The periodicity conjecture for pairs of Dynkin diagrams

By Bernhard Keller

Abstract

We prove the periodicity conjecture for pairs of Dynkin diagrams using Fomin-Zelevinsky’s cluster algebras and their (additive) categorification via triangulated categories.

Contents

1. Introduction 111
2. The conjecture 115
3. Reformulation of the conjecture in terms of cluster combinatorics 118
4. More cluster combinatorics 123
5. Calabi-Yau triangulated categories 126
6. Cluster combinatorics from Calabi-Yau triangulated categories 139
7. Mutations of products 150
8. Categorical periodicity 155
9. The nonsimply laced case 158
10. Effectiveness 163
References 165

1. Introduction

1.1. The periodicity conjecture. The Y-system associated with a pair \((\Delta, \Delta')\) of Dynkin diagrams is a certain infinite system of algebraic recurrence equations. The periodicity conjecture asserts that all solutions to this system are periodic of period dividing the double of the sum of the Coxeter numbers of \(\Delta\) and \(\Delta'\). The conjecture was first formulated by Al. B. Zamolodchikov [69] (for \((\Delta, A_1)\), where \(\Delta\) is simply laced) in his study of the thermodynamic Bethe
ansatz. We refer to [25] for an introduction to the significance of the conjecture in physics and to [25], [12], [19], [59] for its applications to dilogarithm identities. Zamolodchikov’s original conjecture was subsequently generalized

- by Ravanini-Valleriani-Tateo to \((\Delta, \Delta')\), where \(\Delta\) and \(\Delta'\) are simply laced or ‘tadpoles’ [61, (6.2)];
- by Kuniba-Nakanishi to \((\Delta, A_n)\), where \(\Delta\) is not necessarily simply laced [55, (2a)]; see also Kuniba-Nakanishi-Suzuki [56, B.6].

The conjecture was proved

- for \((A_n, A_1)\) by Frenkel-Szenes [25] (who produced explicit solutions) and independently by Gliozzi-Tateo [32] (via volumes of threefolds computed using triangulations);
- by Fomin-Zelevinsky [23] for \((\Delta, A_1)\), where \(\Delta\) is not necessarily simply laced (via the philosophy of cluster algebras and a computer check for the exceptional types; a uniform proof can now be given using [68]);
- for \((A_n, A_m)\) by Volkov [67], who exhibited explicit solutions using cross ratios, and by Szenes [65], who interpreted the system as a system of flat connections on a graph. (An equivalent statement was proved by Henriques [35].)

An original approach via representations of quantum affine algebras is due to Hernandez-Leclerc [36]. They treat the case \((A_n, A_1)\) and obtain formulas for solutions in terms of \(q\)-characters.

In [50], we announced a proof of the conjecture in the general case and gave an outline of the proof. In this article, we provide the detailed proof. Notice that for the case \((\Delta, A_n)\), where \(\Delta\) is not simply laced, there are two variants of the conjecture. The first one was stated by Kuniba-Nakanishi [55] and involves dual Coxeter numbers (cf., e.g., Chapter 6 of [41]). It is proved in the papers [37] and [38]. The second one is due to Fomin-Zelevinsky [23] and is proved at the end of this article. The conjecture has a refined version (half-periodicity) and an analogue for the so-called \(T\)-system. Both were proved in [39] in the simply laced case by adapting the method of [50].

1.2. On the proof. The proof we propose is based on a reformulation of the conjecture in terms of Fomin-Zelevinsky’s cluster algebras [21], [22], [4], [24], [70], [20] and on the recent theory linking cluster algebras to representations of quivers (with relations).

The link between the conjecture and cluster algebras goes back to Fomin-Zelevinsky’s fundamental work [23]. Here and in [24], they showed how the \(Y\)-system appearing in the conjecture is controlled by the evolution of \(Y\)-seeds in the bipartite belt of a cluster algebra. Let us point out that recently, other discrete dynamical systems have been linked to cluster algebras; in particular, the \(T\)-system [39] and the \(Q\)-system [42], [16].
The theory linking cluster algebras to quiver representations was initiated by Marsh-Reineke-Zelevinsky [57] and subsequently developed in several variants and by many authors; cf., for example, the surveys [8], [30], [48], [62], [64]. It is related to Kontsevich-Soibelman’s interpretation of cluster transformations in their theory of Donaldson-Thomas invariants [54], [53] and, in fact, it provided one of the starting points for Kontsevich-Soibelman’s work.

For our purposes, we use the cluster categories first introduced in [9] (for general quivers) and independently in [11] (for quivers of type A_n). These are certain triangulated categories that are 2-Calabi-Yau and contain a distinguished object with remarkable properties (a cluster tilting object). Originally, the cluster category \mathcal{C}_A was defined for algebras A of global dimension at most one; however, in recent work, Amiot [1] has extended the construction to many algebras of global dimension at most 2. We show that Amiot’s results apply, in particular, to tensor products $A = kQ \otimes kQ'$ of path algebras of quivers obtained by orienting the given Dynkin diagrams Δ and Δ'. Using Palu’s [60] generalization of the Caldero-Chapoton map [10], we show that the resulting cluster category \mathcal{C}_A is indeed an (additive) categorification of the cluster algebra that controls the Y-system associated with (Δ, Δ'). In the categorification \mathcal{C}_A, it is easy to write down an autoequivalence, the Zamolodchikov transformation, whose powers provide the solutions to the Y-system. We conclude by showing that the Zamolodchikov transformation is of order dividing the sum of the Coxeter numbers of Δ and Δ'.

This proof is effective in the sense that, in principle, it yields explicit (periodic) formulas for the general solution of the Y-system. It is conceptual in the sense that the validity of the conjecture is obtained from a categorical periodicity theorem, which in turn follows from classical results of Gabriel and Happel. For $\Delta' = A_1$, the proof specializes to a new proof of the case due to Fomin-Zelevinsky [23].

1.3. Contents. In Section 2, we state the conjecture for pairs of Dynkin diagrams (Δ, Δ') that may be multiply laced. We present the plan of the proof in Section 2.5. We treat the case of simply laced Dynkin diagrams in Sections 3–8. In Section 3, we recall fundamental constructions from the theory of cluster algebras: quiver mutation and the mutation of Y-seeds. Then we introduce three types of products of quivers (Section 3.3) and reformulate the conjecture as a statement about the periodicity of a sequence of mutations μ_{\otimes} applied to the initial Y-seed associated with the triangle product $Q \otimes Q'$ of two alternating quivers with underlying graphs Δ and Δ' (Section 3.5). Section 4 is devoted to tropical Y-variables and F-polynomials. We recall how they are constructed and how they can be used to express the nontropical Y-variables (Section 4.1); we also introduce g-vectors and cluster variables (Section 4.4),
which are useful in the application of our categorical model to the so-called T-systems.

In Section 5, we recall the notions of 2-Calabi-Yau triangulated category \mathcal{C} and of a cluster tilting object T in such a category. There is a canonical quiver associated with the datum of \mathcal{C} and T, namely the endoquiver R of T (i.e., quiver of the endomorphism algebra of T in \mathcal{C}). The pair (\mathcal{C}, T) is called a 2-Calabi-Yau realization of the quiver R. One expects the cluster combinatorics associated with the quiver R to be encoded in the category \mathcal{C}. We therefore construct a 2-Calabi-Yau realization (\mathcal{C}, T) for the triangle product $R = Q \boxtimes Q'$ (Section 5.8). In Section 5.13, we describe the category \mathcal{C} using a quiver with potential. This will later enable us to determine the endoquivers of new cluster tilting objects in \mathcal{C}.

In Section 6, we show how to recover cluster combinatorial data associated with a quiver R from a 2-Calabi-Yau realization (\mathcal{C}, T) of R. The most important step is to lift the mutation operation to the mutation of cluster tilting objects in such a way that the endoquivers transform as predicted by Fomin-Zelevinsky’s mutation rule (Section 6.1). In fact, this is not always possible because 2-cycles may appear in the quivers of the mutated cluster tilting objects. However, we show in Sections 6.1, 6.7 and 6.13 that if no 2-cycles appear, then all cluster combinatorial data we need can be recovered from the category: quivers, tropical Y-variables and F-polynomials (as well as g-vectors and cluster variables). For a given 2-Calabi-Yau realization (\mathcal{C}, T), the appearance of 2-cycles in the endoquivers of a sequence of mutations of T has to be excluded by an explicit computation. In Section 7.1, we perform this computation for the 2-Calabi-Yau realizations associated with a class of quivers with potential (the (Q, Q')-constrained quivers with potential) that includes our 2-Calabi-Yau realization \mathcal{C} of the triangle product $Q \boxtimes Q'$ and its canonical sequence of mutations μ_g. We then reduce the conjecture to the study of an autoequivalence, the Zamolodchikov transformation, of the category \mathcal{C} (Sections 7.3 and 7.5). We conclude by showing that the order of the Zamolodchikov transformation is finite and divides the sum of the Coxeter numbers (Section 8.3). In Section 9, we reduce the nonsimply laced case of the conjecture (in the form due to Fomin-Zelevinsky) to the simply laced case using the classical folding technique.

In the final Section 10, we show that our proof is effective in the sense that, in principle, it allows us to write down explicit (periodic) formulas for the general solution of the Y-system in terms of homological invariants and Euler characteristics of quiver Grassmannians.

Acknowledgments. The author is indebted to Bernard Leclerc, who rekindled his interest in the conjecture during a conversation at the MSRI program.
on combinatorial representation theory in May 2008. He thanks Carles Casacuberta, André Joyal, Joachim Kock and Amnon Neeman for an invitation to the Centre de Recerca Matemàtica, Barcelona, where the details of the proof were worked out and [50] was written down in June 2008. He is grateful Sarah Scherotzke, Lingyan Guo and Alfredo Nájera Chávez for pointing out misprints in an earlier version of this paper as well as to two anonymous referees for their careful reading of the manuscript and their helpful advice.

2. The conjecture

2.1. Statement. Let Δ and Δ' be two Dynkin diagrams with vertex sets I and I'. Let A and A' be the incidence matrices of Δ and Δ'; i.e., if C is the Cartan matrix of Δ and J the identity matrix of the same format, then $A = 2J - C$. Let h and h' be the Coxeter numbers of Δ and Δ'.

The Y-system of algebraic equations associated with the pair of Dynkin diagrams (Δ, Δ') is a system of countably many recurrence relations in the variables Y_i, t, where (i, i') is a vertex of $\Delta \times \Delta'$ and t an integer. The system reads as follows:

\[
Y_{i, i', t - 1} Y_{i, i', t + 1} = \prod_{j \in I}(1 + Y_{j, i', t})^{a_{ij}} \prod_{j' \in I'}(1 + Y_{i, j', t - 1})^{-a'_{i'j'}}.
\]

Periodicity Conjecture 2.2. All solutions to this system are periodic in t of period dividing $2(h + h')$.

We refer to the introduction for a sketch of the history of the conjecture.

Theorem 2.3. The periodicity Conjecture 2.2 is true.

Let us give an algebraic reformulation of the conjecture. Let K be the fraction field of the ring of integer polynomials in the variables $Y_{ii'}$, where i runs through the set of vertices I of Δ and i' through the set of vertices I' of Δ'. Since Δ is a tree, the set I is the disjoint union of two subsets I_+ and I_- such that there are no edges between any two vertices of I_+ and no edges between any two vertices of I_-. Analogously, I' is the disjoint union of two sets of vertices I'_+ and I'_-. For a vertex (i, i') of the product $I \times I'$, define $\varepsilon(i, i')$ to be 1 if (i, i') lies in $I_+ \times I'_+ \cup I_- \times I'_-$ and -1 otherwise. For $\varepsilon = \pm 1$, define an automorphism τ_ε of K by

\[
\tau_\varepsilon(Y_{ii'}) = \begin{cases} Y_{ii'} \prod_j (1 + Y_{j, i'})^{a_{ij}} \prod_{j' \in I'}(1 + Y_{i, j' - 1})^{-a'_{i'j'}} & \text{if } \varepsilon(i, i') = \varepsilon, \\ Y_{ii'}^{-1} \prod_j (1 + Y_{j, i'})^{-a_{ij}} \prod_{j' \in I'}(1 + Y_{i, j' - 1})^{a'_{i'j'}} & \text{if } \varepsilon(i, i') = -\varepsilon. \end{cases}
\]

Finally, define an automorphism φ of K by

\[
\varphi = \tau_- \tau_+.
\]

Then, as in [23], we have the following lemma.
Lemma 2.4. The periodicity conjecture holds if and only if the order of the automorphism φ is finite and divides $h + h'$.

Proof. We adapt the proof given in [23] for the case where $\Delta' = A_1$. First we notice that equation (2.1.1) only involves variables $Y_{i,i',t}$ with a fixed ‘parity’ $\epsilon(i,i')(-1)^t$. Therefore, the Y-system decomposes into two independent systems, an even one and an odd one, and it suffices to show periodicity for one of them, say the even one. Thus, without loss of generality, we may modify the odd system, and for the purposes of the proof, we choose to put

\begin{equation}
(2.4.1)
Y_{i,i',t+1} = Y_{i,i',t}^{-1} \text{ whenever } \epsilon(i,i')(-1)^t = -1.
\end{equation}

We combine (2.1.1) and (2.4.1) into

\begin{equation}
(2.4.2)
Y_{i,i',t+1} = \begin{cases}
Y_{i,i',t} \prod_{j \in I} (1 + Y_{j,i,i'}^{-1})^{a_{ij}} \prod_{j' \in I'} (1 + Y_{i,j,i'}^{-1})^{-a_{i'}{j'}} & \text{if } \epsilon(i,i')(-1)^{t+1} = 1, \\
Y_{i,i',t}^{-1} & \text{if } \epsilon(i,i')(-1)^{t+1} = -1.
\end{cases}
\end{equation}

Thus, if we put $Y_{i,i',t} = Y_{ii'}$, then we have

\[Y_{i,i',t+1} = \tau_{(-1)^{t+1}}(Y_{ii'}) \]

for all $i \in I$ and $i' \in I$, as we see by comparing (2.4.2) with (2.3.1). Now we set $Y_{i,i',0} = Y_{ii'}$ for $i \in I$, $i' \in I'$. By induction on t, we obtain, for all $t \geq 0$ and all $i \in I$ and $i' \in I'$,

\[Y_{i,i',t} = (\tau_{-} \tau_{+} \cdots \tau_{t})(Y_{ii'}), \]

where the number of factors τ_{+} and τ_{-} equals t. In particular, we obtain $Y_{i,i',2t} = \varphi^{t}(Y_{i,i',0})$ for all $t \geq 0$, $i \in I$ and $i' \in I'$, which clearly implies the assertion. □

2.5. Plan of the proof. We refer to the respective sections in the body of the paper for detailed explanations of the notions appearing in the following plan.

Let Δ and Δ' be two Dynkin diagrams. In Section 9, we use the standard folding technique to reduce the conjecture to the case where Δ and Δ' are simply laced, which we assume from now on. We choose alternating quivers Q and Q' (cf. Section 3.1) whose underlying graphs are Δ and Δ'. We define the square product $Q \Box Q'$ and the triangle product $Q \triangledown Q'$ as certain quivers whose vertex set is the product of the vertex sets of Q and Q' (cf. Section 3.3). We associate canonical sequences of mutations μ_{\Box} and μ_{\triangledown} to these products. These yield restricted Y-patterns y_{\Box} and y_{\triangledown}; cf. Section 3.5. Let φ be as defined in equation (2.3.2).
Step 1. We have \(\varphi^{h+h'} = 1 \) if and only if the restricted \(Y \)-pattern \(y_\square \) is periodic of period dividing \(h + h' \) if and only if this holds for the restricted \(Y \)-pattern \(y_{\bigotimes} \).

This step is proved in Section 3.5 by adapting the methods of Section 8 of [24]. Notice, however, that in the case \(\Delta' = A_1 \) considered there, the systems \(y_\square \) and \(y_{\bigotimes} \) are indistinguishable.

Step 2. The restricted \(Y \)-pattern \(y_{\bigotimes} \) is periodic of period dividing \(h + h' \) if and only if such a periodicity holds for the sequences of the tropical \(Y \)-variables and of \(F \)-polynomials (cf. Section 4.1) associated with the sequence of mutations \(\mu_p^p, p \in \mathbb{Z} \).

This follows from Proposition 3.12 of [24]; cf. Sections 4.1 and 4.3. We refer to Sections 5.1 and 5.5 for the terminology used in the following step.

Step 3. There is a triangulated 2-Calabi-Yau category \(C \) with a cluster-tilting object \(T \) whose endoquiver (= quiver of its endomorphism algebra) is \(Q \boxtimes Q' \).

We construct the category \(C \) as the (generalized) cluster category in the sense of Amiot [1] associated with the tensor product \(kQ \otimes kQ' \) of the path algebras of the quivers \(Q \) and \(Q' \); cf. Section 5.8. Thanks to Iyama-Yoshino’s results [40], there is a well-defined mutation operation for cluster tilting objects in arbitrary 2-Calabi-Yau categories (cf. Section 6.1).

Step 4. When we apply powers of the sequence of mutations \(\mu_{\bigotimes} \) to the cluster tilting object \(T \), no loops or 2-cycles appear in the endoquivers of the mutated cluster tilting objects.

We prove this by an explicit computation. First we show that \(C \) is equivalent to the cluster category associated [1] with a Jacobi-finite quiver with potential of the form \((Q \boxtimes Q', W) \) and that under this equivalence, the object \(T \) corresponds to the canonical cluster tilting object (Section 5.13). Then we show that when we perform the sequence of mutations \(\mu_{\bigotimes} \) on the quiver with potential \((Q \boxtimes Q', W) \), following [14] (cf. Section 5.12), no loops or 2-cycles appear in the mutated quivers with potential. Another proof of this step, based on [1], was given in Proposition 4.35 of [39].

Step 5. If there is an isomorphism \(\mu_{\bigotimes}^{h+h'}(T) \cong T \), then periodicity holds for the tropical \(Y \)-variables and the \(F \)-polynomials associated with the sequence \(\mu_p^p, p \in \mathbb{Z} \).

This is ‘decategorification.’ Thanks to Steps 3 and 4, it follows essentially from Pah’s multiplication formula [60] for the generalized Caldero-Chapoton map [10]; cf. Sections 6.7 and 6.13. Another proof of this step is given in Proposition 4.35 of [39].
Step 6. We have $\mu_{\mathbb{C}}(T) = \mathbf{Z}_a(T)$, where $\mathbf{Z}_a : \mathcal{C} \to \mathcal{C}$ is the Zamolodchikov transformation.

The Zamolodchikov transformation, defined in Section 7.3, should be viewed as a categorification of the automorphism φ of equation (2.3.2). If Δ' equals A_1, it coincides with the (inverse) Auslander-Reiten translation (and also with the loop functor of the category \mathcal{C}).

Step 7. We have $\mathbf{Z}_a^{h+h'} = 1$ and, therefore, $\mu_{\mathbb{C}}^{h+h'}(T) \cong T$.

This follows easily from the 2-Calabi-Yau property of the category \mathcal{C} and its construction from the tensor product of the path algebras of Q and Q'; cf. Section 8.3. Thanks to Steps 5 and 2, this concludes the proof; cf. Section 8.6.

3. Reformulation of the conjecture in terms of cluster combinatorics

3.1. Quiver mutation. A quiver Q is an oriented graph given by a set of vertices Q_0, a set of arrows Q_1 and two maps $s : Q_1 \to Q_0$ and $t : Q_1 \to Q_0$ taking an arrow to its source respectively its target. A quiver Q is finite if the sets Q_0 and Q_1 are finite. A vertex i of a quiver is a source (respectively, a sink) if there are no arrows α with target i (respectively, with source i). A quiver is alternating if each of its vertices is a source or a sink. A Dynkin quiver is a quiver whose underlying graph is a Dynkin diagram of type A_n, $n \geq 1$, D_n, $n \geq 4$, E_6, E_7 or E_8.

