
COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES

HENRY COHN, ABHINAV KUMAR, STEPHEN D. MILLER,
DANYLO RADCHENKO, AND MARYNA VIAZOVSKA

1. Introduction

This article is a supplementary document for the paper [1], which proves universal optimality of
the E8 and Leech lattices as well as new interpolation formulas. Most of the proof does not require
computer assistance, with one major exception: the last step in the proof of universal optimality,
described in Section 6 of [1], requires certain inequalities for which we have no conceptual proof.
Instead, we verify them by computer calculations using interval arithmetic. In this article, we
expand on Section 6 and provide the details and code needed to verify the inequalities. Our code
uses the SageMath 9.5 open-source computer algebra system [3].

In Section 2, we summarize some formulas from [1]. In Section 3, we examine series expansions
of elliptic integrals and use them to prove equation (6.5) from [1]. In Section 4, we prove bounds on
the error introduced by truncating power series. Finally, in Section 5 we explain how our SageMath
calculations implement the strategy outlined in Sections 6.5 through 6.7 of [1] for proving the kernel
inequalities (Proposition 6.1 in [1]).

2. Elliptic integral formulas

For convenience, we collect here some key formulas from Section 2.2 of [1]. Recall our normaliza-
tions

K(m) =

∫ π/2

0

dθ√
1−m sin2 θ

and E(m) =

∫ π/2

0

√
1−m sin2 θ dθ.

Note that many references, such as [2, Chapter 19], define K and E in terms of the elliptic modulus
k, so that the complete elliptic integrals are what we call k 7→ K(k2) and k 7→ E(k2). We also use
K ′ to denote the derivative of the function K, rather than an elliptic integral with respect to the
complementary modulus. Then these functions satisfy the identities

K ′(m) =
E(m)

2m(1−m)
− K(m)

2m
,

K(m)E(1−m) + E(m)K(1−m)−K(m)K(1−m) =
π

2
,

K(m)K ′(1−m) +K ′(m)K(1−m) =
π

4m(1−m)
,

Θ3(z)
2 = 2π−1K(λ(z)),

U(z) = 4π−2K(λ(z))2,

V (z) = 4π−2λ(z)K(λ(z))2,

W (z) = 4π−2λS(z)K(λ(z))2,

K(1− λ(z))

K(λ(z))
= −iz,

λ′(z) = 4iπ−1λ(z)(1− λ(z))K(λ(z))2,

This article and the code described in it are available from DSpace@MIT at https://hdl.handle.net/1721.1/
141226.

1

https://hdl.handle.net/1721.1/141226
https://hdl.handle.net/1721.1/141226

2 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

and

E2(z) = 4π−2K(λ(z))
(
3E(λ(z))− (2− λ(z))K(λ(z))

)
for |m| < 1 and z ∈ H with z on the imaginary axis. See Section 2.2 of [1] for more details.

3. Asymptotics

In this section we use series expansions of elliptic integrals to prove equation (6.5) from [1]. For
nonnegative integers n and m, define the Pochhammer symbol

(α)n = α(α+ 1) . . . (α+ n− 1)

(for n = 0 we have the empty product 1), and define d by

d(m) = ψ(m+ 1)− ψ(m+ 1/2),

where ψ(m) is the digamma function ψ(z) = Γ′(z)/Γ(z). In particular, we have the special values
ψ(1) = −γ and ψ(1/2) = −2 log 2− γ. Using the properties of ψ, we also obtain the recurrence

d(m+ 1) = d(m)− 2

(2m+ 1)(2m+ 2)

for m = 0, 1, Therefore d(0) = 2 log 2 and d(m) tends monotonically to 0 from above as m→ ∞.
The elliptic integrals E and K are holomorphic in the open unit disk. Their behavior near 1 is

governed by

K(1− z) =

∞∑
m=0

(
1
2

)
m

(
1
2

)
m

m!m!
zm
(
− log(z)/2 + d(m)

)
and

E(1− z) = 1 +
1

2

∞∑
m=0

(
1
2

)
m

(
3
2

)
m

(2)mm!
zm+1

(
−1

2
log(z) + d(m)− 1

(2m+ 1)(2m+ 2)

)
.

(see §19.12 in [2]). Because(
1

2

)
m

=
(2m)!

22mm!
,

(
3

2

)
m

=
(2m+ 1)!

22mm!
, and (2)m = (m+ 1)!,

we can write

K(1− z) = A1(z) +A2(z) log(z) and E(1− z) = A3(z) +A4(z) log(z),

with

A1(z) =

∞∑
m=0

d(m)

24m

(
2m

m

)2

zm,

A2(z) = −
∞∑

m=0

1

24m+1

(
2m

m

)2

zm,

A3(z) = 1 +

∞∑
m=0

1

24m+1

(
2m

m

)(
2m+ 1

m

)
zm+1

(
d(m)− 1

(2m+ 1)(2m+ 2)

)
, and

A4(z) = −
∞∑

m=0

1

24m+2

(
2m

m

)(
2m+ 1

m

)
zm+1.

