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viii Preface

Abstract: Historical Overview of the Kepler Conjecture This paper is the
first in a series of six papers devoted to the proof of the Kepler conjecture, which
asserts that no packing of congruent balls in three dimensions has density greater
than the face-centered cubic packing. After some preliminary comments about the
face-centered cubic and hexagonal close packings, the history of the Kepler problem
is described, including a discussion of various published bounds on the density
of sphere packings. There is also a general historical discussion of various proof
strategies that have been tried with this problem.

Abstract: A Formulation of the Kepler Conjecture This paper is the second
in a series of six papers devoted to the proof of the Kepler conjecture, which asserts
that no packing of congruent balls in three dimensions has density greater than the
face-centered cubic packing. The top level structure of the proof is described. A
compact topological space is described. Each point of this space can be described
as a finite cluster of balls with additional combinatorial markings. A continuous
function on this compact space is defined. It is proved that the Kepler conjecture
will follow if the value of this function is never greater than a given explicit constant.

Abstract: Sphere Packings III. Extremal Cases This paper is the third in
a series of six papers devoted to the proof of the Kepler conjecture, which asserts
that no packing of congruent balls in three dimensions has density greater than the
face-centered cubic packing. In the previous paper in this series, a continuous func-
tion f on a compact space is defined, certain points in the domain are conjectured
to give the global maxima, and the relation between this conjecture and the Kepler
conjecture is established. This paper shows that those points are indeed local max-
ima. Various approximations to f are developed, that will be used in subsequent
papers to bound the value of the function f . The function f can be expressed as a
sum of terms, indexed by regions on a unit sphere. Detailed estimates of the terms
corresponding to triangular and quadrilateral regions are developed.

Abstract: Sphere Packings IV. Detailed Bounds This paper is the fourth in
a series of six papers devoted to the proof of the Kepler conjecture, which asserts
that no packing of congruent balls in three dimensions has density greater than the
face-centered cubic packing. In a previous paper in this series, a continuous function
f on a compact space is defined, certain points in the domain are conjectured to
give the global maxima, and the relation between this conjecture and the Kepler
conjecture is established. The function f can be expressed as a sum of terms,
indexed by regions on a unit sphere. In this paper, detailed estimates of the terms
corresponding general regions are developed. These results form the technical heart
of the proof of the Kepler conjecture, by giving detailed bounds on the function f .
The results rely on long computer calculations.

Abstract: Sphere Packings V. Pentahedral Prisms This paper is the fifth
in a series of papers devoted to the proof of the Kepler conjecture, which asserts
that no packing of congruent balls in three dimensions has density greater than the
face-centered cubic packing.
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Preface ix

In this paper, we prove that decomposition stars associated with the plane
graph of arrangements we term pentahedral prisms do not contravene. Recall that
a contravening decomposition star is a potential counterexample to the Kepler con-
jecture. We use interval arithmetic methods to prove particular linear relations on
components of any such contravening decomposition star. These relations are then
combined to prove that no such contravening stars exist.

Abstract: Sphere Packings VI. Tame Graphs and Linear Programs This
paper is the sixth and final part in a series of papers devoted to the proof of the
Kepler conjecture, which asserts that no packing of congruent balls in three dimen-
sions has density greater than the face-centered cubic packing. In a previous paper
in this series, a continuous function f on a compact space is defined, certain points
in the domain are conjectured to give the global maxima, and the relation between
this conjecture and the Kepler conjecture is established. In this paper, we consider
the set of all points in the domain for which the value of f is at least the conjectured
maximum. To each such point, we attach a planar graph. It is proved that each
such graph must be isomorphic to a tame graph, of which there are only finitely
many up to isomorphism. Linear programming methods are then used to eliminate
all possibilities, except for three special cases treated in earlier papers: pentahe-
dral prisms, the face-centered cubic packing, and the hexagonal-close packing. The
results of this paper rely on long computer calculations.
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Section 1

Introduction

The series of papers in this volume gives a proof of the Kepler conjecture, which
asserts that the density of a packing of congruent spheres in three dimensions is
never greater than π/

√
18 ≈ 0.74048 . . .. This is the oldest problem in discrete

geometry and is an important part of Hilbert’s 18th problem. An example of a
packing achieving this density is the face-centered cubic packing.

1.1 The face-centered cubic packing
A packing of spheres is an arrangement of nonoverlapping spheres of radius 1 in
Euclidean space. Each sphere is determined by its center, so equivalently it is a
collection of points in Euclidean space separated by distances of at least 2. The
density of a packing is defined as the lim sup of the densities of the partial packings
formed by spheres inside a ball with fixed center of radius R. (By taking the lim sup,
rather than lim inf as the density, we prove the Kepler conjecture in the strongest
possible sense.) Defined as a limit, the density is insensitive to changes in the
packing in any bounded region. For example, a finite number of spheres can be
removed from the face-centered cubic packing without affecting its density.

Consequently, it is not possible to hope for any strong uniqueness results for
packings of optimal density. The uniqueness established by this work is as strong
as can be hoped for. It shows that certain local structures (decomposition stars)
attached to the face-centered cubic (fcc) and hexagonal-close packings (hcp) are the
only structures that maximize a local density function.

Although we do not pursue this point, Conway and Sloane develop a theory
of tight packings that is more restrictive than having the greatest possible density
[CS95]. An open problem is to prove that their list of tight packings in three
dimensions is complete.

The face-centered cubic packing appears in Diagram 1.1.
The following facts about packings are well-known. However, there is a pop-

ular and persistent misconception in the popular press that the face-centered cubic
packing is the only packing with density π/

√
18. The comments that follow correct

3
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4 Section 1. Introduction

Figure 1.1. The face-centered-cubic packing.

that misconception.
In the face-centered cubic packing, each ball is tangent to twelve others. For

each ball in the packing, this arrangement of twelve tangent balls is the same. We
call it the fcc pattern. In the hexagonal-close packing, each ball is tangent to twelve
others. For each ball in the packing, the arrangement of twelve tangent balls is
again the same. We call it the hcp pattern. The fcc pattern is different from the
hcp pattern. In the fcc pattern, there are four different planes through the center of
the central ball that contain the centers of six other balls at the vertices of a regular
hexagon. In the hcp pattern, there is only one such plane. We call the arrangement
of balls tangent to a given ball the local tangent arrangement of the ball.

There are uncountably many packings of density π/
√

18 that have the property
that every ball is tangent to twelve others and such that the tangent arrangement
around each ball is either the fcc pattern or the hcp pattern.

By hexagonal layer, we mean a translate of the two-dimensional lattice of
points M in the A2 arrangement. That is, M is a translate of the planar lattice
generated by two vectors of length 2 and angle 2π/3. The face-centered cubic
packing is an example of a packing built from hexagonal layers.

If M is a hexagonal layer, a second hexagonal layer M ′ can be placed parallel
to the first so that each lattice point of M ′ has distance 2 from three different
vertices of M . When the second layer is placed in the manner, it is as close to the
first layer as possible. Fix M and a unit normal to the plane of M . The normal
allows us to speak of the second layer M ′ as being “above” or “below” the layer M .
There are two different positions in which M ′ can be placed closely above M and
two different positions in which M ′ can be placed closely below M . As we build a
packing, layer by layer, (M , M ′, M ′′, and so forth), there are two choices at each
stage of the close placement of the layer above the previous layer. Running through
different sequences of choices gives uncountably many packings. In each of these
packings the tangent arrangement around each ball is that of the twelve spheres in
the face-centered cubic or the twelve spheres in the hexagonal-close packing.

Let Λ be a packing built as a sequence of close-packed hexagonal layers in this
fashion. If P is any plane parallel to the hexagonal layers, then there are at most
three different orthogonal projections of the layers M to P . Call these projections A,
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1.2. Early History, Hariot, and Kepler 5

B, C. Each hexagonal layer has a different projection than the layers immediately
above and below it. In the fcc packing, the successive layers are A,B, C,A, B, C, . . ..
In the hcp packing, the successive layers are A,B, A,B, . . .. If we represent A, B,
and C as the vertices of a triangle, then the succession of hexagonal layers can be
described by a walk along the vertices of the triangle. Different walks through the
triangle describe different packings.

In fact, the different walks through a triangle give all packings of infinitely
many equal balls in which the tangent arrangement around every ball is either the
fcc pattern of twelve balls or the hcp pattern of twelve balls.

We justify the fact that different walks through a triangle give all such

packings. Assume first that a packing Λ contains a ball (centered at v0) in

the hcp pattern. The hcp pattern contains a uniquely determined plane of

symmetry. This plane contains v0 and the centers of six others arranged in a

regular hexagonal. If v is the center of one of the six others in the plane of

symmetry, its local tangent arrangement of twelve balls must include v0 and

an additional four of the twelve balls around v0. These five centers around v
are not a subset of the fcc pattern. They can be uniquely extended to twelve

centers arranged in the hcp pattern. This hcp pattern has the same plane of

symmetry as the hcp pattern around v0. In this way, as soon as there is a

single center with the hcp pattern, the pattern propagates along the plane of

symmetry to create a hexagonal layer M .

Once a packing Λ contains a single hexagonal layer, the condition that

each ball be tangent to twelve others forces a hexagonal layer M ′ above M
and another hexagonal layer below M . Thus, a single hexagonal layer forces

a sequence of close-packed hexagonal layers in both directions.

We have justified the claim under the hypothesis that Λ contains at least

one ball with the hcp pattern.

Assume that Λ does not contain any balls whose local tangent arrange-

ment is the hcp pattern. Then every local tangent arrangement is the fcc

pattern, and Λ itself is then the face-centered cubic packing. This completes

the proof.

1.2 Early History, Hariot, and Kepler
The study of the mathematical properties of the face-centered cubic packing can
be traced back to a Sanskrit work composed around 499 CE. I quote an extensive
passage from the commentary that K. Plofker has made about the formula for the
number of balls in triangular piles[Plo00]:

The excerpt below is taken from a Sanskrit work composed around 499

CE, the Āryabhat.Īya of Āryabhat.a, and the commentary on it written in 629

CE by Bhāskara (I). The work is a compendium of various rules in mathe-

matics and mathematical astronomy, and the results are probably not due the

Āryabhat.a himself but derived from an earlier source: however, this is the old-

est source extant for them. (My translation’s from the edition by K. S. Shukla,
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6 Section 1. Introduction

The Āryabhat.Īya of Āryabhat.a with the Commentary of Bhāskara I and
Someśvara, New Delhi: Indian National Science Academy 1976; my inclu-

sions are in square brackets. There is a corresponding English translation by

Shukla and K. V. Sarma, The Āryabhat.Īya of Āryabhat.a, New Delhi: In-

dian National Science Academy 1976. It might be easier to get hold of the

earlier English translation by W. E. Clark, The Āryabhat.Īya of Āryabhat.a,

Chicago: University of Chicago Press, 1930.)

Basically, the rule considers the series in arithmetic progression Si =
1 + 2 + 3 + . . . + i (for whose sum the formula is known) as the number

of objects in the ith layer of a pile with a total of n layers, and specifies

the following two equivalent formulas for the “accumulation of the pile” or∑n
i=1 Si:

n∑

i=1

Si =
n(n + 1)(n + 2)

6
,

n∑

i=1

Si =
(n + 1)3 − (n + 1)

6
.

What he says is this:

Āryabhat.Īya, Gan. itapāda 21:

For a series [lit. “heap”] with a common difference and first term of 1,

the product of three [terms successively] increased by 1 from the total, or else

the cube of [the total] plus 1 diminished by [its] root, divided by 6, is the total

of the pile [lit. “solid heap”].

Bhāskara’s commentary on this verse:

[This] heap [or] series is specified as having one for its common difference

and initial term. This same series with one for its common difference and initial

term is said [to be] “heaped up.” “The product of three [terms successively]

increased by one from the total” of this so-called heaped-up “series with one

for its common difference and initial term”: i.e., the product of three terms,

starting from the total and increasing by one. Namely, the total, that plus one,

and [that] plus one again. That [can] be stated [as follows]: the total, that

plus one, and that total plus two. The product of those three divided by 6 is

the “solid heap,” the accumulation of the series. Now another method: The

cube of the root equal to that [total] plus one is diminished by its root, and

divided by 6: thus it follows. “Or else”: [i.e.], the cube of that root plus one,

diminished by its own root, divided by 6, is the “solid heap.” Example: Series

with 5, 8, and 14 respectively for their total layers: tell me [their] triangular-

shaped piles. In order, the totals are 5, 8, 14. Procedure: Total 5. This plus

one: 6. This plus one again: 7. Product of those three: 210. This divided by

6 is the accumulation of the series: 35. [He goes on to give the answers for the

second two cases, but you doubtless get the picture.] – K. Plofker

The modern mathematical study of spheres and their close packings can be
traced to T. Hariot. Hariot’s work – unpublished, unedited, and largely undated
– shows a preoccupation with sphere packings. He seems to have first taken an
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1.2. Early History, Hariot, and Kepler 7

interest in packings at the prompting of Sir Walter Raleigh. At the time, Hariot
was Raleigh’s mathematical assistant, and Raleigh gave him the problem of deter-
mining formulas for the number of cannonballs in regularly stacked piles. In 1591
he prepared a chart of triangular numbers for Raleigh. Shirley, Hariot’s biographer,
writes,

Obviously, this is a quick reference chart prepared for Ralegh to give

information on the ground space required for the storage of cannon balls in

connection with the stacking of armaments for his marauding vessels. The

chart is ingeniously arranged so that it is possible to read directly the number

of cannon balls on the ground or in a pyramid pile with triangular, square, or

oblong base. All of this Harriot had worked out by the laws of mathemati-

cal progression (not as Miss Rukeyser suggests by experiment), as the rough

calculations accompanying the chart make clear. It is interesting to note that

on adjacent sheets, Harriot moved, as a mathematician naturally would, into

the theory of the sums of the squares, and attempted to determine graphi-

cally all the possible configurations that discrete particles could assume – a

study which led him inevitably to the corpuscular or atomic theory of matter

originally deriving from Lucretius and Epicurus. [Shi83, p.242]

Hariot connected sphere packings to Pascal’s triangle long before Pascal in-
troduced the triangle. See Diagram 1.2.

Hariot was the first to distinguish between the face-centered cubic and hexag-
onal close packings [Mas66, p.52].

Kepler became involved in sphere packings through his correspondence with
Hariot in the early years of the 17th century. Kargon writes, in his history of
atomism in England,

Hariot’s theory of matter appears to have been virtually that of Dem-

ocritus, Hero of Alexandria, and, in a large measure, that of Epicurus and

Lucretius. According to Hariot the universe is composed of atoms with void

space interposed. The atoms themselves are eternal and continuous. Physical

properties result from the magnitude, shape, and motion of these atoms, or

corpuscles compounded from them. . ..
Probably the most interesting application of Hariot’s atomic theory was

in the field of optics. In a letter to Kepler on 2 December 1606 Hariot outlined

his views. Why, he asked, when a light ray falls upon the surface of a trans-

parent medium, is it partially reflected and partially refracted? Since by the

principle of uniformity, a single point cannot both reflect and transmit light,

the answer must lie in the supposition that the ray is resisted by some points

and not others.

“A dense diaphanous body, therefore, which to the sense appears to be

continuous in all parts, is not actually continuous. But it has corporeal parts

which resist the rays, and incorporeal parts vacua which the rays penetrate. . .”
It was here that Hariot advised Kepler to abstract himself mathemati-

cally into an atom in order to enter ‘Nature’s house’. In his reply of 2 August

1607, Kepler declined to follow Harriot, ad atomos et vacua. Kepler preferred

to think of the reflection-refraction problem in terms of the union of two op-
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8 Section 1. Introduction

Figure 1.2. Hariot’s view of Pascal’s triangle.

posing qualities – transparence and opacity. Hariot was surprised. “If those

assumptions and reasons satisfy you, I am amazed.” [Kar66, p.26]

Despite Kepler’s initial reluctance to adopt an atomic theory, he was eventually
swayed, and in 1611 he published an essay that explores the consequences of a
theory of matter composed of small spherical particles. Kepler’s essay was the
“first recorded step towards a mathematical theory of the genesis of inorganic or
organic form” [Why66, p.v].
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Kepler’s essay describes the face-centered cubic packing and asserts that “the
packing will be the tightest possible, so that in no other arrangement could more
pellets be stuffed into the same container.” This assertion has come to be known
as the Kepler conjecture. The purpose of this collection of papers is to give a proof
of this conjecture.

1.3 History
The next episode in the history of this problem is a debate between Isaac Newton
and David Gregory. Newton and Gregory discussed the question of how many
spheres of equal radius can be arranged to touch a given sphere. This is the three-
dimensional analogue of the simple fact that in two dimensions six pennies, but no
more, can be arranged to touch a central penny. This is the kissing-number problem
in n-dimensions. In three dimensions, Newton said that the maximum was twelve
spheres, but Gregory claimed that thirteen might be possible.

Newton was correct. In the 19th century, the first papers claiming a proof of
the kissing-number problem appeared in [Ben74], [Gun75], [Hop74]. Although some
writers cite these papers as a proof, they are hardly rigorous by today’s standards.
Another incorrect proof appears in [Boe52]. The first proper proof was obtained by
B. L. van der Waerden and Schütte in 1953 [SW53]. An elementary proof appears
in Leech [Lee56]. The influence of van der Waerden, Schütte, and Leech upon the
papers in this collection is readily apparent. Although the connection between the
Newton-Gregory problem and Kepler’s problem is not obvious, L. Fejes Tóth in
1953, in the first work describing a strategy to prove the Kepler conjecture, made
a quantitative version of the Gregory-Newton problem the first step [Fej53].

The two-dimensional analogue of the Kepler conjecture is to show that the
honeycomb packing in two dimensions gives the highest density. This result was es-
tablished in 1892 by Thue, with a second proof appearing in 1910 ([Thu92], [Thu10]).
G. Szpiro’s book on the Kepler conjecture calls Thue’s proofs into question ([Szp02]).
C. Siegel said that Thue’s original proof is “reasonable, but full of holes” ([Szp02]).
A number of other proofs have appeared since then. Three are particularly notable.
Rogers’s proof generalizes to give a bound on the density of packings in any dimen-
sion [Rog58]. A proof by L. Fejes Tóth extends to give bounds on the density of
packings of convex disks [Fej50]. A third proof, also by L. Fejes Tóth, extends to
non-Euclidean geometries [Fej53]. Another early proof appears in [SM44].

In 1900, Hilbert made the Kepler conjecture part of his 18th problem [Hil01].
Milnor, in his review of Hilbert’s 18th problem, breaks the problem into three parts
[Mil76].

1. Is there in n-dimensional Euclidean Space . . . only a finite number of

essentially different kinds of groups of motions with a [compact] fundamental

region?

2. Whether polyhedra also exist which do not appear as fundamental

regions of groups of motions, by means of which nevertheless by a suitable

juxtaposition of congruent copies a complete filling up of all [Euclidean] space

is possible?
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10 Section 1. Introduction

3. How can one arrange most densely in space an infinite number of

equal solids of given form, e.g. spheres with given radii . . ., that is, how can

one so fit them together that the ratio of the filled to the unfilled space may

be as great as possible?

Writing of the third part, Milnor states,
For 2-dimensional disks this problem has been solved by Thue and Fejes

Tóth, who showed that the expected hexagonal (or honeycomb) packing of

circular disks in the plane is the densest possible. However, the corresponding

problem in 3 dimensions remains unsolved. This is a scandalous situation

since the (presumably) correct answer has been known since the time of Gauss.

(Compare Hilbert and Cohn-Vossen.) All that is missing is a proof.

1.4 The Literature
Past progress toward the Kepler conjecture can be arranged into four categories:

• bounds on the density,

• descriptions of classes of packings for which the bound of π/
√

18 is known,

• convex bodies other than spheres for which the packing density can be deter-
mined precisely,

• strategies of proof.

1.4.1 Bounds

Various upper bounds have been established on the density of packings.
0.884 (Blichfeldt) [Bli19],
0.835 (Blichfeldt) [Bli29],
0.828 (Rankin) [Ran47],
0.7797 (Rogers) [Rog58],
0.77844 (Lindsey) [Lin86],
0.77836 (Muder)[Mud88],
0.7731 (Muder) [Mud93].

Rogers’s is a particularly natural bound. As the dates indicate, it remained
the best available bound for many years. His monotonicity lemma and his decom-
position of Voronoi cells into simplices have become important elements in the proof
of the Kepler conjecture. We give a new proof of Rogers’s bound in “Sphere Pack-
ings III.” A function τ , used throughout this collection, measures the departure of
various objects from Rogers’s bound.

Muder’s bounds, although they appear to be rather small improvements of
Rogers’s bound, are the first to make use of the full Voronoi cell in the determination
of densities. As such, they mark a transition to a greater level of sophistication and
difficulty. Muder’s influence on the work in this collection is also apparent.

A sphere packing admits a Voronoi decomposition: around every sphere take
the convex region consisting of points closer to that sphere center than to any other
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sphere center. L. Fejes Tóth’s dodecahedral conjecture asserts that the Voronoi
cell of smallest volume is a regular dodecahedron with inradius 1 [Fej42]. The
dodecahedral conjecture implies a bound of 0.755 on sphere packings. L. Fejes
Tóth actually gave a complete proof except for one estimate. A footnote in his
paper documents the gap, “In the proof, we have relied to some extent solely on
intuitive observation [Anschauung].” As L. Fejes Tóth pointed out, that estimate
is extraordinarily difficult, and the dodecahedral conjecture has resisted all efforts
until now [McL98].

The missing estimate in L. Fejes Tóth’s paper is an explicit form of the
Newton-Gregory problem. What is needed is an explicit bound on how close the
13th sphere can come to touching the central sphere. Or more generally, minimize
the sum of the distances of the 13 spheres from the central sphere. No satisfactory
bounds are known. Boerdijk has a conjecture for the arrangement that minimizes
the average distance of the 13 spheres from the central sphere. Van der Waerden
has a conjecture for the closest arrangement of 13 spheres in which all spheres have
the same distance from the central sphere. Bezdek has shown that the dodecahedral
conjecture would follow from weaker bounds than those originally proposed by L.
Fejes Tóth [Bez97].

A proof of the dodecahedral conjecture has traditionally been viewed as the
first step toward a proof of the Kepler conjecture, and if little progress has been
made until now toward a complete solution of the Kepler conjecture, the difficulty
of the dodecahedral conjecture is certainly responsible to a large degree.

1.4.2 Classes of packings

If the infinite dimensional space of all packings is too unwieldy, we can ask if it is
possible to establish the bound π/

√
18 for packings with special structures.

If we restrict the problem to packings whose sphere centers are the points
of a lattice, the packings are described by a finite number of parameters, and the
problem becomes much more accessible. Lagrange proved that the densest lattice
packing in two dimensions is the familiar honeycomb arrangement [Lag73]. Gauss
proved that the densest lattice packing in three dimensions is the face-centered
cubic [Gau31]. In dimensions 4–8, the optimal lattices are described by their root
systems, A2, A3, D4, D5, E6, E7, and E8. A. Korkine and G. Zolotareff showed that
D4 and D5 are the densest lattice packings in dimensions 4 and 5 ([KZ73], [KZ77]).
Blichfeldt determined the densest lattice packings in dimensions 6–8 [Bli35]. Cohn
and Kumar solved the problem in dimension 24 [CK04]. With the exception of
dimension 24, beyond dimension 8, there are no proofs of optimality, and yet there
are many excellent candidates for the densest lattice packings. For a proof of the
existence of optimal lattices, see [Oes90].

Although lattice packings are of particular interest because they relate to so
many different branches of mathematics, Rogers has conjectured that in sufficiently
high dimensions, the densest packings are not lattice packings [Rog64]. In fact,
the densest known packings in various dimensions are not lattice packings. The
third edition of [CS93] gives several examples of nonlattice packings that are denser
than any known lattice packings (dimensions 10, 11, 13, 18, 20, 22). The densest
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12 Section 1. Introduction

packings of typical convex sets in the plane, in the sense of Baire categories, are not
lattice packings [Fej95].

Gauss’s theorem on lattice densities has been generalized by A. Bezdek, W.
Kuperberg, and E. Makai, Jr. [BKM91]. They showed that packings of parallel
strings of spheres never have density greater than π/

√
18.

1.4.3 Other convex bodies

If the optimal sphere packings are too difficult to determine, we might ask whether
the problem can be solved for other convex bodies. To avoid trivialities, we restrict
our attention to convex bodies whose packing density is strictly less than 1.

The first convex body in Euclidean 3-space that does not tile for which the
packing density was explicitly determined is an infinite cylinder [Bez90]. Here A.
Bezdek and W. Kuperberg prove that the optimal density is obtained by arranging
the cylinders in parallel columns in the honeycomb arrangement.

In 1993, J. Pach exposed the humbling depth of our ignorance when he issued
the challenge to determine the packing density for some bounded convex body that
does not tile space [MP93]. (Pach’s question is more revealing than anything I
can write on the subject of discrete geometry.) This question was answered by A.
Bezdek [Bez94], who determined the packing density of a rhombic dodecahedron
that has one corner clipped so that it no longer tiles. The packing density equals
the ratio of the volume of the clipped rhombic dodecahedron to the volume of the
unclipped rhombic dodecahedron.

1.4.4 Strategies of proof

In 1953, L. Fejes Tóth proposed a program to prove the Kepler conjecture [Fej53]. A
single Voronoi cell cannot lead to a bound better than the dodecahedral conjecture.
L. Fejes Tóth considered weighted averages of the volumes of collections of Voronoi
cells. These weighted averages involve up to 13 Voronoi cells. He showed that if
a particular weighted average of volumes is greater than the volume of the rhom-
bic dodecahedron, then the Kepler conjecture follows. The Kepler conjecture is an
optimization problem in an infinite number of variables. L. Fejes Tóth’s weighted-
average argument was the first indication that it might be possible to reduce the
Kepler conjecture to a problem in a finite number of variables. Needless to say, cal-
culations involving the weighted averages of the volumes of several Voronoi cells will
be significantly more difficult than those involved in establishing the dodecahedral
conjecture.

To justify his approach, which limits the number of Voronoi cells to 13, Fejes
Tóth needs a preliminary estimate of how close a 13th sphere can come to a central
sphere. It is at this point in his formulation of the Kepler conjecture that an explicit
version of the Newton-Gregory problem is required. How close can 13 spheres come
to a central sphere, as measured by the sum of their distances from the central
sphere?

L. Fejes Tóth made another significant suggestion in [Fej64]. He was the first
to suggest the use of computers in the Kepler conjecture. After describing his
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1.4. The Literature 13

program, he writes,
Thus it seems that the problem can be reduced to the determination

of the minimum of a function of a finite number of variables, providing a

programme realizable in principle. In view of the intricacy of this function we

are far from attempting to determine the exact minimum. But, mindful of the

rapid development of our computers, it is imaginable that the minimum may

be approximated with great exactitude.

The most widely publicized attempt to prove the Kepler conjecture was that
of Wu-Yi Hsiang [Hsi93a]. (See also [Hsi93b], [Hsi93c], [Hsi02].) Hsiang’s approach
can be viewed as a continuation and extension of L. Fejes Tóth’s program. Hsiang’s
paper contains major gaps and errors [CHMS94]. The mathematical arguments
against his argument appear in my debate with him in the Mathematical Intelli-
gencer ([Hal94], [Hsi95]). There are now many published sources that agree with
the central claims of [Hal94] against Hsiang. Conway and Sloane report that the
paper “contains serious flaws.” G. Fejes Tóth feels that “the greater part of the
work has yet to be done” [Fej95]. K. Bezdek concluded, after an extensive study
of Hsiang’s work, “his work is far from being complete and correct in all details”
[Bez97]. D. Muder writes, “the community has reached a consensus on it: no one
buys it” [Mud97].
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Section 2

Overview of the proof

2.1 Experiments with other Decompositions
The following two sections (added Jan 2003) describe some of the motivation behind
the partitions of space that have been used in the proof of the Kepler conjecture.
This discussion includes various ideas that were tried, found wanting, and discarded.
However, this discussion provides motivation for some of the choices that appear in
the proof of the Kepler conjecture.

Let S be a regular tetrahedron of side length 2. If we place a unit ball at each
of the four vertices, the fraction of the tetrahedral solid occupied by the part of the
four balls within the tetrahedron is δtet ≈ 0.7797. Let O be a regular octahedron
of side length 2. If we place a unit ball at each of the four vertices, the fraction
of the octahedral solid occupied by the four balls is δoct ≈ 0.72. The face-centered
cubic packing can be obtained by packing eight regular tetrahedra and six regular
octahedra around each vertex. The density π/

√
18 of this packing is a weighted

average of δtet and δoct:
π√
18

=
1
3
δtet +

2
3
δoct.

My early conception (around 1989) was that for every packing of congruent
balls, there should be a corresponding partition of space into regions of high density
and regions of low density. Regions of high density should be defined as regions
having density between δoct and δtet, and regions of low density should be defined
as those regions of density at most δoct. It was my intention to prove that all
regions of high density had to be confined to a set of nonoverlapping tetrahedra
whose vertices are centers of the balls in the packing.

Thus, the question naturally arises of how much a regular tetrahedron of edge
length 2 can be deformed before its density drops below that of a regular octahedron
δoct. The following graph (Figure 2.1) shows the density of a tetrahedron with
five edges of length 2 and a sixth edge of length x. Numerically, we see that
the density drops below δoct, when x = x0 ≈ 2.504. To achieve the design goal
of confining regions of high density to tetrahedra, we want a tetrahedron of edge

15
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16 Section 2. Overview of the proof

lengths 2, 2, 2, 2, 2, x, for x ≤ x0, to be counted as a region of high density. Rounding
upward, this example led to the cutoff parameter of 2.51 that distinguishes the
tetrahedra (in the high density region) from the rest of space. This is the origin of
the constant 2.51 that appears in the proof.

2.4 2.5 2.72.6

0.718

0.722

0.724

0.726

Figure 2.1. The origin of the constant 2.51.

Since the tetrahedra are chosen to have vertices at the centers of the balls in the
packing, it was quite natural to base the decomposition of space on the Delaunay
decomposition. According to this early conception, space was to be partitioned
into Delaunay simplices. A Delaunay simplex whose edge lengths are at most 2.51
is called a quasi-regular tetrahedron. These were the regions of presumably high
density. According to the strategy in those early days, all other Delaunay simplices
were to be shown to belong to regions of density at most δoct.

The following problem occupied my attention for a long period.
Problem Fix a saturated packing. Let X(oct) be the part of space of a saturated
packing that is occupied by the Delaunay simplices having at least one edge of
length at least 2.51. Let X(tet) be the union of the complementary set of Delaunay
simplices. Is it always true that the density of X(oct) is at most δoct?

Early on, I viewed the positive resolution of this problem as crucial to the
solution of the Kepler conjecture. Eventually, when I divided the proof of the
Kepler conjecture into a five step program, a variant of this problem became the
second step of the program. See [Hal97b].

To give an indication of the complexity of this problem, consider the simplex

with edge lengths (2, 2, 2, 2, `, `), where ` =
√

2(3 +
√

6) ≈ 3.301. Assume that
the two longer edges meet at a vertex. This simplex can appear as the Delaunay
simplex in a saturated packing. Its density is about 0.78469. This constant is not
only greater than δoct; it is even greater than δtet, so that the problem is completely
misguided at the level of individual Delaunay simplices in X(oct). It is only in when
the union of Delaunay simplices is considered that we can hope for an affirmative
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answer to the problem.
By the summer of 1994, I had lost hope of finding a partition of the set X(oct)

into small clusters of Delaunay simplices with the property that each cluster had
density at most δoct. Progress had ground to a halt. The key insight came in the
fall of 1994 (on Nov 12, 1994 to be precise). On that day, I introduced a hybrid
decomposition that relied on the Delaunay simplices in the regions X(tet) formed by
quasi-regular tetrahedra, but that switched to the Voronoi decomposition in certain
regions of X(oct). By April 1995, I had reformulated the problem, worked out a
proof of the problem [Hal97b] in its new form, and submitted it for publication. I
submitted a revised version of [Hal97a] that same month. The revision mentions
the new strategy: “The rough idea is to let the score of a simplex in a cluster
be the compression Γ(S) [a function based on the Delaunay decomposition] if the
circumradius of every face of S small, and otherwise to let the score be defined by
Voronoi cells (in a way that generalizes the definition for quasi-regular tetrahedra).”
See [Hal97a, p.6].

The situation is somewhat more complicated than the previous paragraph
suggests. Consider a Delaunay simplex S with edge lengths (2, 2, 2, 2, 2, 2.52). Such
a simplex belongs to the region X(oct). However, if we break it into four pieces
according to the Voronoi decomposition, the density of the two of the pieces is
about 0.696 < δoct and the density of the other two is about 0.7368 > δoct. It is
desirable not to have any separate regions in X(oct) of density greater than δoct.
Hence it is preferable to keep the four Voronoi regions in S together as a single
Delaunay simplex. A second reason to keep S together is that the proof of the local
optimality of the face-centered cubic packing and hexagonal close packing seems to
require it. A third reason was to treat pentahedral prisms. (This is a thorny class
of counterexamples to a pure Delaunay simplex approach to the proof of the Kepler
conjecture. See [Hal92], [Hal93], and [Fer97].) For these reasons, we identify a class
of Delaunay simplices in X(oct) (such as S) that are to be treated according to a
special set of rules. They are called quarters. As the name suggests, they often
occur as the four simplices comprising an octahedron that has been “quartered.”

One of the great advantages of a hybrid approach is that there is a tremendous
amount of flexibility in the choice of the details of the decomposition. The details
of the decomposition continued to evolve during 1995 and 1996. Finally, during a
stay in Budapest following the Second European Congress in 1996, I abandoned all
vestiges of the Delaunay decomposition, and adopted definitions of quasi-regular
tetrahedra and quarters that rely only on the metric properties of the simplices (as
opposed to the Delaunay criterion based on the position of other sphere centers in
relation to the circumscribing sphere of the simplex). This decomposition of space
is essentially what is used in the final proof.

The hybrid construction depends on certain choices of functions (satisfying a
rather mild set of constraints). To solve the Kepler conjecture appropriate functions
had to be selected, and an optimization problem based on those functions had
to be solved. This function is called the score. Samuel Ferguson and I realized
that every time we encountered difficulties in solving the minimization problem, we
could adjust the scoring function σ to skirt the difficulty. The function σ became
more complicated, but with each change we cut months – or even years – from
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our work. This incessant fiddling was unpopular with my colleagues. Every time I
presented my work in progress at a conference, I was minimizing a different function.
Even worse, the function was mildly incompatible with what I did in earlier papers
[Hal97a] [Hal97b], and this required going back and patching the earlier papers.

The definition of the scoring function σ did not become fixed until it came time
for Ferguson to defend his thesis, and we finally felt obligated to stop tampering
with it. The final version of the scoring function σ is rather complicated. The
reasons for the precise form of σ cannot be described without a long and detailed
description of dozens of sphere clusters that were studied in great detail during the
design of this function. However, a few general design principles can be mentioned.
These comments assume a certain familiarity with the design of the proof.

(1) Simplices (with vertices at the centers of the balls in the packing) should be
used whenever careful estimates of the density are required. Voronoi cells should be
used whenever crude estimates suffice. For Voronoi cells, it is clear what the scoring
function should be vor(R) (and its truncated versions vor0(R), and so forth).

(2) The definition of the scoring function for quasi-regular tetrahedra was
fixed by [Hal97a] and this definition had to remain fixed to avoid rewriting that
long paper.

Because of these first two points, most of the design effort for the function σ
was focused on quarters.

(3) The decision to make the scoring for a quarter change when the circum-
radius of a face reaches

√
2 is to make the proof of the local optimality of the fcc

and hcp packings run smoothly. From [Hal97b], we see that the cutoff value
√

2 is
important for the success of that proof. The cutoff

√
2 is also important for the

proof that standard regions (other than quasi-regular tetrahedra) score at most 0 pt.
(4) The purpose of adding terms to the scoring function σ that depend on the

truncated Voronoi function vor0 is to make interval arithmetic comparisons between
σ and vor0 easier to carry out. This is useful in arguments about “erasing upright
quarters.”

2.2 Contents of the Papers
In [Hal97a], a five-step program was described to prove the Kepler conjecture. It
was planned that there would be five papers, each proving one step in the program.
The papers [Hal97a] and [Hal97b] carry out the first two steps in the program.
Because of the changes in the scoring function, it was necessary to issue a short
paper [FH98] mid-stream whose purpose was to give some adjustments to the five-
step program. This paper adjusts the definitions from [Hal97a] and checks that none
of the results from [Hal97a] and [Hal97b] are affected in an essential way by these
changes. Following this, the papers [Hal98b] and [Fer97] appeared in preprint form,
completing the third and fifth steps of the program. The fourth step turned out to
be particularly difficult. It occupies two separate papers [Hal98c] and [Hal98d].

The original series of papers suffers from the defect of being written over a
span of several years. Some shifts in the conceptual framework of the research
are evident. Based on comments from referees, a revision of these papers was
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prepared in 2002. The revisions were small, except for the paper [Hal98d], which
was completely rewritten. The structure of the proof remains the same, but it
adds a substantial amount of introductory material that lessens the dependence on
[Hal97a] and [Hal97b].

The papers were reorganized again in 2003. The series of papers is no longer
organized along the original five steps with a mid-stream correction. Instead, the
proof is now arranged according to the logical development of the subject matter.
Only minor modifications have been made to the original proof. (The earlier versions
are still available from [arXiv].) In the 2003 revision, the exposition of the proof is
entirely independent of the earlier papers [Hal97a] and [Hal97b].

An introduction to the ideas of the proof can be found in [Hal00]. An introduc-
tion to the algorithms can be found at [Hal03]. Speculation on a second-generation
design of a proof can be found in [Hal03] and [Hal01].

2.3 Complexity
Why is this a difficult problem? There are many ways to answer this question.

This is an optimization problem in an infinite number of variables. In many
respects, the central problem has been to formulate a good finite dimensional ap-
proximation to the density of a packing. Beyond this, there remains an extremely
difficult problem in global optimization, involving nearly 150 variables. We recall
that even very simple classes of nonlinear optimization problems, such as quadratic
optimization problems, are NP-hard [HPT95]. A general highly nonlinear program
of this size is regarded by most researchers as hopeless (at least as far as rigorous
methods are concerned).

There is a considerable literature on many closely related nonlinear opti-
mization problems (the Tammes problem, circle packings, covering problems, the
Lennard-Jones potential, Coulombic energy minimization of point particles, and
so forth). Many of our expectations about nonlattice packings are formed by the
extensive experimental data that have been published on these problems. The lit-
erature leads one to expect a rich abundance of critical points, and yet it leaves
one with a certain skepticism about the possibility of establishing general results
rigorously.

The extensive survey of circle packings in [Mel97] gives a broad overview of
the progress and limits of the subject. Problems involving a few circles can be
trivial to solve. Problems involving several circles in the plane can be solved with
sufficient ingenuity. With the aid of computers, various problems involving a few
more circles can be treated by rigorous methods. Beyond that, numerical methods
give approximations but no rigorous solutions. Melissen’s account of the 20-year
quest for the best separated arrangement of 10 points in a unit square is particularly
revealing of the complexities of the subject.

Kepler’s problem has a particularly rich collection of (numerical) local maxima
that come uncomfortably close to the global maximum [Hal92]. These local maxima
explain in part why a large number (around 5000) of planar maps are generated as
part of the proof of the conjecture. Each planar map leads to a separate nonlinear
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optimization problem.

2.4 Computers
As this project has progressed, the computer has replaced conventional mathemat-
ical arguments more and more, until now nearly every aspect of the proof relies on
computer verifications. Many assertions in these papers are results of computer cal-
culations. To make the proof of Kepler’s conjecture more accessible, I have posted
extensive resources [arXiv].

Computers are used in various significant ways. They will be mentioned briefly
here, and then developed more thoroughly elsewhere in the collection, especially in
the final paper.

1. Proof of inequalities by interval arithmetic. “Sphere Packings I” describes
a method of proving various inequalities in a small number of variables by computer
by interval arithmetic.

2. Combinatorics. A computer program classifies all of the planar maps that
are relevant to the Kepler conjecture.

3. Linear programming bounds. Many of the nonlinear optimization problems
for the scores of decomposition stars are replaced by linear problems that dominate
the original score. They are solved by linear programming methods by computer. A
typical problem has between 100 and 200 variables and 1000 and 2000 constraints.
Nearly 100000 such problems enter into the proof.

4. Branch and bound methods. When linear programming methods do not
give sufficiently good bounds, they have been combined with branch and bound
methods from global optimization.

5. Numerical optimization. The exploration of the problem has been substan-
tially aided by nonlinear optimization and symbolic math packages.

6. Organization of output. The organization of the few gigabytes of code and
data that enter into the proof is in itself a nontrivial undertaking.

2.5 Acknowledgments
I am indebted to G. Fejes Tóth’s survey of sphere packings in the preparation of
this overview [Fej97]. For a much more comprehensive introduction to the literature
on sphere packings, I refer the reader to that survey and to standard references on
sphere packings such as [CS93], [PA95], [Goo97], [Rog64], [Fej64], and [Fej72].

A detailed strategy of the proof was explained in lectures I gave at Mount
Holyoke and Budapest during the summer of 1996 [Hal96]. See also the 1996
preprint, “Recent Progress on the Kepler Conjecture,” [Hal96].

I owe the success of this project to a significant degree to S. Ferguson. His
thesis solves a major step of the program. He has been highly involved in various
other steps of the solution as well. He returned to Ann Arbor during the final three
months of the project to verify many of the interval-based inequalities appearing
in the appendices of “Sphere Packings IV” and “The Kepler Conjecture.” It is a
pleasure to express my debt to him.
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ternären quadratischen Formen von Ludwig August Seber, Göttingische
gelehrte Anzeigen, 1831 Juli 9, also published in J. reine angew. Math.
20 (1840), 312–320, and Werke, vol. 2, Königliche Gesellschaft der Wis-
senschaften, Göttingen, 1876, 188–196.

[Goo97] J. E. Goodman and J. O’Rourke, Handbook of discrete and computa-
tional geometry, CRC, Boca Raton and New York, 1997.

[Gun75] S. Günther, Ein stereometrisches Problem, Archiv der Math. Physik 57
(1875), 209–215.



“fullkepler”
2005/11/14
page 25

i

i

i

i

i

i

i

i

Bibliography 25

[Hal92] T. C. Hales, The sphere packing problem, J. Computational Applied
Math. 44 (1992), 41–76.

[Hal93] T. C. Hales, Remarks on the density of sphere packings in three dimen-
sions, Combinatorica 13 (1993), 181–187.

[Hal94] T. C. Hales, The status of the Kepler conjecture, Math. Intelligencer 16,
no. 3, (1994), 47–58.

[Hal96] T. C. Hales, http://www.pitt.edu/˜thales/kepler98/holyoke.html

[Hal97a] T. C. Hales, Sphere Packings I, Disc. Comp. Geom 17:1-51 (1977).

[Hal97b] T. C. Hales, Sphere Packings II, Disc, Comp. Geom 18:135–149 (1997).

[Hal98a] T. C. Hales, http://www.math.pitt.edu/˜thales/kepler98/packings.html.

The computer code is permanently archived at
http://xxx.lanl.gov/abs/math.MG/9811078.

[Hal98b] T. C. Hales, Sphere Packings III, math.MG/9811075.

[Hal98c] T. C. Hales, Sphere Packings IV, math.MG/9811076.

[Hal98d] T. C. Hales, The Kepler Conjecture, math.MG/9811078.

[Hal00] T. C. Hales, Cannonballs and Honeycombs, Notices of the AMS, Vol 47,
No. 4.

[Hal01] T. C. Hales, Sphere Packings in 3 Dimensions, Arbeitstagung, 2001,
math.MG/0205208.

[Hal03] Thomas C. Hales, Some algorithms arising in the proof of the Kepler
Conjecture, Discrete and Computational Geometry: The Goodman-
Pollack Festschrift, Jacob E. Goodman (Edt), Springer Verlag, July
2003.

[Hil01] D. Hilbert, Mathematische Probleme, Archiv Math. Physik 1 (1901),
44–63, also in Proc. Sym. Pure Math. 28 (1976), 1–34.

[Hop74] Hoppe R. Bemerkung der Redaction, Math. Physik 56 (1874), 307-312.

[HPT95] R. Horst, P.M. Pardalos, N.V. Thoai, Introduction to Global Optimiza-
tion, Kluwer, 1995.

[Hsi93a] W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler’s
conjecture, Internat. J. Math 93 (1993), 739-831.

[Hsi93b] W.-Y. Hsiang, On the sphere packing problem and the proof of Kepler’s
conjecture, in Differential geometry and topology (Alghero, 1992), World
Scientific, River Edge, NJ, 1993, 117–127.



“fullkepler”
2005/11/14
page 26

i

i

i

i

i

i

i

i

26 Bibliography

[Hsi93c] W.-Y. Hsiang, The geometry of spheres, in Differential geometry (Shang-
hai, 1991), World Scientific, River Edge, NJ, 1993, 92-107.

[Hsi95] W.-Y. Hsiang, A rejoinder to T. C. Hales’s article “The status of the
Kepler conjecture,” Math. Intelligencer 17, no. 1, (1995), 35–42.

[Hsi02] W.-Y. Hsiang, Least Action Principle of Crystal Formation of Dense
Packing Type and the Proof of Kepler’s Conjecture, World Scientific,
2002.

[Kar66] R. Kargon, Atomism in England from Hariot to Newton, Oxford, 1966.

[Kep66] J. Kepler, The Six-cornered snowflake, Oxford Clarendon Press, Oxford,
1966, forward by L. L. Whyte.

[KZ73] A. Korkine and G. Zolotareff, Sur les formes quadratiques, Math. An-
nalen 6 (1873), 366–389.

[KZ77] A. Korkine and G. Zolotareff, Sur les formes quadratiques positives,
Math. Annalen 11 (1877), 242–292.

[Lag73] J. L. Lagrange, Recherches d’arithmétique, Nov. Mem. Acad. Roy. Sc.
Bell Lettres Berlin 1773, in Œuvres, vol. 3, 693–758.

[Lee56] J. Leech, The Problem of the Thirteen Spheres, The Mathematical
Gazette, Feb 1956, 22–23.

[Lin86] J. H. Lindsey II, Sphere packing in R3, Mathematika 33 (1986), 137–147.

[Mas66] B. J. Mason, On the shapes of snow crystals, in [Kep66].

[McL98] S. McLaughlin, A proof of the dodecahedral conjecture, preprint,
math.MG/9811079.

[Mel97] J. B. M. Melissen, Packing and covering with circles, Ph.D. dissertation,
Univ. Utrecht, Dec. 1997.

[Mil76] J. Milnor, Hilbert’s problem 18: on crystallographic groups, fundamen-
tal domains, and on sphere packings, in Mathematical developments
arising from Hilbert problems, Proc. Symp. Pure Math., vol 28, 491–
506, AMS, 1976.

[MP93] W. Moser, J. Pach, Research problems in discrete geometry, DIMACS
Technical Report, 93032, 1993.

[Mud88] D. J. Muder, Putting the best face on a Voronoi polyhedron, Proc.
London Math. Soc. (3) 56 (1988), 329–348.

[Mud93] D. J. Muder A New Bound on the Local Density of Sphere Packings,
Discrete and Comp. Geom. 10 (1993), 351–375.



“fullkepler”
2005/11/14
page 27

i

i

i

i

i

i

i

i

Bibliography 27

[Mud97] D. J. Muder, letter, in Fermat’s enigma, by S. Singh, Walker, New York,
1997.
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The following papers give a proof of the Kepler conjecture, which asserts that
no packing of congruent balls in three dimensional Euclidean space has density
exceeding that of the face-centered cubic packing.

A historical overview of the Kepler conjecture is found in the first paper in
this series. Since the history of this problem is treated there, this paper does not
go into the details of the extensive literature on this problem. We mention that
Hilbert included the Kepler conjecture as part of his eighteenth problem [Hil01]. L.
Fejes Tóth was the first to formulate a plausible strategy for a proof [Fej72]. He
also suggested that computers might play a role in the solution of this problem.
The historical account also discusses the development of some of the key concepts
of this paper.

An expository account of the proof is contained in [Hal00]. A general reference
on sphere packings is [CS98]. A general discussion of the computer algorithms that
are used in the proof can be found in [Hal03]. Some speculations on the structure of
a second-generation proof can be found in [Hal01]. Details of computer calculations
can be found on the internet at [Hal05b].

The first section of this paper gives the top level structure of the proof of
the Kepler conjecture. The next two sections describe the fundamental decompo-
sitions of space that are needed in the proof. The first decomposition, which is
called the Q-system, is a collection of simplices that do not overlap. This decompo-
sition was originally inspired by the Delaunay decomposition of space. The other
decomposition, which is called the V -cell decomposition, is closely related to the
Voronoi decomposition of space. In the following section, these two decompositions
of space are combined into geometrical objects called decomposition stars. The de-
composition star is the fundamental geometrical object in the proof of the Kepler
conjecture.

The final section of this paper, which was coauthored with Samuel P. Ferguson,
describes a particular nonlinear function on the set of all decomposition stars, called
the scoring function. The Kepler conjecture reduces to an optimization problem
involving this nonlinear function on the set of all decomposition stars. This is
an optimization problem in a finite number of variables. The subsequent papers
(Papers III – VI) solve that optimization problem.

The choice of the particular scoring function to use was arrived at jointly with
Samuel P. Ferguson. He has contributed to this project in many important ways,
including the results in Section 7.

Some history of the proof and this paper is as follows. The original proof, as
envisioned in 1994 and accomplished in 1998, was divided into a five-step program.
As a result, the original papers were called “Sphere Packings I,” “Sphere Packings
II,” and so forth. The first two papers in the series were published in an earlier
volume of DCG. As it turned out, the fourth step “Sphere Packings IV” is consid-
erably more difficult than the other steps in the program. It became clear that a
single paper would not suffice, and the fourth step of the proof was divided into
two parts “Sphere Packings IV” and “Kepler Conjecture (Sphere Packings VI).”
Samuel Ferguson’s thesis “Sphere Packings V” solved one of the five major steps
in the proof. (Although “Sphere Packings IV” and “Sphere Packings VI” belonged
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together, because of the numbering scheme, Ferguson’s theses “Sphere Packings V”
was inserted between these two papers.)

The proof that is contained in this volume is a rewritten version of the proof.
For historical reasons, the papers in this volume have retained the original titles,
but because of extensive revisions over the past several years, the proof is no longer
arranged according to the five steps of the 1994 program.

In addition to the 5 + 1 papers corresponding to the five steps of the original
program, there is the current paper. It has the following origin. In 1996, it became
clear that progress on the problem required some adjustments in the main non-
linear optimization problem of “Sphere Packings I” and “II.” As the original 1996
manuscript put it, “There are infinitely many scoring schemes that should lead to a
proof of the Kepler conjecture. The problem is to formulate the scheme that makes
the Kepler conjecture as accessible as possible” [Hal96]. The original purpose of this
paper was to make some useful improvements in the scoring function from “Sphere
Packings I” and “II” and to make the changes in such a way that the main results
of those papers would still hold true.

Over the past years, this paper has grown considerably in scope to the point
that it is now lays the foundation for all of the papers in the series. In fact, all of the
foundational material from “Sphere Packings I,” and “II,” and the 1998 preprint
series has been collected together in this article. The scoring function is no longer
the same as the one presented in “Sphere Packings I,” and “II.” This paper adapts
the relevant material from these earlier papers to the current scoring function. This
paper has expanded to the point that it is now possible to understand the entire
proof of the Kepler conjecture without reading “I” and “II.”



“fullkepler”
2005/11/14
page 33

i

i

i

i

i

i

i

i

Section 3

The Top-Level Structure
of the Proof

This section describes the structure of the proof of the Kepler conjecture.

3.1 Statement of Theorems

Theorem 3.1 (The Kepler Conjecture). No packing of congruent balls in
Euclidean three space has density greater than that of the face-centered cubic packing.

This density is π/
√

18 ≈ 0.74.

Figure 3.1. The face-centered cubic packing

The proof of this result is presented in this paper. Here, we describe the top-
level outline of the proof and give references to the sources of the details of the
proof.

By a packing, we mean an arrangement of congruent balls that are nonover-
lapping in the sense that the interiors of the balls are pairwise disjoint. Consider a
packing of congruent balls in Euclidean three space. There is no harm in assuming
that all the balls have unit radius. The density of a packing does not decrease when

33
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34 Section 3. The Top-Level Structure of the Proof

balls are added to the packing. Thus, to answer a question about the greatest pos-
sible density we may add nonoverlapping balls until there is no room to add further
balls. Such a packing will be said to be saturated.

Let Λ be the set of centers of the balls in a saturated packing. Our choice
of radius for the balls implies that any two points in Λ have distance at least 2
from each other. We call the points of Λ vertices. Let B(x, r) denote the closed
ball in Euclidean three space at center x and radius r. Let δ(x, r,Λ) be the finite
density, defined as the ratio of the volume of B(x, r,Λ) to the volume of B(x, r),
where B(x, r,Λ) is defined as the intersection with B(x, r) of the union of all balls
in the packing. Set Λ(x, r) = Λ ∩B(x, r).

Recall that the Voronoi cell Ω(v) = Ω(v, Λ) around a vertex v ∈ Λ is the set
of points closer to v than to any other ball center. The volume of each Voronoi cell
in the face-centered cubic packing is

√
32. This is also the volume of each Voronoi

cell in the hexagonal-close packing.

Definition 3.2. Let A : Λ → R be a function. We say that A is negligible if there
is a constant C1 such that for all r ≥ 1 and all x ∈ R3,

∑

v∈Λ(x,r)

A(v) ≤ C1r
2.

We say that the function A : Λ → R is fcc-compatible if for all v ∈ Λ we have the
inequality √

32 ≤ vol(Ω(v)) + A(v).

The value vol(Ω(v)) + A(v) may be interpreted as a corrected volume of the
Voronoi cell. Fcc-compatibility asserts that the corrected volume of the Voronoi
cell is always at least the volume of the Voronoi cells in the face-centered cubic and
hexagonal-close packings.

Lemma 3.3. If there exists a negligible fcc-compatible function A : Λ → R for a
saturated packing Λ, then there exists a constant C such that for all r ≥ 1 and all
x ∈ R3,

δ(x, r,Λ) ≤ π/
√

18 + C/r.

The constant C depends on Λ only through the constant C1.

Proof. The numerator volB(x, r,Λ) of δ(x, r,Λ) is at most the product of the
volume of a ball 4π/3 with the number |Λ(x, r + 1)| of balls intersecting B(x, r).
Hence

volB(x, r,Λ) ≤ |Λ(x, r + 1)|4π/3. (3.1)

In a saturated packing each Voronoi cell is contained in a ball of radius 2
centered at the center of the cell. The volume of the ball B(x, r + 3) is at least the
combined volume of Voronoi cells whose center lies in the ball B(x, r + 1). This
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observation, combined with fcc-compatibility and negligibility, gives

√
32|Λ(x, r + 1)| ≤

∑

v∈Λ(x,r+1)

(A(v) + vol(Ω(v)))

≤ C1(r + 1)2 + volB(x, r + 3)

≤ C1(r + 1)2 + (1 + 3/r)3volB(x, r)

. (3.2)

Recall that δ(x, r,Λ) = volB(x, r,Λ)/volB(x, r). Divide Inequality 3.1 through by
volB(x, r). Use Inequality 3.2 to eliminate |Λ(x, r+1)| from the resulting inequality.
This gives

δ(x, r,Λ) ≤ π√
18

(1 + 3/r)3 + C1
(r + 1)2

r3
√

32
.

The result follows for an appropriately chosen constant C.

An analysis of the preceding proof shows that fcc-compatibility leads to the
particular value π/

√
18 in the statement of Lemma 3.3. If fcc-compatibility were

to be dropped from the hypotheses, any negligible function A would still lead to
an upper bound 4π/(3L) on the density of a packing, expressed as a function of a
lower bound L on all vol Ω(v) + A(v).

Remark 3.4. We take the precise meaning of the Kepler conjecture to be a bound
on the essential supremum of the function δ(x, r,Λ) as r tends to infinity. Lemma
3.3 implies that the essential supremum of δ(x, r,Λ) is bounded above by π/

√
18,

provided a negligible fcc-compatible function can be found. The strategy will be to
define a negligible function, and then to solve an optimization problem in finitely
many variables to establish that it is fcc-compatible.

Section 6 defines a compact topological space DS (the space of decomposition
stars 6.2) and a continuous function σ on that space, which is directly related to
packings.

If Λ is a saturated packing, then there is a geometric object D(v, Λ) con-
structed around each vertex v ∈ Λ. D(v, Λ) depends on Λ only through the vertices
in Λ that are at most a constant distance away from v. That constant is inde-
pendent of v and Λ. The objects D(v, Λ) are called decomposition stars, and the
space of all decomposition stars is precisely DS. Section 6.2 shows that the data
in a decomposition star are sufficient to determine a Voronoi cell Ω(D) for each
D ∈ DS. The same section shows that the Voronoi cell attached to D is related to
the Voronoi cell of v in the packing by relation

volΩ(v) = volΩ(D(v, Λ)).

Section 7 defines a continuous real-valued function A0 : DS → R that assigns a
“weight” to each decomposition star. The topological space DS embeds into a finite
dimensional Euclidean space. The reduction from an infinite dimensional to a finite
dimensional problem is accomplished by the following results.
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36 Section 3. The Top-Level Structure of the Proof

Theorem 3.5. For each saturated packing Λ, and each v ∈ Λ, there is a decompo-
sition star D(v,Λ) ∈ DS such that the function A : Λ → R defined by

A(v) = A0(D(v, Λ))

is negligible for Λ.

This is proved as Theorem 7.11. The main object of the proof is then to show
that the function A is fcc-compatible. This is implied by the inequality (in a finite
number of variables) √

32 ≤ volΩ(D) + A0(D), (3.3)

for all D ∈ DS.
In the proof it is convenient to reframe this optimization problem by composing

it with a linear function. The resulting continuous function σ : DS → R is called
the scoring function, or score.

Let δtet be the packing density of a regular tetrahedron. That is, let S be
a regular tetrahedron of edge length 2. Let B be the part of S that lies within
distance 1 of some vertex. Then δtet is the ratio of the volume of B to the volume
of S. We have δtet =

√
8 arctan(

√
2/5).

Let δoct be the packing density of a regular octahedron of edge length 2, again
constructed as the ratio of the volume of points within distance 1 of a vertex to the
volume of the octahedron.

The density of the face-centered cubic packing is a weighted average of these
two ratios

π√
18

=
δtet

3
+

2δoct

3
.

This determines the exact value of δoct in terms of δtet. We have δoct ≈ 0.72.
In terms of these quantities,

σ(D) = −4δoct(vol(Ω(D)) + A0(D)) +
16π

3
. (3.4)

Definition 3.6. We define the constant

pt = 4 arctan(
√

2/5)− π/3.

Its value is approximately pt ≈ 0.05537. Equivalent expressions for pt are

pt =
√

2δtet − π

3
= −2(

√
2δoct − π

3
).

In terms of the scoring function σ, the optimization problem in a finite number
of variables (Inequality 3.3) takes the following form. The proof of this inequality
is a central concern in this paper.

Theorem 3.7 (Finite dimensional reduction). The maximum of σ on the
topological space DS of all decomposition stars is the constant 8 pt ≈ 0.442989.
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Remark 3.8. The Kepler conjecture is an optimization problem in an infinite
number of variables (the coordinates of the points of Λ). The maximization of σ on
DS is an optimization problem in a finite number of variables. Theorem 3.7 may be
viewed as a finite-dimensional reduction of the Kepler conjecture.

Let t0 = 1.255 (2t0 = 2.51). This is a parameter that is used for truncation
throughout this paper.

Let U(v, Λ) be the set of vertices in Λ at nonzero distance at most 2t0 from v.
From v and a decomposition star D(v, Λ) it is possible to recover U(v, Λ), which we
write as U(D). We can completely characterize the decomposition stars at which
the maximum of σ is attained.

Theorem 3.9. Let D be a decomposition star at which the function σ : DS → R
attains its maximum. Then the set U(D) of vectors at distance at most 2t0 from
the center has cardinality twelve. Up to Euclidean motion, U(D) is one of two
arrangements: the kissing arrangement of the twelve balls around a central ball in
the face-centered cubic packing or the kissing arrangement of twelve balls in the
hexagonal-close packing.

There is a complete description of all packings in which every sphere center is
surrounded by twelve others in various combinations of these two patterns. All such
packings are built from parallel layers of the A2 lattice. (The A2 lattice formed by
equilateral triangles, is the optimal packing in two dimensions.) See Paper I.

3.2 Basic Concepts in the Proof
To prove Theorems 3.1, 3.7, and 3.9, we wish to show that there is no counterex-
ample. In particular, we wish to show that there is no decomposition star D with
value σ(D) > 8 pt. We reason by contradiction, assuming the existence of such a
decomposition star. With this in mind, we call D a contravening decomposition
star, if

σ(D) ≥ 8 pt.

In much of what follows we will tacitly assume that every decomposition star un-
der discussion is a contravening one. Thus, when we say that no decomposition
stars exist with a given property, it should be interpreted as saying that no such
contravening decomposition stars exist.

To each contravening decomposition star D, we associate a (combinatorial)
plane graph G(D). A restrictive list of properties of plane graphs is described
in Section 18.3. Any plane graph satisfying these properties is said to be tame.
All tame plane graphs have been classified. There are several thousand, up to
isomorphism. The list appears in [Hal05b]. We refer to this list as the archival list
of plane graphs.

A few of the tame plane graphs are of particular interest. Every decomposition
star attached to the face-centered cubic packing gives the same plane graph (up to
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38 Section 3. The Top-Level Structure of the Proof

isomorphism). Call it Gfcc. Likewise, every decomposition star attached to the
hexagonal-close packing gives the same plane graph Ghcp.

Figure 3.2. The plane graphs Gfcc and Ghcp

There is one more tame plane graph that is particularly troublesome. It is
the graph Gpent obtained from the pictured configuration of twelve balls tangent
to a given central ball (Figure 3.3). (Place a ball at the north pole, another at the
south pole, and then form two pentagonal rings of five balls.) This case requires
individualized attention. S. Ferguson proves the following theorem in Paper V.

Theorem 3.10 (Ferguson). There are no contravening decomposition stars D
whose associated plane graph is isomorphic to Gpent.

Figure 3.3. The plane graph Gpent

of the pentahedral prism.

3.3 Logical Skeleton of the Proof
Consider the following six claims. Eventually we will give a proof of all six state-
ments. First, we draw out some of their consequences. The main results (Theo-
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3.3. Logical Skeleton of the Proof 39

rems 3.1, 3.7, and 3.9) all follow from these claims.

Claim 3.11. If the maximum of the function σ on DS is 8 pt, then for every
saturated packing Λ there exists a negligible fcc-compatible function A.

Claim 3.12. Let D be a contravening decomposition star. Then its plane graph
G(D) is tame.

Claim 3.13. If a plane graph is tame, then it is isomorphic to one of the several
thousand plane graphs that appear in the archival list of plane graphs.

Claim 3.14. If the plane graph of a contravening decomposition star is isomorphic
to one in the archival list of plane graphs, then it is isomorphic to one of the
following three plane graphs: Gpent, Ghcp, or Gfcc.

Claim 3.15. There do not exist any contravening decomposition stars D whose
associated graph is isomorphic to Gpent.

Claim 3.16. Contravening decomposition stars exist. If D is a contravening de-
composition star, and if the plane graph of D is isomorphic to Gfcc or Ghcp, then
σ(D) = 8 pt. Moreover, up to Euclidean motion, U(D) is the kissing arrangement
of the twelve balls around a central ball in the face-centered cubic packing or the
kissing arrangement of twelve balls in the hexagonal-close packing.

Next, we state some of the consequences of these claims.

Lemma 3.17. Assume Claims 3.12, 3.13, 3.14, and 3.15. If D is a contravening
decomposition star, then its plane graph G(D) is isomorphic to Ghcp or Gfcc.

Proof. Assume that D is a contravening decomposition star. Then its plane graph
is tame, and consequently appears on the archival list of plane graphs. Thus, it
must be isomorphic to one of Gfcc, Ghcp, or Gpent. The final graph is ruled out by
Claim 3.15.

Lemma 3.18. Assume Claims 3.12, 3.13, 3.14, 3.15, and 3.16. Then Theorem 3.7
holds.

Proof. By Claim 3.16 and Lemma 3.17, the value 8 pt lies in the range of the
function σ on DS. Assume for a contradiction that there exists a decomposition
star D ∈ DS that has σ(D) > 8 pt. By definition, this is a contravening star.
By Lemma 3.17, its plane graph is isomorphic to Ghcp or Gfcc. By Claim 3.16,
σ(D) = 8 pt, in contradiction with σ(D) > 8 pt.

Lemma 3.19. Assume Claims 3.12, 3.13, 3.14, 3.15, and 3.16. Then Theorem 3.9
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holds.

Proof. By Theorem 3.7, the maximum of σ on DS is 8 pt. Let D be a decompo-
sition star at which the maximum 8 pt is attained. Then D is a contravening star.
Lemma 3.17 implies that the plane graph is isomorphic to Ghcp or Gfcc. The hy-
potheses of Claim 3.16 are satisfied. The conclusion of Claim 3.16 is the conclusion
of Theorem 3.9.

Lemma 3.20. Assume Claims 3.11–3.16. Then the Kepler conjecture (Theo-
rem 3.1) holds.

Proof. As pointed out in Remark 3.4, the precise meaning of the Kepler conjecture
is for every saturated packing Λ, the essential supremum of δ(x, r,Λ) is at most
π/
√

18.
Let Λ be the set of centers of a saturated packing. Let A : Λ → R be the

negligible, fcc-compatible function provided by Claim 3.11 (and Lemma 3.18). By
Lemma 3.3, the function A leads to a constant C such that for all r ≥ 1 and all
x ∈ R3, the density δ(x, r,Λ) satisfies

δ(x, r,Λ) ≤ π/
√

18 + C/r.

This implies that the essential supremum of δ(x, r,Λ) is at most π/
√

18.

Remark 3.21. One other theorem (Theorem 3.5) was stated without proof in Sec-
tion 3.1. This result was placed there to motivate the other results. However, it
is not an immediate consequence of Claims 3.11–3.16. Its proof appears in Theo-
rem 7.11.

3.4 Proofs of the Central Claims
The previous section showed that the main results in the introduction (Theo-
rems 3.1, 3.7, and 3.9) follow from six claims. This section indicates where each of
these claims is proved, and mentions a few facts about the proofs.

Claim 3.11 is proved in Theorem 7.14. Claim 3.12 is proved in Theorem 20.20.
Claim 3.13, the classification of tame graphs, is proved in Theorem 19.1. By the
classification of such graphs, this reduces the proof of the Kepler conjecture to the
analysis of the decomposition stars attached to the finite explicit list of tame plane
graphs. We will return to Claim 3.14 in a moment. Claim 3.15 is Ferguson’s thesis,
cited as Theorem 3.10.

Claim 3.16 is the local optimality of the face-centered cubic and hexagonal
close packings. In Section 8, the necessary local analysis is carried out to prove
Claim 3.16 as Corollary 8.3.

Now we return to Claim 3.14. This claim is proved as Theorem 23.1. The
idea of the proof is the following. Let D be a contravening decomposition star with
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graph G(D). We assume that the graph G(D) is not isomorphic to Gfcc, Ghcp,
Gpent and then prove that D is not contravening. This is a case-by-case argument,
based on the explicit archival list of plane graphs.

To eliminate these remaining cases, more-or-less generic arguments can be
used. A linear program is attached to each tame graph G. The linear program can
be viewed as a linear relaxation of the nonlinear optimization problem of maximizing
σ over all decomposition stars with a given tame graph G. Because it is obtained
by relaxing the constraints on the nonlinear problem, the maximum of the linear
problem is an upper bound on the maximum of the original nonlinear problem.
Whenever the linear programming maximum is less than 8 pt, it can be concluded
that there is no contravening decomposition star with the given tame graph G. This
linear programming approach eliminates most tame graphs.

When a single linear program fails to give the desired bound, it is broken
into a series of linear programming bounds, by branch and bound techniques. For
every tame plane graph G other than Ghcp, Gfcc, and Gpent, we produce a series
of linear programs that establish that there is no contravening decomposition star
with graph G.

The volume is organized in the following way. Sections 4 through 7 intro-
duce the basic definitions. Section 7 gives a proof of Claim 3.11. Section 8 proves
Claim 3.16. Sections 9 through 14 present the fundamental estimates. Sections 18
through 19 give a proof of Claim 3.13. Sections 20 through 22 give a proof of
Claim 3.12. Sections 23 through 25 give a proof of Claim 3.14. Claim 3.15 (Fergu-
son’s thesis) appears in Paper V.
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Section 4

Construction of the
Q-system

It is useful to separate the parts of space of relatively high packing density from
the parts of space with relatively low packing density. The Q-system, which is
developed in this section, is a crude way of marking off the parts of space where
the density is potentially high. The Q-system is a collection of simplices whose
vertices are points of the packing Λ. The Q-system is reminiscent of the Delaunay
decomposition, in the sense of being a collection of simplices with vertices in Λ. In
fact, the Q-system is the remnant of an earlier approach to the Kepler conjecture
that was based entirely on the Delaunay decomposition (see [Hal93]). However, the
Q-system differs from the Delaunay decomposition in crucial respects. The most
fundamental difference is that the Q-system, while consisting of nonoverlapping
simplices, does not partition all of space.

This section defines the set of simplices in the Q-system and proves that they
do not overlap. In order to prove this, we develop a long series of lemmas that
study the geometry of intersections of various edges and simplices. At the end of
this section, we give the proof that the simplices in the Q-system do not overlap.

4.1 Description of the Q-system
Fix a packing of balls of radius 1. We identify the packing with the set Λ of its
centers. A packing is thus a subset Λ of R3 such that for all v, w ∈ Λ, |v − w| < 2
implies v = w. The centers of the balls are called vertices. The term ‘vertex’ will
be reserved for this technical usage. A packing is said to be saturated if for every
x ∈ R3, there is some v ∈ Λ such that |x − v| < 2. Any packing is a subset of a
saturated packing. We assume that Λ is saturated. The set Λ is countably infinite.

Definition 4.1. We define the truncation parameter to be the constant t0 = 1.255.
It is used throughout. Informal arguments that led to this choice of constant are
described in Paper I.

Precise constructions that rely on the truncation parameter t0 will appear

43
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below. We will regularly intersect Voronoi cells with balls of radius t0 to obtain
lower bounds on their volumes. We will regularly disregard vertices of the packing
that lie at distance greater than 2t0 from a fixed v ∈ Λ to obtain a finite subset
of Λ (a finite cluster of balls in the packing) that is easier to analyze than the full
packing Λ.

The truncation parameter is the first of many decimal constants that appear.
Each decimal constant is an exact rational value, e.g. 2t0 = 251/100. They are not
to be regarded as approximations of some other value.

Definition 4.2. A quasi-regular triangle is a set T ⊂ Λ of three vertices such that
if v, w ∈ T then |w − v| ≤ 2t0.

Definition 4.3. A simplex is a set of four vertices. A quasi-regular tetrahedron
is a simplex S such that if v, w ∈ S then |w − v| ≤ 2t0. A quarter is a simplex
whose edge lengths y1, . . . , y6 can be ordered to satisfy 2t0 ≤ y1 ≤

√
8, 2 ≤ yi ≤ 2t0,

i = 2, . . . , 6. If a quarter satisfies the strict inequalities 2t0 < y1 <
√

8, then we say
that it is a strict quarter. We call the longest edge {v, w} of a quarter its diagonal .
When the quarter is strict, we also say that its diagonal is strict. When the quarter
has a distinguished vertex, the quarter is upright if the distinguished vertex is an
endpoint of the diagonal, and flat otherwise.

At times, we identify a simplex with its convex hull. We will say, for example,
that the circumcenter of a simplex is contained in the simplex to mean that the
circumcenter is contained in the convex hull of the four vertices. Similar remarks
apply to triangles, quasi-regular tetrahedra, quarters, and so forth. We will write |S|
for the convex hull of S when we wish to be explicit about the distinction between
|S| and its set of extreme points.

When we wish to give an order on an edge, triangle, simplex, etc. we present
the object as an ordered tuple rather than a set. Thus, we refer to both (v1, . . . , v4)
and {v1, . . . , v4} as simplices, depending on the needs of the given context.

Definition 4.4. Two manifolds with boundary overlap if their interiors intersect.

Definition 4.5. A set O of six vertices is called a quartered octahedron, if there are
four pairwise nonoverlapping strict quarters S1, . . . , S4 all having the same diagonal,
such that O is the union of the four sets Si of four vertices. (It follows easily that
the strict quarters Si can be given a cyclic order with respect to which each strict
quarter Si has a face in common with the next, so that a quartered octahedron is
literally a octahedron that has been partitioned into four quarters.)

Remark 4.6. A quartered octahedron may have more than one diagonal of length
less than

√
8, so its decomposition into four strict quarters need not be unique.

The choice of diagonal has no particular importance. Nevertheless, to make things
canonical, we pick the diagonal of length less than

√
8 with an endpoint of smallest

possible value with respect to the lexicographical ordering on coordinates; that is,
with respect to the ordering (y1, y2, y3) < (y′1, y

′
2, y

′
3), if yi = y′i, for i = 1, . . . , k,
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and yk+1 < y′k+1. This selection rule for diagonals is fully translation invariant in
the sense that if one octahedron is a translate of another (whether or not they belong
to the same saturated packing), then the selected diagonal of one is a translate of
the selected diagonal of the other.

Definition 4.7. If {v1, v2} is an edge of length between 2t0 and
√

8, we say that a
vertex v (6= v1, v2) is an anchor of {v1, v2} if its distances to v1 and v2 are at most
2t0.

The two vertices of a quarter that are not on the diagonal are anchors of the
diagonal, and the diagonal may have other anchors as well.

Definition 4.8. Let Q be the set of quasi-regular tetrahedra and strict quarters,
enumerated as follows. This set is called the Q-system. It is canonically associated
with a saturated packing Λ. (The Q stands for quarters and quasi-regular tetrahe-
dra.)

1. All quasi-regular tetrahedra.

2. Every strict quarter such that none of the quarters along its diagonal overlaps
any other quasi-regular tetrahedron or strict quarter.

3. Every strict quarter whose diagonal has four or more anchors, as long as there
are not exactly four anchors arranged as a quartered octahedron.

4. The fixed choice of four strict quarters in each quartered octahedron.

5. Every strict quarter {v1, v2, v3, v4} whose diagonal {v1, v3} has exactly three
anchors v2, v4, v5 provided that the following hold (for some choice of in-
dexing). (a) {v2, v5} is a strict diagonal with exactly three anchors: v1,
v3, v4. (b) d24 + d25 > π, where d24 is the dihedral angle of the simplex
{v1, v3, v2, v4} along the edge {v1, v3} and d25 is the dihedral angle of the sim-
plex {v1, v3, v2, v5} along the edge {v1, v3}.

No other quasi-regular tetrahedra or strict quarters are included in the Q-system Q.

The following theorem is the main result of this section.

Theorem 4.9. For every saturated packing, there exists a uniquely determined
Q-system. Distinct simplices in the Q-system have disjoint interiors.

While proving the theorem, we give a complete classification of the various
ways in which one quasi-regular tetrahedron or strict quarter can overlap another.

Having completed our primary purpose of showing that the simplices in the
Q-system do not overlap, we state the following small lemma. It is an immediate
consequence of the definitions, but is nonetheless useful in the sections that follow.

Lemma 4.10. If one quarter along a diagonal lies in the Q-system, then all quar-
ters along the diagonal lie in the Q-system.
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Proof. This is true by construction. Each of the defining properties of a quarter
in the Q-system is true for one quarter along a diagonal if and only if it is true of
all quarters along the diagonal.

4.2 Geometric Considerations

Remark 4.11. The primary definitions and constructions of this paper are trans-
lation invariant. That is, if λ ∈ R3 and Λ is a saturated packing, then λ + Λ is
a saturated packing. If A : Λ → R is a negligible fcc-compatible function for Λ,
then λ + v 7→ A(v) is a negligible fcc-compatible function for λ + Λ. If Q is the
Q-system of Λ, then λ+Q is the Q-system of λ+Λ. Because of general translational
invariance, when we fix our attention on a particular v ∈ Λ, we will often assume
(without loss of generality) that the coordinate system is fixed in such a way that v
lies at the origin.

Our simplices are generally assumed to come labeled with a distinguished
vertex, fixed at the origin. (The origin will always be at a vertex of the packing.)
We number the edges of each simplex 1, . . . , 6, so that edges 1, 2, and 3 meet at
the origin, and the edges i and i + 3 are opposite, for i = 1, 2, 3. (See Figure 4.1.)
S(y1, y2, . . . , y6) denotes a simplex whose edges have lengths yi, indexed in this way.
We refer to the endpoints away from the origin of the first, second, and third edges
as the first, second, and third vertices.

Definition 4.12. In general, let dih(S) be the dihedral angle of a simplex S along
its first edge. When we write a simplex in terms of its vertices (w1, w2, w3, w4),
then {w1, w2} is understood to be the first edge.

Definition 4.13. We define the radial projection of a set X to be the radial
projection x 7→ x/|x| of X \ 0 to the unit sphere centered at the origin. We say the
two sets cross if their radial projections to the unit sphere overlap.

Definition 4.14. If S and S′ are nonoverlapping simplices with a shared face F ,
we define E(S, S′) as the distance between the two vertices (one on S and the other
on S′) that do not lie on F . We may express this as a function

E(S, S′) = E(S(y1, . . . , y6), y′1, y
′
2, y

′
3)

of nine variables, where S = S(y1, . . . , y6) and S′ = S(y′1, y
′
2, y

′
3, y4, y5, y6), po-

sitioned so that S and S′ are nonoverlapping simplices with a shared face F of
edge-lengths (y4, y5, y6). The function of nine variables is defined only for values
(yi, y

′
i) for which the simplices S and S′ exist. (Figure 4.1).

Several lemmas in this paper rely on calculations of lower bounds to the func-
tion E in the special case when the edge between the vertices 0 and v passes through
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0

1

2

3 4

5

6

v

Figure 4.1. E measures the distance between the vertices at 0 and v. The
standard indexing of the edges of a simplex is marked on the lower simplex.

the shared face F . If intervals containing y1, . . . , y6, y
′
1, y

′
2, y

′
3 are given, then lower

bounds on E over that domain are generally easy to obtain. Detailed examples of
calculations of the lower bound of this function can be found in [Hal97a, Sec. 4].

To work one example, we suppose we are asked to give a lower bound on
E when the simplex S = S(y1, . . . , y6) satisfies yi ≥ 2 and y4, y5, y6 ≤ 2t0 and
S′ = S(y′1, y

′
2, y

′
3, y4, y5, y6) satisfies y′i ≥ 2, for i = 1, . . . , 3. Assume that the edge

{0, v} passes through the face shared between S and S′, and that |v| < √
8, where

v is the vertex of S′ that is not on S. We claim that any pair S, S′ can be deformed
by moving one vertex at a time until S is deformed into S(2, 2, 2, 2t0, 2t0, 2t0) and
S′ is deformed into S(2, 2, 2, 2t0, 2t0, 2t0). Moreover, these deformations preserve
the constraints (including that {0, v} passes through the shared face), and are non-
increasing in |v|. From the existence of this deformation, it follows that the original
|v| satisfies

|v| ≥ E(S(2, 2, 2, 2t0, 2t0, 2t0), 2, 2, 2).

We produce the deformation in this case as follows. We define the pivot of a
vertex v with respect to two other vertices {v1, v2} as the circular motion of v held
at a fixed distance from v1 and v2, leaving all other vertices fixed. The axis of the
pivot is the line through the two fixed vertices. Each pivot of a vertex can move in
two directions. Let the vertices of S be {0, v1, v2, v3}, labeled so that |vi| = yi. Let
S′ = {v, v1, v2, v3}. We pivot v1 around the axis through 0 and v2. By choice of a
suitable direction for the pivot, v1 moves away from v and v3. Its distance to 0 and
v2 remains fixed. We continue with this circular motion until |v1 − v3| achieves its
upper bound or the segment {v1, v3} intersects the segment {0, v} (which threatens
the constraint that the segment {0, v} must pass through the common face). (We
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leave it as an exercise2 to check that the second possibility cannot occur because
of the edge length upper bounds on both diagonals of

√
8. That is, there does not

exist a convex planar quadrilateral with sides at least 2 and diagonals less than√
8.) Thus, |v1 − v3| attains its constrained upper bound 2t0. Similar pivots to v2

and v3 increase the lengths |v1 − v2|, |v2 − v3|, and |v3 − v1| to 2t0. Similarly, v
may be pivoted around the axis through v1 and v2 so as to decrease the distance to
v3 and 0 until the lower bound of 2 on |v − v3| is attained. Further pivots reduce
all remaining edge lengths to 2. In this way, we obtain a rigid figure realizing the
absolute lower bound of |v|. A calculation with explicit coordinates gives |v| > 2.75.

Because lower bounds are generally easily determined from a series of pivots
through arguments such as this one, we will state them without proof. We will state
that these bounds were obtained by geometric considerations, to indicate that the
bounds were obtained by the deformation arguments of this paragraph.

4.3 Incidence Relations

Lemma 4.15. Let v, v1, v2, v3, and v4 be distinct points in R3 with pairwise dis-
tances at least 2. Suppose that |vi − vj | ≤ 2t0 for i 6= j and {i, j} 6= {1, 4}. Then v
does not lie in the convex hull of {v1, v2, v3, v4}.

Proof. This lemma is proved in [Hal97a, Lemma 3.5].

Lemma 4.16. Let S be a simplex whose edges have length between 2 and 2
√

2.
Suppose that v has distance at least 2 from each of the vertices of S. Then v does
not lie in the convex hull of S.

Proof. Assume for a contradiction that v lies in the convex hull of S. Place a
unit sphere around v. The simplex S partitions the unit sphere into four spherical
triangles, where each triangle is the intersection of the unit sphere with the cone
over a face of S, centered at v. By the constraints on the lengths of edges, the
arclength of each edge of the spherical triangle is at most π/2. (π/2 is attained
when v has distance 2 to two of the vertices, and these two vertices have distance
2
√

2 between them.) A spherical triangle with edges of arclength at most π/2 has
area at most π/2. In fact, any such spherical triangle can be placed inside an octant
of the unit sphere, and each octant has area π/2. This partitions the sphere of area
4π into four regions of area at most π/2. This is absurd.

Corollary 4.17. No vertex of the packing is contained in the convex hull of a
quasi-regular tetrahedron or quarter (other than the vertices of the simplex).

Proof. The corollary is immediate.
2Compare Lemma 4.21.
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Definition 4.18. Let v1, v2, w1, w2, w3 ∈ Λ be distinct. We say that an edge
{v1, v2} passes through the triangle {w1, w2, w3} if the convex hull of {v1, v2} meets
some point of the convex hull of {w1, w2, w3} and if that point of intersection is not
any of the extreme points v1, v2, w1, w2, w3.

Lemma 4.19. An edge of length 2t0 or less cannot pass through a triangle whose
edges have lengths 2t0, 2t0, and

√
8 or less.

Proof. The distance between each pair of vertices is at least 2. Geometric consid-
erations show that the edge has length at least

E(S(2, 2, 2, 2t0, 2t0,
√

8), 2, 2, 2) > 2t0.

Definition 4.20. Let η(x, y, z) denote the circumradius of a triangle with edge-
lengths x, y, and z.

Lemma 4.21. Suppose that the circumradius of {v1, v2, v3} is less than
√

2. Then
an edge {w1, w2} ⊂ Λ of length at most

√
8 cannot pass through the face.

Proof. Assume for a contradiction that {w1, w2} passes through the triangle
{v1, v2, v3}. By geometric considerations, the minimal length for {w1, w2} occurs
when |wi − vj | = 2, for i = 1, 2, j = 1, 2, 3. This distance constraint places the cir-
cumscribing circle of {v1, v2, v3} on the sphere of radius 2 centered at w1 (resp. w2).
If r <

√
2 is the circumradius of {v1, v2, v3}, then for this extremal configuration

we have the contradiction

√
8 ≥ |w1 − w2| = 2

√
4− r2 >

√
8.

Lemma 4.22. If an edge of length at most
√

8 passes through a quasi-regular
triangle, then each of the two endpoints of the edge is at most 2.2 away from each
of the vertices of the triangle (see Figure 4.2).

Proof. Let the diagonal edge be {v0, v
′
0} and the vertices of the face be {v1, v2, v3}.

If |vi − v0| > 2.2 or |vi − v′0| > 2.2 for some i > 0, then geometric considerations
give the contradiction

|v0 − v′0| ≥ E(S(2, 2, 2, 2t0, 2t0, 2t0), 2, 2, 2.2) >
√

8.
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Figure 4.2. Frame (a) depicts two quasi-regular tetrahedra that share a
face. The same convex body may also be viewed as three quarters that share a
diagonal, as in Frame (b).

Lemma 4.23. Suppose S and S′ are quasi-regular tetrahedra that share a face.
Suppose that the edge e between the two vertices that are not shared has length at
most

√
8. Then the convex hull of S and S′ consists of three quarters with diagonal

e. No other quarter overlaps S or S′.

Proof. Suppose that S and S′ are adjacent quasi-regular tetrahedra with a common
face F . By Lemma 4.22, each of the six external faces of this pair of quasi-regular
tetrahedra has circumradius at most η(2.2, 2.2, 2t0) <

√
2. A diagonal of a quarter

cannot pass through a face of this size by Lemma 4.21. This implies that no other
quarter overlaps these quasi-regular tetrahedra.

Lemma 4.24. Suppose an edge {w1, w2} of length at most
√

8 passes through the
face formed by a diagonal {v1, v2} and one of its anchors. Then w1 and w2 are also
anchors of {v1, v2}.

Proof. This follows from the inequality

E(S(2, 2, 2,
√

8, 2t0, 2t0), 2, 2, 2t0) >
√

8

and geometric considerations.

Definition 4.25. Let Λ be a saturated packing. Assume that the coordinate system
is fixed in such a way that the origin is a vertex of the packing. The height of a
vertex is its distance from the origin.
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Definition 4.26. We say that a vertex is enclosed over a figure if it lies in the
interior of the cone at the origin generated by the figure.

Definition 4.27. An adjacent pair of quarters consists of two quarters sharing a
face along a common diagonal. The common vertex that does not lie on the diagonal
is called the base point of the adjacent pair. (When one of the quarters comes with
a marked distinguished vertex, we do not assume that this marked vertex coincides
with the base point of the pair.) The other four vertices are called the corners of
the configuration.

Definition 4.28. If the two corners, v and w, that do not lie on the diagonal
satisfy |w − v| < √

8, then the base point and four corners can be considered as an
adjacent pair in a second way, where {v, w} functions as the diagonal. In this case
we say that the original diagonal and the diagonal {v, w} are conflicting diagonals.

Definition 4.29. A quarter is said to be isolated if it is not part of an adjacent
pair. Two isolated quarters that overlap are said to form an isolated pair.

Lemma 4.30. Suppose that there exist four nonzero vertices v1, . . . , v4 of height at
most 2t0 (that is, |vi| ≤ 2t0) forming a skew quadrilateral. Suppose that the diago-
nals {v1, v3} and {v2, v4} have lengths between 2t0 and

√
8. Suppose the diagonals

{v1, v3} and {v2, v4} cross. Then the four vertices are the corners of an adjacent
pair of quarters with base point at the origin.

Proof. Set d1 = |v1− v3| and d2 = |v2− v4|. By hypothesis, d1 and d2 are at most√
8. If |v1 − v2| > 2t0, geometric considerations give the contradiction

max(d1, d2) ≥ E(S(2t0, 2, 2, 2t0,
√

8, 2t0), 2, 2, 2) >
√

8 ≥ max(d1, d2).

Thus, {0, v1, v2} is a quasi-regular triangle, as are {0, v2, v3}, {0, v3, v4}, and {0, v4, v1}
by symmetry.

Lemma 4.31. If, under the same hypotheses as Lemma 4.30, there is a vertex w of
height at most

√
8 enclosed over the adjacent pair of quarters, then {0, v1, . . . , v4, w}

is a quartered octahedron.

Proof. If the enclosed w lies over say {0, v1, v2, v3}, then |w − v1|, |w − v3| ≤ 2t0
(Lemma 4.24), where {v1, v3} is a diagonal. Similarly, the distance from w to the
other two corners is at most 2t0.

Lemma 4.32. Let v1 and v2 be anchors of {0, w} with 2t0 ≤ |w| ≤ √
8. If an edge

{v3, v4} passes through both faces, {0, w, v1} and {0, w, v2}, then |v3 − v4| >
√

8.

Proof. Suppose the figure exists with |v3 − v4| ≤
√

8. Label vertices so v3 lies on
the same side of the figure as v1. Contract {v3, v4} by moving v3 and v4 until {vi, u}
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has length 2, for u = 0, w, vi−2, and i = 3, 4. Pivot w away from v3 and v4 around
the axis {v1, v2} until |w| =

√
8. Contract {v3, v4} again. By stretching {v1, v2},

we obtain a square of edge two and vertices {0, v3, w, v4}. Short calculations based
on explicit formulas for the dihedral angle and its partial derivatives give

dih(S(
√

8, 2, y3, 2, y5, 2)) > 1.075, y3, y5 ∈ [2, 2t0], (4.1)

dih(S(
√

8, y2, y3, 2, y5, y6)) > 1, y2, y3, y5, y6 ∈ [2, 2t0]. (4.2)

Then

π ≥ dih(0, w, v3, v1) + dih(0, w, v1, v2) + dih(0, w, v2, v4) > 1.075 + 1 + 1.075 > π.

Therefore, the figure does not exist.

Lemma 4.33. Two vertices w, w′ of height at most
√

8 cannot be enclosed over a
triangle {v1, v2, v3} satisfying |v1 − v2| ≤

√
8, |v1 − v3| ≤ 2t0, and |v2 − v3| ≤ 2t0.

Proof. For a contradiction, assume the figure exists. The long edge {v1, v2} must
have length at least 2t0 by Lemma 4.22. This diagonal has anchors {0, v3, w, w′}.
Assume that the cyclic order of vertices around the line {v1, v2} is 0, v3, w, w′.
We see that {v1, w} is too short to pass through {0, v2, w

′}, and w is not inside
the simplex {0, v1, v2, w

′}. Thus, the projections of the edges {v2, w} and {0, w′}
to the unit sphere at v1 must intersect. It follows that {0, w′} passes through
{v1, v2, w}, or {v2, w} passes through {v1, 0, w′}. But {v2, w} is too short to pass
through {v1, 0, w′}. Thus, {0, w′} passes through both {v1, v2, w} and {v1, v2, v3}.
Lemma 4.32 gives the contradiction |w′| > √

8.

Lemma 4.34. Let v1, v2, v3 be anchors of {0, w}, where 2t0 ≤ |w| ≤ √
8, |v1−v3| ≤√

8, and the edge {v1, v3} passes through the face {0, w, v2}. Then min(|v1−v2|, |v2−
v3|) ≤ 2t0. Furthermore, if the minimum is 2t0, then |v1 − v2| = |v2 − v3| = 2t0.

Proof. Assume min ≥ 2t0. As in the proof of Lemma 4.32, we may assume that
(0, v1, w, v3) is a square. We may also assume, without loss of generality, that
|w − v2| = |v2| = 2t0. This forces |v2 − vi| = 2t0, for i = 1, 3. This is rigid, and is
the unique figure that satisfies the constraints. The lemma follows.

4.4 Overlap of Simplices
This section gives a proof of Theorem 4.9 (simplices in the Q-system do not overlap).
This is accomplished in a series of lemmas. The first of these treats quasi-regular
tetrahedra.
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Lemma 4.35. A quasi-regular tetrahedron does not overlap any other simplex in
the Q-system.

Proof. Edges of quasi-regular tetrahedra are too short to pass through the face of
another quasi-regular tetrahedron or quarter (Lemma 4.19). If a diagonal of a strict
quarter passes through the face of a quasi-regular tetrahedron, then Lemma 4.23
shows that the strict quarter is one of three joined along a common diagonal. This
is not one of the enumerated types of strict quarter in the Q-system.

Lemma 4.36. A quarter in the Q-system that is part of a quartered octahedron
does not overlap any other simplex in the Q-system.

Proof. By construction, the quarters that lie along a different diagonal of the
octahedron do not belong to the Q-system. Edges of length at most 2t0 are too short
to pass through an external face of the octahedron (Lemma 4.19). A diagonal of a
strict quarter cannot pass through an external face either, because of Lemma 4.22.

Lemma 4.37. Let Q be a strict quarter that is part of an adjacent pair. Assume
that Q is not part of a quartered octahedron. If Q belongs to the Q-system, then it
does not overlap any other simplex in the Q-system.

The proof of this lemma will give valuable details about how one strict quarter
overlaps another.

Proof. Fix the origin at the base point of an adjacent pair of quarters. We investi-
gate the local geometry when another quarter overlaps one of them. (This happens,
for example, when there is a conflicting diagonal in the sense of Definition 4.27.)

Label the base point of the pair of quarters v0, and the four corners v1, v2,
v3, v4, with {v1, v3} the common diagonal. Assume that |v1 − v3| <

√
8.

If two quarters overlap then a face on one of them overlaps a face on the other.
By Lemmas 4.33 and 4.32, we actually have that some edge (in fact the diagonal) of
each passes through a face of the other. This edge cannot exit through another face
by Lemma 4.32 and it cannot end inside the simplex by Corollary 4.17. Thus, it
must end at a vertex of the other simplex. We break the proof into cases according
to which vertex of the simplex it terminates at. In Case 1, the edge has the base
point as an endpoint. In Case 2, the edge has a corner as an endpoint.
Case 1. The edge {0, w} passes through the triangle {v1, v2, v3}, where {0, w} is a
diagonal of a strict quarter.

Lemma 4.24 implies that v1 and v3 are anchors of {0, w}. The only other
possible anchors of {0, w} are v2 or v4, for otherwise an edge of length at most 2t0
passes through a face formed by {0, w} and one of its anchors. If both v2 and v4

are anchors, then we have a quartered octahedron, which has been excluded by the
hypotheses of the lemma. Otherwise, {0, w} has at most three anchors: v1, v3, and
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either v2 or v4. In fact, it must have exactly three anchors, for otherwise there is
no quarter along the edge {0, w}. So there are exactly two quarters along the edge
{0, w}. There are at least four anchors along {v1, v3}: 0, w, v2, and v4. The quarters
along the diagonal {v1, v3} lie in the Q-system. (None of these quarters is isolated.)
The other two quarters, along the diagonal {0, w}, are not in the Q-system. They
form an adjacent pair of quarters (with base point v4 or v2) that has conflicting
diagonals, {0, w} and {v1, v3}, of length at most

√
8.

Case 2. {v2, v4} is a diagonal of length less than
√

8 (conflicting with {v1, v3}).
(Note that if an edge of a quarter passes through the shared face of an adjacent

pair of quarters, then that edge must be {v2, v4}, so that Case 1 and Case 2 are
exhaustive.) The two diagonals {v1, v3} and {v2, v4} do not overlap. By symmetry,
we may assume that {v2, v4} passes through the face {0, v1, v3}. Assume (for a
contradiction) that both diagonals have an anchor other than 0 and the corners
vi. Let the anchor of {v2, v4} be denoted v24 and that of {v1, v3} be v13. Assume
the figure is not a quartered octahedron, so that v13 6= v24. By Lemma 4.19, it is
impossible to draw the edges {v1, v13} and {v13, v3} between v1 and v3. In fact, if
the edges pass outside the quadrilateral {0, v2, v24, v4}, one of the edges of length at
most 2t0 (that is, {0, v2}, {v2, v24}, {v24, v4}, or {v4, 0}) violates the lemma applied
to the face {v1, v3, v13}. If they pass inside the quadrilateral, one of the edges
{v1, v13}, {v13, v3} violates the lemma applied to the face {0, v2, v4} or {v24, v2, v4}.
We conclude that at most one of the two diagonals has additional anchors.

If neither of the two diagonals has more than three anchors, we have nothing
more than two overlapping adjacent pairs of quarters along conflicting diagonals.
The two quarters along the lower edge {v2, v4} lie in the Q-system. Another way of
expressing this “lower-edge” condition is to require that the two adjacent quarters
Q1 and Q2 satisfy dih(Q1) + dih(Q2) > π, when the dihedral angles are measured
along the diagonal. The pair (Q′1, Q

′
2) along the upper edge will have dih(Q′

1) +
dih(Q′

2) < π.
If there is a diagonal with more than three anchors, the quarters along the

diagonal with more than three anchors lie in the Q-system. Any additional quarters
along the diagonal {v2, v4} belong to an adjacent pair. Any additional quarters
along the diagonal {v1, v3} cannot intersect the adjacent pair along {v2, v4}. Thus,
every quarter intersecting an adjacent pair also belongs to an adjacent pair.

In both possibilities of case 2, the two quarters left out of the Q-system cor-
respond to a conflicting diagonal.

Remark 4.38. We have seen in the proof of Lemma 4.37 that if a strict quarter
Q overlaps a strict quarter that is part of an adjacent pair, then Q is also part of
an adjacent pair. Thus, if an isolated strict quarter overlaps another strict quarter,
then both strict quarters are necessarily isolated.

Lemma 4.39. If an isolated strict quarter Q overlaps another strict quarter, then
the diagonal of Q has exactly three anchors.

The proof of the lemma will give detailed information about the geometri-
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cal configuration that is obtained when an isolated quarter overlaps another strict
quarter.

Proof. Assume that there are two strict quarters Q1 and Q2 that overlap. Following
Remark 4.38, assume that neither is adjacent to another quarter. Let {0, u} and
{v1, v2} be the diagonals of Q1 and Q2. Suppose the diagonal {v1, v2} passes through
a face {0, u, w} of Q1. By Lemma 4.24, v1 and v2 are anchors of {0, u}. Again,
either the length of {v1, w} is at most 2t0 or the length of {v2, w} is at most 2t0,
say {w, v2} (by Lemma 4.34). It follows that Q1 = {0, u, w, v2} and |v1 −w| ≥ 2t0.
(Q1 is not adjacent to another quarter.) So w is not an anchor of {v1, v2}.

Let {v1, v2, w
′} be a face of Q2 with w′ 6= 0, u. If {v1, w

′, v2} does not link
{0, u, w}, then {v1, w

′} or {v2, w
′} passes through the face {0, u, w}, which is impos-

sible by Lemma 4.19. So {v1, v2, w
′} links {0, u, w} and an edge of {0, u, w} passes

through the face {v1, v2, w
′}. It is not the edge {u,w} or {0, w}, for they are too

short by Lemma 4.19. So {0, u} passes through {w′, v1, v2}. The only anchors of
{v1, v2} (other than w′) are u and 0 (by Lemma 4.32). Either {u, w′} or {w′, 0}
has length at most 2t0 by Lemma 4.34, but not both, because this would create
a quarter adjacent to Q2. By symmetry, Q2 = {v1, v2, w

′, 0} and the length of
{u, w′} is greater than 2t0. By symmetry, {0, u} has no other anchors either. This
determines the local geometry when there are two quarters that intersect without
belonging to an adjacent pair of quarters (see Figure 4.3). It follows that the two
quarters form an isolated pair.

Q

Q1

2

u

v

w

v

0

w�

12

Figure 4.3. An isolated pair. The isolated pair consists of two simplices
Q1 = {0, u, w, v2} and Q2 = {0, w′, v1, v2}. The six extremal vertices form an
octahedron. This is not a quartered octahedron because the edges {u,w′} and {w, v1}
have length greater than 2t0.

Isolated quarters that overlap another strict quarter do not belong to the
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Q-system.

We conclude with the proof of the main theorem of the section.

Proof. (Theorem 4.9) The rules defining the Q-system specify a uniquely deter-
mined set of simplices. The proof that they do not overlap is established by the
preceding series of lemmas. Lemma 4.35 shows that quasi-regular tetrahedra do
not overlap other simplices in the Q-system. Lemma 4.36 shows that the quarters
in quartered octahedra are well-behaved. Lemma 4.37 shows that other quarters in
adjacent pairs do not overlap other simplices in the Q-system. Finally, we treat iso-
lated quarters in Lemma 4.39. These cases cover all possibilities since every simplex
in the Q-system is a quasi-regular tetrahedron or strict quarter, and every strict
quarter is either part of an adjacent pair or isolated.
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Section 5

V -cells

In the proof of the Kepler conjecture we make use of two quite different structures
in space. The first structure is the Q-system, which was defined in the previous
section. It is inspired by the Delaunay decomposition of space and consists of a
nonoverlapping collection of simplices that have their vertices at the points of Λ.
Historically, the construction of the nonoverlapping simplices of the Q-system grew
out of a detailed investigation of the Delaunay decomposition.

The second structure is inspired by the Voronoi decomposition of space. In
the Voronoi decomposition, the vertices of Λ are the centers of the cells. It is well
known that the Voronoi decomposition and Delaunay decomposition are dual to
one another. Our modification of Voronoi cells will be called V -cells.

In general, it is not true that a Delaunay simplex is contained in the union of
the Voronoi cells at its four vertices. This incompatibility of structures adds a few
complications to Rogers’s elegant proof of a sphere packing bound [Rog58]. In this
section, we show that V -cells are compatible with the Q-system in the sense that
each simplex in the Q-system is contained in the union of the V -cells at its four
vertices (Lemma 5.28). A second compatibility result between these two structures
is proved in Lemma 5.29.

The purpose of this section is to define V -cells and to prove the compatibility
results just mentioned. In the proof of the Kepler conjecture it will be important
to keep both structures (the Q-system and the V -cells) continually at hand. We
will frequently jump back and forth between these dual descriptions of space in the
course of the proof. In Section 6, we define a geometric object (called the decompo-
sition star) around a vertex that encodes both structures. The decomposition star
will become our primary object of analysis.

5.1 V -Cells

Definition 5.1. The Voronoi cell Ω(v) around a vertex v ∈ Λ is the set of points
closer to v than to any other vertex.

57
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58 Section 5. V -cells

Definition 5.2. We construct a set of triangles B in the packing. The triangles
in this set will be called barriers. A triangle {v1, v2, v3} with vertices in the packing
belongs to B if and only if one or more of the following properties hold.

1. The triangle is a quasi-regular, or

2. The triangle is a face of a simplex in the Q-system.

Lemma 5.3. No two barriers overlap; that is, no two open triangular regions of B
intersect.

Proof. If there is overlap, an edge {w1, w2} of one triangle passes through the
interior of another {v1, v2, v3}. Since |w1−w2| <

√
8, we have that the circumradius

of {v1, v2, v3} is at least
√

2 by Lemma 4.21 and that the length |w1−w2| is greater
than 2t0 by Lemma 4.19. If the edge {w1, w2} belongs to a simplex in the Q-system,
the simplex must be a strict quarter. If {v1, v2, v3} has edge lengths at most 2t0,
then Lemma 4.22 implies that |wi − vj | ≤ 2.2 for i = 1, 2 and j = 1, 2, 3. The
simplices {v1, v2, v3, w1} and {v1, v2, v3, w2} form a pair of quasi-regular tetrahedra.
We conclude that {v1, v2, v3} is a face of a quarter in the Q-system. Since, the
simplices in the Q-system do not overlap, the edge {w1, w2} does not belong to a
simplex in the Q-system. The result follows.

Definition 5.4. We say that a point y is obstructed at x ∈ R3 if the line segment
from x to y passes through the interior of a triangular region in B. Otherwise, y is
unobstructed at x. The ‘obstruction’ relation between x and y is clearly symmetric.

For each w ∈ Λ, let Iw be the cube of side 4, with edges parallel to the
coordinate axes, centered at w. Thus,

I0 = {(y1, y2, y3) : |yi| ≤ 2, i = 1, 2, 3}.

Iw has diameter 4
√

3 and Iw ⊂ B(w, 2
√

3). Let R3 ′ be the subset of x ∈ R3 for
which x is not equidistant from any two v, w ∈ Λ(x, 2

√
3) = B(x, 2

√
3) ∩ Λ. The

subset R3 ′ is dense in R3, and is obtained locally around a point x by removing
finitely many planes (perpendicular bisectors of {v, w}, for v, w ∈ B(x, 2

√
3)). For

x ∈ R3 ′, the vertices of Λ(x, 2
√

3) can be strictly ordered by their distance to x.

Definition 5.5. Let Λ be a saturated packing. We define a map φ : R3 ′ → Λ such
that the image of x lies in Λ(x, 2

√
3). If x ∈ R3 ′, let

Λx = {w ∈ Λ : x ∈ Iw and w is unobstructed at x}.

If Λx = ∅, then let φ(x) be the vertex of Λ(x, 2
√

3) closest to x. (Since Λ is saturated,
Λ(x, 2

√
3) is nonempty.) If Λx is nonempty, then let φ(x) be the vertex of Λx closest

to x.
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Definition 5.6. For v ∈ Λ, let VC(v) be defined as the closure of φ−1(v) in R3.
We call it the V -cell at v.

Remark 5.7. In a saturated packing, the Voronoi cell at v will be contained in a ball
centered at v of radius 2. Hence Iv contains the Voronoi cell at v. By construction,
the V -cell at v is confined to the cube Iv. The cubes Iv were introduced into the
definition of φ with the express purpose of forcing V -cells to be reasonably small.
Had the cubes been omitted from the construction, we would have been drawn to
frivolous questions such as whether the closest unobstructed vertex to some x ∈ R3

might be located in a remote region of the packing.

The set of V -cells is our promised decomposition of space.

Lemma 5.8. V -cells cover space. The interiors of distinct V -cells are disjoint.
Each V -cell is the closure of its interior.

Proof. The sets φ−1(v), for v ∈ Λ, cover R3 ′. Their closures cover R3. The
other statements in the lemma will follow from the fact that a V -cell is a union of
finitely many nonoverlapping, closed, convex polyhedra. This is proved below in
Lemma 5.9.

Lemma 5.9. Each V -cell is a finite union of nonoverlapping convex polyhedra.

Proof. During this proof, we ignore sets of measure zero in R3 such as finite unions
of planes. Thus, we present the proof as if each point belongs to exactly one Voronoi
cell, although this fails on an inconsequential set of measure zero in R3.

It is enough to show that if E ⊂ R3 is an arbitrary unit cube, then the V -cell
decomposition of space within E consists of finite unions of nonoverlapping convex
polyhedra. Let XE be the set of w ∈ Λ such that Iw meets E. Included in XE is
the set of w whose Voronoi cells cover E. The rules for V -cells assign x ∈ E to the
V -cell centered at some w ∈ XE .

Let d be an upper bound on the distance between a vertex in XE and a point
of E. By the pythagorean theorem, we may take d = (1 + 2)

√
3. Let BE be the set

of barriers with a vertex at most distance d from some point in E.
For each pair {u, v} of distinct vertices of XE , draw the perpendicular bisecting

plane of {u, v}. Draw the plane through each barrier in BE . Draw the plane through
each triple {u, v, w}, where u ∈ XE and {v, w} are two of the vertices of a barrier
in BE . These finitely many planes partition E into finitely many convex polyhedra.
The ranking of distances from x to the points of XE is constant for all x in the
interior of any fixed polyhedron. The set of w ∈ XE that are obstructed at x is
constant on the interior of any fixed polyhedron. Thus, by the rules of construction
of V -cells, for each of these convex polyhedra, there is a V -cell that contains it. The
result follows.
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Remark 5.10. A number of readers of the first version of this manuscript pre-
sumed that V -cells were necessarily star-convex, in large part because of the inapt
name ‘decomposition star’ for a closely related object. The geometry of a V -cell is
significantly more complex than that of a Voronoi cell. Nowhere do we make a gen-
eral claim that all V -cells are convex, star-convex, or even connected. In Figure 5.1,
we depict a hypothetical case in which the V -cell at v is potentially disconnected.
(This Figure is merely hypothetical, because I have not checked whether it is possi-
ble to satisfy all the metric constraints needed for it to exist.) The shaded triangle
represents a barrier. The point x is obstructed by the shaded barrier at w. If x and
y lie closer to w than to v, if v is the closest unobstructed vertex to x, if w is the
closest unobstructed vertex to y, if x, y, and z are all unobstructed at v, and if z
lies closer to v than to w, then it follows that x and z lie in the V -cell at v, but that
the intervening point y does not. Thus, if all of these conditions are satisfied, the
V -cell at v is not star-shaped at v.

x

w

v

y

z

Figure 5.1. A hypothetical arrangement that leads to a nonconvex V -cell at v.

Remark 5.11. Although we have not made a detailed investigation of the subtleties
of the geometry of V -cells, we face a practical need to give explicit lower bounds on
the volume of V -cells. Possible geometric pathologies are avoided in the proof by the
use of truncation. (To obtain lower bounds on the volume of V -cells, parts of the
V -cell can be discarded.) For example, Lemma 5.23 shows that inside B(v, t0), the
V -cell and the Voronoi cell are equal.

In general, truncation will discard points x of V -cells where Λx = ∅. These
estimates also discard points of the V -cell that are not part of a star-shaped subset
of the V -cell (to be defined later).

Truncation will be justified later in Lemma 7.18, which shows that the term
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involving the volume of V -cells in the scoring function σ has a negative coefficient,
so that by decreasing the volume through truncation, we obtain an upper bound on
the function σ.

5.2 Orientation
We introduce the concept of the orientation of a simplex and study its basic prop-
erties. The orientation of a simplex will be used to establish various compatibilities
between V -cells.

Definition 5.12. We say that the orientation of the face of a simplex is negative
if the plane through that face separates the circumcenter of the simplex from the
vertex of the simplex that does not lie on the face. The orientation is positive if the
circumcenter and the vertex lie on the same side of the plane. The orientation is
zero if the circumcenter lies in the plane.

Lemma 5.13. At most one face of a quarter Q has negative orientation.

Proof. The proof applies to any simplex with nonobtuse faces. (All faces of a
quarter are acute.) Fix an edge and project Q orthogonally to a triangle in a plane
perpendicular to that edge. The faces F1 and F2 of Q along the edge project to
edges e1 and e2 of the triangular projection of Q. The line equidistant from the
three vertices of Fi projects to a line perpendicular to ei, for i = 1, 2. These two
perpendiculars intersect at the projection of the circumcenter of Q. If the faces of Q
are nonobtuse, the perpendiculars pass through the segments e1 and e2 respectively;
and the two faces F1 and F2 cannot both be negatively oriented.

Definition 5.14. Define the polynomial χ by

χ(x1, . . . , x6) = x1x4x5 + x1x6x4 + x2x6x5 + x2x4x5 + x5x3x6

+x3x4x6 − 2x5x6x4 − x1x
2
4 − x2x

2
5 − x3x

2
6.

In applications of χ, we have xi = y2
i , where (y1, . . . , y6) are the lengths of the

edges of a simplex.

Lemma 5.15. A simplex S(y1, . . . , y6) has negative orientation along the face
indexed by (4, 5, 6) if and only if χ(y2

1 , . . . , y2
6) < 0.

Proof. (This lemma is asserted without proof in [Hal97a].) Let xi = y2
i . Represent

the simplex as S = {0, v1, v2, v3}, where {0, vi} is the ith edge. Write n = (v1 −
v3)× (v2 − v3), a normal to the plane {v1, v2, v3}. Let c be the circumcenter of S.
We can solve for a unique t ∈ R such that c + t n lies in the plane {v1, v2, v3}. The
sign of t gives the orientation of the face {v1, v2, v3}. We find by direct calculation
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that

t =
χ(x1, . . . , x6)√

∆(x1, . . . , x6)u(x4, x5, x6)
,

where the terms ∆ and u in the denominator are positive whenever xi = y2
i , where

(y1, . . . , y6) are the lengths of edges of a simplex (see [Hal97a, Sec. 8.1]). Thus, t
and χ have the same sign. The result follows.

Lemma 5.16. Let F be a set of three vertices. Assume that one edge between
pairs of vertices has length between 2t0 and

√
8 and that the other two edges have

length at most 2t0. Let v be any vertex not on Q. If the simplex (F, v) has negative
orientation along F , then it is a quarter.

Proof. The orientation of F is determined by the sign of the function χ (see
Lemma 5.15). The face F is an acute or right triangle. Note that ∂χ/∂x1 =
x4(−x4 + x5 + x6). By the law of cosines, −x4 + x5 + x6 ≥ 0 for an acute triangle.
Thus, we have monotonicity in the variable x1, and the same is true of x2, and x3.
Also, χ is quadratic with negative leading coefficient in each of the variables x4,
x5, x6. Thus, to check positivity, when any of the lengths is greater than 2t0, it is
enough to evaluate

χ(22, 22, 4t20, x
2, y2, z2), χ(22, 4t20, 2

2, x2, y2, z2), χ(4t20, 2
2, 22, x2, y2, z2),

for x ∈ [2, 2t0], y ∈ [2, t0], and z ∈ [2t0,
√

8], and verify that these values are
nonnegative. (The minimum, which must be attained at a corner of the domain, is
0.)

Lemma 5.17. Let {v1, v2, v3} be a quasi-regular triangle. Let v be any other vertex.
If the simplex S = {v, v1, v2, v3} has negative orientation along {v1, v2, v3}, then S
is a quasi-regular tetrahedron and |v − vi| < 2t0.

Proof. The proof is similar to the proof of Lemma 5.16. It comes down to checking
that

χ(22, 22, 4t20, x
2, y2, z2) > 0,

for x, y, z ∈ [2, 2t0].

Lemma 5.18. If a face of a simplex has circumradius less than
√

2, then the
orientation is positive along that face.

Proof. If the face has circumradius less than
√

2, by monotonicity

χ(y2
1 , . . . , y2

6) ≥ χ(4, 4, 4, y2
4 , y2

5 , y2
6) = 2y2

4y2
5y2

6(2/η(y4, y5, y6)2 − 1) > 0.

(Here yi are the edge-lengths of the simplex.)
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5.3 Interaction of V -cells with the Q-system
We study the structure of one V -cell, which we take to be the V -cell at the origin
v = 0. Let Q be the set of simplices in the Q-system. For v ∈ Λ, let Qv be the
subset of those with a vertex at v.

Lemma 5.19. If x lies in the (open) Voronoi cell at the origin, but not in the
V -cell at the origin, then there exists a simplex Q ∈ Q0, such that x lies in the cone
(at 0) over Q. Moreover, x does not lie in the interior of Q.

Proof. If x lies in the open Voronoi cell at the origin, then the segment {t x : 0 ≤
t ≤ 1} lies in the Voronoi cell as well. By the definition of V -cell, there is a barrier
{v1, v2, v3} that the segment passes through. If the simplex Q = {0, v1, v2, v3}
were to have positive orientation with respect to the face {v1, v2, v3}, then the
circumcenter of {0, v1, v2, v3} would lie on the same side of the plane {v1, v2, v3} as
0, forcing the intersection of the Voronoi cell with the cone over Q to lie in this same
half space. But, by assumption, x is a point of the Voronoi cell in the opposing half
space. Hence, the simplex Q has negative orientation along {v1, v2, v3}.

By construction, the barriers are acute or right triangles. The function χ
(which gives the sign of the orientations of faces) is monotonic in x1, x2, x3 when
these come from simplices (see the proof of Lemma 5.16.) We consider the implica-
tions of negative orientation for each kind of barrier. If the barrier is a quasi-regular
triangle, then Lemma 5.17 gives that Q is a quasi-regular tetrahedron when χ < 0.
If the barrier is a face of a flat quarter in the Q-system, then Lemma 5.16 gives that
Q is a flat-quarter in the Q-system as well. Hence Q ∈ Q0.

The rest is clear.

Lemma 5.20. If x lies in the open ball of radius
√

2 at the origin, and if x is not
in the closed cone over any simplex in Q0, then the origin is unobstructed at x.

Proof. Assume for a contradiction that the origin is obstructed by the barrier
T = {u, v, w} at x, and {0, u, v, w} is not in Q0. We show that every point in the
convex hull of T has distance at least

√
2 from the origin. Since T is a barrier, each

edge {u, v} has length at most
√

8. Moreover, the heights |u| and |v| are at least 2,
so that every point along each edge of T has distance at least

√
2 from the origin.

Suppose that the closest point to the origin in the convex hull of T is an interior
point p. Reflect the origin through the plane of T to get w′. The assumptions imply
that the edge {0, w′} passes through the barrier T and has length less than

√
8. If

the barrier T is a quasi-regular triangle, then Lemma 4.22 implies that {0, u, v, w}
is a quasi-regular tetrahedron in Q0, which is contrary to the hypothesis. Hence T
is the face of a quarter in Q0. By Lemma 4.34, one of the simplices {0, u, v, w} or
{w′, u, v, w} is a quarter. Since these are mirror images, both are quarters. Hence
{0, u, v, w} is a quarter and it is in the Q-system by Lemma 4.10. This contradicts
the hypothesis of the lemma.
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The following corollary is a V -cell analogue of a standard fact about Voronoi
cells.

Corollary 5.21. The V -cell at the origin contains the open unit ball at the origin.

Proof. Let x lie in the open unit ball at the origin. If it is not in the cone over any
simplex, then the origin is unobstructed by the lemma, and the origin is the closest
point of Λ. Hence x ∈ VC(0). A point in the cone over a simplex {0, v1, v2, v3} ∈ Q0

lies in VC(0) if and only if it lies in the set bounded by the perpendicular bisectors
of vi and the plane through {v1, v2, v3}. The bisectors pose no problem. It is
elementary to check that every point of the convex hull of {v1, v2, v3} has distance at
least 1 from the origin. (Apply the reflection principle as in the proof of Lemma 5.20
and invoke Lemma 4.19.)

Lemma 5.22. If x ∈ B(v, t0), then x is unobstructed at v.

Proof. For a contradiction, supposed that the barrier T obstructs x from the v.
As in the proof of Lemma 5.20, we find that every edge of T has distance at least√

2 from the v. We may assume that the point of T that is closest to the origin is
an interior point. Let w be the reflection of v through T . By Lemma 4.19, we have
|v − w| > 2t0. This implies that every point of T has distance at least t0 from v.
Thus T cannot obstruct x ∈ B(0, t0) from v.

Lemma 5.23. Inside the ball of radius t0 at the origin, the V -cell and Voronoi cell
coincide:

B(0, t0) ∩VC(0) = B(0, t0) ∩ Ω(0).

Proof. Let x ∈ B(0, t0) ∩ VC(0) ∩ Ω(v), where v 6= 0. By Lemma 5.22, the
origin is unobstructed at x. Thus, |x − v| ≤ |x| ≤ t0. By Lemma 5.22 again, v is
unobstructed at x, so that x ∈ VC(v), contrary to the assumption x ∈ VC(0). Thus
B(0, t0) ∩ VC(0) ⊂ Ω(0). Similarly, if x ∈ B(0, t0) ∩ Ω(0), then x is unobstructed
at the origin, and x ∈ VC(0).

Definition 5.24. For every pair of vertices v1, v2 such that {0, v1, v2} is a quasi-
regular triangle, draw a geodesic arc on the unit sphere with endpoints at the radial
projections of v1 and v2. These arcs break the unit sphere into regions called stan-
dard regions, as follows. Take the complement of the union of arcs inside the unit
sphere. The closure of a connected component of this complement is a standard re-
gion. We say that the standard region is triangular if it is bounded by three geodesic
arcs, and say that it is non-triangular otherwise.

Lemma 5.25. Let v1, v2, v3, and v4 be distinct vertices such that |vi| ≤ 2t0 for
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i = 1, 2, 3, 4 and |v1 − v3|, |v2 − v4| ≤ 2t0. Then the edges {v1, v3} and {v2, v4} do
not cross. In particular, the arcs of Definition 5.24 do not meet except at endpoints.

Proof. Exchanging (1, 3) with (2, 4) if necessary, we may assume for a contradiction
that the edge {v1, v3} passes through the face {0, v2, v4}. Geometric considerations
lead immediately to a contradiction

2t0 < E(2, 2, 2, 2t0, 2t0, 2t0, 2, 2, 2) ≤ |v1 − v3| ≤ 2t0.

Lemma 5.26. Each simplex in the Q-system with a vertex at the origin lies entirely
in the closed cone over some standard region R.

Proof. Assume for a contradiction that Q = {0, v1, v2, v3} with v1 in the open cone
over R1 and with v2 in the open cone over R2. Then {0, v1, v2} and {0, w1, w2} (a
wall between R1 and R2) overlap; this is contrary to Lemma 5.3.

Remark 5.27. The next two lemmas help to determine which V -cell a given point
x belongs to. If x lies in the open cone over a simplex Q0 in Q, then Lemma 5.28
describes the V -cell decomposition inside Q; beyond Q the origin is obstructed by a
face of Q, so that such x do not lie in the V -cell at 0. If x does not lie in the open
cone over a simplex in Q, but lies in the open cone over a standard region R, then
Lemma 5.29 describes the V -cell. It states in particular, that for unobstructed x, it
can be determined whether x belongs to the V -cell at the origin by considering only
the vertices w that lie in the closed cone over R (the standard region containing the
radial projection of x). In this sense, the intersection of a V -cell with the open cone
over R is local to the cone over R.

Lemma 5.28. If x lies in the interior of a simplex Q ∈ Q, and if it does not lie on
the perpendicular bisector of any edge of Q, then it lies in the V -cell of the closest
vertex of Q.

Proof. The segment to any other vertex v crosses a face of the simplex. Such
faces are barriers so that v is obstructed at x. Thus, the vertices of Q are the only
vertices that are not obstructed at x.

Let B′0 be the set of triangles T such that at least one of the following holds:

• T is a barrier at the origin, or

• T = {0, v, w} consists of a diagonal of a quarter in the Q-system together with
one of its anchors.

Lemma 5.29 (Decoupling Lemma). Let x ∈ I0, the cube of side 4 centered
at the origin parallel to coordinate axes. Assume that the closed segment {x,w}
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intersects the closed 2-dimensional cone with center 0 over F = {0, v1, v2}, where
F ∈ B′0. Assume that the origin is not obstructed at x. Assume that x is closer to
the origin than to both v1 and v2. Then x 6∈ VC(w).

Remark 5.30. The Decoupling Lemma is a crucial result. It permits estimates of
the scoring function in Section 7 to be made separately for each standard region.
The estimates for separate standard regions are far easier to come by than estimates
for the score of the full decomposition star. Eventually, the separate estimates for
each standard will be reassembled with linear programming techniques in Section 23.

Proof. (This proof is a minor adaptation of [Hal97b, Lemma 2.2].) Assume for a
contradiction that x lies in VC(w). In particular, we assume that w is not obstructed
at x. Since the origin is not obstructed at x, w must be closer to x than x is to the
origin: x · w ≥ w · w/2. The line segment from x to w intersects the closed cone
C(F ) of the triangle F = {0, v1, v2}.

Consider the set X containing x and bounded by the planes H1 through
{0, v1, w}, H2 through {0, v2, w}, H3 through {0, v1, v2}, H4 = {x : x·v1 = v1 ·v1/2},
and H5 = {x : x · v2 = v2 · v2/2}. The planes H4 and H5 contain the faces of the
Voronoi cell at 0 defined by the vertices v1 and v2. The plane H3 contains the
triangle F . The planes H1 and H2 bound the set containing points, such as x, that
can be connected to w by a segment that passes through C(F ).

Let P = {x : x · w > w · w/2}. The choice of w implies that X ∩ P is
nonempty. We leave it as an exercise to check that X ∩ P is bounded. If the
intersection of a bounded polyhedron with a half-space is nonempty, then some
vertex of the polyhedron lies in the half-space. Thus, some vertex of X lies in P .

We claim that the vertex of X lying in P cannot lie on H1. To see this,
pick coordinates (x1, x2) on the plane H1 with origin v0 = 0 so that v1 = (0, z)
(with z > 0) and X ∩H1 ⊂ X ′ := {(x1, x2) : x1 ≥ 0, x2 ≤ z/2}. See Figure 5.2.
If the quadrant X ′ meets P , then the point v1/2 lies in P . This is impossible,
because every point between 0 and v1 lies in the Voronoi cell at 0 or v1, and not
in the Voronoi cell of w. (Recall that for every vertex v1 on a barrier at the origin,
|v1| <

√
8.)

Similarly, the vertex of X in P cannot lie on H2. Thus, the vertex must be the
unique vertex of X that is not on H1 or H2, namely, the point of intersection of H3,
H4, and H5. This point is the circumcenter c of the face F . We conclude that the
polyhedron X0 := X ∩ P contains c. Since c ∈ X0, the simplex S = {w, v1, v2, 0}
has nonpositive orientation along the face {0, v1, v2}. By Lemmas 5.16 and 5.17,
the simplex S lies in Q0.

Let c be the circumcenter of the triangle F = {0, v1, v2} and let c2 be the cir-
cumcenter of the simplex {0, v1, v2, w}. Let C be the convex hull of {0, v1/2, v2/2, c, c2}.
The set C contains the set of points separated from w by the half-plane H3, closer
to w than to 0, and closer to 0 than both v1 and v2. The point x lies in this convex
hull C. Since this convex hull is nonempty, the simplex S has negative orientation
along the face {0, v1, v2}.

By assumption, w is not obstructed at x. Hence the segment from w to
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P

X�

0

w

v1

Figure 5.2. The perpendicular bisector to {0, w} (dashed line) cannot meet
the quadrant X ′ (shaded).

x does not pass through the face {0, v1, v2}. The set C ′ of points y ∈ C such
that the segment from w to y does not pass through the face {0, v1, v2} is thus
nonempty. The set C ′ must include the extreme point c2 of C. This means that the
plane {w, v1, v2} separates c2 from the origin, so that the simplex S has negative
orientation also along the face {w, v1, v2}. This contradicts Lemma 5.13.

We draw out a simple consequence of the proof. Let F = {0, v1, v2} with edges
of length between 2 and

√
8. Let S = {0, w, v1, v2}, and assume that S has negative

orientation along F . Let c be the circumcenter of the triangle F = {0, v1, v2} and
let c2 be the circumcenter of the simplex {0, v1, v2, w}. Let C be the convex hull of
{0, v1/2, v2/2, c, c2}. The set C contains the set of points separated from w by the
half-plane H3, closer to w than to 0, and closer to 0 than both v1 and v2. Let x lie
in this convex hull C.

Lemma 5.31. In this context, w is obstructed at x.

Proof. This is what the final paragraph of the previous proof proves by contradic-
tion.
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Section 6

Decomposition Stars

This section constructs a topological space DS such that each point of DS encodes
the geometrical data surrounding a vertex in the packing. The points in this topo-
logical space are called decomposition stars. A decomposition star encodes all of the
local geometrical information that will be needed in the local analysis of a sphere
packing. These geometrical data are sufficiently detailed that it is possible to re-
cover the V -cell at v ∈ Λ from the corresponding point in the topological space.
It is also possible to recover the simplices in the Q-system that have a vertex at
v ∈ Λ. Thus, a decomposition star has a dual nature that encompasses both the
Voronoi-like V -cell and the Delaunay-like simplices in the Q-system. By encoding
both structures, the decomposition star becomes our primary geometric object of
analysis.

It can be helpful at times to visualize the decomposition star as a polyhedral
object formed by the union of the simplices at v in the Q-system with the V -cell
at v ∈ Λ. Although such descriptions can be helpful to the intuition, the formal
definition of a decomposition star is rather more combinatorial, expressed as a series
of indexing sets that hold the data that are needed to reconstruct the geometry.
The formal description of the decomposition star is preferred because it encodes
more information than the polyhedral object.

The term “decomposition star” is derived from the earlier term “Delaunay
star” that was used in [Hal93] as the name for the union of Delaunay simplices that
shared a common vertex. Delaunay stars are star-convex. It is perhaps unfortunate
that the term “star” has been retained, because (the geometric realization of) a
decomposition star need not be star convex. In fact, Remark 5.10 suggests that
V -cells can be rather poorly behaved in this respect.

6.1 Indexing Sets
We are ready for the formal description of decomposition stars.

Let ω = {0, 1, 2 . . .}. Pick a bijection b : ω → Λ and use this bijection to index

69
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70 Section 6. Decomposition Stars

the vertices b(i) = vi ∈ Λ, i = 0, 1, 2 . . .. Define the following indexing sets.

• Let I1 = ω.

• Let I2 be the set of unordered pairs of indices {i, j} such that |vi−vj | ≤ 2t0 =
2.51.

• Let I3 be the set of unordered tuples of indices {i, j, k, `} such that the corre-
sponding simplex is a strict quarter.

• Let I4 be the set of unordered tuples {i, j, k, `} of indices such that the simplex
{vi, vj , vk, v`} is in the Q-system.

• Let I5 be the set of unordered triples {i, j, k} of indices such that vi is an
anchor of a diagonal {vj , vk} of a strict quarter in the Q-system.

• Let I6 be the set of unordered pairs {i, j} of indices such that the edge {vi, vj}
has length in the open interval (2t0,

√
8). (This set includes all such pairs,

whether or not they are attached to the diagonal of a strict quarter.)

• Let I7 be the set of unordered triples {i, j, k} of indices such that the tri-
angle {vi, vj , vk} is a face of a simplex in the Q-system and such that the
circumradius is less than

√
2.

• Let I8 be the set of unordered quadruples {i, j, k, `} of indices such that the
corresponding simplex {vi, vj , vk, v`} is a quasi-regular tetrahedron with cir-
cumradius less than 1.41.

The data are highly redundant, because some of the indexing sets can be
derived from others. But there is no need to strive for a minimal description of the
data.

Set d0 = 2
√

2 + 4
√

3. We recall that Λ(v, d0) = {w ∈ Λ : |w − v| ≤ d0}. Let

T ′ = {i : vi ∈ Λ(v, d0)}.

It is the indexing set for a neighborhood of v.
Fix a vertex v = va ∈ Λ. Let I ′0 = {{a}}. Let

I ′j = {x ∈ Ij : x ⊂ T ′}, for 1 ≤ j ≤ 8.

Each I ′j is a finite set of finite subsets of ω. Hence I ′j ∈ P (P (ω)), where P (X) is
the powerset of any set X.

Associate with each v ∈ Λ the function f : T ′ → B(0, d0) given by f(i) = vi−v,
and the tuple

t = (I ′0, . . . , I
′
8) ∈ P (P (ω))9.

There is a natural action of the permutation group of ω on the set of pairs
(f, t), where a permutation acts on the domain of f and on P (P (ω)) through its
action on ω. Let [f, t] be the orbit of the pair (f, t) under this action. The orbit
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[f, t] is independent of the bijection b : ω → Λ. Thus, it is canonically attached to
(v, Λ).

Definition 6.1. Let DS◦ be the set of all pairs [f, t] that come from some v in a
saturated packing Λ.

Put a topology on all pairs (f, t) (as we range over all saturated packings Λ,
all choices of indexing b : ω → Λ, and all v ∈ Λ) by declaring (f, t) to be close to
(f ′, t′) if and only if t = t′, domain(f) = domain(f ′), and for all i ∈ domain(f),
f(i) is close to f ′(i). That is, we take the topology to be that inherited from the
standard topology on B(0, d0) and the discrete topology on the finite indexing sets.

The topology on pairs (f, t) descends to the orbit space and gives a topology
on DS◦.

There is a natural compactification of DS◦ obtained by replacing open condi-
tions by closed conditions. That is, for instance if {i, j} is a pair in I6, we allow
|f(i) − f(j)| to lie in the closed interval [2t0,

√
8]. The conditions on each of the

other indexing sets Ij are similarly relaxed so that they are closed conditions.
Compactness comes from the compactness of the closed ball B(0, d0), the

closed conditions on indexing sets, and the finiteness of T ′.

Definition 6.2. Let DS be the compactification given above of DS◦. Call it the
space of decomposition stars.

Definition 6.3. Let v be a vertex in a saturated packing Λ. We let D(v,Λ) denote
the decomposition star attached to (v, Λ).

Because of the discrete indexing sets, the space of decomposition stars breaks
into a large number of connected components. On each connected component,
the combinatorial data are constant. Motion within a fixed connected component
corresponds to a motion of a finite set of sphere centers of the packing (in a direction
that preserves all of the combinatorial structures).

In a decomposition star, it is no longer possible to distinguish some quasi-
regular tetrahedra from quarters solely on the basis of metric relations. For instance,
the simplex with edge lengths 2, 2, 2, 2, 2, 2t0 is a quasi-regular tetrahedron and is
also in the closure of the set of strict quarters. The indexing set I ′2, which is part
of the data of a decomposition star, determines whether the simplex is treated as a
quasi-regular tetrahedron or a quarter.