Let Q be a quiver. A loop of Q is an arrow α whose source and target coincide. A 2-cycle of Q is a pair of distinct arrows β and γ such that $s(\beta) = t(\gamma)$ and $t(\beta) = s(\gamma)$.

Let Q be a finite quiver without loops or 2-cycles. Let k be a vertex of Q. Following Fomin-Zelevinsky [21], we define the mutated quiver $\mu_k(Q)$. It has the same set of vertices as Q; its set of arrows is obtained from that of Q as follows:

1) for each subquiver $i \rightarrow k \rightarrow j$, add a new arrow $i \rightarrow j$;
2) reverse all arrows with source or target k;
3) remove the arrows in a maximal set of pairwise disjoint 2-cycles.

It is not hard to check that we have $\mu_k^2(Q) = Q$ for each vertex k. For example, the following two quivers are obtained from each other by mutating at the black vertex

\[
\begin{array}{c}
\text{(3.1.1)} \\
\bullet \longrightarrow \circ \\
\circ \longrightarrow \circ
\end{array}
\]

\[
\begin{array}{c}
\bullet \longleftarrow \circ \\
\circ \rightarrow \circ \downarrow \uparrow
\end{array}
\]

\[
\begin{array}{c}
\bullet \longleftarrow \circ \\
\circ \rightarrow \circ \downarrow \uparrow
\end{array}
\]
From now and until the end of this section, we assume that the set of vertices of \(Q \) is the set of integers \(1, \ldots, n \) for some \(n \geq 1 \).

There is a skew-symmetric integer matrix \(B \) associated with \(Q \) defined such that \(b_{ij} \) is the difference of the number of arrows from \(i \) to \(j \) minus the number of arrows from \(j \) to \(i \) in \(Q \). Clearly, the map taking \(Q \) to \(B \) establishes a bijection between the quivers without loops or 2-cycles with vertex set \(\{1, \ldots, n\} \) (modulo isomorphisms that are the identity on the vertices) and the skew-symmetric integer \(n \times n \)-matrices. Via this bijection, the above operation of quiver mutation corresponds to matrix mutation as originally defined by Fomin-Zelevinsky [21]. According to [24], the matrix \(B' \) corresponding to the mutated quiver is given by

\[
(3.1.2) \quad b'_{ij} = \begin{cases}
-b_{ij} & \text{if } i = k \text{ or } j = k, \\
b_{ij} + \text{sgn}(b_{ik}) \max(0, b_{ik}b_{kj}) & \text{otherwise.}
\end{cases}
\]

Let \(T_n \) be the \(n \)-regular tree. Its edges are labeled by the integers \(1, \ldots, n \) such that the \(n \) edges emanating from each vertex carry different labels. Let \(t_0 \) be a vertex of \(T_n \). To each vertex \(t \) of \(T_n \) we associate a quiver \(Q(t) \) such that at \(t = t_0 \), we have \(Q(t) = Q \), and whenever \(t \) is linked to \(t' \) by an edge labeled \(i \), we have \(Q(t') = \mu_i Q(t) \). The family of quivers \(Q(t) \), where \(t \) runs through the vertices of \(T_n \), is the quiver pattern associated with \(Q \).

3.2. \(Y \)-seeds. We follow [24]. Let \(n \geq 1 \) be an integer. A \(Y \)-seed is a pair \((Q,Y) \) formed by a finite quiver \(Q \) without loops or 2-cycles with vertex set \(\{1, \ldots, n\} \) and by a free generating set \(Y = \{Y_1, \ldots, Y_n\} \) of the field \(\mathbb{Q}(y_1, \ldots, y_n) \) generated over \(\mathbb{Q} \) by indeterminates \(y_1, \ldots, y_n \). If \((Q,Y) \) is a \(Y \)-seed and \(k \) a vertex of \(Q \), the mutated \(Y \)-seed \(\mu_k(Q,Y) \) is the \(Y \)-seed \((Q',Y') \) where \(Q' = \mu_k(Q) \) and, for \(1 \leq j \leq n \), we have

\[
Y'_j = \begin{cases}
Y_k^{-1} & \text{if } j = k, \\
Y_j(1 + Y_k^{-1})^{-m} & \text{if there are } m \geq 0 \text{ arrows } k \rightarrow j, \\
Y_j(1 + Y_k)^m & \text{if there are } m \geq 0 \text{ arrows } j \rightarrow k.
\end{cases}
\]

One checks that \(\mu_k^2(Q,Y) = (Q,Y) \). For example, the following \(Y \)-seeds are related by a mutation at the vertex 1:

\[
y_1 \rightarrow y_2 \quad\quad\quad 1/y_1 \leftarrow y_2/(1 + y_1^{-1})
\]

\[
y_3 \rightarrow y_4, \quad y_3(1 + y_1) \rightarrow y_4,
\]

where we write the variable \(Y_i \) in place of the vertex \(i \).
Let \(Q \) be a finite quiver without loops or 2-cycles with vertex set \(\{1, \ldots, n\} \). The initial \(Y \)-seed associated with \(Q \) is \((Q, \{y_1, \ldots, y_n\})\). The \(Y \)-pattern associated with \(Q \) is the family of \(Y \)-seeds \((Q(t), Y(t))\) indexed by the vertices \(t \) of the \(n \)-regular tree \(T_n \) (cf. Section 3.1) such that at the chosen initial vertex \(t_0 \), the \(Y \)-seed \((Q(t_0), Y(t_0))\) is the initial \(Y \)-seed associated with \(Q \) and whenever two vertices \(t \) and \(t' \) are linked by an edge labeled \(k \), we have
\[(Q(t'), Y(t')) = \mu_k(Q(t), Y(t)) \].

Let \(v \) be a sequence of vertices \(v_1, \ldots, v_N \) of \(Q \). We assume that the composed mutation
\[\mu_v = \mu_{v_N} \cdots \mu_{v_2} \mu_{v_1} \]
transforms \(Q \) into itself. Then clearly the same holds for the inverse sequence
\[\mu_v^{-1} = \mu_{v_1} \mu_{v_2} \cdots \mu_{v_N} \].

Now the restricted \(Y \)-pattern associated with \(Q \) and \(\mu_v \) is the sequence of \(Y \)-seeds obtained from the initial \(Y \)-seed \(y_0 \) associated with \(Q \) by applying all integer powers of \(\mu_v \). Thus this pattern is given by a sequence of seeds \(y_p, p \in \mathbb{Z} \), such that \(y_0 \) is the initial \(Y \)-seed associated with \(Q \) and, for all \(p \in \mathbb{Z} \), \(y_{p+1} \) is obtained from \(y_p \) by the sequence of mutations \(\mu_v \).

3.3. Products of quivers. Let \(Q \) and \(Q' \) be two finite quivers without oriented cycles. We define the tensor product \(Q \otimes Q' \) to be the quiver whose set of vertices is the product \(Q_0 \times Q'_0 \) and where the number of arrows from a vertex \((i, i')\) to a vertex \((j, j')\)
- a) is zero if \(i \neq j \) and \(i' \neq j' \);
- b) equals the number of arrows from \(j \) to \(j' \) if \(i = i' \);
- c) equals the number of arrows from \(i \) to \(i' \) if \(j = j' \).

Thus, for each vertex \(i' \), the full subquiver of \(Q \otimes Q' \) formed by the vertices \((i, i'), i \in Q_0\), is isomorphic to \(Q \) by an isomorphism taking \((i, i')\) to \(i \) and similarly, for each vertex \(i \) of \(Q \), the full subquiver on the vertices \((i, i'), i' \in Q'_0\), is isomorphic to \(Q' \) by an isomorphism taking \((i, i')\) to \(i' \). In Lemma 5.9, we will see that the path algebra of a tensor product of two quivers is the tensor product of the path algebras. The tensor product of the quivers
\[
\begin{align*}
\tilde{A}_4 & : 1 \leftarrow 2 \rightarrow 3 \leftarrow 4, \\
\tilde{D}_5 & : 1 \leftarrow 2 \rightarrow 3 \
\end{align*}
\]
is depicted in Figure 1.

We define the triangle product \(Q \boxtimes Q' \) to be the quiver obtained from \(Q \otimes Q' \) by adding \(rr' \) arrows from \((j, j')\) to \((i, i')\) whenever \(Q \) contains \(r \) arrows from \(i \)
\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure1.png}
\caption{The quiver $\tilde{A}_4 \otimes \tilde{D}_5$.}
\end{figure}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure2.png}
\caption{The quivers $\tilde{A}_4 \bowtie \tilde{D}_5$ and $\tilde{A}_4 \square \tilde{D}_5$.}
\end{figure}

to j and Q' contains r' arrows from i' to j'. For example, the triangle product of the quivers \tilde{A}_4 and \tilde{D}_5 is depicted in Figure 2. We will see a representation-theoretic interpretation of the triangle product in Corollary 5.11.

Now assume that Q and Q' are alternating, i.e., each vertex is a source or a sink. For example, the above quivers \tilde{A}_4 and \tilde{D}_5 are alternating. We define the square product $Q \square Q'$ to be the quiver obtained from $Q \otimes Q'$ by reversing all arrows in the full subquivers of the form $\{i\} \times Q'$ and $Q \times \{i'\}$, where i is a sink of Q and i' a source of Q'. The square product of the above quivers \tilde{A}_4 and \tilde{D}_5 is depicted in Figure 2. The triangle product and the square product of two copies of the quiver $\tilde{A}_2 : \circ \rightarrow \circ$ are given in (3.1.1).

Lemma 3.4. Let Q and Q' be alternating, and let M be the set of vertices (i, i') of $Q \square Q'$ such that i is a sink of Q and i' a source of Q'. Then there are no arrows between any two vertices of M and the composition of the mutations at the vertices of M transforms $Q \square Q'$ into $Q \otimes Q'$.
We leave the easy proof to the reader. In Figure 2, the vertices belonging to M are marked by \bullet.

3.5. Reformulation of the conjecture. Let Δ and Δ' be simply laced Dynkin diagrams. We choose alternating quivers Q and Q' whose underlying graphs are Δ and Δ'. If i is a vertex of Q or Q', we put $\varepsilon(i) = 1$ if i is a source and $\varepsilon(i) = -1$ if i is a sink. For example, we can consider the quivers \vec{A}_4 and \vec{D}_5 of Section 3.3. For two elements σ, σ' of $\{+, -\}$, we define the following composed mutation of \square:

$$
\mu_{\sigma, \sigma'} = \prod_{\varepsilon(i) = \sigma, \varepsilon(i') = \sigma'} \mu(i,i').
$$

Notice that there are no arrows between any two vertices of the index set so that the order in the product does not matter. Then it is easy to check that $\mu_{+, +}, \mu_{-, -}$ and $\mu_{-, +}, \mu_{+, -}$ both transform $Q \square Q'$ into $(Q \square Q')^\text{op}$ and vice versa. Thus the composed sequence of mutations

$$
\mu = \mu_{-, -}, \mu_{+, +}, \mu_{-, +}, \mu_{+, -}
$$

transforms $Q \square Q'$ into itself. We define the Y-system y_\square associated with $Q \square Q'$ to be the restricted Y-pattern (cf. Section 3.2) associated with $Q \square Q'$ and μ_\square. The following lemma is inspired from Section 8 of [24].

Lemma 3.6. The periodicity conjecture holds for Δ and Δ' if and only if the Y-system y_\square is periodic of period dividing $h + h'$.

Proof. Let Σ_0 be the initial Y-seed associated with $Q \square Q'$ and, for $t \geq 1$, define the Y-seed Σ_t by

$$
\Sigma_t = \begin{cases}
\mu_{+, -}, \mu_{-, +} (\Sigma_{t-1}) & \text{if } t \text{ is odd}, \\
\mu_{+, +}, \mu_{-, -} (\Sigma_{t-1}) & \text{if } t \text{ is even}.
\end{cases}
$$

Let $(Y_{i,i',t})$ be the generating set of $Q(y_1, \ldots, y_n)$ given by Σ_t. Then using equation (2.4.2), we see that the $Y_{i,i',t}$ are precisely those defined in the proof of Lemma 2.4. Therefore, the periodicity conjecture translates into the fact that $\Sigma_{2(h + h')} = \Sigma_0$ and this yields the assertion. \square

By Lemma 3.4, we have

$$
\mu_{+, -}(Q \square Q') = Q \boxtimes Q'.
$$

Therefore, the periodicity of the restricted Y-system y_\square associated with $Q \square Q'$ and μ_\square is equivalent to that of the restricted Y-system y_\boxtimes associated with $Q \boxtimes Q'$ and

$$
(3.6.1) \quad \mu_\boxtimes = \mu_{+, -}, \mu_{+, +}, \mu_{-, -}, \mu_{+, -}.
$$

So we finally obtain the following lemma.
Lemma 3.7. The periodicity conjecture holds for Δ and Δ' if and only if the Y-system $y_{\mathcal{W}}$ is periodic of period dividing $h + h'$.

4. More cluster combinatorics

Let $n \geq 1$ be an integer and Q a finite quiver without loops or 2-cycles with vertex set $\{1, \ldots, n\}$. Let T_n be the n-regular tree and t_0 a distinguished vertex of T_n. Let $(Q(t))$ be the quiver pattern associated with Q as in Section 3.1.

4.1. Tropical Y-variables and F-polynomials. The tropical semifield

$$\text{Trop}(y_1, \ldots, y_n)$$

generated by the indeterminates y_1, \ldots, y_n, is the free multiplicative group generated by the y_i endowed with the auxiliary addition defined by

$$\prod_i y_i^{a_i} \oplus \prod_i y_i^{b_i} = \prod_i y_i^\min(a_i, b_i).$$

The tropical Y-variables $\eta_i(t)$, $1 \leq i \leq n$, are elements of $\text{Trop}(y_1, \ldots, y_n)$ associated to the vertices t of T_n. They are defined recursively as follows. We put

$$\eta_i(t_0) = y_i, 1 \leq i \leq n,$$

and if t is linked to t' by an edge labeled k, we put

(4.1.1) $$\eta_j(t') = \begin{cases}
\eta_j(t)^{-1} & \text{if } j = k, \\
\eta_j(t)(1 \oplus \eta_k(t))^m & \text{if there are } m \geq 0 \text{ arrows } j \to k \text{ in } Q(t), \\
\eta_j(t)/(1 \oplus \eta_k(t)^{-1})^m & \text{if there are } m \geq 0 \text{ arrows } k \to j \text{ in } Q(t).
\end{cases}$$

The F-polynomials $F_i(t)$, $1 \leq i \leq n$, are elements of the polynomial ring $\mathbb{Z}[y_1, \ldots, y_n]$ associated to the vertices t of T_n. According to Proposition 5.1 of [24], they can be defined recursively as follows. We put

$$F_i(t_0) = 1, 1 \leq i \leq n,$$

and if t is linked to t' by an edge labeled k, then $F_i(t') = F_i(t)$ for all $i \neq k$ and $F_k(t')$ is defined by the exchange relation

(4.1.2) $$F_k(t)F_k(t') = \prod_{c_{ik} > 0} y_i^{c_{ik}} \prod_{\text{arrows } k \to j} F_j(t) + \prod_{c_{ik} < 0} y_i^{-c_{ik}} \prod_{\text{arrows } i \to k} F_i(t),$$

where the products are taken over the arrows in the quiver $Q(t)$ and the c_{ik} are defined by

$$\eta_k(t) = \prod_{i=1}^n y_i^{c_{ik}}.$$
Notice that the group ring of the free multiplicative abelian group underlying the tropical semifield $\text{Trop}(y_1, \ldots, y_n)$ is canonically isomorphic to the ring of Laurent polynomials
\[\mathbb{Z}[y_1^{\pm 1}, \ldots, y_n^{\pm 1}] . \]
Thanks to this identification, it makes sense to multiply elements of the tropical semifield with elements of the field $\mathbb{Q}(y_1, \ldots, y_n)$. This is the multiplication that we use in the following proposition.

Proposition 4.2 (Proposition 3.12 of [24]). At each vertex t of \mathbb{T}_n, and for each $1 \leq j \leq n$, we have
\[
Y_j(t) = \eta_j(t) \prod_{i=1}^{n} F_i(t)^{b_{ij}(t)},
\]
where $(b_{ij}(t))$ is the skew-symmetric integer matrix associated with $Q(t)$.

4.3. Consequence for the periodicity conjecture. Now let Q and Q' be as in Section 3.5. Let t_0 be the initial vertex of the N-regular tree \mathbb{T}_N whose edges are labeled by the vertices of $Q \boxtimes Q'$. Let $t_i, i \in \mathbb{Z}$, be the sequence of vertices of \mathbb{T}_N that are visited when performing the mutations in the integer powers of the composition
\[\mu_{\boxtimes} = \mu_+, -\mu_-, -\mu_+, +\mu_-, +. \]
(For each factor $\mu_{\sigma, \sigma'}$, we choose some order of the mutations.) Notice that μ_{\boxtimes} contains exactly one mutation at each of the N vertices of $Q \boxtimes Q'$. We already know from Section 3.3 that $(Q \boxtimes Q')(t_{pN}) = Q \boxtimes Q'$ for all $p \in \mathbb{Z}$. Thus, by the above proposition, the periodicity conjecture holds for Q and Q' if, for each vertex j of $Q \boxtimes Q'$, the sequences $\eta_j(t_{pN})$ and $F_j(t_{pN})$ are periodic in p of period dividing $h + h'$.

4.4. Cluster variables, g-vectors. We will not need cluster variables for the proof of the conjecture. We nevertheless define them since they are useful in other applications of the categorical model that we will construct, notably in the study [39] of T-systems. We will use the categorical lift of the g-vectors to express the tropical Y-variables (cf. Corollaries 6.10 and 6.11). In this way, the g-vectors do play a role in our proof.

The cluster variables $X_i(t), 1 \leq i \leq n$, associated to the vertices t of \mathbb{T}_n lie in the field $\mathbb{Q}(x_1, \ldots, x_n)$ generated by n indeterminates x_1, \ldots, x_n; they are defined recursively by
\[
X_i(t_0) = x_i, 1 \leq i \leq n,
\]
and if \(t \) is linked to \(t' \) by an edge labeled \(k \), then \(X_i(t') = X_i(t) \) for all \(i \neq k \) and \(X_k(t') \) is determined by the exchange relation

\[
X_k(t)X_k(t') = \prod_{i \rightarrow k} X_i(t) + \prod_{k \rightarrow j} X_j(t),
\]

where the products are taken over the arrows of \(Q(t) \) with source, respectively, target \(k \). By a fundamental theorem of Fomin-Zelevinsky [21], all cluster variables are Laurent polynomials with integer coefficients in the initial cluster variables \(x_1, \ldots, x_n \).

The \(g \)-vectors \(g_i^{t_0}(t) \), \(1 \leq i \leq n \), are vectors in \(\mathbb{Z}^n \) associated with the vertices \(t \) of \(T_n \). In the language of Fock-Goncharov [19], they can be interpreted as distinguished points of the tropical \(\mathcal{X} \)-variety associated with \(Q \). To define them, we first define, for all vertices \(t_1 \) and \(t_2 \) of \(T_n \), a piecewise linear bijection

\[
G(t_2, t_1) : \mathbb{Z}^n \rightarrow \mathbb{Z}^n
\]

by induction on the distance between \(t_1 \) and \(t_2 \) in the tree \(T_n \) as follows.

1) We put \(G(t_1, t_1) \) equal to the identity.

2) If \(t_1 \) and \(t'_1 \) are linked by an edge labeled \(k \), we put

\[
G(t'_1, t_1)(v) = \begin{cases}
\varphi_+(v) & \text{if } v = \sum x_i e_i \text{ with } x_k \geq 0, \\
\varphi_-(v) & \text{if } v = \sum x_i e_i \text{ with } x_k \leq 0,
\end{cases}
\]

where \(\varphi_+ \) and \(\varphi_- \) are the linear automorphisms of \(\mathbb{Z}^n \) with \(\varphi_+(e_i) = e_i = \varphi_-(e_i) \) for \(i \neq k \) and

\[
\varphi_+(e_k) = -e_k + \sum_{i \rightarrow k} e_i \quad \text{and} \quad \varphi_-(e_k) = -e_k + \sum_{k \rightarrow j} e_j,
\]

where the sums are taken over the arrows \(i \rightarrow k \) respectively \(k \rightarrow j \) of the quiver \(Q(t'_1) \). One checks that \(G(t_1, t'_1) \) and \(G(t'_1, t_1) \) are inverse to each other.

3) If the shortest path linking \(t_1 \) to \(t_2 \) is of length greater than or equal to two, we define

\[
G(t_2, t_1) = G(t_2, t'_1) \circ G(t'_1, t_1),
\]

where \(t'_1 \) is the first vertex different from \(t_1 \) on the shortest path from \(t_1 \) to \(t_2 \).

Now, for all vertices \(t \) and all \(1 \leq i \leq n \), we define

\[
g_{i}^{t_0}(t) = G(t, t_0)(e_i).
\]

By Theorem 1.7 of [15], this definition agrees with the one given in Section 6 of [24]. Notice that, like all the other data defined before, the \(g \)-vectors also depend on the initial vertex \(t_0 \). For later reference, notice that the \(g \)-vectors are characterized by

\[
g_{i}^{t_0}(t_0) = e_i, \ 1 \leq i \leq n
\]

(4.4.3)
and, whenever \(t_0 \) and \(t_1 \) are linked by an edge labeled \(k \), we have

\[
g_{t_1}^{t_0}(t) = \begin{cases}
\varphi_+(v) & \text{if } x_k \geq 0, \\
\varphi_-(v) & \text{if } x_k \leq 0,
\end{cases}
\]

where \(v \) is short for \(g_{t_0}^{t_1}(t) \), the integer \(x_k \) is the coefficient of \(e_k \) in \(v \) and the maps \(\varphi_+ \) and \(\varphi_- \) are the linear automorphisms of \(\mathbb{Z}^n \) associated as above with the vertex \(k \) and the quiver \(Q(t_0) \).

By Corollary 6.3 of [24], the cluster variables can be expressed in terms of the quiver pattern, the \(g \)-vectors and the \(F \)-polynomials as follows. For each vertex \(t \) of \(T_n \) and each integer \(1 \leq i \leq n \), we have

\[
X_i(t) = F_i(t)(\hat{y}_1, \ldots, \hat{y}_n) \prod_{j=1}^n x_j^{g_j},
\]

where the \(g_j \) are the components of \(g_i(t) \) and, if \((b_{ij}) \) is the skew-symmetric integer matrix corresponding to \(Q(t) \), the elements \(\hat{y}_j \) are given by

\[
\hat{y}_j = \prod_{i=1}^n x_i^{b_{ij}}.
\]

5. Calabi-Yau triangulated categories

5.1. Krull-Schmidt categories. We briefly recall basic notions from the representation theory of finite-dimensional associative algebras. More details can be found in the books [2], [3], [29], [63]. An introduction with motivating examples from cluster theory is given in Sections 5 and 6 of [47]. By a module, we will mean a right module.

Recall that an additive category is a category where 1) each finite family of objects admits a direct sum and 2) the morphism sets are endowed with structures of abelian groups such that the composition is bilinear. For example, the category of free modules over a ring is additive, and so are the category of projective modules and that of all modules. An additive category has split idempotents if each idempotent endomorphism \(e \) of an object \(X \) gives rise to a direct sum decomposition \(Y \oplus Z \xrightarrow{\sim} X \) such that \(Y \) is a kernel for \(e \). The category of free modules over a ring usually does not have split idempotents but the category of projective modules does. An object \(X \) in an additive category is indecomposable if in each direct sum decomposition \(X \xrightarrow{\sim} Y \oplus Z \), the object \(Y \) or the object \(Z \) is a zero object. In the category of modules over a ring, the simple modules are indecomposable but usually there are many other indecomposable objects. For example, let \(k \) be a field, let \(n \geq 1 \) be an integer and let \(T_n(k) \) be the associative algebra of lower triangular \(n \times n \)-matrices over \(k \). Let \(e_{ij} \) denote the matrix whose \((i, j)\)-coefficient equals 1 and whose other coefficients vanish. Let \(A = T_2(k) \). Then the modules \(P_1 = \)
\(e_{11}A = [k 0] \) and \(P_2 = e_{22}A = [k k] \) are indecomposable (and projective). The module \(P_1 \) is also simple, but the module \(P_2 \) is not since it contains \(P_1 \) as a proper submodule. A \textit{Krull-Schmidt category} is an additive category where the endomorphism rings of indecomposable objects are local and each object decomposes into a finite direct sum of indecomposable objects (which are then unique up to isomorphism and permutation). One can show that each Krull-Schmidt category has split idempotents. We write \(\text{indec}(C) \) for the set of isomorphism classes of indecomposable objects of a Krull-Schmidt category \(C \).

For example, if \(k \) is a field, the category of finitely generated modules over the polynomial ring \(k[x] \) is not a Krull-Schmidt category since the free module \(k[x] \) is indecomposable but its endomorphism algebra, which is \(k[x] \), is not local.

On the other hand, the category of coherent sheaves over a projective variety over \(k \) is a Krull-Schmidt category. If \(A \) is a finite-dimensional associative algebra over \(k \), then the category \(\text{mod}(A) \) of \(A \)-modules whose underlying \(k \)-vector spaces are finite-dimensional is a Krull-Schmidt category. So is its subcategory \(\text{proj}(A) \) of finitely generated projective modules. In rare cases, one can explicitly enumerate the isomorphism classes of indecomposable objects of \(\text{mod}(A) \) and \(\text{proj}(A) \). For example, if \(A \) is the algebra \(T_2(k) \), then, up to isomorphism, the indecomposables of the category \(\text{mod}(A) \) are \(P_1 = e_{11}A \), \(P_2 = e_{22}A \) and \(S_2 = P_2/P_1 \). More generally, the indecomposable modules over the algebra \(T_n(k) \) are, up to isomorphism, the quotients \(P_j/P_i \), where \(1 \leq i < j \leq n \) and \(P_i = e_{ii}T_n(k) \). We refer to the books [2], [3], [29], [63] and to Section 5 of [47] for more examples.

Let \(C \) be a Krull-Schmidt category. An object \(X \) of \(C \) is \textit{basic} if every indecomposable of \(C \) occurs with multiplicity \(\leq 1 \) in \(X \). For example, the category of finitely generated projective modules over \(T_2(k) \) contains, up to isomorphism, exactly four basic objects: \(0, P_1, P_2 \) and \(P_1 \oplus P_2 \). If an object \(X \) is basic, it is determined, up to isomorphism, by the full additive subcategory \(\text{add}(X) \) whose objects are the direct factors of finite direct sums of copies of \(X \). The map \(X \mapsto \text{add}(X) \) yields a bijection between the isomorphism classes of basic objects and the full additive subcategories of \(C \) that are stable under taking direct factors and only contain finitely many indecomposables up to isomorphism.

From now on, let \(k \) be an algebraically closed field. A \textit{k-category} is a category whose morphism sets are endowed with structures of \(k \)-vector spaces such that the composition maps are bilinear. For example, each full subcategory of the category of modules over a \(k \)-algebra is naturally a \(k \)-category. A \(k \)-category is \textit{Hom-finite} if all of its morphism spaces are finite-dimensional. For example, the category of finitely generated projective modules over a \(k \)-algebra \(A \) is Hom-finite if and only if the algebra \(A \) is finite-dimensional over \(k \). A \textit{\(k \)-linear category} is a \(k \)-category that is additive. For example, a subcategory of the category of modules over a \(k \)-algebra is \(k \)-linear if and only if it is stable under
forming finite direct sums. (In particular it then contains the zero module, which is the sum over the empty family of modules.) Let \(\mathcal{C} \) be a \(k \)-linear \(\text{Hom} \)-finite category with split idempotents. One can show that \(\mathcal{C} \) is then a Krull-Schmidt category. Let \(\mathcal{T} \) be an additive subcategory of \(\mathcal{C} \) stable under taking direct factors. The quiver \(Q = Q(\mathcal{T}) \) of \(\mathcal{T} \) is defined as follows. The vertices of \(Q \) are the isomorphism classes of indecomposable objects of \(\mathcal{T} \), and the number of arrows from the isoclass of \(T_1 \) to that of \(T_2 \) equals the dimension of the space of irreducible morphisms

\[
\text{irr}(T_1, T_2) = \text{rad}(T_1, T_2)/\text{rad}^2(T_1, T_2),
\]

where \(\text{rad} \) denotes the radical of \(\mathcal{T} \), i.e., the ideal such that \(\text{rad}(T_1, T_2) \) is formed by all nonisomorphisms from \(T_1 \) to \(T_2 \). We refer to the next section for examples. The quiver of a finite-dimensional algebra \(A \) is the quiver of the category of finitely generated projective \(A \)-modules. By Lemma 5.4, the computation of the quiver of a category can often be reduced to the computation of the quiver of a finite-dimensional algebra \(A \).

5.2. The quiver of a finite-dimensional algebra, path algebras, representations. In the case of the category of finitely generated projective modules over a finite-dimensional algebra \(A \), one can describe the radical and its square more explicitly: A morphism \(f : P \to Q \) between finitely generated projective modules lies in the radical, respectively its square, if and only if it factors as \(f = \pi g \iota \), where the morphism \(\iota : P \to Ap \) is the inclusion of a direct summand of a free module, the morphism \(\pi : Ap \to Q \) is the projection onto a direct summand of a free module and the morphism \(g : Ap \to Aq \) has all its matrix coefficients in the Jacobson radical of the algebra \(A \), respectively its square. For example, let \(A \) be the algebra \(T_n(k) \) (Section 5.1). Then the Jacobson radical of \(A \) is formed by the strictly lower triangular matrices. For \(1 \leq i \leq n \), put \(P_i = e_{ii}A \). Then, if \(i + 1 \leq j \leq n \), all morphisms \(P_i \to P_j \) lie in the radical.

On the other hand, if \(j = i + 1 \), then the space of irreducible morphisms from \(P_i \) to \(P_j \) is one-dimensional. Thus, the quiver of the algebra \(T_n(k) \) is the chain

\[
[P_1] \longrightarrow [P_2] \longrightarrow \cdots \longrightarrow [P_0],
\]

where \([P_i] \) denotes the isomorphism class of \(P_i \). (In the sequel, we will usually omit the brackets.) One can generalize this example as follows. Let \(Q \) be any finite quiver. A path of length \(l \) in \(Q \) is a formal composition \(p = (z|\alpha_l| \cdots |\alpha_2|\alpha_1|x) \) of \(l \geq 0 \) arrows forming a diagram

\[
x \overset{\alpha_1}{\longrightarrow} y \overset{\alpha_2}{\longrightarrow} \cdots \overset{\alpha_l}{\longrightarrow} z.
\]

The vertex \(x \) is the source and the vertex \(z \) the target of the path \(p \). For each vertex \(x \) of \(Q \), we have the lazy path \(e_x = (x|x) \) of length 0. Two paths \(p \) and \(q \) are composable if the target of \(q \) equals the source of \(p \); in this case, their
composition is obtained by concatenating p with q. The path algebra kQ is the vector space whose basis is formed by all paths and where the product of two paths is their composition if they are composable and zero otherwise. Notice that kQ is finite-dimensional if and only if Q does not have oriented cycles. For example, if Q is the quiver

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n,$$

then the path algebra kQ is isomorphic to the algebra $T_n(k)$. For an arbitrary quiver Q without oriented cycles, the Jacobson radical of kQ is the two-sided ideal generated by all arrows. Using this it is not hard to show that the quiver of the category $\text{proj} kQ$ is isomorphic to Q, where the isomorphism sends a vertex x of Q to the isomorphism class of the module e_xkQ.

For later use, let us record the classical equivalence (cf. [2], [3], [29], [63]) between the category of modules over the path algebra kQ and the category of representations of the opposite quiver Q^{op}: It sends a module M over the path algebra to the representation V of Q^{op} whose value at the vertex i is $V_i = Me_i$ and which maps an arrow $\alpha : i \to j$ to the linear map $V_\alpha : V_j \to V_i$ given by the right multiplication with α. For example, the modules P_i, $1 \leq i \leq 3$, over the path algebra of $Q : 1 \to 2 \to 3$ correspond to the representations

$$k \leftarrow 0 \leftarrow 0 , \ k \leftarrow 1 \leftarrow k \leftarrow 0 , \ k \leftarrow 1 \leftarrow k \leftarrow 1 \ k.$$

5.3. From objects to modules. Let us fix \mathcal{C}, a k-linear Hom-finite category with split idempotents. Let T be a basic object of \mathcal{C} and B its endomorphism algebra. Let $\text{mod}(B)$ denote the category of k-finite-dimensional right B-modules. The following lemma is well known and easy to prove. We denote by $D = \text{Hom}_k(?, k)$ the duality over the ground field.

Lemma 5.4. The functor

$$\mathcal{C}(T, ?) : \mathcal{C} \to \text{mod}(B)$$

induces an equivalence from $\text{add}(T)$ to the full subcategory $\text{proj} B$ of finitely generated projective B-modules. Moreover, for each object U of $\text{add}(T)$ and each object X of \mathcal{C}, the canonical map

$$\mathcal{C}(U, X) \to \text{Hom}_B(\mathcal{C}(T, U), \mathcal{C}(T, X))$$

is bijective. Dually, the functor

$$D\mathcal{C}(?, T) : \mathcal{C} \to \text{mod}(B)$$

induces an equivalence from $\text{add}(T)$ to the full subcategory $\text{inj} B$ of finitely generated injective B-modules. Moreover, for each object U of $\text{add}(T)$ and each object X of \mathcal{C}, the canonical map

$$\mathcal{C}(X, U) \to \text{Hom}_B(D\mathcal{C}(X, T), D\mathcal{C}(U, T))$$

is bijective.
In particular, the lemma shows that the isomorphism classes of the indecomposable projective B-modules are represented by the $C(T,T_i)$, $1 \leq i \leq n$, where the T_i are the indecomposable pairwise nonisomorphic direct factors of T. Thus, the quiver of the endomorphism algebra $\text{End}_C(T)$ is canonically isomorphic to that of the category $\text{add}(T)$: The isomorphism sends the indecomposable factor T_i to the indecomposable projective B-module $C(T,T_i)$, $1 \leq i \leq n$. We sometimes refer to the quiver of $\text{End}_C(T)$ as the endoquiver of T.

5.5. 2-Calabi-Yau triangulated categories. Let k be an algebraically closed field. Let \mathcal{C} be a k-linear triangulated category with suspension functor Σ; cf. [66]. We refer to Sections 5.6.1 and 5.6.2 for examples. We assume that

(C1) \mathcal{C} is Hom-finite and has split idempotents.

Thus, the category \mathcal{C} is a Krull-Schmidt category. For objects X, Y of \mathcal{C} and an integer i, we define

$$\text{Ext}^i(X,Y) = C(X, \Sigma^i Y).$$

An object X of \mathcal{C} is rigid if $\text{Ext}^1(X,X) = 0$.

Let d be an integer. The category \mathcal{C} is d-Calabi-Yau if there exist bifunctorial isomorphisms

$$DC(X,Y) \xrightarrow{\sim} \mathcal{C}(Y, \Sigma^d X), X,Y \in \mathcal{C},$$

where $D = \text{Hom}_k(?, k)$ is the duality over the ground field. (This definition suffices for our purposes; a refined definition is given in [5]; cf. also [46].) For example, the derived category of the category of coherent sheaves on a smooth projective variety of dimension d over an algebraically closed field is d-Calabi-Yau if the canonical bundle is trivial. Let us assume that

(C2) \mathcal{C} is 2-Calabi-Yau.

In the sequel, by a 2-Calabi-Yau category, we will mean a k-linear triangulated category satisfying (C1) and (C2).

A cluster tilting object is a basic object T of \mathcal{C} such that T is rigid and each object X satisfying $\text{Ext}^1(T,X) = 0$ belongs to $\text{add}(T)$. If T is a cluster tilting object, we write Q_T for its endoquiver.

5.6. 2-Calabi-Yau realizations. Let k be an algebraically closed field and Q a finite quiver. A 2-Calabi-Yau realization of Q is a 2-Calabi-Yau category \mathcal{C} that admits a cluster tilting object T whose endoquiver Q_T is isomorphic to Q. We will see below that in this case, under suitable additional assumptions, the cluster combinatorics associated with Q have a categorical lift in \mathcal{C}. It is therefore important to construct 2-Calabi-Yau realizations.

5.6.1. Cluster categories from quivers. Assume that Q does not have oriented cycles. In this case, the cluster category \mathcal{C}_Q provides a 2-Calabi-Yau
realization of Q. Let us recall its construction. (See Section 5.6.2 for an example.) Let $A = kQ$ denote the path algebra of Q (cf. Section 5.1) and $\text{mod}(A)$ the category of k-finite-dimensional A-modules. Let $\mathcal{D}^b(A)$ denote the bounded derived category of $\text{mod}(A)$; cf. [66], [34], [45]. Thus, the objects of $\mathcal{D}^b(A)$ are the bounded complexes

$$
\cdots \longrightarrow M^p \longrightarrow M^{p+1} \longrightarrow \cdots
$$

of k-finite-dimensional A-modules and its morphisms are obtained from the morphisms of complexes by formally inverting all quasi-isomorphisms; the triangles are ‘induced’ by short exact sequences of complexes. The category $\mathcal{D}^b(A)$ is a Hom-finite triangulated Krull-Schmidt category that admits a Serre functor, i.e., an autoequivalence $S : \mathcal{D}^b(A) \rightarrow \mathcal{D}^b(A)$ such that there are bi-functorial isomorphisms

$$
D \text{Hom}(X,Y) \cong \text{Hom}(Y,SX), \quad X,Y \in \mathcal{D}^b(A),
$$

where $D = \text{Hom}_k(?,k)$ is the duality over the ground field; cf. [34]. In fact, the Serre functor S is given by the derived tensor product with the bimodule DA that is k-dual to the bimodule A. The suspension functor Σ of $\mathcal{D}^b(A)$ is induced by the functor shifting a complex one degree to the left, i.e., $(\Sigma M)^p = M^{p+1}$, and changing the sign of its differential. The Auslander-Reiten translation is the autoequivalence τ of $\mathcal{D}^b(A)$, is defined by

$$
\tau \Sigma = S.
$$

Notice that $\Sigma \tau = \tau \Sigma$ since τ is a triangle functor. If we send a module M to the complex

$$
\cdots \longrightarrow 0 \longrightarrow M \longrightarrow 0 \longrightarrow \cdots
$$

concentrated in degree 0, we obtain a fully faithful embedding $\text{mod}(A) \rightarrow \mathcal{D}^b(A)$. In this way, we identify modules with complexes. It follows from the fact that the algebra A is of global dimension at most one that each object of $\mathcal{D}^b(A)$ is isomorphic to a direct sum of objects of the form $\Sigma^p M$, where $p \in \mathbb{Z}$ and M is a module. In particular, the indecomposable objects of $\mathcal{D}^b(A)$ are isomorphic to shifted indecomposable modules.

The cluster category was introduced in [9] and, independently in the case of quivers whose underlying graph is a Dynkin diagram of type A, in [11]. It is the orbit category

$$
\mathcal{C}_A = \mathcal{D}^b(A)/(S^{-1}\Sigma^2)\mathbb{Z} = \mathcal{D}^b(A)/(\tau^{-1}\Sigma)\mathbb{Z}.
$$

Thus, its objects are those of $\mathcal{D}^b(A)$ and its morphisms are defined by

$$
\text{Hom}_{\mathcal{C}_A}(X,Y) = \bigoplus_{p \in \mathbb{Z}} \text{Hom}_{\mathcal{D}^b(A)}(X,(\Sigma^2 S^{-1})^p Y), \quad X,Y \in \mathcal{C}_A.
$$
As shown in [44], the category \(\mathcal{C}_A \) is canonically triangulated and 2-Calabi-Yau. Moreover, as shown in [9], it satisfies (C1) and (C2), and the image in \(\mathcal{C}_A \) of the free \(\mathcal{A} \)-module of rank one is a cluster tilting object \(T \) whose endoquiver is canonically isomorphic to \(Q \).

5.6.2. The example \(A_3 \). As an example, we consider the following quiver \(Q \):

\[
1 \rightarrow 2 \rightarrow 3 ,
\]

whose underlying graph is a Dynkin diagram of type \(A_3 \). As recalled above, the indecomposable objects of \(\mathcal{D}^b(A) \) are isomorphic to shifted indecomposable modules. Hence, in our example, using the notations of Section 5.1, the vertices of the quiver of the category \(\mathcal{D}^b(A) \) correspond to the complexes \(\Sigma^p(P_i/P_j) \), where \(p \in \mathbb{Z} \) and \(1 \leq i < j \leq 3 \). Its arrows have been computed by Happel [33], [34]. It turns out that the quiver of \(\mathcal{D}^b(A) \) is isomorphic to the repetition of \(Q \), cf. [33] [45]. In our example, this is the infinite band:

![Diagram](image)

The correspondence between its vertices and the indecomposable objects of \(\mathcal{D}^b(A) \) is indicated by the following diagram:

(5.6.1)

\[
\begin{array}{cccccc}
\Sigma^{-1}(P_2/P_1) & \tau P_3 & P_3 & \Sigma P_1 & \Sigma(P_2/P_1) \\
\tau P_2 & P_1 & P_2/P_1 & P_3/P_1 & \Sigma P_2 & \Sigma P_3 \\
\tau P_1 & P_2/P_1 & P_3/P_2 & P_3/P_1 & \Sigma P_3 \\
\end{array}
\]

The objects \(\tau P_i \) are the following complexes: \(\tau P_3 = \Sigma^{-1}(P_3/P_2) \), \(\tau P_2 = \Sigma^{-1}(P_3/P_1) \) and \(\tau P_1 = \Sigma^{-1}P_3 \). The fully faithful embedding \(\text{mod}(A) \rightarrow \mathcal{D}^b(A) \) identifies the quiver of \(\text{mod}(A) \) with the triangle formed by the objects \(P_i/P_j \). Notice that the ‘meshes’ in this triangle correspond to short exact sequences and thus yield triangles in the derived category. More generally, each mesh of the whole diagram comes from a triangle in the derived category. (In fact, it comes from a so-called Auslander-Reiten triangle; cf. [33].) The suspension functor \(\Sigma \) induces the glide reflection obtained by reflecting at the horizontal symmetry axis and translating by two units to the right. The Auslander-Reiten translation \(\tau \) induces the shift by one unit to the left. The effect of the Serre functor \(S = \tau \Sigma \) is the glide reflection whose translation is the shift by one unit to the right. The autoequivalence

\[
S^{-1} \Sigma^2 = \tau^{-1} \Sigma ,
\]
which appears in the definition of the cluster category, is the glide reflection taking the \(\tau P_i \) to the \(\Sigma P_i \). As shown in [9], we obtain the quiver of the cluster category \(\mathcal{C}_A \) as the quotient of the quiver of \(D^b(A) \) by the action of the automorphism induced by \(S^{-1}\Sigma^2 = \tau^{-1}\Sigma \). Thus, in our example, this quiver is obtained by cutting out the fattened triangle bordered by the \(\tau P_i \) and the \(\Sigma P_i \) and then identifying each vertex \(\tau P_i \) with the corresponding \(\Sigma P_i \).

The quiver of \(\mathcal{C}_A \) has nine vertices so that the cluster category \(\mathcal{C}_A \) has nine indecomposables (up to isomorphism). The direct sum \(T \) of the images of the \(P_i \) in the cluster category is the canonical cluster-tilting object of \(\mathcal{C}_A \).

5.6.3. Cluster categories from algebras of global dimension 2. Since \(k \) is algebraically closed, every finite-dimensional \(k \)-algebra of global dimension at most one is Morita-equivalent to \(kQ \) for some quiver \(Q \) without oriented cycles. Thus, the cluster category \(\mathcal{C}_A \) is in fact defined for every finite-dimensional algebra \(A \) of global dimension at most one. If \(A \) is an algebra of finite but arbitrary global dimension, the derived category \(D^b(A) \) still has a Serre functor (given by the derived tensor product with \(DA \)) but the orbit category is no longer triangulated in general. In recent work [1], Amiot has extended the construction of the (triangulated) cluster category to certain algebras \(A \) of global dimension at most 2: Let \(A \) be such an algebra and let \(\Pi_3(A) \) be its 3-Calabi-Yau completion in the sense of [49]. By definition, \(\Pi_3(A) \) is the tensor algebra

\[
T_A(X) = A \oplus X \oplus (X \otimes_A X) \oplus \cdots
\]

of a cofibrant replacement of the complex of bimodules \(X = \Sigma^2 R\text{Hom}_{A^e}(A, A^e) \), where \(A^e = A^{\text{op}} \otimes_k A \). Its homology is given by

\[
H^n(\Pi_3(A)) = \bigoplus_{p \geq 0} H^n((\Sigma^2 S^{-1})^p A).
\]

In particular, it vanishes in degrees \(n \leq 0 \). Then Amiot defines the cluster category \(\mathcal{C}_A \) as the triangle quotient

\[
\text{per}(\Pi_3(A))/\mathcal{D}_{fd}(\Pi_3(A)),
\]

where, for a differential graded (=dg) algebra \(B \), the \textit{perfect derived category} \(\text{per}(B) \) is the thick subcategory of the derived category \(\mathcal{D}(B) \) generated by the free module \(B \) and the \textit{finite-dimensional derived category} \(\mathcal{D}_{fd}(B) \) is the full subcategory of \(\mathcal{D}(B) \) whose objects are the dg modules \(M \) whose homology \(H^*(M) \) is of finite total dimension. Amiot shows in [1] that if \(A \) is of global dimension at most one, this definition agrees with the definition given above. If \(A \) is of global dimension at most 2 then, in general, the category \(\mathcal{C}_A \) is not \(\text{Hom} \)-finite. However, we have the following theorem.
Theorem 5.7 (Amiot [1]). Suppose that the functor
\[\text{Tor}_2^A(?, DA) : \text{mod } A \to \text{mod } A \]
is nilpotent (i.e., it vanishes when raised to a sufficiently high power).

a) The category \(\mathcal{C}_A \) is \(\text{Hom} \)-finite and 2-Calabi-Yau.
b) The image \(T \) of \(A \) in \(\mathcal{C}_A \) is a cluster tilting object.
c) The endomorphism algebra of \(T \) in \(\mathcal{C}_A \) is isomorphic to \(H^0(\Pi_3(A)) \) and the quiver of the endomorphism algebra is obtained from that of \(A \) by adding, for each pair of vertices \((i, j) \), a number of arrows equal to
\[\dim \text{Tor}_2^A(S_j, S_i^{\text{op}}) \]
from \(i \) to \(j \), where \(S_j \) is the simple right module associated with \(j \) and \(S_i^{\text{op}} \) the simple left module associated with \(i \).

As an example, let us consider the tensor product \(A \) of two copies of the path algebra \(kQ' \) of the quiver \(1 \to 2 \) (equivalently, the tensor product of two copies of the algebra \(T_2(k) \) of lower triangular \(2 \times 2 \)-matrices). This algebra is isomorphic to the quotient of the path algebra of the square
\[
\begin{array}{ccc}
(1,2) & \xrightarrow{\alpha} & (2,2) \\
\beta \uparrow & \downarrow \gamma & \\
(1,1) & \xrightarrow{\delta} & (2,1)
\end{array}
\]
by the two-sided ideal generated by the relator \(\alpha\beta - \gamma\delta \). Using this description or Lemma 5.9, one sees that the quiver of \(A \) is isomorphic to the tensor product \(Q' \otimes Q' \). By a direct computation or using Lemma 5.10, one sees that the algebra \(A \) satisfies the assumption of the theorem. So we obtain that the cluster category \(\mathcal{C}_A \) is \(\text{Hom} \)-finite and 2-Calabi-Yau, that the image \(T \) of \(A \) in \(\mathcal{C}_A \) is a cluster-tilting object and that the quiver of its endomorphism algebra is isomorphic to
\[
\begin{array}{ccc}
(1,2) & \xrightarrow{\alpha} & (2,2) \\
\beta \uparrow & \downarrow \rho & \downarrow \gamma \\
(1,1) & \xrightarrow{\delta} & (2,1)
\end{array}
\]
that is, to the triangle product \(Q' \boxtimes Q' \). By Proposition 5.14, the endomorphism algebra itself is isomorphic to the quotient of the path algebra of this quiver by the two-sided ideal generated by the relators
\[\alpha\beta - \gamma\delta, \beta\rho, \rho\alpha, \delta\rho, \rho\gamma. \]
We have thus obtained a 2-Calabi-Yau realization of the triangle product \(Q' \boxtimes Q' \) for the quiver \(Q' : 1 \to 2 \) and a precise description of the endomorphism
algebra of a cluster-tilting object. In the following sections, our aim is to generalize this example to triangle products $Q'\boxtimes Q''$ of two arbitrary alternating Dynkin quivers.

5.8. 2-Calabi-Yau realizations of triangle products. Let Q and Q' be two finite quivers without oriented cycles. Let k be a field. The path algebras kQ and kQ' are then finite-dimensional algebras of global dimension at most one, and the tensor product $kQ \otimes_k kQ'$ is a finite-dimensional algebra of global dimension at most 2.

Lemma 5.9. The quiver of the finite-dimensional k-algebra $kQ \otimes kQ'$ is isomorphic to $Q \otimes Q'$.

Proof. Recall that if B is a finite-dimensional algebra whose simple modules are one-dimensional, the vertices of the quiver of B are in bijection with the isomorphism classes of the (simple) right B-modules and the number of arrows from the vertex of S to that of S' equals the dimension of the first extension group of S' by S. Equivalently, it equals the multiplicity of the projective cover P_S of S in the first term (not the zeroth term!) of a minimal projective presentation of S'. Now the simple modules of $kQ \otimes kQ'$ are the tensor products $S_i \otimes S_i'$, where S_i is the simple right kQ'-module associated with a vertex i of Q and similarly for S_i'. We obtain a minimal projective presentation of $S_i \otimes S_i'$ by tensoring a minimal projective presentation of S_i with a minimal projective presentation of S_i'. Now the minimal projective presentation of S_i is of the form

$$\bigoplus P_{s(\alpha)} \longrightarrow P_i,$$

where the sum ranges over all arrows α with target i, the vertex $s(\alpha)$ is the source of the arrow α and $P_{s(\alpha)}$ the projective cover of the simple $S_{s(\alpha)}$. Thus, the minimal projective presentation of $S_i \otimes S_i'$ has its first term isomorphic to the direct sum of modules $P_{s(\alpha)} \otimes P_{s'(\alpha')}$ and $P_i \otimes P_{s(\alpha')}$, where α runs through the arrows of Q with target i and α' through the arrows of Q' with target i'. Clearly, this implies the assertion. \hfill \Box

Lemma 5.10. Suppose Q and Q' are Dynkin quivers. Let $A = kQ \otimes_k kQ'$. Then the functor

$$\text{Tor}_2^A (?, DA) : \text{mod } A \to \text{mod } A$$

is nilpotent.

Proof. Let $S = ? \otimes_A DA$ be the Serre functor of $\mathcal{D}^b(A)$, and let $\mathcal{D}^b_{\geq 0}(A)$ be the right aisle of the canonical t-structure on $\mathcal{D}^b(A)$. For $p \in \mathbb{Z}$, put $\mathcal{D}^b_{\geq p}(A) = \Sigma^{-p}\mathcal{D}^b_{\geq 0}(A)$. We also use analogous notations for $\mathcal{D}^b(kQ)$ and $\mathcal{D}^b(kQ')$. By Proposition 4.9 of [1], to show that $\text{Tor}_2^A (?, DA)$ is nilpotent, it suffices to show
that
\[(\Sigma^{-2}S)p(D_{\geq 0}(A)) \subset D_{\geq 1}(A)\]
for sufficiently large integers \(p\). Now if \(L\) belongs to \(D^b(kQ)\) and \(M\) to \(D^b(kQ')\),
then we have a canonical isomorphism
\[\left(\Sigma^{-2}S\right)(L \otimes M) = \left(\Sigma^{-1}SL\right) \otimes \left(\Sigma^{-1}SM\right) = (\tau L) \otimes (\tau M),\]
where \(\tau = \Sigma^{-1}S\) is the Auslander-Reiten translation of the derived category
of \(Q\) respectively \(Q'\). Since \(Q\) and \(Q'\) are Dynkin quivers, it follows from
Happel's description of the derived category of a Dynkin quiver [33] that there
are integers \(N\) and \(N'\) such that
\[\tau^N(D_{\geq 0}(kQ)) \subset D_{\geq 1}(kQ)\]
and \[\tau^{N'}(D_{\geq 0}(kQ')) \subset D_{\geq 1}(kQ').\]
Then we have
\[\left(\Sigma^{-2}S\right)^{N+N'}(L \otimes M) = (\tau^{N+N'}L) \otimes (\tau^{N+N'}M) \in D_{\geq 2}(A)\]
for all \(L \in D^b_{\geq 0}(kQ)\) and \(M \in D^b_{\geq 0}(kQ')\). Since \(D^b_{\geq 0}(A)\) is the closure under
\(\Sigma^{-1}\), extensions and passage to direct factors of such objects \(L \otimes M\), the claim
follows.

Corollary 5.11. Suppose that \(Q\) and \(Q'\) are Dynkin quivers. Let \(A = kQ \otimes_k kQ'\). Then the cluster category \(C_A\) is \(\text{Hom}\)-finite and 2-Calabi-Yau. Moreover, the image \(T\) of \(A\) in \(C_A\) is a cluster tilting object. The endoquiver of \(T\) is canonically isomorphic to the triangle product \(Q \boxtimes Q'\).

Proof. Except for the last claim, this follows directly from Theorem 5.7 and Lemma 5.10. To determine the endoquiver, by Theorem 5.7 and Lemma 5.9, it suffices to compute the second torsion groups between the simple \(A\)-modules. By the proof of Lemma 5.9, these are tensor products of simple modules. We compute
\[\text{Tor}_2^A(S_j \otimes_k S'_j, S_{i'}^{\text{op}} \otimes S_{i'}^{\text{op}}) = \text{Tor}_1^{kQ}(S_j, S_i^{\text{op}}) \otimes \text{Tor}_1^{kQ'}(S_j', S_i'^{\text{op}})\]
\[= e_j(kQ_1)e_i \otimes e_j'(kQ'_1)e_i',\]
where we write \(kQ_1\) for the vector space generated by the arrows of \(Q\) and consider it as a bimodule over the semi-simple subalgebra \(\prod_{i \in Q_0} ke_i\) of \(kQ\). This shows the claim.

5.12. Reminder on quivers with potential. We recall results from Derksen-Weyman-Zelevinsky’s fundamental article [14]. Let \(Q\) be a finite quiver and \(k\) a field. Let \(\widehat{kQ}\) be the completed path algebra, i.e., the completion of the path algebra at the ideal generated by the arrows of \(Q\). Thus, \(\widehat{kQ}\) is a topological algebra and the paths of \(Q\) form a topological basis so that the underlying
vector space of \(\hat{k}Q \) is
\[
\prod_{\text{path}} kp.
\]
The **continuous zeroth Hochschild homology** of \(\hat{k}Q \) is the vector space \(HH_0 \) obtained as the quotient of \(\hat{k}Q \) by the closure of the subspace generated by all commutators. It admits a topological basis formed by the *cycles* of \(Q \), i.e., the orbits of paths \(p = (i|\alpha_m| \cdots |\alpha_1|i) \) of any length \(m \geq 0 \) with identical source and target under the action of the cyclic group of order \(m \). In particular, the space \(HH_0 \) is a product of copies of \(k \) indexed by the vertices if \(Q \) does not have oriented cycles. For each arrow \(a \) of \(Q \), the *cyclic derivative with respect to* \(a \) is the unique linear map
\[
\partial_a : HH_0 \to \hat{k}Q,
\]
which takes the class of a path \(p \) to the sum
\[
\sum_{p=uv} vu
\]
taken over all decompositions of \(p \) as a concatenation of paths \(u, a, v \), where \(u \) and \(v \) are of length \(\geq 0 \). A **potential** on \(Q \) is an element \(W \) of \(HH_0 \) whose expansion in the basis of cycles does not involve cycles of length \(\leq 1 \). A potential is **reduced** if it does not involve cycles of length \(\leq 2 \). The **Jacobian algebra** \(\mathcal{P}(Q, W) \) associated to a quiver \(Q \) with potential \(W \) is the quotient of the completed path algebra by the closure of the two-sided ideal generated by the cyclic derivatives of the elements of \(W \). If the potential \(W \) is reduced and the Jacobian algebra \(\mathcal{P}(Q, W) \) is finite-dimensional, its quiver is isomorphic to \(Q \). Two quivers with potential \((Q, W)\) and \((Q', W')\) are **right equivalent** if \(Q_0 = Q'_0 \) and there exists a \(k \)-algebra isomorphism \(\varphi : \hat{k}Q \to \hat{k}Q' \) such that \(\varphi \) induces the identity on the subalgebra \(\prod_{Q_0} k \) and takes \(W \) to \(W' \). One of the main theorems of [14] is the existence, for each quiver with potential \((Q, W)\), of a reduced quiver with potential \((Q_{\text{red}}, W_{\text{red}})\), unique up to right equivalence, such that \((Q, W)\) is right equivalent to the sum of \((Q_{\text{red}}, W_{\text{red}})\) with a trivial quiver with potential. (See [14] for the definition.) In particular, the Jacobian algebras of \((Q, W)\) and \((Q_{\text{red}}, W_{\text{red}})\) are isomorphic. The quiver with potential \((Q_{\text{red}}, W_{\text{red}})\) is the **reduced part** of \((Q, W)\).

Let \((Q, W)\) be a quiver with potential such that \(Q \) does not have loops. Let \(i \) be a vertex of \(Q \) not lying on a 2-cycle. The **mutation** \(\mu_i(Q, W) \) is defined as the reduced part of the quiver with potential \(\tilde{\mu}_i(Q, W) = (Q', W') \), which is defined as follows:

1. (i) To obtain \(Q' \) from \(Q \), add a new arrow \([\alpha \beta]\) for each pair of arrows \(\alpha : i \to j \) and \(\beta : t \to i \) of \(Q \), and
2. (ii) replace each arrow \(\gamma \) with source or target \(i \) by a new arrow \(\gamma^* \) with \(s(\gamma^*) = t(\gamma) \) and \(t(\gamma^*) = s(\gamma) \).
b) Put \(W' = [W] + \Delta \), where

\(\Delta \) is obtained from \(W \) by replacing, in a representative of \(W \) without cycles passing through \(i \), each occurrence of \(\alpha \beta \) by \([\alpha \beta]\), for each pair of arrows \(\alpha : i \to j \) and \(\beta : l \to i \) of \(Q \);

\(\Delta \) is the sum of the cycles \([\alpha \beta]\) taken over all pairs of arrows \(\alpha : i \to j \) and \(\beta : l \to i \) of \(Q \).

Then \(i \) is not contained in a 2-cycle of \(\mu_i(Q, W) \) and \(\mu_i(\mu_i(Q, W)) \) is shown in [14] to be right equivalent to \((Q, W)\). Note that if neither \(Q \) nor the quiver \(Q' \) in \((Q', W') = \mu_i(Q, W)\) have loops or 2-cycles, then \(Q \) and \(Q' \) are linked by the quiver mutation rule.

Let \((Q, W)\) be a quiver with potential. The \textit{Ginzburg dg algebra} \(\Gamma = \Gamma(Q, W) \) associated with \((Q, W)\) is due to V. Ginzburg [31]. We use the variant defined in [52]. The Ginzburg algebra is a topological differential graded algebra whose homology vanishes in (cohomological) degrees \(> 0 \) and whose zeroth homology is isomorphic to the Jacobian algebra \(\mathcal{P}(Q, W) \). We refer to [52] for the definitions of the derived category \(D\Gamma \), the perfect derived category \(\text{per}(\Gamma) \) and the finite-dimensional derived category \(D_{fd}(\Gamma) \). All three are triangulated categories, and \(D_{fd}(\Gamma) \) is a thick subcategory of \(\text{per}(\Gamma) \), which is a thick subcategory of \(D(\Gamma) \). The objects of \(D(\Gamma) \) are all differential graded right \(\Gamma \)-modules. The cluster category \(C_\Gamma \) is defined as the triangle quotient of \(\text{per}(\Gamma) \) by \(D_{fd}(\Gamma) \).

Let us assume that the Jacobian algebra of \((Q, W)\) is finite-dimensional. Then the cluster category \(C_\Gamma \) is a (\textit{Hom}-finite!) 2-Calabi-Yau category and the image \(T \) in \(C_\Gamma \) of the free right \(\Gamma \)-module of rank one is a cluster tilting object by [1]. Moreover, as shown in [1], the endomorphism algebra of \(T \) in \(C_\Gamma \) is isomorphic to the Jacobian algebra and thus, if \((Q, W)\) is reduced, the quiver of the endomorphism algebra of \(T \) is isomorphic to \(Q \).

Let \((Q, W)\) be a quiver with potential and \(i \) a vertex of \(Q \) not lying on a 2-cycle. Let \(\Gamma = \Gamma(Q, W) \) and \(\Gamma' = \Gamma(\mu_i(Q, W)) \). For each vertex \(j \) of \(Q \), let \(e_j \) be the associated idempotent and \(P_j = e_j \Gamma \) the right ideal generated by \(e_j \). We use analogous notations for \(\Gamma' \). It is shown in [52] that there is a triangle equivalence

\[F : D(\Gamma') \xrightarrow{\sim} D(\Gamma) \]

that induces triangle equivalences in the perfect and the finite-dimensional derived categories and sends the objects \(P'_j \), \(j \neq i \), to the \(P_j \) and the object \(P_i \) to the cone over the morphism of dg modules

\[P_i \to \bigoplus P_j, \]

where the sum is taken over all arrows in \(Q \) with source \(i \) and the components of the morphism are the left multiplications with the corresponding arrows. If the Jacobian algebra of \((Q, W)\) is finite-dimensional, the equivalence \(F \) induces
a triangle equivalence
\[C_{\Gamma'} \xrightarrow{\sim} C_{\Gamma} \]
that sends \(T' = \Gamma' \) to \(\mu_1(T) \), by the exchange triangles of Lemma 6.3. In particular, the endomorphism algebra of \(\mu_1(T) \) is isomorphic to the Jacobian algebra of \(\mu_1(Q, W) \) (this also follows from Theorem 5.1 in [7]) and its quiver is the quiver \(Q' \) appearing in \((Q', W') = \mu_1(Q, W)\).

5.13. Description of \(C_A \) by a quiver with potential. Let \(k \) be a field and \(Q \) and \(Q' \) finite quivers without oriented cycles. Let \(A = kQ \otimes_k kQ' \). The cluster category \(C_A \) defined in Section 5.6 is associated with the 3-Calabi-Yau completion \(\Pi_3(A) \). We can describe this dg algebra conveniently using quivers with potentials.

For arrows \(\alpha : i \to j \) of \(Q \) and \(\alpha' : i' \to j' \) of \(Q' \), we use notations as in the following full subquiver of \(Q \boxtimes Q' \):

\[
\begin{align*}
(i, j') \xrightarrow{(\alpha, j')} (j, j') \\
(i, i') \xrightarrow{(\alpha, i')} (j, i') \\
(i, j') \xrightarrow{\rho(\alpha, \alpha')} (j, j') \\
(i, i') \xrightarrow{\rho(\alpha, \alpha')} (j, i').
\end{align*}
\]

Proposition 5.14. The 3-Calabi-Yau completion \(\Pi_3(A) \) is quasi-isomorphic to the Ginzburg algebra \(\Gamma(Q \boxtimes Q', W) \) associated with the quiver \(Q \boxtimes Q' \) and the potential
\[
W = \sum \rho(\alpha, \alpha') \circ ((j, j') \circ (\alpha, i') - (\alpha, j') \circ (i, \alpha')),
\]
where the sum ranges over all pairs of arrows \(\alpha \) of \(Q \) and \(\alpha' \) of \(Q' \).

Proof. A closer examination of the proof of Corollary 5.11 shows that the minimal relations for the algebra \(A \) are precisely the commutativity relations \((\alpha, i') \circ (j, j') - (\alpha, j') \circ (i, \alpha') \) associated with pairs of arrows \(\alpha \) of \(Q \) and \(\alpha' \) of \(Q' \). Now Theorem 6.9 of [49] shows that \(\Pi_3(A) \) is quasi-isomorphic to the noncompleted Ginzburg algebra \(\Gamma'(Q \boxtimes Q', W) \). Since the homology in each degree of this dg algebra is finite-dimensional, the canonical morphism
\[
\Gamma'(Q \boxtimes Q', W) \to \Gamma(Q \boxtimes Q', W)
\]
is a quasi-isomorphism. \(\square \)

6. Cluster combinatorics from Calabi-Yau triangulated categories

Here we describe how to associate cluster combinatorial data with objects in 2-Calabi-Yau categories with a cluster tilting object. We start with the categorical lift of the most basic operation: quiver mutation.
6.1. Decategorification: quiver mutation. Let k be an algebraically closed field and C a 2-Calabi-Yau category with cluster tilting object T. Let T_1 be an indecomposable direct factor of T.

Theorem 6.2 (Iyama-Yoshino [40]). Up to isomorphism, there is a unique indecomposable object T_1^* not isomorphic to T_1 such that the object $\mu_1(T)$ obtained from T by replacing the indecomposable summand T_1 with T_1^* is cluster tilting.

We call $\mu_1(T)$ the *mutation* of T at T_1. If T_1, \ldots, T_n are the pairwise nonisomorphic indecomposable direct summands of T and T_n is the n-regular tree with distinguished vertex t_0, we define cluster tilting objects $T(t)$ for each vertex t of T_n in such a way that $T(t_0) = T$ and, whenever t and t' are linked by an edge labeled k, we have $T(t') = \mu_k(T(t))$. Notice that the construction simultaneously yields a natural numbering of the indecomposable summands $T_i(t')$ of $T(t')$ in such a way that $T_i(t) \cong T_i^*(t')$ for all $i \neq k$.

Lemma 6.3. Suppose that endoquiver of T does not have a loop at the vertex corresponding to T_1. Then the space $\text{Ext}^1(T_1, T_1^*)$ is one-dimensional and we have nonsplit triangles

$$(6.3.1) \quad T_1 \xrightarrow{i} E \xrightarrow{p} T_1 \xrightarrow{\varepsilon} \Sigma T_1^* \quad \text{and} \quad T_1 \xrightarrow{i'} E' \xrightarrow{p'} T_1^* \xrightarrow{\varepsilon'} \Sigma T_1,$$

where

$$E = \bigoplus_{\text{arrows } i \to 1} T_i \quad \text{and} \quad E' = \bigoplus_{\text{arrows } 1 \to j} T_j$$

and the components of the morphisms i, i', p and p' represent the corresponding arrows of the endoquivers of T respectively $\mu_1(T)$.

The lemma is well known to the experts. We include a proof for the convenience of the reader.

Proof. Let T' be the direct sum of the indecomposable direct factors of T not isomorphic to T_1. By the construction of T_1^* in [40], we have a triangle

$$T_1^* \xrightarrow{i} E \xrightarrow{p} T_1 \xrightarrow{\varepsilon} \Sigma T_1^*,$$

where p is a minimal right $\text{add}(T')$-approximation of T_1. Since T is rigid, we obtain an exact sequence

$$(6.3.2) \quad C(T, E) \rightarrow C(T, T_1) \rightarrow C(T, \Sigma T_1^*) \rightarrow 0.$$

Since the endoquiver of T does not have a loop at T_1, each nonisomorphism from T_1 to itself factors through E. Since k is algebraically closed, it follows
that the space $C(T, \Sigma T_1')$ is one-dimensional and isomorphic to the simple quotient of the indecomposable projective $C(T, T)$-module $C(T, T_1)$. Moreover, the sequence (6.3.2) is a minimal projective presentation of this simple quotient. This yields the description of E. By applying the same argument to C^op, we obtain the description of E'.

Theorem 6.4 (Buan-Iyama-Reiten-Scott [6]). Suppose that the endoquivvers Q and Q' of T and $T' = \mu_1(T)$ do not have loops nor 2-cycles. Then Q' is the mutation of Q at the vertex 1.

We define a cluster tilting object T' to be reachable from T if there is a path

$$
t_0 \longrightarrow t_1 \longrightarrow \cdots \longrightarrow t_N
$$

in T_n such that $T(t_N) = T'$ and the quiver of $\text{End}(T(t_i))$ does not have loops nor 2-cycles for all $0 \leq i \leq N$. It follows from the theorem above that in this case, for each $0 \leq i \leq N$, the endoquiver $Q_{T(t_i)}$ of $T(t_i)$ is obtained from the endoquiver of $T = T(t_0)$ by the corresponding sequence of mutations; i.e., we have $Q_{T(t_i)} = Q(t_i)$ for all $1 \leq i \leq N$. We define a rigid indecomposable object of C to be reachable from T if it is a direct summand of a reachable cluster tilting object.

Example 6.5. Consider the cluster category C of the quiver $1 \rightarrow 2 \rightarrow 3$ from Example 5.6.2 with its cluster tilting object T, which is the sum of P_1, P_2 and P_3. If we mutate T at its summand $T_1 = P_1$, we find $T_1' = P_2/P_1$ and the exchange triangles (6.3.1) are

$$
P_2/P_1 \longrightarrow 0 \longrightarrow P_1 \longrightarrow \Sigma(P_2/P_1)
$$

and

$$
P_1 \longrightarrow P_2 \longrightarrow P_2/P_1 \longrightarrow \Sigma P_1.
$$

Notice that the third morphism of the first triangle is the composition of the isomorphism $P_1 \xrightarrow{\sim} \tau(P_2/P_1)$, already present in the derived category, with the isomorphism $\tau(P_2/P_1) \xrightarrow{\sim} \Sigma(P_2/P_1)$ obtained thanks to the passage to the cluster category. We obtain the new quiver

$$
P_3

\downarrow

P_2

\downarrow

P_2/P_1,
$$

which is indeed isomorphic to the mutation of $1 \rightarrow 2 \rightarrow 3$ at the vertex 1. If we mutate T at its summand P_2, we obtain $P_2^* = P_3/P_1$ and the exchange
triangles
\[P_3/P_2 \rightarrow P_1 \rightarrow P_2 \rightarrow \Sigma(P_3/P_2) \]
and
\[P_2 \rightarrow P_3 \rightarrow P_3/P_2 \rightarrow \Sigma P_2. \]
The new quiver is
\[\begin{array}{c}
\text{P}_1 \\
\text{P}_3 \\
\text{P}_3/P_2
\end{array} \]
and it is indeed isomorphic to the mutation of $1 \to 2 \to 3$ at the vertex 2.

Example 6.6. Let us consider the following alternating Dynkin quiver of type A_3:
\[Q : 2 \rightarrow 1 \rightarrow 3. \]
If we identify this quiver with the triangle product $Q \boxtimes Q'$, where Q' consists of a single vertex (considered as a source) without arrows, then the mutation sequence μ_{\boxtimes} defined in formula (3.6.1) simplifies to
\[\mu_{\boxtimes} = \mu_+ - \mu_-, \]
where μ_+ is the mutation at the source 1 and μ_- the sequence of mutations $\mu_2\mu_3$ at the sinks 2 and 3. Let us lift the composition μ_{\boxtimes} to the categorical level and check that the action of $\mu_{\boxtimes}^{h+h'} = \mu_{\boxtimes}^{h+2}$ is indeed the identity, where $h = 4$ and $h' = 2$ are the Coxeter numbers of A_3 and A_1. Let A be the path algebra (cf. Section 5.2), and for each vertex i, let $P_i = e_i A$ and $I_i = \text{Hom}(Ae_i, k)$. (These are the indecomposable projective, respectively injective, A-modules, up to isomorphism.) In analogy with Example 5.6.2, we draw a piece of the quiver of the derived category $D^b(A)$:
\[(6.6.1) \]
\[\begin{array}{c}
\Sigma^{-1}P_2 \\
\Sigma^{-1}P_3
\end{array} \]
\[\begin{array}{c}
\tau P_1 \\
\tau P_2 \\
P_1 \\
P_2 \\
I_1 \\
I_2 \\
I_3 \\
\Sigma P_1 \\
\Sigma P_2 \\
\Sigma P_3 \\
\Sigma I_1.
\end{array} \]
Let us point out that the derived category in this example is equivalent to that in Example 5.6.2 by the derived functor of the Bernstein-Gelfand-Ponomarev reflection functor associated with the vertex 1; cf. [33] [45]. This explains the isomorphism between their quivers, which of course respects the actions of the automorphisms Σ, S and τ. If we mutate the initial cluster-tilting object $T = P_1 \oplus P_2 \oplus P_3$ at the summand P_1, we obtain the exchange triangles
\[I_1 \rightarrow 0 \rightarrow P_1 \rightarrow \Sigma I_1 \quad \text{and} \quad P_1 \rightarrow P_2 \oplus P_3 \rightarrow I_1 \rightarrow \Sigma P_1. \]
and the new quiver

\[
\begin{array}{ccc}
P_3 & \rightarrow & I_1 \\
& \searrow & \\
P_2 & \rightarrow & I_1 \\
& \nearrow & \\
& & I_3
\end{array}
\]

If we now successively mutate at the summands associated with the vertices 2 and 3 of the original quiver, we successively obtain the quivers

\[
\begin{array}{ccc}
P_3 & \rightarrow & I_1 \\
& \searrow & \\
& & I_3
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
I_2 & \rightarrow & I_1 \\
& \searrow & \\
& & I_3
\end{array}
\]

What we see in this example is that applying \(\mu \Box \) to the initial cluster-tilting object is tantamount to applying the autoequivalence \(\tau^{-1} \). Therefore, if we raise \(\mu \Box \) to the power \(h + h' = 4 + 2 \), the resulting sequence of mutations acts on the initial cluster tilting object like the autoequivalence \(\tau^{-h} \tau^{-2} \). Now the functor \(\tau^{-h} : \mathcal{D}^b(A) \rightarrow \mathcal{D}^b(A) \) is isomorphic to \(\Sigma^2 \) by the classical Theorem 8.2 below. On the other hand, the functor induced by \(\tau^{-1} \) in the cluster category is isomorphic to that induced by \(\Sigma^{-1} \), by the definition of the cluster category. So the effect of \(\tau^{-h} \tau^{-2} \) in the cluster category is that of \(\Sigma^2 \Sigma^{-2} = 1 \). This is a simple case of ‘categorical periodicity’ proved, in general, in Section 5.6.1.

6.7. Decategorification: g-vectors and tropical Y-variables. As in Section 6.1, we assume that \(k \) is an algebraically closed field and \(\mathcal{C} \) a \(2 \)-Calabi-Yau category with a cluster tilting object \(T \).

Let \(\mathcal{T} = \text{add}(T) \) be the full subcategory whose objects are all direct factors of finite direct sums of copies of \(T \). Let \(K_0(\mathcal{T}) \) be the Grothendieck group of the additive category \(\mathcal{T} \). Thus, the group \(K_0(\mathcal{T}) \) is free abelian on the isomorphism classes of the indecomposable summands of \(T \).

Lemma 6.8 ([51]). For each object \(L \) of \(\mathcal{C} \), there is a triangle

\[
T_1 \rightarrow T_0 \rightarrow L \rightarrow \Sigma T_1
\]

such that \(T_0 \) and \(T_1 \) belong to \(\mathcal{T} \). The difference

\[
[T_0] - [T_1]
\]

considered as an element of \(K_0(\mathcal{T}) \) does not depend on the choice of this triangle.

In the situation of the lemma, we define the index \(\text{ind}_\mathcal{T}(L) \) of \(L \) as the element \([T_0] - [T_1] \) of \(K_0(\mathcal{T}) \).
Theorem 6.9 ([13]).

a) Two rigid objects are isomorphic if and only if their indices are equal.

b) The indices of the indecomposable summands of a cluster tilting object form a basis of $K_0(T)$. In particular, all cluster tilting objects have the same number of pairwise nonisomorphic indecomposable summands.

c) In the situation of Lemma 6.3, if $T' = \mu_1(T)$ and L is an object of C, we have

\[
\text{ind}_{T'}(L) = \begin{cases}
\varphi_+(\text{ind}_T(L)) & \text{if } [\text{ind}_T(L) : T] \geq 0, \\
\varphi_-(\text{ind}_T(L)) & \text{if } [\text{ind}_T(L) : T] \leq 0.
\end{cases}
\]

where φ_\pm are the linear automorphisms of $K_0(T)$ that fix all classes of indecomposable factors of T not isomorphic to T_1 and send the class of T_1 to $\varphi_+(\{T_1\}) = \{T_1\} + \{E\}$ respectively $\varphi_-(\{T_1\}) = \{T_1\} + \{E'\}$.

Corollary 6.10 ([26]). Let $T(t)$ be a cluster tilting object reachable from $T = T(t_0)$. For each $1 \leq j \leq n$, we have

\[
\text{ind}_T(T_j(t)) = \sum_{i=1}^{n} g_{ij}(t)[T_i],
\]

where g_{ij} are given by the tropical Y-variable

\[
\eta_i(t) = \prod_{j=1}^{n} g_{ij}^{c_{ij}}, 1 \leq i \leq n.
\]

Proof. This follows from the recursive characterization of the g-vectors in equations (4.4.3) and (4.4.4).

Notice that a cluster tilting object T' of C is also a cluster tilting object of the opposite category C^{op} so that each object L in $\text{obj}(C) = \text{obj}(C^{\text{op}})$ also has a well-defined index in C^{op} with respect to T'; we denote it by $\text{ind}_{T'}^{\text{op}}(L)$. If we identify the Grothendieck groups of $\text{add} T'$ and $(\text{add}(T'))^{\text{op}}$, this index identifies with $-\text{ind}_{T}(\Sigma L)$.

Corollary 6.11. Let $T(t)$ be a cluster tilting object reachable from $T = T(t_0)$. We have

\[
\text{ind}_{T(t)}^{\text{op}}(T_j(t)) = \sum_{i=1}^{n} c_{ji}[T_i(t)],
\]

where the c_{ij} are given by the tropical Y-variable

\[
\eta_i(t) = \prod_{j=1}^{n} g_{ij}^{c_{ij}}, 1 \leq i \leq n.
\]

Proof. This follows from the recursive definition (4.1.1) of the tropical Y-variables and Theorem 6.9.

Example 6.12. We continue Example 6.6. Let $T = T(t_0)$ be the direct sum of P_1, P_2 and P_3 in the cluster category C_A. Let $T' = \mu_{\otimes}(T)$. In Example 6.6,
we have obtained that $T'_1 = I_1$, $T'_2 = I_3$ (sic!) and $T'_3 = I_2$. Let us compute the indices of the $T_j = P_j$ with respect to T' in the opposite of the cluster category. For this, we have to produce ‘co-resolutions’ of the T_j by objects belonging to $\text{add}(T')$. Now we have the exact sequences

$$0 \to P_1 \to I_1 \to I_2 \oplus I_3 \to 0,$$

$$0 \to P_2 \to I_1 \to I_3 \to 0,$$

$$0 \to P_3 \to I_1 \to I_2 \to 0.$$

To obtain these, it is best to identify modules over the path algebra with representations of the quiver Q^op:

$$Q^\text{op} : 2 \to 1 \to 3;$$

cf. Section 5.2. Specifically, these representations are:

$$P_1 : 0 \to k \to 0, P_2 : k \to k \to 0, P_3 : 0 \to k \to k,$$

$$I_1 : k \to k \to k, I_2 : k \to 0 \to 0, I_3 : 0 \to 0 \to k.$$

So we obtain that the matrix whose coefficients are the integers c_{ij} defined in the corollary is

$$\begin{pmatrix}
1 & 1 & 1 \\
-1 & -1 & 0 \\
-1 & 0 & -1
\end{pmatrix}.$$

Notice again that $T'_2 = I_3$ and $T'_3 = I_2$! An easy computation shows that the tropical Y-variables associated with the vertex $t = \mu_{\mathcal{T}_0}(t_0)$ of the regular tree \mathcal{T}_3 are indeed the Laurent monomials

$$y_1 y_2 y_3, y_1^{-1} y_2^{-1}, y_1^{-1} y_3^{-1}$$

whose exponents appear in the rows of this matrix.

6.13. Decategorification: cluster variables and F-polynomials. Let k be the field of complex numbers. Let T_1, \ldots, T_n be the pairwise nonisomorphic indecomposable direct summands of T and B its endomorphism algebra. Let $P_i = \text{Hom}(T, T_i)$ be the indecomposable projective right B-module associated with T_i, $1 \leq i \leq n$. Let S_i be the simple quotient of P_i. For a right B-module M, the dimension vector is the n-tuple formed by the $\text{dim} \text{Hom}_B(P_i, M)$, $1 \leq i \leq n$.

For two finite-dimensional right B-modules L and M, put

$$\langle L, M \rangle = \text{dim} \text{Hom}(L, M) - \text{dim} \text{Ext}^1(L, M) - \text{dim} \text{Hom}(M, L) + \text{dim} \text{Ext}^1(M, L).$$

This is the antisymmetrization of a truncated Euler form. A priori it is defined on the split Grothendieck group of the category $\text{mod} B$ (i.e., the quotient of
the free abelian group on the isomorphism classes divided by the subgroup generated by all relations obtained from direct sums in \(\text{mod } B \).

Proposition 6.14 (Palu [60]). The form \(\langle \cdot, \cdot \rangle_a \) descends to an antisymmetric form on \(K_0(\text{mod } B) \). Its matrix in the basis of the simples is the antisymmetric matrix associated with the quiver of \(B \). (Loops and 2-cycles do not contribute to this matrix.)

In notational accordance with equation (6.10.1), for \(L \in \mathcal{C} \), we define the integer \(g_i(L) \) to be the multiplicity of \([T_i]\) in the index \(\text{ind}(L) \), \(1 \leq i \leq n \). We define the element \(X_L \) of the field \(\mathbb{Q}(x_1, \ldots, x_n) \) by

\[
X_L = \prod_{i=1}^n x_i^{g_i(L)} \sum_e \chi(\text{Gr}_e(\text{Ext}^1(T, L))) \prod_{i=1}^n x_i^{(S, e)_a},
\]

where the sum ranges over all \(n \)-tuples \(e \in \mathbb{N}^n \), the quiver Grassmannian \(\text{Gr}_e(\text{Ext}^1(T, L)) \) is the variety of all \(B \)-submodules of the \(B \)-module \(\text{Ext}^1(T, L) \) whose dimension vector is \(e \) and \(\chi \) denotes the Euler characteristic of singular cohomology with coefficients in \(\mathbb{C} \). Notice that we have \(X_T = x_i \), \(1 \leq i \leq n \).

The expression (6.14.1) is a vastly generalized form of Caldero-Chapoton’s formula [10]. We define the \(F \)-polynomial associated with \(L \) as the integer polynomial in the indeterminates \(y_1, \ldots, y_n \) given by

\[
F_L = \sum_e \chi(\text{Gr}_e(\text{Ext}^1(T, L))) \prod_{i=1}^n y_i^{d_i}.
\]

Now let \(Q \) be the endoquiver of \(T \) in \(\mathcal{C} \). We assume that \(Q \) does not have loops or 2-cycles. Let \(A_Q \) be the associated cluster algebra.

Theorem 6.15 (Palu [60]). If \(L \) and \(M \) are objects of \(\mathcal{C} \) such that the space of extensions \(\text{Ext}^1(L, M) \) is one-dimensional and

\[
L \xrightarrow{i} E \xrightarrow{i'} M \xrightarrow{\Sigma L} M \quad \text{and} \quad M \xrightarrow{j} E' \xrightarrow{j'} L \xrightarrow{\Sigma M} M
\]

are ‘the’ two nonsplit triangles, then we have

\[
X_L X_M = X_E + X_{E'},
\]

\[
F_L F_M = F_E \prod_{i=1}^n y_i^{d_i} + F_{E'} \prod_{i=1}^n y_i^{d'_i},
\]

where

\[
d_i = \dim \ker(C(T_i, \Sigma L) \xrightarrow{i} C(T_i, \Sigma E)) \quad \text{and} \quad d'_i = \dim \ker(C(T_i, \Sigma M) \xrightarrow{i'} C(T_i, \Sigma E')).
\]

Proof. For \(L \in \mathcal{C} \), let \(X_{L\text{Palu}} \) be the polynomial defined by Palu in [60]. We then have \(X_L = X_{L\text{Palu}} \), as follows from the formula at the end of Section 2 in [60]. By Theorem 4 of [60], the map \(L \mapsto X_{L\text{Palu}} \) satisfies formula (6.15.1).
Hence, so does the map \(L \mapsto X_L \). Formula (6.15.2) is implicit in Section 5.1 of [60] and, in particular, in formula (2) of the proof of Lemma 16 of [60]. □

Corollary 6.16. If the cluster tilting object \(T(t) \) associated with a vertex \(t \) of \(T_n \) is reachable from \(T(t_0) \), we have
\[
X_{T_i(t)} = X_i(t) \quad \text{and} \quad F_{T_i(t)} = F_i(t)
\]
for all \(1 \leq i \leq n \).

Proof. Indeed, the first formula follows by induction from Theorem 6.15 and the description of the exchange triangles given in Lemma 6.3. The second formula similarly follows from Theorem 6.15 once we show that the integers \(d_i \) and \(d'_i \) coincide with the corresponding exponents in the tropical \(Y \)-variable. This results from the categorical interpretation of the tropical \(Y \)-variables in Corollary 6.11 and the following lemma. □

Lemma 6.17. Let \(L \) be a rigid object of \(C \), and let \(1 \leq k \leq n \). Let
\[
T^*_k \rightarrow E \rightarrow T_k \rightarrow \Sigma T^*_k \quad \text{and} \quad T_k \rightarrow E' \rightarrow T^*_k \rightarrow \Sigma T_k
\]
be ‘the’ exchange triangles. Let \(m \) be the multiplicity of \([T_k] \) in \(\text{ind}^{op}(L) \). Then we have
\[
(6.17.1) \quad m = \begin{cases}
\dim \ker(C(L, \Sigma T^*_k) \rightarrow C(L, \Sigma E)) & \text{if } m \geq 0, \\
\dim \ker(C(L, \Sigma T_k) \rightarrow C(L, \Sigma E')) & \text{if } m \leq 0.
\end{cases}
\]
Moreover, at least one of the two integers on the right-hand side vanishes.

Proof. A triangle is contractible if it is a direct sum of triangles one of whose terms is zero. A triangle is minimal if it does not contain a contractible triangle as a direct factor. Every triangle is the sum of a contractible and a minimal triangle. In particular, we can choose the triangle
\[
L \rightarrow T^0_k \rightarrow T^1_k \rightarrow \Sigma L
\]
of Lemma 6.8, where \(T^0_k \) and \(T^1_k \) lie in \(\text{add}(T) \), to be minimal. Let \(m_0 \) and \(m_1 \) be the multiplicities of \(T_k \) in these two objects. We will show that \(m_0 \) and \(m_1 \) agree with the two dimensions on the right-hand side of equation (6.17.1). By definition, we have \(m = m_0 - m_1 \). Now by Proposition 2.1 of [13], the indecomposable \(T_k \) cannot occur in both \(T^0_k \) and \(T^1_k \), and so \(m_0 = 0 \) or \(m_1 = 0 \). Clearly, this will imply both assertions. It remains to prove that \(m_0 \) and \(m_1 \) equal the two dimensions. Let us first reinterpret \(m_0 \) and \(m_1 \). Let \(B \) be the endomorphism algebra of \(T \) and \(S_k \) the simple top of the indecomposable projective \(B \)-module \(C(T, T_k) \). Then we see from Lemma 5.4 combined with the 2-Calabi-Yau property and the rigidity of \(T \) that the multiplicity \(m_0 \) of \(T_k \) in \(T^0_k \) is the multiplicity of \(S_k \) in the socle of the \(B \)-module \(C(T, \Sigma^2 L) \) and the multiplicity \(m_1 \) of \(T_k \) in \(T^1_k \) is the multiplicity of \(S_k \) in the top of the \(B \)-module.
\(\mathcal{C}(T, \Sigma L)\). We have to show that these multiplicities agree with the respective dimensions on the right-hand side of equation (6.17.1). We first consider the kernel of

\[\mathcal{C}(\Sigma L, \Sigma^2 T_k) \to \mathcal{C}(\Sigma L, \Sigma^2 E'). \]

By Lemma 5.4, it is isomorphic to the kernel of

\[\text{Hom}_B(\mathcal{C}(T, \Sigma L), \mathcal{C}(T, \Sigma^2 T_k)) \to \text{Hom}_B(\mathcal{C}(T, \Sigma L), \mathcal{C}(T, \Sigma^2 E')) \]

and thus to the value of \(\text{Hom}_B(\mathcal{C}(T, \Sigma L), ?)\) on the kernel of

\[\mathcal{C}(T, \Sigma^2 T_k) \to \mathcal{C}(T, \Sigma^2 E'). \]

Because of the triangle

\[\Sigma E' \to \Sigma T_k^* \to \Sigma^2 T_k \to \Sigma^2 E' \]

and the fact that \(\text{Ext}^1(T_k, T_k^*)\) is one-dimensional, we have an exact sequence

\[0 \to S_k \to \mathcal{C}(T, \Sigma^2 T_k) \to \mathcal{C}(T, \Sigma^2 E'). \]

Thus the kernel of \(\mathcal{C}(L, \Sigma T_k) \to \mathcal{C}(L, \Sigma E')\) is isomorphic to the space

\[\text{Hom}_B(\mathcal{C}(T, \Sigma L), S_k), \]

whose dimension clearly equals the multiplicity of \(S_k\) in the head of \(\mathcal{C}(T, \Sigma L)\).

This is what we wanted to show. Now we consider the kernel of

\[\mathcal{C}(L, \Sigma^2 T_k) \to \mathcal{C}(T, \Sigma^2 E') \]

By the 2-Calabi-Yau property, it is isomorphic to the dual of the cokernel of

\[\mathcal{C}(E, \Sigma L) \to \mathcal{C}(T, \Sigma^2 L). \]

By the triangle

\[\Sigma^{-1} E \to \Sigma^{-1} T_k \to T_k^* \to E, \]

this cokernel is isomorphic to the kernel of

\[\mathcal{C}(T_k, \Sigma^2 L) \to \mathcal{C}(E, \Sigma^2 L). \]

By Lemma 5.4, this kernel is isomorphic to the kernel of

\[\text{Hom}_B(\mathcal{C}(T, T_k), \mathcal{C}(T, \Sigma^2 L)) \to \text{Hom}_B(\mathcal{C}(T, E), \mathcal{C}(T, \Sigma^2 L)). \]

Because of the triangle

\[E \to T_k \to \Sigma T_k^* \to \Sigma E, \]

the rigidity of \(T\) and the fact that \(\text{Ext}^1(T_k, T_k^*)\) is one-dimensional, we have an exact sequence

\[\mathcal{C}(T, E) \to \mathcal{C}(T, T_k) \to S_k \to 0. \]

So the above kernel is isomorphic to the space

\[\text{Hom}_B(S_k, \mathcal{C}(T, \Sigma^2 L)), \]

whose dimension clearly equals the multiplicity of \(S_k\) in the socle of \(\mathcal{C}(T, \Sigma^2 L)\).

This is what we had to show. \(\square\)
Example 6.18. We continue Example 6.12. We keep the initial cluster tilting object $T = P_1 \oplus P_2 \oplus P_3$ and wish to compute the F-polynomials associated with the direct factors of $T' = \mu_{\Delta}(T) = I_1 \oplus I_3 \oplus I_2$. For this, we first compute

$$\text{Ext}^1_{\mathcal{C}_A}(T, T'_i) = \text{Ext}^1_{\mathcal{C}_A}(T, \tau^{-1}T_i) = \text{Hom}_{\mathcal{C}_A}(T, \Sigma\tau^{-1}T_i) = \text{Hom}_{\mathcal{C}_A}(T, T_i).$$

By Lemma 5.4, the space $\text{Hom}_{\mathcal{C}_A}(T, T_i)$, considered as a module over $\text{End}_{\mathcal{C}_A}(T) = A$, is isomorphic to P_i. Hence, the F-polynomials we are looking for are the F-polynomials of the quiver Grassmannians of the modules P_i, or equivalently of the associated representations of Q^{op}.

Now P_1 is simple and so has exactly two submodules, namely 0 and P_1, which leads to

$$F_{T'_1} = 1 + y_1.$$

The module P_2 has exactly three submodules, namely 0, P_1 and P_2, which leads to

$$F_{T'_2} = 1 + y_1 + y_1 y_2.$$

Similarly, we find

$$F_{T'_3} = 1 + y_1 + y_1 y_3.$$

A simple computation shows that these are indeed the F-polynomials associated with the vertex $\mu_{\Delta}(t_0)$ of T_3. Thanks to Fomin-Zelevinsky’s formula (4.2.1) expressing the nontropical Y-variables at a vertex t of T_n in terms of the tropical Y-variables, the F-polynomials and the quiver at t, we obtain a categorical expression for the (nontropical) Y-variables associated with $\mu_{\Delta}(t_0)$ by combining the results of this example with those of Examples 6.6 and 6.12.

6.19. Consequence for the conjecture. Let Δ and Δ' be simply laced Dynkin diagrams with Coxeter numbers h and h'. Let Q and Q' be quivers with underlying graphs Δ and Δ'. According to Lemma 3.7, in order to show the periodicity conjecture for (Δ, Δ'), it suffices to show that the restricted Y-pattern γ_{Δ} associated with $Q \boxtimes Q'$ and the sequence of mutations

$$(6.19.1) \quad \mu_{\Delta} = \mu_+ \mu_- \mu_+ \mu_- \mu_+ \mu_-$$

is periodic of period dividing $h + h'$. By Section 4.3, for this it suffices to show that, for each vertex v of $Q \boxtimes Q'$, the sequences $\eta_v(t_{pN})$ and $F_v(t_{pN})$ are periodic in p of period dividing $h + h'$, where the vertices t_i of T_N are those visited when going through an integer power of μ_{Δ}.

Now let A be the algebra $kQ \otimes kQ'$ and \mathcal{C}_A its associated cluster category with canonical cluster tilting object T as recalled in Section 5.8. By Corollary 5.11, the endoquiver of T is isomorphic to $Q \boxtimes Q'$ so that the category \mathcal{C}_A yields a 2-Calabi-Yau realization of $Q \boxtimes Q'$. In particular, it makes sense to consider the sequence of cluster tilting objects

$$T = T(t_0) \longrightarrow T(t_1) \longrightarrow \cdots$$
associated with the vertices \(t_i \). If we can show that the endoquivers of all the objects \(T(t_i) \) do not have loops nor 2-cycles, it will follow from Corollaries 6.11 and 6.16 that, for all vertices \(v \) of \(Q \otimes Q' \) and all \(i \), we have

\[
\eta_v(t_i) = \prod_{y_j \in \text{ind}_{T(t_i)(T_v)}} y_j \quad \text{and} \quad F_v(t_i) = F_{T_v(t_i)}.
\]

To conclude that the sequences \(\eta_v(t_pN) \) and \(F_v(t_pN) \) are periodic of period dividing \(h + h' \), it will then suffice to show that the sequence \(T(t_i) \) is periodic of period dividing \((h + h')N \). In Section 7, we will show that indeed, the endoquivers of the \(T(t_i) \) do not have loops or 2-cycles and we will describe the objects \(T(t_pN) = \mu_{Q \otimes Q'}^p(T) \) using the Zamolodchikov transformation of \(C_A \). In Section 8, we will show that the sequence of the \(T(t_i) \) is periodic of period dividing \(N(h + h') \) or, in other words, that \(\mu_{Q \otimes Q'}^{h+h'}(T) \cong T \).

7. Mutations of products

7.1. Constrained quivers with potential. We want to study the effect of the mutations \(\mu_{Q \otimes Q'} \) of Section 3.5 on the cluster tilting object of Corollary 5.11. We will use the description of this category by a quiver with potential constructed in Proposition 5.14. For this we introduce a class of quivers with potential containing the ones from Proposition 5.14.

Let \(Q \) and \(Q' \) be finite quivers without oriented cycles. To simplify the notations, let us suppose that between any two vertices of \(Q \) and \(Q' \), there is at most one arrow. Let \(Q_0 \) and \(Q'_0 \) denote their sets of vertices. Let \(R \) be a quiver whose vertex set is the product \(Q_0 \times Q'_0 \). An arrow \(\alpha : (i, i') \rightarrow (j, j') \) of \(R \) is horizontal (respectively, vertical) if \(i' = j' \) (respectively, if \(i = j \)). It is diagonal if it is neither horizontal nor vertical. The nondiagonal subquiver of \(R \) is the subquiver formed by all vertices and by all the nondiagonal arrows of \(R \). The quiver \(R \) is \((Q, Q')\)-constrained if

a) its nondiagonal subquiver has the same underlying graph as \(Q \otimes Q' \) (as defined in Section 3.3); and

b) for any pair of arrows \(i \rightarrow j \) of \(Q \) and \(i' \rightarrow j' \) of \(Q' \), the full subquiver of \(R \) with vertex set \(\{i, i'\} \times \{j, j'\} \) is isomorphic to

(7.1.1)

\[
\begin{align*}
\begin{array}{c}
\circ \quad \alpha' \\
\beta' \\
\end{array}
\end{align*}
\begin{array}{c}
\circ \quad \rho \\
\alpha \\
\end{array}
\end{align*}
\begin{align*}
\begin{array}{c}
\circ \quad \alpha' \\
\beta' \\
\end{array}
\end{align*}
\begin{array}{c}
\circ \quad \rho \\
\alpha \\
\end{array}
\end{align*}

in such a way that \(\alpha \) and \(\alpha' \) correspond to horizontal arrows, \(\beta \) and \(\beta' \) to vertical arrows and \(\rho \) to a diagonal arrow.
We sometimes call the subquivers appearing in b) the squares of R. For example, the quivers $Q□Q'$ and $Q ⊗ Q'$ are (Q, Q')-constrained and have the minimal, respectively maximal, number of diagonal arrows. Notice that a (Q, Q')-constrained quiver does not have loops nor 2-cycles.

A quiver with potential (R, W) is (Q, Q')-constrained if R is (Q, Q')-constrained and the potential W is the sum of nonzero scalar multiples of all the cycles $α'βρ$ and $αρβ'$ appearing in a square as in the left diagram in (7.1.1) as well as all the cycles $αβα'$ appearing in a square as in the right diagram in (7.1.1). Recall that changing the starting point in a cycle does not change the superpotential. For example, the quivers with potential obtained from Proposition 5.14 are (Q, Q')-constrained.

Let R be a (Q, Q')-constrained quiver. For a vertex (i, i') of R, the horizontal slice through (i, i') is the full subquiver $\text{hrz}(R, i')$ formed by the vertices (j, i'), $j \in Q_0$, of R; the vertical slice $\text{vrt}(R, i)$ through (i, i') is defined analogously. A vertex (i, i') of R is a source-sink if it is a source in its horizontal slice and a sink in its vertical slice and is not the source or the target of any diagonal arrow. Analogously, one defines sink-sources, Notice that two source-sinks are never linked by an arrow and that if (i, i') is a source-sink, each arrow with source (respectively target) (i, i') lies in the horizontal (respectively the vertical) slice passing through (i, i').

Lemma 7.2. Let R be a (Q, Q')-constrained quiver and (i, i') a source-sink of R.

a) The mutated quiver $\mu_{(i, i')}(R)$ is still (Q, Q')-constrained. The horizontal slice of $\mu_{(i, i')}(R)$ passing through (i, i') is the mutation $\mu_{(i, i')}(\text{hrz}(R, i'))$ and the vertical slice the mutation $\mu_{(i, i')}(\text{vrt}(R, i))$.

b) If (R, W) is a (Q, Q')-constrained quiver with potential, then $\mu_{(i, i')}(R, W)$ is still (Q, Q')-constrained. In particular, it does not have loops or 2-cycles.

Proof. a) The mutation at (i, i') reverses the arrows passing through (i, i') and does not create any diagonal arrows incident with (i, i'). Thus, (i, i') is a sink-source in the mutated quiver and the second assertion is clear. If (i, i') belongs to a square (where it has to be the vertex •)

\[
\begin{array}{c}
\bullet \quad α' \\
\circ \quad \Downarrow α \\
\circ \quad ρ \quad \Uparrow β \\
\bullet \quad \Downarrow β'
\end{array}
\]

or

\[
\begin{array}{c}
\bullet \quad α' \\
\circ \quad \Downarrow α \\
\circ \quad β \quad \Uparrow β' \\
\bullet \quad \Downarrow β'
\end{array}
\]

as in (7.1.1), then it transforms it into the other type of square; it leaves all squares not containing (i, i') unchanged. This shows the first assertion.
b) In the nonreduced mutated quiver $\tilde{\mu}_{(i,i')}(R,W)$ the squares of the first type containing (i,i') are modified as follows:

\begin{equation}
(7.2.2)
\end{equation}

where $r = [\alpha'\beta]$. Their contribution to the potential is changed from $c_1\alpha'\beta\rho + c_2\beta'\alpha\rho$, where c_1 and c_2 are nonzero scalars, to

$$c_1r\rho + r\beta^*\alpha'^* + c_2\beta'\alpha\rho = (c_1r + c_2\beta'\alpha)(\rho + c_1^{-1}\beta^*\alpha'^*) - c_2c_1^{-1}\beta'\alpha^*\alpha'^*.$$

Notice that r and ρ do not appear in any other terms of the potential. Therefore, after reduction, the square becomes

and its contribution to the potential becomes $-c_2c_1^{-1}\beta'\alpha^*\alpha'^*$. For the squares of the second type containing (i,i'), mutation changes them into

where $r = [\alpha'\beta]$, and their contribution to the potential changes from $c\alpha'\beta'\alpha', \text{ where } c \text{ is a nonzero scalar, to}$

$$cr\alpha'\beta' + r\beta^*\alpha'^*.$$

So we see that the effect of mutation is to exchange the two types of squares. The assertion follows.

7.3. The Zamolodchikov transformation. Let Q be a finite quiver without oriented cycles. We order the vertices of Q such that $i \leq j$ if and only if there is a path (of length ≥ 0) leading from i to j. A source sequence of Q is an enumeration i_1, i_2, \ldots, i_n of the vertices of Q which is nondecreasing with respect to \leq; i.e., if $1 \leq s \leq t \leq n$, then we have $i_s \leq i_t$ for the order on the vertices that we have just defined.

Let kQ be the path algebra of Q and $\text{mod } kQ$ the category of finite-dimensional right kQ-modules. Let $D^b(kQ)$ be its bounded derived category,
and denote by $\tau = \Sigma^{-1}S$ its Auslander-Reiten functor. As explained in [33], for each vertex i of Q, we have a canonical Auslander-Reiten triangle

\[(7.3.1) \quad P_i \longrightarrow (\bigoplus_{i \rightarrow j} P_j) \oplus (\bigoplus_{j \rightarrow i} \tau^{-1}P_j) \longrightarrow \tau^{-1}P_i \longrightarrow \Sigma P_i. \]

Now let \mathcal{C}_Q be the cluster category of Q; cf. Section 5.6. It is a 2-Calabi-Yau category and the image T of the free module kQ is a cluster tilting object in \mathcal{C}_Q.

Lemma 7.4. Let i_1, \ldots, i_n be a source sequence of Q. For each $1 \leq j \leq n$, the mutated cluster tilting object

$\mu_{i_j} \mu_{i_{j-1}} \cdots \mu_{i_1}(T)$

is the direct sum of the objects $\tau^{-1}P_r$, $1 \leq r \leq j$, and the objects P_s, $j < s \leq n$. In particular, for $j = n$, the mutated object cluster tilting object

$\mu_n \mu_{i_{n-1}} \cdots \mu_{i_1}(T)$

is isomorphic to $\tau^{-1}T$.

Proof. This is an easy induction. For $j = 0$, there is nothing to show. For $j > 0$, we compare the above triangle (7.3.1) with the exchange triangles (6.3.1) to see that μ_j replaces the summand P_j by $\tau^{-1}P_j$. \qed

Now let Q' be another finite quiver without oriented cycles. For simplicity, we assume that in both Q and Q', there is at most one arrow between any two given vertices. Let A be the finite-dimensional algebra $kQ \otimes_k kQ'$. We denote by $\text{mod}(A)$ its category of k-finite-dimensional right A-modules, by $D^b(A)$ its bounded derived category and by \mathcal{C}_A the associated cluster category as recalled in Section 5.8. We define $\tau \otimes 1$ to be the autoequivalence of $D^b(A)$ given by the left derived tensor product with the bimodule

$(\Sigma^{-1}D(kQ)) \otimes_k kQ'$

over $A = kQ \otimes_k kQ'$, and we define $\tau^{-1} \otimes 1$ to be its quasi-inverse. By Proposition 4.1 of [49], this functor induces an autoequivalence \tilde{Z}_A of the perfect derived category $\text{per}((\Pi_3(A)))$ that preserves the finite-dimensional derived category. The **Zamolodchikov transformation** is the induced autoequivalence $Z_A : \mathcal{C}_A \rightarrow \mathcal{C}_A$ of the cluster category. By abuse of notation, we still write $Z_A = \tau^{-1} \otimes 1$. If the underlying graph of the quiver Q' is the Dynkin diagram A_1, the Zamolodchikov transformation coincides with the inverse Auslander-Reiten translation τ^{-1}.

7.5. The Zamolodchikov transformation as a composition of mutations. As in Section 7.3, let Q and Q' be finite quivers without oriented cycles which, for simplicity of notation, are assumed to have at most one arrow between any two vertices. Let us order the vertices of $Q \boxtimes Q'$ such that $(i, i') \leq (j, j')$ if and
only if \(i \leq j \) and \(i' \geq j' \) (sic!). Let \(v_1, \ldots, v_N \) be a nondecreasing enumeration of the vertices of \(Q \otimes Q' \). For each \(1 \leq j \leq N \), we put

\[
(R(j), W(j)) = \mu_{v_j} \mu_{v_{j-1}} \cdots \mu_{v_1} (Q \otimes Q', W),
\]

where \(W \) is the potential constructed in Proposition 5.14.

Lemma 7.6. For each \(0 \leq j \leq N \), we have

a) \(v_{j+1} \) is a source-sink of \(R(j) \);
b) \((R(j), W(j)) \) is \((Q, Q') \)-constrained, and so \(R(j) \) does not have loops nor 2-cycles;
c) for each vertex \(i' \) of \(Q' \), the quiver \(hrz(R(j), i') \) is isomorphic to \(\mu_{i_s} \mu_{i_{s-1}} \cdots \mu_{i_1} (Q) \), where \((i_1, i'), \ldots, (i_s, i') \) is the subsequence of the vertices of the form \((x, i')\), \(x \in Q_0 \), among the sequence \(v_1, \ldots, v_j \);
d) for each \(i \in Q_0 \), the quiver \(vrt(R(j), i) \) is isomorphic to \(\mu_{i_s} \mu_{i_{s-1}} \cdots \mu_{i_1} (Q') \), where \((i, i_1), \ldots, (i, i_s) \) is the subsequence of the vertices of the form \((i, y) \), \(y \in Q' \), among the sequence \(v_1, \ldots, v_j \);
e) The object

\[
\mu_{v_j} \mu_{v_{j-1}} \cdots \mu_{v_1} (T)
\]

is the direct sum of the objects \((\tau^{-1}P_s) \otimes P_{t'}\), where \((i, i') \) is among the \(v_s \), \(1 \leq s \leq j \), and of the \(P_i \otimes P_{t'}\), where \((i, i') \) is not among the \(v_s \), \(1 \leq s \leq j \).

Proof. We prove a)–d) simultaneously by induction on \(j \). For \(j = 0 \), all the assertions are clear. Assume the statements hold up to \(j - 1 \). Then by a)\(_{j-1}\), the vertex \(v_j \) is a source-sink of \(R(j - 1) \) and \((R(j - 1), W(j - 1)) \) is \((Q, Q') \)-constrained by b)\(_{j-1}\). So \((R(j), W(j)) \) is still \((Q, Q') \)-constrained by Lemma 7.2. So we have proved b)\(_j\). To prove c)\(_j\), let \(i' \) be a vertex of \(Q' \). If \(i' \) is not the second component of \(v_j \), the sequence \(i_1, \ldots, i_s \) remains unchanged and so does the subquiver \(hrz(R(j), i') \) by Lemma 7.2. If \(i' \) is the second component of \(v_j \), then the sequence \(i_1, \ldots, i_s \) is extended by adding \(i_{s+1} \geq i_s \) and the claim of c)\(_j\) still follows from Lemma 7.2. Similarly, one proves d). Finally, we have to show a)\(_j\). Indeed, the vertex \(v_{j+1} \) is of the form \((i, i')\), and the first components \(i_1, \ldots, i_s, i_{s+1} \) of the \(v_1, \ldots, v_{j+1} \), which are of the form \((x, i')\), \(x \in Q_0 \), form a source sequence of \(hrz(R(0), i') \). So \(i \) is a source of \(hrz(R(j), i') = \mu_{i_s} \cdots \mu_{i_1} (hrz(R(0), i')) \). Similarly, one sees that \((i, i')\) is a sink of \(vrt(R(j), i) \).

Now let us prove e) by induction on \(j \). For \(j = 0 \), there is nothing to prove. Assume the assertion holds up to \(j - 1 \). By a)\(_{j-1}\), the vertex \(v_j = (i, i') \) is a source-sink of \(R(j - 1) \). So, in particular, the vertex \(v_j \) is a source of \(hrz(R(j - 1), i') \). By the induction hypothesis, the direct summands of

\[
\mu_{v_{j-1}} \cdots \mu_{v_1} (T)
\]
The periodicity conjecture

155

associated with the vertices of \(h r z(R(j - 1), i') \) are the
\[
\tau^{-1} P_{i_u} \otimes P_{i'}
\]
for \(1 \leq u < s \) and the \(P_j \otimes P_{i'} \) for \(j \) not among the \(i_u, 1 \leq u < s \). Now in \(D^b(kQ) \), we have the sequence
\[
(7.6.1) \quad P_i \rightarrow (\bigoplus_{i \rightarrow j} P_j) \oplus (\bigoplus_{j \rightarrow i} \tau^{-1} P_j) \rightarrow \tau^{-1} P_i \rightarrow \Sigma P_i
\]
recalled in (7.3.1). By tensoring the sequence with \(P_{i'} \) over \(k \) and taking the image in \(C_A \), we get the exchange triangle, which shows that the mutation at \(v_j = (i, i') \) replaces the summand \(P_i \otimes P_{i'} \) with \((\tau^{-1} P_i) \otimes P_{i'} \).

\[\Box\]

Corollary 7.7. Let \(v_1, \ldots, v_N \) be a nondecreasing enumeration of the vertices of \(Q \boxtimes Q' \) (for the order where \((i, i') \leq (j, j') \) if and only if there is a path from \(i \) to \(j \) and a path from \(j' \) to \(i' \)!). Let \(\mu_v \) be the composed mutation \(\mu_{v_N} \mu_{v_{N-1}} \cdots \mu_{v_1} \). For each vertex \((i, i') \) of \(Q \boxtimes Q' \), let \(T_{i,i'} \) be the indecomposable summand \(P_i \otimes P_{i'} \) of the canonical cluster tilting object \(T \) of the cluster category \(C_A \).

a) For any vertex \(t \) of \(T_n \) visited when performing an integer power of \(\mu_v \), the endoquiver of \(T(t) \) does not have loops nor 2-cycles.

b) For each \(p \geq 0 \) and all \((i, i') \), we have an isomorphism in the cluster category
\[
Z_a^p(T_{i,i'}) \cong (\mu_v^p(T))_{i,i'}.
\]

Proof. a) This follows from part b) of Lemma 7.6 and the fact that the endoquiver of a mutation of a cluster tilting object is the quiver appearing in the mutated quiver with potential as recalled at the end of Section 5.12.

b) We proceed by induction on \(p \). For \(p = 0 \), there is nothing to show. For \(p = 1 \), the assertion follows from part e) of Lemma 7.6. Now suppose that \(p \geq 1 \) and that we have an isomorphism
\[
Z_a^p(T_{i,i'}) \cong (\mu_v^p(T))_{i,i'}.
\]
Since \(Z_a \) is an autoequivalence of \(C_A \), it follows that
\[
Z_a^{p+1}(T_{i,i'}) = Z_a((\mu_v^p(T))_{i,i'}) \cong (\mu_v^p(Z_a(T)))_{i,i'}.
\]
Thanks to the case where \(p = 1 \), we conclude that
\[
\Box
\]

8. Categorical periodicity

8.1. Categorification of the Coxeter element. Let \(\Delta \) be a simply laced Dynkin diagram with vertices \(1, \ldots, n \). Let \(\alpha_i \) be the simple root associated with the vertex \(i, 1 \leq i \leq n \). Let \(h \) be the Coxeter number of \(\Delta \). Let \(Q \) be a quiver with underlying graph \(\Delta \). Let \(k \) be a field and \(D^b(kQ) \) the
bounded derived category of finite-dimensional right modules over the path algebra kQ. Then $\mathcal{D}^b(kQ)$ is a Hom-finite triangulated category. We write Σ for its suspension functor, S for its Serre functor and $\tau = \Sigma^{-1}S$ for its Auslander-Reiten translation. For each $1 \leq i \leq n$, let S_i be the simple module associated with the vertex i.

Theorem 8.2 (Gabriel, Happel). a) There is a canonical isomorphism from the Grothendieck group $K_0(\mathcal{D}^b(kQ))$ of the triangulated category $\mathcal{D}^b(kQ)$ to the root lattice of Δ that takes the class of the simple module $[S_i]$ to the simple root α_i. b) Under this isomorphism, the (positive and negative) roots correspond precisely to the classes in $K_0(\mathcal{D}^b(kQ))$ of the indecomposable objects of $\mathcal{D}^b(kQ)$. c) The automorphism of the Grothendieck group of the derived category induced by τ^{-1} corresponds to the action of a Coxeter element c on the root lattice. The identity $c^h = 1$ lifts to an isomorphism

$$\tau^{-h} \sim \Sigma^2$$

of k-linear functors $\mathcal{D}^b(kQ) \to \mathcal{D}^b(kQ)$.

Proof. Parts a) and b) follow immediately from Gabriel’s theorem [27] and from Happel’s description of the derived category $\mathcal{D}^b(kQ)$ in [33]. The isomorphism of functors in part c) follows from Happel’s description of the category $\mathcal{D}^b(kQ)$ as the mesh category of the translation quiver ZQ and from Gabriel’s description of the Serre functor (alias Nakayama functor) in Proposition 6.5 of [28]. A detailed proof of a more precise statement is given by Miyachi-Yekutieli in Theorem 4.1 of [58].

8.3. **On the order of the Zamolodchikov transformation.** As in Section 7.3, let Q and Q' be finite quivers without oriented cycles such that between any two vertices, there is at most one arrow. Let $Za = \tau^{-1} \otimes 1$ be the Zamolodchikov transformation of the cluster category \mathcal{C}_A associated with $A = kQ \otimes_k kQ'$; cf. Section 7.3.

Theorem 8.4. Suppose that the graphs underlying Q and Q' are two simply laced Dynkin diagrams with Coxeter numbers h and h'. Then we have an isomorphism of functors from \mathcal{C}_A to itself

$$Za^{h+h'} \sim 1.$$

Remark 8.5. Let W be the Weyl group associated with Q and w_0 its longest element. The element w_0 takes all positive roots to negative roots. It is the product (in a suitable order) of the reflections at all positive roots. Let w'_0 be the longest element of the Weyl group associated with Q'. One can
refine the proof below to show that if both \(w_0 \) and \(w'_0 \) act by multiplication with \(-1\) on their respective root lattices, we have an isomorphism

\[(8.5.1) \quad \mathbb{Z}a^{(h+h')/2} \sim 1.\]

\[\text{Proof.}\] Let \(A_1 = kQ \). The Auslander-Reiten translation \(\tau = \Sigma^{-1}S \) of \(\mathcal{D}^b(A_1) \) is given by tensoring with the bimodule \(\Sigma^{-1}DA_1 \), where \(DA_1 \) is the \(k \)-dual of the bimodule \(A_1 \). By Theorem 8.2, we have an isomorphism \(\tau^h(A_1) = \Sigma^{-2}(A_1) \), which is compatible with the left actions of \(A_1 \) on the two sides. By the main theorem of [43], this implies that we have an isomorphism in the derived category of bimodules \(\mathcal{D}^b(A_1 \otimes A_1^{\text{op}}) \)

\[(\Sigma^{-1}DA_1)^{\otimes A_1 h} \sim \Sigma^{-2}A_1,\]

where we write \(\otimes A_1 h \) for the derived tensor power. This yields an isomorphism in the derived category of \(A \)-bimodules

\[(\Sigma^{-1}DA_1 \otimes A_2)^{\otimes A h} \sim \Sigma^{-2}A,\]

whence an isomorphism of functors \((\tau \otimes 1)^h = \Sigma^{-2} \) from \(C_A \) to itself. Similarly, we have an isomorphism in the derived category of \(A_2 \)-bimodules

\[(\Sigma^{-1}DA_2)^{\otimes A_2 h'} \sim \Sigma^{-2}A_2,\]

which yields an isomorphism of functors \((1 \otimes \tau)^{h'} = \Sigma^{-2} \) in \(C_A \). Now we have

\[(\Sigma^{-1}DA_1 \otimes A_2) \otimes A (A_1 \otimes \Sigma^{-1}DA_2) = \Sigma^{-2}(DA_1 \otimes DA_2) = \Sigma^{-2}DA.\]

Since the category \(C_A \) is 2-Calabi-Yau, the Serre functor of \(C_A \) is isomorphic to \(\Sigma^2 \). Now the Serre functor is induced by the left derived functor of tensoring with \(DA \). So tensoring with \(\Sigma^{-2}DA \) induces the identity in \(C_A \), and so the derived tensor product with

\[(\Sigma^{-1}DA_1 \otimes A_2) \otimes A (A_1 \otimes \Sigma^{-1}DA_2)\]

induces the identity in \(C_A \). In other words, we have

\[(\tau \otimes 1)(1 \otimes \tau) = 1\]

as functors from \(C_A \) to itself. Finally, we find the following chain of isomorphisms of functors from \(C_A \) to itself:

\[(\tau \otimes 1)^{h-h'} = (\tau \otimes 1)^h(\tau \otimes 1)^{h'} = (\tau \otimes 1)^h(1 \otimes \tau)^{-h'} = \Sigma^{-2}\Sigma^2 = 1.\]

\[\Box\]

8.6. Conclusion. Let \(\Delta \) and \(\Delta' \) be simply laced Dynkin diagrams with Coxeter numbers \(h \) and \(h' \). Let \(Q \) and \(Q' \) be quivers with underlying graphs \(\Delta \) and \(\Delta' \). Let \(C_A \) be the cluster category associated with \(A = kQ \otimes kQ' \) and \(T \) is canonical cluster tilting object. As announced in Section 6.19, we have shown that in the sequence of cluster tilting objects associated with the powers of \(\mu_{\varnothing} \), the endoquivers do not have loops or 2-cycles and that we have

\[\mu_{\varnothing}^{h+h'}(T) \cong T.\]

This implies the conjecture, as explained in Section 6.19.
9. The nonsimply laced case

In this section, we reduce the general case of the conjecture to the one where the two Dynkin diagrams are simply laced. We use the classical folding technique in the spirit of Section 2.4 of [23]. The material in Sections 9.1 and 9.2 is adapted from [18].

9.1. Valued quivers and skew-symmetrizable matrices. A valued quiver is a quiver \(Q \) endowed with a function \(v : Q_1 \to \mathbb{N}^2 \) such that

a) there are no loops in \(Q \);

b) there is at most one arrow between any two vertices of \(Q \); and

c) there is a function \(d : Q_0 \to \mathbb{N} \) such that \(d(i) \) is strictly positive for all vertices \(i \) and, for each arrow \(\alpha : i \to j \), we have

\[v(\alpha)_1 d(i) = d(j) v(\alpha)_2, \]

where \(v(\alpha) = (v(\alpha)_1, v(\alpha)_2) \).

For example, we have the valued quiver

\[\vec{B}_2 : 1 \xrightarrow{(2,1)} 2, \]

where a possible function \(d \) is given by \(d(1) = 1, d(2) = 2 \). Let \(Q \) be a valued quiver with vertex set \(I \). We associate an integer matrix \(B = (b_{ij})_{i,j \in I} \) with it as follows:

\[b_{ij} = \begin{cases}
0 & \text{if there is no arrow between } i \text{ and } j, \\
v(\alpha)_1 & \text{if there is an arrow } \alpha : i \to j, \\
-v(\alpha)_2 & \text{if there is an arrow } \alpha : j \to i.
\end{cases} \]

If \(D \) is the diagonal \(I \times I \)-matrix with diagonal entries \(d_{ii} = d(i), i \in I \), then the matrix \(DB \) is antisymmetric. The existence of such a matrix \(D \) means that the matrix \(B \) is antisymmetrizable. It is easy to check that in this way, we obtain a bijection between the antisymmetrizable \(I \times I \)-matrices \(B \) and the valued quivers with vertex set \(I \). Using this bijection, we define the mutation of valued quivers using Fomin-Zelevinsky’s matrix mutation rule (3.1.2).

Let \((Q, v) \) be a valued quiver with vertex set \(I = Q_0 \). Its associated Cartan matrix is the Cartan companion [22] of the antisymmetrizable matrix \(B \) associated with \(Q \). Explicitly, it is the \(I \times I \)-matrix \(C \) whose coefficient \(c_{ij} \) vanishes if there are no arrows between \(i \) and \(j \), equals 2 if \(i = j \), equals \(-v(\alpha)_1 \) if there is an arrow \(\alpha : i \to j \) and equals \(-v(\alpha)_2 \) if there is an arrow \(\alpha : j \to i \). Thus, the Cartan matrix associated with the above valued quiver \(\vec{B}_2 \) equals

\[
\begin{bmatrix}
2 & -2 \\
-1 & 2
\end{bmatrix}.
\]
The valued graph [17] underlying the valued quiver \((Q,v)\) is by definition the set \(I\) of vertices of \(Q\) together with the nonnegative integers \(e_{ij}, i, j \in I\), defined by
\[
e_{ij} = \begin{cases}
-c_{ij} & i \neq j, \\
0 & i = j.
\end{cases}
\]
One checks easily that the pictorial representation (used in [17]) of the valued graph \((I,e)\) is obtained from that of \((Q,v)\) by replacing all arrows with unoriented edges. In the sequel, we will identify Dynkin diagrams with the valued graphs corresponding to their Cartan matrices.

9.2. Valued orbit quivers and their mutations. Let \(\tilde{Q}\) be an (ordinary) quiver with vertex set \(\tilde{I}\) without loops or 2-cycles. Let \(G\) be a finite group of automorphisms of \(\tilde{Q}\). Let \(\tilde{B}\) be the antisymmetric matrix associated with \(\tilde{Q}\). The orbit quiver \(\tilde{Q}/G\) is the quiver with vertex set \(I = \tilde{I}/G\) and where there is an arrow from a vertex \(i\) to a vertex \(j\) if there is an arrow \(\tilde{i} \rightarrow \tilde{j}\) for some vertices \(\tilde{i}\) in \(i\) and \(\tilde{j}\) in \(j\). In the following example, due to A. Zelevinsky, the orbit quiver of

\[
\begin{array}{ccc}
2 & \rightarrow & 1' \\
\downarrow & & \downarrow \\
1 & \leftarrow & 3'
\end{array}
\]

under the action of \(\mathbb{Z}/2\mathbb{Z}\) that exchanges opposite vertices is

\[
\begin{array}{ccc}
2 & \rightarrow & 1 \\
\downarrow & & \downarrow \\
1 & \leftarrow & 3
\end{array}
\]

Notice the presence of a 2-cycle in the orbit quiver. The action of \(G\) on \(Q\) is admissible if the orbit quiver does not have loops or 2-cycles. In this case, we define the valued orbit quiver
\[Q = \tilde{Q}/vG\]
to be the valued quiver with vertex set \(I = \tilde{I}/G\) and whose associated antisymmetrizable \(I \times I\)-matrix is given by
\[
b_{ij} = \sum_{i \leq \tilde{i}} \tilde{b}_{i,j},
\]
where \(\tilde{j}\) is any representative of \(j\). We obtain a function \(d\) for \(Q\) by sending an orbit \(i\) to the cardinality \(d(i)\) of the stabilizer in \(G\) of any vertex \(\tilde{i}\) in \(i\). For
example, the above quiver \vec{B}_2 is isomorphic to the orbit quiver of

$$1 \rightarrow 2 \leftarrow 1'$$

under the action of $\mathbb{Z}/2\mathbb{Z}$, which fixes 2 and exchanges 1 and 1'.

Now assume that the action of G on \widetilde{Q} is admissible. Let k be a vertex of Q. Notice that between any two vertices \tilde{k} and \tilde{k}' of the orbit k, there are no arrows (because the orbit quiver has no loops). Thus, the mutated quiver

$$\prod_k \mu_k^{-1}(\tilde{Q})$$

is independent of the choice of the order of the vertices \tilde{k} in the orbit k. This quiver inherits a natural action of G. However, this action need not be admissible any more. For example, the following quiver

\begin{center}
\begin{tikzpicture}
\node (1) at (0,0) {1};
\node (2) at (1,1) {2};
\node (3) at (2,0) {3};
\node (1p) at (0,-1) {1'};
\node (2p) at (1,-1) {2'};
\node (3p) at (2,1) {3'};
\draw (1) -- (2);
\draw (2) -- (3);
\draw (3) -- (1);
\draw (1p) -- (2p);
\draw (2p) -- (3p);
\draw (3p) -- (1p);
\end{tikzpicture}
\end{center}

has an admissible action by $\mathbb{Z}/2\mathbb{Z}$ that exchanges opposite vertices but if we mutate at the vertices of the orbit of 3, we obtain the quiver of (9.2.1) with its nonadmissible action.

Lemma 9.3. If the action of G on the mutated quiver $\prod_k \mu_k^{-1}(\tilde{Q})$ is admissible, there is a canonical isomorphism between the valued orbit quiver

$$\left(\prod_k \mu_k^{-1}(\tilde{Q})\right)/vG$$

and the mutated valued quiver $\mu_k(Q/vG)$.

9.4. Valued Y-seeds. A (valued) Y-seed is a pair (Q,Y) formed by a finite valued quiver Q with vertex set I and a free generating set $Y = \{Y_i \mid i \in I\}$ of the semifield $\mathbb{Q}_{sf}(y_i \mid i \in I)$ generated over \mathbb{Q} by indeterminates y_i, $i \in I$. If (Q,Y) is a Y-seed and k a vertex of Q, the mutated Y-seed $\mu_k(Q,Y)$ is (Q',Y'), where $Q' = \mu_k(Q)$ and, for $j \in I$, we have

$$Y'_j = \begin{cases}
Y_k^{-1} & \text{if } j = k, \\
Y_i(1 + Y_k^{-1})^{-b_{kj}} & \text{if } b_{kj} \geq 0, \\
Y_i(1 + Y_k)^{-b_{kj}} & \text{if } b_{kj} \leq 0.
\end{cases}$$
One checks that $\mu_k^2(Q,Y) = (Q,Y)$. For example, the following Y-seeds are related by a mutation at the vertex 1:

\[
\begin{align*}
y_1 \xrightarrow{(2,1)} y_2 & \quad & 1/y_1 \xleftarrow{(1,2)} \frac{y_2}{(1 + y_1^{-1})^2} \\
y_3 \xrightarrow{(2,1)} y_4 & \quad & y_3(1 + y_1) \xleftarrow{(2,1)} y_4,
\end{align*}
\]

where we write the variable Y_i in place of the vertex i.

For a valued quiver Q, the initial Y-seed, the Y-pattern and the restricted Y-pattern associated with a sequence of vertices of Q are defined as in the simply laced case in Section 3.2.

Now let \tilde{Q} be a quiver endowed with an admissible action of a finite group G. Let $Q = \tilde{Q}/vG$ be the valued orbit quiver. Let k be a vertex of Q and \tilde{Q}' the mutated quiver

\[
\prod_{k \in k} \mu_k \tilde{Q}.
\]

Assume that the action of G on \tilde{Q}' is still admissible. Let

\[
\pi : \mathbb{Q}_{sf}(y_i | \tilde{i} \in I) \to \mathbb{Q}_{sf}(y_i | i \in I)
\]

be the unique morphism of semifields such that $\pi(y_{\tilde{i}}) = y_i$ for all vertices \tilde{i} of \tilde{Q}. Let \tilde{Y} be the set of the $y_{\tilde{i}}, \tilde{i} \in I$, and let Y be the set of the $y_i, i \in I$. Define Y' by $\mu_k(Q,Y) = (Q',Y')$ and \tilde{Y}' such that (\tilde{Q}',\tilde{Y}') is the result of applying the mutations $\mu_{\tilde{k}}, \tilde{k} \in k$, to (\tilde{Q},\tilde{Y}).

Lemma 9.5. We have $\pi(\tilde{Y}'_i) = Y'_i$ for all $i \in I$.

The proof is a straightforward computation, which we omit.

9.6. Products of valued quivers

Let Q and Q' be two valued quivers. The **tensor product** $Q \otimes Q'$ is defined as the tensor product of the underlying graphs endowed with the valuation v such that

\[
v(\alpha, i') = v(\alpha) \quad \text{and} \quad v(i, \alpha') = v(\alpha')
\]

for all arrows α of Q and α' of Q' and for all vertices i' of Q' and i of Q. The **triangle product** $Q \boxtimes Q'$ is obtained from the tensor product by adding an arrow $(j, j') \to (i, i')$ of valuation

\[
(v(\alpha) v(\alpha')), (v(\alpha) v(\alpha'))
\]

for each pair of arrows α of Q and α' of Q'. For example, the triangle product $\tilde{B}_2 \boxtimes \tilde{B}_2$ is given by
A valued quiver is alternating if its underlying ordinary quiver is alternating. The opposite of a valued quiver Q has the opposite underlying quiver and the valuation defined by

$$v^{\text{op}}(\alpha^{\text{op}}) = (v(\alpha)_2, v(\alpha)_1)$$

for each arrow α of Q. The square product $Q \square Q'$ of two alternating valued quivers is obtained from $Q \otimes Q'$ by replacing all full valued subquivers $\{i\} \otimes Q'$ and $Q \otimes \{i'\}$ by their opposites, where i runs through the sinks of Q and i' through the sources of Q'. Then the quivers $Q \boxtimes Q'$ and $Q \square Q'$ are related by the same sequence of mutations as in Lemma 3.4.

9.7. Restricted Y-patterns for pairs of arbitrary Dynkin diagrams. Let Δ be a Dynkin diagram and Q an alternating valued quiver with underlying valued graph Δ; cf. the end of Section 9.1. If Δ is not simply laced, we write Q as the valued quotient quiver of a valued quiver \bar{Q} with a group action by G as in the following list where each quiver Q is followed by the corresponding quiver \bar{Q}:

\begin{align*}
(9.7.1) & \quad \bar{B}_n : 1 \longrightarrow \cdots \longrightarrow (n-2) \longrightarrow (n-1) \xrightarrow{(2,1)} n, \\
(9.7.2) & \quad \bar{A}_{2n-1} : 1 \longrightarrow \cdots \longrightarrow (n-2) \longrightarrow (n-1) \xrightarrow{n}, \\
& \quad \ quatre

\begin{align*}
(9.7.5) & \quad \bar{F}_4 : 1 \longrightarrow 2 \xrightarrow{(2,1)} 3 \longrightarrow 4, \\
(9.7.6) & \quad \bar{E}_6 : 1 \longrightarrow 2 \xrightarrow{1'} \longrightarrow 2' \longrightarrow 3 \longrightarrow 4, \\
(9.7.7) & \quad \bar{G}_2 : 1 \xrightarrow{(3,1)} 2,
\end{align*}
THE PERIODICITY CONJECTURE

163

\[(9.7.8) \]
\[
\vec{D}_4 : \quad 1 \quad \xrightarrow{\quad \quad} \quad 2.
\]

If \(\Delta \) is simply laced, we consider \(\vec{Q} = Q \) with the trivial group action. Notice that the Coxeter numbers of \(\Delta \) and the underlying diagram of \(\vec{Q} \) coincide. They are respectively equal to \(2n, 2n, 12 \) and \(6 \). In all cases except \(\vec{G}_2 \), the group acting is \(\mathbb{Z}/2\mathbb{Z} \); for \(\vec{G}_2 \), it is \(\mathbb{Z}/3\mathbb{Z} \).

Now let \(\Delta' \) be another Dynkin diagram and \(\vec{Q}' \) a quiver with a group action by \(G' \) defined similarly. The group \(G \times G' \) acts on the each of the products \(\vec{Q} \oplus \vec{Q}' \), \(\vec{Q} \boxtimes \vec{Q}' \) and \(\vec{Q} \star \vec{Q}' \), and the quotients are isomorphic to the respective products of the valued quivers \(Q \) and \(Q' \). For example, the triangle product of two copies of \(\vec{B}_2 \) leads to the following quiver:

The sequences of mutations \(\mu_{\vec{Q} \boxtimes \vec{Q}'} \) and \(\mu_{\vec{Q} \star \vec{Q}'} \) defined in Section 3.5 make sense for the valued quivers \(\vec{Q} \boxtimes \vec{Q}' \) and \(\vec{Q} \star \vec{Q}' \). As in Section 3.5, one checks that the \(Y \)-system associated with \(\Delta \) and \(\Delta' \) is periodic if and only if the restricted \(Y \)-pattern associated with \(\mu_{\vec{Q} \star \vec{Q}'} \) is periodic. Now the sequence of mutations \(\mu_{\vec{Q} \star \vec{Q}'} \) lifts to the sequence of mutations \(\mu_{\vec{Q} \boxtimes \vec{Q}'} \) associated with the simply laced quivers \(\vec{Q} \) and \(\vec{Q}' \). None of the mutations in this latter sequence introduces 2-cycles in the quotient quiver. Thus, by Lemma 9.5, the fact that the restricted \(Y \)-pattern associated with \(\mu_{\vec{Q} \boxtimes \vec{Q}'} \) is periodic with period dividing \(h_{\vec{Q}} + h_{\vec{Q}'} \) implies that the restricted \(Y \)-pattern associated with \(\mu_{\vec{Q} \star \vec{Q}'} \) is periodic with period dividing \(h_{\vec{Q}} + h_{\vec{Q}'} = h_{\Delta} + h_{\Delta'} \).

10. Effectiveness

Let \(\Delta \) and \(\Delta' \) be simply laced Dynkin diagrams and \(Q \) and \(Q' \) alternating quivers with underlying graphs \(\Delta \) and \(\Delta' \). In Section 3.5, we have seen that in order to write down the explicit general solution of the \(Y \)-system associated with \((\Delta, \Delta') \), it suffices to write down the general seeds in the restricted \(Y \)-patterns \(y_\Box \) or indeed in \(y_\star \). In Proposition 4.2, we have seen that the \(Y \)-variables at a vertex of the regular tree are determined by the tropical \(Y \)-variables and the \(F \)-polynomials. Thus, in order to write down the explicit general solution of the \(Y \)-system, it suffices to write down explicit expressions
for the F-polynomials and the tropical Y-variables at the vertices $\mu_{\mathbb{Q}}^p(t_0)$ obtained from the initial vertex t_0 of the regular tree by applying the sequence of mutations $\mu_{\mathbb{Q}}^p$ for all $p \in \mathbb{Z}$. Such explicit expressions can easily be extracted from the proof we gave, as we show now.

Let $k = \mathbb{C}$, and let $A = kQ$ and $A' = kQ'$ be the path algebras of Q and Q'. For a vertex i of Q, we write $P_i = e_iA$ for the corresponding indecomposable projective A-module and, similarly, $P_{i'}$ for a vertex i' of Q'. Let \mathcal{D} be the derived category of the category $\text{mod}(A \otimes A')$ of finite-dimensional right modules over $A \otimes A'$. Consider the finite-dimensional algebra

$$B = \bigoplus_{r \in \mathbb{Z}} \text{Hom}_\mathcal{D}(A \otimes A', (\tau^{-r}A) \otimes \tau^{-r}A'),$$

where τ is the Auslander-Reiten translation (in the derived category of right A-modules respectively A'-modules; cf. the proof of Theorem 8.4). Notice that since A and A' are hereditary, it is easy to determine these translations. By Theorem 5.7, the algebra B is isomorphic to $H^0(\Pi_3(A \otimes A'))$ which, by Proposition 5.14, is isomorphic to the Jacobian algebra of the quiver with potential $(Q \boxtimes Q', W)$ for the potential W constructed in the proposition. Notice that in the definition of B, the summands indexed by the $r < 0$ vanish (because then the homology in degrees ≤ 0 of $\tau^{-r}A$ and $\tau^{-r}A'$ vanishes).

Given a vertex (i, i') of $Q \boxtimes Q'$ and an integer $p \in \mathbb{Z}$, we put

$$M(i, i', p) = \bigoplus_{r \in \mathbb{Z}} \text{Hom}_\mathcal{D}(A \otimes A', (\tau^{-r-p}P_i) \otimes (\tau^{-r}P_{i'})).$$

This is a right B-module. It follows from Corollary 6.16 and Section 6.19 that the F-polynomial associated with (i, i') at the vertex $\mu_{\mathbb{Q}}^p(t_0)$ can be expressed as

$$F_{(i, i')}(\mu_{\mathbb{Q}}^p(t_0)) = \sum_e \chi(Gr_e(M(i, i', p)))y^e,$$

where e runs through the dimension vectors of submodules of $M(i, i', p)$. Now we define another right B-module by

$$N(i, i', p) = \bigoplus_{r \in \mathbb{Z}} \text{Hom}_\mathcal{D}(A \otimes A', (\tau^{-r-p}P_i) \otimes (\tau^{-r}P_{i'})).$$

For vertices (i, i') and (j, j') of $Q \boxtimes Q'$, put

$$c_{(i, i'), (j, j')} = \dim \text{Hom}(N(i, i', -p), S_{(j, j')} - \dim \text{Ext}^1(N(i, i', -p), S_{(j, j')})).$$

Then it follows from Corollary 6.10 and Section 6.19 that we have

$$\eta_{(i, i')}(\mu_{\mathbb{Q}}^p(t_0)) = \prod_{(j, j')} c_{(i, i'), (j, j')}.$$
References

(Received: January 24, 2010)
(Revised: October 5, 2011)

Université Paris Diderot – Paris 7, Institut Universitaire de France, and
Institut de Mathématiques de Jussieu, Paris, France

E-mail: keller@math.jussieu.fr