From these expressions and the inequalities(
2m

m

)
≤ 22m√

2m+ 1
and

(
2m+ 1

m

)
<

22m+1

√
2m+ 2

,

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 3

we can bound the coefficient ai(m) of zm in each of these power series Ai(z), obtaining

0 ≤ a1(m) ≤ (2m+ 1)−1d(m) ≤ (3/2)/(m+ 1),

0 ≤ −a2(m) ≤ (2m+ 1)−1/2 ≤ (1/2)/(m+ 1),

0 ≤ a3(m) ≤ (2m+ 1)−1/2(2m+ 2)−1/2d(m) ≤ 1/(m+ 1), and

0 ≤ −a4(m) ≤ (2m+ 1)−1/2(2m+ 2)−1/2/2 ≤ (1/4)/m for m ≥ 1.

Here we used d(m) ≤ 2 log 2 ≈ 1.386294, as well as the recurrence relation for d(m). Hence each
Aj is a holomorphic function on the open unit disk with real Taylor coefficients about the origin.
Furthermore, A1 and A3 have nonnegative coefficients, while A2 and A4 have nonpositive coefficients.

We will also need control of the Taylor expansions of E(z) and K(z) about 0, namely

K(z) =
π

2

∞∑
m=0

(
1
2

)
m

(
1
2

)
m

m!m!
zm =

π

2

∞∑
m=0

1

24m

(
2m

m

)2

zm and

E(z) =
π

2

∞∑
m=0

(
−1

2

)
m

(
1
2

)
m

m!m!
zm

=
π

2

(
1−

∞∑
m=0

1

24m+2(m+ 1)

(
2m+ 1

m

)(
2m

m

)
zm+1

)
(see §19.5 in [2]). Again K(z) and E(z) converge on the unit ball. Furthermore,

K(z) = −πA2(z) and E(z)−K(z) = πA4(z).

Next, we verify equation (6.5) from [1]. Specifically, we show that z 7→ z2e2πK(1−z)/K(z) is
holomorphic on the unit disk and establish bounds on the real interval (0, 1/2). Since the function
∆ = (UVW)2/256 is nonvanishing on the upper half plane (and each of U, V,W is holomorphic), so
is U . We can now use the identity U(z) = 4π−2K(λ(z))2 to conclude that K does not vanish in
the open unit disk. (Note that we had stated this identity only for z on the real axis, but we can
analytically continue it to the region λ maps to the unit disk, namely the ideal hyperbolic triangle
with vertices 0, 2, and i∞.) Thus, dividing by K(z) is not a problem when |z| < 1.

Now the identity K(1− z) = A1(z)− (1/π)K(z) log z for |z| < 1 shows that

K(1− z)

K(z)
=
A1(z)

K(z)
− 1

π
log z,

with A1(z)/K(z) being holomorphic and of course log z being multivalued, and it follows that

z2e2πK(1−z)/K(z) = e2πA1(z)/K(z)

is holomorphic for |z| < 1.

Finally, to bound y2e2πK(1−y)/K(y) for 0 < y < 1/2, it is convenient to remove factors of π from
the notation by setting

Φ(y) =

∞∑
m=0

1

24m

(
2m

m

)2

ym and Ψ(y) =

∞∑
m=1

e(m)

24m

(
2m

m

)2

ym,

with e(m) = d(0)− d(m) being a positive increasing sequence with limit d(0) = 2 log 2 as m→ ∞.
Then

K(1− y) = −1

2
log(y)Φ(y) + d(0)Φ(y)−Ψ(y) and K(y) =

π

2
Φ(y).

Because

2π
K(1− y)

K(y)
= −2 log(y) + 8 log(2)− 4Ψ(y)

Φ(y)
,

4 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

we wish to bound Φ(y) and Ψ(y) for 0 < y < 1/2. A straightforward upper bound shows that

Φ(y) ≤ 1 +
1

4
y +

9

64
y2 +

25

256
y3 +

1225

8192
y4,

while

Ψ(y) ≥ e(1)

4
y +

9e(2)

64
y2 +

25e(3)

256
y3 +

1225e(4)

16384
y4

because it has positive coefficients. On the other hand, we have the crude bound

Ψ(y) ≤
∞∑

m=1

d(0)

24m

(
2m

m

)2

ym

≤ d(0)
∞∑

m=1

1

2m+ 1
ym ≤ d(0)

3

∞∑
m=1

(
1

2

)m

= d(0)/3 < 1/2,

as well as Φ(y) ≥ 1. It follows that

−2 ≤ −4Ψ(y)

Φ(y)
≤ −y − 13

32
y2 − 23

96
y3 − 2701

16384
y4 +

2315

8192
y5 =: β < 0.

Exponentiating, we get

exp

(
2π
K(1− y)

K(y)

)
=

256

y2
exp

(
−4Ψ(y)

Φ(y)

)
<

256

y2
exp(β).

Now, note that

exp(β) ≤ 1 + β +
β2

2
+
β3

6
+
β4

24
,

since the remainder of the series is

β5

120

(
1 +

β

6
+
β2

42
+ . . .

)
is a negative number times the series in parenthesis, which converges to a positive number because
β ≥ −2. Using this upper bound for exp(β), we can check that

exp(β) ≤ 1− y +
3

32
y2 +

2

15
y4.

Finally, we conclude that

exp

(
2π
K(1− y)

K(y)

)
≤ 256

y2
− 256

y
+ 24 +

512

15
y2,

as desired.

4. Series truncation

Here, we collect some useful lemmas for approximations of power series by their truncated
(polynomial) versions, which will be applied in the proof of the kernel inequalities.

Lemma 4.1. Suppose f1(x), . . . , f s(x) are power series such that the n-th coefficient of f i is
bounded by Cf i/(n+ 1) in absolute value. Then the n-th coefficient fn of f =

∏
f i satisfies

|fn| ≤M(s)
∏

Cf i ,

where M(1) = 1 and M(s) = 2s−1(s− 1)s−1/es−2 for s ≥ 2.

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 5

Proof. We can assume without loss of generality that Cf i = 1 for all i. First we show by induction
on s that

|fn| ≤
2s−1(1 + log(n+ 1))s−1

n+ 1
.

This is clear for s = 1, and the induction step follows from∑
0≤i≤n

(1 + log(i+ 1))s−1

(i+ 1)(n− i+ 1)
≤ (1 + log(n+ 1))s−1

∑
0≤i≤n

1

n+ 2

(
1

i+ 1
+

1

n− i+ 1

)

≤ 2(1 + log(n+ 1))s−1

n+ 1

∑
0≤i≤n

1

i+ 1

≤ 2(1 + log(n+ 1))s−1

n+ 1
(1 + log(n+ 1)).

It now suffices to show that (1 + log(n + 1))s−1/(n + 1) ≤ (s − 1)s−1/es−2, which follows from
computing the logarithmic derivative of u 7→ (1 + log u)s−1/u. □

Corollary 4.2. Let f(x) = A1(x)
j1A2(x)

j2A3(x)
j3A4(x)

j4
(
log(1− x)

)j5. Then each coefficient of

f(x) is bounded in absolute value by M(j1 + j2 + j3 + j4 + j5)(3/2)
j1(1/2)j2(1/4)j4.

Proof. Apply the lemma to j1 copies of A1(x), j2 copies of A2(x), j3 copies of A3(x), j4 copies of
A4(x)/x, and j5 copies of log(1− x)/x. □

Lemma 4.3. Let f(x, y) =
∑
ai,jx

iyj be a power series satisfying |ai,j | ≤ B, and let |α|, |β| < 1.
Then the power series g(x, y) = f(x+ α, y + β) =

∑
bi,jx

iyj satisfies

|bi,j | ≤ B(1− |α|)−(i+1)(1− |β|)−(j+1).

Proof. We have

bi,j =
∑

n≥i,m≥j

anmα
n−iβm−j

(
n

i

)(
m

j

)
,

and therefore

|bi,j | ≤ B
∑

k≥0,ℓ≥0

|α|k|β|l
(
i+ k

i

)(
j + ℓ

j

)
Now the result follows from splitting the sum into a product and using the identity∑

k≥0

|α|k
(
i+ k

i

)
= (1− |α|)−(k+1). □

Definition 4.4. The truncation of a power series f(x) =
∑
anx

n at exponent or degree N will be
denoted

fN (x) =
∑
i≤N

anx
n.

Similarly, for a two-variable power series f(x, y) =
∑
ai,jx

iyj we define the truncation at degree N
to be

fN (x, y) =
∑

i≤N,j≤N

ai,jx
iyj .

Corollary 4.5. Let f(x, y) =
∑
ai,jx

iyj be a power series satisfying |ai,j | ≤ B. Then the error
from truncating f(1/2 + x, 1/2 + y) at exponent N for x and y in the domain |x| < γ and |y| < δ is
at most

4B

(1− 2γ)(1− 2δ)

(
(2γ)N+1 + (2δ)N+1 − (4γδ)N+1

)
.

6 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

In other words, if we set g(x, y) = f(1/2 + x, 1/2 + y), then

|g(x, y)− gN (x, y)| ≤ 4B

(1− 2γ)(1− 2δ)

(
(2γ)N+1 + (2δ)N+1 − (4γδ)N+1

)
whenever |x| < γ and |y| < δ.

Proof. Let g(x, y) =
∑

i,j bi,jx
iyj . By Lemma 4.3, |bi,j | ≤ B2i+j+2, and so the conclusion follows

from computing the sum

B
∑

i≥N+1 or j≥N+1

γiδj2i+j+2.

To do so, we break up the sum via∑
i≥N+1 or j≥N+1

=
∑

i≥N+1, j≥0

+
∑

i≥0, j≥N+1

−
∑

i≥N+1, j≥N+1

. □

Remark 4.6. With γ = δ = 0.1 and N = 25, we obtain an upper bound of 8.388608 · 10−18B.

Lemma 4.7. Let f(x) =
∑

i≥0 aix
i be a power series with |ai| ≤ B for all i, and let fN (x) =∑

0≤i≤N aix
i be its truncation at degree N . Let g(z) = f(z + α) for some α ∈ (0, 1), and let gM be

its truncation at degree M , with M ≤ N . If α satisfies.

B
∑

k≥N−M+1

(
k +M

M

)
αk < ε,

then each coefficient of
(
fN (x+ α)

)
M

− gM (x) is less than ε in absolute value.

Proof. As before, the coefficients bj of g are given by

bj =
∑
i≥j

ai

(
i

j

)
αi−j .

The error if we first cut off at i = N is ∑
i≥N+1

ai

(
i

j

)
αi−j ,

which we can bound in absolute value by

B
∑

k≥N+1−j

(
k + j

j

)
αk.

This bound is increasing in j: as j increases, the sum is over a larger range and the binomial
coefficients increase. Thus, among all coefficients with j ≤ M , the bound is maximized when
j =M . □

Corollary 4.8. If f is one of A1, A2, A3, or A4, and α = 1/2, M = 25, and N = 185, then the
hypotheses of Lemma 4.7 hold with ε = 10−17.

Proof. We can take B = 3/2, and so the conclusion follows from

(3/2) ·
∞∑

k=161

(1/2)k
(
k + 25

25

)
< 10−17. □

Remark 4.9. If f(x) is log(x) or log(1 − x), then we can exactly compute the coefficients of
f(x+ 1/2), with no need for the approximation lemma above.

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 7

Lemma 4.10. Let f(x, y) =
∑

i,j≥0 ai,jx
iyj be a power series with |ai,j | < B for all i and j.

Furthermore, suppose that f(x, y) is divisible by xmx and ymy , and let fN (x, y) be its truncation at
degree N in each of x and y. Then for |x| < δx, |y| < δy, and max(mx,my,M) < N ,

|f(x, y)− fN (x, y)| ≤ B
|x|mx |y|N+1 + |y|my |x|N+1 − |x|N+1|y|N+1

(1− |x|)(1− |y|)

≤ B
|y|Mδmx

x δN+1−M
y + |x|Mδmy

y δN+1−M
x − |y|MδN+1

x δN+1−M
y

(1− δx)(1− δy)
.

The only role of M in this lemma is to moderate the dependence on |x| and |y| in the final
bound. It allows some dependence, to obtain improved estimates when |x| and |y| are small, but
less dependence than in the previous bound.

Proof. We may assume without loss of generality that B = 1. Now the first inequality follows from
summing ∑

i≥mx, j≥my

i≥N+1 or j≥N+1

|x|i|y|j =
∑

i≥mx, j≥N+1

|x|i|y|j +
∑

i≥N+1, j≥my

|x|i|y|j −
∑

i≥N+1, j≥N+1

|x|i|y|j

and the ensuing algebra. For the second inequality, we note that |x|r/(1 − |x|) is monotonically
increasing in |x| for r ≥ 0 by the geometric series formula, and so is (|x|r−|x|s)/(1−|x|) for integers
s > r ≥ 0 for the same reason. □

Lemma 4.11. Let f(x, y) =
∑

i,j≥0 ai,jx
iyj be a power series with |ai,j | < B for all i and j, such

that f(x, x) = 0. Furthermore, suppose that f(x, y) is divisible by xmx and ymy . Let g(x, y) =
f(x, y)/(x− y), and let gN (x, y) be its truncation at degree N in each of x and y. Then for |x| < δx,
|y| < δy, and max(mx,my,M) < N ,

|g(x, y)− gN (x, y)| <
|x|mx

(
1 + (1− |x|)mx

)
− |x|N+1

(
1 + (1− |x|)(N + 1)

)
(1− |x|)2

· |y|
N+1

1− |y|

+
|y|my

(
1 + (1− |y|)my

)
− |y|N+1

(
1 + (1− |y|)(N + 1)

)
(1− |y|)2

· |x|
N+1

1− |x|

+
(|x||y|)N+1

(
1 + (1− |x||y|)(N + 1)

)
(1− |x|)(1− |y|)(1− |x||y|)

<
δmx
x

(
1 + (1− δx)mx

)
− δN+1

x

(
1 + (1− δx)(N + 1)

)
(1− δx)2

·
|y|MδN+1−M

y

1− δy

+
δ
my
y

(
1 + (1− δx)my

)
− δN+1

y

(
1 + (1− δy)(N + 1)

)
(1− δy)2

· |x|
MδN+1−M

x

1− δx

+
|x|MδN+1−M

x δN+1
y

(
1 + (1− δxδy)(N + 1)

)
(1− δx)(1− δy)(1− δxδy)

.

Proof. We write

g(x, y) =
f(x, y)

x− y
=
f(x, y)− f(y, y)

x− y
=
∑

n,m≥0

an,m
xn − yn

x− y
ym

=
∑

n,m≥0

an,m(xn−1 + xn−2y + · · ·+ yn−1)ym

=
∑
k,ℓ≥0

ℓ∑
i=0

ak+i+1,ℓ−ix
kyℓ.

8 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

In this formula, there are at most ℓ + 1 summands of the form an,m in the expression for the

coefficient bk,ℓ of x
kyℓ in g. Similarly, because g(x, y) = (f(x, y)− f(x, x))/(x− y), we see that bk,ℓ

also has an expression with k + 1 summands. Therefore, bk,ℓ ≤ B(1 + min(k, ℓ)). Suppose without
loss of generality that B = 1. We can therefore bound g − gN by

|g(x, y)− gN (x, y)| ≤
N∑

m=mx

∞∑
n=N+1

|x|m|y|n(m+ 1) +
N∑

n=my

∞∑
m=N+1

|x|m|y|n(n+ 1)

+
∞∑

m,n=N+1

|x|m|y|n(min(m,n) + 1)

=
N∑

m=mx

∞∑
n=N+1

|x|m|y|n(m+ 1) +
N∑

n=my

∞∑
m=N+1

|x|m|y|n(n+ 1)

+
∞∑

m=N+1

∞∑
n=m

|x|m|y|n(m+ 1) +
∞∑

n=N+1

∞∑
m=n

|x|m|y|n(n+ 1)

−
∞∑

m=N+1

|x|m|y|m(m+ 1).

Now, note that
N∑

m=mx

zm(m+ 1) =
d

dz

N∑
m=mx

zm+1 =
d

dz

(
zmx+1 − zN+2

1− z

)
and

∞∑
m=N+1

zm(m+ 1) =
d

dz

∞∑
m=N+1

zm+1 =
d

dz

(
zN+2

1− z

)
.

Using
d

dz

zm

1− z
=
zm−1(1 + (m− 1)(1− z))

(1− z)2
,

after a little bit of algebra we get the first bound in the result. For the second inequality, we use
that all of the multiplicands in the three terms of the right side of the first inequality are positive
and increasing in |x| and |y|, due to the summation identities above. For instance, to deal with the
last of the three terms, we note that

(|x||y|)N+1
(
1 + (1− |x||y|)(N + 1)

)
(1− |x|)(1− |y|)(1− |x||y|)

=
(|x||y|)N+1

(1− |x|)(1− |y|)(1− |x||y|)
+

(|x||y|)N+1(N + 1)

(1− |x|)(1− |y|)
and use the geometric series to get a sum of positive terms, in each of which we can replace |x|k|y|ℓ
by |x|Mδk−M

x δℓy by monotonicity (note that the exponents k, ℓ for each of the summands are greater
than M). □

5. Roadmap

We now have all the tools needed to carry out the strategy from Sections 6.5 through 6.7 of [1]
and thereby prove the kernel inequalities (Proposition 6.1 in [1]). Recall from Section 6.5 in [1] that
our goal is to check that a function of the form

K(x, y) =
Q(x, y)

(x− y)(1− x− y)

is positive on the unit square (0, 1) × (0, 1), where Q(x, y) is an explicitly given function, which
vanishes when x = y or x+ y = 1 as well as on the sides of the square. In principle, checking the

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 9

0

0.5

1

0 0.5 1

Figure 5.1. Regions used for the 8-dimensional kernel.

inequality by interval arithmetic [4] is straightforward away from the locations where Q vanishes.
In practice, optimizing for efficient computation is an important consideration, and dealing with
neighborhoods of the zero locus of Q requires additional analysis.

There are three cases, each with a different choice of Q(x, y): the 8-dimensional kernel, the
24-dimensional kernel, and the truncated 24-dimensional kernel. In each case, Q(x, y) is obtained as
in [1], by setting x = λ(τ) and y = λ(z), removing some obviously positive factors, and interchanging
x↔ 1− x and y ↔ 1− y in the non-truncated cases.1

To carry out these calculations and thereby verify positivity, we use different techniques on a
patchwork of overlapping subregions of the square, shown in Figures 5.1 through 5.3 (when two
regions overlap, the figures show only one of them). Our code keeps track of which regions have
been analyzed and verifies that the final list completely covers the square or, in the truncated case,
(0, 1)× (0, 0.49). We always show strict positivity, not just nonnegativity.

The regions we analyze are all made up of rectangles. They are classified into three types:

(1) Corner: This type of region covers a neighborhood of each of the corners of the square, as
well as the diagonals away from the center of the square.

(2) Middle: This type covers a neighborhood of the center of the square.
(3) Nonsingular: This type covers the rest, away from the diagonals and the center. Note that

the denominator of K does not vanish in these regions.

We now describe in slightly more detail how the verification of positivity is carried out in each of
these regions. In this document we will specify the regions only for the 8-dimensional kernel, because
the 24-dimensional case is considerably more elaborate (see Figure 5.2). The choice of regions for
the remaining two kernels is specified in the code. The more complicated regions in those cases were
chosen for the sake of efficiency, while the underlying techniques are the same as those described
here and in [1]. All computations are performed using interval arithmetic [4], which obtains rigorous
inequalities by keeping track of intervals that provably contain the true values being computed
(when rounding is needed, it is always done so as to make the interval larger). Thus, instead of
using floating point arithmetic to represent the field R, we use floating point interval arithmetic to
represent arithmetic with the set IR of closed subintervals of R.

1This interchange is of course not necessary, but we found it convenient in our numerical exploration.

10 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

0

0.5

1

0 0.5 1

Figure 5.2. Regions used for the 24-dimensional kernel.

0

0.49

0 0.5 1

Figure 5.3. Regions used for the truncated 24-dimensional kernel.

5.1. Corners. For the 8-dimensional kernel function Q8, the computation for each corner handles
the following four regions in local coordinates centered at the corner:

• C1 = [0.001, 0.42]× [0.001, 0.42]
• C2 = [0, 0.01]× [0.001, 0.42]
• C3 = [0.001, 0.42]× [0, 0.01]
• C4 = [0, 0.00125]× [0, 0.00125]

(Technically, in the northwest corner C1 is broken up further, for the sake of efficiency.) Specifically,
we use the following transformed versions of the kernel for the four corners:

• Qsw
8 (x, y) = Q8(x, y)

• Qse
8 (x, y) = Q8(1− x, y)

• Qnw
8 (x, y) = Q8(x, 1− y)

• Qne
8 (x, y) = Q8(1− x, 1− y)

In each case Q∗
8, we need to check that Q∗

8/(x− y) is nonnegative (note that the denominator of
K(x, y) is invariant under x 7→ 1 − x and y 7→ 1 − y, and in the corner region being considered,
1−x− y is positive). Let Q denote one of these transformed functions Q∗

8. The first three rectangles
are handled by the function CP (for “check positivity”), while the last uses a different strategy and
is handled by the function checktinycorner.

The basic idea is as follows: we have to check the positivity of g(x, y) = Q(x, y)/(x− y), where
Q(x, x) = 0. To do so, we apply Lemma 4.11 to write the main term as gN (x, y) and bound the error
εN (x, y) as in that lemma, with N = 20. We combine the main and error terms into a polynomial

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 11

hN (x, y) in log(x), log(y), x, y with coefficients in the set IR of closed real intervals, and then apply
CP.

Our main function CP is passed in an interval [a, b] for x and an interval [c, d] for y, as well as
the function hN to evaluate. It computes the value of hN using Horner evaluation, checking if it
can directly be certified to be positive in that rectangle. If not, it breaks up the rectangle into 4
quarters (or 2 halves if one side is more than twice as long as the other), and recursively checks
positivity on those. There are two additional subtleties.

(1) As described in Section 6.7 of [1], in the northwest corner, even though Q(x, x) = 0, the
coefficients of Q(x, y) as a polynomial in log(x) and log(y) may not individually vanish on the
diagonal. To remedy this, we subtract an appropriate polynomial P (x) times log(x)− log(y)
to obtain g(x, y) and its truncation gN . Due to the positivity property of P discussed in
Section 6.7 of [1] (and verified in the code via explicit factorizations), we do not have to
worry about its remainder upon truncation. So the first subtlety is that when we evaluate g
inside CP, we also supply P to help establish the positivity of the original kernel.

(2) The second subtlety has to do with the appearance of log(y)2 terms in g or gN . Fortuitously,
the coefficient of any such term is a multiple of y2, and we can fix the entire term (which
could otherwise ruin the interval arithmetic near the x-axis y = 0) by absorbing one factor
of y and using the inequality y log(y)2 ≤ 4/e2 for 0 < y ≤ 1.

5.2. Middle. Here, we check the positivity of the kernel in the region [0.4, 0.6] × [0.4, 0.6]. The
main idea is the following: letting u = x− y and v = 1− x− y, we can rewrite

K(x, y) =
Q8(x, y)

(x− y)(1− x− y)
=
Q8

(
1
2(1 + u− v), 12(1− u− v)

)
uv

.

Because Q8(x, y) = 0 when x = y or x+ y = 1, the function

Q̃(u, v) := Q8

(
1
2(1 + u− v), 12(1− u− v)

)
vanishes identically along u = 0 and v = 0, and thus we can compute the Taylor expansion of

g(u, v) := Q̃(u, v)/(uv). By the Lagrange remainder formula,

g(u, v) = g(0, 0) + g(1,0)(0, 0)u+ g(0,1)(0, 0)v + g(2,0)(µ, ν)
u2

2
+ g(1,1)(µ, ν)uv + g(0,2)(µ, ν)

v2

2

for some µ ∈ (−|u|, |u|) and ν ∈ (−|v|, |v|). As explained in Section 6.5 of [1],

g(i,j)(u, v) =

∫ 1

0

∫ 1

0
sitjQ̃(i+1,j+1)(us, vt) ds dt

Therefore, if we have bounds on the fourth partial derivatives of Q̃ with respect to u and v, we obtain
corresponding bounds on the second partial derivatives of g. For example, if M3,1 is a constant such

that |Q̃(3,1)(u, v)| ≤M3,1 over the entire middle region, then∣∣∣g(2,0)(u, v)∣∣∣ ≤ M3,1

3
.

Using this notation and writing g(0, 0), g(1,0)(0, 0), and g(0,1)(0, 0) in terms of Q̃, we obtain

g(u, v) ≥ Q̃(1,1)(0, 0) + Q̃(2,1)(0, 0)u/2 + Q̃(1,2)(0, 0)v/2−M3,1u
2/6−M1,3v

2/6−M2,2|uv|/4,

and we can check by interval arithmetic that the lower bound is strictly positive in the middle
region.

12 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

5.3. Nonsingular. Here, we check positivity in a handful of remaining rectangles, which avoid the
diagonals of the square. The method of checking positivity is similar to that in the corner regions,
except even simpler, since there is no division by x− y involved. Therefore, we use Lemma 4.10 for
our error bound, and pass the truncation + error polynomial hN (x, y) of h(x, y) = Q∗

8(x, y) to CP.
The first subtlety (vanishing of terms along the diagonal) doesn’t appear, and the second is dealt
with as in the corners.

5.4. Further truncation of power series. Finally, we mention one important computational trick
that is used to speed up the verification process significantly. Say we want to verify the positivity of
a polynomial f(x, y) with coefficients in IR in some rectangle [a, b]× [c, d]. (That is, we have already
truncated a power series, and absorbed the error term into appropriate terms of the polynomial.)
Since the radii of convergence in the x- and y-directions are b and d, we may have to carry around
a fairly high degree polynomial f .

Instead, we may choose points e ∈ [a, b] and f ∈ [c, d] (for instance, the midpoints of these
intervals), and replace f by g(x, y) = f(x+ e, y+ f), where we are now asking for the positivity of g
in [a− e, b− e]× [c− f, d− f], and now the radius of convergence has shrunk to max(|a− e|, |b− e|)
for x and max(|c− f |, |d− f |) for y. Therefore, we can now truncate g to a lower degree polynomial
h, and convert all the higher degree terms into an error bound, which we can again absorb into h.

5.5. Computer files. We now provide some details of the different parts of the code, organized by
the files.

• setup.sage : This file defines the main rings and functions used in the verification of
positivity. In particular, we define the real intervals IR (called R in the code) with 53 bits
of precision, S the polynomial ring in x, y, log(x), log(y), log(1 − x), log(1 − y), Ai(x)
and Ai(y) for 1 ≤ i ≤ 4, π ,and log(2) over the rationals. In the Sage code, we call these
variables x, y, Lx, Ly, Lpx, Lpy, A1x through A4y, piv, and l2, respectively, and we use Ex,
Epx, Kx, Kpx, etc. for E(x), E(1− x), K(x), K(1− x), etc. Its counterpart T over IR uses
the variables xR, yR, etc. The power series for log(1− x) and Ai(x) are also defined up to
degree 185 (chosen because of Corollary 4.8). Next, we list each function defined in the file.

– split : This is used to split off the output of termbound into the part multiplying
log(y)2 and the lower degree (in log(y)) terms, for the purpose of applying the y log(y)2

trick.
– num : Convert a polynomial in x, y, log(x), log(y) and piv, l2 to T , by replacing piv

and l2 with intervals.
– trunc : Truncate a polynomial in the specified variable up to the specified degree.
– clean : Truncate in two variables up to the specified degrees.
– condense : Combine the inputs (a term bound, and an error bound coming from

truncation) into a final error bound.
– varquoterrorbound : This is the bound of Lemma 4.11, with x0 and y0 being the
(interval) coordinate inputs, cutoff being the truncation degree N , and lowbd being
M , with one additional modification: the bound is divided by δmx

x δ
my
y .

– reducepoly : Given some polynomial in x, y, log(x), log(y), it “reduces” the degree in
x and y to at most 1 by replacing most of the factors of x and y in every monomial by
the upper bound from the x and y intervals supplied to the function. It is used in the
verification at the tiny corners.

– checktinycorner : Verify positivity in the tiny corner, i.e., the square [0, 1/800] ×
[0, 1/800]. This is done by first reducing the polynomial as above, and then (since log(x)
and log(y) are negative), checking that coefficient of log(x)i log(y)j has every monomial
of the correct sign (−1)i+j , when i+ j is strictly positive. This allows us to replace
log(x) and log(y) by their upper bounds (which are negative numbers), and check that
the resulting linear polynomial is nonnegative at the vertices of the tiny corner.

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 13

– varerrorbound : This is the bound of Lemma 4.10, with inputs and modification as in
varquoterrorbound.

– errorbound1varpol : This is an easy 1-variable version of varerrorbound.
– logquot : This is the function (x, y) 7→ (log(x)− log(y))/(x− y), extended along the

diagonal by its limit.
– logquotinterval : This is the interval version of logquot.
– subsH : Horner evaluation of a polynomial pol, setting the variable var to the value
val.

– subsHtrunc : Horner evaluation of pol setting var to val, while truncating up to
degree mdeg in the variable v.

– subsH2var : Two-variable Horner evaluation.
– subsHxy : Two-variable Horner evaluation in xR and yR.
– evalRdir : Horner evaluation of a poly in xR, yR, LxR, LyR with an extra argument

for the “log term” which multiplies (log(x)− log(y))/(x− y), and a direction argument
(which specifies the order of evaluation for LxR and LyR); when x is smaller than y, we
want to put LxR in the outer loop, and vice versa.

– serbd : This is the bound of Lemma 4.1.
– termbound : Collects the bound of Corollary 4.2 for each coefficient of log(x)i log(y)j

into an array.
– quot : Computes the quotient (f(x, y)− f(y, y))/(x− y) for a polynomial f .
– CP : This is the main high-level engine for checking positivity of a function f which is

provided to it, on a rectangle Z = [a, b]× [c, d]. It maintains a list of rectangles (initially
just Z). For each entry [a0, b0, c0, d0] in the list, it simply evaluates the function on the
interval x = [a0, b0] and y = [c0, d0], and removes the entry if the result is a strictly
positive interval. Otherwise it divides the rectangle into two (if it is very thin) or four
equal parts, and replaces the original rectangle by the new ones (these are pushed to
the end of the list). When the list is empty, positivity of f on the original rectangle is
certified. If at any point, the result is strictly negative, the function returns False.

– timesofar : Print the time since the start time was initialized.
– totaltime : Print the total time taken since start.
– ellmonomialderiv : Compute the derivative of a monomial in x, y, log(x), log(y),

log(1− x), log(1− y) and Ai(x) and Ai(y) for 1 ≤ i ≤ 4 with respect to the specified
variable (x or y). This is done by hard-coding the derivatives of the elliptic functions,
and using the product rule.

– ellderivpoly : Compute the derivative of a polynomial in S by summing over mono-
mials.

– ellderiv : Compute the derivative of a rational function (i.e., in the fraction field of
S) by the quotient rule.

– absbound : Compute the error bound for truncating a polynomial pol at degree cutoff,
assuming x and y are bounded by ε. Returns a matrix whose (i, j) entry is the error
bound for the coefficient multiplying log(x)i log(y)j .

– varerrorbounduv : Similar in spirit to absbound, this function takes a polynomial p,
shift coordinates u0 and v0, cutoff degrees Nx and Ny, and an additional parameter
M (called lowbd here), and returns the error bound for truncating p(u + u0, v + v0)
at degree Nx in x and Ny in y, with the absolute value bound on the discarded terms
being computed as a number in IR times uM or vM . Once again this returns a matrix
indexed by powers of log(x) and log(y) (which are not evaluated at x = u + u0 and
y = v+ v0). Note that the use of u and v for the translated variables has nothing to do
with the rotated coordinates used in the middle of the square.

– subsHuv : Horner evaluation in u and v.

14 COHN, KUMAR, MILLER, RADCHENKO, AND VIAZOVSKA

– partial : Similar to ellderiv, except that we also allow partial derivatives with
respect to u = x− y or v = 1− x− y.

– evalatcenter : Evaluate an element of S at the center of the square x = y = 1/2.
– plugin : Plug in the power series for the elliptic functions and log(1− x), log(1− y) to

the specified cutoff degrees, into the polynomial argument, and truncate the result to
the same cutoff degrees.

– evalRdiruv : Like evalRdir but for the shifted variables u and v. (Again there is no
connection with the rotated coordinates used in the middle.)

• kernels.sage : We define the kernels Q8, Q24, and Q
trunc
24 in a concise format, which agrees

with the Mathematica code used in the other version of the calculation. We also define
Q8,sw := Q8 and Q8,se(x, y) = Q8(1− x, y), etc., shifting coordinates so that the corner of
the translated kernel is at (x, y) = (0, 0). We check the appropriate vanishing conditions
(the exponents of x and y dividing these kernels, as well as vanishing of the numerators
along x = y and x+ y = 1).

• constructions.sage : In this file, we verify that the kernels defined in kernels.sage agree
with those constructed in Section 4.4 of [1], and we prove inequalities (3a) and (3b) from
Section 6.2 of [1].

• processcorner.sage : The main function defined is processcorner, which takes in the
name of a corner, a cutoff parameter, and a list of tuples (a, b, c, d, t, e, f,Nx, Ny) where
[a, b] × [c, d] is the rectangle over which we want to check positivity, t is the type of the
function evaluation (“eval”, “hybrid”, or “shift”), and e, f,Nx, Ny are additional optional
parameters specifying the center of the shift and the x- and y-cutoffs in case of “shift”
evaluation. The function does the appropriate power series substitutions and defines the
quotient Q5 for which it needs to check positivity, a diagonal term P1, and a helper function
procregion which will iterate over the list of supplied rectangles and evaluation types and
check positivity of a function Qeval on them. It also checks positivity in the tiny corner.

• nonsingular.sage : The main function procQuadrant in this file functions similarly to
processcorner.sage above, except that instead of defining a quotient, it works with just
the power series substitutions. Since we are away from the diagonals, no quotient is needed,
but we must keep track of the sign of the quantity (x− y)(1− x− y). Accordingly, the list
of tuples passed has elements of the form (a, b, c, d, e, f,Nx, Ny, s, β), where [a, b]× [c, d] is
the rectangle to be certified, (e, f) is the shift (usually close to the center of the rectangle),
Nx and Ny are the truncation degrees, s is the sign, and β is a boolean parameter which
indicates whether the y log(y)2 intervention has to be applied.

• middle.sage : The computation in the middle proceeds as described in the previous section.
The partial derivatives up to the fourth order are computed, and then bounds on the fourth
partials Quuuv, Quuvv, Quvvv are computed by interval evaluation over a suitably fine mesh.
We then check again whether the almost-quadratic-form

Quv(0, 0) +Quuv(0, 0)u/2 +Quvv(0, 0)v/2−Muuuvu
2/6−Muuvv|uv|/4−Muvvvv

2/6

is positive on the middle region specified, again by interval evaluation over a fine mesh.
• rectangles.sage : This file sets up the formalism to check whether the list of rectangles
for which we have certified positivity of the kernels indeed covers the square (or the region
(0, 1)× (0, 0.49) in the truncated kernel case), and also to plot these regions.

• processcorner24dtrunc.sage : This is a modification of processcorner.sage for the
truncated kernel case, necessitated by efficiency considerations. The kernel has to be broken
up into two separate pieces, as the bounds for them are of a somewhat different character.
The checking, however, is carried out in an entirely similar way.

• nonsingular24dtrunc.sage : This is a similar modification of nonsingular.sage.

COMPUTER-ASSISTED PROOF OF KERNEL INEQUALITIES 15

• verifyall.sage : Finally, this file loads all the other files and checks the proof. The full
verification can be run via the SageMath command load("verifyall.sage").

References

[1] H. Cohn, A. Kumar, S. Miller, D. Radchenko, and M. Viazovska, Universal optimality of the E8 and Leech lattices
and interpolation formulas, Annals of Mathematics, to appear. arXiv:1902.05438

[2] F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions,
National Institute of Standards and Technology, U.S. Department of Commerce, Washington, DC and Cambridge
University Press, Cambridge, 2010. https://dlmf.nist.gov/

[3] The Sage Developers, SageMath, the Sage Mathematics Software System (Version 9.5), 2022.
https://www.sagemath.org

[4] W. Tucker, Validated numerics for pedestrians, European Congress of Mathematics, 851–860, Eur. Math. Soc.,
Zürich, 2005.

Microsoft Research New England, Cambridge, MA, USA
Email address: cohn@microsoft.com

Stony Brook University, Stony Brook, NY, USA
Email address: thenav@gmail.com

Rutgers University, Piscataway, NJ, USA
Email address: miller@math.rutgers.edu

Max Planck Institute for Mathematics, Bonn, Germany
Email address: danradchenko@gmail.com

École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
Email address: viazovska@gmail.com

http://arXiv.org/abs/1902.05438
https://dlmf.nist.gov/
https://www.sagemath.org