Roughly speaking, two decomposition stars D(v,Λ) and D(v′, Λ′) are close if
the translations Λ(v, d0)−v and Λ′(v′, d0)−v′ have the same cardinality, and there
is a bijection between them that respects all of the indexing sets I ′j and proximity
of vertices.
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6.2 Cells attached to Decomposition Stars
To each decomposition star, we can associate a V -cell centered at 0 by a direct
adaptation of Definition 5.6.

Lemma 6.4. The V -cell at v depends on Λ only through Λ(v, d0) and the indexing
sets I ′j.

Proof. We wish to decide whether a given x belongs to the V -cell at v or to another
contender w ∈ Λ. We assume that x ∈ Iv, for otherwise x cannot belong to the
V -cell at v. Similarly, we assume x ∈ Iw. We must determine whether v or w is
obstructed at x. For this we must know whether barriers lie on the path between
x and v (or w). Since |x−w| ≤ 2

√
3 and |x− v| ≤ 2

√
3, the point p of intersection

of the barrier and the segment {x, v} (or {x,w}) satisfies |x − p| ≤ 2
√

3. All the
vertices of the barrier then have distance at most

√
8 + 2

√
3 from x, and hence

distance at most d0 =
√

8 + 4
√

3 from v. The decomposition star D(v, Λ) includes
all vertices in Λ(v, d0) and the indexing sets of the decomposition star label all the
barriers in Λ(v, d0). Thus, the decomposition star at v gives all the data that are
needed to determine whether x ∈ Iv belongs to the V -cell at v.

Corollary 6.5. There is a V -cell VC(D) attached to each decomposition star
D such that if D = D(v,Λ), then VC(D) + v is the V -cell attached to (v, Λ) in
Definition 5.6.

Proof. By the lemma, the map from (v, Λ) maps through the data determining
the decomposition star D(v, Λ). The definition of V -cell extends: the V -cell at 0
attached to [f, t] is the set of points in B(0, C0) for which the origin is the unique
closest unobstructed vertex of range(f). The barriers for the obstruction are to be
reconstructed from the indexing data sets I ′j of t.

Lemma 6.6. VC(D) is a finite union of nonoverlapping convex polyhedra. More-
over, D 7→ vol(VC(D)) is continuous.

Proof. For the proof, we ignore sets of measure zero, such as finite unions of
planes. We may restrict our attention to a single connected component of the space
of decomposition stars. On each connected component, the indexing set for each
barrier (near the origin) is fixed. The indexing set for the set of vertices near the
origin is fixed. For each D the VC-cell breaks into a finite union of convex polyhedra
by Lemma 5.9.

As the proof of that lemma shows, some faces of the polyhedra are perpen-
dicular bisecting planes between two vertices near the origin. Such planes vary
continuously on (a connected component) of DS. The other faces of polyhedra are
formed by planes through three vertices of the packing near the origin. Such planes
also vary continuously on DS. It follows that the volume of each convex polyhedron
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is a continuous function on DS. The sum of these volumes, giving the volume of
VC(D) is also continuous.

Lemma 6.7. Let Λ be a saturated packing. The Voronoi cell Ω(v) at v depends on
Λ only through Λ(v, d0).

Proof. Let x be an extreme point of the Voronoi cell Ω(v). The vertex v is one of
the vertices closest to x. If the distance from x to v is at least 2, then there is room
to place another ball centered at x into the packing without overlap. Then Λ is not
saturated.

Thus, the distance from x to v is less than 2. The Voronoi cell lies in the ball
B(v, 2). The Voronoi cell is bounded by the perpendicular bisectors of segments
{v, w} for w ∈ Λ. If w has distance 4 or more from v, then the bisector cannot meet
the ball B(v, 2) and cannot bound the cell. Since 4 < d0, the proof is complete.

Corollary 6.8. The vertex v and the decomposition star D(v, Λ) determine the
Voronoi cell at v. In fact, the Voronoi cell is determined by v and the first indexing
set I ′1 of D(v, Λ).

Definition 6.9. The Voronoi cell Ω(D) of D ∈ DS is the set containing the origin
bounded by the perpendicular bisectors of {0, vi} for i ∈ I ′1.

Remark 6.10. It follows from Corollary 6.8 that

Ω(D(v, Λ)) = v + Ω(v).

In particular, they have the same volume.

Remark 6.11. From a decomposition star D, we can recover the set of vertices
U(D) of distance at most 2t0 from the origin, the set of barriers at the origin, the
simplices of the Q-system having a vertex at the origin, the V -cell VC(D) at the
origin, the Voronoi cell Ω(D) at the origin, and so forth. In fact, the indexing sets
in the definition of the decomposition star were chosen specifically to encode these
structures.

6.3 Colored Spaces
In Section 3, we introduced a function σ that will be formally defined in Defini-
tion 7.8. The details of the definition of σ are not needed for the discussion that
follows. The function σ on the space DS of decomposition stars is continuous.
This section gives an alternate description of the sense in which this function is
continuous.

We begin with an example that illustrates the basic issues. Suppose that we
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have a discontinuous piecewise linear function on the unit interval [−1, 1], as in
Figure 6.1. It is continuous, except at x = 0.

Figure 6.1. A piecewise linear function

We break the interval in two at x = 0, forming two compact intervals [−1, 0]
and [0, 1]. We have continuous functions f− : [−1, 0] → R and f+ : [0, 1], such that

f(x) =

{
f−(x) x ∈ [−1, 0],
f+(x) otherwise.

We have replaced the discontinuous function by a pair of continuous functions on
smaller intervals, at the expense of duplicating the point of discontinuity x = 0. We
view this pair of functions as a single function F on the compact topological space
with two components

[−1, 0]× {−} and [0, 1]× {+}.
where F (x, a) = fa(x), and a ∈ {−,+}.

This is the approach that we follow in general with the Kepler conjecture.
The function σ is defined by a series of case statements, and the function does not
extend continuously across the boundary of the cases. However, in the degenerate
cases that land precisely between two or more cases, we form multiple copies of
the decomposition star for each case, and place each case into a separate compact
domain on which the function σ is continuous.

This can be formalized as a colored space. A colored space is a topological
space X together with an equivalence relation on X with the property that no point
x is equivalent to any other point in the same connected component as x. We refer
to the connected components as colors, and call the points of X colored points.
We call the set of equivalence classes of X the underlying uncolored space of X.
Two colored points are equal as uncolored points if they are equivalent under the
equivalence relation.

In our example, there are two colors “−” and “+.” The equivalence class of
(x, a) is the set of pairs (x, b) with the same first coordinate. Thus, if x 6= 0, the
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equivalence class contains one element (x, sign(x)), and in the boundary case x = 0
there are two equivalent elements (0,−) and (0, +).

In our treatment of decomposition stars, there are various cases: whether an
edge has length less than or greater than 2t0, less than or greater than

√
8, whether a

face has circumradius less than or greater than
√

2, and so forth. By duplicating the
degenerate cases (say an edge of exact length 2t0), creating a separate connected
component for each case, and expressing the optimization problem on a colored
space, we obtain a continuous function σ on a compact domain X.

The colorings have in general been suppressed in places from the notation. To
obtain consistent results, a statement about x ∈ [2, 2t0] should be interpreted as
having an implicit condition saying that x has the coloring induced from the coloring
on the component containing [2, 2t0]. A later statement about y ∈ [2t0,

√
8] deals

with y of a different color, and no relation between x and y of different colors is
assumed at the endpoint 2t0.
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Section 7

Scoring (Ferguson, Hales)

This section is coauthored by Samuel P. Ferguson and Thomas C. Hales.
In earlier sections, we describe each packing of unit balls by its set Λ ⊂ R3

of centers of the packing. We showed that we may assume that our packings are
saturated in the sense that there is no room for additional balls to be inserted into
the packing without overlap. Lemma 3.3 shows that the Kepler conjecture follows if
for each saturated packing Λ we can find a function A : Λ → R with two properties:
the function is fcc-compatible and it is saturated in the sense of Definition 3.2.

The purpose of the first part of this section is to define a function A : Λ → R for
every saturated packing Λ and to show that it is negligible. The formula defining
A consists of a term that is a correction between the volume of the Voronoi cell
Ω(v) and that of the V -cell VC(v) and a further term coming from simplices of the
Q-system that have a vertex at v.

A major theorem in this volume will be that this negligible function is fcc-
compatible. The proof of fcc-compatibility can be expressed as a difficult nonlinear
optimization problem over the compact topological space DS that was introduced
in Section 6. In fact, we construct a continuous function A0 on the space DS such
that for each saturated packing Λ and each v ∈ Λ, the value of the function A at
v is a value in the range of the function A0 on DS. In this way, we are able to
translate the fcc-compatibility of A into an extremal property of the function A0

on the space DS.
The proof of fcc-compatibility is more conveniently couched as an optimization

problem over a function that is related to the function A0 by an affine rescaling.
This new function is called the score and is denoted σ. (The exact relationship
between A0 and σ appears in Definition 7.12.) The function σ is a continuous
function on the space DS. This function is defined in the final paragraphs of this
section.
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7.1 Definitions
For every saturated packing Λ, and v ∈ Λ, there is a canonically associated de-
composition star D(v, Λ). The negligible function A : Λ → R that we define is a
composite

A = A0 ◦D(·,Λ) : Λ → DS → R, v 7→ D(v, Λ) 7→ A0(D(v,Λ)), (7.1)

where A0 : DS → R is as defined by Equations 7.2 and 7.6 below. Each simplex
in the Q-system with a vertex at v defines by translation to the origin a simplex
in the Q-system with a vertex at 0 attached to D(v,Λ). Let Q0(D) be this set of
translated simplices at the origin. This set is determined by D.

Definition 7.1. Let Q be a quarter in Q0(D). We say that the context of Q is
(p, q) if there are p anchors and p − q quarters along the diagonal of Q. Write
c(Q,D) for the context of Q ∈ Q0(D).

Note that q is the number of “gaps” between anchors around the diagonal. For
example, the context of a quarter in a quartered octahedron is (4, 0). The context
of a single quarter is (2, 1).

The function A0 will be defined to be a continuous function on DS of the form

A0(D) = −vol (Ω(D)) + vol (VC(D)) +
∑

Q∈Q0(D)

A1(Q, c(Q,D), 0). (7.2)

Thus, the function A0 measures the difference in volume between the Voronoi cell
and the V -cell, as well as certain contributions A1 from the Q-system. The function
A1(Q, c, v) depends on Q, its context c, and a vertex v of Q. The function A1(Q, c, v)
will not depend on the second argument when Q is a quasi-regular tetrahedron. (The
context is not defined for such simplices.)

Definition 7.2. An orthosimplex consists of the convex hull of {0, v1, v1 + v2, v1 +
v2 + v3}, where v2 is a vector orthogonal to v1, and v3 is orthogonal to both v1 and
v2. We can specify an orthosimplex up to congruence by the parameters a = |v1|,
b = |v1 + v2|, and c = |v1 + v2 + v3|, where a ≤ b ≤ c. This parametrization of the
orthosimplex departs from the usual parametrization by the lengths |v1|, |v2|, |v3|.
For a ≤ b ≤ c, the Rogers simplex R(a, b, c) is an orthosimplex of the form

R(a, b, c) = S(a, b, c,
√

c2 − b2,
√

c2 − a2,
√

b2 − a2).

See Figure 7.1.

Definition 7.3. Let R be a Rogers simplex. We define the quoin of R to be the
wedge-like solid (a quoin) situated above R. It is defined as the solid bounded by
the four planes through the faces of R and a sphere of radius c at the origin. (See
Figure 7.2.) We let quo(R) be the volume of the quoin over R. If R = R(a, b, c) is
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Figure 7.1. The Rogers simplex is an orthosimplex.

a Rogers simplex, the volume quo(R) is given explicitly as follows

6 quo(R) = (a + 2c)(c− a)2 arctan(e) + a(b2 − a2)e
−4c3 arctan(e(b− a)/(b + c)), (7.3)

where e ≥ 0 is given by e2(b2 − a2) = (c2 − b2).

Let S be a simplex and let v be a vertex of that simplex. Let VC(S, v) be
the subset of |S| consisting of points closer to v than to any other vertex of S. By
Lemma 5.28, if S ∈ Q0(D), then

VC(S, 0) = VC(D) ∩ |S|.

Under the assumption that S contains its circumcenter and that every one of its
faces contains its circumcenter, an explicit formula for the volume vol(VC(S, v))
has been calculated in [Hal97a, Section 8.6.3]. This volume formula is an algebraic
function of the edge lengths of S, and may be analytically continued to give a
function of S with chosen vertex v:

volVCan(S, v).

Lemma 7.4. Let B(0, t) be a ball of radius t centered at the origin. Let v1 and v2

be vertices. Assume that |v1| < 2t and |v2| < 2t. Truncate the ball by cutting away
the caps

capi = {x ∈ B(0, t) : |x− vi| < |x|}.
Assume that the circumradius of the triangle {0, v1, v2} is less than t. Then the
intersection of the caps, cap1 ∩ cap2, is the union of four quoins.
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0

Figure 7.2. The quoin above a Rogers simplex is the part of the shaded solid
outside the illustrated box. It is bounded by the shaded planes, the plane through the
front face of the box, and a sphere centered at the origin passing through the opposite
corner of the box.

Proof. This is true by inspection. See Figure 7.3. Slice the intersection cap1∩cap2

into four pieces by two perpendicular planes: the plane through {0, v1, v2}, and
the plane perpendicular to the first and passing through 0 and the circumcenter of
{0, v1, v2}. Each of the four pieces is a quoin.

Definition 7.5. Let v ∈ R3 and let X be a measurable subset of R3. Let sol(X, v)
be the area of the radial projection of X \ {0} to the unit sphere centered at the
origin. We call this area the solid angle of X (at v). When v = 0, we write the
function as sol(X).

Let S = {v0, v1, v2, v3} be a simplex. Fix t in the range t0 ≤ t ≤ √
2. Assume

that t is at most the circumradius of S. Assume that it is at least the circumradius
of each of the faces of S. Let VCt(S, v0) be the intersection of VC(S, v0) with the
ball B(v0, t). Under the assumption that S contains its circumcenter and that every
one of its faces contains it circumcenter, an explicit formula for the volume

vol(VCt(S, v0))

is calculated by means of Lemma 7.4 through a process of inclusion and exclusion.
In detail, start with |S|∩B(v0, t). Truncate this solid by caps: cap1, cap2, and cap3

bounded by the sphere of radius t centered at v0 and the perpendicular bisectors
(respectively) of {v0, v1}, {v0, v1}, {v0, v2}. If we subtract the volume of each cap,
capi, then we must add back the volume of the doubly counted intersections of the
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Figure 7.3. The intersection of two caps on the unit ball can be partitioned
into four quoins (shaded).

caps. The intersections of caps are given as quoins (Lemma 7.4). This leads to the
following formula. Let hi = |vi|/2 and ηij = η(0, vi, vj), and let S3 be the group of
permutations of {1, 2, 3} in

volVCt(S, v0) = sol(S)/3−
3∑

i=1

dih(S, vi)
2π

vol capi+
∑

(i,j,k)∈S3

quo(R(hi, ηij , t)). (7.4)

We extend Formula 7.4 by setting

quo(R(a, b, c)) = 0,

if the constraint a < b < c fails to hold. Similarly, set vol capi = 0 if |vi| ≥ 2t. With
these conventions, Formula 7.4 extends to all simplices. We write the extension of
volVCt(S, v) as

volVC+
t (S, v).

Definition 7.6. Let3

s-vor(S, v) = 4(−δoctvolVCan(S, v) + sol(S, v)/3),
s-vor(S, v, t) = 4(−δoctvolVC+

t (S, v) + sol(S, v)/3),

and
s-vor0(S, v) = s-vor(S, v, t0).

3In the paper [Hal92], the volumes in this definition were volumes of Voronoi cells, and hence
the notation vor for the function was adopted. We retain vor in the notation, although this direct
connection with Voronoi cells has been lost.
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When it is clear from the context that the vertex v is fixed at the origin, we drop v
from the notation of these functions. If S = {v1, v2, v3, v4}, we define Γ(S) as the
average

Γ(S) =
1
4

4∑

i=1

s-vor(S, vi). (7.5)

The average Γ(S) is called the compression of S.

Definition 7.7. Let Q be a quarter. Let η+(Q) be the maximum of the circumradii
of the two faces of Q along the diagonal of Q.

Let Q be a simplex in the Q-system. We define an involution v → v̂ on the
vertices of Q as follows. If Q is a quarter and v is an endpoint of the diagonal, then
let v̂ be the opposite endpoint of the diagonal. In all other cases, set v̂ = v.

We are ready to complete the definition of the function A : Λ → R. The
definition of A was reduced to that of A0 in Equation 7.1. The function A0 was
reduced in turn to that of A1 in Equation 7.2. To complete the definition, we define
A1.

Definition 7.8. Set

A1(S, c, v) = −volVC(S, v) +
sol(S, v)

3δoct
− σ(S, c, v)

4δoct
. (7.6)

where σ is given as follows:

1. When S is a quasi-regular tetrahedron:

(a) If the circumradius of S is less than 1.41, set

σ(S,−, v) = Γ(S).

(b) If the circumradius of S is at least 1.41, set

σ(S,−, v) = s-vor(S, v).

2. When S is a strict quarter:

(a) If η+(S) <
√

2:

i. If the context c is (2, 1) or (4, 0), set

σ(S, c, v) = Γ(S)

ii. If the context of S is anything else, set

σ(S, c, v) = Γ(S) +
s-vor0(S, v)− s-vor0(S, v̂)

2
.

(b) If η+(S) ≥ √
2:
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i. If the context of S is (2, 1), set

σ(S, c, v) = s-vor(S, v).

ii. If the context of S is (4, 0), set

σ(S, c, v) =
s-vor(S, v) + s-vor(S, v̂)

2
.

iii. If the context of S is anything else, set

σ(S, c, v) =
s-vor(S, v) + s-vor(S, v̂)

2
+

s-vor0(S, v)− s-vor0(S, v̂)
2

.

When the context and vertex v are given, we often write σ(S) or σ(S, v) for σ(S, c, v).
When η+ <

√
2, we say that the quarter has compression type. Otherwise,

we say it has Voronoi type. To say that a quarter has compression type means that
Γ(S) is one term of the function σ(S, v). It does not mean that Γ(S) is equal to
σ(S, v).

The definition of σ on quarters can be expressed a second way in terms of a
function µ. If S is a quarter, set

µ(S, v) =

{
Γ(S), if η+(S) <

√
2,

s-vor(S, v), otherwise.
(7.7)

If S is a flat quarter, we have σ(S, c, v) = µ(S, v), for all contexts c.
Suppose S is an upright quarter. Definition 7.8 can be expressed as follows.

• context (2, 1): Set σ(S, c, v) = µ(S, v).

• context (4, 0): Set σ(S, c, v) = (µ(S, v) + µ(S, v̂))/2.

• other contexts: Set σ(S, c, v) = (µ(S, v)+µ(S, v̂)+s-vor0(S, v)−s-vor0(S, v̂))/2.

Lemma 7.9. A0 : DS → R is continuous.

Proof. The continuity of D 7→ volVC(D) is proved in Lemma 6.6. The continuity
of D 7→ volΩ(D) is similarly proved. The terms volVC(S, v) and sol(S, v) are con-
tinuous. To complete the proof we check that the function σ(S, c, v) is continuous.
It is not continuous when viewed as a function of the set of quarters, because of
the various cases breaking at circumradius 1.41 and η+(S) =

√
2. However, these

cutoffs have been inserted into the data defining a decomposition star (in the in-
dexing sets I8 and I9). Thus, the different cases in the definition of σ(S, c, v) land
in different connected components of the space DS and continuity is obtained.

We conclude this section with a result that will be of use in the next section.
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Lemma 7.10. Let S = {v1, v2, v3, v4} be a simplex in the S-system, and c its
context. Then

4∑

i=1

A1(S, c, vi) = 0.

Proof. By Formula 7.6, this is equivalent to

4∑

i=1

σ(S, c, vi) =
4∑

i=1

s-vor(S, c, vi). (7.8)

Equation 7.8 is evident from Definition 7.8 for σ. In fact, the terms of the form
s-vor0 have opposing signs and cancel when we sum. The other terms are weighted
averages of the terms s-vor(S, c, vi). Equation 7.8 is thus established because a sum
is unaffected by taking weighted averages of its terms.

7.2 Negligibility
Let B(x, r) be the closed ball of radius r ∈ R centered at x. Let Λ(x, r) = Λ∩B(x, r).

Recall from Definition 3.2 that a function A : Λ → R is said to be negligible if
there is a constant C1 such that for all r ≥ 1,

∑

v∈Λ(x,r)

A(v) ≤ C1r
2.

Recall the function A : Λ → R given by Equation 7.1. Explicitly, let

A(v) = A0(D(v, Λ)),

where A0 in turn depends on functions A1 and σ, as determined by Equations 7.2
and 7.6, and Definition 7.8.

Theorem 7.11. The function A of Equation 7.1 is negligible.

Proof. First we consider a simplification, where we replace A with A′ defined by

A′(v, Λ) = −vol(Ω(D(v, Λ))) + vol(VC(D(v,Λ))).

(That is, at first we ignore the function A1.) The Voronoi cells partition R3, as do
the V -cells. We have Ω(v, Λ) ⊂ B(v, 2) (by saturation) and VC(v, Λ) ⊂ B(v, 2

√
3)

(by Definition 5.5). Hence the Voronoi cells with v ∈ Λ(x, r) cover B(x, r − 2).
Moreover, the V -cells with v ∈ Λ(x, r) are contained in B(x, r + 2

√
3). Hence

∑

v∈Λ(x,r)

A′(v) ≤ −volB(x, r − 2) + volB(x, r + 2
√

3) ≤ C ′1r
2
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for some constant C ′1.
If we do not make the simplification, we must include the sum

∑

v∈Λ(x,r)

∑

Q∈Qv(D(v,Λ))

A1(Q, c, v).

Each quarter Q = {v1, v2, v3, v4} in the Q-system occurs in four sets Qvi
(D(vi, Λ)).

By Lemma 7.10 the sum cancels, except when some vertex of Q lies inside Λ(x, r)
and another lies outside. Each such simplex lies inside a shell of width 2

√
8 around

the boundary. The contribution of such boundary terms is again bounded by a
constant times r2. This completes the proof.

7.3 Fcc-compatibility
We have constructed a negligible function A. The rest of this volume will prove
that this function is fcc-compatible. This section translates fcc-compatibility into a
property that will be easier to prove. To begin with, we introduce a rescaled version
of the function A.

Definition 7.12. Let σ : DS → R be given by

σ(D) = −4δoct(vol Ω(D) + A0(D)) + 16π/3.

It is called the score of the decomposition star.

Recall from Definition 3.6 the constant pt ≈ 0.05537. This constant is called
a point.

Lemma 7.13. Let A0, A, and σ be the functions defined by Equations 7.1, 7.2 7.6,
and Definition 7.8. The following are equivalent.

1. The minimum of the function on DS given by

D 7→ volΩ(D) + A0(D)

is
√

32.

2. The maximum of σ on DS is 8 pt.

Moreover, these statements imply

• For every saturated packing Λ, the function A is fcc-compatible.

(Eventually, we prove fcc-compatibility by proving σ(D) ≤ 8 pt for all D ∈
DS.)
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Proof. To see the equivalence of the first and second statements, use Defini-
tion 7.12, and the identity

8 pt = −4δoct(
√

32) + 16π/3.

(Note that this identity is parallel in form to Definition 7.12 for σ.)
For a given saturated packing Λ, the function A has the form A(v) = A0(D(v, Λ)).

Also, Ω(D(v, Λ)) is a translate of Ω(v), the Voronoi cell at v. In particular, they
have the same volume. Thus, vol Ω(v) + A(v) lies in the range of the function

volΩ(D) + A0(D)

on DS. The minimum of this function is
√

32 by the first of the equivalent state-
ments. It now follows from the definition of fcc-compatibility, that A : Λ → R is
indeed fcc-compatible.

Theorem 7.14. If the maximum of the function σ on DS is 8 pt, then for every
saturated packing Λ there exists a negligible fcc-compatible function A.

Proof. This follows immediately from Theorem 7.11 and Lemma 7.13.

7.4 Scores of Standard Clusters
The last section introduced a function σ called the score. We show that the function
σ can be expressed as a sum over terms attached to each of the standard regions.

Definition 7.15. A standard cluster is a pair (R, D) where D is a decomposition
star and R is one of its standard regions. A quad cluster is the standard cluster
obtained when the standard region is a quadrilateral.

We break σ into a sum

σ(D) =
∑

R

σR(D), (7.9)

indexed by the standard clusters (R, D). Let

VCR(D) = VC(D) ∩ cone(R),

whenever R is a measurable subset of the unit sphere. Let

Q0(R, D) = {Q ∈ Q0(D) : Q ⊂ cone(R)}.

By Lemma 5.26, each Q is entirely contained in the cone over a single standard
region.
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Definition 7.16. Let R be a measurable subset of the unit sphere. Set

vorR(D) = 4 (−δoctvolVCR(D) + sol(R)/3) .

Let R be a standard region. Set

σR(D) = vorR(D)− 4δoct

∑

Q∈Q0(R,D)

A1(Q, c(Q,D), 0).

Lemma 7.17. σ(D) =
∑

R σR(D), where the sum runs over all standard regions
R.

Proof.

σ(D) = −4δoct(vol Ω(D) + A0(D)) + 16π/3
= −4δoct(volVC(D) +

∑
Q∈Q0(D) A1(Q, c(Q,D), 0)) + (4)(4π/3)

=
∑

R 4
(
−δoctvolVCR(D)− δoct

∑
Q∈Q0(R,D) A1(Q, c(Q,D), 0) + sol(R)/3

)
.

Also, we have

vor(D) =
∑

R∈R(D)

vorR(D). (7.10)

Lemma 7.18. Let R′ ⊂ R be the part of a standard region that does not lie in any
cone over any Q ∈ Q0(R, D). Then

σR(D) = vorR′(D) +
∑

Q∈Q0(R,D)

σ(Q, c(Q,D), 0).

Proof. Substitute the definition of A1 (Equation 7.6) into the definition of σR(D),
noting that VC(Q, 0) = VCR′′(D), where R′′ is the intersection of Q with the unit
sphere.

Remark 7.19. Lemma 7.18 explains why we have chosen the same symbol σ for
the functions σR(D) and σ(Q, c, v). We can view Lemma 7.18 as asserting a linear
relation in the functions σ:

σR(D) = σR′(D) +
∑

σ(Q, c, 0).

The sum runs over Q ∈ Q0 that lie in the cone over R.
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7.5 Scores of Simplices and Cones
Many of the functions in this paper are defined by terms involving volumes of simple
solids. To give estimates on the functions, it is often convenient to partition the
solids into smaller pieces and then define corresponding functions on each of the
pieces. For this reason, we define some variants of the functions vor and σ.

Remark 7.20. We now define a few more variants of the function vor. The
function s-vor and its truncated version s-vor(·, t) have been defined already. The
function vorR(D) will also be given a truncated version vorR(D, t), for a real trun-
cation parameter t ≥ 0. The special case, vorR(D, t0) will be abbreviated vor0,R(D).
There will be another variant r-vor for Rogers simplices, and another c-vor for gen-
eral sets. The general form of these functions is

c-vor(X) = 4(−δoctvol(X) + sol(X)/3),

for any subset X ⊂ R3. The differences between the different versions of vor come
from the different choices of the set X and the way they are parametrized.

Definition 7.21. Let R = R(a, b, c) be a Rogers simplex. Assume that the vertex
terminating the edges of lengths a, b, and c is situated at the origin. Let

r-vor(R) = 4(−δoctvol(R) + sol(R)/3).

Definition 7.22. Let C(h, t) denote the compact cone of height h and circular
base. Set

φ(h, t) = 2(2− δoctth(h + t))/3.

Then
c-vor(C(h, t)) = 2π(1− h/t)φ(h, t). (7.11)

Remark 7.23. Below, we introduce variants of the function σ. We have already
encountered σ in Definitions 7.8, 7.12, and 7.16. Informally, we call σ (and various
functions that are closely related to it) the score. Equation 7.11 represents the score
of C(h, t). The solid angle of C(h, t) is 2π(1 − h/t), so φ(h, t) is the score per
unit area. Also, φ(t, t) is the score per unit area of a ball of radius t. That is,
φ(t, t) = 4(−δoctvol/ sol+1/3).

We set

s-vor(S, t) = sol(S)φ(t, t) +
∑3

i=1, hi≤t di(1− hi/t)(φ(hi, t)− φ(t, t))
−∑

(i,j,k)∈S3
4δoct quo(R(hi, η(yi, yj , yk+3), t)).

(7.12)

In the definition, we adopt the convention that quo(R) = 0, if R = R(a, b, c) does
not exist (that is, if the condition 0 < a ≤ b ≤ c is violated). In the second sum,
S3 is the set of permutations on three letters. This definition is compatible with
Definition 7.6.
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Similarly, we define vorP (D, t) for arbitrary standard clusters (P, D). (We
shift notation from R to P for a standard region to avoid conflict with Rogers
simplices R in the following definition.) Extending the notation in an obvious way,
we have

vorP (D, t) = sol(P )φ(t, t) +
∑
|vi|≤2t di(1− |vi|/(2t))(φ(|vi|/2, t)− φ(t, t))

−∑
R 4δoct quo(R).

(7.13)
The first sum runs over vertices in P of height at most 2t. The second sum runs
over Rogers simplices R(|vi|/2, η(F ), t) in P , where F = {0, v1, v2} is a face of
circumradius η(F ) at most t, formed by vertices in P . The constant di is the total
dihedral angle along {0, vi} of the standard cluster. The truncations t = t0 = 1.255
and t =

√
2 will be of particular importance. Set A(h) = (1 − h/t0)(φ(h, t0) −

φ(t0, t0)).

Remark 7.24. We have introduced both untruncated and truncated versions of
functions vor and σ. The truncated versions are used to give upper bounds on the
untruncated versions. For example, in the function σ(D), the V -cell contributes
through its volume, as in Remark 7.20. The volume appears with a negative coeffi-
cient −4δoct. Thus, we obtain an upper bound on σ(D) by discarding bits of volume
from the V -cell. This suggests that we might try to give upper bounds on the score
σ(D) by truncating the V -cell in various ways. This is the reason for the truncated
versions of these functions.

7.6 The Example of a Dodecahedron

Example 7.25. The following example illustrates why better bounds on the density
of packings can be obtained with σ(D) than with a naive approach based on the
volume of Voronoi cells. By scoring quasi-regular tetrahedra with the compression
function Γ(S) rather than s-vor(S), we will find that the score is lowered below 8 pt
for configurations with many quasi-regular tetrahedra. To work one example, let us
assume that the decomposition star consists of twelve vertices located at distance 2
from the origin, at the vertices of a regular icosahedron. The score is approximately

20Γ(S(2, 2, 2, 2.10292, 2.10292, 2.10292) ≈ 1.8 pt < 8 pt.

If s-vor(S) had been used, the score would violate Theorem 1.7:

20 s-vor(S) ≈ 13.5493 pt > 8 pt.

(This is tied to the fact that the regular dodecahedron of inradius 1 has smaller
volume than the rhombic dodecahedron of inradius 1.)
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This paper is the third in a series of six papers devoted to the proof of the Ke-
pler conjecture, which asserts that no packing of congruent balls in three dimensions
has density greater than the face-centered cubic packing. In the previous paper in
this series, a continuous function f on a compact space is defined, certain points in
the domain are conjectured to give the global maxima, and the relation between this
conjecture and the Kepler conjecture is established. This paper shows that those
points are indeed local maxima. Various approximations to f are developed, that
will be used in subsequent papers to bound the value of the function f . The function
f can be expressed as a sum of terms, indexed by regions on a unit sphere. Detailed
estimates of the terms corresponding to triangular and quadrilateral regions are
developed.

This paper has three objectives. The first is dealing with the two types of
decomposition stars that attain the optimal Kepler conjecture bound. The second
is obtaining general upper bounds on the score of decomposition star by truncation.
The third is obtaining various upper bounds on the score associated to individual
triangular and quadrilateral regions of a general decomposition star.

The first section contains a proof that the decomposition stars attached to the
face-centered cubic and hexagonal-close packings give local maxima to the scoring
function on the space of all decomposition stars. The proof describes precisely de-
termined neighborhoods of these critical points. These special decomposition stars
are shown to yield the global maximum of the scoring function on these restricted
neighborhoods.

The second section gives an approximation to a decomposition star that pro-
vides an upper bound approximation to the scoring function σ. In the simplest
cases, the approximation to the decomposition star is obtained by truncating the
decomposition star at distance t0 = 1.255 from the origin. More generally, we define
a collection of simplices (that do not overlap any simplices in the Q-system), and
define a somewhat different truncation for each type of simplex in the collection.
For want of a more suggestive term, these simplices are said to form the S-system.

When truncation at t0 cuts too deeply, we reclaim a scrap of volume that lies
outside the ball of radius t0 but still inside the V -cell. This scrap is called a crown.
These scraps are studied in that same section.

In a final section, we develop a series of bounds on the score function in
triangular and quadrilateral regions, for use in later papers.
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Section 8

Local Optimality

The first several sections have established the fundamental definitions and construc-
tions of this volume. This section establishes the local optimality of the function
σ : DS → R in a neighborhood of the decomposition stars of the face-centered cubic
and hexagonal close packings.

8.1 Results
Here is a sketch of the proof of local optimality. The face-centered cubic and
hexagonal close packings score precisely 8 pt. They also contain precisely eight
tetrahedra around each vertex. In fact, the decomposition stars have eight quasi-
regular tetrahedra and six other quad clusters. The proof shows that each of the
eight quasi-regular tetrahedra scores at most 1 pt. Equality is obtained only when
the tetrahedron is regular of side 2. Furthermore, the proof shows that each of six
quad clusters have a nonpositive score. It will follows from these facts that any
decomposition star with eight quasi-regular tetrahedra, six quad clusters, and no
other standard clusters scores at most 8 pt. The case of equality is analyzed as well.
The purpose of this section is to give a proof of the following theorem.

Theorem 8.1 (Local optimality). Let D be a contravening decomposition star.
Let U(D) be the set of sphere packing vectors at distance at most 2t0 from the origin.
Assume that

1. The set U(D) has twelve elements.

2. There is a bijection ψ between U(D) and the kissing arrangement Ufcc of
twelve tangent unit balls in the face-centered cubic configuration, or a bijec-
tion with Uhcp the twelve tangent unit balls in the hexagonal-close packing
configuration; such that for all v, w ∈ U(D), |w − v| ≤ 2t0 if and only if
|ψ(w) − ψ(v)| = 2. That is, the proximity graph of U(D) is the same as the
contact graph of Ufcc or Uhcp.

95
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96 Section 8. Local Optimality

Then σ(D) ≤ 8 pt. Equality holds if and only if U coincides with Ufcc or Uhcp up
to a Euclidean motion. Decomposition stars D exist with U(D) = Ufcc and others
exist with U(D) = Uhcp.

Remark 8.2. This theorem is one of the key claims of Section 3.3. This theorem is
phrased slightly differently from the Claim 3.15 in Section 3.3. The reason for this
is that we have not formally introduced the plane graph G(D) of a decomposition
star. (This happens in Section 20.2.) Once G(D) has been formally introduced, then
Theorem 8.1 can be expressed more directly, as follows. We let Gfcc and Ghcp be
the plane graphs attached to the decomposition stars of vertices in the face-centered
cubic and hexagonal-close packings, respectively. (These graphs are independent of
the vertices selected.)

Corollary 8.3 (Local optimality - second version). Contravening decomposi-
tion stars exist. If D is a contravening decomposition star, and if the plane graph
of D is isomorphic to Gfcc or Ghcp, then σ(D) = 8 pt. Moreover, up to Euclidean
motion, U(D) is the kissing arrangement of the twelve balls around a central ball
in the face-centered cubic packing or the kissing arrangement of twelve balls in the
hexagonal-close packing.

The following theorem is also one of the main results of this section. It is a
key part of the proof of local optimality.

Theorem 8.4. A quad cluster scores at most 0, and that only for a quad cluster
whose corners have height 2, forming a square of side 2. That is, σR(D) ≤ 0. Other
standard clusters have strictly negative scores: σR(D) < 0.

The argument that the score of a quad cluster is nonpositive is general and can
be used to prove that the score of any cluster attached to a non-triangular standard
region (Definition 5.24) has nonpositive score.

8.2 Rogers Simplices
To prove Theorem 8.4, we chop the cluster (R,D) into small pieces and show that
the “density” of each piece is at most δoct. To prepare for this proof, this section
describes various small geometric solids that have a density at most δoct. The first
of these is the Rogers simplex.

Lemma 8.5. Let R(a, b, c) be a Rogers simplex, with 1 ≤ a < b < c. It has a
distinguished vertex (the terminal point of the edges of lengths a, b, and c), which we
assume to be the origin. Let A(a, b, c) be the volume of the intersection of R(a, b, c)
with a ball of radius 1 at the origin. Then the ratio

A(a, b, c)/vol(R(a, b, c))

is monotonically decreasing in each variable.
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Proof. This is Rogers’s lemma, as formulated in [Hal97a, Lemma 8.6].

Lemma 8.6. Consider the Rogers simplex R(a, b,
√

2) with vertex at the origin.
Assume 1 ≤ a ≤ b and η(2, 2, 2) ≤ b ≤ √

2. Let A be the volume of the intersection
of the simplex with a closed ball of radius 1 at the origin. Then

A ≤ δoct vol(R(a, b,
√

2)).

Equality is attained if and only if a = 1 and b = η(2, 2, 2) or for a degenerate simplex
of zero volume.

Proof. This is a special case of Lemma 8.5. See the third frame of Figure 8.1.

Lemma 8.7. Consider the wedge of a cone

W = W (α, z0) = {t x : 0 ≤ t ≤ 1, x ∈ P (α, z0)} ⊂ R3,

where P (α, z0) has the form

P = {(x1, x2, x3) : x3 = z0, x2
1 + x2

2 + x2
3 ≤ 2, 0 ≤ x2 ≤ αx1},

with z0 ≥ 1. Let A be the volume of the intersection of the wedge with B(0, 1). Then

A ≤ δoct vol(W ).

Equality is attained if and only if W has zero volume.

Proof. This is calculated in [Hal97b, Sec. 4]. See the second frame of Figure 8.1.

Lemma 8.8. Let C be the cone at the origin over a set P , where P is measurable
and every point of P has distance at least 1.18 from the origin. Let A be the volume
of the intersection of C with B(0, 1). Then

A ≤ δoct vol(C).

Equality is attained if and only if C has zero volume.

Proof. The ratio A/vol(C) is at most 1/1.183 < δoct. See the first frame of
Figure 8.1.

8.3 Bounds on Simplices
In this and future sections, we rely on some inequalities that are not proved in this
paper. There is an archive of hundreds of inequalities that have been proved by
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a
b

c

(c  -b  )(c  -a  ) 2 2 1/2
2 2 1/2

1

1.18

Figure 8.1. Some sets of low density.

computer. This full archive appears in [Hal05b]. The justification of these inequali-
ties appears in the same archive. (The proofs of these inequalities were executed by
computer.) An explanation of how computers are able to prove inequalities can be
found in [Hal03] and [Hal97a]. Each inequality carries a nine-digit identifying num-
ber. To invoke an inequality, we state it precisely, and give its identifying number,
e.g. calc-123456789. The first of these appears in Lemma 8.10. Some results rely
on a simple combination of inequalities, rather than a single inequality. To make it
easier to reference a group of inequalities, the archive at [Hal05b] gives a separate
nine-digit identifier to certain groups of inequalities. This permits us to reference
such a group by a single number.

Definition 8.9. Recall that the constant pt, a point, is equal to σ(S), where S is
a regular tetrahedron with edges of length 2. We have pt = 4arctan(

√
2/5)− π/3 ≈

0.05537.

Lemma 8.10. A quasi-regular tetrahedron S satisfies σ(S) ≤ 1 pt. Equality occurs
if and only if the quasi-regular tetrahedron is regular of edge length 2.

Proof. This is calc-586468779.

Remark 8.11. The reader who wishes to dig more deeply into this particular
proof may do so. An early published proof of this lemma was not fully automated
(see [Hal97a, Lemma 9.1.1]). This early proof show by conventional means that
σ(S) ≤ 1 pt in an explicit neighborhood of (2, 2, 2, 2, 2, 2).

Lemma 8.12. A quarter in the Q-system scores at most 0. That is, σ(Q) ≤ 0.
Equality is attained if and only if five edges have length 2 and the diagonal has
length

√
8.

Proof. Throughout the proof of this lemma, we will refer to quarters with five edges
of length 2 and one of length

√
8 as extremal quarters. We make use of the definition
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of σ on quarters from Definition 7.8. The general context (that is, contexts other
than (2, 1) and (4, 0)) of upright quarters is established by the inequalities4 that
hold for all upright quarters Q with distinguished vertex v:

2Γ(Q) + s-vor0(Q, v)− s-vor0(Q, v̂) ≤ 0
s-vor(Q, v) + s-vor(Q, v̂) + s-vor0(Q, v)− s-vor0(Q, v̂) ≤ 0.

Equality is attained if and only if the quarter is extremal. For the remaining quarters
(that is, contexts (2, 1) and (4, 0)), it is enough to show that Γ(Q) ≤ 0, if η+ ≤ √

2
and s-vor(Q, v) ≤ 0, if η+ ≥ √

2.
Consider the case η+ ≤ √

2. If Q is a quarter such that every face has circum-
radius at most

√
2, then5 Γ(Q) ≤ 0. Equality is attained if and only if the quarter

is extremal. Because of this, we may assume that the circumradius of Q is greater
than

√
2. The inequality η+(Q) ≤ √

2 implies that the faces of Q along the diago-
nal have nonnegative orientation. The other two faces have positive orientation, by
Lemma 5.17. Since (Definition 7.6)

4Γ(Q) =
4∑

i=1

s-vor(Q, vi),

it is enough to show that s-vor(Q) < 0. Since the orientation of every face is non-
negative and the circumradius is greater than

√
2, s-vor(Q,

√
2) is a strict truncation

of the V -cell in Q, so that

s-vor(Q) < s-vor(Q,
√

2).

We show the right hand side is nonpositive. Let v be the distinguished vertex of
Q. Let A be 1/3 the solid angle of Q at v . By the definition of s-vor(Q,

√
2), it is

nonpositive if and only if

A ≤ δoct vol(VC(Q, v) ∩B(v,
√

2)). (8.1)

(VC(Q, 0) is defined in Section 7.1.) The intersection VC(Q, v) ∩B(v,
√

2) consists
of six Rogers simplices R(a, b,

√
2), three conic wedges (extending out to

√
2), and

the intersection of B(v,
√

2) with a cone over v. By Lemmas 8.6, 8.7, and 8.8,
these three types of solids give inequalities like that of Equation 8.1. Summing the
inequalities from these lemmas, we get Equation 8.1.

Consider the case η+ ≥ √
2 and σ = s-vor. If the quarter is upright, then6

s-vor(Q) ≤ 0. The quarters achieving equality are extremal. Thus, we may assume
the quarter is flat. If the orientation of a flat quarter is negative along the face
containing the origin and the diagonal, then7 s-vor(Q) ≤ 0. The quarters achieving
equality are extremal. In the remaining case, the only possible face along which the

4calc-522528841 and calc-892806084
5calc-346093004
6calc-40003553
7calc-5901405
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orientation is negative is the top face. This means that the analytic continuation
defining s-vor(Q) is the same as

4(−δoctvol(X) + sol(X)/3),

where X is the subset of the cone at v over Q consisting of points in that cone closer
to v than to any other vertex of Q. The extreme point of X has distance at least√

2 from v (since η+ and hence the circumradius of Q are at least
√

2). Thus,

s-vor(Q) ≤ s-vor(Q,
√

2).

We have s-vor(Q,
√

2) ≤ 0 as in the previous paragraph, by Lemma 8.6, 8.7, and
8.8. If equality is attained, the wedges and cones must have zero volume, and
each Rogers simplex must have the form R(1, η(2, 2, 2),

√
2) (or zero volume). This

happens exactly when the flat quarter has five edges of length 2 and a diagonal of
length

√
8. This completes the proof.

Lemma 8.13. Let S be a simplex all of whose faces have circumradius at most
√

2.
Assume that S is not a quasi-regular tetrahedron or quarter. Then s-vor(S) < 0.

Proof. The assumptions imply that the orientation is positive along each face. Let
v be the distinguished vertex of S.

Assume first that there are at least two edges of length at least 2t0 at the origin
or that there are two opposite edges of length at least 2t0. Then the circumradius
b of each of the three faces at v is at least η(2, 2t0, 2) > 1.207. By the monotonicity
properties of the circumradius of S, the simplex S has circumradius at least that
of the simplex S(2, 2, 2, 2, 2, 2t0), which a calculation shows is greater than 1.3045.
By definition, s-vor(S) < 0 if and only if

sol(|S| ∩B(v, 1))/3 < δoctvol(VC(S, 0)).

This inequality breaks into six separate inequalities corresponding to the six Rogers’s
simplices R(a, b, c) constituting VC(S, 0). Rogers’s Lemma 8.5 shows each of the
six Rogers’s simplices has density at most that of R(1, 1.207, 1.3045), which is less
than δoct. The result follows in this case.

Now assume that there is at most one edge of length at least 2t0 at the origin,
and that there is not a pair of opposite edges of length at most 2t0. There are
four cases up to symmetry, depending on which edges have length at least 2t0, and
which have shorter length. Let S be a simplex such that every face has circumradius
at most

√
2. We have8 s-vor(S(y1, y2, . . . , y6)) < 0 for (y1, . . . , y6) in any of the

following four domains:

[2t0,
√

8][2, 2t0]3[2t0,
√

8][2, 2t0], [2t0,
√

8][2, 2t0]3[2t0,
√

8]2,
[2, 2t0]3[2t0,

√
8]2[2, 2t0], [2, 2t0]3[2t0,

√
8]3

8calc-629256313, calc-917032944, calc-738318844, and calc-587618947
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8.4 Breaking Clusters into Pieces
As we stated above, the strategy in the proof of local optimality will be to break
quad clusters into smaller pieces and then to show that each piece has density at
most δoct. There are several preliminary lemmas that will be used to prove that
this decomposition into smaller pieces is well-defined. These lemmas are presented
in this section.

Lemma 8.14. Let T be a triangle whose circumradius is less than
√

2. Assume
that none of its edges passes through a barrier in B. Then T does not overlap any
barrier in B.

Proof. By hypothesis no edge of T passes through an edge in the barrier. By
Lemma 4.21, no edge of a barrier passes through T . Hence they do not overlap.

Lemma 8.15. Let T = {u, v, w} be a set of three vertices whose circumradius
is less than

√
2. Assume that one of its edges {v, w} passes through a barrier

b = {v1, v2, v3} in B. Then

• The edge {v, w} has length between 2t0 and
√

8.

• The vertex u is a vertex of b.

• One of the endpoints y ∈ {v, w} is such that {y, v1, v2, v3} is a simplex in Q.

Proof. The edge {v, w} must have length at least 2t0 by Lemma 4.19. If the edge
{u, v} has length at least 2t0, it cannot pass through b because of Lemma 4.33. If
it has length at most 2t0, it cannot pass through b because of Lemma 4.19. Hence
{u, v} and similarly {u,w} do not pass through b. The edges of b do not pass
through T . The only remaining possibility is for u to be a vertex of b.

If b is a quasi-regular triangle, Lemma 4.22 gives the result. If b is a face of a
quarter in the Q-system, then Lemma 4.34 gives the result.

Definition 8.16 (Law of Cosines). Consider a triangle with sides a, b, and c.
The angle opposite the edge of length c is given as

arc(a, b, c) = arccos((a2 + b2 − c2)/(2ab)) = π
2 + arctan c2−a2−b2√

u(a2,b2,c2)

with u(x, y, z) = −x2 − y2 − z2 + 2xy + 2yz + 2zx.

Lemma 8.17 (First separation lemma). Let v be a vertex of height at most√
8. Let v2 and v3 be such that

• 0, v, v2, and v3 are distinct vertices,
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• η(0, v2, v3) <
√

2.

Then the open cone at the origin over the set B(0,
√

2) ∩ B(v,
√

2) does not meet
the closed cone C at the origin over the convex hull of {v2, v3}.

Proof. Let D be the open disk spanning the circle of intersection of B(0,
√

2)
and B(v,

√
2). It is enough to show that this disk does not meet C. This disk is

contained in B(v,
√

2), and so we bound this ball away from the given cone.
Assume for a contradiction that these two sets meet. Let v′ be the reflection

of v through the plane P = {0, v2, v3}.
If the closest point p in P to v lies outside C, then the edge constraints

|v| ≤ √
8 forces the closest point in C to lie along the edge {0, v2} or {0, v3}. Since

|v2|, |v3| ≤
√

8, this closest point has distance at least
√

2 from v. Thus, we may
assume that the closest point in P to v lies in C.

Assume next that the closest point in P to v lies in the convex hull of 0, v2,
and v3. We obtain an edge {v, v′} of length at most

√
8 that passes through a

triangle of circumradius less than
√

2. This contradicts Lemma 4.21.
Assume finally that the closest point lies in the cone over {v2, v3} but not in

the convex hull of 0, v2, v3. By moving v toward C (preserving |v|), we may assume
that |v − v2| = |v − v3| = 2. Stretching the edge {v2, v3}, we may assume that the
circumradius of {0, v2, v3} is precisely

√
2. Since the closest point in P is not in

the convex hull of {0, v2, v3}, we may move v2 and v3 away from v while preserving
the circumradius and increasing the lengths |v − v2| and |v − v3|. By moving v
again toward C, we may assume without loss of generality that |v2| = |v3| = 2
and |v2 − v3| =

√
8. We have reduced to a one-parameter family of arrangements,

parametrized by |v|. We observe that the disk in the statement of the lemma is
tangent to the segment {v2, v3} at its midpoint, no matter what the value of |v| is.
Thus, in the extremal case, the open disk does not intersect the segment {v2, v3}
or the cone C that it generates. This completes the proof.

Lemma 8.18 (Second separation lemma). Let v1 be a vertex of height at most
2t0. Let v2 and v3 be such that

• 0, v1, v2, and v3 are distinct vertices,

• {0, v1, v2, v3} 6∈ Q0, and

• {0, v2, v3} is a barrier.

Then the open cone at the origin over the set B(0,
√

2) ∩ B(v1,
√

2) does not meet
the closed cone C at the origin over {v2, v3}.

Proof. Since v1 has height at most 2t0, and {0, v2, v3} is a barrier, it follows from
Lemma 4.10 that {0, v1, v2, v3} is in the Q-system if |v1−v2| ≤ 2t0 and |v1−v3| ≤ 2t0.
This is contrary to hypothesis. Thus, we may assume without loss of generality that
|v1 − v2| > 2t0.
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By arguing as in the proof of Lemma 8.17, we may assume that the orthogonal
projection of v1 to the plane P is a point in the cone C. Let v′1 be the reflection
of v1 through C. We have that either {v2, v3} passes through {0, v1, v

′
1} or {v1, v

′
1}

passes through {0, v2, v3}. We may assume for a contradiction that |v1 − v′1| <
√

8.
If {v2, v3} passes through {0, v1, v

′
1}, then v2 and v3 are anchors of the diagonal

{v1, v
′
1} by Lemma 4.24. This gives the contradiction |v1 − v2| ≤ 2t0.
If {v1, v

′
1} passes through {0, v2, v3}, then by Lemma 4.22 {0, v2, v3} is a face

of a quarter. Moreover, v1 and v′1 are anchors of the diagonal of that quarter by
Lemma 4.24. Since |v1 − v2| > 2t0, the diagonal must not have v2 as an endpoint,
so that the diagonal is {0, v3}. Lemma 4.34 forces one of |v1− v2| or |v′1− v2| to be
at most 2t0. But these are both equal to |v1 − v2| > 2t0, a contradiction.

Definition 8.19. We define an enlarged set of simplices Q′0. Let Q′0 be the set of
simplices S with a vertex at the origin such that either S ∈ Q0, or S is a simplex
with a vertex at the origin and with circumradius less than

√
2 such that none of its

edges passes through a barrier.

Lemma 8.20. The simplices in Q′0 do not overlap one another.

Proof. The simplices in Q0 are in the Q-system and do not overlap. No edge of
length less than

√
8 passes through any edge of a simplex in Q′0\Q0, by Lemma 4.21.

By construction, none of the edges of a simplex inQ′0\Q0 can pass through a barrier,
and this includes all the faces of Q0. Thus, there is no overlap.

Definition 8.21. Let v be a vertex of height at most 2.36 = 2(1.18). Let C(v) be
the cone at the origin generated by the intersection B(v,

√
2) ∩ B(0,

√
2). Define a

subset C ′(v) of C(v) by the conditions:

1. x ∈ C(v).

2. x is closer to 0 than to v.

3. x ∈ B(0,
√

2).

4. x does not lie in the cone over any simplex in Q0.

5. For every vertex u 6= 0, v such that the face {0, u, v} is a barrier or has circum-
radius less than

√
2 and such that none of the edges of this face pass through

a barrier, we have that x and v lie in the same half-space bounded by the
plane perpendicular to {0, u, v} and passing through 0 and the circumcenter of
{0, u, v}.

6. For every simplex {0, v1, v2, v} ∈ Q0, the segment {x, v} does not cross through
the cone C({0, v1, v2}).

Lemma 8.22. For every vertex v of height at most 2.36, we have C ′(v) ⊂ VC(0).
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Proof. Assume for a contradiction that x ∈ C ′(v)∩VC(u), with u 6= 0. Lemma 5.20
implies that x is unobstructed at 0. Thus |x− u| < |x| ≤ √

2.
Assume that the hypotheses of Condition 5 in Definition 8.21 are satisfied.

This, together with x ∈ C(v) implies that η({0, u, v}) <
√

2. An element x that is
closer to 0 than to v and in the same half-space as v (in the half-space bounded by
the perpendicular plane to {0, u, v} through 0 and the circumcenter of {0, u, v}) is
closer to 0 than to u, which is contrary to x ∈ VC(u). This completes the proof,
except in the case that an edge of the triangle {0, u, v} passes through a barrier b.
Assume that this is so.

The edge {0, v} cannot pass through a barrier because it is too short (length
less than 2t0).

Suppose that the edge {u, v} passes through a barrier b. By Lemma 8.15
applied to T = {0, u, v}, the origin is a vertex of b. There are three possibilities:

1. x is obstructed from u by b.

2. x is obstructed from v by b.

3. x is not obstructed from either u or v by b.

The first possibility runs contrary to the hypothesis x ∈ VC(u). The second possi-
bility, together with Lemma 8.18, implies that {v, b} is a simplex in the Q-system.
This is contrary to Condition 6 defining C ′(v).

The third possibility is eliminated as follows. Every point in the half-space
containing v and bounded by the plane of b

• is obstructed at u by b, or

• has distance at least
√

2 from u (because each edge of b has this property).

Since x has neither of these properties, we find that x must lie in the same half
space bounded by the plane of b as u. Let S be the simplex formed by b and v. If
S 6∈ Q0, then Lemma 8.18 shows that no part of the cone C(v) lies in the same half
space as u. So S ∈ Q0. By Condition 6 on C ′(v), the line from x to v does not
intersect the cone at the origin over b. But then the arc-length of the geodesic on
the unit sphere running from the projection of x to the projection of v is at least
arc(|v|,√8, 2) ≥ arc(|v|,√2,

√
2). This measurement shows that x lies outside the

cone C(v), which is contrary to assumption.
Suppose that the edge {0, u} passes through the barrier b. By Lemma 8.15

applied to T = {0, u, v}, we get that v is a vertex of b. There are again three
possibilities

1. x is obstructed from u by b.

2. x is not obstructed from either u or 0 by b.

3. x is obstructed from 0 by b.

The first possibility runs contrary to the hypothesis x ∈ VC(u). The second places
x outside the convex hull of 0, b, u and gives |x− u|+ |x| > √

8, which is contrary
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to |x− u| ≤ |x| ≤ √
2. The third possibility cannot occur by the observation made

at the beginning of the proof that x is unobstructed at 0.

It follows from the definition that C ′(v) is star convex at the origin. We make
this more explicit in the following lemma.

Lemma 8.23. Assume |v| ≤ 2.36. Let F (v) be the intersection of Ω(0) ∩ Ω(v);
that is, the face of the Voronoi cell of Ω(0) associated with the vertex v. Let F ′(v)
be the part of F (v)∩B(0, 1.18) that is not in the cone over any simplex in Q0. Let
H(v) be the closure of the union of segments from the origin to points of F ′(v). Let
C ′′(v) be the cone at the origin spanned by B(0, 1.18)∩B(v, 1.18). Then the closure
of C ′(v) ∩ C ′′(v) is equal to H(v).

Proof. We have F ′(v) ⊂ C ′′(v).
First we show that F ′(v) lies in the closure of C ′(v). For this, we check that

points of F ′(v) satisfy the (closed counterparts of) Conditions 1–6 defining C ′(v)
(see Definition 8.21). Conditions 1–4 are immediate from the definitions. If u is
a vertex as in Condition 5, then the half-space it determines is that containing
the origin and the edge of the Voronoi cell determined by u and v. Condition 5
now follows. Consider Condition 6. Suppose that {x, v} crosses the cone {0, v1, v2}
and that x ∈ F ′(v). (The point of intersection has height at most

√
2 and hence

lies in the convex hull of {0, v1, v2}.) This implies that x is obstructed at v. By
Lemma 5.22, this implies that |x − v| ≥ t0. Since x is equidistant from v and the
origin, we find that |x| ≥ t0, which is contrary to x ∈ B(0, 1.18).

To finish the proof, we show that C ′(v) ∩C ′′(v) ⊂ H(v). For a contradiction,
consider a point x ∈ C ′(v) ∩ C ′′(v) that is not in H(v). It must lie in the cone
over some other face of the Voronoi cell; say that of u. The constraints force the
circumradius of T = {0, v, u} to be at most 1.18. The edges of T are too short to
pass through a barrier. Thus, Condition 5 defining C ′(v) places a bounding plane
that is perpendicular to T and that runs through the origin and the circumcenter of
T . This prevents x from lying in the cone over the face of the Voronoi cell attached
to u.

Remark 8.24. In the lemma, it is enough to consider simplices along {0, w},
because

arc(|v|,
√

8, 2) > arc(|v|, 1.18, 1.18).

Corollary 8.25. If x ∈ VC(0), with 0 < |x| ≤ 1.18, if the point at distance 1.18
from 0 along the ray (0, x) does not lie in VC(0), and if x is not in the cone over
any simplex of Q0, then there is some v such that x ∈ C ′(v), and |v| ≤ 2.36.

Proof. If x ∈ VC(0)∩B(0, 1.18), then x ∈ Ω(0)∩B(0, 1.18) by Lemma 5.23. Also,
x lies in the cone over some face F (v) of the Voronoi cell Ω(0). The hypotheses
imply that x lies in the cone over F ′(v). Lemma 8.23 implies that x ∈ C ′(v).
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Lemma 8.26. Assume that |u| ≤ 2.36 and that |v| ≤ 2.36. The sets C ′(u), C ′(v)
do not overlap for u 6= v.

Proof. If there is some x in the overlap, then the circumradius of {0, u, v} is less
than

√
2. If no edge of {0, u, v} passes through a barrier, then the defining conditions

of C ′(u) and C ′(v) separate them along the plane perpendicular to {0, u, v} and
passing through the origin and the circumcenter of {0, u, v}.

If some edge of {0, u, v} passes through a barrier, then an argument like that
in the proof of Lemma 8.22 shows they do not overlap. In fact, the edges {0, u}
and {0, v} are too short to pass through a barrier Suppose the edge {u, v} passes
through a barrier b. By Lemma 8.15 applied to T = {0, u, v}, the origin is a vertex
of b. If neither of the simplices {u, b} and {v, b} are in Q0, then the plane through b
separates C ′(u) from C ′(v). Assume without loss of generality that S = {v, b} ∈ Q0.
By Condition 6 of the definition of C ′ (Definition 8.21), the segment from x to v
does not intersect the cone at the origin formed by b. As in the proof of Lemma 8.22,
x lies outside the cone C(v); unless x and v lie in the same half space formed by
the plane of b. The cone C(u) intersects this half space at x. By Lemma 8.18, we
have {u, b} ∈ Q0. Condition 6 in the definition of C ′ now keeps x at distance at
least

√
2 from u. This completes the proof.

Lemma 8.27. Let S be a simplex whose circumradius is less than
√

2. If five of
the six edges of the simplex do not pass through a barrier, then the sixth edge e does
not pass through a barrier either, unless both endpoints of the edge opposite e in S
are vertices of the barrier.

Proof. We leave this as an exercise. The point is that it is impossible to draw the
barrier without having one of its edges pass through a face of S, which is ruled out
by Lemma 4.21.

8.5 Proofs
We are finally prepared to give a proof of Theorem 8.4. We break the proof into
two lemmas.

Lemma 8.28. If R is a standard region that is not a triangle, then σR(D) ≤ 0.

Proof. This proof is an adaptation of the main result in [Hal97b, Theorem 4.1].
We consider the V -cell at a vertex, which we take to be the origin. We will partition
the V -cell into pieces. On each piece it will be shown that σ is nonpositive.

Throughout the proof we make use of the correspondence between σR(D) ≤ 0
and the bound of δoct on densities, on standard regions R (away from simplices in
the Q-system). This correspondence is evident from Lemma 7.18, which gives the
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formula

σR(D) = 4 (−δoctvolVCR′(D) + sol(R′)/3) +
∑

Q∈Q0(R,D)

σ(Q, c(Q,D), 0).

If σ(Q, c(Q,D), 0) ≤ 0, and volVCR′(D) 6= 0 then σR(D) ≤ 0 follows from the
inequality

(sol(R′)/3)/volVCR′(D) ≤ δoct.

This is an assertion about the ratio of two volumes, that is, a bound δoct on the
density of VCR′(D).

The parts of VC(D) that lie in the cone over some simplex in Q0 are easily
treated. If S is in Q0, then it is either a quasi-regular tetrahedron or a quarter. If
it is a quasi-regular tetrahedron, it is excluded by the hypothesis of the lemma. If
it is a quarter, σ(S) ≤ 0 by Lemma 8.12. The parts of VC(D) that lie in the cone
over some simplex in Q′0 \Q0 are also easily treated. The simplex S = {0, v, w,w′}
has circumradius less than

√
2. Use s-vor(S) on the simplex. Lemma 8.13 shows

that s-vor(S) < 0 as desired.
Next we consider the parts of VC(D) that are not in any C ′(v) (with |v| ≤ 2.36)

and that are not in any cone over a simplex in Q′0. (Note that by Lemmas 8.17
and 8.18, if a cone over some simplex in Q′0 meets C ′(v), then v must be a vertex
of that simplex.) By Corollary 8.25, if x belongs to this set, then all the points out
to radius 1.18 in the same direction belong to this set. By Lemma 8.8, the density
of such parts is less than δoct.

Finally, we treat the parts of VC(D) that are in some C ′(v) but that lie outside
all cones over simplices in Q′0.

Fix v of height at most 2.36. Let w1, w2, . . . , wk be the vertices w near {0, v}
such that either {0, v, w} is a barrier or it has circumradius less than

√
2, and such

that none of its edges passes through a barrier. We view the triangles {0, v, wi}
as a fan of triangles around the edge {0, v}. We assume that the vertices are
indexed so that consecutive triangles in this fan have consecutive indices (modulo
k). We will analyze the densities separately within each wedge, where a wedge is the
intersection along the line {0, v} of half spaces bounded by the half planes {0, v, wi}
and {0, v, wi+1}. Space is partitioned by these k different wedges. Fix i and write
w = wi, w′ = wi+1. Let S = {0, v, w, w′}.

Let F be the convex planar region in the perpendicular bisector of {0, v}
defined by the points inside the closure of C ′(v), inside the wedge between {0, v, w}
and {0, v, w′}, closer to v than to w, and closer to v than to w′. This planar region
is illustrated in Figure 8.2. The edge e lies in the line perpendicular to {0, v, w}
and through the circumcenter of {0, v, w}. It extends from the circumcenter out to
distance

√
2 from the vertices 0, v, w. If the circumradius of {0, v, w} is greater

than
√

2, the edge e reduces to a point, and only the arc a at distance
√

2 from 0
and v appears. Similar comments apply to e′.

Case 1. Circumradius of S is less than
√

2: We show that this case
does not occur. If none of the edges of this simplex pass through a barrier, then
this simplex belongs to Q′0, a case already considered. By definition of the wedges,
the edges {0, v}, {0, w}, {0, w′}, {v, w}, and {v, w′} do not pass through a barrier.
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e

a

e

F

Figure 8.2. A planar region.

Since five of the six edges do not pass through a barrier, and since S is formed by
consecutive triangles in the fan around {0, v}, the sixth does not pass through a
barrier either, by Lemma 8.27.

Case 2. Circumradius of S is at least
√

2: Let r ≥ √
2 be the circum-

radius. We claim that the edge e cannot extend beyond the wedge through the
half plane through {0, v, w′}. In fact, the circumcenter of {0, v, w,w′} lies on the
extension (in one direction or the other) of the segment e to a point at distance r
from the origin. If this circumcenter does not lie in the wedge, then the orientation
is negative along one of the faces {0, v, w} or {0, v, w′}. This face must have cir-
cumradius at least

√
2, by Lemma 5.18, and this forces the face to be a barrier. If

the orientation is negative along a barrier, then the simplex {0, v, w,w′} is a sim-
plex in Q0 (Lemmas 5.16 and 5.17). This is contrary to our assumption above that
{0, v, w, w′} is not in Q0.

These comments show that Figure 8.2 correctly represents the basic shape
of F , with the understanding that the edges e and e′ may degenerate to a point.
By construction, every point x in the open convex hull {F, 0} of F and 0 lies
in C ′(v) ⊂ VC(0). The convex hull {F, 0} is the union of three solids, two Rogers
simplices along the triangles {0, v, w} and {0, v, w′} respectively, and the conic solid
given by the convex hull of the arc a, v/2 and 0. By Lemmas 8.6 and 8.7, these
solids have density at most δoct.

This completes the proof that σR(D) is never positive on non-triangular stan-
dard regions R. Note that the decomposition into the parts of cones C ′(v) inside a
wedge is compatible with the partition of the unit sphere into standard regions, so
that the estimate holds over each standard region, and not just over the union of
the standard regions.

Lemma 8.29. If R is a standard region that is not a triangle, and if σR(D) = 0,
then (R,D) is a quad cluster. Moreover, the four corners of R in the quad cluster
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have height 2, forming a square of side 2.

Proof. To analyze the case of equality, first we note that any truncation at 1.18
produces a strict inequality (Lemma 8.8 is strict if the volume is nonzero), so that
every point must lie over a simplex in Q′0 or over some C ′(v). We have s-vor(S) < 0
for simplices with circumradius less than

√
2. The only simplices in Q0 that produce

equality are those with five edges of length 2 and a diagonal of length
√

8. Any
nontrivial arc a produces strict inequality (see Lemma 8.7, so we must have that e
and e′ meet at exactly distance

√
2 from 0 and v. Moreover, if e does not degenerate

to a point, the corresponding Rogers simplex gives strict inequality, unless {0, v, w}
is an equilateral triangle with side length 2. We conclude that the entire part
of the V -cell over the standard region must be assembled from Rogers simplices
R(1, η(2, 2, 2),

√
2), and quarters with lengths (2, 2, 2, 2, 2,

√
8). This forces each

vertex v of height at most 2t0 to have height 2. It forces each pair of triangles
{0, v1, v2} {0, v2, v3}, that determine consecutive edges along the boundary of the
standard region to meet at right angles:

dih(0, v2, v1, v3) = 0.

This forces the object to be a quad cluster of the indicated form.

We conclude the section with a proof of the main theorem. With all our
preparations in place, the proof is short.

Proof. Theorem 8.1 (Local Optimality) The hypothesis implies that there
are six quad clusters and eight quasi-regular tetrahedra at the origin of the de-
composition star. By Lemma 8.10, each quasi-regular tetrahedron scores at most
1 pt with equality if and only if the tetrahedron is regular with edge-length 2. By
Theorem 8.4, each quad cluster scores at most 0, with equality if and only if the
corners of the quad cluster form a square with edge-length 2 at distance 2 from the
origin. Thus, σ(D) is at most 8 pt. In the case of equality, there are twelve vertices
at distance 2 from the origin, forming eight equilateral triangles and six squares (all
of edge-length 2). These conditions are satisfied precisely when the arrangement is
Ufcc or Uhcp up to a Euclidean motion.



“fullkepler”
2005/11/14
page 110

i

i

i

i

i

i

i

i

110 Section 8. Local Optimality



“fullkepler”
2005/11/14
page 111

i

i

i

i

i

i

i

i

Section 9

The S-system

9.1 Overview
In this section, we define a decomposition of a V -cell. Let VC be the V -cell at the
origin. For any t > 0, let V (t) be the intersection of VC with the ball B(0, t) at the
origin of radius t. We write VC as the disjoint union of V (t0) and its complement
δ.

Assume that there is an upright quarter in the Q-system with diagonal {0, v}.
As usual, we call {0, v} an upright diagonal. We will define δ(v) ⊂ δ. It will be a
subset of a set of the form C(Dv) ∩ δ for some subset Dv of the unit sphere. The
sets Dv will be defined so as not to overlap one another for distinct v. Then the
sets δ(v) do not overlap one another either. We will give an explicit formula for the
volume of δ(v).

We will define a set S of simplices, each having a vertex at the origin. (The
letter ‘S’ is for simplex.) The vertices of the simplices will be vertices of the packing,
and their edges will have length at most 2

√
2. The sets C(S), for distinct S ∈ S,

will not overlap. Over a simplex S ∈ S, the V -cell will be truncated at a radius
tS ≥ t0. After defining the constants tS , we will set

VS(tS) = C(S) ∩ V (tS) = C(S) ∩B(tS) ∩VC(0).

That is, VS(tS) is the part of the V -cell at the origin, contained in the cone over
S and in the ball of radius tS . If VC(0) ∩ C(S) ⊂ B(tS) ⊂ B(t′S), then VS(tS) =
VS(t′S).

Since tS ≥ t0, the sets VS(tS) and δ may overlap. Nevertheless, we will show
that VS(tS) does not overlap any δ(v). Let V S(t0) be the set of points in V (t0)
that do not lie in C(S), S ∈ S. We will derive an explicit formula for the volume
of V S(t0).

In VC(0), there are nonoverlapping sets

δ(v), VS(tS), V S(t0).

Let δ′ be the complement in VC(0) of the union of these sets. These sets give a

111
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decomposition of VC(0). Corresponding to this decomposition is a formula for σ(D)
of the form

σ(D) = c-vor(V S(t0)) +
∑

S
c-vor(VS(tS))−

∑
v

4δoctvol(δ(v))− 4δoctvol(δ′).

Since vol(δ′) ≥ 0, we obtain an upper bound on σ(D) by dropping the rightmost
term.

9.2 The set δ(v)

Let {0, v} be the diagonal of an upright quarter in Q0. We define δ(v) ⊂ C(Dv)∩ δ
for an appropriate subset Dv of the unit sphere.

Definition 9.1. Set η0(h) = η(2h, 2, 2t0).

If h ≤ √
2, then η0(h) ≤ η0(

√
2) < 1.453.

Let D0 be the spherical cap on the unit sphere, centered along {0, v} and
having arcradius θ, where cos θ = |v|/(2η0(|v|/2)).

The area of D0 is 2π(1 − cos θ). Let v1, . . . , vk be the anchors around {0, v}
indexed cyclically. The radial projections of the edges {v, vi} (extended as neces-
sary) slice the spherical cap into k wedges Wi, between {v, vi} and {v, vj}, where
j ≡ i + 1 mod k, so that D0 = ∪Wi.

Definition 9.2. Let W be the set of wedges W = Wi such that either

1. W occupies more than half the spherical cap (so that its area is at least π(1−
cos θ)), or

2. |vi−vj | ≥ 2.77, rad(0, v, vi, vj) ≥ η0(|v|/2), and the circumradius of {0, vi, vj}
or {v, vi, vj} is ≥ √

2.

Fix i, j, with j ≡ i + 1 mod k. If W = Wi is a wedge in W, let {0, vi, v}⊥
be the plane through the origin and the circumcenter of {0, vi, v}, perpendicular to
{0, vi, v}. Skip the following step if the circumradius of {0, vi, v} is greater than
η0(|v|/2), but if the circumradius is at most this bound, let ci be the intersection
of {0, vi, v}⊥ with the circular boundary of W . Extend W by adding to W the
spherical triangle with vertices the radial projections of v, vi, and ci. Similarly,
extend W with the triangle from {v, vj , cj}, if the circumradius of {0, vj , v} permits.
(An example of this is illustrated in Fig. 9.1.) Let W e be extension of the wedge
obtained by adding these two spherical triangles.

We will define δ(v, W e) ⊂ C(W e) ∩ δ. Then δ(v) is defined as the union of
δ(v,W e), for W ∈ W. Let

Ew = {x : 2x · w ≤ w · w},

for w = v, vi, vj . These are half-spaces bounding the Voronoi cell. Set E` = Ev`
.
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C

Q

R

R2

1

Figure 9.1. An example of a set W e (shaded region).

If (2) holds, we let c be the radial projection of the circumradius of {0, vi, vj , v}
to the unit sphere. The arclength from c to the radial projection of v is θ′, where

cos θ′ = |v|/(2 rad) < |v|/(2η0) = cos θ.

We conclude that θ′ > θ and c does not lie in D0.

Definition 9.3. In both cases (1) and (2), set

∆(v,W e) = (Ev ∩ Ei ∩ Ej ∩ C(W e))
δ(v, W e) = ∆(v,W e) \B(t0).

Remark 9.4. There are some degenerate cases in this construction depending on
the number of anchors. If there is no anchor, then ∆(v, W e) is to be defined simply
as (Ev ∩ C(W e)). If there is one anchor vi, then

∆(v,W e) = (Ev ∩ Ei ∩ C(W e)).

Remark 9.5. The following remark applies when the points ci and cj have been
constructed, and is irrelevant when that step was skipped in the construction de-
scribed above. Observe that

Ev ∩ Ei ∩ Ej ∩ C(W e)

is the union of four Rogers simplices

R(|w|/2, η(0, v, v`), η0(|v|/2)), w = v, v`, ` = i, j

and a conic wedge over W between ci and cj. (The inequality θ′ > θ implies that
the Rogers simplices do not overlap.)

In general, we break ∆(v, W e) into an inner part ∆−(v, W e) (the part outside
the Rogers simplices together with (as many as) two Rogers simplices along (0, v)),
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and the Rogers simplices Rw, for w = vi, vj . We take Rw to be the empty set, when
there is no anchor w with η(0, v, w) < η0(|v|/2).

We present a series of lemmas that explore the geometry of the sets ∆(v, W e).
In the next few lemmas we make use of a function ε, which is defined as follows.

Definition 9.6. If Λ is a set of vertices containing v, let εv(Λ, x) ∈ Λ be given as
the vertex w ∈ Λ\{v} such that the ray from v through x intersects the perpendicular
bisecting plane of {v, w} before that of any other w′ ∈ Λ \ {v}. If the ray from v
through x does not intersect any of the planes, then we set ε to the default value
v. In cases of ties, resolve the tie in any consistent manner. If x ∈ Ω(0) (the
Voronoi cell at the origin), then x lies in the cone over the face attached to the
vertex ε0(Λ, x) ∈ Λ.

We define a function ε′ in a similar fashion. Assume εv(Λ, x) = w, where the
ray from v to x intersects the perpendicular bisector to {v, w} at x′. Set

ε′v(Λ, x) = εw/2(Λ \ {w}, x′).
That is, move along the face of the Voronoi cell from x until another face is en-

countered. Let the corresponding vertex be the value of ε′. If x ∈ Ω(0) in the cone
over the face attached to the vertex w, and if w/2 lies on that face, then x′ lies in
the sector of the face formed by the cone at w/2 generated by the edge of the Voronoi
cell between the faces associated to w and ε′0(Λ, x).

Lemma 9.7. Let S = {0, v, w, u} be a simplex. Assume that {0, v} is an up-
right diagonal of a quarter in the Q-system, that w and v are anchors of {0, v},
and that rad(S) < η0(|v|/2). Assume there is a wedge W of W along the face
{0, v, w} (on the same side of the face as u). Let Rw be the Rogers simplex
R(|w|/2, η(0, v, w), η0(|v|/2)) along the face {0, w, v} along the edge of {0, w} on
the same side of the face as u. Then

1. There exists an anchor w′ between u and w with |w−w′| ≤ 2t0, and |w′−w| ≥
2.77.

2. {0, v, u, w′} is an upright quarter in the Q-system and its face {0, v, w′} is a
barrier.

3. The barrier {0, v, w′} obstructs every point of Rw from u.

Proof. Since rad(S) < η0(|v|/2) is contrary to the conditions defining wedges,
the wedge must run from the face {0, v, w} to a face {0, v, w′}, where w′ is an
anchor between w and u. By the hypotheses defining wedges W ∈ W, we have
that the length of {u, w′} is at least 2.77. For the same reason, the circumradius of
{0, v, w, w′} is at least η0(|v|/2).

We claim that Rw lies in the convex hull of S = {0, v, w,w′}. Since |w−w′| ≥
2.77, we see that the orientation of each face of {0, v, w,w′} is positive. Since
rad(S) ≥ η0, we have

Rw ⊂ R(|w|/2, η(0, v, w), rad(S)) ⊂ S.
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Thus it is enough to show that each point of the convex hull of S is obstructed.
For this, it is enough to show that the extreme point w is obstructed from u by

the barrier {0, v, w′}. In other words, we show that the edge {w, v} passes through
{0, v, w′}. For this we show that no other geometrical configuration of points is
possible.

w′ is not in the convex hull of {0, v, w, u} by Lemma 4.15. The vertex w′ is
not enclosed over {0, v, w, u} because

E(S(2, 2, 2t0, 2t0, 2t0, 2(1.453), 2, 2, 2) > 2t0.

(The constant 1.453 is from Definition 9.1.) The edge {v, w′} does not pass through
{0, w, u}, for otherwise we would reach a contradiction

2η0(|v|/2) > 2 rad(S) ≥ |u−w| ≥ E(S(2, 2, 2,
√

8, 2, 2), 2, 2, 2.77) ≥ 2(1.453) ≥ 2η0(|v|/2).

We conclude that {u, w} passes through {0, v, w′}.

Lemma 9.8. Let F = {0, u1, u2} be a quasi-regular triangle. Let {0, v} be the
diagonal of an upright quarter in the Q-system. The set ∆(v, W e) does not overlap
the cone at 0 over the triangle F .

Proof. We prove the lemma for the subsets ∆−(v, W e) and Rw in two separate
cases, beginning with ∆−(v,W e). Let S be the simplex {0, u1, u2, v}.

Assume that the orientation of S along F is negative. The simplex S is
an upright quarter, so that u1 and u2 are anchors of v. This is contrary to the
construction of the wedges W in W. Thus, the orientation of F must be positive.

Assume that rad(S) < η0(|v|/2). Then again, u1 and u2 are anchors. It
follows that S is an upright quarter. As in the previous paragraph, this is contrary
to construction. Thus, rad(S) ≥ η0(|v|/2).

We now have that the orientation of F is positive and that rad(S) ≥ η0(|v|/2).
These two facts allow us to separate ∆−(v,W e) from {0, u1, u2, v} as follows. Each
interior point x of ∆−(v, W e) has

ε0({0, u1, u2, v}, x) = v.

Let F0 be the set of points in the intersection of Ω(0) with the convex hull of F .
Each point y in F0 has

ε0({0, u1, u2, v}, y) ∈ {u1, u2}.

Since ε0 takes distinct values on these two sets, they are disjoint.
Next consider the subset Rw, in the case that w ∈ {u1, u2}. To be definite,

assume that w = u1. The same argument as above establishes that the orientation
of F is positive and that rad(S) ≥ η0(|v|/2). Each interior point x of Rw has

ε′0({0, u1, u2, v}, x) = v
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But each point y in F0 has

ε′0({0, u1, u2, v}, y) ∈ {u1, u2}.
This proves this case.

Until the end of the proof, we may assume that w 6∈ {u1, u2}. If the value
of ε0({0, u1, u2, w}, ·) is w on interior points of Rw and in {u1, u2} on F0, then we
have separated the sets. Assume to the contrary, that ε takes value w at a point
x of F0. Let S′′ = {0, u1, u2, w}. This assumption implies that the orientation of
S′′ is negative along F . This in turn implies that S′′ is a quasi-regular tetrahedron.
The vertex v is not enclosed over S′′, because the simplices in the Q-system do not
overlap. For similar reasons, the face {0, v, w} does not overlap the simplex S′′. By
the previous case (when w ∈ {u1, u2}), the interior of Rw does not intersect the
faces of the quasi-regular tetrahedron S′′ along the edge {0, w}. These facts imply
that The interior of Rw is disjoint from S′′. In particular, it does not meet the cone
at 0 over the triangle F .

Assume finally that ε takes value u1 or u2 at an interior point y of Rw. (Say
u1.) Let S′ = {0, v, w, u1}. Assume that Rw lies on the same side of {0, v, w} as u1.
If rad(S′) < η0(|v|/2), then each point of Rw is obstructed from u1 (by Lemma 9.7).
But no point of F0 is obstructed from u1. Thus, Rw and F0 are disjoint in this case.
Assume that rad(S′) ≥ η0(|v|/2). If the orientation of {0, v, w} in S′ is negative,
then S′ is a quarter and the result follows. Assume that the orientation is positive.
Now ε0(S′, x) = w for x ∈ Rw, contrary to assumption.

We may now assume that Rw lies outside the simplex S′ on the opposite side
of the face {0, v, w}. This case is dismissed by Lemma 5.31, which guarantees that
the interior of Rw with ε = u1 are obstructed from u1 by {0, v, w}. However, none
of the points of F0 with ε = u1 are obstructed from u1.

Corollary 9.9. Each ∆(v,W e) lies entirely in the cone over the standard region
that contains {0, v}.

Proof. The cone over a standard region is bounded by the cones over the quasi-
regular triangles.

Lemma 9.10. Let F = {0, u1, u2} be a triangle. Assume that |u1| ≤ 2t0, |u2| ≤ 2t0,
and 2t0 ≤ |u1 − u2| ≤

√
8. Let {0, v} be the diagonal of an upright quarter in the

Q-system. Assume that if u1 and u2 are both anchors of v, then they are consecutive
anchors around v. Under these conditions, the set ∆(v,W e) does not overlap the
cone at 0 over the triangle F .

Proof. The proof is similar to that of Lemma 9.8. We prove the lemma for the
subsets ∆−(v,W e) and Rw in two separate cases, beginning with ∆−(v, W e). Let
S be the simplex {0, u1, u2, v}. The orientation of S along F is positive.

Assume that rad(S) < η0(|v|/2). Then u1 and u2 are anchors. By the hypothe-
ses of the lemma, they are consecutive anchors. By the rules defining ∆−(v, W e),
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there is no wedge W e between u1 and u2. Thus, the result follows in this case.
We now have that the orientation of F is positive and that rad(S) ≥ η0(|v|/2).

These two facts allow us to separate ∆−(v, W e) from the cone over {0, u1, u2, v} as
follows. Each interior point x of ∆−(v,W e) has

ε0({0, u1, u2, v}, x) = v.

Let F0 be the intersection of Ω(0) with the convex hull of F . Each point y in F0

has
ε0({0, u1, u2, v}, y) ∈ {u1, u2}.

Next consider the subset Rw, in the case that w ∈ {u1, u2}. To be definite,
assume that w = u1. The same argument as above establishes that the orientation
of F is positive and that rad(S) ≥ η0(|v|/2). Each interior point x of Rw has

ε′0({0, u1, u2, v}, x) = v

But each point y in F0 has

ε′0({0, u1, u2, v}, y) ∈ {u1, u2}.

This proves this case.
Consider the subset Rw, in the case that w 6∈ {u1, u2}. As in the previous

proof, if the value of ε0({0, u1, u2, w}, ·) is w on interior points of Rw and in {u1, u2}
on F0, then we have separated the sets. Assume first to the contrary, that ε0 takes
value w at a point x of F0. Let S′′ = {0, u1, u2, w}. Our assumption on ε0 implies
that the orientation of S′′ is negative along F , so that S′′ is a flat quarter. The vertex
v cannot be enclosed over S′′, for otherwise w, u1, and u2 would all be anchors of v,
which would mean that there is no region W ∈ W. Similarly, the triangle {0, v, w}
cannot overlap the triangle {0, u1, u2}, for otherwise w, u1, and u2 would again be
anchors, contrary to the hypothesis that u1 and u2 are consecutive anchors. Now
we invoke Lemma 9.8, to establish that Rw does not intersect S′′ and is therefore
disjoint from F0.

Assume finally, that ε0 takes value u1 or u2 at an interior point y of Rw. (Say
u1.) This case is identical to the parallel case in the proof of Lemma 9.8.

Lemma 9.11. Let F = {0, u1, u2} be a triangle. Assume that 2t0 ≤ |u1| ≤
√

8,
2 ≤ |u2| ≤ 2t0, and 2 ≤ |u1 − u2| ≤ 2t0. Let {0, v} be the diagonal of an upright
quarter in the Q-system. Under these conditions, the set ∆(v,W e) does not overlap
the cone at 0 over the triangle F .

Proof. Let S = {0, u1, u2, v}. The orientation of S along {0, u1, u2} is positive.
The circumradius rad(S) is at least η0(0, v, u1) ≥ η0(|v|/2).

We now have that the orientation of F is positive and that rad(S) ≥ η0(|v|/2).
We can then argue as in the proof of Lemmas 9.8 and 9.10, to get the result for
∆−(v, W e) and Rw (with w = u2).
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Consider the case Rw, with w 6= u2. As in these earlier proofs, we may assume
that ε0 takes value w at a point x of F0 (or that ε0 takes value in {u1, u2} at a point
y of Rw).

In the case ε0 = w at x ∈ F0, let S′′ = {0, u1, w, u2}. We have that ε0 = w
implies that the orientation of S′′ along {0, u1, u2} is negative. This in turn implies
that S′′ is an upright quarter. It is checked without difficulty that v is not enclosed
over S′′ and that the face {0, w, v} does not cross the face {0, u1, u2}. It follows from
Lemma 9.8 and the already treated cases of this lemma that Rw cannot intersect
S′′. Thus, it does not intersect the face {0, u1, u2} of S′′.

Finally, assume that ε0 takes value in {u1, u2} at a point y of Rw. The orienta-
tion of the face {0, v, w} is positive in the simplex {0, v, w, u1} and the circumradius
of {0, v, w, u1} is greater than η0(|v|/2). This implies that ε0 does not take the value
u1. Assume that ε0 = u2. This case is excluded in the same manner as the parallel
case in the earlier Lemmas 9.8 and 9.10.

Lemma 9.12. Let {0, v} be an upright diagonal of a quarter in the Q-system. If x
lies in the interior of ∆(v, W e), then x is unobstructed at 0.

Proof. For a contradiction, assume that x is obstructed at 0 by barrier T =
{u1, u2, u3}.

The convex hull of T can be partitioned into three sets T (i) depending on
which vertex of T is closest to a given point in the convex hull. (Ties can be
resolved in any consistent manner.) Let y ∈ ∆(v, W e) be the point in the convex
hull of T on the segment from 0 to x. Fix i so that y ∈ T (i). If v = ui, then each
point y of T (i) is closer to v than to 0. But each point of ∆(v, W e) is closer to 0
than to v. So x is not obstructed by T at 0.

We may now assume that v 6= ui.
Partition R3 geometrically into three sets V (ui), V (0), V (v) according to

which of {ui, 0, v} a point z ∈ R3 is closest to. (Again resolve ties in any consistent
manner.)

Assume further that maxj uj ≥ 2t0. This implies that y ∈ T (i) ⊂ V (v)∪V (ui).
On the other hand, we have by construction that y ∈ ∆(v, W e) ⊂ V (0). (There
are two cases involved in this conclusion, depending on whether ui is an anchor of
{0, v}.) However, the sets V (·) are disjoint; and we reach a contradiction. Thus,
under these assumptions, x is unobstructed at 0.

Next assume that maxj uj < 2t0. Let S = {0, u1, u2, u3}. Since T is a barrier,
S ∈ Q0. By assumption, {0, v} is a diagonal of an upright quarter in Q0. By the
nonoverlap of quarters in Q0, we see that v is not enclosed over S. The wedge W e

on the unit sphere is spherically star convex with respect to the center v/|v|. Thus,
if ∆(v, W e) intersects the convex hull of T at y, then ∆(v,W e) intersects the cone
over a face {0, u1, u2} of S at y′. (We can take y′/|y′| to lie on the cone generated
by the arc running from v/|v| to y/|y|. This is impossible by Lemmas 9.8 and 9.10.
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Lemma 9.13. Let {0, v} be the upright diagonal of a quarter in the Q0-system.
Then the interior of ∆(v, W e) is a subset of VC(0).

Proof. We begin by showing that ∆−(v, W e) ⊂ VC(0). Suppose to the contrary,
that a point x in the interior of ∆− lies in VC(w), with w 6= 0. Then x is closer to
w than to 0. Thus, η(0, v, w) < η0(|v|/2), and w is an anchor of {0, v}. The face
Ew in the construction ∆−(v, W e) prevents this from happening.

Now consider a point x of Rw, which we assume to lie in VC(u), with u 6= 0.
To avoid a trivial case, we may assume that w 6= u.

Assume that the orientation of S = {0, v, w, u} is negative along the face
{0, v, w}. Then S must be an upright quarter. By the construction of wedges
W ∈ W, we have that Rw must lie on the opposite side of the plane {0, v, w} from
u (for there is no wedge between the anchors of an upright quarter). The result
now follows from Lemma 5.31.

If rad(S) < η0(|v|/2), then u and w are anchors. In this case, the result follows
from Lemma 9.7.

Finally if the orientation is positive and if rad(S) ≥ η(|v|/2), then a point of
Rw cannot be closer to u than to 0.

9.3 Overlap

Lemma 9.14. The sets ∆(v, W e) do not overlap one another.

Proof. This is clear for two sets around the same vertex v. Consider the sets
∆(u,W e) and ∆(v, W e) at u and v.

To treat the points in ∆−(u,W e) and ∆−(v, W e), we may contract {u, v}
until |u− v| = 2. By the constraints on the edges of {0, u, v}, the circumcenter c of
this triangle lies in the convex hull of the triangle. We have η(0, u, v) ≥ η0(|v|/2)
and η(0, u, v) ≥ η0(|u|/2). So the plane through {0, c} perpendicular to the plane
{0, u, v} separates ∆−(u,W e) from ∆−(v, W e).

Next we separate points in ∆−(u, W e) from points of R
(v)
w , where w is an

anchor of v and u 6= v. Let S = {0, u, v, w}. The orientation of S along {0, v, w} is
positive. The circumradius of S satisfies

rad(S) ≥ η(0, u, v) > η0(|v|/2).

Thus, ε0(S, ·) takes different values on ∆−(u,W e) and R
(v)
w , so that the sets are

disjoint.
Next we separate points of R

(v)
w from R

(u)
w . (Notice that we assume that the

anchor is the same for the two Rogers simplices.) Let S = {0, u, v, w}. As above,
we have

rad(S) ≥ η0(|v|/2), η0(|w|/2).

The simplex S has positive orientation along the faces {0, u, w} and {0, v, w}. Let
cu be the circumcenter of {0, u, w}, let cv be the circumcenter of {0, v, w}, and let
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c be the circumcenter of S. Then R
(v)
w lies in the convex hull of {0, w, cv, c}, but

R
(u)
w lies in the convex hull of {0, w, cu, c}. Thus, the sets are disjoint.

Finally, we separate points of R
(u)
w from points of R

(v)
w′ , where w 6= w′ and

u 6= v. If the function ε0({0, w, w′}, ·) separates the sets, we are done. Otherwise,
we may assume say that ε0({0, w, w′}, x) = w′ from some x ∈ R

(u)
w . Let S =

{0, u, w, w′}.
If w′ is not an anchor of u, then rad(S) ≥ η0(|u|/2) and the orientation of S

along {0, w, u} is positive. In this case, we have ε0 = w on R
(u)
w , which is contrary

to assumption. Thus, we may assume that w′ is an anchor of u.
If the orientation of {0, u, w,w′} is negative along {0, w, u}, then {0, u, w, w′}

is a quarter, contrary to the existence of W ∈ W. So the orientation is positive.
If rad({0, u, w, w′}) < η0(|u|/2), then Lemma 9.7 implies that each point of Rw

is obstructed from w′. But no point of R
(v)
w′ is obstructed from w. (In fact, a

barrier that crosses ∆(v, W e) is inconsistent with Lemmas 9.8, 9.10, 9.11.) So
rad({0, u, w, w′}) ≥ η0(|u|/2). This is contrary to ε0({0, w, w′}, x) = w′ from some
x ∈ R

(u)
w .

9.4 The S-system defined
We consider three types of simplices A, B, C. Each type has its vertices at vertices
of the packing. The edge lengths of these simplices are at most 2

√
2.

A. This family consists of simplices S(y1, . . . , y6) whose edge lengths satisfy

y1, y2, y3 ∈ [2, 2t0], y4, y5 ∈ [2t0, 2.77], y6 ∈ [2, 2t0], and η(y4, y5, y6) <
√

2.

(These conditions imply y4, y5 < 2.697, because η(2.697, 2t0, 2) >
√

2.)
B. This family consists of certain flat quarters that are part of an isolated

pair of flat quarters. It consists of those satisfying y2, y3 ≤ 2.23, y4 ∈ [2t0, 2
√

2].
C. This family consists of certain simplices S(y1, . . . , y6) with edge lengths

satisfying y1, y4 ∈ [2t0, 2
√

2], y2, y3, y5, y6 ∈ [2, 2t0]. We impose the condition that
the first edge is the diagonal of some upright quarter in the Q-system, and that
the upper endpoints of the second and third edges (that is, the second and third
vertices of the simplex) are consecutive anchors of this diagonal. We also assume
that y4 < 2.77, or that both face circumradii of S along the fourth edge are less
than

√
2.

Lemma 9.15. If a vertex w is enclosed over a simplex S of type A, B, or C, then
its height is greater than 2.77. Also, {0, w} is not the diagonal of an upright quarter
in the Q-system.

Proof. In case A, η(y4, y5, y6) <
√

2, so an enclosed vertex must have height greater
than 2

√
2. It is too long to be the diagonal of a quarter.

In case B, we use the fact that the isolated quarter does not overlap any quarter
in the Q-system. We recall that a function E , defined in Section 4.2, measures the
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distance between opposing vertices in a pair of simplices sharing a face. An enclosed
vertex has length at least

E(S(2, 2, 2, 2
√

2, 2t0, 2t0), 2t0, 2, 2) > 2.77.

By the symmetry of isolated quarters, this means that the diagonal of a flat quarter
must also be at least 2.77.

In case C, the same calculation gives that the enclosed vertex w has height at
least 2.77. Let the simplex S be given by {0, v, v1, v2}, where {0, v} is the upright
diagonal. By Lemma 4.24, v1 and v2 are anchors of {0, w}. The edge between w
and its anchor cannot cross {v, vi} by Lemma 4.19. (Recall that two sets are said to
cross if their radial projections overlap.) The distance between w and v is at most
2t0 by Lemma 4.32. If {0, w} is the diagonal of an upright quarter, the quarter
takes the form {0, w, v1, v3}, or {0, w, v2, v3} for some v3, by Lemma 4.32. If both
of these are quarters, then the diagonal {v1, v2} has four anchors v, w, 0, and v3.
The selection rules for the Q-system place the quarters around this diagonal in the
Q-system. So neither {0, w, v1, v3} nor {0, w, v2, v3} is in the Q-system. Suppose
that {0, w, v1, v3} is a quarter, but that {0, w, v2, v3} is not. Then {0, w, v1, v3}
forms an isolated pair with {v1, v2, v, w}. In either case, the quarters along {0, w}
are not in the Q-system.

Remark 9.16. The proof of this lemma does not make use of all the hypotheses
on C. The conclusion holds for any simplex S(y1, . . . , y6), with y1, y4 ∈ [2t0, 2

√
2],

y2, y3, y5, y6 ∈ [2, 2t0].

9.5 Disjointness
Let S = {0, v1, v2, v3} be a simplex of type A, B, or C. An edge {v4, v5} of length
at most 2

√
2 such that |v4|, |v5| ≤ 2t0 cannot cross two of the edges {vi, vj} of S.

In fact, it cannot cross any edge {vi, vj} with |vi|, |vj | ≤ 2t0 by Lemma 4.30. The
only possibility is that the edge {v4, v5} crosses the two edges with endpoint v1,
with |v1| ≥ 2t0 in case C. But this too is impossible by Lemma 4.32.

Similar arguments show that the same conclusion holds for an edge {v4, v5}
of length at most 2t0 such that |v4| ≤ 2t0, v5 ≤ 2

√
2. The only additional fact that

is needed is that {v4, v5} cannot cross the edge between the vertex v of an upright
diagonal {0, v} and an anchor (Lemma 4.19).

Lemma 9.17. Consider two simplices S, S′, each of type A, B, C, or a quarter
in the Q-system. Assume that S and S′ do not lie in the cone over a quadrilateral
region. Then S and S′ do not overlap.

Proof. By hypothesis, the standard region is not a quadrilateral, and we thus
exclude the case of conflicting diagonals in a quad cluster. We claim that no vertex
w of S is enclosed over S′. Otherwise, w must have height at least 2t0, so that {0, w}
is the diagonal of an upright in the Q-system, and this is contrary to Lemma 9.15.
Similarly, no vertex of S′ is enclosed over S.
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Let {v1, v2} be an edge of S crossing an edge {v3, v4} of S′. By the preceding
remarks, neither of these edges can cross two edges of the other simplex. The
endpoints of the edges are not enclosed over the other simplex. This means that
one endpoint of each edge {v1, v2} and {v3, v4} is a vertex of the other simplex.
This forces S and S′ to have three vertices in common, say 0, v2, and v3. We have
S = {0, v1, v3, v2} and S′ = {0, v3, v2, v4}. If |v2| ∈ [2t0, 2

√
2], then we see that the

anchors v3, v4 of {0, v2} are not consecutive. This is impossible for simplices of type
C and upright quarters. Thus, v2 and v3 have height at most 2t0. We conclude,
without loss of generality, that |v4| ∈ [2t0, 2

√
2] and |v1 − v2| ≥ 2t0.

The heights of the vertices of S are at most 2t0, so it has type A or B, or it
is a flat quarter in the Q-system. If S′ is an upright quarter in the Q-system, then
it does not overlap an isolated quarter or a flat quarter in the Q-system, so S has
type A. This imposes the contradictory constraints on A

2.77 ≥ |v1 − v2| ≥ E(S(2t0, 2, 2, 2
√

2, 2t0, 2t0), 2, 2, 2) > 2.77.

Thus S′ has type C. This forces S to have type A. We reach the same contradiction
2.77 ≥ E > 2.77.

9.6 Separation of simplices of type A

Let VS = VC(0) ∩ C(S), for a simplex S of type A, B, or C. We truncate VS to
VS(tS) by intersecting VS with a ball of radius tS . The parameters tS depend on S.

If S has type A, we use tS = +∞ (no truncation). If v is enclosed over
S = {0, v1, v2, v3}, then since η(v1, v2, v3) <

√
2, the face {v1, v2, v3} has positive

orientation for S and {v, v1, v2, v3}. This implies that the V -cells at v and 0 do not
intersect, and there is no need to truncate. If a simplex adjacent to S has negative
orientation along a face shared with A, then it must be a quarter Q = {0, v4, v1, v2}
(Lemma 5.13) or quasi-regular tetrahedron. It cannot be an isolated quarter because
of the edge length constraint 2.77 on simplices of type A. If it is in the Q-system,
the face between S and the adjacent simplex is a barrier, and it does not interfere
with the V -cell over S. Assume that it is not in the Q-system. There must be a
conflicting diagonal {0, w}, where w is enclosed over Q. (w cannot be enclosed over
S by results of Lemma 9.17.) This shields the V -cell at v4 from C(S) by the two
barriers {0, w, v1} and {0, w, v2} of quarters in the Q-system.

This shows that nothing external to a simplex of type A affects the shape of
VS(tS) (that is, VC(0)∩C(S) consists of points of S that are closer to 0 than to the
other vertices of S). Thus, VS(tS) can be computed from S alone. Similarly, VS(tS)
does not influence the external geometry, since all faces have positive orientation.

We also remark that VS(tS) does not overlap any of the sets ∆(v,W e). This
is evident from Lemmas 9.8 and 9.10.

Our justification that VS(tS) can be treated as an independently scored entity
is now complete.
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9.7 Separation of simplices of type B

If S(y1, . . . , y6) has type B, we label vertices so that the diagonal is the fourth edge,
with length y4. We set tS = 1.385. The calculation of E in Lemma 9.15 shows that
any enclosed vertex over S has height at least 2.77 = 2tS .

Vertices outside C(S) cannot affect the shape of VS(tS). In fact, such a vertex
v′ would have to form a quarter or quasi-regular tetrahedron with a face of S. The
V -cell at v′ cannot meet C(S) unless it is a quarter that is not in the Q-system. But
by definition, an isolated quarter is not adjacent (along a face along the diagonal)
to any other quarters.

To separate the scoring of VS(tS) from the rest of the standard cluster, we
also show that the terms of Formula 7.12 for VS(tS) are represented geometrically
by solids that lie in the cone C(S). This is more than a formality because S can
have negative orientation along the face F formed by the origin and the diagonal
(the fourth edge).

Definition 9.18. Let βψ(θ) ∈ [0, π/2] be defined by the equations

cos2 βψ = (cos2 ψ − cos2 θ)/(1− cos2 θ), for ψ ≤ θ,

Let p and q be points on the unit sphere separated by arclength θ. If we place a
spherical cap of arcradius ψ on the unit sphere centered at p, then βψ(theta) is the
angle at q between the arc (q, p) and the tangent to the cap which passes through q.

Let S = {0, v1, v2, v3}, where vi is the endpoint of the ith edge. We establish
that the solids representing the conic and Rogers terms of Formula 7.12 lie over
C(S) by showing9 that βψ(arc(y1, y3, y5)) < dih3(S(y1, . . . , y6)), where dih3 is the
dihedral angle along the third edge. We use cosψ = y1/2.77 and assume y2, y3 ∈
[2, 2.23].

The reasons given in Section 9.6 for the disjointness of δ(v) and VS(tS) apply
to simplices of type B as well. This completes the justification that VS(tS) is an
object that can be treated in separation from the rest of the local V -cell.

9.8 Separation of simplices of type C

If S(y1, . . . , y6) is of type C, we label vertices so that the upright diagonal is the
first edge. We use tS = +∞ (no truncation). Each face of S has positive orientation
by Lemma 5.13. So VS(tS) ⊂ S.

Vertices outside S cannot affect the shape of VS(tS). Any vertex v′ would
have to form a quarter along a face of S. If the shared face lies along the first edge,
it is a quarter Q in the Q-system, because one and hence all quarters along this
edge are in the Q-system. The faces of this quarter are then barriers. If the shared
face lies along the fourth edge, then its length is at most 2.77, so that the quarter
cannot be part of an isolated pair. If it is not in the Q-system, there must be a
conflicting diagonal. The two faces along this conflicting diagonal of the adjacent

9calc-193836552
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pair in the Q-system (that is, the pair taking precedence over Q in the Q-system)
are barriers that shield the V -cell at v′ from S.

The reasons given in Section 9.6 for the disjointness of δ(v) and VS(tS) apply
to simplices of type C as well. This completes the justification that VS(tS) is an
object that can be treated in separation from the rest of the local V -cell.

9.9 Simplices of type C ′

We introduce a small variation on simplices of type C, called type C ′. We define a
simplex {0, v, v1, v2} of type C ′ to be one satisfying the following conditions.

1. The edge {0, v} is an upright diagonal of an upright quarter in the Q-system.

2. |v2| ∈ [2.45, 2t0].

3. v1 and v2 are anchors of v.

4. |v − v2| ∈ [2.45, 2t0].

5. The edge {v1, v2} is a diagonal of a flat quarter with face {0, v1, v2}.
It follows that v1 and v2 are consecutive anchors of {0, v}.
On simplices S of type C ′, we label vertices so that the upright diagonal is the

first edge. We use tS = +∞ (no truncation). Each face of S has positive orientation
by Lemma 5.13. So VS(tS) ⊂ S.

Simplices of type C ′ are separated from quarters in the Q-system and simplices
of types A and B by procedures similar to those described for type C. The following
lemma is helpful in this regard.

Lemma 9.19. The flat quarter along the face {0, v1, v2} is in the Q-system.

Proof.
E(S(2, 2, 2.45, 2

√
2, 2t0, 2t0), 2, 2, 2) > 2

√
2,

so nothing is enclosed over the flat quarter.

E(S(2, 2, 2, 2
√

2, 2t0, 2t0), 2t0, 2.45, 2) > 2
√

2,

so no edge between vertices of the packing can cross inside the anchored simplex.
This implies that the flat quarter does not have a conflicting diagonal and is not
part of an isolated pair.

Similar arguments show that there is not a simplex with negative orientation
along the top face of S.

Unlike the other cases, there can in fact be overlap between ∆(v, W e) and
simplex of type C ′, when the upright diagonal of the simplex is {0, v}. This is
because the conditions defining a wedge W ∈ W are not incompatible with the
conditions defining type C ′. Nevertheless, except in the obvious case where the
simplex of type C ′ and the wedge are both constructed between the same consecutive
anchors of {0, v}, there can be no overlap of a ∆(v, W e) with a simplex of type C ′.
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9.10 Scoring
The construction of the decomposition of the V -cell VC(0) is now complete. It
consists of the pieces

• δ(v), for each diagonal {0, v} of an upright quarter in the Q-system,

• truncations of Voronoi pieces VS(tS) for simplices of type A, B, or C (and on
rare occasion C ′),

• V S(t0), the truncation at t0 of all parts of VC(0) that do not lie in any of the
cones C(S) over simplices of type A, B or C,

• δ′, the part not lying in any of the preceding.

By the results of Sections 9.6, 9.7, 9.8, σ(D) can be broken into a corresponding
sum,

σR(D) =
∑

Q σ(Q) + σ(VP ), for quarters Q in the Q-system, where
σ(VP ) = c-vor(V S

P (t0)) +
∑

A,B,C c-vor(VS(tS))−∑
v 4δoctvol(δP (v))− 4δoctvol(δ′P ).

By dropping the final term, 4δoctvol(δ′P ), we obtain an upper bound on σ(VP ).
Because of the separation results of Sections 9.6–9.7, we may score V S

P (t0) by For-
mula 7.13. Bounds on the score of simplices of type B appear in calc-193836552.

Lemma 9.20. Let R be a standard region that is not a triangle in a decomposition
start D. τ0,R(D) ≥ 0.

Proof. Everything truncated at t0 can be broken into three types of pieces: Rogers
simplices R(a, b, t0), wedges of t0-cones, and spherical regions. (See Figure 8.1.)
The wedges of t0-cones and spherical regions can be considered as the degener-
ate cases b = t0 and a = b = t0 of Rogers simplices, so it is enough to show
that τ(R(a, b, t0)) ≥ 0. We have t0 >

√
3/2, so by Rogers’s lemma [Hal97a,

Lemma 8.6.2],
τ(R(a, b, t0)) > τ(R(1, η(2, 2, 2),

√
3/2)).

The right-hand side is zero. (In fact, the vanishing of the right-hand side is essen-
tially Rogers’s bound. When Rogers’s bound is met, τ = 0.)
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Section 10

Bounds on the Score in
Triangular and
Quadrilateral Regions

10.1 The function τ

We consider the functions σR(D) − λζ sol(R) pt, for λ = 0, 1, or 3.2, where R is a
standard cluster. We write

τR(D) = sol(R)ζ pt− σR(D).

We will see that τR(D) has a simple interpretation. If D is a decomposition star
with standard clusters {R}, set τ(D) =

∑
R τR(D).

Lemma 10.1. τR(D) ≥ 0, for all standard clusters R.

Proof. If R is not a quasi-regular tetrahedron, then σR(D) ≤ 0 by Theorem 8.4
and sol(R) > 0, so that the result is immediate. If R is a quasi-regular tetrahedron,
the result appears in the archive of inequalities calc-53415898.

Lemma 10.2.
σ(D) = 4πζ pt− τ(D).

Proof. Let {R} be the standard clusters in D. Then

σ(D) =
∑

R

σRi(D) + (4π −
∑

R

sol(Ri))ζ pt = 4πζ pt−
∑

R

τRi(D).

Since 22.8 > 4πζ and 14.8 pt > 4πζ pt−8 pt, we find as an immediate corollary
that if there are standard clusters satisfying τR1(D) + · · ·+ τRk

(D) ≥ 14.8 pt, then
D does not contravene.

127
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The function τR(D) gives the amount squandered by a particular standard
cluster R. If nothing is squandered, then τRi

(D) = 0 for every standard cluster,
and the upper bound is 4πζ pt ≈ 22.8 pt. To say that a decomposition star does not
contravene is to say that at least (4πζ − 8)pt ≈ 14.8 pt are squandered.

Remark 10.3. (This remark is not used elsewhere.) The bound σ(D) ≤ 4πζ pt
implies Rogers’s bound on density. It is the unattainable bound that would be ob-
tained by packing regular tetrahedra around a common vertex with no distortion
and no gaps. (More precisely, in the terminology of [Hal92], the score s0 = 4πζ pt
corresponds to the effective density 16πδoct/(16π − 3s0) =

√
2/ζ ≈ 0.7796, which

is Rogers’s bound.) Every positive lower bound on some τR(D) translates into an
improvement on Rogers’s bound.

Lemma 10.4. A triangular standard region does not contain any enclosed vertices.

Proof. This fact is proved in [Hal97a, Lemma 3.7].

10.2 Types
Let v be a vertex of height at most 2t0. We say that v has type (p, q) if every
standard region with a vertex at v̄ (the radial projection of v) is a triangle or a
quadrilateral, and if there are exactly p triangular faces and q quadrilateral faces
that meet at v̄. We write (pv, qv) for the type of v.

This section derives the bounds on the scores of the clusters around a given
vertex as a function of the type of the vertex. Define constants τLP(p, q)/pt by
Table 10.1. The entries marked with an asterisk will not be needed.

τLP(p, q)/pt q = 0 1 2 3 4 5

p = 0 * * 15.18 7.135 10.6497 22.27
1 * * 6.95 7.135 17.62 32.3
2 * 8.5 4.756 12.9814 * *
3 * 3.6426 8.334 20.9 * *
4 4.1396 3.7812 16.11 * * *
5 0.55 11.22 * * * *
6 6.339 * * * * *
7 14.76 * * * * *

(10.1)

Lemma 10.5. Let S1, . . . , Sp and R1, . . . , Rq be the tetrahedra and quad clusters
around a vertex of type (p, q). Consider the constants of Table 10.1. Now,

∑p
τ(Si) +

∑q
τRi(D) ≥ τLP(p, q),
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Proof. Set

(d0
i , t

0
i ) = (dih(Si), τ(Si)), (d1

i , t
1
i ) = (dih(Ri), τ(Ri)).

The linear combination
∑p

τ(Si) +
∑q

τRi(D) is at least the minimum of
∑p

t0i +∑q
t1i subject to

∑p
d0

i +
∑q

d1
i = 2π and to the system of linear inequalities calc-

830854305 and the system of linear inequalities calc-940884472 (obtained by
replacing τ and dihedral angles by tji and dj

i ). The constant τLP(p, q) was chosen to
be slightly smaller than the actual minimum of this linear programming problem.

The entry τLP(5, 0) is based on Lemma 10.6, k = 1.

Lemma 10.6. Let v1, . . . , vk, for some k ≤ 4, be distinct vertices of a decomposition
star of type (5, 0). Let S1, . . . , Sr be quasi-regular tetrahedra around the edges {0, vi},
for i ≤ k. Then

r∑

i=1

τ(Si) > 0.55k pt,

and
r∑

i=1

σ(Si) < r pt− 0.48k pt.

Proof. We have τ(S) ≥ 0, for any quasi-regular tetrahedron S. We refer to the
edges y4, y5, y6 of a simplex S(y1, . . . , y6) as its top edges. Set ξ = 2.1773.

The proof of the first inequalities relies on seven calculations10. Throughout
the proof, we will refer to these inequalities simply as Inequality i, for i = 1, . . . , 7.

We claim (Claim 1) that if S1, . . . , S5 are quasi-regular tetrahedra around an
edge {0, v} and if S1 = S(y1, . . . , y6), where y5 ≥ ξ is the length of a top edge e on S1

shared with S2, then
∑5

1 τ(Si) > 3(0.55) pt. This claim follows from Inequalities 1
and 2 if some other top edge in this group of quasi-regular tetrahedra has length
greater than ξ. Assuming all the top edges other than e have length at most ξ, the
estimate follows from

∑5
1 dih(Si) = 2π and Inequalities 3, 4.

Now let S1, . . . , S8 be the eight quasi-regular tetrahedra around two edges
{0, v1}, {0, v2} of type (5, 0). Let S1 and S2 be the simplices along the face
{0, v1, v2}. Suppose that the top edge {v1, v2} has length at least ξ. We claim
(Claim 2) that

∑8
1 τ(Si) > 4(0.55) pt. If there is a top edge of length at least ξ

that does not lie on S1 or S2, then this claim reduces to Inequality 1 and Claim 1.
If any of the top edges of S1 or S2 other than {v1, v2} has length at least ξ, then
the claim follows from Inequalities 1 and 2. We assume all top edges other than
{v1, v2} have length at most ξ. The claim now follows from Inequalities 3 and 5,
since the dihedral angles around each vertex sum to 2π.

We prove the bounds for τ . The proof for σ is entirely similar, but uses the
constant ξ = 2.177303 and seven new calculations11 rather than the seven given

10calc-636208429
11calc-129662166
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above. Claims analogous to Claims 1 and 2 hold for the σ bound by this new group
of seven inequalities.

Consider τ for k = 1. If a top edge has length at least ξ, this is Inequality 1.
If all top edges have length less than ξ, this is Inequality 3, since dihedral angles
sum to 2π.

We say that a top edge lies around a vertex v if it is an edge of a quasi-regular
tetrahedron with vertex v. We do not require v to be the endpoint of the edge.

Take k = 2. If there is an edge of length at least ξ that lies around only one of
v1 and v2, then Inequality 1 reduces us to the case k = 1. Any other edge of length
at least ξ is covered by Claim 1. So we may assume that all top edges have length
less than ξ. And then the result follows easily from Inequalities 3 and 6.

Take k = 3. If there is an edge of length at least ξ lying around only one of
the vi, then Inequality 1 reduces us to the case k = 2. If an edge of length at least
ξ lies around exactly two of the vi, then it is an edge of two of the quasi-regular
tetrahedra. These quasi-regular tetrahedra give 2(0.55) pt, and the quasi-regular
tetrahedra around the third vertex vi give 0.55 pt more. If a top edge of length at
least ξ lies around all three vertices, then one of the endpoints of the edge lies in
{v1, v2, v3}, so the result follows from Claim 1. Finally, if all top edges have length
at most ξ, we use Inequalities 3, 6, 7.

Take k = 4. Suppose there is a top edge e of length at least ξ. If e lies
around only one of the vi, we reduce to the case k = 3. If it lies around two of
them, then the two quasi-regular tetrahedra along this edge give 2(0.55) pt and the
quasi-regular tetrahedra around the other two vertices vi give another 2(0.55) pt.
If both endpoints of e are among the vertices vi, the result follows from Claim 2.
This happens in particular if e lies around four vertices. If e lies around only three
vertices, one of its endpoints is one of the vertices vi, say v1. Assume e is not
around v2. If v2 is not adjacent to v1, then Claim 1 gives the result. So taking v1

adjacent to v2, we adapt Claim 1, by using all seven Inequalities, to show that the
eight quasi-regular tetrahedra around v1 and v2 give 4(0.55) pt. Finally, if all top
edges have length at most ξ, we use Inequalities 3, 6, 7.

In a special case, the constant of Lemma 10.6 can be improved by a small
amount. This small improvement will be used in Paper V.

Lemma 10.7. Let v be a vertex of a decomposition star of type (5, 0). Let S1, . . . , S5

be quasi-regular tetrahedra around the edge {0, v}. Then

5∑

i=1

σ(Si) < 4.52 pt− 10−8.

Proof. If any of the top edges has length greater than ξ, we use a slightly improved
calculation12 that yields this constant. Otherwise, the same calculation13 that was

12calc-241241504-1
13calc-82950290
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used in the previous lemma gives the desired estimate

∑
σ < 5(0.31023815)− 2π(0.207045) < 4.52 pt− 10−8

10.3 Limitations on Types
Recall that a vertex of a planar map has type (p, q) if it is the vertex of exactly p
triangles and q quadrilaterals. This section restricts the possible types that appear
in a decomposition star.

Let t4 denote the constant 0.1317 ≈ 2.37838774 pt.

Lemma 10.8. If R is a quad cluster, then

τR(D) ≥ t4.

Proof. A calculation14 asserts precisely this.

Lemma 10.9. The following eight types (p, q) are impossible: (1) p ≥ 8, (2) p ≥ 6
and q ≥ 1, (3) p ≥ 5 and q ≥ 2, (4) p ≥ 4 and q ≥ 3, (5) p ≥ 2 and q ≥ 4, (6)
p ≥ 0 and q ≥ 6, (7) p ≤ 3 and q = 0, (8) p ≤ 1 and q = 1.

Proof. Calculations15 give a lower bound on the dihedral angle of p simplices and
q quadrilaterals at 0.8638p + 1.153q and an upper bound of 1.874445p + 3.247q. If
the type exists, these constants must straddle 2π. One readily verifies in Cases 1–8
that these constants do not straddle 2π.

Lemma 10.10. If the type of any vertex of a decomposition star is one of (4, 2),
(3, 3), (1, 4), (1, 5), (0, 5), (0, 2), then the decomposition star does not contravene.

Proof. According to Table 10.1, we have τLP(p, q) > (4πζ−8) pt, for (p, q) = (4, 2),
(3, 3), (1, 4), (1, 5), (0, 5), or (0, 2). By Lemma 10.2, the result follows in these cases.

Remark 10.11. In summary of the preceding two lemmas, we find that we may

14calc-996268658
15calc-657406669, calc-208809199, calc-984463800, and calc-277330628
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restrict our attention to the following types of vertices.

(7, 0)
(6, 0)
(5, 0) (5, 1)
(4, 0) (4, 1)

(3, 1) (3, 2)
(2, 1) (2, 2) (2, 3)

(1, 2) (1, 3)
(0, 3) (0, 4)

It will be shown in Lemma 12.3, that the type (7, 0) does not occur in a contravening
decomposition star.

10.4 Bounds on the Score in Quadrilateral Regions
If the quad cluster has a diagonal of length at most

√
8 between two corners, there

are three possible decompositions. (1) The two quarters formed by the diagonal
lie in the Q-system so that the scoring rules for the Q-system are used. (2) There
is a second diagonal of length at most

√
8, and we use the two quarters from the

second diagonal for the scoring. (3) There is an enclosed vertex that makes the
quad cluster into a quartered octahedron and the four upright quarters are in the
Q-system.

Now suppose that neither diagonal is less than
√

8 and the quad cluster is
not a quartered octahedron. If there is no enclosed vertex of length at most

√
8,

the quad cluster contains no quarters. An upper bound on the score of the quad
cluster (P, D) is vorP (D,

√
2). The remaining cases are called mixed quad clusters.

Mixed quad clusters enclose a vertex of height at most
√

8 and do not contain flat
quarters.

Lemma 10.12. Assume a figure exists with vertices v1, . . . , v4, v subject to the
constraints

2 ≤ |vi| ≤ 2t0,
2 ≤ |vi − vi+1| ≤ 2t0,
2 ≤ |vi − vi+2|,
hi ≤ |v − vi|,
2 ≤ |v| ≤ 2t0, for i = 1, . . . , 4 (mod 4)

where hi are fixed constants that satisfy hi ∈ [2, 2
√

2). Let L be the quadrilateral on
the unit sphere with vertices vi/|vi| and edges running between consecutive vertices.
Assume that v lies in the cone at the origin obtained by scaling L. Then another
figure exists made of a (new) collection of vectors v1, . . . , v4 and v subject to the
constraints above together with the additional constraints

|vi − vi+1| = 2t0
|vi| = 2, for i = 1, . . . , 4,
|v| = 2t0.
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Moreover, the quadrilateral L may be assumed to be convex.

Proof. This lemma in pure geometry is a special case of [Hal97a, Lemma 4.3].

Lemma 10.13. A quadrilateral region does not enclose any vertices of height at
most 2t0.

Proof. Let v1, . . . , v4 be the corners of the quad cluster, and let v be an enclosed
vertex of height at most 2t0. We cannot have |vi − v| ≤ 2t0 for two different ver-
tices vi, because two such inequalities would partition the region into two separate
standard regions instead of a single quadrilateral region.

We apply Lemma 10.12 to assume

|vi − vi+1| = 2t0, |vi| = 2, |v| = 2t0,

for i = 1, . . . , 4. Reindexing and perturbing v as necessary, we may assume that
2 ≤ |v1 − v| ≤ 2t0 and |vi − v| ≥ 2t0, for i = 2, 3, 4. Moving v, we may assume
it reaches the minimal distance to two adjacent corners (2 for v1 or 2t0 for vi,
i > 1). Keeping v fixed at this minimal distance, perturb the quad cluster along
its remaining degree of freedom until v attains its minimal distance to three of the
corners. This is a rigid figure. There are four possibilities depending on which
three corners are chosen. Pick coordinates to show that the distance from v to the
remaining vertex violates its inequality.

Lemma 10.14. The score of a mixed quad cluster is less than −1.04 pt.

Proof. Any enclosed vertex in a quad cluster has length at least 2t0 by Lemma 10.13.
In particular, the anchors of an enclosed vertex are corners of the quad cluster.
There are no flat quarters.

We generally truncate the V -cell at
√

2 as in the proof of Theorem 8.4. By
that lemma, it breaks the V -cell into pieces whose score is nonpositive. Thus, if we
identify certain pieces that score less than −1.04 pt, the result follows. Nevertheless,
a few simplices will be left untruncated in the following argument. We will leave
a simplex untruncated only if we are certain that each of its faces has positive
orientation and that the simplices sharing a face F with S either lie in the Q-
system or have positive orientation along F . If these conditions hold, we may use16

the function s-vor on S rather than truncation s-vor0.
In this proof, by enclosed vertex, we mean one of height at most 2

√
2. Let v be

an enclosed vertex with the fewest anchors. If there are no anchors, the right circular
cone C(h, η0(h)) (aligned along {0, v}; see Definition 7.22) belongs to VC(0), where
η0(h) = η(2h, 2, 2t0) as in Definition 9.1 and |v| = 2h. In fact, if such a point lies in
VC(u), with u 6= v, then u must be a corner of the quad cluster or an enclosed vertex
of height at least 2t0. In either case, the right circular cone belongs to VC(0). By

16calc-185703487, calc-69785808, and calc-104677697
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Formula 7.11, the score of this cone is 2π(1− h/η0(h))φ(h, η0(h)). An optimization
in one variable gives an upper bound of −4.52 pt, for t0 ≤ h ≤ √

2. This gives the
bound of −1.04 pt in this case.

If there is one anchor, we cut the cone in half along the plane through {0, v}
perpendicular to the plane containing the anchor and {0, v}. The half of the cone
on the far side of the anchor lies under the face at v of the V -cell. We get a bound
of −4.52 pt/2 < −1.04 pt.

To treat the remaining cases, we define a function K(S) on certain simplices
S with circumradius at least

√
2. Let S = S(y1, y2, . . . , y6). Let R(a, b, c) denote a

Rogers simplex. Set

K(S) = K0(y1, y2, y6) + K0(y1, y3, y5) + dih(S)(1− y1/
√

8)φ(y1/2,
√

2), (10.2)

where

K0(y1, y2, y6) = r-vor(R(y1/2, η(y1, y2, y6),
√

2)) + r-vor(R(y2/2, η(y1, y2, y6),
√

2))
−dih(R(y1/2, η(y1, y2, y6),

√
2))(1− y1/

√
8)φ(y1/2,

√
2).

(If the given Rogers simplices do not exist because the condition 0 < a < b < c is
violated, we set the corresponding terms in these expressions to 0.) The function
K(S) represents the part of the score coming from the four Rogers simplices along
two of the faces of S, and the conic region extending out to

√
2 between the two

Rogers simplices along the edge y1 (Figure 10.1). This region is closely related to
the solids ∆(v,W e) of Section 9.3, with the difference that the solids ∆ lie in a ball
of radius η0(|v|/2), but the solids here are truncated at

√
2.

Figure 10.1. The set measured by the function K(S).

In the remaining cases, each enclosed vertex has at least two anchors. Each
anchor is a corner of the quad cluster. Fix an enclosed vertex v. Suppose that v1,
a corner, is an anchor of v. Assume that the face {0, v, v1} bounds at most one
upright quarter. We sweep around the edge {0, v1}, away from the upright quarter
if there is one, until we come to another enclosed vertex v′ such that {0, v1, v

′} has
circumradius less than

√
2 or such that v1 is an anchor of {0, v′}. If such a vertex

v′ does not exist, we sweep all the way to v2 a corner of the quad cluster adjacent
to v1.

If v′ exists, then various calculations17 give the bound −1.04 pt, depending on
the size of the circumradius of {0, v, v′}. This allows us to assume that we do not

17calc-104677697, calc-69785808, calc-586706757, and calc-87690094
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encounter such an enclosed vertex v′ whenever we sweep away, as above, from the
face formed by an anchor.

Now consider the simplex S = {0, v1, v2, v}, where v1 is an anchor of {0, v}.
We assume that it is not an upright quarter. There are three alternatives. The
first is that S decreases the score of the quarter by at least 0.52 pt. Calculations18

show that this occurs if the circumradius of the face {0, v, v2} is less than
√

2, or if
the circumradius of the face is greater than

√
2, provided that the length of {v, v1}

is at most 2.2. The second alternative19 is that the face {0, v, v1} of S is shared
with a quarter Q and that S and Q taken together bring the score down by 0.52 pt.
In fact, if there are two such simplices S and S′ along Q, then the three simplices
Q, S, and S′ pull the score20 below −1.04 pt. The third alternative is that there
is a simplex S′ = {0, v, v, v3} sharing the face {0, v, v1}, which, like S, scores less
than −0.31 pt. In each case, S and the adjacent simplex through {0, v, v1} score less
than −0.52 pt. Since v has at least two anchors, the quad cluster scores less than
2(−0.52) pt = −1.04 pt.

10.5 A Volume Formula
In Definition 9.3, we found a solid δ(v, W e) that lies outside the ball of radius t0 at
0 but inside VC(0). We now develop a formula for its volume.

Set φ0 = φ(t0, t0) ≈ −0.5666. We define

crown(h) = 2π(1− h/η0(h))(φ(h, η0(h))− φ0). (10.3)

It is equal to−4δoct times the volume of the region outside the sphere of radius t0 and
inside the finite cone C(h, η0(h)). If v is an enclosed vertex of height 2h ∈ [2t0,

√
8],

such that every other vertex v′ of the standard cluster satisfies

η(|v|, |v′|, |v − v′|) ≥ η0(h),

then the solid represented by crown(|v|/2) lies outside the truncated V -cell, but
inside the V -cell, so that if P is a quad cluster,

c-vor(VP ) < c-vor0(VP ) + crown(|v|/2).

If a vertex v′ satisfies η(|v|, |v′|, |v − v′|) ≤ η0(h), then by the monotonicity of the
circumradius of acute triangles, v′ is an anchor of v. This anchor clips the crown
just defined, and we add a correction term anc(|v′|, |v|, |v− v′|) to account for this.
Figure 10.2 illustrates the terms in the definition of anc().

Set

anc(y1, y2, y6) = − dih(R1) crown(y1/2)/(2π)− sol(R1)φ0 + r-vor(R1)
−dih(R2)(1− y2/2t0)(φ(y2/2, t0)− φ0)− sol(R2)φ0 + r-vor(R2),

(10.4)
18calc-185703487 and calc-441195992
19calc-848147403, calc-969320489, and calc-975496332.
20calc-766771911
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v

v

R

R

1

2

Figure 10.2. An illustration of the terms anc.

where Ri = R(yi/2, η(y1, y2, y6), η0(y1/2)), for i = 1, 2. In general, there are Rogers
simplices on both sides of the face {0, v, v′), and this gives a factor of 2. For example,
if v has a single anchor v′, then

c-vor(VP ) < c-vor0(VP ) + crown(|v|/2) + 2 anc(|v|, |v′|, |v − v′|).

However, if the anchor gives a face of an upright quarter, only one side of the face
lies in the V -cell, so that the factor of 2 is not required. For example, v′ has context
(2, 1) with upright quarter Q, and if there are no other enclosed vertices, and if
v′, v′′ are the anchors along the faces of the quarter, then

c-vor(VP ) < c-vor0(VP ) + (1− dih(Q)/(2π)) crown(|v|/2)
+anc(|v|, |v′|, |v − v′|) + anc(|v|, |v′′|, |v − v′′|).

In general, when there are multiple anchors around the same enclosed vertex v, we
add a term (2−k) anc for each anchor, where k ∈ {0, 1, 2} is the number of quarters
bounded by the face formed by the anchor. We must be cautious (see Condition 2
in Definition 9.2 in the use of this formula. If the circumradius of {0, v, v′, v′′} is
less than η0(|v|/2), the Rogers simplices used to define the terms anc() at v′ and v′′

overlap. When this occurs, the geometric decomposition on which the correction
terms anc() are based is no longer valid. In this case, other methods must be used.

C

Q

R

R2

1

Figure 10.3. The terms anc near an upright quarter.
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If (P,D) is a mixed quad cluster, let (P, D′) be the new quad cluster obtained
by removing all the enclosed vertices. We define a V -cell V (P, D′) of (P, D′) and
the truncation of V (P, D′) at t0. We take its score vor0,P (D′) as we do for standard
clusters. (P, D′) does not contain any quarters.

Lemma 10.15. If (P, D) is a mixed quad cluster, σP (D′) < vor0,P (D).

Remark 10.16. The special case of the proof where an upright quarter has context
c(Q) = (2, 1) will be applied in Section 11.2 in situations other than mixed quad
clusters.

Proof. Suppose there exists an enclosed vertex that has context (2, 1); that is,
there is a single upright quarter Q = S(y1, y2, . . . , y6) and no additional anchors.
In this context σ(Q) = µ(Q). Let v be the enclosed vertex. To compare σP (D)
with vor0,P (D′), consider the V -cell near Q. The quarter Q cuts a wedge of angle
dih(Q) from the crown at v. There is an anchor term for the two anchors of v
along the faces of Q. Let V v

P be the truncation at height t0 of VP near v and under
the four Rogers simplices stemming from the two anchors. (Figure 10.3 shades the
truncated parts of the quad cluster.) As a consequence

c-vor(VP ) < (1−dih(Q)/(2π)) crown(y1/2)+anc(y1, y2, y6)+anc(y1, y3, y5)+c-vor(V v
P ).

(10.5)
Combining this inequality with calculations21, we find

c-vor(VP ) + µ(Q) < c-vor(V v
P ) + s-vor0(Q). (10.6)

Now suppose there is an enclosed vertex v with context (3, 1). Let the quad
cluster have corners v1, v2, v3, v4, ordered consecutively. Suppose the two quarters
along v are Q1 = {0, v, v1, v2} and Q2 = {0, v, v2, v3}. We consider two cases.
Case 1: dih(Q1) + dih(Q2) < π or rad(0, v, v1, v3) ≥ η(|v|, 2, 2t0). In this case, the
use of correction terms to the crown are legitimate as in Definition 9.2. Proceeding
as in context (2, 1), we find that

c-vor(VP ) < (1−(dih(Q1)+dih(Q2))/(2π)) crown(|v|/2)+anc(F1)+anc(F2)+c-vor(V v
P ).

(10.7)
Here V v

P is defined by the truncation at height t0 under the V -face determined by
v and under the Rogers simplices stemming from the side of Fi that occur in the
definition of anc. Also, anc(Fi) = anc(yi, yj , yk) for a face Fi with edges yi along
an upright quarter. By a calculation22 applied to both Q1 and Q2, we have

c-vor(VP ) +
2∑

i=1

σ(Qi) < c-vor(V v
P ) +

2∑

i=1

s-vor0(Qi). (10.8)

That is, by truncating near v, and changing the scoring of the quarters to s-vor0,
we obtain an upper bound on the score.

21calc-906566422, calc-703457064, and calc-175514843
22calc-554253147
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Case 2: dih(Q1) + dih(Q2) ≥ π and rad(0, v, v1, v3) ≤ η0(|v|/2). The anchor terms
cannot be used here. In the mixed case,

√
8 < |v1 − v3|, so

√
2 <

1
2
|v1 − v3| ≤ rad ≤ η0(|v|/2),

and this implies |v| ≥ 2.696. We have23

2∑

i=1

σ(Qi) <

2∑

i=1

s-vor0(Qi) +
2∑

i=1

0.01(π/2− dih(Qi)) <

2∑

i=1

s-vor0(Qi).

Inequality 10.8 holds, for V v
P = VP .

In the general case, we run over all enclosed vertices v and truncate around
each vertex. For each vertex we obtain Inequality 10.6 or 10.8. These inequalities
can be coherently combined over multiple enclosed vertices because the V -faces
were associated with different vertices v and none of the Rogers simplices used
in the terms anc() overlap. More precisely, if Z is a set of enclosed vertices, set
V Z

P = ∩v∈ZV v
P , and V v,Z

P = V Z
P ∩ V v

P . Coherence means that we obtain valid
inequalities by adding the superscript Z to VP and V v

P in Inequalities 10.6 and 10.8,
if v 6∈ Z. In sum, σP (D) < vor0,P (D).

23calc-855677395
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This paper contains the technical heart of the proof of the Kepler conjecture.
Its primary purpose is to obtain good bounds on the score σR(D) when R is an ar-
bitrary standard region of a decomposition star D. This is particularly challenging,
because we have no a priori restrictions on the combinatorial type of the standard
region R. It is not known to be bounded by a simple polygon. It is not known to
be simply connected. Moreover, there are multitudes of possible geometrical con-
figurations of upright and flat quarters, each scored by a different rule. This paper
will deal with these complexities and will bound the score σR(D) in a way that de-
pends on a simple numerical invariant n(R) of R. When R is bounded by a simple
polygon, the numerical invariant is simply the number of sides of the polygon. This
bound on the score of a standard region represents the turning point of the proof,
in the sense that it caps the complexity of a contravening decomposition star, and
restrains the combinatorial possibilities. Later in the proof, it will be instrumental
in the complete enumeration of the plane graphs attached to contravening stars.

The first section will prove a series of approximations for the score of upright
quarters. The strategy is to limit the number of geometrical configurations of up-
right quarters by showing that a common upper bound (to the scoring function) can
be found for quite disparate geometrical configurations of upright quarters. When
a general upper bound can be found that is independent of the geometrical details
of upright quarters, we say that the upright quarters can be erased. (A precise
definition of what it means to erase an upright quarter appears below.) There are
some upright quarters that cannot be treated in this manner; and this adds some
complications to the proofs in this paper

The second section states the main result of the paper (Theorem 12.1). An
initial reduction reduces the proof to the case that the boundary of the given stan-
dard region is a polygon. A further argument is presented to reduce the proof to a
convex polygon.

The third section completes the proof of the main theorem. This part of
the proof relies on a new geometrical decomposition of the part of a V -cell over a
standard region. The pieces in this decomposition are called truncated corner cells.

A final section in this paper collects miscellaneous further bounds that will be
needed in later parts of the proof of the Kepler conjecture.

This paper contains the technical heart of the proof of the Kepler conjecture.
Its primary purpose is to obtain good bounds on the score σR(D) when R is an ar-
bitrary standard region of a decomposition star D. This is particularly challenging,
because we have no a priori restrictions on the combinatorial type of the standard
region R. It is not known to be bounded by a simple polygon. It is not known to
be simply connected. Moreover, there are multitudes of possible geometrical con-
figurations of upright and flat quarters, each scored by a different rule. This paper
will deal with these complexities and will bound the score σR(D) in a way that de-
pends on a simple numerical invariant n(R) of R. When R is bounded by a simple
polygon, the numerical invariant is simply the number of sides of the polygon. This
bound on the score of a standard region represents the turning point of the proof,
in the sense that it caps the complexity of a contravening decomposition star, and
restrains the combinatorial possibilities. Later in the proof, it will be instrumental
in the complete enumeration of the plane graphs attached to contravening stars.
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The first section will prove a series of approximations for the score of upright
quarters. The strategy is to limit the number of geometrical configurations of up-
right quarters by showing that a common upper bound (to the scoring function) can
be found for quite disparate geometrical configurations of upright quarters. When
a general upper bound can be found that is independent of the geometrical details
of upright quarters, we say that the upright quarters can be erased. (A precise
definition of what it means to erase an upright quarter appears below.) There are
some upright quarters that cannot be treated in this manner; and this adds some
complications to the proofs in this paper

The second section states the main result of the paper (Theorem 12.1). An
initial reduction reduces the proof to the case that the boundary of the given stan-
dard region is a polygon. A further argument is presented to reduce the proof to a
convex polygon.

The third section completes the proof of the main theorem. This part of
the proof relies on a new geometrical decomposition of the part of a V -cell over a
standard region. The pieces in this decomposition are called truncated corner cells.

A final section in this paper collects miscellaneous further bounds that will be
needed in later parts of the proof of the Kepler conjecture.
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Section 11

Upright Quarters

11.1 Erasing Upright Quarters

Definition 11.1. A standard region is said to be exceptional if it is not a trian-
gle or a quadrilateral. The pair (D, R) consisting of a decomposition star and an
exceptional standard region is said to be an exceptional cluster. The vertices of the
packing of height at most 2t0 that are contained in the closed cone over the standard
region are called its corners.

Fix an exceptional cluster R. Throughout this paper, we assume that R lies
on a star of score at least 8 pt. It is to be understood, when we say that a standard
region does not exist, that we mean that there exists no such region on any star
scoring more than 8 pt.

In Section 11, we discuss how to eliminate many cases of upright diagonals.
The results are summarized in Section 11.9.

If R is a standard region, we write VR(t) for the intersection of the local V -
cell VR = VC(0) ∩ C(R) with a ball B(t), centered at the origin, of radius t. We
usually take t = t0. If {0, v}, of length between 2t0 and 2

√
2, is not the diagonal

of an upright quarter in the Q-system, then v does not affect the truncated cell
VR(t0) and may be disregarded. For this reason we confine our attention to upright
diagonals that lie along an upright quarter in the Q-system.

We say that an upright diagonal {0, v} can be erased with penalty π0 ≥ 0, if
we have, in terms of the decomposition of Section 9,
∑

Q

σ(Q) +
∑

S

σ(VS(tS))− 4δoctvol(δP (v)) < π0 +
∑

Q

s-vor0(Q) +
∑

S

s-vor0(S).

Here the sum over Q runs over the upright quarters around {0, v}. The scores σ(Q)
are context-dependent (see Section 7). The second sum runs over simplices S along
{0, v} of type C in the S-system. We define their score σ(VS(tS)) as in Section 9.
Also, δP (v) is the piece of the decomposition defined in Section 9. The right-hand

143
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144 Section 11. Upright Quarters

side is scored by the truncation function in Section 7 Formula 7.13. When we erase
without mention of a penalty, π0 = 0 is assumed.

If the diagonal can be erased, an upper bound on the score is obtained by
ignoring the upright diagonal and all of the structures around it coming from the
decomposition of Section 9, and switching to the truncation at t0. Section 11
shows that various vertices can be erased, and this will greatly reduce the number
combinatorial possibilities for an exceptional cluster.

11.2 Contexts
Each upright diagonal has a context (p, q), with p the number of anchors and p− q
the number of quarters around the diagonal (Definition 7.1). The dihedral angle of
a quarter is less than24 π, so the context (2, 0) is impossible. There is at least one
quarter, so p ≥ q + 1, p ≥ 2.

The context (2, 1) is treated in Section 10.4. Lemma 10.15 shows that by
removing the upright diagonal, and scoring the surrounding region by a truncated
function vor0, an upper bound on the score is obtained. In the remaining contexts,
p ≥ 3. We start with contexts satisfying p = 3. The context (3, 0) is to be regarded
as two quasi-regular tetrahedra sharing a face rather than as three quarters along
a diagonal. In particular, by Definition 4.8, the upright quarters do not belong to
the Q-system.

We recall that the score of an upright quarter is given by

σ(Q, v) = (µ(Q, v) + µ(Q, v̂) + s-vor0(Q, v)− s-vor0(Q, v̂))/2,

except in the contexts (2, 1) and (4, 0). Define ν(Q) to be the right-hand side of
this equation. The context (2, 1) has been treated, and the context (4, 0) does not
occur in exceptional clusters. Thus, for the remainder of this section, the scoring
rule σ(Q) = ν(Q) will be used.

We have several different variants on the score depending on the truncation,
analytic continuation, and so forth. If f is any of the functions

s-vor0, s-vor, Γ, ν,

we set τ0, τV , τΓ, τν , respectively, to

τ∗ = −f(S) + sol(S)ζpt.

We set τ(S, t) = − s-vor(S, t) + sol(S)ζpt. The family of functions τ∗ measure what
is squandered by a simplex. We say that Q has compression type or Voronoi type
according to the scoring of µ(Q). (See Section 7.1.)

Crowns and anchor correction terms are used in Section 10.4 to erase upright
quarters. We imitate those methods here. The functions crown and anc are defined
and discussed in Section 10.4. If S = S(y1, . . . , y6) is a simplex along {0, v}, set

κ(S(y1, . . . , y6)) = crown(y1/2) dih(S)/(2π) + anc(y1, y2, y6) + anc(y1, y3, y5).
24calc-971555266
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κ(S) is a bound on the difference in the score resulting from truncation around v.
Assume that S is the simplex formed by {0, v} and two consecutive anchors around
{0, v}. Assume further that the circumradius of S is at least η0(y1/2). Then we
have

κ(S) = −4δoctvol(δP (W e)),

where W e is the extended wedge constructed in Section 9.2. To see this, it is
a matter of interpreting the terms in κ. The function crown enters the volume
through the region over the spherical cap D0 of Section 9.2, lying outside B(t0).
By multiplying by dih(S)/(2π), we select the part of the spherical cap over the
unextended wedge W between the anchors. The terms anc adjust for the four
Rogers simplices lying above the extension W e.

11.3 Three anchors

Lemma 11.2. The upright diagonal can be erased in the context (3, 2).

Proof. Let v1 and v2 be the two anchors of the upright diagonal {0, v} along the
quarter. Let the third anchor be v3.

Assume first that |v| ≥ 2.696. If Q is of compression type, then25 the score is
dominated by the truncated function s-vor0. Assume Q is of Voronoi type. If |v1|,
|v2| ≤ 2.45, then a calculation26 gives the result. Take |v2| ≥ 2.45. By symmetry,
|v−v1| or |v−v2| ≥ 2.45. The case |v−v1| ≥ 2.45 is treated by another calculation.27

We take |v−v2| ≥ 2.45. Let S = {0, v, v2, v3}. If S is of type C, the result follows.28

S is of type C, if and only if y4 ≤ 2.77, (because η456 ≥ η(2.45, 2, 2.77) >
√

2.) If S
is not of type C, we argue as follows. The function h2(η(2h, 2.45, 2.45)−2−η0(h)−2)
is a quadratic polynomial in h2 with negative values for 2h ∈ [2.696, 2

√
2]. From

this we find

rad(S) ≥ η(2h, 2.45, 2.45) ≥ η0(h), where 2h = |v|,

and this justifies the use of κ (see Section 9.2 Case (2)). That the truncated function
dominates the score now follows from a calculation.29

Now assume that |v| ≤ 2.696. If the simplices {0, v, v1, v3} and {0, v, v2, v3}
are of type C, the bound follows from a calculation.30 31 If say S = {0, v, v2, v3} is
not of type C, then

rad(S) ≥
√

2 > η0(2.696/2) ≥ η0(h),

25calc-73974037
26calc-764978100
27calc-764978100
28calc-764978100
29calc-618205535
30calc-73974037
31calc-764978100
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146 Section 11. Upright Quarters

justifying the use of κ. The bound follows from further calculations.32 33 34

(Γ + κ < octavor0, etc.)

Lemma 11.3. The upright diagonal can be erased in the context (3, 1), provided
the three anchors do not form a flat quarter at the origin.

Proof. In the absence of a flat quarter, truncate, score, and remove the vertex v
as in the context (3, 1) of Lemma 10.15. If there is a flat quarter, by the rules of
Definition 4.8, v is enclosed over the flat quarter. We do nothing further with them
for now. This unerased case appears in the summary at the end of the section (11.9).
See Lemma 11.27.

11.4 Six anchors

Lemma 11.4. An upright diagonal has at most five anchors.

Proof. The proof relies on constants and inequalities from two calculations.35 36

If between two anchors there is a quarter, then the angle is greater than 0.956, but
if there is not, the angle is greater than 1.23. So if there are k quarters and at least
six anchors, they squander more than

k(1.01104)− [2π − (6− k)1.23]0.78701 > (4πζ − 8) pt,

for k ≥ 0.

11.5 Anchored simplices
Let {0, v} be an upright diagonal, and let v1, v2, . . . , vk = v1 be its anchors, ordered
cyclically around {0, v}. This cyclic order gives dihedral angles between consecutive
anchors around the upright diagonal. We define the dihedral angles so that their
sum is 2π, even though this will lead us to depart from our usual conventions by
assigning a dihedral angle greater than π when all the anchors are concentrated in
some half-space bounded by a plane through {0, v}. When the dihedral angle of
S = {0, v, vi, vi+1} is at most π, we say that S is an anchored simplex if |vi−vi+1| ≤
3.2. (The constant 3.2 appears throughout this section.) All upright quarters are
anchored simplices. If an upright diagonal is completely surrounded by anchored
simplices, the upright diagonal is sometimes called a loop. If |vi − vi+1| > 3.2 and

32calc-618205535
33calc-73974037
34calc-764978100
35calc-729988292
36calc-83777706
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the angle is less than π, we say there is a large gap around {0, v} between vi and
vi+1.

To understand how anchored simplices overlap we need a bound satisfied by
vertices enclosed over an anchored simplex.

Lemma 11.5. A vertex w of height between 2 and 2
√

2, enclosed in the cone over
an anchored simplex {0, v, v1, v2} with diagonal {0, v} satisfies |w − v| ≤ 2t0. In
particular, if |w| ≤ 2t0, then w is an anchor.

Proof. As in Lemma 4.16, the vertex w cannot lie inside the anchored simplex.
If |v1 − v2| ≤ 2

√
2, the result follows from Lemma 5.16. In fact, if |w| ≤ 2

√
2,

the Voronoi cells at 0 and w meet, so that Lemma 5.16 forces {0, v1, v2, w} to be a
quarter. (This observation gives a second proof of Lemma 4.34.)

Assume that a figure exists with |v1− v2| > 2
√

2. Suppose for a contradiction
that |v − w| > 2t0. Pivot v1 around {0, v2} until |v − v1| = 2t0 and v2 around
{0, v1} until |v − v2| = 2t0. Rescale w so that |w| = 2

√
2. Set x = |v1 − v2|. If,

through geometric considerations, w is not deformed into the plane of {0, v2, v1},
then we are left with the one-dimensional family |w′| = |w′−w| = 2, for w′ = v2, v1,
|v−w| = |v| = |v1− v| = |v2− v| = 2t0, depending on x. This gives a contradiction

π ≥ dih(v2, v1, 0, v) + dih(v2, v1, v, w)
= 2 dih(S(x, 2, 2t0, 2t0, 2t0, 2)) > π,

for x > 2
√

2. (Equality is attained if x = 2
√

2.)
Thus, we may assume that w lies in the plane P = {0, v1, v2}. Take the circle

in P at distance 2t0 from v. The vertices 0 and w lie on or outside the circle. The
vertices v1 and v2 lie on the circle, so the diameter is at least x > 2

√
2. The distance

from v to P is less than x0 =
√

2t20 − 2. The edge {0, w} cannot pass through the
center of the circle, because |w| is less than the diameter. Reflect v through P to
get v′. Then |v − v′| < 2x0. Swapping v1 and v2 as necessary, we may assume that
w is enclosed over {0, v, v′, v2}. The desired bound |v − w| ≤ 2t0 now follows from
geometric considerations and the contradiction

2
√

2 = |w| > E(S(2, 2t0, 2t0, 2x0, 2t0, 2t0), 2, 2t0, 2t0) = 2
√

2.

Corollary 11.6. A vertex of height at most 2t0 is never enclosed over an anchored
simplex.

Proof. If so, it would be an anchor to the upright diagonal, contrary to the as-
sumption that the anchored simplex is formed by consecutive anchors.
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148 Section 11. Upright Quarters

11.6 Anchored simplices do not overlap

Definition 11.7. Consider an upright diagonal that is not a loop. Let R be
the standard region that contains the upright diagonal and its surrounding quarters.
Assume we are in the context (4, 1) or (5, 1). In the context (4, 1), suppose that
there does not exist a plane through the upright diagonal such that all three quarters
lie in the same half-space bounded by the plane. Then we say that the context is 3-
unconfined. If such a plane exists, we say that the context is 3-crowded. We call the
context (5, 1) a 4-crowded upright diagonal. Sections 11.3 and 11.4 reduce everything
to contexts with four or five anchors around each vertex. If there are 5 anchors,
Lemma 11.14 (and Remark 11.13) show that we can assume at most one large gap.
This gives contexts (5, 0) and (5, 1). If there are four anchors, then Lemma 11.21
will dismiss all contexts except (4, 0) and (4, 1). Thus, every upright diagonal is
exactly one of the following: a loop, 3-unconfined, 3-crowded, or 4-crowded.

Definition 11.8. The Cayley-Menger determinant expresses the volume of a sim-
plex S(y1, . . . , y6) in the form

√
∆(x1, . . . , x6)/12, where xi = y2

i , and ∆ is a poly-
nomial with integer coefficients. The polynomial ∆ will be used frequently.

This lemma is a consequence of the two others that follow. The context of
the lemma is the set of anchored simplices that have not been erased by previous
reductions.

Lemma 11.9. Anchored simplices do not overlap.

The remaining contexts have four or five anchors. Let w and the anchored
simplex S = {0, v, v1, v2} be as in Section 11.5. Our object is to describe the
local geometry when an upright diagonal is enclosed over an anchored simplex. If
|v1− v2| ≤ 2

√
2, we have seen in Lemma 4.32 that there can be no enclosed upright

diagonal with ≥ 4 anchors over the anchored simplex S.
Assume |v1 − v2| > 2

√
2. Let w1, . . . , wk, k ≥ 4, be the anchors of {0, w},

indexed consecutively. The anchors of {0, w} do not lie in C(S), and the triangles
{0, w, wi} and {0, v, vj} do not overlap. Thus, the plane {0, v1, v2} separates w from
{w1, . . . , wk}. Set Si = {0, w, wi, wi+1}. By a calculation37

π ≥ dih(S1) + · · ·+ dih(Sk−1) ≥ (k − 1)0.956.

Thus, k = 4. The common upright diagonal of the three simplices {Si} is
3-crowded. We claim that {v1, v2} = {w1, w4}. Suppose to the contrary that, after
reindexing as necessary, S0 = {0, w, w1, v1} is a simplex, with v1 6= w1, that does
not overlap S1, . . . , S3. Then π ≥ dih(S0)+ · · ·+dih(S3). So 0.28 ≥ π− 3(0.956) ≥
dih(S0). A calculation38 now implies that |w − v1| ≥ 2

√
2.

Assume that {0, w, v1, v2} are coplanar. Disregard the other vertices. We

37calc-83777706
38calc-83777706
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11.6. Anchored simplices do not overlap 149

minimize |v1 − v2| when

|w| = 2
√

2, |v2| = |v1| = |w − v2| = 2, |w − v1| = 2
√

2.

This implies 3.2 ≥ |v1−v2| ≥ x, where x is the largest positive root of the polynomial
∆(8, 4, 4, x2, 4, 8). But x ≈ 3.36, a contradiction.

Since {0, w, v1, v2} cannot be coplanar vertices, geometric considerations apply
and

2
√

2 ≥ |w| ≥ E(S(2, 2, 2, 2, 2, 3.2), 2
√

2, 2, 2) > 2
√

2.

This contradiction establishes that v1 = w1.

Lemma 11.10. Around a 3-crowded upright diagonal, all of the anchored simplices
are quarters.

Proof. The proof makes use of constants and inequalities from several different
calculations.39 40 41 The dihedral angles are at most π − 2(0.956) < 1.23. This
forces y4 ≤ 2t0, for each simplex S. So they are all quarters.

Lemma 11.11. If there is 3-crowded upright diagonal, then the three anchored
simplices squander more than 0.5606 and score at most −0.4339.

Proof. The proof makes use of constants and inequalities from several different
calculations.42 43 44 The three anchored simplices squander at least

3(1.01104)− π(0.78701) > 0.5606.

The bound on score follows similarly from ν < −0.9871 + 0.80449 dih.

Lemma 11.12. If a simplex at a 3-crowded upright diagonal overlaps an anchored
simplex, the decomposition star does not contravene.

Proof. Suppose that {0, v, v1, v2} is an anchored simplex that another anchored
simplex overlaps, with {0, v} the upright diagonal. Let {0, w} be a 3-crowded
upright diagonal. We score the two simplices S′i = {0, v, w, vi} by truncation at√

2. Truncation at
√

2 is justified by face-orientation arguments or by geometric
considerations:

E(S(2, 2t0, 2t0, 2t0, 2t0, 2t0), 2, 2, 2) > 2
√

2.

39calc-815492935
40calc-83777706
41calc-855294746
42calc-815492935
43calc-83777706
44calc-855294746
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150 Section 11. Upright Quarters

A calculation45 gives

τV (S′1,
√

2) + τV (S′2,
√

2) ≥ 2(0.13) + 0.2(dih(S′1) + dih(S′2)− π) > 0.26.

Together with the three simplices around the 3-crowded upright diagonal that
squander at least 0.5606, we obtain the stated bound.

11.7 Five anchors
When there are five anchors of an upright diagonal, each dihedral angle around the
diagonal is at most 2π − 4(0.956) < π.

Remark 11.13. There are at most two large gaps by the calculation46

3(1.65) + 2(0.956) > 2π.

Lemma 11.14. If an upright diagonal has five anchors with two large gaps, then
the three anchored simplices squander > (4πζ − 8) pt.

Proof. By a calculation,47 the anchored simplices are all quarters, 1.23+2(1.65)+
2(0.956) > 2π. The dihedral angle is less than 2π−2(1.65). The linear programming
bound based on various inequalities48 is greater than 0.859 > (4πζ − 8) pt.

Definition 11.15. Define a masked flat quarter to be a flat quarter that is not in
the Q-system because it overlaps an upright quarter in the Q-system. They can only
occur in a very special setting.

Lemma 11.16. Let {0, v} be an upright diagonal with at least four anchors. If Q
is a flat quarter that overlaps an anchored simplex along {0, v}, then the vertices of
Q are the origin and three consecutive anchors of {0, v}.

Proof. For there to be overlap, the diagonal {w1, w2} of Q must pass through
the face {0, v, v1} formed by some anchor v1 (see Lemma 4.19). By Lemma 4.24,
w1 and w2 are anchors of {0, v}. By Lemma 4.32, w2, v1, and w1 are consecutive
anchors. If v1 is a vertex of Q we are done. Otherwise, let w3 6= 0, w1, w2 be the
remaining vertex of Q. The edges {v, v1} and {v1, 0} do not pass through the face
{w1, w2, w3} by Lemma 4.19. Likewise, the edges {w2, w3} and {w3, w1} do not
pass through the face {0, v, v1}. Thus, v is enclosed over the quarter Q.

Let w′3 6= w1, v1, w2 be a fourth anchor of {0, v}. By Lemma 4.19, we have
w′3 = w3.

45calc-855294746
46calc-83777706
47calc-83777706
48calc-729988292
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Corollary 11.17. (of proof) If v is enclosed over a flat quarter, then {0, v} has at
most four anchors.

When we are unable to erase the upright diagonal with five anchors and a
large gap, we are able to obtain strong bounds on the score.

Lemma 11.18. Suppose an upright diagonal in a decomposition star has five
anchors and one large gap. The four anchored simplices score at most −0.25. The
four anchored simplices squander at least 0.4. If any of the four anchored simplices
is not an upright quarter then the decomposition star does not contravene.

Proof. A list of inequalities49 together with50 dih > 1.65 give the bound −0.25.
Further inequalities 51 give the bound 0.4. To get the final statement of the lemma,
we again use a series of inequalities.52 53

Corollary 11.19. There is at most one 4-crowded upright diagonal in a contra-
vening decomposition star.

Proof. The crown along the large gap, with the bound of the lemma, gives54

0.4 − κ ≥ 0.4 + 0.02274 squandered by the upright quarters around a 4-crowded
upright diagonal. The rest squanders a positive amount (see Lemma 9.20). If there
are two 4-crowded upright diagonals, use 2(0.4 + 0.02274) > (4πζ − 8) pt.

Definition 11.20. We set ξΓ = 0.01561, ξV = 0.003521, ξ′Γ = 0.00935, ξκ =
−0.029, ξκ,Γ = ξκ + ξΓ = −0.01339.

The first two constants appear in calculations55 56 as penalties for erasing
upright quarters of compression type, and Voronoi type, respectively. ξ′Γ is an
improved bound on the penalty for erasing when the upright diagonal is at least
2.57. Also, ξκ is an upper bound57 on κ, when the upright diagonal is at most
2.57. If the upright diagonal is at least 2.57, then we still obtain the bound58

ξκ,Γ = −0.02274 + ξ′Γ on the sum of κ with the penalty from erasing an upright
quarter.

49calc-815492935
50calc-83777706
51calc-729988292
52calc-628964355
53calc-187932932
54calc-618205535
55calc-73974037
56calc-764978100
57calc-618205535
58calc-618205535
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152 Section 11. Upright Quarters

11.8 Four anchors

Lemma 11.21. If there are at least two large gaps around an upright diagonal with
four anchors, then it can be erased.

Proof. There are at least as many large gaps as upright quarters. Each large gap
drops us by ξκ and each quarter lifts us by at most59 60 61 ξΓ. We have ξκ,Γ < 0.

Remark 11.22. Let {0, v} be an enclosed vertex over a flat quarter. Then

|v| ≥ E(2, 2, 2, 2t0, 2t0, 2
√

2, 2, 2, 2) > 2.6.

If an edge of the flat quarter is sufficiently short, say y6 ≤ 2.2, then

|v| ≥ E(2, 2, 2, 2.2, 2t0, 2
√

2, 2, 2, 2) > 2.7.

The two dihedral angles on the gaps are > 1.65. If the two quarters mask a flat
quarter, we use the scoring of 11.9.2.c. We have 0.0114 < −2ξκ,Γ.

When there is one large gap, we may erase with a penalty π0 = 0.008.

Lemma 11.23. Let v be an upright diagonal with four anchors. Assume that there
is one large gap. The anchored simplices can be erased with penalty π0 = 0.008. If
any of the anchored simplices around v is not an upright quarter then we can erase
with penalty π0 = 0.00222.

Moreover, if there is a flat quarter overlapping an upright quarter, then (1) or
(2) holds.

1. The truncated function s-vor0 exceeds the score by at least 0.0063. The diag-
onal of the flat is at least 2.6, and the edge opposite the diagonal is at least
2.2.

2. The truncated function exceeds the score by at least 0.0114. The diagonal of
the flat is at least 2.7, and the edge opposite the diagonal is at most 2.2.

Definition 11.24. Let a 3-unconfined upright diagonal be an upright diagonal that
has four anchors and one large gap in a situation where there is no masked flat
quarter.

Proof. The constants and inequalities used in this proof can be found in a series
of calculations.62 63 64

59calc-618205535
60calc-73974037
61calc-764978100
62calc-618205535
63calc-73974037
64calc-764978100
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11.8. Four anchors 153

First we establish the penalty 0.008. The truncated function s-vor0 is an
upper bound on the score of an anchored simplex that is not a quarter. By these
inequalities, the result follows if the diagonal satisfies y1 ≥ 2.57.

Take y1 ≤ 2.57. If any of the upright quarters are of Voronoi type, the result
follows from (ξκ,Γ + ξΓ < 0.008). If the edges along the large gap are less than 2.25,
the result follows from (−0.03883+3ξΓ = 0.008). If all but one edge along the large
gap are less than 2.25, the result follows from (−0.0325 + 2ξΓ + 0.00928 = 0.008).

If there are at least two edges along the large gap of length at least 2.25, we
consider two cases according to whether they lie on a common face of an upright
quarter. The same group of inequalities gives the result. The bound 0.008 is now
fully established.

Next we prove that we can erase with penalty 0.00222, when one of the an-
chored simplices is not a quarter. If |v| ≥ 2.57, then we use

2ξΓ + ξV + ξκ ≤ 0.00935 + 0.003521− 0.2274 ≤ 0.

If |v| ≤ 2.57, we use
2(0.01561)− 0.029 ≤ 0.00222.

Let v1 . . . , v4 be the consecutive anchors of the upright diagonal {0, v} with
{v1, v4} the large gap. Suppose |v1 − v3| ≤ 2

√
2.

We claim the upright diagonal {0, v} is not enclosed over {0, v1, v2, v3}. As-
sume the contrary. The edge {v1, v3} passes through the face {0, v, v4}. Disregard-
ing the vertex v2, by geometric considerations, we arrive at the rigid figure

|v| = 2
√

2, |v1| = |v1 − v| = |v − v3| = |v3| = |v3 − v4| = 2
|v − v4| = |v4| = 2t0, |v1 − v4| = 3.2.

The dihedral angles of {0, v, v1, v4} and {0, v, v3, v4} are

dih(S(2
√

2, 2, 2t0, 3.2, 2t0, 2)) > 2.3, dih(S(2
√

2, 2, 2t0, 2, 2t0, 2)) > 1.16

The sum is greater than π, contrary to the claim that the edge {v1, v3} passes
through the face {0, v, v4}. (This particular conclusion leads to the corollary cited
at the end of the proof.) Thus, {v1, v3} passes through {0, v, v2} so that the simplices
{0, v, v1, v2} and {0, v, v2, v3} are of Voronoi type.

To complete the proof of the lemma, we show that when there is a masked flat
quarter, either (1) or (2) holds. Suppose we mask a flat quarter Q′ = {0, v1, v2, v3}.
We have established that {v1, v3} passes through the face {0, v, v2}. To establish
(1) assume that |v2| ≥ 2.2. The remark before the lemma gives

|v1 − v3| ≥ E(S(2, 2, 2, 2
√

2, 2t0, 2t0), 2, 2, 2) > 2.6.

The bound 0.0063 comes from

ξκ,Γ + 2ξV < −0.0063

To establish (2) assume that |v2| ≤ 2.2. The remark gives

|v1 − v3| ≥ E(S(2, 2, 2, 2
√

2, 2.2, 2t0), 2, 2, 2) > 2.7.
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154 Section 11. Upright Quarters

If the simplex {0, v, v3, v4} is of Voronoi type, then

ξκ + 3ξV < −0.0114

Assume that {0, v, v3, v4} is of compression type. We have

−0.004131 + ξκ,Γ + ξV ≤ −0.0114.

Corollary 11.25. (of proof) If there are four anchors and if the upright diagonal
is enclosed over a flat quarter, then there are four anchored simplices and at least
three quarters around the upright diagonal.

11.9 Summary
The following index summarizes the cases of upright quarters that have been treated
in Section 11. If the number of anchors is the number of anchored simplices (no
large gaps), the results appear in Section 13.12. Every other possibility has been
treated.

• 0,1,2 anchors Sec. 11.2

• 3 anchors Sec. 11.3

– context (3, 0)

– context (3, 1)

– context (3, 2)

– context (3, 3)

• 4 anchors Sec. 11.8

– 0 gaps (Section 13.12)

– 1 gap

– 2 or more gaps

• 5 anchors Sec. 11.7

– 0 gaps (Section 13.12)

– 1 gap (4-crowded)

– 2 or more gaps

• 6 or more anchors Sec. 11.4
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By truncation and various comparison lemmas, we have entirely eliminated
upright diagonals except when there are between three and five anchors. We may
assume that there is at most one large gap around the upright diagonal.

1. Consider an anchored simplex Q around a remaining upright diagonal. The
score of is ν(Q) if Q is a quarter, the analytic function s-vor(Q) if the simplex is of
type C (Section 9.4), and the truncated function s-vor0(Q) otherwise.

2. Consider a flat quarter Q in an exceptional cluster. An upper bound on
the score is obtained by taking the maximum of all of the following functions that
satisfy the stated conditions on Q. Let y4 denote the length of the diagonal and y1

be the length of the opposite edge.
(a) The function µ(Q).
(b) s-vor0(Q)− 0.0063, if y4 ≥ 2.6 and y1 ≥ 2.2. (Lemma 11.23)
(c) s-vor0(Q)− 0.0114, if y4 ≥ 2.7 and y1 ≤ 2.2. (Lemma 11.23)
(d) ν(Q1)+ν(Q2)+s-vorx(S), if there is an enclosed vertex v over Q of height

between 2t0 and 2
√

2 that partitions the convex hull of (Q, v) into two upright
quarters Q1, Q2 and a third simplex S. Here s-vorx = s-vor if S is of type C, and
s-vorx = s-vor0 otherwise. (Lemma 11.3)

(e) s-vor(Q, 1.385) if the simplex is of type B (Section 9.4).
(f) s-vor0(Q) if the simplex is an isolated quarter with max(y2, y3) ≥ 2.23,

y4 ≥ 2.77, and η456 ≥
√

2.
3. If S is a simplex is of type A, its score is s-vor(S). (Section 9.4.)
4. Everything else is scored by the truncation vor0. Formula 7.13 is used on

these remaining pieces. On top of what is obtained for the standard cluster by
summing all these terms, there is a penalty π0 = 0.008 each time a 3-unconfined
upright diagonal is erased.

5. The remaining upright diagonals that are not completely surrounded by
anchored simplices are 3-unconfined, 3-crowded, or 4-crowded from Section 11.6,
11.7, and 11.8.

11.10 Some flat quarters
Recall that ξV = 0.003521, ξΓ = 0.01561, ξ′Γ = 0.00935. They are the penalties
that result from erasing an upright quarter of Voronoi type, an upright quarter of
compression type, and an upright quarter of compression type with diagonal ≥ 2.57.
(See calculations.65 66

In the next lemma, we score a flat quarter by any of the functions on the given
domains

σ̂ =





Γ, η234, η456 ≤
√

2,

s-vor, η234 ≥
√

2,

s-vor0, y4 ≥ 2.6, y1 ≥ 2.2,

s-vor0, y4 ≥ 2.7,

s-vor0, η456 ≥
√

2.

65calc-73974037
66calc-764978100
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156 Section 11. Upright Quarters

Lemma 11.26. σ̂ is an upper bound on the functions in Section 11.9.2(a)–(f).
That is, each function in Section 11.9.2 is dominated by some choice of σ̂.

Proof. The only case in doubt is the function of 3.10(d):

ν(Q1) + ν(Q2) + s-vorx(S).

This is established by the following lemma.

We consider the context (3, 1) that occurs when two upright quarters in the
Q-system lie over a flat quarter. Let {0, v} be the upright diagonal, and assume
that {0, v1, v2, v3} is the flat quarter, with diagonal {v2, v3}. Let σ denote the score
of the upright quarters and other anchored simplex lying over the flat quarter.

Lemma 11.27. σ ≤ min(0, s-vor0).

Proof. The bound of 0 is established in Theorem 8.4.
By a calculation67, if |v| ≥ 2.69, then the upright quarters satisfy

ν < s-vor0 +0.01(π/2− dih)

so the upright quarters can be erased. Thus we assume without loss of generality
that |v| ≤ 2.69.

We have
|v| ≥ E(S(2, 2, 2, 2t0, 2t0, 2

√
2), 2, 2, 2) > 2.6.

If |v1 − v2| ≤ 2.1, or |v1 − v3| ≤ 2.1, then

|v| ≥ E(S(2, 2, 2, 2.1, 2t0, 2
√

2), 2, 2, 2) > 2.72,

contrary to assumption. So take |v1 − v2| ≥ 2.1 and |v1 − v3| ≥ 2.1. Under these
conditions we have the interval calculation68 ν(Q) < s-vor0(Q) where Q is the
upright quarter.

Remark 11.28. If we have an upright diagonal enclosed over a masked flat quarter
in the context (4, 1), then there are three upright quarters. By the same argument
as in the lemma, the two quarters over the masked flat quarter score ≤ s-vor0. The
third quarter can be erased with penalty ξV .

Define the central vertex v of a flat quarter to be the vertex for which {0, v}
is the edge opposite the diagonal.

Lemma 11.29. µ < s-vor0 +0.0268 for all flat quarters. If the central vertex has
height ≤ 2.17, then µ < s-vor0 +0.02.

67calc-855677395
68calc-148776243
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11.10. Some flat quarters 157

Proof. This is an interval calculation.69

We measure what is squandered by a flat quarter by τ̂ = sol ζpt− σ̂.

Lemma 11.30. Let v be a corner of an exceptional cluster at which the dihedral
angle is at most 1.32. Then the vertex v is the central vertex of a flat quarter Q in
the exceptional region. Moreover, τ̂(Q) > 3.07 pt. If σ̂ = s-vor0 (and if η456 ≥

√
2),

we may use the stronger constant τ0(Q) > 3.07 pt + ξV + 2ξ′Γ.

Proof. Let S = S(y1, . . . , y6) be the simplex inside the exceptional cluster centered
at v, with y1 = |v|. The inequality dih ≤ 1.32 gives the interval calculation y4 ≤
2
√

2, so S is a quarter. The result now follows by interval arithmetic.70

69calc-148776243
70calc-148776243
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Section 12

Bounds in Exceptional
Regions

12.1 The main theorem
Let (R, D) be a standard cluster. Let U be the set of corners, that is, the set of
vertices in the cone over R that have height at most 2t0. Consider the set E of
edges of length at most 2t0 between vertices of U . We attach a multiplicity to each
edge. We let the multiplicity be 2 when the edge projects radially to the interior
of the standard region, and 0 when the edge projects radially to the complement
of the standard region. The other edges, those bounding the standard region, are
counted with multiplicity 1.

Let n1 be the number of edges in E, counted with multiplicities. Let c be
the number of classes of vertices under the equivalence relation v ∼ v′ if there is
a sequence of edges in E from v to v′. Let n(R) = n1 + 2(c − 1). If the standard
region under R is a polygon, then n(R) is the number of sides.

Theorem 12.1. Let D be a contravening decomposition star. τR(D) > tn, where
n = n(R) and

t4 = 0.1317, t5 = 0.27113, t6 = 0.41056,
t7 = 0.54999, t8 = 0.6045.

The decomposition star scores less than 8 pt, if n(R) ≥ 9, for some standard cluster
R. The scores satisfy σR(D) < sn, for 5 ≤ n ≤ 8, where

s5 = −0.05704, s6 = −0.11408, s7 = −0.17112, s8 = −0.22816.

Sometimes, it is convenient to calculate these bounds as a multiple of pt. We
have

t4 > 2.378 pt, t5 > 4.896 pt, t6 > 7.414 pt,
t7 > 9.932 pt, t8 > 10.916 pt.

s5 < −1.03 pt, s6 < −2.06 pt, s7 < −3.09 pt, s8 < −4.12 pt.

159
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160 Section 12. Bounds in Exceptional Regions

Corollary 12.2. Every standard region is a either a polygon or one shown in
Figure 12.1

Figure 12.1.

In the cases that are not (simple) polygons, we call the polygonal hull the
polygon obtained by removing the internal edges and vertices. We have m(R) ≤
n(R), where the constant m(R) is the number of sides of the polygonal hull.

Proof. By the theorem, if the standard region is not a polygon, then 8 ≥ n1 ≥
m ≥ 5. (Quad clusters and quasi-regular tetrahedra have no enclosed vertices. See
Lemma 10.4 and Lemma 5.13.) If c > 1, then 8 ≥ n = n1 + 2(c− 1) ≥ 5 + 2(c− 1),
so c = 2, and n1 = 5, 6 (frames 2 and 5 of the figure).

Now take c = 1. Then 8 ≥ n ≥ 5 + (n−m), so n−m ≤ 3. If n−m = 3, we
get frame 3. If n−m = 2, we have 8 ≥ m + 2 ≥ 5 + 2, so m = 5, 6 (frames 1, 4).

But n −m = 1 cannot occur, because a single edge that does not bound the
polygonal hull has even multiplicity. Finally, if n−m = 0, we have a polygon.

Corollary 12.3. If the type of a vertex of a decomposition star is (7, 0), then it
does not contravene.

Proof. By Theorem 12.1, if there is a non-triangular region, we have

τ(D) ≥ τLP(7, 0) + t4 > (4πζ − 8) pt.

Assume that all standard regions are triangular. If there is a vertex that does not
lie on one of seven triangles, we have by Lemma 10.5:

τ(D) ≥ τLP(7, 0) + 0.55 pt > (4πζ − 8) pt.

Thus, all vertices lie on one of the seven triangles. The complement of these seven
triangles is a region triangulation by five standard regions. There is some vertex
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of these five that does not lie on any of the other four standard regions in the
complement. That vertex has type (3, 0), which is contrary to Lemma 10.9.

12.2 Nonagons
A few additional comments are needed to eliminate n = 9 and 10, even after the
bounds t9, t10 are established.

Lemma 12.4. Let F be a set of one or more standard regions bounded by a simple
polygon with at most nine edges. Assume that

σF (D) ≤ s9 and τF (D) ≥ t9,

where s9 = −0.1972 and t9 = 0.6978. Then D does not contravene.

Proof. Suppose that n = 9, and that R squanders at least t9 and scores less than
s9. This bound is already sufficient to conclude that there are no other standard
clusters except quasi-regular tetrahedra (t9 + t4 > (4πζ − 8) pt). There are no
vertices of type (4, 0) or (6, 0): t9 + 4.14 pt > (4πζ − 8) pt by Lemma 10.5. So all
vertices not over the exceptional cluster are of type (5, 0). Suppose that there are
` vertices of type (5, 0). The polygonal hull of R has m ≤ 9 edges. There are
m− 2 + 2` quasi-regular tetrahedra. If ` ≤ 3, then by Lemma 10.6, the score is less
than

s9 + (m− 2 + 2`) pt− 0.48` pt < 8 pt.

If on the other hand, ` ≥ 4, the decomposition star squanders more than

t9 + 4(0.55) pt > (4πζ − 8) pt.

The bound s9 will be established as part of the proof of Theorem 12.1.
The case n = 10 is similar. If ` = 0, the score is less than (m − 2) pt ≤ 8 pt,

because the score of an exceptional cluster is strictly negative, Theorem 8.4. If
` > 0, we squander at least t10 + 0.55 pt > (4πζ − 8) pt (Lemma 10.6).

12.3 Distinguished edge conditions
Take an exceptional cluster. We prepare the cluster by erasing upright diagonals,
including those that are 3-unconfined, 3-crowded, or 4-crowded. The only upright
diagonals that we leave unerased are loops. When the upright diagonal is erased,
we score with the truncated function vor0 away from flat quarters. Flat quarters
are scored with the function σ̂. The exceptional clusters in Sections 12 and 13 are
assumed to be prepared in this way.

A simplex S is special if the fourth edge has length at least 2
√

2 and at most
3.2, and the others have length at most 2t0. The fourth edge will be called its
diagonal.



“fullkepler”
2005/11/14
page 162

i

i

i

i

i

i

i

i

162 Section 12. Bounds in Exceptional Regions

We draw a system of edges between vertices. Each vertex will have height
at most 2t0. The radial projections of the edges to the unit sphere will divide the
standard region into subregions. We call an edge nonexternal if the radial projection
of the edge lies entirely in the (closed) exceptional region.

1. Draw all nonexternal edges of length at most 2
√

2 except those between non-
consecutive anchors of a remaining upright diagonal. These edges do not
cross (Lemma 4.30). These edges do not cross the edges of anchored simplices
(Lemma 4.22 and Lemma 4.24).

2. Draw all edges of (remaining) anchored upright simplices that are opposite the
upright diagonal, except when the edge gives a special simplex. The anchored
simplices do not overlap (Lemma 11.9), so these edges do not cross. These
edges are nonexternal (Lemma 11.5 and Lemma 4.19).

3. Draw as many additional nonexternal edges as possible of length at most 3.2
subject to not crossing another edge, not crossing any edge of an anchored
simplex, and not being the diagonal of a special simplex.

We fix once and for all a maximal collection of edges subject to these con-
straints. Edges in this collection are called distinguished edges. The radial pro-
jection of the distinguished edges to the unit sphere gives the bounding edges of
regions called the subregions. Each standard region is a union of subregions. The
vertices of height at most 2t0 and the vertices of the remaining upright diagonals
are said to form a subcluster.

By construction, the special simplices and anchored simplices around an up-
right quarter form a subcluster. Flat quarters in the Q-system, flat quarters of an
isolated pair, and simplices of type A and B are subclusters. Other subclusters are
scored by the function vor0. For these subclusters, Formula 7.13 extends without
modification.

12.4 Scoring subclusters
The terms of Formula 7.13 defining vor0,P (D) = vorP (D, t0) have a clear geometric
interpretation as quoins, wedges of t0-cones, and solid angles (see Section 7). There
is a quoin for each Rogers simplex. There is a somewhat delicate point that arises
in connection with the geometry of subclusters. It is not true in general that the
Rogers simplices entering into the truncation vor0,P (D) of (P,D) lie in the cone
over P . Formula 7.13 should be viewed as an analytic continuation that has a nice
geometric interpretation when things are nice, and which always gives the right
answer when summed over all the subclusters in the cluster, but which may exhibit
unusual behavior in general. The following lemma shows that the simple geometric
interpretation of Formula 7.13 is valid when the subregion is not triangular.

Lemma 12.5. If a subregion is not a triangle and is not the subregion containing
the anchored simplices around an upright diagonal, the cone of arcradius

ψ = arccos(|v|/(2t0))
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centered along {0, v}, where v is a corner of the subcluster, does not cross out of
the subregion.

Proof. For a contradiction, let {v1, v2} be a distinguished edge that the cone
crosses. If both edges {v, v1} and {v, v2} have length less than 2t0, there can be no
enclosed vertex w of height at most 2t0, unless its distance from v1 and v2 is less
than 2t0:

E(S(2, 2, 2, 2t0, 2t0, 3.2), 2t0, 2, 2) > 2t0.

In this case, we can replace {v1, v2} by an edge of the subregion closer to v, so
without loss of generality we may assume that there are no enclosed vertices when
both edges {v, v1} and {v, v2} have length less than 2t0.

The subregion is not a triangle, so |v − v1| ≥ 2t0, or |v − v2| ≥ 2t0, say
|v − v1| ≥ 2t0. Also |v − v2| ≥ 2. Pivot so that |v1 − v2| = 3.2, |v − v1| = 2t0,
|v − v2| = 2. (The simplex {0, v1, v2, v} cannot collapse (∆ 6= 0) as we pivot. For
more details about why ∆ 6= 0, see Inequality 12.2 in Section 12.7.) Then use71

βψ ≤ dih3.

As a consequence, in nonspecial standard regions, the terms in the Formula 7.13
for vor0 retain their interpretations as quoins, Rogers simplices, t0-cones, and solid
angles, all lying in the cone over the standard region.

12.5 Proof
The proof of the theorem occupies the rest of the section. The inequalities for
triangular and quadrilateral regions have already been proved. The bounds on t3,
t4, s3, and s4 are found in Lemma 10.1, Section 11.1, Lemma 8.10, and Theorem 8.4,
respectively. Thus, we may assume throughout the proof that the standard region
is exceptional

We begin with a slightly simplified account of the method of proof. Set t9 =
0.6978, t10 = 0.7891, tn = (4πζ − 8) pt, for n ≥ 11. Set D(n, k) = tn+k − 0.06585 k,
for 0 ≤ k ≤ n, and n + k ≥ 4. This function satisfies

D(n1, k1) + D(n2, k2) ≥ D(n1 + n2 − 2, k1 + k2 − 2). (12.1)

In fact, this inequality unwinds to tr + 0.13943 ≥ tr+1, D(3, 2) = 0.13943, and
tn = (0.06585)2 + (n− 4)D(3, 2), for n = 4, 5, 6, 7. These hold by inspection.

Call an edge between two vertices of height at most 2t0 long if it has length
greater than 2t0. Add the distinguished edges to break the standard regions into
subregions. We say that a subregion has edge parameters (n, k) if there are n
bounding edges, where k of them are long. (We count edges with multiplicities as
in Section 12.1, if the subregion is not a polygon.) Combining two subregions of
edge parameters (n1, k1) and (n2, k2) along a long edge e gives a union with edge
parameters (n1 + n2 − 2, k1 + k2 − 2), where we agree not to count the internal
edge e that no longer bounds. Inequality 12.1 localizes the main theorem to what

71calc-193836552
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is squandered by subclusters. Suppose we break the standard cluster into groups
of subregions such that if the group has edge parameters (n, k), it squanders at
least D(n, k). Then by superadditivity (Sec. 12.5, Formula 12.1), the full standard
cluster R must squander D(n, 0) = tn, n = n(R), giving the result.

Similarly, define constants s4 = 0, s9 = −0.1972, sn = 0, for n ≥ 10. Set
Z(n, k) = sn+k − kε, for (n, k) 6= (3, 1), and Z(3, 1) = ε, where72 ε = 0.00005. The
function Z(n, k) is subadditive:

Z(n1, k1) + Z(n2, k2) ≤ Z(n1 + n2 − 2, k1 + k2 − 2).

In fact, this easily follows from sa + sb ≤ sa+b−4, for a, b ≥ 4, and ε > 0. It will be
enough in the proof of Theorem 12.1 to show that the score of a union of subregions
with edge parameters (n, k) is at most Z(n, k).

12.6 Preparation of the standard cluster
Fix a standard cluster. We return to the construction of subregions and distin-
guished edges, to describe the penalties. Take the penalty of 0.008 for each 3-
unconfined upright diagonal. Take the penalty 0.03344 = 3ξΓ + ξκ,Γ for 4-crowded
upright diagonals. Take the penalty 0.04683 = 3ξΓ for 3-crowded upright diagonals.
Set πmax = 0.06688. The penalty in the next lemma refers to the combined penalty
from erasing all 3-unconfined, 3-crowded, and 4-crowded upright diagonals in the
decomposition star. The upright quarters that completely surround an upright
diagonal (loops) are not erased.

Lemma 12.6. The total penalty from a contravening decomposition star is at most
πmax.

Proof. Before any upright quarters are erased, each quarter squanders73 > 0.033,
so the star squanders > (4πζ − 8) pt if there are ≥ 25 quarters. Assume there are
at most 24 quarters. If the only penalties are 0.008, we have 8(0.008) < πmax. If we
have the penalty 0.04683, there are at most seven other quarters (0.5606+8(0.033) >
(4πζ−8) pt) (Lemma 11.6), and no other penalties from this type or from 4-crowded
upright diagonals, so the total penalty is at most 2(0.008)+0.04683 < πmax. Finally,
if there is one 4-crowded upright diagonal, there are at most twelve other quarters
(Section 11.7), and erasing gives the penalty 0.03344 + 4(0.008) < πmax.

The remaining upright diagonals are surrounded by anchored simplices. If the
edge opposite the diagonal in an anchored simplex has length ≥ 2

√
2, then there

may be an adjacent special simplex whose diagonal is that edge. Section 13.12 will
give bounds on the aggregate of these anchored simplices and special simplices. In
all other contexts, the upright quarters have been erased with penalties.

Break the standard cluster into subclusters as in Section 12.3. If the subregion
is a triangle, we refer to the bounds of 13.8. Sections 12.7–13.11 give bounds for

72Compare calc-193836552.
73calc-148776243
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subregions that are not triangles in which all the upright quarters have been erased.
We follow the strategy outlined in Section 12.5, although the penalties will add
certain complications.

We now assume that we have a subcluster without quarters and whose region
is not triangular. The truncated function vor0 is an upper bound on the score.
Penalties are largely disregarded until Section 13.4.

We describe a series of deformations of the subcluster that increase vor0,P (D)
and decrease τ0,P (D). These deformations disregard the broader geometric context
of the subcluster. Consequently, we cannot claim that the deformed subcluster
exists in any decomposition star D. As the deformation progresses, an edge {v1, v2},
not previously distinguished, can emerge with the properties of a distinguished edge.
If so, we add it to the collection of distinguished edges, use it if possible to divide
the subcluster into smaller subclusters, and continue to deform the smaller pieces.
When triangular regions are obtained, they are set aside until Section 13.8.

12.7 Reduction to polygons
By deformation, we can produce subregions whose boundary is a polygon. Let
U be the set of vertices over the subregion of height ≤ 2t0. As in Section 12.1,
the distinguished edges partition U into equivalence classes. Move the vertices in
one equivalence class U1 as a rigid body preserving heights until the class comes
sufficiently close to form a distinguished edge with another subset. Continue until
all the vertices are interconnected by paths of distinguished edges. vor0 and τ0 are
unchanged by these deformations.

If some vertex v is connected to three or more vertices by distinguished edges,
it follows from the connectedness of the open subregion that there is more than one
connected component Ui (by paths of distinguished edges) of U \{v}. Move U1∪{v}
rigidly preserving heights and keeping v fixed until a distinguished edge forms with
another component. Continue until the distinguished edges break the subregions
into subregions with polygon boundaries. Again vor0 and τ0 are unchanged.

By the end of Section 12, we will deform all subregions into convex polygons.

Remark 12.7. We will deform in such a way that the edges {v1, v2} will maintain
a length of at least 2. The proof that distances of at least 2 are maintained is given
in Section 12.13.

We will deform in such a way that no vertex crosses a boundary of the subre-
gion passing from outside to inside.

Edge length constraints prevent a vertex from crossing a boundary of the
subregion from the inside to outside. In fact, if v is to cross the edge {v1, v2}, the
simplex S = {0, v1, v, v2} attains volume 0. We may assume, by the argument of
the proof of Lemma 12.4, that there are no vertices enclosed over S. Because we are
assuming that the subregion is not a triangle, we may assume that |v − v1| > 2t0.
We have |v| ∈ [2, 2t0]. If v is to cross {v1, v2}, we may assume that the dihedral
angles of S along {0, v1}, and {0, v2} are acute. Under these constraints, by the
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explicit formulas of [Hal97a, Sec. 8], the vertex v cannot cross out of the subregion

∆(S) ≥ ∆(2t20, 4, 4, 3.22, 4, 2t20) > 0. (12.2)

We say that a corner v1 is visible from another v2 if {v1, v2} lies over the
subregion. A deformation may make v1 visible from v2, making it a candidate for
a new distinguished edge. If |v1− v2| ≤ 3.2, then as soon as the deformation brings
them into visibility (obstructed until then by some v), then Inequality 12.2 shows
that |v1 − v|, |v2 − v| ≤ 2t0. So v1, v, v2 are consecutive edges on the polygonal
boundary, and |v1 − v2| ≥ 2

√
4− t20 >

√
8. By the distinguished edge conditions

for special simplices, {v1, v2} is too long to be distinguished. In other words, there
can be no potentially distinguished edges hidden behind corners. They are always
formed in full view.

12.8 Some deformations

Definition 12.8. Consider three consecutive corners v3, v1, v2 of a subcluster R
such that the dihedral angle of R at v1 is greater than π. We call such an corner
concave. (If the angle is less than π, we call it convex.) Similarly, the angle of a
subregion is said to be convex or concave depending on whether it is less than or
greater than π.

Let S = S(y1, . . . , y6) = {0, v1, v2, v3}, yi = |vi|. Suppose that y6 > y5. Let
xi = y2

i .

Lemma 12.9. At a concave vertex, ∂ vor0 /∂x5 > 0 and ∂τ0/∂x5 < 0.

Proof. As x5 varies, dihi(S) + dihi(R) is constant for i = 1, 2, 3. The part of
Formula 7.13 for vor0 that depends on x5 can be written

−B(y1) dih(S)−B(y2) dih2(S)−B(y3) dih3(S)− 4δoct(quo(R135) + quo(R315)),

where B(yi) = A(yi/2) + φ0, R135 = R(y1/2, b, t0), R315 = R(y3/2, b, t0), b =
η(y1, y3, y5), and A(h) = (1 − h/t0)(φ(h, t0) − φ0). Set u135 = u(x1, x3, x5), and
∆i = ∂∆/∂xi. (The notation comes from [Hal97a, Sec. 8] and Section 7.) We have

∂ quo(R(a, b, c))
∂b

=
−a(c2 − b2)3/2

3b(b2 − a2)1/2
≤ 0

and ∂b/∂x5 ≥ 0. Also, u ≥ 0, ∆ ≥ 0 (see [Hal97a, Sec. 8]). So it is enough to show

V0(S) = u135∆1/2 ∂

∂x5
(B(y1) dih(S) + B(y2) dih2(S) + B(y3) dih3(S)) < 0.

By the explicit formulas of [Hal97a, Sec. 8], we have

V0(S) = −B(y1)y1∆6 + B(y2)y2u135 −B(y3)y3∆4.
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For τ0, we replace B with B − ζpt. It is enough to show that

V1(S) = −(B(y1)− ζpt)y1∆6 + (B(y2)− ζpt)y2u135 − (B(y3)− ζpt)y3∆4 < 0.

The lemma now follows from an interval calculation. We note that the polynomials
Vi are linear in x4, and x6, and this may be used to reduce the dimension of the
calculation.

We give a second form of the lemma when the dihedral angle of R is less than
π, that is, at a convex corner.

Lemma 12.10. At a convex corner, ∂ vor0 /∂x5 < 0 and ∂τ0/∂x5 > 0, if y1, y2, y3 ∈
[2, 2t0], ∆ ≥ 0, and (i) y4 ∈ [2

√
2, 3.2], y5, y6 ∈ [2, 2t0], or (ii) y4 ≥ 3.2, y5, y6 ∈

[2, 3.2].

Proof. We adapt the proof of the previous lemma. Now dihi(S) − dihi(R) is
constant, for i = 1, 2, 3, so the signs change. vor0 depends on x5 through

∑
B(yi) dihi(S)− 4δoct(quo(R135) + quo(R315)).

So it is enough to show that

V0 − 4δoct∆1/2u135
∂

∂x5
(quo(R135) + quo(R315)) < 0.

Similarly, for τ0, it is enough to show that

V1 − 4δoct∆1/2u135
∂

∂x5
(quo(R135) + quo(R315)) < 0.

By an interval calculation74

−4δoctu135
∂
∂x5

(quo(R135) + quo(R315)) < 0.82, on [2, 2t0]3,
< 0.5, on [2, 2t0]3, y5 ≥ 2.189.

The result now follows from the inequalities.75

Return to the situation of concave corner v1. Let v2, v3 be the adjacent corners.
By increasing x5, the vertex v1 moves away from every corner w for which {v1, w} lies
outside the region. This deformation then satisfies the constraint of Remark 12.7.
Stretch the shorter of {v1, v2}, {v1, v3} until |v1 − v2| = |v1 − v3| = 3.07 (or until a
new distinguished edge forms, etc.). Do this at all concave corners.

By stopping at 3.07, we prevent a corner crossing an edge from outside-in.
Let w be a corner that threatens to cross a distinguished edge {v1, v2} as a result of
the motion at a nonconvex vertex. To say that the crossing of the edge is from the
outside-in implies more precisely that the vertex being moved is an endpoint, say

74calc-984628285
75calc-984628285
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v1, of the distinguished edge. At the moment of crossing the simplex {0, v1, v2, w}
degenerates to a planar arrangement, with the radial projection of w lying over the
geodesic arc connecting the radial projections of v1 and v2. To see that the crossing
cannot occur, it is enough to note that the volume of a simplex with opposite edges
of lengths at most 2t0 and 3.07 and other edges at least 2 cannot be planar. The
extreme case is

∆(22, 22, (2t0)2, 22, 22, 3.072) > 0.

If |v1| ≥ 2.2, we can continue the deformations even further. We stretch
the shorter of {v1, v2} and {v1, v3} until |v1 − v2| = |v1 − v3| = 3.2 (or until a
new distinguished edge forms, etc.). Do this at all concave corners v1 for which
|v1| ≥ 2.2. To see that corners cannot cross an edge from the outside-in, we argue
as in the previous paragraph, but replacing 3.07 with 3.2. The extreme case becomes

∆(2.22, 22, (2t0)2, 22, 22, 3.22) > 0.

12.9 Truncated corner cells
Because of the arguments in the Section 12.8, we may assume without loss of gen-
erality that we are working with a subregion with the following properties. If v
is a concave vertex and w is not adjacent to v, and yet is visible from v, then
|v−w| ≥ 3.2. If v is a concave corner, then |v−w| ≥ 3.07 for both adjacent corners
w. If v is a concave corner and |v| ≥ 2.2, then |v − w| ≥ 3.2 for both adjacent
corners w. These hypotheses will remain in force through the end of Section 12.

Recall from Definition 12.8 that we call a spherical region convex if its interior
angles are all less than π. The case where the subregion is a convex triangle will be
treated in Section 13.8. Hence, we may also assume in Sections 12.9 through 12.12
that the subregion is not a convex triangle.

We construct a corner cell at each corner. It depends on a parameter λ ∈
[1.6, 1.945]. In all applications, we take λ = 1.945 = 3.2− t0, λ = 1.815 = 3.07− t0,
or λ = 1.6 = 3.2/2.

To construct the cell around the corner v, place a triangle along {0, v} with
sides |v|, t0, λ (with λ opposite the origin). Generate the solid of rotation around
the axis {0, v}. Extend to a cone over 0. Slice the solid by the perpendicular bisector
of {0, v}, retaining the part near 0. Intersect the solid with a ball of radius t0. The
cones over the two boundary edges of the subregion at v make two cuts in the solid.
Remove the slice that lies outside the cone over the subcluster. What remains is
the corner cell at v with parameter λ.

Corner cells at corners separated by a distance less than 2λ may overlap. We
define a truncation of the corner cell that has the property that the truncated corner
cells at adjacent corners do not overlap. Let {0, vi, vj}⊥ denote the plane perpen-
dicular to the plane {0, vi, vj} passing through the origin and the circumcenter of
{0, vi, vj}.

Let v1, v2, v3 be consecutive corners of a subcluster. Take the corner cell with
parameter λ at the corner v2. Slice it by the planes {0, v1, v2}⊥ and {0, v2, v3}⊥,
and retain the part along the edge {0, v2}. This is the truncated corner cell (tcc).
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By construction tccs at adjacent corners are separated by a plane (0, ·, ·)⊥. Tccs at
nonadjacent corners do not overlap if the corners are ≥ 2λ apart. Tccs will only be
used in subregions satisfying this condition. It will be shown in Section 12.11 that
tccs lie in the cone over the subregion (for suitable λ).

12.10 Formulas for Truncated corner cells
We will assign a score to truncated corner cells, in such a way that the score of the
subcluster can be estimated from the scores of the corner cells.

We write C0 for a truncated corner cell. We write Cu
0 for the corresponding

untruncated corner cell. (Although we call this the untruncated corner cell to
distinguish it from the corner cell, it is still truncated in the sense that it lies in the
ball at the origin of radius t0. It is untruncated in the sense that it is not cut by
the planes (. . .)⊥.)

For any solid body X, we define the geometric truncated function by

vorg
0(X) = 4(−δoctvol(X) + sol(X)/3)

the counterpart for squander

τg
0 (X) = ζpt sol(X)− vorg

0(X).

The solid angle is to be interpreted as the solid angle of the cone formed by all rays
from the origin through nonzero points of X. We may apply these definitions to
obtain formulas for vorg

0(C0), and so forth.
The formula for the score of a truncated corner cell differs slightly according

to the convexity of the corner. We start with a convex corner v, and let v1, v, and
v2 be consecutive corners in the subregion.

Let S = {0, v, v1, v2} be a simplex with |v1 − v2| ≥ 3.2. The formula for
the score of a tcc C0(S) simplifies if the face of C0 cut by {0, v, v1}⊥ does not
meet the face cut by {0, v, v2}⊥. We make that assumption in this subsection. Set
χ0(S) = vorg

0(C0(S)). (The function χ0 is unrelated to the function χ that was
introduced in Definition 5.14 to measure the orientation of faces.)

ψ = arc(y1, t0, λ), h = y1/2,
R′126 = R(y1/2, η126, y1/(2 cos ψ)), R126 = R(y1/2, η126, t0),
sol′(y1, y2, y6) = + dih(R′126)(1− cosψ)− sol(R′126),
χ0(S) = dih(S)(1− cos ψ)φ0

− sol′(y1, y2, y6)φ0 − sol′(y1, y3, y5)φ0

+A(h) dih(S)− 4δoct(quo(R126) + quo(R135)).

In the three lines giving the formula for χ0, the first line represents the score of the
cone before it is cut by the planes {0, v, vi}⊥ and the perpendicular bisector of {0, v}.
The second line is the correction resulting from cutting the tcc along the planes
{0, v, vi}⊥. The face of the Rogers simplex R′126 lies along the plane {0, v, v1}⊥.
The third line is the correction from slicing the tcc with the perpendicular bisector
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170 Section 12. Bounds in Exceptional Regions

of {0, v}. This last term is the same as the term appearing for a similar reason in
the formula for vor0 in Formula 7.13. In this formula R is the usual Rogers simplex
and quo(Rijk) is the quoin coming from a Rogers simplex along the face with edges
(ijk).

The formula for the untruncated corner cell is obtained by setting “sol′” and
“quo” to “0” in the expression for χ0. Thus,

vorg(Cu
0 ) = dih(S)[(1− cosψ)φ0 + A(h)]

The formula depends only on λ, the dihedral angle, and the height |v|. We write
Cu

0 = Cu
0 (|v|, dih), and suppress λ from the notation. The dependence on dih(S) is

linear:
τg
0 (Cu

0 (|v|, dih)) = (dih /π)τg
0 (Cu

0 (|v|, π)).

The dependence of χ0 on the fourth edge y4 = |v1 − v2| comes through a
term proportional to dih(S). Since the dihedral angle is monotonic in y4, so is χ0.
Thus, under the assumption that |v1 − v2| ≥ 3.2, we obtain an upper bound on χ0

at y4 = 3.2. Our deformations will fix the lengths of the other five variables, and
monotonicity gives us the sixth. Thus, the tccs lead to an upper bound on vorg

0

(and a lower bound on τg
0 ) that does not require interval arithmetic.

At a concave vertex, the formula is similar. Replace “dih(S)” with “(2π −
dih(S))” in the given expression for χ0. We add a superscript − to the name of the
function at concave vertices, to denote this modification: χ−0 (C0).

12.11 Containment of Truncated corner cells
The assumptions made at the beginning of Section 12.9 remain in force.

Lemma 12.11. Let v be a concave vertex with |v| ≥ 2.2. The truncated corner cell
at v with parameter λ = 1.945 lies in the truncated V -cell over R.

Proof. Consider a corner cell at v and a distinguished edge {v1, v2} forming the
boundary of the subregion. The corner cell with parameter λ = 1.945 is contained
in a cone of arcradius θ = arc(2, t0, λ) < 1.21 < π/2 (in terms of the function
arc of Section 9.7). Take two corners w1, w2, visible from v, between which the
given bounding edge appears. (We may have wi = vi). The two visible edges,
{v, wi}, have length ≥ 3.2. (Recall that the distinguished edges at v have been
deformed to length 3.2.) They have arc-length at least arc(2t0, 2t0, 3.2) > 1.38.
The segment of the distinguished edge {v1, v2} visible from v has arc-length at
most arc(2, 2, 3.2) < 1.86.

We check that the corner cell cannot cross the visible portion of the edge
{v1, v2}. Consider the spherical triangle formed by the edges {v, w1}, {v, w2} (ex-
tended as needed) and the visible part of {v1, v2}. Let C be the radial projection
of v and AB be the radial projection of the visible part of {v1, v2}. Pivot A and
B toward C until the edges AC and BC have arc-length 1.38. The perpendicular
from C to AB has length at least

arccos(cos(1.38)/ cos(1.86/2)) > 1.21 > θ.
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This proves that the corner cell lies in the cone over the subregion.

Lemma 12.12. Let v be a concave vertex. The truncated corner cell at v with
parameter λ = 1.815 lies in the truncated V -cell over R.

Proof. The proof proceeds along the same lines as the previous lemma, with
slightly different constants. Replace 1.945 with 1.815, 1.38 with 1.316, 1.21 with
1.1. Replace 3.2 with 3.07 in contexts giving a lower bound to the length of an edge
at v, and keep it at 3.2 in contexts calling for an upper bound on the length of a
distinguished edge. The constant 1.86 remains unchanged.

Lemma 12.13. The truncated corner cells with parameter 1.6 in a subregion do
not overlap.

Proof. We may assume that the corners are not adjacent. If a nonadjacent corner
w is visible from v, then |w − v| ≥ 3.2, and an interior point intersection p is
incompatible with the triangle inequality: |p − v| ≤ 1.6, |p − w| < 1.6. If w is
not visible, we have a chain v = v0, v1, . . . , vr = w such that vi+1 is visible from
vi. Imagine a taut string inside the subregion extending from v to w. The radial
projections of vi are the corners of the string’s path. The string bends in an angle
greater than π at each vi, so the angle at each intermediate vi is greater than π.
That is, they are concave. Thus, by our deformations |vi− vi+1| ≥ 3.07. The string
has arc-length at least r arc(2t0, 2t0, 3.07) > r(1.316). But the corner cells lie in
cones of arcradius arc(2, t0, λ) < 1. So 2(1.0) > r(1.316), or r = 1. Thus, w is
visible from v.

Lemma 12.14. The corner cell for λ ≤ 1.815 does not overlap the t0-cone wedge
around another corner w.

Proof. We take λ = 1.815. As in the previous proof, if there is overlap along a
chain, then

arc(2, t0, λ) + arc(2, t0, t0) > r arc(2t0, 2t0, 3.07),

and again r = 1. So each of the two vertices in question is visible from the other.
But overlap implies |p − v| ≤ 1.815 and |p − w| < t0, forcing the contradiction
|w − v| < 3.07.

Lemma 12.15. The corner cell for λ ≤ 1.945 at a corner v satisfying |v| ≥ 2.2
does not overlap the t0-cone wedge around another corner w.

Proof. We take λ = 1.945. As in the previous proof, if there is overlap along a
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chain, then
arc(2, t0, λ) + arc(2, t0, t0) > r arc(2t0, 2t0, 3.2),

and again r = 1. Then the result follows from

|w − v| ≤ |p− v|+ |p− w| < 1.945 + t0 = 3.2.

Definition 12.16. (By penalty-free score, we mean the part of the scoring bound
that does not include any of the penalty terms. We will sometimes call the full score,
including the penalty terms, the penalty-inclusive score.)

Lemma 12.4 was stated in the context of a subregion before deformation, but
a cursory inspection of the proof shows that the geometric conditions required for
the proof remain valid by our deformations. (This assumes that the subregion is
not a triangle, which we assumed at the beginning of Section 12.9.) In more detail,
there is a solid CP0 contained in the ball of radius of t0 at the origin, and lying
over the cone of the subregion P such that a bound on the penalty-free subcluster
score is vorg

0(CP0) and squander τg
0 (CP0).

Let {y1, . . . , yr} be a decomposition of the subregion into disjoint regions
whose union is X. Then if we let CP0(yi) denote the intersection of CP0(yi) with
the cone over yi, we can write

τg
0 (CP0) =

∑

i

τg
0 (CP0(yi)).

These lemmas allow us to express bounds on the score (and squander) of a
subcluster as a sum of terms associated with individual (truncated) corner cells. By
Lemmas 12.11 through 12.15, these objects do not overlap under suitable conditions.
Moreover, by the interpretation of terms provided by Section 12.4, the cones over
these objects do not overlap, when the objects themselves do not. In other words,
under the various conditions, we can take the (truncated) corner cells to be among
the sets CP0(yi).

To work a typical example, let us place a truncated corner cell with parameter
λ = 1.6 at each concave corner. Place a t0-cone wedge X0 at each convex corner.
The cone over each object lies in the cone over the subregion. By Lemma 12.5 and
Lemma 9.20 (see the proof), the t0-cone wedge X0 squanders a positive amount.
The part P ′ of the subregion outside all truncated corner cells and outside the
t0-cone wedges squanders

sol(P ′)(ζpt− φ0) > 0.

where sol(P ′) is the part of the solid angle of the subregion lying outside the tccs.
Dropping these positive terms, we obtain a lower bound on the penalty-free squan-
der:

τg
0 (CP0) ≥

∑

C0

τg
0 (C0).
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There is one summand for each concave corner of the subregion. Other cases proceed
similarly.

12.12 Convexity

Lemma 12.17. There are at most two concave corners.

Proof. Use the parameter λ = 1.6 and place a truncated corner cell C0 at each
concave corner v. Let Cu

0 (|v|, dih) denote the corresponding untruncated cell. The
Formula of Section 12.10 gives

τg
0 (C0) = τg

0 (Cu
0 (|v|, dih))− sol′(y1, y2, y6)φ′0 − sol′(y1, y3, y5)φ′0,

where φ′0 = ζpt − φ0 < 0.6671. (The conditions y5 ≥ 3.07 and y6 ≥ 3.07 force the
faces along the these edges to have circumradius greater than t0, and this causes
the “quo” terms in the formula to be zero.)

By monotonicity in dih, a lower bound on τg
0 (Cu

0 ) is obtained at dih = π.
τ0(Cu

0 (|v|, π)) is an explicit monotone decreasing rational function of |v| ∈ [2, 2t0],
which is minimized for |v| = 2t0. We find

τ0(Cu
0 (|v|, dih)) ≥ τ0(Cu

0 (2t0, π)) > 0.32.

The term sol′(y1, y3, y5) is maximized when y3 = 2t0, y5 = 3.07, so that
sol′ < 0.017. (This was checked with interval arithmetic in Mathematica.) Thus,

τ0(C0(v)) ≥ 0.32− 2(0.017)φ′0 > 0.297.

If there are three or more concave corners, then the penalty-free corner cells
squander at least 3(0.297). The penalty is at most πmax (Section 12.6). So the
penalty-inclusive squander is more than 3(0.297)− πmax > (4πζ − 8) pt.

Lemma 12.18. There are no concave corners of height at most 2.2.

Proof. Suppose there is a corner of height at most 2.2. Place an untruncated corner
cell Cu

0 (|v|, dih) with parameter λ = 1.815 at that corner and a t0-cone wedge at
every other corner. The subcluster squanders at least τ0(C0(|v|, π)) − πmax. This
is an explicit monotone decreasing rational function of one variable. The penalty-
inclusive squander is at least

τ0(Cu
0 (2t0, π))− πmax > (4πζ − 8) pt.

By the assumptions at the beginning of Section 12.9, the lemma implies that
each concave corner has distance at least 3.2 from every other visible corner.
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As in the previous lemma, when λ = 1.945, a lower bound on what is squan-
dered by the corner cell is obtained for |v| = 2t0, dih = π. The explicit formulas
give penalty-free squander > 0.734. Two disjoint corner cells give penalty-inclusive
squander > (4πζ − 8) pt. Suppose two at v1, v2 overlap. The lowest bound is ob-
tained when |v1 − v2| = 3.2, the shortest distance possible.

We define a function f(y1, y2) that measures what the union of the overlapping
corner cells squander. Set yi = |vi|, ` = 3.2, and

α1 = dih(y1, t0, y2, λ, `, λ),
α2 = dih(y2, t0, y1, λ, `, λ),
sol = sol(y2, t0, y1, λ, `, λ),
φi = φ(yi/2, t0), i = 1, 2,
λ = 3.2− t0 = 1.945,

f(y1, y2) = 2(ζpt− φ0) sol +2
∑2

1 αi(1− yi/(2t0))(φ0 − φi)
+

∑2
1 τ0(C(yi, λ, π − 2αi)).

An interval calculation76 gives f(y1, y2) > (4πζ − 8) pt + πmax, for y1, y2 ∈ [2, 2t0].
We conclude that there is at most one concave corner. Let v be such a corner.

If we push v toward the origin, the solid angle is unchanged and vor0 is increased.
Following this by the deformation of Section 12.8, we maintain the constraints
|v−w| = 3.2, for adjacent corners w, while moving v toward the origin. Eventually
|v| = 2.2. This is impossible by Lemma 12.18.

We verify that this deformation preserves the constraint |v − w| ≥ 2, for all
corners w such that {v, w} lies entirely outside the subregion. If fact, every corner
is visible from v, so that the subregion is star convex at v. We leave the details to
the reader.

We conclude that all subregions can be deformed into convex polygons.

12.13 Proof that Distances Remain at least 2

Remark 12.19. In Section 12.7, to allow for more flexible deformations, we drop
all constraints on the lengths of (undistinguished) edges {v1, v2} that cross the bound-
ary of the subregion. We deform in such a way that the edges {v1, v2} will maintain
a length of at least 2.

Recall that we say that a vertex of a subregion is convex if its angle is less than
π, and otherwise that is concave (Definition 12.8). In general, if P is a subregions
and p1 and p2 are two vertices of P , there is a minimal curve joining p1 and p2 inside
P . This curve is a finite sequence e1, . . . , er of spherical geodesics. We refer to this
sequence as the sequence of arcs from p1 to p2. The endpoint of each spherical arc
is a vertex of P . All endpoints except possible p1 and p2 are nonconvex. These
endpoints are the radial projections of corners of P : v0, v1, . . . , vr+1, with p(v0) = p1

and p(vr+1) = p2. The vertex p1 is visible from p2 if and only if r = 1.

76calc-984628285
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Lemma 12.20. This deformation of a subregion at a concave corner v maintains
a distance of at least 2 to every other corner w.

Proof. The proof is by contradiction. We may assume that |v − w| <
√

8. We
may assume that v and w are the first corners to violate the condition of being at
least 2 apart, so that distances between other pairs of corners are at least 2. A
distinguished edge connects v and w, if w is visible from v. So assume that w is
not visible. Let e(v1, v2) be the first distinguished edge crossed by the geodesic arc
g from p(v) to p(w). Let p0 be the intersection of e(v1, v2) and g. By construction,
the deformation moves v into the subregion, and the subregion P is concave at the
corner v, so that the arc from p(v) to p(w) begins in P , then crosses out at e(v1, v2).

Geometric considerations show that |v1 − v2| ≥ 2.91. In fact, geometric con-
siderations show that the shortest possible distance for |v1−v2| under the condition
that |v − w| ≤ 2 is the length of the segment passing through the triangle of sides
2, 2t0, 2t0 with both endpoints at distance exactly two from all three vertices of the
triangle. This distance is greater than 2.91.

Let e1, . . . , er be the sequence of arcs from p(v) to p(v1), and let f1, . . . , fs

be the sequence of arcs from p(v) to p(v2). Since this sequence forms a minimal
curve, the sum of the lengths of ei is at most the sum of the lengths of e(v, p0)
and e(p0, v1), and the sum of the lengths of fi is at most the sum of the lengths of
e(v, p0) and e(p0, v2).

Note that if r + s ≤ 4, then one of the edge-lengths must be at least 3.2, for
otherwise the sequence of arcs are all distinguished or diagonals of specials, and this
would not permit the existence of a corner w. That is, we can fully enumerate the
corners of the subregion, and each projects radially to an endpoint in the sequence
of arcs, or is a vertex of a special simplex. None of these corners is separated from
v by the plane {0, v1, v2}.

We have r + s ≤ 3 by the following calculations. Here y ∈ [2, 2t0].

5 arc(2t0, 2t0, 2) > arc(2, 2, 3.2) + 2 arc(2, 2, 2).

3 arc(2t0, 2t0, 2) + arc(2t0, y, 3.2) > arc(y, 2, 3.2) + 2 arc(2, 2, 2).

3 arc(2t0, 2t0, 2) + arc(2t0, y, 3.2) > arc(2, 2, 3.2) + 2 arc(y, 2, 2).

First we prove the lemma in the special case that the distance from v to one of
the endpoints, say v1, of {v1, v2} is at least 3.2. In this special case, we claim that
the constraints on the edge-lengths creates an impossible geometric configuration.
The constraints are as follows. There are five points: 0, v1, w, v, v2. The plane
{0, v1, v2} separates the point w from v. The distance constraints are as follows:

2 ≤ |u| ≤ 2t0,

for u = v1, w, v, v2, |v−v1| ≥ 3.2, |v−w| ≤ 2, |v−v2| ≥ 2, |w−v1| ≥ 2, |w−v2| ≥ 2,
2 ≤ |v1 − v2| ≤ 3.2.

If the segment {v, w} passes through the triangle {0, v1, v2}, then the de-
sired impossibility proof follows by geometric considerations. Again, if the segment
{v1, v2} passes through the triangle {0, v, w}, then the desired impossibility proof
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follows by geometric considerations, provided that {0, v1, v2, w} are not coplanar.
Assume for a contradiction that {0, v1, v2, w} lie in the plane P . We move back to
the nonplanar case if |v2 − v| is not 2 (pivot v2 around {0, w} toward v), if |v1 − v|
is not 3.2 (pivot v1 around {0, w} toward v), if |w − v| is not 2 (pivot w around
{v1, v2} away from v), or v is not 2t0 (pivot v and w simultaneously preserving
|w− v| around {v1, v2}). Therefore, we may assume without loss of generality that
|v2 − v| = 2, |v1 − v| = 3.2, |w − v| = 2, and |v| = 2t0.

Let p be the orthogonal projection of v to the plane P . Let h = |v − p|. The
distances from p to u ∈ P is f(|v − u|, h) =

√
|v − u|2 − h2. We consider two cases

depending on whether we can find a line in P through p dividing the plane into a
half-plane containing v1, 0, and v2, or into a half-plane containing v1, w, and v2. In
the first case we have

0 = arc(|p− v1|, |p|, |v1|)+
arc(|p− v2|, |p|, |v2|)− arc(|p− v1|, |p− v2|, |v1 − v2|)

≥ arc(f(3.2, h), f(2t0, h), 2)+
arc(f(2, h), f(2t0, h), 2)− arc(f(3.2, h), f(2, h), 3.2) (12.3)

The function arc is monotonic in the arguments and from this it follows easily
that this function of h is positive on its domain 0 ≤ h ≤ √

3. This is a contradiction.
(The upper bound

√
3 is determined by the condition that the triangle {w, v1, v},

which is equilateral in the extreme case, exist under the given edge constraints.) In
the second case, we obtain the related contradiction

0 = arc(|p− v1|, |p− w|, |v1 − w|) + arc(|p− v2|, |p− w|, |v2 − w|)−
arc(|p− v1|, |p− v2|, |v1 − v2|)
≥ arc(f(3.2, h), f(2, h), 2)+

arc(f(2, h), f(2, h), 2)− arc(f(3.2, h), f(2, h), 3.2)
> 0 (12.4)

Now assume that the distances from v to the vertices v1 and v2 are at most
3.2.

If r + s = 2, then v1 and v2 are visible from v. Thus, they are distinguished
or diagonals of special simplices. As {v1, v2} is also distinguished, the corners of P
are fully enumerated: v, v1, v2, and the vertices of special simplices. Since none of
these are w, we conclude that w does not exist in this case.

If r + s = 3, then say r = 1 and s = 2. We have {v, v1} is distinguished
or the diagonal of a special simplex. Let p(v), p(u) be the endpoints of f1, for
some corner u. We have |u − v1| ≥

√
8 because {u, v1} is not distinguished, and

max(|u − v|, |u − v1|) ≥ 3.2, because otherwise we enumerate all vertices of P as
in the case r + s = 2, and find that w is not among them. But now geometric
considerations lead to a contradiction: there does not exist a configuration of five
points 0, u, v, v1, v2, with all distances at least 2 satisfying these constraints. (This
can be readily solved by geometric considerations.)
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Section 13

Convex Polygons

13.1 Deformations
We divide the bounding edges over the polygon according to length [2, 2t0], [2t0, 2

√
2],

[2
√

2, 3.2]. The deformations of Section 12.8 contract edges to the lower bound of the
intervals (2, 2t0, or 2

√
2) unless a new distinguished edge is formed. By deforming

the polygon, we assume that the bounding edges have length 2, 2t0, or 2
√

2. (There
are a few instances of triangles or quadrilaterals that do not satisfy the hypotheses
needed for the deformations. These instances will be treated in Sections 13.8 and
13.9.)

Lemma 13.1. Let S = S(y1, . . . , y6) be a simplex, with xi = y2
i , as usual. Let

y4 ≥ 2, ∆ ≥ 0, y5, y6 ∈ {2, 2t0, 2
√

2}. Fixing all the variables but x1, let f(x1) be
one of the functions s-vor0(S) or −τ0(S). We have f ′′(x1) > 0 whenever f ′(x1) = 0.

Proof. This is an interval calculation.77

The lemma implies that f does not have an interior point local maximum for
x1 ∈ [22, 2t20]. Fix three consecutive corners, v0, v1, v2 of the convex polygon, and
apply the lemma to the variable x1 = |v1|2 of the simplex S = {0, v0, v1, v2}. We
deform the simplex, increasing f . If the deformation produces ∆(S) = 0, then some
dihedral angle is π, and the arguments for nonconvex regions bring us eventually
back to the convex situation. Eventually y1 is 2 or 2t0. Applying the lemma at each
corner, we may assume that the height of every corner is 2 or 2t0. (There are a few
cases where the hypotheses of the lemma are not met, and these are discussed in
Sections 13.8 and 13.9.)

Lemma 13.2. The convex polygon has at most seven sides.

Proof. Since the polygon is convex, its perimeter on the unit sphere is at most a

77calc-311189443
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178 Section 13. Convex Polygons

great circle 2π. If there are eight sides, the perimeter is at least 8 arc(2t0, 2t0, 2) >
2π.

13.2 Truncated corner cells
The following lemma justifies using tccs at the corners as an upper bound on the
score (and lower bound on what is squandered). We fix the truncation parameter
at λ = 1.6.

Lemma 13.3. Take a convex subregion that is not a triangle. Assume edges between
adjacent corners have lengths ∈ {2, 2t0, 2

√
2, 3.2}. Assume nonadjacent corners are

separated by distances ≥ 3.2. Then the truncated corner cell at each vertex lies in
the cone over the subregion.

Proof. Place a tcc at v1. For a contradiction, let {v2, v3} be an edge that the
tcc overlaps. Assume first that |v1 − vi| ≥ 2t0, i = 2, 3. Pivot so that |v1 − v2| =
|v1 − v3| = 2t0. Write S(y1, . . . , y6) = {0, v1, v2, v3}. Set ψ = arc(y1, t0, 1.6). A
calculation78 gives βψ(y1, y2, y6) < dih2(S).

Now assume |v1 − v2| < 2t0. By the hypotheses of the lemma, |v1 − v2| = 2.
If |v1 − v3| < 3.2, then {0, v1, v2, v3} is triangular, contrary to hypothesis. So
|v1 − v3| ≥ 3.2. Pivot so that |v1 − v3| = 3.2. Then79

βψ(y1, y2, y6) < dih2(S),

where ψ = arc(y1, t0, 1.6), provided y1 ∈ [2.2, 2t0]. Also, if y1 ∈ [2.2, 2t0]

arc(y1, t0, 1.6) < arc(y1, y2, y6).

If y1 ≤ 2.2, then ∆1 ≥ 0, so ∂ dih2 /∂x3 ≤ 0. Set x3 = 2t20. Also, ∆6 ≥ 0, so
∂ dih2 /∂x4 ≤ 0. Set x4 = 3.22.

Let c be a point of intersection of the plane {0, v1, v2}⊥ with the circle at
distance λ = 1.6 from v1 on the sphere centered at the origin of radius t0. The
angle along {0, v2} between the planes {0, v2, v1} and {0, v2, c} is

dih(R(y2/2, η126, y1/(2 cos ψ))).

This angle is less80 than dih2(S). Also, ∆1 ≥ 0, ∂ dih3 /∂x2 ≤ 0, so set x2 = 2t20.
Then ∆5 < 0, so dih2 > π/2. This means that {0, v1, v2}⊥ separates the tcc from
the edge {v2, v3}.

78calc-193836552
79calc-193836552
80calc-193836552
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13.3 Analytic continuation
In this subsection we assume that λ = 1.6 and that the truncated corner cell under
consideration lies at a convex vertex.

Assume that the face cut by {0, v, v1}⊥ meets the face cut by {0, v, v2}⊥. Let
ci be the point on the plane {0, v, vi}⊥ satisfying |ci − v| = 1.6, |ci| = t0. (Pick
the root within the wedge between v1 and v2.) The overlap of the two faces is
represented in Figure 13.1.

Figure 13.1. Different forms of truncated corner cells are shown. The
structure shown in the middle frame cannot occur.

We let c0 be the point of height t0 on the intersection of the planes {0, v, v1}⊥
and {0, v, v2}⊥. We claim that c0 lies over the truncated spherical region of the tcc,
rather than the wedges of t0-cones or the Rogers simplices along the faces {0, v, v1}
and {0, v, v2}. (This implies that c0 cannot protrude beyond the corner cell as
depicted in the second frame of the figure.) To see the claim, consider the tcc as a
function of y4 = |v1 − v2|. When y4 is sufficiently large the claim is certainly true.
Contract y4 until c0 = c0(y4) meets the perpendicular bisector of {0, v}. Then c0

is equidistant from 0, v, v1 and v2 so it is the circumcenter of {0, v, v1, v2}. It has
distance t0 from the origin, so the circumradius is t0. This implies that y4 ≤ 2t0.

The tcc is defined by the constraints represented in the third frame. The
analytic continuation of the function χ0(S) = χan

0 (S), defined above, acquires a vol-
ume X, counted with negative sign, lying under the spherical triangle (c0, c1, c2).
Extending our notation, we have an analytically defined function χan

0 and a geo-
metrically defined function χg

0,

χan
0 (S) = χg

0(S)− c-vor0(X), where
c-vor0(X) = 4(−δoctvol(X) + sol(X)/3) = φ0 sol(X) < 0.

So χan
0 > χg

0, and we may always use χ0(S) = χan
0 (S) as an upper bound on the

score of a tcc.
For example, with λ = 1.6 and S = S(2.3, 2.3, 2.3, 2.9, 2, 2), we have

χan
0 (S) ≈ −0.103981, χg

0(S) ≈ −0.105102.
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Or, if S = S(2, 2, 2t0, 3.2, 2, 2t0), then

χan
0 (S) ≈ −0.0718957, χg

0(S) ≈ −0.0726143.

13.4 Penalties
In Section 12.6, we determined the bound of πmax = 0.06688 on penalties. In this
section, we give a more thorough treatment of penalties. Until now a penalty has
been associated with a given standard region, but by taking the worst case on each
subregion, we can move the penalties to the level of subregions. Roughly, each
subregion should incur the penalties from the upright quarters that were erased
along edges of that subregion. Each upright quarter of the original standard region
is attached at an edge between adjacent corners of the standard cluster. The edges
have lengths between 2 and 2t0. The deformations shrink the edges to length 2.
We attach the penalty from the upright quarter to this edge of this subregion. In
general, we divide the penalty evenly among the upright quarters along a common
diagonal, without trying to determine a more detailed accounting. For example, the
penalty 0.008 in Lemma 11.23 comes from three upright quarters. Thus, we give
each of three edges a penalty of 0.008/3. Or, if there are only two upright quarters
around the 3-unconfined upright diagonal, then each of the two upright quarters is
assigned the penalty 0.00222/2 (see Lemma 11.23).

The penalty 0.04683 = 3ξΓ in Section 12.6 comes from three upright quarters
around a 3-crowded upright diagonal. Each of three edges is assigned a penalty of
ξΓ. The penalty 0.03344 = 3ξΓ + ξκ,Γ comes from a 4-crowded upright diagonal of
Section 11.7. It is divided among 4 edges. These are the only upright quarters that
take a penalty when erased. (The case of two upright quarters over a flat quarter
as in Lemma 11.3, are treated by a separate argument in Section 13.8. Loops will
be discussed in Section 13.12.)

The penalty can be reduced in various situations involving a masked flat quar-
ter. For example, around a 3-crowded upright diagonal, if there is a masked flat
quarter, two of the upright quarters are scored by the analytic function s-vor, so
that the penalty plus adjustment is only81 82 0.034052 = 2ξV + ξΓ + 0.0114. The
adjustment 0.0114 reflects the scoring rules for masked flat quarters (Lemma 11.23).
This we divide evenly among the three edges that carried the upright quarters. If e
is an edge of the subregion R, let π0(R, e) denote the penalty and score adjustment
along edge e of R.

In summary, we have the penalties,

ξκ, ξV , ξΓ, 0.008,

combined in various ways in the upright diagonals that are 3-unconfined, 3-crowded,
or 4-crowded. There are score adjustments

0.0114 and 0.0063
81calc-73974037
82calc-764978100
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from Section 11.9 for masked flat quarters. If the sum of these contributions is s, we
set π0(R, e) = s/n, for each edge e of R originating from an erased upright quarter
of S±n .

13.5 Penalties and Bounds
Recall that the bounds for flat quarters we wish to establish from Section 12.5 are
Z(3, 1) = 0.00005 and D(3, 1) = 0.06585. Flat quarters arise in two different ways.
Some flat quarters are present before the deformations begin. They are scored by
the rules of Section 11.9. Others are formed by the deformations. In this case, they
are scored by vor0. Since the flat quarter is broken away from the subregion as soon
as the diagonal reaches 2

√
2, and then is not deformed further, the diagonal is fixed

at 2
√

2. Such flat quarters can violate our desired inequalities. For example,

Z(3, 1) < s-vor0(S(2, 2, 2, 2
√

2, 2, 2)) ≈ 0.00898, τ0(S(2, 2, 2, 2
√

2, 2, 2)) ≈ 0.0593.

On the other hand, as we will see, the adjacent subregion satisfies the inequality by
a comfortable margin. Therefore, we define a transfer ε from flat quarters to the
adjacent subregion. (In an exceptional region, the subregion next to a flat quarter
along the diagonal is not a flat quarter.)

For a flat quarter Q, set

ετ (Q) =

{
0.0066, (deformation),
0, (otherwise).

εσ(Q) =

{
0.009, (deformation),
0, (otherwise).

The nonzero value occurs when the flat quarter Q is obtained by deformation from
an initial configuration in which Q is not a quarter. The value is zero when the flat
quarter Q appears already in the undeformed standard cluster. Set

πτ (R) =
∑

e π0(R, e) +
∑

e π0(Q, e) +
∑

Q ετ (Q),
πσ(R) =

∑
e π0(R, e) +

∑
e π0(Q, e) +

∑
Q εσ(Q).

The first sum runs over the edges of a subregion R. The second sum runs over the
edges of the flat quarters Q that lie adjacent to R along the diagonal of Q.

The edges between corners of the polygon have lengths 2, 2t0, or 2
√

2. Let
k0, k1, and k2 be the number of edges of these three lengths respectively. By
Lemma 13.2, we have k0 + k1 + k2 ≤ 7. Let σ̃ denote any of the functions of
Section 11.9.2(a)–(f). Let τ̃ = sol ζpt− σ̃.

To prove Theorem 12.1, refining the strategy proposed in Section 12.5, we
must show that for each flat quarter Q and each subregion R that is not a flat
quarter, we have

τ̃(Q) > D(3, 1)− ετ (Q),
τ0(Q) > D(3, 1)− ετ (Q), if y4(Q) = 2

√
2,

τV (R) > D(3, 2), (type A),
τ0(R) > D(k0 + k1 + k2, k1 + k2) + πτ (R),

(13.1)
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where D(n, k) is the function defined in Section 12.5. The first of these inequalities
follows.83 84 85 In general, we are given a subregion without explicit information
about what the adjacent subregions are. Similarly, we have discarded all information
about what upright quarters have been erased. Because of this, we assume the worst,
and use the largest feasible values of πτ .

Lemma 13.4. We have πτ (R) ≤ 0.04683 + (k0 + 2k2 − 3)0.008/3 + 0.0066k2.

Proof. The worst penalty 0.04683 = 3ξΓ per edge comes from a 3-crowded upright
diagonal. The number of penalized edges not on a simplex around a 3-crowded
upright diagonal is at most k0 + 2k2 − 3. For every three edges, we might have one
3-unconfined upright diagonal. The other cases such as 4-crowded upright diagonals
or situations with a masked flat quarter are readily seen to give smaller penalties.

For bounds on the score, the situation is similar. The only penalties we need
to consider are 0.008 from Lemma 11.23. If either of the other configurations of 3-
crowded or 4-crowded upright diagonals occur, then the score of the standard cluster
is less than s8 = −0.228, by Sections 11.6 and 11.7. This is the desired bound. So
it is enough to consider subregions that do not have these upright configurations.
Moreover, the penalty 0.008 does not occur in connection with masked flats. So we
can take πσ(R) to be

(k0 + 2k2)0.008/3 + 0.009k2.

If k0 + 2k2 < 3, we can strengthen this to πσ(R) = 0.009k2. Let σ̃ be any of the
functions of Section 11.9.2 parts (a)–(f). To prove Theorem 12.1, we will show

σ̃(Q) < Z(3, 1) + εσ(Q),
s-vor0(Q) < Z(3, 1) + εσ(Q), if y4(Q) = 2

√
2,

vor0(R) < Z(3, 2), (type A),
vor0(R) < Z(k0 + k1 + k2, k1 + k2)− πσ(R).

(13.2)

The first of these inequalities follows.86 87 88

13.6 Penalties
Erasing an upright quarter of compression type gives a penalty of at most ξΓ and
one of Voronoi type gives at most ξV . We take the worst possible penalty. It is at
most nξΓ in an n-gon. If there is a masked flat quarter, the penalty is at most 2ξV

from the two upright quarters along the flat quarter. We note in this connection
that both edges of a polygon along a flat quarter lie on upright quarters, or neither
does.

83calc-193836552
84calc-148776243
85calc-163548682
86calc-193836552
87calc-148776243
88calc-163548682
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If an upright diagonal appears enclosed over a flat quarter, the flat quarter
is part of a loop with context (n, k) = (4, 1), for a penalty at most 2ξ′Γ + ξV .
This is smaller than the bound on the penalty obtained from a loop with context
(n, k) = (4, 1), when the upright diagonal is not enclosed over the flat quarter:

ξΓ + 2ξV .

So we calculate the worst-case penalties under the assumption that the upright
diagonals are not enclosed over flat quarters.

A loop of context (n, k) = (4, 1) gives ξΓ + 2ξV or 3ξΓ. A loop of context
(n, k) = (4, 2) gives 2ξΓ or 2ξV .

If we erase a 3-unconfined upright diagonal, there is a penalty of 0.008 (or
0 if it masks a flat quarter.) This is dominated by the penalty 3ξΓ of context
(n, k) = (4, 1).

Suppose we have an octagonal standard region. We claim that a loop does
not occur in context (n, k) = (4, 2). If there are at most three vertices that are not
corners of the octagon, then there are at most twelve quasi-regular tetrahedra, and
the score is at most

s8 + 12 pt < 8 pt.

Assume there are more than three vertices that are not corners over the octagon.
We squander

t8 + δloop(4, 2) + 4τLP(5, 0) > (4πζ − 8) pt.

As a consequence, context (n, k) = (4, 2) does not occur.
So there are at most two upright diagonals and at most six quarters, and the

penalty is at most 6ξΓ. Let f be the number of flat quarters This leads to

πF =





6ξΓ, f = 0, 1,

4ξΓ + 2ξV , f = 2,

2ξΓ + 4ξV , f = 3,

0, f = 4.

The 0 is justified by a parity argument. Each upright quarter occurs in a pair at
each masked flat quarter. But there is an odd number of quarters along the upright
diagonal, so no penalty at all can occur.

Suppose we have a heptagonal standard region. Three loops are a geometric
impossibility. Assume there are at most two upright diagonals. If there is no context
(n, k) = (4, 2), then we have the following bounds on the penalty

πF =





6ξΓ, f = 0,

4ξΓ + 2ξV , f = 1,

3ξΓ, f = 2,

ξΓ + 2ξV , f = 3.
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If an upright diagonal has context (n, k) = (4, 2), then

πF =





5ξΓ, f = 0, 1,

3ξΓ + 2ξV , f = 2,

ξΓ + 4ξV , f = 3.

This gives the bounds used in the diagrams of cases.

13.7 Constants
Theorem 12.1 now results from the calculation of a host of constants. Perhaps there
are simpler ways to do it, but it was a routine matter to run through the long list of
constants by computer. What must be checked is that the Inequalities 13.1 and 13.2
of Section 13.5 hold for all possible convex subregions. Call these inequalities the
D and Z inequalities. This section describes in detail the constants to check.

We begin with a subregion given as a convex n-gon, with at least four sides.
The heights of the corners and the lengths of edges between adjacent edges have been
reduced by deformation to a finite number of possibilities (lengths 2, 2t0, or lengths
2, 2t0, 2

√
2, respectively). By Lemma 13.2, we may take n = 4, 5, 6, 7. Not all

possible assignments of lengths correspond to a geometrically viable configuration.
One constraint that eliminates many possibilities, especially heptagons, is that of
Section 13.1: the perimeter of the convex polygon is at most a great circle. Eliminate
all length-combinations that do not satisfy this condition. When there is a special
simplex it can be broken from the subregion and scored89 separately unless the two
heights along the diagonal are 2. We assume in all that follows that all specials
that can be broken off have been. There is a second condition related to special
simplices. We have ∆(2t20, 2

2, 22, x2, 22, 22) < 0, if x > 3.114467. This means that
if the cluster edges along the polygon are (y1, y2, y3, y5, y6) = (2t0, 2, 2, 2, 2), the
simplex must be special (y4 ∈ [2

√
2, 3.2]).

The easiest cases to check are those with no special simplices over the polygon.
In other words, these are subregions for which the distances between nonadjacent
corners are at least 3.2. In this case we approximate the score (and what is squan-
dered) by tccs at the corners. We use monotonicity to bring the fourth edge to
length 3.2. We calculate the tcc constant bounding the score, checking that it is
less than the constant Z(k0 + k1 + k2, k1 + k2) − πσ, from the Z inequalities. The
D inequalities are verified in the same way.

When n = 5, 6, 7, and there is one special simplex, the situation is not much
more difficult. By our deformations, we decrease the lengths of edges 2, 3, 5, 6 of the
special to 2. We remove the special by cutting along its fourth edge e (the diago-
nal). We score the special with weak bounds.90 Along the edge e, we then apply
deformations to the (n−1)-gon that remains. If this deformation brings e to length
2
√

2, then the (n − 1)-gon may be scored with tccs as in the previous paragraph.
But there are other possibilities. Before e drops to 2

√
2, a new distinguished edge

89calc-148776243
90calc-148776243
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of length 3.2 may form between two corners (one of the corners will be a chosen
endpoint of e). The subregion breaks in two. By deformations, we eventually arrive
at e = 2

√
2 and a subregion with diagonals of length at least 3.2. (There is one case

that may fail to be deformable to e = 2
√

2, a pentagonal cases discussed further in
Section 13.10.) The process terminates because the number of sides to the polygon
drops at every step. A simple recursive computer procedure runs through all possi-
ble ways the subregion might break into pieces and checks that the tcc-bound gives
the D and Z inequalities. The same argument works if there is a special simplex
that overlaps each of the other special simplices in the subcluster.

When n = 6, 7 and there are two nonoverlapping special simplices, a similar
argument can be applied. Remove both specials by cutting along the diagonals.
Then deform both diagonals to length 2

√
2, taking into account the possible ways

that the subregion can break into pieces in the process. In every case the D and Z
inequalities are satisfied.

There are a number of situations that arise that escape this generic argu-
ment and were analyzed individually. These include the cases involving more than
two special simplices over a given subregion, two special simplices over a pentagon,
or a special simplex over a quadrilateral. Also, the deformation lemmas are in-
sufficient to bring all of the edges between adjacent corners to one of the three
standard lengths 2, 2t0, 2

√
2 for certain triangular and quadrilateral regions. These

are treated individually.
The next few sections describe the cases treated individually. The cases not

mentioned in the sections that follow fall within the generic procedure just described.

13.8 Triangles
With triangular subregions, there is no need to use any of the deformation argu-
ments because the dimension is already sufficiently small to apply interval arithmetic
directly to obtain our bounds. There is no need for the tcc-bound approximations.

Flat quarters and simplices of type A are treated by a computer calculation.91

Other simplices are scored by the truncated function s-vor0. We break the edges
between corners into the cases [2, 2t0), [2t0, 2

√
2), [2

√
2, 3.2]. Let k0, k1, and k2,

with k0 + k1 + k2 = 3, be the number of edges in the respective intervals.
If k2 = 0, we can improve the penalties,

πτ = πσ = 0.

To see this, first we observe that there can be no 3-crowded or 4-crowded upright
diagonals. By placing ≥ 3 quarters around an upright diagonal, if the subregion is
triangular, the upright diagonal becomes surrounded by anchored simplices, a case
deferred until Section 13.12.

If k0 = k1 = k2 = 1, we can take π′τ = ξΓ + 2ξV + 0.0114 = 0.034052. A
few cases are needed to justify this constant. If there are no 3-crowded upright

91calc-163548682
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diagonals, π′τ is at most

[ξΓ + 2ξV + ξκ,Γ]3/4 < 0.0254,
or [ξΓ + 2ξV + ξκ,Γ]2/4 + 0.008/3 < 0.0254

If there are at most two edges in the subregion coming from an 3-crowded upright
diagonal,

(ξΓ + 2ξV + 0.0114)2/3 + 0.008/3 < 0.0254.

If three edges come from the simplices of a 3-crowded upright diagonal, we get
0.034052. To get somewhat sharper bounds, we consider how the edge k2 was
formed. If it is obtained by deformation from an edge in the standard region of
length ≥ 3.2, then it becomes a distinguished edge when the length drops to 3.2.
If the edge in the standard region already has length ≤ 3.2, then it is distinguished
before the deformation process begins, so that the subregion can be treated in
isolation from the other subregions. We conclude that when π′τ = 0.034052 we can
take y4 ≥ 2.6 or y5 = 3.2 (Remark 11.22).

The D and Z inequalities now follow.92 93

13.9 Quadrilaterals
We introduce some notation for the heights and edge lengths of a convex polygon.
The heights will generally be 2 or 2t0, the edge lengths between consecutive corners
will generally be 2, 2t0, or 2

√
2. We represent the edge lengths by a vector

(a1, b1, a2, b2, . . . , an, bn),

if the corners of an n-gon, ordered cyclically have heights ai and if the edge length
between corner i and i+1 is bi. We say two vectors are equivalent if they are related
by a different cyclic ordering on the corners of the polygon, that is, by the action
of the dihedral group.

The vector of a polygon with a special simplex is equivalent to one of the form

(2, 2, a2, 2, 2, . . .).

If a2 = 2t0, then what we have is necessarily special (Section 13.7). However, if
a2 = 2, it is possible for the edge opposite a2 to have length greater than 3.2.

Turning to quadrilateral regions, we use tcc scoring if both diagonals are
greater than 3.2. Suppose that both diagonals are between [2

√
2, 3.2], creating

a pair of overlapping special simplices. The deformation lemma requires a diagonal
longer than 3.2, so although we can bring the quadrilateral to the form

(a1, 2, 2, 2, 2, 2, a4, b4),

92calc-852270725
93calc-819209129
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the edges a1, a4, b4 and the diagonal vary94 continuously. We have bounds95 on the
score

τ0 > 0.235, vor0 < −0.075, if b4 ∈ [2t0, 2
√

2],
τ0 > 0.3109, vor0 < −0.137, if b4 ∈ [2

√
2, 3.2],

We have D(4, 1) = 0.2052, Z(4, 1) = −0.05705. When b4 ∈ [2t0, 2
√

2], we can take
πτ = πσ = 0. (We are excluding loops here.) When b4 ∈ [2

√
2, 3.2], we can take

πτ = πmax + 0.0066,
πσ = 0.008(5/3) + 0.009.

It follows that the D and Z Inequalities are satisfied.
Suppose that one diagonal has length [2

√
2, 3.2] and the other has length at

least 3.2. The quadrilateral is represented by the vector

(2, 2, a2, 2, 2, b3, a4, b4).

The hypotheses of the deformation lemma hold, so that ai ∈ {2, 2t0} and bj ∈
{2, 2t0, 2

√
2}. To avoid quad clusters, we assume b4 ≥ max(b3, 2t0). These are

one-dimensional with a diagonal of length [2
√

2, 3.2] as parameter. The required
verifications96 have been made by interval arithmetic.

13.10 Pentagons
Some extra comments are needed when there is a special simplex. The general argu-
ment outlined above removes the special, leaving a quadrilateral. The quadrilateral
is deformed, bringing the edge that was the diagonal of the special to 2

√
2. This

section discusses how this argument might break down.
Suppose first that there is a special and that both diagonals on the resulting

quadrilateral are at least 3.2. We can deform using either diagonal, keeping both
diagonals at least 3.2. The argument breaks down if both diagonals drop to 3.2
before the edge of the special reaches 2

√
2 and both diagonals of the quadrilateral

lie on specials. When this happens, the quadrilateral has the form

(2, 2, 2, 2, 2, 2, 2, b4),

where b4 is the edge originally on the special simplex. If both diagonals are 3.2, this
is rigid, with b4 = 3.12. We find its score to be

s-vor0(S(2, 2, 2, b4, 3.2, 2)) + s-vor0(S(2, 2, 2, 3.2, 2, 2)) + 0.0461 < −0.205,
τ0(S(2, 2, 2, b4, 3.2, 2)) + τ0(S(2, 2, 2, 3.2, 2, 2))2 > 0.4645.

So the D and Z Inequalities hold easily.
If there is a special and there is a diagonal on resulting quadrilateral ≤ 3.2,

we have two nonoverlapping specials. It has the form

(2, 2, a2, 2, 2, 2, a4, 2, 2, b5).
94calc-148776243
95calc-128523606
96calc-874876755
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The edges a2 and a4 lie on the special. If b5 > 2, cut away one of the special
simplices. What is left can be reduced to a triangle, or a quadrilateral case and then
treated97 by computer. Assume b5 = 2. We have a pentagonal standard region. We
may assume that there is no 3-crowded or 4-crowded upright diagonal, for otherwise
Theorem 12.1 follows trivially from the bounds in Section 9. A pentagon can then
have at most a 3-unconfined upright diagonal for a penalty of 0.008.

If a2 = 2t0 or a4 = 2t0, we again remove a special simplex and produce
triangles, quadrilaterals, or the special cases treated by computer.98 We may impose
the condition a2 = a4 = b5 = 2. We score this full pentagonal arrangement by
computer,99 using the edge lengths of the two diagonals of the specials as variables.
The inequalities follow.

13.11 Hexagons and heptagons
We turn to hexagons. There may be three specials whose diagonals do not cross.
Such a subcluster is represented by the vector

(2, 2, a2, 2, 2, 2, a4, 2, 2, 2, a6, 2).

The heights a2i are 2 or 2t0. Draw the diagonals between corners 1, 3, and 5. This is
a three-dimensional configuration, determined by the lengths of the three diagonals,
which is treated by computer.100

There is one case with a special simplex that did not satisfy the generic
computer-checked inequalities for what is to be squandered. Its vector is

(a1, 2, 2, 2, 2, 2, 2, b4, 2, 2, 2, 2),

with a1 = b4 = 2t0. A vertex of the special simplex has height a1 = 2t0 and all
other corners have height 2. The subregion is a hexagon with one edge longer than
2. We have D(6, 1) = 0.48414. This is certainly obtained if the subregion contains
a 3-crowded upright diagonal, squandering 0.5606. But if this configuration does
not appear, we can decrease πτ to 0.03344 + (2/3)0.008, a constant coming from 4-
crowded upright diagonals in Section 12.6. With this smaller penalty the inequality
is satisfied.

Now turn to heptagons.The bound 2π on the perimeter of the polygon, elim-
inates all but one equivalence class of vectors associated with a polygon that has
two or more potentially specials simplices. The vector is

(2, 2, a2, 2, 2, 2, a4, 2, 2, 2, a6, 2, a7, 2),

a2 = a4 = a6 = a7 = 2t0. In other words, the edges between adjacent corners
are 2 and four heights are 2t0. There are two specials. This case is treated by the
procedure outlined for subregions with two specials whose diagonals do not cross.

97calc-874876755
98calc-874876755
99calc-692155251

100calc-692155251
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13.12 Loops
We now return to a collection of anchored simplices that surround the upright
diagonal. This is the last case needed to complete the proof of Theorem 12.4.
There are four or five anchored simplices around the upright diagonal. There are
linear inequalities101 102 103 104 105 106 satisfied by the anchored simplices, broken
up according to type: upright, type C, opposite edge > 3.2, etc. The anchored
simplices are related by the constraint that the sum of the dihedral angles around
the upright diagonal is 2π. We run a linear program in each case based on these
linear inequalities, subject to this constraint to obtain bounds on the score and
what is squandered by the anchored simplices.

When the edge opposite the diagonal of an anchored simplex has length ∈
[2
√

2, 3.2] and the simplex adjacent to the anchored simplex across that edge is a
special simplex, we use inequalities107 108 that run parallel to the similar system109

110 It is not necessary to run separate linear programs for these. It is enough to
observe that the constants for what is squandered improve on those from the similar
system111 and that the constants for the score in one system112 differ with those of
the other113 by no more than 0.009.

When the dihedral angle of an anchored simplex is greater than 2.46, the
simplex is dropped, and the remaining anchored simplices are subject to the con-
straint that their dihedral angles sum to at most 2π − 2.46. There can not be an
anchored simplex with dihedral angle greater than 2.46 when there are five anchors:
2.46 + 4(0.956) > 2π. There cannot114 be two anchored simplices with dihedral
angle greater than 2.46: 2(2.46 + 0.956) > 2π.

The following table summarizes the linear programming results.

(n, k) DLP(n, k) D(n, k) ZLP(n, k) Z(n, k)
(4, 0) 0.1362 0.1317 0 0
(4, 1) 0.208 0.20528 −0.0536 −0.05709
(4, 2) 0.3992 0.27886 −0.2 −0.11418
(4, 3) 0.6467 0.35244 −0.424 −0.17127
(5, 0) 0.3665 0.27113 −0.157 −0.05704
(5, 1) 0.5941 0.34471 −0.376 −0.11413

(5,≥ 2) 0.9706 (4πζ − 8) pt ∗ ∗

101calc-815492935
102calc-729988292
103calc-531888597
104calc-628964355
105calc-934150983
106calc-187932932
107calc-485049042
108calc-209361863
109calc-531888597
110calc-628964355
111calc-531888597
112calc-485049042
113calc-531888597
114calc-83777706
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190 Section 13. Convex Polygons

The bound for D(4, 0) comes from Lemma 10.8. A few more comments are
needed for Z(4, 1). Let S = S(y1, . . . , y6) be the anchored simplex that is not a
quarter. If y4 ≥ 2

√
2 or dih(S) ≥ 2.2, the linear programming bound is < Z(4, 1).

With this, if y1 ≤ 2.75, we have115 σ(S) < Z(4, 1). But if y1 ≥ 2.75, the three
upright quarters along the upright diagonal satisfy

ν < −0.3429 + 0.24573 dih .

With this stronger inequality, the linear programming bound becomes < Z(4, 1).
This completes the proof of Theorem 12.1.

Lemma 13.5. Consider an upright diagonal that is a loop. Let R be the standard
region that contains the upright diagonal and its surrounding simplices. Then the
following contexts (m, k) are the only ones possible. Moreover, the constants that
appear in the columns marked σ and τ are upper and lower bounds respectively for
τR(D) when R contains one loop of that context.

n = n(R) (m, k) σ τ

4
(4, 0) −0.0536 0.1362

5
(4, 1) s5 0.27385
(5, 0) −0.157 0.3665

6
(4, 1) s6 0.41328
(4, 2) −0.1999 0.5309
(5, 1) −0.37595 0.65995

7
(4, 1) s7 0.55271
(4, 2) −0.25694 0.67033

8
(4, 1) s8 0.60722
(4, 2) −0.31398 0.72484

Proof. In context (m, k), and if n = n(R), we have

σR(D) < sn + ZLP(m, k)− Z(m, k) τR(D) > tn + DLP(m, k)−D(m, k).

The result follows.

In the context (n, k) = (4, 3), the standard region R must have at least seven
sides n(R) ≥ 7. Then

τ(D) ≥ t7 + δloop(4, 3)
> (4πζ − 8) pt.

115calc-855294746
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13.12. Loops 191

Thus, we may assume that this context does not occur.
If the context (5, 1) appears in an octagon, we have

τ(D) > δloop(5, 1) + t8 > (4πζ − 8) pt.

If this appears in a heptagon, we have

τ(D) > δloop(5, 1) + t7 + 0.55 pt > (4πζ − 8) pt,

because there must be a vertex that is not a corner of the heptagon. It cannot
appear on a pentagon.



“fullkepler”
2005/11/14
page 192

i

i

i

i

i

i

i

i

192 Section 13. Convex Polygons



“fullkepler”
2005/11/14
page 193

i

i

i

i

i

i

i

i

Section 14

Further Bounds in
Exceptional Regions

14.1 Small dihedral angles
Recall that Section 12.1 defines an integer n(R) that is equal to the number of
sides if the region is a polygon. Recall that if the dihedral angle along an edge
of a standard cluster is at most 1.32, then there is a flat quarter along that edge
(Lemma 11.30).

Lemma 14.1. Let R be an exceptional cluster with a dihedral angle ≤ 1.32 at a
vertex v. Then R squanders > tn + 1.47 pt, where n = n(R).

Proof. In most cases we establish the stronger bound tn + 1.5 pt. In the proof of
Theorem 12.1, we erase all upright diagonals, except those completely surrounded by
anchored simplices. The contribution to tn from the flat quarter Q at v in that proof
is D(3, 1) (Sections 12.5 and Inequalities 13.1). Note that ετ (Q) = 0 here because
there are no deformations. If we replace D(3, 1) with 3.07 pt from Lemma 11.30,
then we obtain the bound. Now suppose the upright diagonal is completely sur-
rounded by anchored simplices. Analyzing the constants of Section 13.12, we see
that DLP(n, k)−D(n, k) > 1.5 pt except when (n, k) = (4, 1).

Here we have four anchored simplices around an upright diagonal. Three of
them are quarters. We erase and take a penalty. Two possibilities arise. If the
upright diagonal is enclosed over the flat quarter, its height is ≥ 2.6 by geometric
considerations and the top face of the flat quarter has circumradius at least

√
2.

The penalty is 2ξ′Γ + ξV , so the bound holds by the last statement of Lemma 11.30.
If, on the other hand, the upright diagonal is not enclosed over the flat diago-

nal, the penalty is ξΓ + 2ξV . In this case, we obtain the weaker bound 1.47 pt + tn:

3.07 pt > D(3, 1) + 1.47 pt + ξΓ + 2ξV .

193
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194 Section 14. Further Bounds in Exceptional Regions

Remark 14.2. If there are r nonadjacent vertices with dihedral angles ≤ 1.32, we
find that R squanders tn + r(1.47) pt.

In fact, in the proof of the lemma, each D(3, 1) is replaced with 3.07 pt from
Lemma 11.30. The only questionable case occurs when two or more of the vertices
are anchors of the same upright diagonal (a loop). Referring to Section 13.12, we
have the following observations about various contexts.

• (4, 1) can mask only one flat quarter and it is treated in the lemma.

• (4, 2) can mask only one flat quarter and DLP(4, 2)−D(4, 2) > 1.47 pt.

• (5, 0) can mask two flat quarters. Erase the five upright quarters, and take a
penalty 4ξV + ξΓ. We get

D(3, 2) + 2(3.07) pt > t5 + 4ξV + ξΓ + 2(1.47) pt.

• (5, 1) can mask two flat quarters, and DLP(5, 1)−D(5, 1) > 2(1.47) pt.

14.2 A particular 4-circuit
This subsection bounds the score of a particular 4-circuit on a contravening plane
graph. The interior of the circuit consists of two faces: a triangle and a pentagon.
The circuit and its enclosed vertex are show in Figure 14.1 with vertices marked
p1, . . . , p5. The vertex p1 is the enclosed vertex, the triangle is (p1, p2, p5) and the
pentagon is (p1, . . . , p5).

1

3 4

52

Figure 14.1. A 4-circuit

Suppose that D is a decomposition star whose associate graph contains such
triangular and pentagonal standard regions. Recall that D determines a set U(D)
of vertices in Euclidean 3-space of distance at most 2t0 from the origin, and that
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14.2. A particular 4-circuit 195

each vertex pi can be realized geometrically as a point on the unit sphere at the
origin, obtained as the radial projection of some vi ∈ U(D).

Lemma 14.3. One of the edges {v1, v3}, {v1, v4} has length less than 2
√

2. Both
of the them have lengths less than 3.02. Also, |v1| ≥ 2.3.

Proof. This is a standard exercise in geometric considerations as introduced in
Section 4.2. (The reader should review that section for the framework of the fol-
lowing argument.) We deform the figure using pivots to a configuration v2, . . . , v5

at height 2, and |vi − vj | = 2t0, (i, j) = (2, 3), (3, 4), (4, 5), (5, 2). We scale v1 until
|v1| = 2t0. We can also take the distance from v1 to v5 and to v2 to be 2. If we
have |v1 − v3| ≥ 2

√
2, then we stretch the edge |v1 − v4| until |v1 − v3| = 2

√
2. The

resulting configuration is rigid. Pick coordinates to find that |v1− v4| < 2
√

2. If we
have |v1 − v3| ≥ 2t0, follow a similar procedure to reduce to the rigid configuration
|v1− v3| = 2t0, to find that |v1− v4| < 3.02. The estimate |v1| ≥ 2.3 is similar.

There are restrictive bounds on the dihedral angles of the simplices {0, v1, vi, vj}
along the edge {0, v1}. The quasi-regular tetrahedron has a dihedral angle of at
most116 1.875. The dihedral angles of the simplices {0, v1, v2, v3}, {0, v1, v5, v4}
adjacent to it are at most117 1.63. The dihedral angle of the remaining sim-
plex {0, v1, v3, v4} is at most118 1.51. This leads to lower bounds as well. The
quasi-regular tetrahedron has a dihedral angle that is at least 2π − 2(1.63) −
1.51 > 1.51. The dihedral angles adjacent to the quasi-regular tetrahedron is at
least 2π − 1.63 − 1.51 − 1.875 > 1.26. The remaining dihedral angle is at least
2π − 1.875− 2(1.63) > 1.14.

A decomposition star D determines a set of vertices U(D) that are of distance
at most 2t0 from the center of D. Three consecutive vertices p1, p2, and p3 of a
standard region are determined as the projections to the unit sphere of three corners
v1, v2, and v3, respectively in U(D). By Lemma 11.30, if the interior angle of the
standard region is less than 1.32, then |v1 − v3| ≤

√
8.

Lemma 14.4. These two standard regions F = {R1, R2} give τF (D) ≥ 11.16 pt.

Proof. Let dih denote the dihedral angle of a simplex along a given edge. Let
Sij be the simplex {0, v1, vi, vj}, for (i, j) = (2, 3), (3, 4), (4, 5), (2, 5). We have∑

(4) dih(Sij) = 2π. Suppose one of the edges {v1, v3} or {v1, v4} has length ≥ 2
√

2.
Say {v1, v3}.

We have119

τ(S25) −0.2529 dih(S25) > −0.3442,
τ0(S23) −0.2529 dih(S23) > −0.1787,
τ̂(S45) −0.2529 dih(S45) > −0.2137,
τ0(S34) −0.2529 dih(S34) > −0.1371.

116calc-984463800
117calc-821707685
118calc-115383627
119calc-572068135, calc-723700608, calc-560470084, and calc-535502975
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196 Section 14. Further Bounds in Exceptional Regions

We have a penalty ξΓ for erasing, so that

τ(D) ≥ ∑
(4) τx(Sij)− 5ξΓ

> 2π(0.2529)− 0.3442
−0.1787− 0.2137− 0.1371− 5ξΓ

> 11.16 pt,

where τx = τ, τ̂ , τ0 as appropriate.
Now suppose {v1, v3} and {v1, v4} have length ≤ 2

√
2. If there is an upright

diagonal that is not enclosed over either flat quarter, the penalty is at most 3ξΓ+2ξV .
Otherwise, the penalty is smaller: 4ξ′Γ + ξV . We have

τ(D) ≥ ∑
(4) τ(Sij)− (3ξΓ + 2ξV )

> 2π(0.2529)− 0.3442
−2(0.2137)− 0.1371− (3ξΓ + 2ξV )

> 11.16 pt.

14.3 A particular 5-circuit

Lemma 14.5. Assume that R is a pentagonal standard region with an enclosed
vertex v of height at most 2t0. Assume further that

• |vi| ≤ 2.168 for each of the five corners.

• Each interior angle of the pentagon is at most 2.89.

• If v1, v2, v3 are consecutive corners over the pentagonal region, then

|v1 − v2|+ |v2 − v3| < 4.804.

• ∑
5 |vi − vi+1| ≤ 11.407.

Then σR(D) < −0.2345 or τR(D) > 0.6079.

Proof. Since −0.4339 is less than this the lower bound, a 3-crowded upright diago-
nal does not occur. Similarly, since −0.25 is less than the lower bound, a 4-crowded
upright diagonal does not occur (Lemma 11.18 and Lemma 11.7).

Suppose that there is a loop in context (n, k) = (4, 2). Again by Lemma 13.5
(with n(R) = 7),

σR(D) < −0.2345.

We conclude that all loops have context (n, k) = (4, 1).
Case 1. The vertex v = v12 has distance at least 2t0 from the five corners of

U(D) over the pentagon.
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14.3. A particular 5-circuit 197

The penalty to switch the pentagon to a pure vor0 score is at most 5ξΓ (see
Section 12.6). There cannot be two flat quarters because then

|v12| > E(S(2, 2, 2, 2t0, 2
√

2, 2
√

2), 2t0, 2t0, 2t0) > 2t0.

(Case 1-a) Suppose there is one flat quarter, |v1 − v4| ≤ 2
√

2. There is a
lower bound of 1.2 on the dihedral angles of the simplices {0, v12, vi, vi+1}. This is
obtained as follows. The proof relies on the convexity of the quadrilateral region.
We leave it to the reader to verify that the following pivots can be made to preserve
convexity. Disregard all vertices except v1, v2, v3, v4, v12. We give the argument
that dih(0, v12, v1, v4) > 1.2. The others are similar. Disregard the length |v1 − v4|.
We show that

sd := dih(0, v12, v1, v2) + dih(0, v12, v2, v3)
+dih(0, v12, v3, v4) < 2π − 1.2.

Lift v12 so |v12| = 2t0. Maximize sd by taking |v1−v2| = |v2−v3| = |v3−v4| = 2t0.
Fixing v3 and v4, pivot v1 around {0, v12} toward v4, dragging v2 toward v12 until
|v2 − v12| = 2t0. Similarly, we obtain |v3 − v12| = 2t0. We now have sd ≤ 3(1.63) <
2π − 1.2, by a calculation.120

Return to the original figure and move v12 without increasing |v12| until each
simplex {0, v12, vi, vi+1} has an edge (v12, vj) of length 2t0. Interval calculations121

show that the four simplices around v12 squander

2π(0.2529)− 3(0.1376)− 0.12 > (4πζ − 8) pt + 5ξΓ.

(Case 1-b) Assume there are no flat quarters. By hypothesis, the perimeter
satisfies ∑

|vi − vi+1| ≤ 11.407.

We have arc(2, 2, x)′′ = 2x/(16 − x2)3/2 > 0. The arclength of the perimeter is
therefore at most

2 arc(2, 2, 2t0) + 2 arc(2, 2, 2) + arc(2, 2, 2.387) < 2π.

There is a well-defined interior of the spherical pentagon, a component of area < 2π.
If we deform by decreasing the perimeter, the component of area < 2π does not get
swapped with the other component.

Disregard all vertices but v1, . . . , v5, v12. If a vertex vi satisfies |vi−v12| > 2t0,
deform vi as in Section 12.8 until |vi−1 − vi| = |vi − vi+1| = 2, or |vi − v12| = 2t0.
If at any time, four of the edges realize the bound |vi − vi+1| = 2, we have reached
an impossible situation, because it leads to the contradiction122

2π =
(5)∑

dih < 1.51 + 4(1.16) < 2π.

120calc-821707685
121calc-467530297 and calc-135427691
122calc-115383627 and calc-603145528
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198 Section 14. Further Bounds in Exceptional Regions

(This inequality relies on the observation, which we leave to the reader, that in any
such assembly, pivots can by applied to bring |v12 − vi| = 2t0 for at least one edge
of each of the five simplices.)

The vertex v12 may be moved without increasing |v12| so that eventually by
these deformations (and reindexing if necessary) we have |v12−vi| = 2t0, i = 1, 3, 4.
(If we have i = 1, 2, 3, the two dihedral angles along {0, v2} satisfy123 < 2(1.51) < π,
so the deformations can continue.)

There are two cases. In both cases |vi − v12| = 2t0, for i = 1, 3, 4.

(i) |v12 − v2| = |v12 − v5| = 2t0,
(ii) |v12 − v2| = 2t0, |v4 − v5| = |v5 − v1| = 2,

Case (i) follows from interval calculations124

∑
τ0 ≥ 2π(0.2529)− 5(0.1453) > 0.644 + 7ξΓ.

In case (ii), we have again

2π(0.2529)− 5(0.1453).

In this interval calculation we have assumed that |v12 − v5| < 3.488. Otherwise,
setting S = (v12, v4, v5, v1), we have

∆(S) < ∆(3.4882, 4, 4, 8, (2t0)2, (2t0)2) < 0,

and the simplex does not exist. (|v4−v1| ≥ 2
√

2 because there are no flat quarters.)
This completes Case 1.

Case 2. The vertex v12 has distance at most 2t0 from the vertex v1 and
distance at least 2t0 from the others.

Let {0, v13} be the upright diagonal of a loop (4, 1). The vertices of the
loop are not {v2, v3, v4, v5} with v12 enclosed over {0, v2, v5, v13} by Lemma 11.5.
The vertices of the loop are not {v2, v3, v4, v5} with v12 enclosed over {0, v1, v2, v5}
because this would lead to a contradiction

y12 ≥ E(S(2, 2, 2, 2t0, 2t0, 3.2), 2t0, 2t0, 2) > 2t0,

or
y12 ≥ E(S(2, 2, 2, 2t0, 2t0, 3.2), 2, 2t0, 2) > 2t0.

We get a contradiction for the same reasons unless {v1, v12} is an edge of some
upright quarter of every loop of type (4, 1).

We consider two cases. (2-a) There is a flat quarter along an edge other than
{v1, v12}. That is, the central vertex is v2, v3, v4, or v5. (Recall that the central
vertex of a flat quarter is the vertex other than the origin that is not an endpoint
of the diagonal.) (2-b) Every flat quarter has central vertex v1.

123calc-115383627
124calc-312132053
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14.3. A particular 5-circuit 199

Case 2-a. We erase all upright quarters including those in loops, taking
penalties as required. There cannot be two flat quarters by geometric considerations

E(S(2, 2, 2, 2
√

2, 2
√

2, 2t0), 2t0, 2t0, 2) > 2t0
E(S(2, 2, 2, 2

√
2, 2

√
2, 2t0), 2, 2t0, 2t0) > 2t0

The penalty is at most 7ξΓ. We show that the region (with upright quarters
erased) squanders > 7ξΓ + 0.644. We assume that the central vertex is v2 (case
2-a-i) or v3 (case 2-a-ii). In case 2-a-i, we have three types of simplices around v12,
characterized by the bounds on their edge lengths. Let {0, v12, v1, v5} have type A,
{0, v12, v5, v4} and {0, v12, v4, v3} have type B, and let {0, v12, v3, v1} have type C.
In case 2-a-ii there are also three types. Let {0, v12, v1, v2} and {0, v12, v1, v5} have
type A, {0, v12, v5, v4} type B, and {0, v12, v2, v4} type D. (There is no relation here
between these types and the types of simplices A, B, C defined in Section 9.) Upper
bounds on the dihedral angles along the edge {0, v12} are given as calculations125.
These upper bounds come as a result of a pivot argument similar to that establishing
the bound 1.2 in Case 1-a.

These upper bounds imply the following lower bounds. In case 2-a-i,

dih > 1.33 (A),
dih > 1.21 (B),
dih > 1.63 (C),

and in case 2-a-ii,
dih > 1.37 (A),
dih > 1.25 (B),
dih > 1.51 (D),

In every case the dihedral angle is at least 1.21. In case 2-a-i, the inequalities give
a lower bound on what is squandered by the four simplices around {0, v12}. Again,
we move v12 without decreasing the score until each simplex {0, v12, vi, vi+1} has
an edge satisfying |v12 − vj | ≤ 2t0. Interval calculations126 give

∑
(4) τ0 > 2π(0.2529)− 0.2391− 2(0.1376)− 0.266

> 0.808.

In case 2-a-ii, we have127

∑
(4) τ0 > 2π(0.2529)− 2(0.2391)− 0.1376− 0.12

> 0.853.

So we squander more than 7ξΓ + 0.644, as claimed.
Case 2-b. We now assume that there are no flat quarters with central vertex

v2, . . . , v5. We claim that v12 is not enclosed over {0, v1, v2, v3} or {0, v1, v5, v4}. In

125calc-821707685, calc-115383627, calc-576221766, and calc-122081309
126calc-644534985, calc-467530297, and calc-603910880
127calc-135427691
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200 Section 14. Further Bounds in Exceptional Regions

fact, if v12 is enclosed over {0, v1, v2, v3}, then we reach the contradiction128

π < dih(0, v12, v1, v2) + dih(0, v12, v2, v3)
< 1.63 + 1.51 < π.

We claim that v12 is not enclosed over {0, v5, v1, v2}. Let S1 = {0, v12, v1, v2},
and S2 = {0, v12, v1, v5}. We have by hypothesis,

y4(S1) + y4(S2) = |v1 − v2|+ |v1 − v5| < 4.804.

An interval calculation129 gives
∑

(2) dih(Si) ≤ ∑
(2) (dih(Si) + 0.5(0.4804/2− y4(Si)))

< π.

So v12 is not enclosed over {0, v1, v2, v5}.
Erase all upright quarters, taking penalties as required. Replace all flat quar-

ters with s-vor0-scoring taking penalties as required. (Any flat quarter has v1 as
its central vertex.) We move v12 keeping |v12| fixed and not decreasing |v12 − v1|.
The only effect this has on the score comes through the quoins along {0, v1, v12}.
Stretching |v12 − v1| shrinks the quoins and increases the score. (The sign of the
derivative of the quoin with respect to the top edge is computed in the proof of
Lemma 12.9.)

If we stretch |v12 − v1| to length 2t0, we are done by case 1 and case 2-a. (If
deformations produce a flat quarter, use case 2-a, otherwise use case 1.) By the
claims, we can eventually arrange (reindexing if necessary) so that

(i) |v12 − v3| = |v12 − v4| = 2t0, or
(ii) |v12 − v3| = |v12 − v5| = 2t0.

We combine this with the deformations of Section 12.8 so that in case (i) we may
also assume that if |v5 − v12| > 2t0, then |v4 − v5| = |v5 − v1| = 2 and that if
|v2− v12| > 2t0, then |v1− v2| = |v2− v3| = 2. In case (ii) we may also assume that
if |v4 − v12| > 2t0, then |v3 − v4| = |v4 − v5| = 2 and that if |v2 − v12| > 2t0, then
|v1 − v2| = |v2 − v3| = 2.

Break the pentagon into subregions by cutting along the edges (v12, vi) that
satisfy |v12 − vi| ≤ 2t0. So for example in case (i), we cut along (v12, v3), (v12, v4),
(v12, v1), and possibly along (v12, v2) and (v12, v5). This breaks the pentagon into
triangular and quadrilateral regions.

In case (ii), if |v4− v12| > 2t0, then the argument used in Case 1 to show that
|v4 − v12| < 3.488 applies here as well. In case (i) or (ii), if |v12 − v2| > 2t0, then
for similar reasons, we may assume

∆(|v12 − v2|2, 4, 4, 8, (2t0)2, |v12 − v1|2) ≥ 0.

128calc-821707685 and calc-115383627
129calc-69064028
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This justifies the hypotheses for the calculations130 that we use. We conclude that
∑

τ0 ≥ 2π(0.2529)− 3(0.1453)− 2(0.2391) > 0.6749.

If the penalty is less than 0.067 = 0.6749− 0.6079, we are done.
We have ruled out the existence of all loops except (4, 1). Note that a flat

quarter with central vertex v1 gives penalty at most 0.02 by Lemma 11.29. If there
is at most one such a flat quarter and at most one loop, we are done:

3ξΓ + 0.02 < 0.067.

Assume there are two loops of context (n, k) = (4, 1). They both lie along the
edge {v1, v12}, which precludes any unmasked flat quarters. If one of the upright
diagonals has height ≥ 2.696, then the penalty is at most 3ξΓ+3ξV < 0.067. Assume
both heights are at most 2.696. The total interior angle of the exceptional face at
v1 is at least four times the dihedral angle of one of the flat quarters along {0, v1},
or 4(0.74) by an interval calculation131. This is contrary to the hypothesis of an
interior angle < 2.89. This completes Case 2. This shows that heptagons with
pentagonal hulls do not occur.

Lemma 14.6. Let R be an exceptional standard region. Let V be a set of vertices
of R. If v ∈ V , let pv be the number of triangular regions at v and let qv be the
number of quadrilateral regions at v. Assume that V has the following properties:

1. No two vertices in V are adjacent.

2. No two vertices in V lie on a common quadrilateral.

3. If v ∈ V , then there are five standard regions at v.

4. If v ∈ V , then the corner over v is a central vertex of a flat quarter in the
cone over R.

5. If v ∈ V , then pv ≥ 3. That is, at least three of the five standard regions at v
are triangular.

6. If R′ 6= R is an exceptional region at v, and if R has interior angle at least
1.32 at v, then R′ also has interior angle at least 1.32 at v.

7. If (pv, qv) = (3, 1), then the internal angle at v of the exceptional region is at
most 1.32.

Define a : N→ R by

a(n) =





14.8 n = 0, 1, 2,

1.4 n = 3,

1.5 n = 4,

0 otherwise.

130calc-312132053 and calc-644534985
131calc-751442360
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Let {F} be the union of {R} with the set of triangular and quadrilateral regions that
have a vertex at some v ∈ V . Then

∑

F

τF (D) >
∑

v∈V

(pvd(3) + qvd(4) + a(pv)) pt.

Proof. We erase all upright diagonals in the Q-system, except for those that carry
a penalty: loops, 3-unconfined, 3-crowded, and 4-crowded diagonals.

We assume that if (pv, qv) = (3, 1), then the internal angle is at most 1.32.
Because of this, if we score the flat quarter by vor0, then the flat quarter Q satisfies
(Lemma 11.30)

vor0(Q) > 3.07 pt > 1.4 pt + D(3, 1) + 2ξV + ξΓ. (14.1)

Every flat quarter that is masked by a remaining upright quarter in the Q-
system has y4 ≥ 2.6. Moreover, y1 ≥ 2.2 or y4 ≥ 2.7. Let πv = 2ξV + ξΓ if the flat
quarter is masked, and πv = 0 otherwise.

We claim that the flat quarter (scored by vor0) together with the triangles
and quadrilaterals at a given vertex v squander at least

(pvd(3) + qvd(4) + a(pv)) pt + D(3, 1) + πv (14.2)

If pv = 4, this is calc-314974315. If pv = 3, we may assume by the preceding
remarks that there are two exceptional regions at v. If the internal angle of R at v
is at most 1.32, then we use Inequality 14.1. If the angle is at least 1.32, then by
hypothesis, the angle R′ at v is at least 1.32. We then appeal to the calculations
calc-675785884 and calc-193592217.

To complete the proof of the lemma, it is enough to show that we can erase
the upright quarters masking a flat quarter at v without incurring a penalty greater
than πv. For then, by summing the Inequality 14.2 over v, we obtain the result.

If the upright diagonal is enclosed over the masked flat quarter, then the
upright quarters can be erased with penalty at most ξV (by Remark 11.28). Assume
the upright diagonal is not enclosed over the masked flat quarter.

If there are at most three upright quarters, the penalty is at most 2ξV + ξΓ.
Assume four or more upright quarters. If the upright diagonal is not a loop, then
it must be 4-crowded. This can be erased with penalty

2ξV + 2ξΓ − κ < 2ξV + ξΓ.

Finally, assume that the upright quarter is a loop with four or more upright
quarters. Lemma 13.5 limits the possibilities to parameters (5, 0) or (5, 1). In the
case of a loop (5, 1), there is no need to erase because |V | ≤ 3 and by Lemma 13.5,
the hexagonal standard region squanders at least

t6 + 3a(pv) pt

as required by the lemma. In the case of a loop (5, 0) in a pentagonal region, if
|V | = 1 then there is no need to erase (again we appeal to Lemma 13.5). If |V | = 2,
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then the two vertices share a penalty of 4ξV + ξΓ, with each receiving

2ξV + ξΓ/2 < 2ξV + ξΓ.
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Introduction

This paper is the fifth in a series of papers devoted to the proof of the Kepler
conjecture, which asserts that no packing of congruent balls in three dimensions
has density greater than the face-centered cubic packing.

In this paper, we prove that decomposition stars associated with the plane
graph of arrangements we term pentahedral prisms do not contravene. Recall that
a contravening decomposition star is a potential counterexample to the Kepler con-
jecture. We use interval arithmetic methods to prove particular linear relations on
components of any such contravening decomposition star. These relations are then
combined to prove that no such contravening stars exist.

Pentahedral prisms come remarkably close to achieving the optimal score of
8 pt, that achieved by the decomposition stars of the face-centered cubic lattice
packing. In this sense, we consider pentahedral prisms to be “worst case” decom-
position stars.

Pentahedral prisms constituted a counterexample to an early version of Hales’s
approach to a proof of the Kepler conjecture, and have always been a somewhat
thorny obstacle to the proof of the conjecture. Relations required to treat penta-
hedral prisms are delicate in contrast to the more general bounds which suffice to
treat other decomposition stars.

This paper is a revised version of the author’s PhD thesis at the University
of Michigan. The author wishes to thank Tom Hales, Jeff Lagarias and the referees
for their many contributions to this revision.
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Section 15

Pentahedral Prisms

Recall that a contravening decomposition star is a potential counterexample to the
Kepler conjecture. The subject of this paper is a particular class of potentially
contravening decomposition stars.

We use the term pentahedral prisms to refer to this class of potentially con-
travening decomposition stars, and refer to a decomposition star in this class as a
pentahedral prism. This class is defined by the plane graph in Figure 15.1.

An example of an arrangement with such a graph is depicted in Figure 15.2.
A pentahedral prism is characterized by the arrangement and combinatorics

of its standard regions. It is composed of ten triangular standard regions, and five
quadrilateral standard regions.

The ten triangles are arranged in two pentahedral caps, five triangles arranged
around a common vertex. The five quadrilaterals lie in a band between the two
caps. See Figure 15.3.

Recall that the standard cluster attached to a triangular standard region is a
quasi-regular tetrahedron. Likewise, the standard cluster attached to a quadrilateral
is a quad cluster. We use the term pentahedral cap to refer to both the standard
regions and the quasi-regular tetrahedrons which comprise it.

15.1 The Main Theorem
We begin by recalling various definitions from Paper II, Formulation. The constant
pt is introduced in Definition 3.6. Similarly, score is defined in Theorem 3.5, as
well as Definition 7.8 and Remark 7.20. We denote the score of a region R by σ(R).

Theorem 15.1. Each pentahedral prism P satisfies

σ(P ) ≤ (8− ε0) pt

for ε0 = 10−8. Hence there are no contravening pentahedral prisms.

The next section will introduce a series of propositions which will prove the

209
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210 Section 15. Pentahedral Prisms

Figure 15.1. The plane graph of a pentahedral prism.

Figure 15.2. Spheres in a pentahedral prism arrangement.

main theorem. The first proposition will restrict our attention to a set of potentially
contravening pentahedral prisms. Subsequent propositions will provide a collection
of relations which we will use to prove the main theorem.

15.2 Propositions
The function sol(·) is introduced in Definition 7.5. The function dih(·) is introduced
in Definition 4.12.
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Figure 15.3. The faces of a pentahedral prism.

We present computations using auxiliary bounds which imply the main result
of the paper, that the score of any pentahedral prism is strictly less than 8 pt.

Recall from Section 7.4 that the score decomposition for a decomposition star
S takes the form

σ(S) =
∑

R

σ(R)

where R runs over the standard clusters in S.
In the case of a pentahedral prism P , the score σ(P ) decomposes as

σ(P ) =
10∑

i=1

σ(Ti) +
5∑

j=1

σ(Qj)

with the triangular regions Ti numbered so that the two pentahedral caps Ci consist
of {Ti : 1 ≤ i ≤ 5}, {Ti : 6 ≤ i ≤ 10} and Qj denote the quad clusters. Thus

σ(C1) =
5∑

i=1

σ(Ti), σ(C2) =
10∑

i=6

σ(Ti).

The following proposition gives basic inequalities which we will use to form a
restricted set of pentahedral prisms.

Proposition 15.1. A pentahedral prism P satisfies the bound

σ(P ) ≤ (8− ε0) pt

for ε0 = 10−8 provided that any one of the following conditions holds:

1. P contains a tetrahedron T such that

σ(T ) ≤ −0.52 pt
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2. P contains a quad cluster Q such that

σ(Q) ≤ −1.04 pt

3. P contains a pentahedral cap C such that

σ(C) ≤ 3.48 pt

Proof. We use the following scoring bounds proved earlier for any admissible
decomposition star.

First, Lemma 8.10 states that any quasi-regular tetrahedron T satisfies

σ(T ) ≤ 1 pt.

Theorem 8.4 states that any quad cluster Q satisfies

σ(Q) ≤ 0.

Next, a pentahedral cap C consists of five quasi-regular tetrahedra Ti sharing
a common distinguished edge. At one end of the distinguished edge is the distin-
guished vertex v = 0 which is the center of the decomposition star P . Each Ti has
context ci = (5, 0). Lemma 10.6 (with k = 1 and r = 5) and Lemma 10.7 state that
any pentahedral cap Ci satisfies

σ(Ci) =
5∑

i=1

σ(Ti, ci, v) ≤ (4.52− ε0) pt

with ε0 = 10−8.

1. Suppose that some σ(T ) ≤ −0.52 pt, with T contained in a pentahedral cap
C1. Then the inequalities above give

σ ≤ −0.52 pt + 4(1 pt) + σ(C2) +
5∑

j=1

σ(Qj)

≤ 3.48 pt + (4.52− ε0) pt + 5(0) = (8− ε0) pt

2. Suppose that some quad cluster σ(Qj) ≤ −1.04 pt. Then

σ(P ) ≤ σ(C1) + σ(C2) + (−1.04 pt) + 4(0)
≤ 2((4.52− ε0) pt)− (1.04 pt) = (8− 2ε0) pt

3. Suppose that some pentahedral cap C1 has σ(C1) ≤ 3.48 pt. Then the in-
equalities above give

σ(P ) ≤ (3.48 pt) + (4.52− ε0) pt + 5(0) = (8− ε0) pt
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This completes the proof.

Definition 15.1.
A PC pentahedral prism is a pentahedral prism such that

1. All tetrahedra T have σ(T ) ≥ −0.52 pt

2. All quad clusters have σ(Q) ≥ 1.04 pt

3. All pentahedral caps have σ(C) ≥ 3.48 pt

and the configuration arises as a pointwise limit of configurations in which (1), (2),
(3) hold with strict inequality. A strict PC pentahedral prism is one in which (1),
(2), (3) each hold with strict inequality.

All remaining propositions will apply to PC pentahedral prisms. This restric-
tion improves the quality of the bounds which we are able to prove on components
of a pentahedral prism.

The following two propositions contain linear relations which will imply the
main theorem. We defer their proofs to the next section.

Proposition 15.2. For a quasi-regular tetrahedron T in a PC pentahedral prism,
the following linear inequality holds between σ(T ), the spherical angle sol(T ) (at
the central vertex common to the five tetrahedra in the pentahedral cap), and the
dihedral angle dih(T ) associated with the first edge of the tetrahedron (that is, the
edge common to the five tetrahedra in a pentahedral cap):

σ(T ) + m sol(T ) + a(dih(T )− 2π

5
)− bc ≤ 0

Here a = 0.0739626, bc = 0.253095, and m = 0.3621.

Proposition 15.3. For a quad cluster Q in a PC pentahedral prism, the following
linear inequality holds between σ(Q) and the spherical angle sol(Q):

σ(Q) + m sol(Q)− bq ≤ 0,

Here bq = 0.49246 and again m = 0.3621.

From Propositions 15.2 and 15.3 we can deduce the following theorem.

Theorem 15.2. Each PC pentahedral prism P satisfies the score bound

σ(P ) ≤ 7.9997 pt

.

Proof. Propositions 15.2 and 15.3 provide linear relations on all of the standard
clusters in a PC pentahedral prism P . We combine these relations to prove the
required score bound.
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Invoking Proposition 15.2 for the five quasi-regular tetrahedrons {Ti : i =
1 . . . 5} from a pentahedral cap, we find

5∑

i=1

σ(Ti) + m

5∑

i=1

sol(Ti) + a

5∑

i=1

(dih(Ti)− 2π

5
)− 5bc ≤ 0.

Summing over both pentahedral caps and using the relation that the sum of the
five dihedral angles in a pentahedral cap is 2π,

5∑

i=1

dih(Ti) = 2π,

we find
10∑

i=1

σ(Ti) + m

10∑

i=1

sol(Ti)− 10bc ≤ 0.

We represent the tetrahedra from the second pentahedral cap by the indices i =
6 . . . 10.

Invoking Proposition 15.3 for the five quad clusters {Qi : i = 11 . . . 15}, and
using the fact that the sum of the solid angles is 4π,

10∑

i=1

sol(Qi) +
15∑

j=11

sol(Qj) = 4π

we find
10∑

i=1

σ(Ti) +
15∑

j=11

σ(Qj) + 4πm− 5b− 10bc ≤ 0.

Therefore,
σ(P ) ≤ 5b + 10bc − 4πm.

Substituting the values of b, bc, m, and pt, we find that the score of a PC penta-
hedral prism is less than 7.9997 pt.

Assuming Proposition 15.1 and Theorem 15.2 we can prove Theorem 15.1.

Proof. Given a pentahedral prism P , it is either PC or it is not. In the former
case, its score is bounded by 7.9997 pt. In the latter case, its score is bounded by
(8− 10−8) pt. In both cases, its score is bounded by (8− 10−8) pt.

Remark 15.1. The score bound in Theorem 15.1 is weaker than what is possible
to prove. In the interest of simplifying the exposition as well as the required com-
putations, we establish this weaker bound which suffices for this part of the proof of
the Kepler conjecture.
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The Main Propositions

In the first section, we recall the definition of score, and introduce some local nota-
tion. In the next section, we recall the notion of dimension reduction, and prove its
validity for some relevant cases. In the following section, we prove Proposition 15.2.
In the remaining sections we prove Proposition 15.3.

16.1 Scoring
The development of a scoring function is central to the proof of the Kepler conjec-
ture. Its definition is therefore somewhat complicated. Fortunately, in our treat-
ment of the pentahedral prism we are able to restrict our attention to only a few
cases in the scoring system.

Recall that score is defined in Theorem 3.5, as well as Definitions 7.6 and 7.8
and Remark 7.20. See Remark 7.23 for a simplified version of the scoring function
for quarters.

In our context, the score σ(·) breaks into four different scoring types: gma(·),
vor(·), octavor(·), and Voronoi.

gma(·) applies to quasi-regular tetrahedrons and quarters, and is introduced
as Γ(·) in Definition 7.6. We frequently use the term compression as an alias for
gma(·). This alias was introduced in Section 7.6.

vor(·) is the score determined by the analytic continuation of the Voronoi
volume associated with the distinguished vertex of a tetrahedron, and corresponds
to s-vor(·) in Definition 7.6.

We let octavor(·) denote the score of an upright quarter in context (4,0) which
is not scored by compression. In this case, octavor(·) is the average of two vor(·)
scores.

Voronoi scoring, which we also refer to as pure Voronoi scoring, is vorR(D)
from Remark 7.20.

215
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v1

v2

v3

0

y1
y2

y3

y6

y4

y5

Figure 16.1. Tetrahedron with distinguished vertex and labeled edges.

16.2 Dimension Reduction
The relations on tetrahedra required for the scoring bound on decomposition stars
are typically six-dimensional, as they are formulated in terms of the edge lengths of
a tetrahedron. For a quad cluster, they can be even higher-dimensional. For high-
dimensional relations, the method of subdivision becomes very expensive, compu-
tationally speaking.

We define a simplification which reduces the dimension of the required com-
putations. This simplification therefore reduces the computational expense of the
verification of a relation.

We refer to this simplification as dimension-reduction. We will apply this sim-
plification for three different scoring types: compression, vor analytic, and Voronoi.
These scoring functions are introduced in Definitions 7.6 and 7.8. See Remark 7.23
for a simplified version of the scoring function for quarters.

Theorem 16.1. (Dimension-reduction) Given a tetrahedron T with a fixed scoring
type (one of compression, vor analytic, or Voronoi), the deformation consisting of
moving a vertex vi along the edge (0, vi) towards the origin increases the score of
the tetrahedron.

Note that this deformation holds the solid angle at the origin fixed. See Fig-
ure 16.1. Since the reduction may be performed until either a scoring system or an
edge-length constraint is met, this argument reduces the number of free parameters
for the verification, thus reducing the dimension and complexity of the verification
of a relation.

Proof. There are three cases to consider: compression scoring, vor analytic scoring
and Voronoi scoring. This technique was introduced in Proposition 8.7.1 of [Hal97a]
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for compression-scoring, and is proved there in the compression case.
Next we consider vor analytic-scored tetrahedra. The validity of the same

reduction for vor analytic-scored tetrahedra is obvious if the tip of the Voronoi cell
does not protrude. If the tip does protrude, we must use the analytic continuation
for the Voronoi volume. In this case, the validity of the reduction is not obvious.

The geometric constraint of moving a vertex along an edge can easily be stated
analytically in terms of the original edge lengths, (y1, y2, y3, y4, y5, y6). This action
depends on a single parameter, the distance of the vertex v1 from the origin, which
we call t. The new edge lengths are given by

(t, y2, y3, y4,

√
t2 + y3

2 − t (y1
2 + y3

2 − y5
2)

y1
,

√
t2 + y2

2 − t (y1
2 + y2

2 − y6
2)

y1
).

Recall from Section 8.6.3 of [Hal97a] that the formula for the analytic Voronoi
volume is a rational function of χ, u,

√
∆, and xi, where xi = y2

i . Further recall
that χ, u, and ∆ are all polynomial functions in xi that are defined in Sections 8.1
and 8.2 of [Hal97a].

Substituting the computed edge lengths in the formula for the analytic Voronoi
volume, taking the partial derivative with respect to t, replacing t with y1, multi-
plying by the positive term

8
√

∆u(x1, x3, x5)u(x1, x2, x6)/y1,

and then simplifying, we end up with a large homogeneous polynomial in xi of
degree 6, which is too ugly to exhibit here (having 91 terms).

Evaluating this polynomial over all possible quasi-regular tetrahedrons and
quarters, we find that it is positive.

Therefore the volume is increasing in t, so to increase the score, we should
push the vertex in along the edge. The verification of the sign of the polynomial
is found in Calculation 17.4.5.1. This completes the case of vor analytic-scored
tetrahedra.

The final case is Voronoi scoring. The deformation does not change the solid
angle of the tetrahedron. The only term of the Voronoi score that changes is a
negative constant times a volume. The contraction of the tetrahedron decreases
this volume, and increases the score. The validity of a similar reduction argument
for Voronoi scoring of a tetrahedron is now obvious.

16.3 Proof of Proposition 15.2
It suffices to prove Proposition 15.2 for strict PC pentahedral prisms. Each non-
strict PC pentahedral prism is a pointwise limit of strict ones of the same combi-
natorial type, so the inequality in the conclusion of the proposition will hold for
non-strict PC pentahedral prisms by continuity.

We use three separate computations to construct and prove Proposition 15.2.
First, we prove a relation between dihedral angle and score. We then show that if



“fullkepler”
2005/11/14
page 218

i

i

i

i

i

i

i

i

218 Section 16. The Main Propositions

the dihedral angle of a tetrahedron in a pentahedral cap exceeds a certain bound,
then the associated pentahedral prism is not a strict PC pentahedral prism. We
call such a bound a dihedral cutoff. This cutoff allows us to prove the final bound.

In the following discussion, dih(T ) refers to the dihedral angle associated with
the first edge of a quasi-regular tetrahedron T , σ(T ) refers to the compression
score of the tetrahedron, and sol(T ) refers to the solid angle at the distinguished
vertex. We restrict our attention to quasi-regular tetrahedrons whose score exceeds
−0.52 pt, as otherwise the associated pentahedral prism cannot contravene.

The first relation is

σ(T ) ≤ a1 dih(T )− a2 (16.1)

where a1 = 0.3860658808124052 and a2 = 0.4198577862. Calculation 17.4.1.1
provides the verification of this relation.

Lemma 16.1. If a pentahedral prism has a pentahedral cap that contains a quasi-
regular tetrahedron T with dihedral angle dih(T ) ≥ d0, where d0 = 1.4674, then it
is not a strict PC pentahedral prism.

Proof. Applying relation (16.1) to four quasi-regular tetrahedrons Ti forming part
of a strict PC pentahedral prism, we find

4∑

i=1

σ(Ti) ≤ a1

4∑

i=1

dih(Ti)− 4a2 (16.2)

Applying the relation

dih(T5) = 2π −
4∑

i=1

dih(Ti) (16.3)

and adding σ(T5) to both sides of relation (16.2), we find

5∑

i=1

σ(Ti) ≤ σ(T5) + a1(2π − dih(T5))− 4a2 (16.4)

The left-hand side represents the score of the pentahedral cap. If the right-hand side
does not exceed 3.48 pt, then the pentahedral prism is not a strict PC pentahedral
prism.

We assert that if dih(T ) ≥ d0, the right-hand side

σ(T5) + a1(2π − dih(T5))− 4a2

does not exceed 3.48 pt. Equivalently, we prove that dih(T ) ≥ d0 implies

σ(T )− a1 dih(T ) ≤ 3.48 pt− 2πa1 + 4a2

which is verified in Calculation 17.4.1.2.
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We conclude that if dih(T ) ≥ d0 then the pentahedral prism cannot be a strict
PC pentahedral prism.

Hence we may restrict our attention to quasi-regular tetrahedrons whose di-
hedral angle does not exceed the dihedral cutoff d0.

Using the dihedral cutoff, we establish the final relation,

σ(T ) + m sol(T ) + a(dih(T )− 2π

5
)− bc ≤ 0

via Calculation 17.4.1.3. This completes the proof of Proposition 15.2.

16.4 Proof of Proposition 15.3: Top level
It suffices to prove Proposition15.3 for strict PC pentahedral prisms, by a similar
argument to that used for Proposition 15.2.

Recall from Definition 7.15 that a quad cluster is a standard region that is a
quadrilateral. Quad clusters can be classified as follows:

1. Flat quad clusters

2. Octahedra

3. Pure Voronoi quad clusters

4. Mixed quad clusters

We will subdivide (3) into acute and obtuse types. See Section 10.4 for a
discussion on the classification of quad clusters. By Lemma 10.14, the score of a
mixed quad cluster is less than −1.04 pt. A PC pentahedral prism therefore cannot
contain a mixed quad cluster, so the bound of Proposition 15.3 holds trivially for
this class.

We treat the remaining classes in the following sections.

16.5 Proof of Proposition 15.3: Flat quad clusters
Recall that a flat quarter is a quarter whose long edge is opposite its distinguished
vertex.

Lemma 16.2. Given a flat quarter Q with σ(Q) ≥ −1.04 pt, the relation

σ(Q) ≤ −m sol(Q) + b/2 (16.5)

holds.

Proof. Label the diagonal of a flat quarter y6.
Flat quarters may be scored using either compression or vor scoring. We treat

each case separately.
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First, suppose that we wish to prove the bound for compression scored quar-
ters. This means that the circumradii of the two faces adjacent to the long diagonal
do not exceed

√
2. We subdivide the verification into Calculation 17.4.2.1, a com-

putation where we apply dimension-reduction and partial derivative information,
and Calculation 17.4.2.2, a boundary verification, where we restrict our attention
to cells which lie on the boundary between compression and vor scoring.

Second, we treat the vor-scoring case. In this case we prove the bound for
vor-scored quarters. This means that at least one of the circumradii of the two
faces adjacent to the long diagonal is at least

√
2. This verification is somewhat

more complex than the compression case. We subdivide the verification into

1. Verification that the first three partials are negative on a small cell containing
the corner (Calculation 17.4.2.3).

2. Verification of the bound on that small cell containing the corner, using the
property that the first three partials are negative (Calculation 17.4.2.4).

3. A computation where we apply dimension-reduction and partial derivative
reduction, omitting the corner cell (Calculation 17.4.2.5).

4. A boundary verification, where we restrict our attention to cells which lie on
the boundary between compression and vor scoring, again omitting the corner
cell (Calculation 17.4.2.6).

These calculations complete the proof of Lemma 16.2.

We are now prepared to prove Proposition 15.3 for flat quad clusters.
Flat quad clusters are composed of two flat quarters, whose common face

includes the long edge.
By Proposition 15.1, we restrict our attention to flat quarters whose score

exceeds −1.04 pt, recalling the fact that the score of flat quarters is nonpositive.
Invoking Lemma 16.2 for each flat quarter and adding the relations, we arrive

at the desired bound for flat quad clusters. This completes the proof.

16.6 Proof of Proposition 15.3: Octahedra
Recall that quartered octahedra, a type of quad cluster, are composed of four upright
quarters arrayed around their common long edge (called the diagonal) so that each
face containing the common edge is shared by two quarters.

We are required to prove a relation of the form

σ(H) + m sol(H)− b ≤ 0,

where σ(H) denotes the score of an octahedron H, sol(H) denotes the solid an-
gle associated with the distinguished vertex, and m and b are positive constants.
By Proposition 15.1, we restrict our attention to octahedra whose score exceeds
−1.04 pt.
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Our treatment of octahedra, as usual, is comprised of a number of auxiliary
computations. We prove bounds on upright quarters which are part of an octahe-
dron, and then combine these bounds to deduce the required bound on octahedra
in general.

The scoring function σ(·) for upright quarters is either compression (denoted
by gma(·)) or an average of two vor(·) scores, which we will continue to refer to as
vor-scoring. See Remark 7.23 for a simplified version of the scoring rules.

Due to the complex nature of octahedra, we consider a number of sub-cases.
These cases are partitioned according to the length of the diagonal and the scoring
system applied to the upright quarters.

Using a dihedral summation argument, we will eliminate octahedra whose
diagonal lies in the range [2.51, 2.716].

Next, we will treat the case where the diagonal lies in the range [2.716, 2
√

2].
Using a dihedral correction term, we will prove the bound for octahedra which are
completely compression-scored, and octahedra which are completely vor-scored.

The remaining cases will consist of octahedra which contain either two or three
vor-scored quarters. (Since a quarter is vor-scored if one of the faces containing the
diagonal has circumradius

√
2 or greater, it is not possible for an octahedron to

contain only one vor-scored quarter.) We treat these cases using an additional
correction term.

In all computations involving octahedra, we label the diagonal y1.
In order to simplify the computations, we first prove an auxiliary cutoff bound.

This first bound reduces the size of the cell over which we must conduct our search,
as per Proposition 15.1.

Lemma 16.3. If an upright quarter contains an edge numbered 2, 3, 5, or 6 whose
length is not less than 2.2, its score is less than or equal to −0.52 pt.

Proof. This is Calculation 17.4.3.1.

Since such an edge is shared by another upright quarter in the same octahe-
dron, the score of the associated octahedron must fall below −1.04 pt.

We restrict our search accordingly.

Lemma 16.4. The score of an octahedron H with upright diagonal in the range
[2.51, 2.716] is less than or equal to −1.04 pt.

Proof. In Calculation 17.4.3.2, we prove a bound of the form

σ(S) + c dih(S) ≤ d

on upright quarters S, where c = 0.1533667634670977, and d = 0.2265. Adding the
bound for four quarters Si forming an octahedron, we find

4∑

i=1

σ(Si) + c

4∑

i=1

dih(Si) ≤ 4d.
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Using the fact that the sum of the dihedral angles is 2π, we find that

σ(H) ≤ −2πc + 4d

for such an octahedron H.
A computation involving the constants c and d shows that the score is less

than −1.04 pt.

Again invoking Proposition 15.1, we need only consider octahedra whose di-
agonal lies in the range [2.716, 2

√
2].

Using this assumption, we prove bounds of the form

σ(S) + m sol(S) + α dih(S) ≤ b

4
+ α

π

2
(16.6)

and
σ(S) + m sol(S) + α dih(S) + βx1 ≤ b

4
+ α

π

2
+ 8β, (16.7)

where dih(S) refers to the dihedral angle associated with the diagonal, σ(S) refers
to the scoring scheme appropriate for a particular upright quarter S, and x1 refers
to the square of the length of the diagonal. We choose α and β according to the
scoring scheme.

Appropriate values for the correction terms involving α and β were determined
by experimentation.

Choosing α = 0.14, we prove (16.6) for compression-scored quarters with di-
agonal in the interval [2.716, 2

√
2] (Calculation 17.4.3.3). Using the same α, we

prove (16.6) for vor-scored quarters with diagonal in the range [2.716, 2.81] (Calcu-
lation 17.4.3.4).

Choosing α = 0.054, β = 0.00455, we prove (16.7) for compression-scored
quarters with diagonal in [2.81, 2

√
2] (Calculation 17.4.3.5). Choosing the same

α, but β = −0.00455, we prove (16.7) for vor-scored quarters with diagonal in
[2.81, 2

√
2] (Calculation 17.4.3.6).

Note that for vor-scored quarters, the first inequality is a relaxation of the
second, since β is negative.

The verification of each of these inequalities involves a computation where
we apply dimension-reduction and partial derivative information, and a boundary
verification, where we restrict our attention to cells which lie on the boundary
between compression and vor analytic scoring. Note that the dimension-reduction
step for relation (16.7) is complicated by the presence of the βx1 term.

Lemma 16.5. Proposition 15.3 holds for octahedra with upright diagonals in the
range [2.716, 2

√
2].

Proof. Summing inequality (16.6) over the four quarters Si of an octahedron, we
find

4∑

i=1

σ(Si) + m

4∑

i=1

sol(Si) + α

4∑

i=1

dih(Si) ≤ b + 2απ.
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Using the fact that the dihedral angles sum to 2π, we find

σ(H) + m sol(H) ≤ b,

so octahedra H with diagonals in the range [2.716, 2.81] satisfy the requisite bound.
Summing inequality (16.6) over a consistently scored octahedron (either all

compression or all vor) with diagonal in the range [2.81, 2
√

2], we again arrive at
the desired bound.

The remaining cases involve octahedra which contain both compression and
vor-scored quarters, and whose diagonals lie in the range [2.81, 2

√
2]. For this case,

we use inequality (16.7).
The summation involving inequality (16.7) is identical to inequality (16.6)

save for the presence of the β terms. If there are two vor-scored quarters and two
compression-scored quarters, the beta terms cancel, giving the relation as before.

If there are three vor-scored quarters and one compression-scored quarter,
we note that the same relation for vor-scored quarters holds if we replace β by
β/3 (since we have now relaxed the bound). Summing the inequalities, the term
involving β vanishes again, leaving the desired inequality.

Lemmas 16.4 and 16.5 prove Proposition 15.3 for octahedra.

16.7 Proof of Proposition 15.3: Pure Voronoi quad
clusters

The next class of quad clusters which we treat are the pure Voronoi quad clus-
ters. We will define a truncation operation on these quad clusters. Truncation will
simplify the geometry of the quad clusters, and will provide a convenient scoring
bound. We will divide our treatment of pure Voronoi quad clusters into two cases
in order to simplify the analysis and numerical verifications as much as possible.

Recall from the classification of quad clusters that a pure Voronoi quad cluster
consists of the intersection of a V -cell at the origin with the cone at the origin over
a quadrilateral standard region. We refer to the restriction of the V -cell to the cone
over the quadrilateral as either the V -cell or the Voronoi cell of the quad cluster.
Figure 16.2 describes the geometry of a simple V -cell.

In addition, recall that a vertex lying in the cone over a pure Voronoi quad
cluster must have height greater than 2

√
2. Such vertices can significantly compli-

cate the geometry of the V -cell, affecting its shape and volume.
We remove the effect of vertices lying above a pure Voronoi quad cluster by

removing all points from the V -cell which have height greater than
√

2. We call this
operation truncation at

√
2. Truncation decreases the volume of the quad cluster.

This decrease in volume increases the score of the quad cluster, bringing it closer
to the proposed bound.

We refer to truncated pure Voronoi quad clusters as truncated quad clusters.
We define a scoring operation on pure Voronoi quad clusters which we call

truncated Voronoi scoring. This operation consists of truncation at
√

2, followed by
the usual Voronoi scoring.
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Figure 16.2. A pure Voronoi quad cluster.

Each diagonal across the face of a cluster must have length greater than 2
√

2,
otherwise we could form two flat quarters, contradicting the decomposition. We
choose the shorter of the two possible diagonals, and will consider that diagonal in
the analysis which follows.

We decompose the cluster into two tetrahedrons along the chosen diagonal.
The face dividing the tetrahedrons is either acute or it is obtuse. We treat each
case separately.

We must prove
σ(Q) + m sol(Q)− b ≤ 0,

where σ(Q) denotes the score of a pure Voronoi quad cluster Q, sol(Q) denotes
the solid angle associated with the distinguished vertex, and m and b are positive
constants. We call this relation a bound on the solid angle and score of a quad
cluster. Invoking Proposition 15.1, we restrict our attention to quad clusters whose
score exceeds −1.04 pt.

16.8 Pure Voronoi quad clusters: acute case

Lemma 16.6. If an acute quad cluster is divided along an acute separating face,
then the score of each half is nonpositive.

Proof. This is a consequence of the arguments of Theorem 8.4.

We therefore restrict our attention to halves whose score exceeds −1.04 pt, by
Proposition 15.1.



“fullkepler”
2005/11/14
page 225

i

i

i

i

i

i

i

i

16.9. Pure Voronoi quad clusters: obtuse case 225

If the separating face is acute, we prove

σ(Si) + m sol(Si)− b/2 ≤ 0 (16.8)

for each half Si independently, and deduce the desired bound by adding the bounds
for each half.

Lemma 16.7. Let T0 denote the tetrahedron with edge lengths (2, 2, 2, 2, 2, 2
√

2).
Let sol(T0) denote the solid angle of the tetrahedron T0. Given a tetrahedron T , if
sol(T ) < sol(T0), then relation (16.8) holds.

Proof. If sol(T ) < sol(T0), then m sol(T ) < m sol(T0), hence

m sol(T )− b/2 < m sol(T0)− b/2 ≤ 0,

and
σ(T ) + m sol(T )− b/2 < σ(T ) ≤ 0,

by Lemma 16.6.

We therefore may restrict our attention to halves whose solid angle is at least
sol(T0). In addition, we restrict our attention to halves for which the dividing face
is acute.

Lemma 16.8. The relation

σ(T ) + m sol(T )− b/2 ≤ 0

holds for a tetrahedron T forming half of an acute quad cluster with score exceeding
−1.04 pt.

Proof. The required verifications for each half of an acute quad cluster are some-
what difficult to achieve directly, so we subdivide into a number of different cases
in an attempt to reduce the complexity of the calculations. First, we show that
the bound holds for all halves whose diagonal is at least 2.84 (Calculation 17.4.4.1).
Using this information, we then prove the bound everywhere but in a small cor-
ner cell (Calculation 17.4.4.2). We then restrict our attention to the small corner
cell (Calculation 17.4.4.3). These computations involve the use of partial derivative
information, and include the required boundary computations.

Invoking Lemma 16.8 for each half and adding them proves Proposition 15.3
for the acute case.

16.9 Pure Voronoi quad clusters: obtuse case
If the separating face is obtuse, the analysis becomes significantly harder. It is
no longer possible to prove the desired bound on each half independently. The
dimension of the full bound, even using the usual dimension-reduction techniques,



“fullkepler”
2005/11/14
page 226

i

i

i

i

i

i

i

i

226 Section 16. The Main Propositions

Figure 16.3. A typical truncated quad cluster.

is too high to make the verification tractable numerically. Therefore we adopt a
different approach.

Using the dimension-reduction technique, we push each vertex along its edge
until the distance from each vertex to the origin is 2. We call the resulting quad
cluster a squashed cluster. Observe that the solid angle of the cluster is unchanged,
while the volume of the Voronoi cell has decreased, thereby increasing the score of
the cluster.

Since the central face is still obtuse, the length of the diagonal after this
perturbation must still exceed 2

√
2. Note, however, that the other edge lengths in

the quad cluster can be as small as 4/2.51.
The geometry of the V -cell of a squashed cluster, assuming that there is no

truncation from vertices of the packing lying above the quad cluster, is that of
Figure 16.2. When the V -cell is truncated at

√
2 from the origin, two potential

arrangements arise. In the first arrangement, the truncated region is connected, as
in Figure 16.3. In second potential arrangement, the truncated region is formed of
two disjoint pieces, as in Figure 16.4.

Lemma 16.9. The disjoint case cannot arise for squashed quad clusters.

Proof. Suppose that it could. Pick an untruncated point along the central ridge of
the V -cell (see Figure 16.4). The distance of this point from the origin is then less
than

√
2, but due to its location on the central ridge, it is equidistant from the two

nearest vertices and the origin. This implies that the circumradius of the resulting
triangle must be less than

√
2, which contradicts the fact that the diagonals have

length at least 2
√

2.
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Figure 16.4. An impossible arrangement.

16.9.1 A geometric argument

We introduce a simplification which will reduce the complexity of the obtuse case.
This simplification will consist of a perturbation of the upper edge lengths of a
squashed quad cluster. This perturbation will increase the score while holding the
solid angle of the quad cluster fixed.

This simplification is based on a geometric decomposition of the truncated
Voronoi cell. We will describe the decomposition, and then describe a construction
which will ultimately simplify the analysis.

While our arguments will extend to treat a general squashed and truncated
Voronoi cell associated with a general standard cluster, we restrict our attention to
truncated Voronoi cells associated with quad clusters.

To begin, we consider the decomposition of a truncated Voronoi cell into its
fundamental components. A truncated Voronoi cell is formed of three elements: a
central spherical section (formed by the truncation), wedges of a right circular cone,
and tetrahedrons called Rogers simplices.

We choose a representation of a truncated quad cluster composed of the radial
projection of each element to a plane passing close to the four corners of the quad
cluster. This decomposition is represented in Figure 16.5.

16.9.2 Rogers simplices

We now consider the geometry of the Rogers simplices.
Consider a face with edge lengths (2, 2, t) associated with a side of a truncated

quad cluster. Let b represent the circumradius of the face, and let r represent the
orthogonal extension of a Rogers simplex from the face, as in Figure 16.6.
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Figure 16.5. A representation of a truncated quad cluster.

2

1

1

r

s

b

t

Figure 16.6. Detail of truncated Voronoi decomposition.

Then

b =
4√

16− t2

r =
√

2− b2 =

√
16− 2t2

16− t2
,
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1

s

1
r

b

2

Figure 16.7. Detail of Rogers simplex.

and

s =
√

b2 − 1 =
t√

16− t2
.

See Figure 16.7.

16.9.3 The geometric construction

We now present the geometric construction which will imply the simplification.
We represent the geometry of the truncated Voronoi cell associated with one

half of a quad cluster in Figure 16.8.
We can simplify the representation by extending the wedges to enclose the

Rogers simplices. See Figure 16.9. This process adds an extra volume term.
The overlap between the wedges is slightly complicated. We simplify the

overlap as follows. Take the cone over the overlap. Intersect it with a ball of radius√
2 at the origin. We call the spherical sections produced by this construction

flutes. This construction is represented in Figure 16.10. Figure 16.11 is a planar
representation of this construction.

To form each flute, we have added two extra pieces of volume (per flute) to
our construction. We call these pieces quoins. We attach each quoin to a Rogers
simplex. See Figure 16.12.

16.9.4 A solid angle invariant

We now require some notation for the volumes which enter into this construction.
Let c denote the volume of the central spherical angle. Let r denote the volume
of the Rogers simplices. Let w denote the volume of the wedges. Let w′ denote
the volume of the extended wedges. Let q denote the volume of the quoins. Let f
denote the volume of the flutes. Finally, let v denote the volume of the truncated
Voronoi cell.
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Figure 16.8. Decomposition of a truncated Voronoi cell.

Figure 16.9. Wedges extended to include the Rogers simplices.
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Figure 16.10. Decomposition with flutes.

Lemma 16.10. If we hold the solid angle fixed, the volume of a truncated squashed
Voronoi cell depends only on q, the volume of the quoins.

Proof. By the original decomposition,

v = c + r + w.

By our construction,
v = c + w′ + q − f.

Recall that the solid angle s of the quad cluster is the sum of the dihedral
angles minus 2π. The dihedral angles to which we refer are those associated with
the edges between each corner of the quad cluster and the origin.

Our perturbation will hold the solid angle s of the quad cluster fixed. There-
fore, the sum of the dihedral angles must also be fixed. This fixes w′.

Take the cone over each extended wedge and intersect it with a ball of radius√
2 centered at the origin. Let t denote the sum of these volumes. Since the sum

of the dihedral angles is fixed, t is also fixed.
Further, note that

2
√

2
3

s = c + t− f.

This relation implies that c−f is fixed. Combining this with the previous relations,
we find that if we hold the solid angle fixed, the volume of the truncated Voronoi
cell depends only on q, the volume of the quoins.
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Figure 16.11. Planar representation with flutes.

2

s

1

1

r

Figure 16.12. Detail of Rogers simplex with quoin.

16.9.5 Variation of the volume of a quoin

Consider a face (2, 2, t) of a truncated quad cluster. Two Rogers simplices are
associated with this face, as suggested in Figure 16.6. Observe that the volume of

the quoin associated with one of these Rogers simplices is increasing in r =
√

16−2t2

16−t2 .
Next, observe that r is in turn decreasing in t. Therefore increasing t decreases the
volume of the squashed quad cluster, if we hold the solid angle fixed (by varying
the length of another edge of the squashed quad cluster).

Each half of a squashed quad cluster has two variable edge lengths (not count-
ing the shared diagonal). We label the variable edge lengths of one half of the
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squashed quad cluster y1 and y2. We label the length of the diagonal d. Holding
the solid angle fixed, we may perturb one half by shrinking the larger and increasing
the shorter length. We wish to establish the following lemma, that increasing the
short length reduces the volume of the truncated Voronoi cell more than decreasing
the longer length increases the volume.

Lemma 16.11. Holding the solid angle fixed for one half of a squashed quad cluster,
shrinking the longer upper edge (while increasing the shorter edge appropriately)
reduces the volume of the squashed quad cluster (increasing the score).

To prove Lemma 16.11, we establish a variational formula for the volume of a
quoin.

We then verify that the volume of the quoin associated with the shorter edge
is decreasing faster under this perturbation than the volume of the quoin associated
with the longer edge is increasing.

In other words, we wish to show that y1 < y2 implies that V (y1) + V (y2(y1))
is decreasing in y1, or equivalently,

Vt(y1) + Vt(y2(y1))
dy2

dy1
< 0

where V (t) is the volume of the quoin, Vt(t) is the derivative of the volume, and y2

is an implicit function of y1.
We construct the volume of a quoin by integrating the area of a slice. We

place the quoin in a convenient coordinate system. See Figures 16.13 and 16.14.
The truncating sphere has equation x2 + y2 + z2 = 2. At the base of the quoin,
z = 1, so x =

√
1− y2 gives the location of the right-boundary of the quoin. The

plane forming the left face of the quoin is given by the equation x = sz, so the ridge

of the quoin is given by the curve (su, y, u), where u =
√

2−y2

1+s2 .
Hence the area of a slice parallel to the x-z plane is given by the formula

A(t, y) =
1
2
(su− s)(u− 1) +

∫ √
1−y2

su

(
√

2− x2 − y2 − 1) dx.

The volume of a quoin is therefore given by the formula

V (t) =
∫ r

0

A(t, y) dy.

We actually only need to compute Vt(t), which is fortunate, since the explicit
formula for V (t) is somewhat complicated. We have

Vt(t) =
∫ r

0

At(t, y) dy + A(t, r)rt,

but A(t, r) = 0, so

Vt(t) =
∫ r

0

At(t, y) dy.
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s

r

y

x

(s, r)

Figure 16.13. Top view of quoin.

x

z

s

1

(su, y, u)

Figure 16.14. Side view of quoin.

So in addition, we only need At(t, y),

At(t, y) = (
s

2
(u2 + 1)−

√
1− y2 +

∫ √
1−y2

t
4

√
2−y2

√
2− x2 − y2 dx)t,

so

At(t, y) = (
s

2
(u2 + 1))t −

√
2− t2

16
(2− y2)− y2

1
4

√
2− y2
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which simplifies to

At(t, y) =
8

(16− t2)3/2
− 2− y2

2
√

16− t2
.

Hence

Vt(t) =
8r

(16− t2)3/2
− r√

16− t2
+

r3

6
√

16− t2
,

which simplifies to

Vt(t) =
−2
√

2(8− t2)3/2

3(16− t2)2
.

We are now prepared to prove Lemma 16.11.

Proof. Holding the solid angle fixed, y2 is an implicit function of y1. We wish to
prove that y1 < y2 implies

Vt + Vtfracdy2dy10. (16.9)

We derive a formula for dy2
dy1

, using the solid angle constraint

sol(2, 2, 2, y1, y2, d) = c, (16.10)

where c is a constant. Using formulas from [Hal97a], (16.10) becomes

2 arctan(
√

∆
2a

) = c.

Let x1 = y2
1 , x2 = y2

2 , and b = d2. Then

∆ = −4b2 − 4(x1 − x2)2 + b(x1(8− x2) + 8x2),

and
a = 32− d− x1 − x2.

So
−4b2 − 4(x1 − x2)2 + b(x1(8− x2) + 8x2)

(32− d− x1 − x2)2
= c1.

Therefore
dx2

dx1
= − (16− x2)(x2 + b− x1)

(16− x1)(x1 + b− x2)
,

and
dy2

dy1
=

y1

y2

dx2

dx1
,

hence
dy2

dy1
= −y1(16− x2)(x2 + b− x1)

y2(16− x1)(x1 + b− x2)
. (16.11)

We substitute the formula for dy2
dy1

into (16.9). Letting xi = y2
i , and noting

that all the denominators are positive, we obtain on clearing denominators that the
desired relation (16.9) is equivalent to
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−(8− x1)3/2(16− x2)y2(x1 + b− x2) +
(8− x2)3/2(16− x1)y1(x2 + b− x1) < 0,

or

(16− x1)2x1(8− x2)3(b− x1 + x2)2 <

(16− x2)2x2(8− x1)3(b + x1 − x2)2.

If we define
g(x1, x2) = (16− x1)2x1(8− x2)3(b− x1 + x2)2,

then the desired inequality is equivalent to g(x1, x2) < g(x2, x1) for x1 < x2. There
are several ways to prove this monotonicity relation. One is to prove that the
polynomial

g(x1, x2)− g(x2, x1)
8(x1 − x2)

is positive for all allowable values for x1, x2, and b. Unfortunately, the resulting
polynomial has degree six, so the verification is somewhat unwieldy, although easy
enough using interval methods.

A simpler method involves a factorization of g into g1 and g2. We show that
g1 and g2 each satisfy the monotonicity relation, and the relation then follows for
g.

Define
g1(x1, x2) = (16− x1)x1(8− x2)(b− x1 + x2),

and
g2(x1, x2) = (16− x1)(8− x2)2(b− x1 + x2).

Clearly g = g1g2. We then construct the polynomials

p1 =
g1(x1, x2)− g1(x2, x1)

x1 − x2

and

p2 =
g2(x1, x2)− g2(x2, x1)

x1 − x2
.

Simplifying p1 and p2, we find that

p1 =128b− 128x1 − 8bx1 + 8x2
1 − 128x2

+ 32x1x2 + bx1x2 − x2
1x2 + 8x2

2 − x1x
2
2

and

p2 =− 2048 + 192b + 320x1 − 16bx1 − 16x2
1 + 320x2

− 16bx2 − 32x1x2 + bx1x2 + x2
1x2 − 16x2

2 + x1x
2
2.
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These polynomials are quadratic in x1 and x2, and linear in b. The coefficient of b
in p1 is

128− 8x1 − 8x2 + x1x2.

The coefficient of b in p2 is

192− 16x1 − 16x2 + x1x2.

Both coefficients are positive for x1 and x2 in [16/2.512, 2.512]. Therefore, the
minimum values of p1 and p2 occur when b is at a minimum, b = 8.

The minimum value of each polynomial for values of x1 and x2 in the range
[16/2.512, 2.512] is now easily computed. Making the appropriate computations, we
find that each polynomial is indeed positive. Hence the desired relation follows.

16.9.6 Final simplification

Lemma 16.12. Obtuse quad clusters satisfy the bound of Proposition 15.3.

Proof. We begin with a squashed quad cluster with consecutive upper edge lengths
(y1, y2, y3, y4) and diagonal d adjacent to the first two upper edges.

Recall that we chose the diagonal of the quad cluster to be the shorter of the
two possible diagonals. We refer to the other possible diagonal as the cross-diagonal.
Recall that the reduction fixes the length of the diagonal.

If the length of the cross-diagonal does not drop to 2
√

2 under the perturbation
of Lemma 16.11, we arrive at the configuration with edge lengths (y′1, y

′
1, y

′
2, y

′
2) with

diagonal d.
If the length of the cross-diagonal does drop to 2

√
2, then stop the pertur-

bation. This gives a quadrilateral (y′1, y
′
2, y

′
3, y

′
4) with diagonal 2

√
2. Applying the

perturbation to each half independently, we find that the score of each half is maxi-
mized by the configuration (y′′1 , y′′1 , y′′2 , y′′2 ) with diagonal 2

√
2. We verify the relation

for this arrangement in Calculation 17.4.4.5.
If the length of the cross-diagonal did not drop to 2

√
2, switch to the cross-

diagonal and repeat the process. If the (new) cross-diagonal does not drop to 2
√

2,
we have arrived at the configuration (y, y, y, y) with diagonal d′. Choose a new
diagonal d′′ to be the shorter of the two possible diagonals. We verify the desired
relation for this arrangement in Calculation 17.4.4.4.

Finally, we make a few comments about extra constraints in the verifications.
Since the score of a quad cluster is nonpositive, and m(2 sol(T0))−b ≤ 0 where

sol(T0) = sol(2, 2, 2, 2, 2, 2
√

2), we need only consider quad clusters for which the
solid angle exceeds 2 sol(T0).

The maximum length of the diagonal is 2.51
√

2, since otherwise the triangles
in the quadrilateral would be obtuse, forcing the cross-diagonal to be shorter than
the diagonal. This would contradict our original choice of the shortest diagonal.

In Calculation 17.4.4.4, we assume that d is the shortest diagonal. Adding this
constraint directly is tedious, since the formula for the cross-diagonal of the quad
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cluster is somewhat complicated. We apply a simpler but weaker constraint, that
the diagonal d of a planar quadrilateral with edge lengths (y, y, y, y) is shorter than
d′, the other planar diagonal. The constraint d ≤ d′ gives the constraint d2 ≤ 2y2.
Since the cross-diagonal of the quad cluster is shorter than the cross-diagonal of the
planar quadrilateral, this constraint is weaker.

Lemmas 16.8 and 16.12 prove Proposition 15.3 for pure Voronoi quad clusters.
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Section 17

Calculations

The verifications of the relations required in this paper appear intractable using
traditional methods. Therefore, we use a relatively new proof technique, interval
arithmetic via floating-point computer calculations.

17.1 Interval Arithmetic
We review the basic notions of interval arithmetic.

Suppose that the value of a function f(x) lies in the interval [a, b]. Further,
suppose that g(x) lies in the interval [c, d]. Then f(x)+g(x) must lie in [a+c, b+d].
While it may be the case that we could produce better bounds than this for the
function f + g, these interval bounds give crude control over the behavior of the
function. Interval arithmetic provides a mechanism for formalizing arithmetic on
these bounds.

We represent an interval t as
[
t, t

]
. Then for intervals a and b,

a + b =
[
a + b, a + b

]
.

Likewise,
a− b =

[
a− b, a− b

]
.

Multiplication is somewhat more complicated. Define

C = {ab, ab, ab, ab}.

Then
a ∗ b = [min(C), max(C)].

Division is similar, as long as the dividing interval does not contain zero.
Similarly, we can define the operation of a monotonic function on an interval.

For example,
arctan(a) = [arctan(a), arctan(a)].

239
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Using interval arithmetic, we can produce rigorous bounds for polynomials
evaluated on intervals. Likewise, we can produce rigorous bounds for rational func-
tions evaluated on intervals. Finally, we add the composition of monotonic func-
tions. This allows us to produce interval bounds for functions such as sol(·) and
vor(·) over quasi-regular tetrahedrons, quarters, or quad clusters.

17.2 The Method of Subdivision
The relations on tetrahedra and quad clusters required for our approach typically
have the form g(y) ≤ 0 for y ∈ I, where I is a product of closed intervals. As g is
usually continuous, the existence of a maximum is trivial. However, bounds on the
behavior of g over all of I computed directly via interval arithmetic are generally
poor.

We define a cell to be a product of closed intervals. By subdividing I into
sufficiently small cells, the quality of the computed bounds on each cell usually
improves enough to prove the relation for each cell, and hence for the original
domain I.

If in fact g(y) ≤ c < 0, this approach works very well. However, if the bound
is tight at a point y0, i.e., g(y0) = 0, then pure subdivision will usually fail, since the
computed upper bound on g over any cell containing y0 will typically be positive.

If y0 is not an interior maximum, we turn to the partial derivatives of g. If we
can show that the partials of g on a small cell containing y0 have fixed sign (bounded
away from zero), then the maximum value of g on that cell is easily computed. It is
typically the case that a cell must be very small before we can determine the sign
of the partials via interval arithmetic bounds.

17.3 Numerical Considerations
Most real numbers are not representable in computer floating-point format. How-
ever, floating-point intervals may be found which contain any real number. Al-
though the magnitude of real numbers representable in fixed-length floating-point
format is finite, the format also provides for ±∞, which allows for interval contain-
ment of all reals. These intervals may be added, multiplied, etc., and the resulting
intervals will contain the result of the operation applied to the real numbers which
they represent.

Since floating-point arithmetic is not exact, interval arithmetic conducted us-
ing floating-point arithmetic is not optimal, in the sense that the interval resulting
from an operation will usually be larger than the true resultant interval, due to
roundoff. However, barring hardware or software errors (implementation errors,
not roundoff errors), floating-point interval arithmetic, unlike floating-point arith-
metic, is correct, in the sense that it provides correct interval bounds on the value of
a computation, while floating-point arithmetic alone only provides an approxima-
tion to the correct value of a computation. We may therefore use interval arithmetic
to prove mathematical results. Floating-point arithmetic alone, in the absence of
rigorous error analysis, cannot constitute a proof.
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We implement floating-point interval arithmetic routines via the IEEE 754
Standard for floating-point arithmetic [IEEE].

Implementation of interval arithmetic is straightforward using directed round-
ing. In addition to arithmetic functions, we require interval implementations of the
square root and arctangent functions. Fortunately, the IEEE standard provides the
square root function. However, the arctangent function is somewhat problematic,
since the standard math libraries do not provide explicit error bounds for their
implementations of the arctangent function. In theory, they should provide an ac-
curacy for the arctangent routine of 0.7 ulps, meaning that the error is less than
one unit in the last place. I add interval padding of the form [v − ε, v + ε], where v
is the computed value, and ε = 2−49. This should be sufficient to guarantee proper
interval containment, assuming that the library routines are correctly implemented.

Armed with standard interval arithmetic and interval arithmetic implemen-
tations of sqrt and arctan, we can implement interval arithmetic versions of all the
special functions required for proving the sphere packing relations.

Evaluating these functions on cells, we get bounds. Unfortunately, these
bounds are not very good. The bounds which we get from interval versions of
the partial derivative functions are even worse. This means that cells have to be
very small before we can draw conclusions about the signs of the partials. These bad
bounds are due to the inherent nature of interval arithmetic–it produces worst-case
results by design.

These bad bounds increase the complexity of the verifications tremendously.
Some verifications, using these bounds, require the consideration of billions or tril-
lions of cells, or worse. Therefore, we needed a method for producing better bounds
than those which direct interval methods could provide.

The method which we eventually discovered is to use Taylor series. We com-
pute explicit second (mixed) partial bounds for the major special functions, and use
these bounds to produce very good interval bounds. These bounds are computed
in Calculations 17.4.6.1 through 17.4.6.8. Essentially, the Taylor method postpones
the error bound until the end of the computation, eliminating the error bound
explosion which occurs with a straightforward interval method implementation.

17.4 Calculations
The following inequalities have been proved by computer using interval methods.
Let S = S(y) = S(y1, . . . , y6) denote a tetrahedron parametrized by the edge lengths
(y1, . . . , y6). In addition, we often parametrize by the squares of the edge lengths,
(x1, . . . , x6).

Recall from Section 15.1 that m = 0.3621, b = 0.49246, a = 0.0739626 and
bc = 0.253095.

Recall that for our purposes, the scoring function σ(·) is given by one of four
functions: gma(·), vor(·), octavor(·), or truncated Voronoi. See Remark 7.23 for a
simplified version of the scoring function.

The scoring rules depend on η(·), the circumradius of a face, introduced in
Definition 4.20.
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17.4.1 Quasi-regular Tetrahedra

Define C = [2, 2.51]6, and recall

a1 = 0.3860658808124052, a2 = 0.4198577862, d0 = 1.4674.

Calculation 17.4.1.1. Either

gma(S) ≤ a1 dih(S)− a2

or
gma(S) ≤ −0.52 pt

for y ∈ C, using dimension-reduction.

Calculation 17.4.1.2. Either

gma(S)− a1 dih(S) ≤ 3.48 pt− 2πa1 + 4a2

or
dih(S) < d0

or
gma(S) ≤ −0.52 pt

for y ∈ C, using dimension-reduction.

Calculation 17.4.1.3. Either

gma(S) + m sol(S) + a(dih(S)− 2π

5
)− bc ≤ 0

or
dih(S) > d0

or
gma(S) ≤ −0.52 pt

for y ∈ C, using dimension-reduction.

17.4.2 Flat Quad Clusters

Define I = [2, 2.51]5[2.51, 2
√

2], and define the corner cell

C = [2, 2 + 0.51/16]5[2
√

2− (2
√

2− 2.51)/16, 2
√

2].

Calculation 17.4.2.1. Either

gma(S) + m sol(S) ≤ b/2

or
η(y1, y2, y6)2 > 2
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or
η(y4, y5, y6)2 > 2

or
gma(S) ≤ −1.04 pt

for y ∈ I, using dimension reduction.

Calculation 17.4.2.2. Either

gma(S) + m sol(S) ≤ b/2

or
η(y1, y2, y6)2 = 2 with η(y4, y5, y6)2 ≤ 2,

or
η(y4, y5, y6)2 = 2 with η(y1, y2, y6)2 ≤ 2,

or
gma(S) ≤ −1.04 pt

for y ∈ I, not using dimension-reduction.

Calculation 17.4.2.3. d
dyi

vor(S) < 0 for i = 1, 2, 3 and y ∈ C.

Calculation 17.4.2.4. This computation is somewhat tricky, since the scoring
constraint depends on both faces. The partial derivative information gives y3 = 2.
The rest of the analysis depends on which face is assumed to be large.

If the (y1, y2, y6) face is large, the partial derivative information implies that
the face constraint is tight, so η(y1, y2, y6)2 = 2. Therefore solve for y1 in terms of
y2 and y6. Apply partial derivative information for y4 and y5. In this case,

vor(S) + m sol(S) ≤ b/2

for y3 = 2, y ∈ C.
If the (y4, y5, y6) face is large, assume that y1 = y2 = 2. Then either

vor(S) + m sol(S) ≤ b/2

or
η(y4, y5, y6)2 < 2

for y1 = y2 = y3 = 2, y ∈ C.

Calculation 17.4.2.5. Either

vor(S) + m sol(S) ≤ b/2,

or
η(y1, y2, y6)2 < 2 and η(y4, y5, y6)2 < 2,
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or
vor(S) ≤ −1.04 pt

for y ∈ I, y /∈ C, using dimension-reduction and partial derivative information.

Calculation 17.4.2.6. Either

vor(S) + m sol(S) ≤ b/2,

with
η(y1, y2, y6)2 = 2 or η(y4, y5, y6)2 = 2,

or
vor(S) ≤ −1.04 pt

for y ∈ I, y /∈ C, not using dimension-reduction.

17.4.3 Octahedra

Calculation 17.4.3.1. σ(S) ≤ −0.52 pt, for each (appropriately scored) upright
quarter with edge lengths in the cell [2.51, 2

√
2][2.2, 2.51][2, 2.51]4.

Calculation 17.4.3.2. Recall c = 0.1533667634670977, and d = 0.2265. Either

gma(S) + c dih(S) ≤ d

or
gma(S) ≤ −1.04 pt

for y ∈ [2.51, 2.716][2, 2.2]5, using dimension-reduction Note that for both faces
adjacent to the diagonal,

max η2 = η(2.2, 2.2, 2.716)2 < 2,

so all quarters in this cell are compression-scored.

Calculation 17.4.3.3. Either

gma(S) + m sol(S) + α dih(S) ≤ b

4
+ α

π

2

or
gma(S) ≤ −1.04 pt

for all compression-scored quarters S(y), where α = 0.14,

y ∈ [2.716, 2
√

2][2, 2.2]2[2, 2.51][2, 2.2]2,

using dimension-reduction.
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Calculation 17.4.3.4. Either

octavor(S) + m sol(S) + α dih(S) ≤ b

4
+ α

π

2
or

octavor(S) ≤ −1.04 pt

for all vor analytic-scored quarters S(y), where α = 0.14,

y ∈ [2.716, 2.81][2, 2.2]2[2, 2.51][2, 2.2]2.

Calculation 17.4.3.5. Either

gma(S) + m sol(S) + α dih(S) + βx1 ≤ b

4
+ α

π

2
+ 8β

or
gma(S) ≤ −1.04 pt

for all compression-scored quarters S(y), where α = 0.054, β = 0.00455, x1 = y2
1,

and
y ∈ [2.81, 2

√
2][2, 2.2]2[2, 2.51][2, 2.2]2,

using some dimension-reduction.

Calculation 17.4.3.6. Either

octavor(S) + m sol(S) + α dih(S) + βx1 ≤ b

4
+ α

π

2
+ 8β

or
octavor(S) ≤ −1.04 pt

for all vor analytic-scored quarters S(y), where α = 0.054, β = −0.00455, x1 = y2
1,

and
y ∈ [2.81, 2

√
2][2, 2.2]2[2, 2.51][2, 2.2]2.

17.4.4 Pure Voronoi Quad Clusters

Recall sol(T0) denotes the solid angle of the tetrahedron (2, 2, 2, 2, 2, 2
√

2).
Define the corner cell C = [2, 2 + 0.51/8]5[2

√
2, 2.84]. We denote truncated

Voronoi scoring by σ. The constraint that the dividing face be acute translates into
x1 + x2 − x6 ≥ 0. In each computation we apply dimension-reduction.

We begin with the acute case.

Calculation 17.4.4.1. Either

σ(S) + m sol(S)− b/2 ≤ 0
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or
sol(S) < sol(T0)

or
x1 + x2 − x6 < 0

or
σ(S) ≤ −1.04 pt

for y ∈ [2, 2.51]5[2.84, 4].

Calculation 17.4.4.2. Either

σ(S) + m sol(S)− b/2 ≤ 0

or
sol(S) < sol(T0)

or
x1 + x2 − x6 < 0

or
σ(S) ≤ −1.04 pt

for y ∈ [2, 2.51]5[2
√

2, 2.84] with y /∈ C.

Calculation 17.4.4.3. Either

σ(S) + m sol(S)− b/2 ≤ 0

or
sol(S) < sol(T0)

or
x1 + x2 − x6 < 0,

y ∈ C.

Finally, we consider the obtuse case.

Calculation 17.4.4.4. Either

σ(S) + m sol(S)− b/2 ≤ 0

or
sol(S) < sol(T0)

or
σ(S) ≤ −0.52 pt

or
2y2 < d2
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for a symmetric pure Voronoi quad cluster composed of two copies of S, where

S = (2, 2, 2, y, y, d),

y ∈ [4/2.51, 2.51] and d ∈ [2
√

2, 2.51
√

2].

Calculation 17.4.4.5. Either

σ(S1) + σ(S2) + m(sol(S1) + sol(S2))− b ≤ 0

or
σ(S1) + σ(S2) ≤ −1.04 pt

or
sol(S1) + sol(S2) < 2 sol(T0)

for a pure Voronoi quad cluster composed of two tetrahedrons S1 and S2, where

Si = (2, 2, 2, yi, yi, 2
√

2),

yi ∈ [4/2.51, 2.51].

17.4.5 Dimension Reduction

Calculation 17.4.5.1. The polynomial derived for the dimension-reduction argu-
ment is positive for x ∈ [4, 2.512]6 and x ∈ [4, 2.512]5[4, 8].

17.4.6 Second Partial Bounds

We compute all second partials d2

dxidxj
in terms of xi, the squares of the edge lengths.

We do each computation twice, once for quasi-regular tetrahedrons and once for
quarters. We compute the second partials of dih(·), sol(·), compression volume, and
Voronoi volume (the vor analytic volume). Since the scoring functions are linear
combinations of sol(·) and the volume terms, we may derive second partial bounds
for gma(·) and vor(·) from these.

With the application of additional computer power, these bounds could be
improved. These bounds were computed using 16 subdivisions. While using 32
subdivisions would improve the bounds by a factor of 2, perhaps, the time required
for the computations increases by a factor of 64.

Calculation 17.4.6.1. For quasi-regular tetrahedrons T , the second partials of
dih(T ) lie in

[−0.0926959464, 0.0730008897].

Calculation 17.4.6.2. For quarters Q, the second partials of dih(Q) lie in

[−0.2384125007, 0.169150875].
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Calculation 17.4.6.3. For quasi-regular tetrahedrons T , the second partials of
sol(T ) lie in

[−0.0729140255, 0.088401996].

Calculation 17.4.6.4. For quarters Q, the second partials of sol(Q) lie in

[−0.1040074557, 0.1384785805].

Calculation 17.4.6.5. For quasi-regular tetrahedrons T , the second partials of
gma(T ) volume lie in

[−0.0968945273, 0.0512553817].

Calculation 17.4.6.6. For quarters Q, the second partials of gma(Q) volume lie
in

[−0.1362100221, 0.1016538923].

Calculation 17.4.6.7. For quasi-regular tetrahedrons T , the second partials of
vor(T ) volume lie in

[−0.1856683356, 0.1350478467].

Calculation 17.4.6.8. For quarters Q, the second partials of vor(Q) volume lie in

[−0.2373892383, 0.1994181009].

The computed gma(·) second partials then lie in

[−0.2119591984, 0.2828323141],

for quasi-regular tetrahedrons and quarters.
Likewise, the computed vor(·) second partials then lie in

[−0.7137209962, 0.8691765157],

for quasi-regular tetrahedrons and quarters.
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This paper is the last in the series of paper devoted to the proof of the Kepler
conjecture. The first several sections prove a result that asserts that “all contraven-
ing graphs are tame.” A contravening graph is one that is attached to a potential
counterexample to the Kepler conjecture. Contravening graphs by nature are elu-
sive and are studied by indirect methods. In contrast, the defining properties of
tame graphs lend themselves to direct examination. (By definition, tame graphs
are planar graphs such that the degree of every vertex is at least two and at most
six, the length of every face is at least 3 and at most 8, and such that other similar
explicit properties hold true.)

It is no coincidence that contravening graphs all turn out to be tame. The
definition of tame graph has been tailored to suit the situation at hand. We set out
to prove explicit properties of contravening graphs, and when we are satisfied with
what we have proved, we brand a graph with these properties a tame graph.

The first section of this paper gives the definition of tame graph. The second
section gives the classification of all tame graphs. There are several thousand such
graphs. The classification was carried out by computer. This classification is one
of the main uses of a computer in the proof of the Kepler conjecture. A detailed
description of the algorithm that is used to find all tame graphs is presented in this
section.

The third section of this paper gives a review of results from earlier parts of
the paper that are relevant to the study of tame plane graphs. In the abridged
version of the proof [Hal05a], the results cited in this section are treated as axioms.
This section thus serves as a guide to the results that are proved in this volume,
but not in the abridged version of the proof.

This section also contains a careful definition of what it means to be a contra-
vening plane graph. The first approximation to the definition is that it is the com-
binatorial plane graph associated with the net of edges on the unit sphere bounding
the standard regions of a contravening decomposition star. The precise definition
is somewhat more subtle because we wish ensure that every face of a contravening
plane graph is a simple polygon. To guarantee that this property holds, we simplify
the net of edges on the unit sphere whenever necessary.

The fourth and fifth sections of this paper contain the proof that all contra-
vening plane graphs are tame. These sections complete the first half of this paper.

The second half of this paper is about linear programming. Linear programs
are used to prove that with the exception of three tame graphs (those attached to
the face-centered cubic packing, the hexagonal-close-packing, and the pentahedral
prism), a tame graph cannot be a contravening graph. This result reduces the
proof of the Kepler conjecture to a close examination of three graphs. Pentahedral
prism graphs are treated in Paper V. The face-centered cubic and hexagonal-close
packing graphs are treated in Section 8 of Paper III. The linear programming results
together with these earlier results complete the proof of the Kepler conjecture.

The sixth section of this paper describes how to attach a linear program to a
tame plane graph. The output from this linear program is an upper bound on the
score of all decomposition stars associated with the given tame plane graph. The
seventh section of this paper shows how to use linear programs to eliminate what are
called the aggregate tame plane graphs. The aggregates are those cases where the
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net of edges formed by the edges of standard regions was simplified to ensure that
every face of a contravening plane graph is a polygon. By the end of this section,
we have a proof that every standard region in a contravening decomposition star is
bounded by a simple polygon.

The final section of this paper gives a long list of special strategies that are
used when the output from the linear program in the sixth section does not give
conclusive results. The general strategy is to partition the original linear program
into a collection of refined linear programs with the property that the score is no
greater than the maximum of the outputs from the linear programs in the collec-
tion. These branch and bound strategies are described in this final section. Linear
programming shows that every decomposition star with a tame plane graph (other
than the three mentioned above) has a score less than that of the decomposition
stars attached to the face-centered cubic packing. This and earlier results imply the
Kepler conjecture.
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Section 18

Tame Graphs

This section defines a class of plane graphs. Graphs in this class are said to be
tame. In the next section, we give a complete classification of all tame graphs. This
classification of tame graphs was carried out by computer and is a major step of
the proof of the Kepler conjecture.

18.1 Basic Definitions

Definition 18.1. An n-cycle is a finite set C of cardinality n, together with a
cyclic permutation s of C. We write s in the form v 7→ s(v, C), for v ∈ C. The
element s(v, C) is called the successor of v (in C). A cycle is an n-cycle for some
natural number n. By abuse of language, we often identify C with the cycle. The
natural number n is the length of the cycle.

Definition 18.2. Let G be a nonempty finite set of cycles (called faces) of length
at least 3. The elements of faces are called the vertices of G. An unordered pair of
vertices {v, w} such that one element is the successor of the other in some face is
called an edge. The vertices v and w are then said to be adjacent. The set G is a
plane graph if four conditions hold.

1. If an element v has successor w in some face F , then there is a unique
face (call it s′(F, v)) in G for which v is the successor of w. (Thus, v =
s(w, s′(F, v)), and each edge occurs twice with opposite orientation.)

2. For each vertex v, the function F 7→ s′(F, v) is a cyclic permutation of the set
of faces containing v.

3. Euler’s formula holds relating the number of vertices V , the number of edges
E, and the number of faces F :

V − E + F = 2.

253
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254 Section 18. Tame Graphs

4. The set of vertices is connected. That is, the only nonempty set of vertices
that is closed under v 7→ s(v, C) for all C is the full set of vertices.

Remark 18.3. The set of vertices and edges of a plane graph form a planar
graph in the usual graph-theoretic sense of admitting an embedding into the plane.
Every planar graph carries an orientation on its faces that is inherited from an
orientation of the plane. (Use the right-hand rule on the face, to orient it with
the given outward normal of the oriented plane.) For us, the orientation is built
into the definition, so that properly speaking, we should call these objects oriented
plane graphs. We follow the convention of distinguishing between planar graphs
(which admit an embedding into the plane) and plane graphs (for which a choice
of embedding has been made). Our definition is more restrictive than the standard
definition of plane graph in the literature, because we require all faces to be simple
polygons with at least three vertices. Thus, a graph with a single edge does not
comply with our narrow definition of plane graph. Other graphs that are excluded
by this definition are shown in Figure 18.1. Standard results about plane graphs
can be found in any of a number of graph theory textbooks. However, this paper is
written in such a way that it should not be necessary to consult outside graph theory
references.

Figure 18.1. Some examples of graphs that are excluded from the narrow
definition of plane graph, as defined in this section.

Definition 18.4. Let len be the length function on faces. Faces of length 3 are
called triangles, those of length 4 are called quadrilaterals, and so forth. Let tri(v)
be the number of triangles containing a vertex v. A face of length at least 5 is called
an exceptional face.

Two plane graphs are properly isomorphic if there is a bijection of vertices
inducing a bijection of faces. For each plane graph, there is an opposite plane graph
Gop obtained by reversing the cyclic order of vertices in each face. A plane graph
G is isomorphic to another if G or Gop is properly isomorphic to the other.

Definition 18.5. The degree of a vertex is the number of faces it belongs to. An
n-circuit in G is a cycle C in the vertex-set of G, such that for every v ∈ C, it
forms an edge in G with its successor: that is, (v, s(v, C)) is an edge of G.
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In a plane graph G we have a combinatorial form of the Jordan curve theorem:
each n-circuit determines a partition of G into two sets of faces.

Definition 18.6. The type of a vertex is defined to be a triple of nonnegative
integers (p, q, r), where p is the number of triangles containing the vertex, q is the
number of quadrilaterals containing it, and r is the number of exceptional faces.
When r = 0, we abbreviate the type to the ordered pair (p, q).

18.2 Weight Assignments
We call the constant tgt = 14.8, which arises repeatedly in this section, the tar-
get. (This constant arises as an approximation to 4πζ − 8 ≈ 14.7947, where
ζ = 1/(2 arctan(

√
2/5)).)

Define a : N→ R by

a(n) =





14.8 n = 0, 1, 2,

1.4 n = 3,

1.5 n = 4,

0 otherwise.

Define b : N× N→ R by b(p, q) = 14.8, except for the values in the following table
(with tgt = 14.8):

q = 0 1 2 3 4
p = 0 tgt tgt tgt 7.135 10.649

1 tgt tgt 6.95 7.135 tgt
2 tgt 8.5 4.756 12.981 tgt
3 tgt 3.642 8.334 tgt tgt
4 4.139 3.781 tgt tgt tgt
5 0.55 11.22 tgt tgt tgt
6 6.339 tgt tgt tgt tgt

Define c : N→ R by

c(n) =





1 n = 3,

0 n = 4,

−1.03 n = 5,

−2.06 n = 6,

−3.03 otherwise.
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256 Section 18. Tame Graphs

Define d : N→ R by

d(n) =





0 n = 3,

2.378 n = 4,

4.896 n = 5,

7.414 n = 6,

9.932 n = 7,

10.916 n = 8,

tgt = 14.8 otherwise.

A set V of vertices is called a separated set of vertices if the following four
conditions hold.

1. For every vertex in V there is an exceptional face containing it.

2. No two vertices in V are adjacent.

3. No two vertices in V lie on a common quadrilateral.

4. Each vertex in V has degree 5.

A weight assignment of a plane graph G is a function w : G → R taking values
in the set of nonnegative real numbers. A weight assignment is admissible if the
following properties hold:

1. If the face F has length n, then w(F ) ≥ d(n).

2. If v has type (p, q), then

∑

F : v∈F

w(F ) ≥ b(p, q).

3. Let V be any set of vertices of type (5, 0). If the cardinality of V is k ≤ 4,
then ∑

F : V ∩F 6=∅
w(F ) ≥ 0.55k.

4. Let V be any separated set of vertices. Then

∑

F : V ∩F 6=∅
(w(F )− d(len(F ))) ≥

∑

v∈V

a(tri(v)).

The sum
∑

F w(F ) is called the total weight of w.
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Figure 18.2. Tame 4-circuits

18.3 Plane Graph Properties
We say that a plane graph is tame if it satisfies the following conditions.

1. The length of each face is at least 3 and at most 8.

2. Every 3-circuit is a face or the opposite of a face.

3. Every 4-circuit surrounds one of the cases illustrated in Figure 18.2.

4. The degree of every vertex is at least two and at most six.

5. If a vertex is contained in an exceptional face, then the degree of the vertex
is at most five.

6. ∑

F

c(len(F )) ≥ 8,

7. There exists an admissible weight assignment of total weight less than the
target, tgt = 14.8.

8. There are never two vertices of type (4, 0) that are adjacent to each other.

It follows from the definitions that the abstract vertex-edge graph of G has no loops
or multiple joins. Also, by construction, every vertex lies in at least two faces.
Property 6 implies that the graph has at least eight triangles.
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258 Section 18. Tame Graphs

Remark 18.7. We pause to review the strategy of the proof of the Kepler con-
jecture as described in Section 3.2. The decomposition stars that violate the main
inequality σ(D) ≥ 8 pt are said to contravene. A plane graph is associated with each
contravening decomposition star. These are the contravening plane graphs. The
main object of this paper is to prove that the only two contravening graphs are Gfcc

and Ghcp, the graphs associated with the face-centered cubic and hexagonal close
packings.

We have defined a set of plane graphs, called tame graphs. The next section will
give a classification of tame plane graphs. (There are several thousand.) Section 20
gives a proof that all contravening plane graphs are tame. By the classification result,
this reduces the possible contravening graphs to an explicit finite list. Case-by-case
linear programming arguments will show that none of these tame plane graphs is a
contravening graph (except Gfcc and Ghcp). Having eliminated all possible graphs,
we arrive at the resolution of the Kepler conjecture.
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Section 19

Classification of tame
plane graphs

19.1 Statement of the Theorem
A list of several thousand plane graphs appears at [Hal05b]. The following theorem
is listed as one of the central claims in the proof in Section 3.3.

Theorem 19.1. Every tame plane graph is isomorphic to a plane graph in this
list.

The results of this section are not needed except in the proof of Theorem 19.1.
Computers are used to generate a list of all tame plane graphs and to check

them against the archive of tame plane graphs. We will describe a finite state
machine that produces all tame plane graphs. This machine is not particularly
efficient, and so we also include a description of pruning strategies that prevent a
combinatorial explosion of possibilities.

19.2 Basic Definitions
In order to describe how all tame plane graphs are generated, we need to introduce
partial plane graphs, that encode an incompletely generated tame graph. A partial
plane graph is itself a graph, but marked in such a way as to indicate that it is in
a transitional state that will be used to generate further plane graphs.

Definition 19.2. A partial plane graph is a plane graph with additional data:
every face is marked as “complete” or “incomplete.” We call a face complete or
incomplete according to the markings. We require the following condition.

• No two incomplete faces share an edge.

Each unmarked plane graph is identified with the marked plane graph in which
every face is complete. We represent a partial plane graph graphically by deleting

259
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260 Section 19. Classification of tame plane graphs

one face (the face at infinity) and drawing the others and shading those that are
complete.

A patch is a partial plane graph P with two distinguished faces F1 and F2,
such that the following hold.

• Every vertex of P lies in F1 or F2.

• The face F2 is the only complete face.

• F1 and F2 share an edge.

• Every vertex of F2 that is not in F1 has degree two.

F1 and F2 will be referred to as the distinguished incomplete and the distin-
guished complete faces, respectively.

Patches can be used to modify a partial plane graph as follows. Let F be
an incomplete face of length n in a partial plane graph G. Let P be a patch
whose incomplete distinguished face F1 has length n. Replace P with a properly
isomorphic patch P ′ in which the image of F1 is equal to F op and in which no other
vertex of P ′ is a vertex of G. Then

G′ = {F ′ ∈ G ∪ P ′ : F ′ 6= F op, F ′ 6= F}

is a partial plane graph. Intuitively, we cut away the faces F and F1 from their
plane graphs, and glue the holes together along the boundary (Figure 19.1). (It
is immediate that the Condition 19.2 in the definition of partial plane graphs is
maintained by this process.) There are n distinct proper ways of identifying F1

with F op in this construction, and we let φ be this identification. The isomorphism
class of G′ is uniquely determined by the isomorphism class of G, the isomorphism
class of P , and φ (ranging over proper bijections φ : F1 7→ F op).

Figure 19.1. Patching a plane graph
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19.3 A Finite State Machine
For a fixed N we define a finite state machine as follows. The states of the finite
state machine are isomorphism classes of partial plane graphs G with at most N
vertices. The transitions from one state G to another are isomorphism classes of
pairs (P, φ) where P is a patch, and φ pairs an incomplete face of G with the
distinguished incomplete face of P . However, we exclude a transition (P, φ) at a
state if the resulting partial plane graphs contains more than N vertices. Figure
19.1 shows two states and a transition between them.

The initial states In of the finite state machine are defined to be the isomor-
phism classes of partial plane graphs with two faces:

{(1, 2, . . . , n), (n, n− 1, . . . , 1)}
where n ≤ N , one face is complete, and the other is incomplete. In other words,
they are patches with exactly two faces.

A terminal state of this finite state machine is one in which every face is
complete. By construction, these are (isomorphism classes of) plane graphs with at
most N vertices.

Lemma 19.3. Let G be a plane graph with at most N vertices. Then its state in
the machine is reachable from an initial state through a series of transitions.

Proof. Pick a face in G of length n and identify it with the complete face in the
initial state In. At any stage at state G′, we have an identification of all of the
vertices of the plane graph G′ with some of the vertices of G, and an identification
of all of the complete faces of G′ with some of the faces of G (all faces of G are
complete). Pick an incomplete face F of G′ and an oriented edge along that face.
We let F ′ be the complete face of G with that edge, with the same orientation on
that edge as F . Create a patch with distinguished faces F1 = F op and F2 = F ′. (F1

and F2 determine the patch up to isomorphism.) It is immediate that the conditions
defining a patch are fulfilled. Continue in this way until a graph isomorphic to G
is reached.

Remark 19.4. It is an elementary matter to generate all patches P such that the
distinguished faces have given lengths n and m. Patching is also entirely algorithmic,
and thus by following all paths through the finite state machine, we obtain all plane
graphs with at most N vertices.

19.4 Pruning Strategies
Although we reach all graphs in this manner, it is not computationally efficient. We
introduce pruning strategies to increase the efficiency of the search. We can termi-
nate our search along a path through the finite state machine, if we can determine:

1. Every terminal graph along that path violates one of the defining properties
of tameness, or
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2. An isomorphic terminal graph will be reached by some other path that will
not be terminated early.

Here are some pruning strategies of the first type (1). They are immediate
consequences of the conditions of the defining properties of tameness.

• If the current state contains an incomplete face of length 3, then eliminate all
transitions, except for the transition that carries the partial plane graph to a
partial plane graph that is the same in all respects, except that the face has
become complete.

• If the current state contains an incomplete face of length 4, then eliminate all
transitions except those that lead to the possibilities of Section 18.3, Property
3, where in Property 3 each depicted face is interpreted as being complete.

• Remove all transitions with patches whose complete face has length greater
than 8.

• It is frequently possible to conclude from the examination of a partial plane
graph that no matter what the terminal position, any admissible weight as-
signment will give total weight greater than the target (tgt = 14.8). In such
cases, all transitions out of the partial plane graph can be pruned.

To take a simple example of the last item, we observe that weights are always
nonnegative, and that the weight of a complete face of length n is at least d(n).
Thus, if there are complete faces F1, . . . , Fk of lengths n1, . . . , nk, then any admis-
sible weight assignment has total weight at least

∑k
i=1 d(ni). If this number is at

least the target, then no transitions out of that state need be considered.
More generally, we can apply all of the inequalities in the definition of admis-

sible weight assignment to the complete portion of the partial plane graph to obtain
lower bounds. However, we must be careful, in applying Property 4 of admissible
weight assignments, because vertices that are not adjacent at an intermediate state
may become adjacent in the complete graph. Also, vertices that do not lie together
in a quadrilateral at an intermediate state may do so in the complete graph.

Here are some pruning strategies of the second type (2).

• At a given state it is enough to fix one incomplete face and one edge of that
face and then to follow only the transitions that patch along that face and
add a complete face along that edge. (This is seen from the proof of Lemma
19.3.)

• In leading out from the initial state In, it is enough to follow paths in which
every added complete face has length at most n. (A graph with a face of
length m, for m > n, will be also be found downstream from Im.)

• Make a list of all type (p, q) with b(p, q) < tgt = 14.8. Remove the initial
states I3 and I4, and create new initial states Ip,q (I ′p,q, I ′′p,q, etc.) in the
finite state machine. Define the state Ip,q to be one consisting of p + q + 1
faces, with p complete triangles and q complete quadrilaterals all meeting at
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a vertex (and one other incomplete face away from v). (If there is more than
one way to arrange p triangles and q quadrilaterals, create states Ip,q, I ′p,q,
I ′′p,q, for each possibility. See Figure 19.2.) Put a linear order on states Ip,q.
In state transitions downstream from Ip,q disallow any transition that creates
a vertex of type (p′, q′), for any (p′, q′) preceding (p, q) in the imposed linear
order.

Figure 19.2. States I3,2 and I ′3,2

This last pruning strategy is justified by the following lemma, which classifies
vertices of type (p, q).

Lemma 19.5. Let A and B be triangular or quadrilateral faces that have at least
two vertices in common in a tame graph. Then the faces have exactly two vertices
in common, and an edge is shared by the two faces.

Proof. Exercise. Some of the configurations that must be ruled out are shown
in Figure 19.3. Some properties that are particularly useful for the exercise are
Properties 2 and 3 of tameness, and Property 2 of admissibility.

Figure 19.3. Some impossibilities

Once a terminal position is reached it is checked to see whether it satisfies all
the properties of tameness.

Duplication is removed among isomorphic terminal plane graphs. It is not
an entirely trivial procedure for the computer to determine whether there exists
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an isomorphism between two plane graphs. This is accomplished by computing
a numerical invariant of a vertex that depends only on the local structure of the
vertex. If two plane graphs are properly isomorphic then the numerical invariant
is the same at vertices that correspond under the proper isomorphism. If two
graphs have the same number of vertices with the same numerical invariants, they
become candidates for an isomorphism. All possible numerical-invariant preserving
bijections are attempted until a proper isomorphism is found, or until it is found
that none exist. If there is no proper isomorphism, the same procedure is applied
to the opposite plane graph to find any possible orientation-reversing isomorphism.

This same isomorphism-producing algorithm is used to match each terminal
graph with a graph in the archive. It is found that each terminal graph matches
with one in the archive. (The archive was originally obtained by running the finite
state machine and making a list of all the terminal states up to isomorphism that
satisfy the given conditions.)

In this way Theorem 19.1 is proved.
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Section 20

Contravening Graphs

We have seen that a system of points and arcs on the unit sphere can be associated
with a decomposition star D. The points are the radial projections of the vertices
of U(D) (those at distance at most 2t0 = 2.51 from the origin). The arcs are the
radial projections of edges between v, w ∈ U(D), where |v−w| ≤ 2t0. If we consider
this collection of arcs combinatorially as a graph, then it is not always true that
these arcs form a plane graph in the restrictive sense of Section 18.

The purpose of this section is to show that if the original decomposition star
contravenes, then minor modifications can be made to the system of arcs of the
graph so that the resulting combinatorial graph has the structure of a plane graph
in the sense of Section 18. These plane graphs are called contravening plane graphs,
or simply contravening graphs.

20.1 A Review of Earlier Results
Let ζ = 1/(2 arctan(

√
2/5)). Let sol(R) denote the solid angle of a standard region

R. We write τR for the following modification of σR:

τR(D) = sol(R)ζpt− σR(D) (20.1)

and
τ(D) =

∑
τR(D) = 4πζpt− σ(D). (20.2)

Since 4πζpt is a constant, τ and σ contain the same information, but τ is often
more convenient to work with. A contravening decomposition star satisfies

τ(D) ≤ 4πζpt− 8 pt = (4πζ − 8)pt. (20.3)

The constant (4πζ − 8) pt (and its upper bound tgt pt where tgt = 14.8) will occur
repeatedly in the discussion that follows.

Recall that a standard cluster is a pair (R,D) consisting of a decomposition
star D and one of its standard regions R. If F is a finite set (or finite union) of

265
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standard regions, let

σF (D) =
∑

R

σR(D), τF (D) =
∑

R

τR(D), (20.4)

where the sum runs over all the standard regions in F . When the sum runs over all
standard regions,

σ(D) =
∑

σR(D), τ(D) =
∑

τR(D). (20.5)

A natural number n(R) is associated with each standard region. If the bound-
ary of that region is a simple polygon, then n(R) is the number of sides. If the
boundary consists of k disjoint simple polygons, with n1, . . . , nk sides then

n(R) = n1 + · · ·+ nk + 2(k − 1).

Lemma 20.1. Let R be a standard region in a contravening decomposition star
D. The boundary of R is a simple polygon with at most eight edges, or one of the
configurations of Figure 20.1.

Proof. This is Theorem 12.1 and Corollary 12.2.

Figure 20.1. Non-polygonal standard regions (n(R) = 7, 7, 8, 8, 8)

Lemma 20.2. Let R be a standard region. We have τR(D) ≥ tn, where n = n(R),
and

t3 = 0, t4 = 0.1317, t5 = 0.27113, t6 = 0.41056 t7 = 0.54999, t8 = 0.6045.

Furthermore, σR(D) ≤ sn, for 5 ≤ n ≤ 8, where

s3 = 1 pt, s4 = 0, s5 = −0.05704, s6 = −0.11408, s7 = −0.17112, s8 = −0.22816.

Proof. This is Theorem 12.1.



“fullkepler”
2005/11/14
page 267

i

i

i

i

i

i

i

i

20.1. A Review of Earlier Results 267

Lemma 20.3. Let F be a set of standard regions bounded by a simple polygon with
at most nine edges. Assume that

σF (D) ≤ s9 and τF (D) ≥ t9,

where s9 = −0.1972 and t9 = 0.6978. Then D does not contravene.

Proof. This is Section 12.2.

Lemma 20.4. Let (R, D) be a standard cluster. If R is a triangular region, then

σR(D) ≤ 1 pt.

If R is not a triangular region, then

σR(D) ≤ 0.

Proof. See Lemma 8.10 and Theorem 8.4.

Lemma 20.5. τR(D) ≥ 0, for all standard clusters R.

Proof. This is Lemma 10.1.

Recall that v has type (p, q) if every standard region with a vertex at v is a
triangle or a quadrilateral, and if there are exactly p triangular faces and q quadri-
lateral faces that meet at v (see Definition 18.6). We write (pv, qv) for the type of
v. Define constants τLP(p, q)/pt by Table 20.6. The entries marked with an asterisk
will not be needed.

τLP(p, q)/pt q = 0 1 2 3 4 5

p = 0 * * 15.18 7.135 10.6497 22.27
1 * * 6.95 7.135 17.62 32.3
2 * 8.5 4.756 12.9814 * *
3 * 3.6426 8.334 20.9 * *
4 4.1396 3.7812 16.11 * * *
5 0.55 11.22 * * * *
6 6.339 * * * * *
7 14.76 * * * * *

(20.6)

Lemma 20.6. Let S1, . . . , Sp and R1, . . . , Rq be the tetrahedra and quad clusters
around a vertex of type (p, q). Consider the constants of Table 20.6. Now,

∑p
τ(Si) +

∑q
τ(Ri) ≥ τLP(p, q).
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Proof. This is Lemma 10.5.

Lemma 20.7. Let v1, . . . , vk, for some k ≤ 4, be distinct vertices of type (5, 0).
Let S1, . . . , Sr be quasi-regular tetrahedra around the edges (0, vi), for i ≤ k. Then

r∑

i=1

τ(Si) > 0.55k pt,

and
r∑

i=1

σ(Si) < r pt− 0.48k pt.

Proof. This is Lemma 10.6.

Lemma 20.8. Let D be a contravening decomposition star. If the type of the vertex
is (p, q, r) with r = 0, then (p, q) must be one of the following:

{(6, 0), (5, 0), (4, 0), (5, 1), (4, 1), (3, 1), (2, 1),
(3, 2), (2, 2), (1, 2), (2, 3), (1, 3), (0, 3), (0, 4)}.

Proof. This is Lemma 10.10 and Lemma 12.3.

Lemma 20.9. A triangular standard region does not contain any enclosed vertices.

Proof. This fact is proved in [Hal97a, Lemma 3.7].

Lemma 20.10. A quadrilateral region does not enclose any vertices of height at
most 2t0.

Proof. This is Lemma 10.13.

Lemma 20.11. Let F be a union of standard regions. Suppose that the boundary
of F consists of four edges. Suppose that the area of F is at most 2π. Then there
is at most one enclosed vertex over F .

Proof. This is [Hal97a, Prop. 4.2].

Lemma 20.12. Let F be the union of two standard regions, a triangular region and
a pentagonal region that meet at a vertex of type (1, 0, 1) as shown in Figure 20.2.
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Then
τF (D) ≥ 11.16 pt.

Proof. This is Lemma 14.4.

1

3 4

52

Figure 20.2. A 4-circuit

Lemma 20.13. Let R be an exceptional standard region. Suppose that R has r
different interior angles that are pairwise nonadjacent and such that each is at most
1.32. Then

τR(D) ≥ tn + r(1.47) pt.

Proof. This is Remark 14.2.

Lemma 20.14. Every interior angle of every standard region is at least 0.8638.
Every interior angle of every standard region that is not a triangle is at least 1.153

Proof. calc-208809199 and calc-853728973-1.

Definition 20.15. The central vertex of a flat quarter is defined to be the one that
does not lie on the triangle formed by the origin and the diagonal.

Lemma 20.16. If the interior angle at a corner v of a non-triangular standard
region is at most 1.32, then there is a flat quarter over R whose central vertex is v.

Proof. This is Lemma 11.30.
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20.2 Contravening Plane Graphs defined
A plane graph G is attached to every contravening decomposition star as follows.
From the decomposition star D, it is possible to determine the coordinates of the
set U(D) of vertices at distance at most 2t0 from the origin.

If we draw a geodesic arc on the unit sphere at the origin with endpoints at
the radial projections of v1 and v2 for every pair of vertices v1, v2 ∈ U(D) such that
|v1|, |v2|, |v1 − v2| ≤ 2t0, we obtain a plane graph that breaks the unit sphere into
standard regions. (The arcs do not meet except at endpoints by Lemma 4.19.)

For a given standard region, we consider the arcs forming its boundary to-
gether with the arcs that are internal to the standard region. We consider the
points on the unit sphere formed by the endpoints of the arcs, together with the
radial projections to the unit sphere of vertices in U whose radial projection lies in
the interior of the region.

Remark 20.17. The system of arcs and vertices associated with a standard re-
gion in a contravening example must be a polygon, or one of the configurations of
Figure 20.1 (see Lemma 20.1).

Remark 20.18. Observe that one case of Figure 20.1 is bounded by a triangle and
a pentagon, and that the others are bounded by a polygon. Replacing the triangle-
pentagon arrangement with the bounding pentagon and replacing the others with the
bounding polygon, we obtain a partition of the sphere into simple polygons. Each
of these polygons is a single standard region, except in the triangle-pentagon case
(Figure 20.3), which is a union of two standard regions (a triangle and an eight-
sided region).

Figure 20.3. An aggregate forming a pentagon

Remark 20.19. To simplify further, if we have an arrangement of six standard
regions around a vertex formed from five triangles and one pentagon, we replace
it with the bounding octagon (or hexagon). See Figure 20.4. (It will be shown in
Lemma 21.11 that there is at most one such configuration in the standard decom-
position of a contravening decomposition star, so we will not worry here about how
to treat the case of two overlapping configurations of this sort.)
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Figure 20.4. Degree six aggregates

In summary, we have a plane graph that is approximately that given by the
standard regions of the decomposition star, but simplified to a bounding polygon
when one of the configurations of Remarks 20.18 and 20.19 occur. We refer to the
combination of standard regions into a single face of the graph as aggregation. We
call it the plane graph G = G(D) attached to a contravening decomposition star
D.

Proposition 21.1 will show the vertex set U is nonempty and that the graph
G(D) is nonempty.

When we refer to the plane graph in this manner, we mean the combinatorial
plane graph as opposed to the embedded metric graph on the unit sphere formed
from the system of geodesic arcs. Given a vertex v in G(D), there is a uniquely de-
termined vertex v(D) of U(D) whose radial projection to the unit sphere determines
v. We call v(D) the corner in U(D) over v.

By construction, the plane graphs associated with a decomposition star do
not have loops or multiple joins. In fact, the edges of G(D) are defined by triangles
whose sides vary between lengths 2 and 2t0. The angles of such a triangle are
strictly less than π. This implies that the edges of the metric graph on the unit
sphere always have arc-length strictly less than π. In particular, the endpoints are
never antipodal. A loop on the combinatorial graph corresponds to an edge on the
metric graph that is a closed geodesic. A multiple join on the combinatorial graph
corresponds on the metric graph to a pair of points joined by multiple minimal
geodesics, that is, a pair of antipodal points on the sphere. By the arc-length
constraints on edges in the metric graph, there are no loops or multiple joins in the
combinatorial graph G(D).

In Definition 18.3, a plane graph satisfying a certain restrictive set of prop-
erties is said to be tame. If a plane graph G(D) is associated with a contravening
decomposition star D, we call G(D) a contravening plane graph.

Theorem 20.20. Let D be a contravening decomposition star. Then its plane
graph G(D) is tame.

This theorem is one of the main steps in the proof of the Kepler conjecture. It
is advanced as one of the central claims in Section 3.3. Its proof occupies Sections 21
and 22. In Theorem 19.1, the tame graphs are classified up to isomorphism. As
a corollary, we have an explicit list of graphs that contains all contravening plane
graphs.
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Section 21

Contravention is tame

This section begins the proof of Theorem 20.20 (contravening graphs are tame). To
prove Theorem 20.20, it is enough to show that each defining property of tameness
is satisfied for every contravening graph. This is the substance of results in the
following sections. The proof continues through the end of Section 22. This section
verifies all the properties of tameness, except for the last one (weight assignments).

21.1 First Properties
This section verifies Properties 1, 2, 4, and 8 of tameness. First, we prove the
promised nondegeneracy result.

Proposition 21.1. The construction of Section 20.2 associates a (nonempty) plane
graph with at least two faces to every decomposition star D with σ(D) > 0.

Proof. First we show that decomposition stars with σ(D) > 0 have nonempty
vertex sets U . (Recall that U is the set of vertices of distance at most 2t0 from the
center). The vertices of U are used in Sections 4 and 5 to create all of the structural
features of the decomposition star: quasi-regular tetrahedra, quarters, and so forth.
If U is empty, the V -cell is a solid containing the ball B(t0) of radius t0, and σ(D)
satisfies

σ(D) = vor(D)
= −4δoctvol(VC(D)) + 4π/3
< −4δoctvol(B(t0)) + 4π/3 < 0.

By hypothesis, σ(D) > 0. So U is not empty.
Equation 20.5 shows that the function σ can be expressed as a sum of terms

σR indexed by the standard regions R. It is proved in Theorem 8.4 that σR ≤ 0,
unless R is a triangle. Thus, a decomposition star with positive σ(D) must have at
least one triangle. Its complement contains a second standard region. Even after
we form aggregates of distinct standard regions to form the simplified plane graph
(Remarks 20.18 and 20.19), there certainly remain at least two faces.

273
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274 Section 21. Contravention is tame

Proposition 21.2. The plane graph of a contravening decomposition star satisfies
Property 1 of tameness: The length of each face is at least 3 and at most 8.

Proof. By the construction of the graph, each face has at least three edges. The up-
per bound of eight edges is Lemma 20.1. Note that the aggregates of Remarks 20.19
and 20.18 have between five and eight edges.

Proposition 21.3. The plane graph of a contravening decomposition star satisfies
Property 2 of tameness: Every 3-circuit is a face or the opposite of a face.

Proof. The simplifications of the plane graph in Remarks 20.18 and 20.19 do
not produce any new 3-circuits. (See the accompanying figures.) The result is
Lemma 20.9.

Proposition 21.4. Contravening graphs satisfy Property 4 of tameness: The degree
of every vertex is at least two and at most six.

Proof. The statement that degrees are at least two trivially follows because each
vertex lies on at least one polygon, with two edges at that vertex.

If the type is (p, q), then the impossibility of a vertex of degree seven or more
is found in Lemma 20.8. If the type is (p, q, r), with r ≥ 1, then Lemma 20.14 shows
that the interior angles of the standard regions cannot sum to 2π:

6(0.8638) + 1.153 > 2π.

Proposition 21.5. Contravening graphs satisfy Property 8 of tameness: There are
never two vertices of type (4, 0) that are adjacent to each other.

Proof. This is proved in [Hal97a, 4.2].

21.2 Computer Calculations and Their Consequences
This section continues in the proof that all contravening plane graphs are tame.
The next few sections verify Properties 6, 5, and then 3 of tameness.

In this section, we rely on some inequalities that are not proved in this paper.
Recall from Section 8.3 that there is an archive of hundreds of inequalities that have
been proved by computer. This full archive appears in [Hal05b]. The justification of
these inequalities appears in the same archive. (The proofs of these inequalities were
executed by computer.) Each inequality carries a nine digit identifying number. To
invoke an inequality, we state it precisely, and give its identifying number, e.g.
calc-123456789.
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To use these inequalities systematically, we combine inequalities into linear
programs and solve the linear programs on computer. At first, our use of linear
programs will be light, but our reliance will become progressively strong as the
argument develops.

To start out, we will make use of several calculations132 that give lower bounds
on τR(D) when R is a triangle or a quadrilateral. To obtain lower bounds through
linear programming, we take a linear relaxation. Specifically, we introduce a linear
variable for each function τR and a linear variable for each interior angle αR. We
substitute these linear variables for the nonlinear functions τR(D) and nonlinear
interior angle function into the given inequalities. Under these substitutions, the
inequalities become linear. Given p triangles and q quadrilaterals at a vertex, we
have the linear program to minimize the sum of the (linear variables associated
with) τR(D) subject to the constraint that the (linear variables associated with
the) angles at the vertex sum to at most d. Linear programming yields133 a lower
bound τLP(p, q, d) to this minimization problem. This gives a lower bound to the
corresponding constrained sum of nonlinear functions τR.

Similarly, another group of inequalities134 yields upper bounds σLP(p, q, d) on
the sum of p + q functions σR, with p standard regions R that are triangular, and
another q that are quadrilateral. These linear programs find their first application
in the proof of the following proposition.

21.3 Linear Programs
To continue with the proof that contravening plane graphs are tame, we need to
introduce more notation and methods.

If F is a face of G(D), let

σF (D) =
∑

σR(D),

where the sum runs over the set of standard regions associated with F . This sum
reduces to a single term unless F is an aggregate in the sense of Remarks 20.19 and
20.18.

Lemma 21.6. The plane graph of a contravening decomposition star satisfies Prop-
erty 6 of tameness: ∑

F

c(len(F )) ≥ 8.

Proof. We will show that

c(len(F )) pt ≥ σF (D). (21.1)
132The sequence of five inequalities starting with calc-927432550, Lemma 20.5, and for quads

calc-310151857, calc-655029773, calc-73283761, calc-15141595, calc-574391221, calc-
396281725
133Although they are closely related, the function τLP of three arguments introduced here is

distinct from the function of two variables of the same name that is introduced in Section 20.1.
134calc-539256862, calc-864218323, calc-776305271, and for quads calc-310151857, calc-

655029773, calc-73283761, calc-15141595, calc-574391221, calc-396281725
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Assuming this, the result follows for contravening stars D:
∑

F c(len(F )) pt ≥ ∑
F σF (D)

= σ(D) ≥ 8 pt.

We consider three cases for Inequality 21.1. In the first case, assume that the
face F corresponds to exactly one standard region in the decomposition star. In
this case, Inequality 21.1 follows directly from the bounds of Lemma 20.2:

σF (D) ≤ sn ≤ c(n) pt.

In the second case, assume the context of a pentagon F formed in Remark 20.18.
Then, again by Theorem 20.2, we have

σF (D) ≤ s3 + s8 ≤ (c(3) + c(8)) pt ≤ c(5) pt.

(Just examine the constants c(k).)
In the third case, we consider the situation of Remark 20.19. The six standard

regions give
σF (D) ≤ s5 + σLP(5, 0, 2π − 1.153) < c(8) pt.

The constant 1.153 comes from Lemma 20.14.

Proposition 21.7. Let F be a face of a contravening plane graph G(D). Then

τF (D) ≥ d(len(F ))pt.

Proof. Similar.

Lemma 21.8. If v is a vertex of an exceptional standard region, and if there are
six standard regions meeting at v, then the exceptional region is a pentagonal region
and the other five standard regions are triangular.

Proof. There are several cases according to the number k of triangular regions at
the vertex.

(k ≤ 2) If there are at least four non-triangular regions at the vertex, then
the sum of interior angles around the vertex is at least 4(1.153) + 2(0.8638) > 2π,
which is impossible. (See Lemma 20.14.)

(k = 3) If there are three non-triangular regions at the vertex, then τ(D) is
at least 2t4 + t5 + τLP(3, 0, 2π − 3(1.153)) > (4πζ − 8) pt.

(k = 4) If there are two exceptional regions at the vertex, then τ(D) is at
least 2t5 + τLP(4, 0, 2π − 2(1.153)) > (4πζ − 8) pt.

If there are two non-triangular regions at the vertex, then τ(D) is at least
t5 + τLP(4, 1, 2π − 1.153) > (4πζ − 8) pt.

(k = 5) We are left with the case of five triangular regions and one exceptional
region.
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When there is an exceptional standard region at a vertex of degree six, we
claim that the exceptional region must be a pentagon. If the region is a heptagon
or more, then τ(D) is at least t7 + τLP(5, 0, 2π − 1.153) > (4πζ − 8) pt.

If the standard region is a hexagon, then τ(D) is at least t6 + τLP(5, 0, 2π −
1.153) > t9. Also, s6 +σLP(5, 0, 2π−1.153) < s9. The aggregate of the six standard
regions is 9-sided. Lemma 20.3 gives the bound of 8 pt.

Lemma 21.9. Consider the standard regions of a contravening star D.

1. If a vertex of a pentagonal standard region has degree six, then the aggregate
F of the six faces satisfies

σF (D) < s8,
τF (D) > t8.

2. An exceptional standard region has at most two vertices of degree six. If there
are two, then they are nonadjacent vertices on a pentagon, as shown in Figure
21.1.

Figure 21.1. Non-adjacent vertices of degree six on a pentagon

Proof. We begin with the first part of the lemma. The sum τF (D) over these six
standard regions is at least

t5 + τLP(5, 0, 2π − 1.153) > t8.

Similarly,
s5 + σLP(5, 0, 2π − 1.153) < s8.

We note that there can be at most one exceptional region with a vertex of degree
six. Indeed, if there are two, then they must both be vertices of the same pentagon:

t8 + t5 > (4πζ − 8) pt.



“fullkepler”
2005/11/14
page 278

i

i

i

i

i

i

i

i

278 Section 21. Contravention is tame

Such a second vertex on the octagonal aggregate leads to one of the following
constants greater than (4πζ − 8) pt. These same constants show that such a second
vertex on a hexagonal aggregate must share two triangular faces with the first vertex
of degree six.

t8 +τLP(4, 0, 2π − 1.32− 0.8638), or
t8 +1.47 pt + τLP(4, 0, 2π − 1.153− 0.8638), or
t8 +τLP(5, 0, 2π − 1.153).

(The relevant constants are found at Lemma 20.13 and Lemma 20.14.)

21.4 A Non-contravening 4-circuit
This subsection rules out the existence of a particular 4-circuit on a contravening
plane graph. The interior of the circuit consists of two faces: a triangle and a
pentagon. The circuit and its enclosed vertex are show in Figure 20.2 with vertices
marked p1, . . . , p5. The vertex p1 is the enclosed vertex, the triangle is (p1, p2, p5)
and the pentagon is (p1, . . . , p5). Let v1, . . . , v4, v5 be the corresponding vertices of
U(D).

The diagonals {v5, v3} and {v2, v4} have length at least 2
√

2 by Lemma 4.19.
If an interior angle of the quadrilateral is less than 1.32, then by Lemma 20.16,
|v1 − v3| ≤

√
8. Thus, we assume in the following lemma, that all interior angles of

the quadrilateral aggregate are at least 1.32.

Lemma 21.10. A decomposition star that contains this configuration does not
contravene.

Proof. Let P denote the quadrilateral aggregate of these two standard regions.
By Lemma 20.12, we have τP (D) ≥ 11.16 pt. There are no other exceptional faces,
because 11.16 pt + t5 > (4πζ − 8) pt. Every vertex not on P has type (5, 0), by
Lemma 20.6. In particular, there are no quadrilateral regions. The interior angles
of P are at least 1.32. There are at most four triangles at every vertex of P , because

11.16 pt + τLP(5, 0, 2π − 1.32) > (4πζ − 8) pt.

There are at least three triangles at every vertex of P , otherwise we contradict
Lemma 20.9 or Lemma 20.11.

The only triangulation with these properties is obtained by removing one edge
from the icosahedron (Exercise). This implies that there are two opposite corners of
P each having four quasi-regular tetrahedra. Since the diagonals of P have lengths
greater than 2

√
2, the results of calc-325738864 show that the union F of these

eight quasi-regular tetrahedra satisfies

τF (D) ≥ 2(1.5) pt.
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There are two additional vertices of type (5, 0) whose tetrahedra are distinct from
these eight quasi-regular tetrahedra. They give an additional 2(0.55) pt. Now
(11.16 + 2(1.5) + 2(0.55)) pt > (4πζ − 8) pt by Lemma 20.7. The result follows.

Lemma 21.11. A contravening plane graph satisfies Property 5 of tameness: If a
vertex is contained in an exceptional face, then the degree of the vertex is at most
five.

Proof. An exceptional standard region with a vertex of degree six must be pen-
tagonal by Lemma 21.9. If that pentagonal region has two or more such vertices,
then by the same lemma, it must be the arrangement shown in Figure 21.1. This
arrangement does not appear on a contravening graph by Lemma 21.10.

Remark 21.12. We have now fully justified the claim made in Remark 20.19:
there is at most one vertex on six standard regions, and it is part of an aggregate
in such a way that it does not appear as the vertex of G(D).

21.5 Possible 4-circuits
Every 4-circuit divides a plane graph into two aggregates of faces that we may call
the interior and exterior. We call vertices of the faces in the aggregate that do not
lie on the 4-cycle enclosed vertices. Thus, every vertex lies in the 4-cycle, is enclosed
over the interior, or is enclosed over the exterior.

Lemma 20.11 asserts that either the interior or the exterior has at most one
enclosed vertex. When choosing which aggregate is to be called the interior, we
may make our choice so that the interior has area at most 2π, and hence contains
at most one vertex. With this choice, we have the following proposition.

Proposition 21.13. Let D be a contravening plane graph. A 4-circuit surrounds
one of the aggregates of faces shown in Property 3 of tameness.

Proof. If there are no enclosed vertices, then the only possibilities are for it to be
a single quadrilateral face or a pair of adjacent triangles.

Assume there is one enclosed vertex v. If v is connected to three or four
vertices of the quadrilateral, then that possibility is listed as part of the conclusion.

If v is connected to two opposite vertices in the 4-cycle, then the vertex v
has type (0, 2) and the bounds of Lemma 20.6 show that the graph cannot be
contravening.

If v is connected to two adjacent vertices in the 4-cycle, then we appeal to
Lemma 21.10 to conclude that the graph does not contravene.

If v is connected to at most one vertex, then we appeal to Lemma 20.10. This
completes the proof.
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Section 22

Weight Assignments

The purpose of this section is to prove the existence of a good admissible weight
assignment for contravening plane graphs. This will complete the proof that all
contravening graphs are tame.

Theorem 22.1. Every contravening plane graph has an admissible weight assign-
ment of total weight less than tgt = 14.8.

Given a contravening decomposition star D, we define a weight assignment w
by

F 7→ w(F ) = τF (D)/pt.

Since D contravenes,

∑
F w(F ) =

∑
F τF (D)/pt

= τ(D)/pt ≤ (4πζ − 8) pt/pt
< tgt = 14.8.

The challenge of the theorem will be to prove that w, when defined by this formula,
is admissible.

22.1 Admissibility
The next three lemmas establish that this definition of w(F ) for contravening plane
graphs satisfies the first three defining properties of an admissible weight assign-
ment.

Lemma 22.2. Let F be a face of length n in a contravening plane graph. Define
w(F ) as above. Then w(F ) ≥ d(n).

Proof. This is Proposition 21.7.
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Lemma 22.3. Let v be a vertex of type (p, q) in a contravening plane graph. Define
w(F ) as above. Then ∑

v∈F

w(F ) ≥ b(p, q).

Proof. This is Lemma 20.6.

Lemma 22.4. Let V be any set of vertices of type (5, 0) in a contravening plane
graph. Define w(F ) as above. If the cardinality of V is k ≤ 4, then

∑

V ∩F 6=∅
w(F ) ≥ 0.55k.

Proof. This is Lemma 20.7.

The following proposition establishes the final property that w(F ) must satisfy
to make it admissible. Separated sets are defined in Section 18.2.

Proposition 22.5. Let V be any separated set of vertices in a contravening plane
graph. Define w(F ) as above. Then

∑

V ∩F 6=∅
(w(F )− d(len(F ))) ≥

∑

v∈V

a(tri(v)),

where tri(v) denotes the number of triangles containing the vertex v.

The proof will occupy the rest of this section. Since the degree of each vertex
is five, and there is at least one face that is not a triangle at the vertex, the only
constants tri(v) that arise are

tri(v) ∈ {0, . . . , 4}
We will prove that in a contravening plane graph the Properties (1) and (4) of a
separated set are incompatible with the condition tri(v) ≤ 2, for some v ∈ V . This
will allows us to assume that

tri(v) ∈ {3, 4},
for all v ∈ V . These cases will be treated in Section 22.3.

First we prove the inequality when there are no aggregates involved. After-
wards, we show that the conclusions can be extended to aggregate faces as well.

22.2 Proof that tri(v) > 2

In this subsection D is a contravening decomposition star with associated graph
G(D). Let V be a separated set of vertices in G(D). Let v be a vertex in V such
that none of its faces is an aggregate in the sense of Remarks 20.18 and 20.19.
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Lemma 22.6. Under these conditions, for every v ∈ V , tri(v) > 1.

Proof. If there are p triangles, q quadrilaterals, and r other faces, then

τ(D) ≥ ∑
v∈R τR(D)

≥ r t5 + τLP(p, q, 2π − r(1.153)).

If there is a vertex w that is not on any of the faces containing v, then the sum of
τF (D) over the faces containing w yield an additional 0.55 pt by Lemma 20.7. We
calculate these constants for each (p, q, r) and find that the bound is always greater
than (4πζ − 8) pt. This implies that D cannot be contravening.

(p, q, r) lower bound justification

(0, 5, 0) 22.27 pt Lemma 20.6
(0, q, r ≥ 1) t5 + 4t4 ≈ 14.41 pt
(1, 4, 0) 17.62 pt Lemma 20.6
(1, 3, 1) t5 + 12.58 pt (τLP)
(1, 2, 2) 2t5 + 7.53 pt (τLP)
(1, q, r ≥ 3) 3t5 + t4

Lemma 22.7. Under these same conditions, for every v ∈ V , tri(v) > 2.

Proof. Assume that tri(v) = 2. We will show that this implies that D does not
contravene. Let e be the number of exceptional faces at v. We have e + tri(v) ≤ 5.

The constants 0.55 pt and 0.48 pt used throughout the proof come from Lemma 20.7.
The constants tn comes from Lemma 20.2.

(e = 3): First, assume that there are three exceptional faces around vertex
v. They must all be pentagons (2t5 + t6 > (4πζ − 8) pt). The aggregate of the
five faces is an m-gon (some m ≤ 11). If there is a vertex not on this aggregate,
use 3t5 + 0.55 pt > (4πζ − 8) pt. So there are at most nine triangles away from the
aggregate, and

σ(D) ≤ 9 pt + (3s5 + 2 pt) < 8 pt.

The argument is the same if there is a quad, a pentagon, or a hexagon (t4+t6 =
2t5, s4 + s6 = 2s5).

(e = 2): Assume next that there are two pentagons and a quadrilateral around
the vertex. The aggregate of the two pentagons, quadrilateral, and two triangles
is an m-gon (some m ≤ 10). There must be a vertex not on the aggregate of five
faces, for otherwise we have

σ(D) ≤ 8 pt + (2s5 + 2 pt) < 8 pt.

The interior angle of one of the pentagons is at most 1.32. For otherwise,
τLP(2, 1, 2π − 2(1.32)) + 2t5 + 0.55 pt > (4πζ − 8) pt.
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Lemma 20.13 shows that any pentagon R with an interior angle less than 1.32
yields τR(D) ≥ t5 + (1.47 pt). If both pentagons have an interior angle < 1.32
the lemma follows easily from this calculation: 2(t5 + 1.47 pt) pt + τLP(2, 1, 2π −
2(1.153)) + 0.55 pt > (4πζ − 8) pt. If there is one pentagon with angle > 1.32, we
then have t5 + (1.47 pt) + τLP(2, 1, 2π − 1.153− 1.32) + t5 + 0.55 pt > (4πζ − 8) pt.

(e = 1): Assume finally that there is one exceptional face at the vertex. If it is a
hexagon (or more), we are done: t6+τLP(2, 2, 2π−1.153) > (4πζ−8) pt. Assume it is
a pentagon. The aggregate of the five faces at the vertex is bounded by an m-circuit
(some m ≤ 9). If there are no more than nine quasi-regular tetrahedra outside the
aggregate, then σ(D) is at most (9− 2(0.48)) pt + s5 + σLP(2, 2, 2π − 1.153) < 8 pt
(Lemma 20.7). So we may assume that there are at least three vertices not on the
aggregate.

If the interior angle of the pentagon is greater than 1.32,

τLP(2, 2, 2π − 1.32) + 3(0.55) pt + t5 > (4πζ − 8) pt;

if it is less than 1.32, by Lemma 20.13

τLP(2, 2, 2π − 1.153) + 3(0.55)pt + 1.47 pt + t5 > (4πζ − 8) pt.

Lemma 22.8. The bound tri(v) > 2 holds if v is a vertex of an aggregate face.

Proof. The exceptional region enters into the preceding two proofs in a purely
formal way. Pentagons enter through the bounds

t5, s5, 1.47 pt

and angles 1.153, 1.32. Hexagons enter through the bounds

t6, s6

and so forth. These bounds hold for the aggregate faces. Hence the proofs hold for
aggregates as well.

22.3 Bounds when tri(v) ∈ {3, 4}
In this subsection D is a contravening decomposition star with associated graph
G(D). Let V be a separated set of vertices. For every vertex v in V , we assume
that none of its faces is an aggregate in the sense of Remarks 20.18 and 20.19. We
assume that there are three or four triangles containing v, for every v ∈ V .

To prove the Inequality 4 in the definition of admissible weight assignments, we
will rely on the following reductions. Define an equivalence relation on exceptional
faces by F ∼ F ′ if there is a sequence F0 = F, . . . , Fr = F ′ of exceptional faces such
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that consecutive faces share a vertex of type (3, 0, 2). (That is, tri(v) = 3.) Let F
be an equivalence class of faces.

Lemma 22.9. Let V be a separated set of vertices. For every equivalence class
of exceptional faces F , let V (F) be the subset of V whose vertices lie in the union
of faces of F . Suppose that for every equivalence class F , the Inequality 4 (in the
definition of admissible weight assignments) holds for V (F). Then the inequality
holds for V .

Proof. By construction, each vertex in V lies in some F , for an exceptional face.
Moreover, the separating property of V insures that the triangles and quadrilaterals
in the inequality are associated with a well-defined F . Thus, the inequality for V
is a sum of the inequalities for each V (F).

Lemma 22.10. Let v be a vertex in a separated set V at which there are p triangles,
q quadrilaterals, and r other faces. Suppose that for some p′ ≤ p and q′ ≤ q, we
have

τLP(p′, q′, α) > (p′d(3) + q′d(4) + a(p)) pt

for some upper bound α on the angle occupied by p′ triangles and q′ quadrilaterals
at v. Suppose further that Inequality 4 (in the definition of admissible weight as-
signments) holds for the separated set V ′ = V \ {v}. Then the inequality holds for
V .

Proof. Let F1, . . . , Fm, m = p′ + q′, be faces corresponding to the triangles and
quadrilaterals in the lemma. The hypotheses of the lemma imply that

m∑
1

(wFi(D)− d(len(Fi))) > a(p).

Clearly, the inequality for V is the sum of this inequality, the inequality for V ′, and
d(n) ≥ 0.

Recall that the central vertex of a flat quarter is defined to be the one that
does not lie on the triangle formed by the origin and the diagonal.

Lemma 22.11. Let R be an exceptional standard region. Let V be a set of vertices
of R. If v ∈ V , let pv be the number of triangular regions at v and let qv be the
number of quadrilateral regions at v. Assume that V has the following properties:

1. The set V is separated.

2. If v ∈ V , then there are five standard regions at v.

3. If v ∈ V , then the corner over v is a central vertex of a flat quarter in the
cone over R.
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4. If v ∈ V , then pv ≥ 3. That is, at least three of the five standard regions at v
are triangular.

5. If R′ 6= R is an exceptional region at v, and if R has interior angle at least
1.32 at v, then R′ also has interior angle at least 1.32 at v.

Let F be the union of {R} with the set of triangular and quadrilateral regions that
have a vertex at some v ∈ V . Then

τF (D) >
∑

v∈V

(pvd(3) + qvd(4) + a(pv)) pt.

Proof. If (pv, qv) = (3, 1) and the internal angle of R at v is at least 1.32, then we
use

τLP(3, 1, 2π − 1.32) > 1.4 pt + t4.

In this case, the inequality of the lemma is a consequence of this inequality and
the inequality for V \ {v}. Thus, we may assume without loss of generality that if
(pv, qv) = (3, 1), then the internal angle of R at v is at most 1.32. The conclusion
now follows from Lemma 14.6.

Lemma 22.12. Property 4 of admissibility holds. That is, let V be any separated
set of vertices. Then

∑

F : V ∩F 6=∅
(w(F )− d(len(F ))) ≥

∑

v∈V

a(tri(v)).

Proof. Let V be a separated set of vertices. The results of Section 22.2 reduce the
lemma to the case where tri(v) ∈ {3, 4} for every vertex v ∈ V .

We will say that there is a flat quarter centered at v, if the corner v′ over v
is the central vertex of a flat quarter and that flat quarter lies in the cone over an
exceptional region.

One case is easy to deal with. Assume that there are three triangles, a quadri-
lateral, and an exceptional face at the vertex. Assume the interior angle on the
exceptional region is least 1.32; then

τLP(3, 1, 2π − 1.32) > 1.4 pt + t4. (22.1)

This gives the bound in the sense of Lemma 22.10 at such a vertex. For the rest of
the proof, assume that the interior angle on the exceptional region is less than 1.32
at vertices of type (p, q, r) = (3, 1, 1). This implies in particular by Lemma 20.16
that there is a flat quarter centered at each vertex of this type.

Let v be vertex with no flat quarter centered at v. By Lemma 20.16, the
interior angles of the exceptional regions at v are at least 1.32. It follows135 that

τLP(pv, qv, α) > (pvd(3) + qvd(4) + a(pv)) pt. (22.2)
135calc-551665569, calc-824762926, and calc-325738864
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Thus, by Lemma 22.10, we reduce to the case where for each v ∈ V , there is a flat
quarter centered at v. Assume that V has this property.

Pick a function f from the set V to the set of exceptional standard regions as
follows. If there is only one exceptional region at v, then let f(v) be that exceptional
region. If there are two exceptional regions at v, then let f(v) be one of these two
exceptional regions. Pick it to be an exceptional region with interior angle at most
1.32 if one of the two exceptional regions has this property. Pick it to have a flat
quarter centered at v. Note that by Lemma 20.16, if the exceptional region has
interior angle at most 1.32, then f(v) will have a flat quarter centered at v.

For each exceptional region R, let

VR = {v ∈ V : f(v) = R}.

By Lemma 22.11, the Property 4 of admissibility is satisfied for each VR. Since this
property is additive in VR and since V is the disjoint union of the sets VR, the proof
is complete.

22.4 Weight Assignments for Aggregates

Lemma 22.13. Consider a separated set of vertices V on an aggregated face F as
in Remark 20.18. Then Inequality 4 holds (in the definition of admissible weight
assignments): ∑

V ∩F 6=∅
(w(F )− d(len(F ))) ≥

∑

v∈V

a(tri(v)).

Proof. We may assume that tri(v) ∈ {3, 4}.
First consider the aggregate of Remark 20.18 of a triangle and eight-sided re-

gion, with pentagonal hull F . There is no other exceptional region in a contravening
decomposition star with this aggregate:

t8 + t5 > (4πζ − 8) pt.

A separated set of vertices V on F has cardinality at most 2. This gives the desired
bound

t8 > t5 + 2(1.5) pt.

Next, consider the aggregate of a hexagonal hull with an enclosed vertex.
Again, there is no other exceptional face. If there are at most k ≤ 2 vertices in a
separated set, then the result follows from

t8 > t6 + k(1.5) pt.

There are at most three vertices in V on a hexagon, by the non-adjacency conditions
defining V . A vertex v can be removed from V if it is not the central vertex of a
flat quarter (Lemma 22.10 and Inequalities 22.1 and 22.2). If there is an enclosed
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vertex w, it is impossible for there to be three nonadjacent vertices, each the central
vertex of a flat quarter:

E(2, 2, 2,
√

8,
√

8,
√

8, 2t0, 2t0, 2) > 2t0.

(E is as defined in Definition 4.14.)
Finally consider the aggregate of a pentagonal hull with an enclosed vertex.

There are at most k ≤ 2 vertices in a separated set in F . There is no other
exceptional region:

t7 + t5 > (4πζ − 8) pt.

The result follows from
t7 > t5 + 2(1.5) pt.

Lemma 22.14. Consider a separated set of vertices V on an aggregate face of a
contravening plane graph as in Remark 20.19. Inequality 4 holds in the definition
of admissible weight assignments.

Proof. There is at most one exceptional face in the plane graph:

t8 + t5 > (4πζ − 8) pt.

Assume first that an aggregate face is an octagon (Figure 20.4). At each of the
vertices of the face that lies on a triangular standard region in the aggregate, we
can remove the vertex from V using Lemma 22.10 and the estimate

τLP(4, 0, 2π − 2(0.8638)) > 1.5 pt.

This leaves at most one vertex in V , and it lies on a vertex of F which is “not
aggregated,” so that there are five standard regions of the associated decomposition
star at that vertex, and one of those regions is pentagonal. The value a(4) = 1.5 pt
can be estimated at this vertex in the same way it is done for a non-aggregated case
in Section 22.3.

Now consider the case of an aggregate face that is a hexagon (Figure 20.4).
The argument is the same: we reduce to V containing a single vertex, and argue
that this vertex can be treated as in Section 22.3. (Alternatively, use the fact
that the pentagon-triangle combination in this aggregate has been eliminated by
Lemma 21.10.)

The proof that contravening plane graphs are tame is complete.
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Section 23

Linear Program Estimates

We have completed a major portion of the proof of the Kepler conjecture by proving
that every contravening plane graph is tame.

The final portion of the proof of the Kepler conjecture consists in showing
that tame graphs are not contravening, except for the isomorphism class of graphs
isomorphic to Gfcc and Ghcp associated with the face-centered cubic and hexagonal
close packings.

This part of the proof treats all contravening tame graphs except for three
cases Gfcc, