑

j=1

fd∑
k=1

(2N(l, j) + 1)(2N(d, k) + 1),

where

C(l, d) =
(

1 − 1
2
δld

)
4µlµd(flfd)−1e−td−tl .

Equating the above expression with 5.14 we find that if KN �= 0

εlεd = (N(l) + 1)(N(d) + 1)

where
N(k) = f−1

α

∑
1≤j≤fα

2N(k, j).

This implies that εl and εd have the same sign and N(l) = 0 for all l. Hence,
N = 0 and β = ±E∗, as desired.

Conversely, we know that the holomorphic and anti-holomorphic functions
are Hua-harmonic. These spaces must correspond to β = ±E∗. It follows that
K0 �= 0 in these cases.

Purdue University, West Lafayette, IN
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[30] È. B. Vinberg, The theory of convex homogeneous cones, Trudy Moskov Mat. Obsc. 12
(1963), 303–358; Trans. Moscow Math. Soc. (1963), 340–403

[31] N. Wallach, Asymptotic expansions of generalized matrix entries of representations of
real reductive groups, Lecture Notes in Math. 1024 (1980), 287–369.

[32] G. Warner, Harmonic Analysis on Semi-Simple Lie Groups I., Springer-Verlag, New
York, 1972.

(Received June 30, 2000)


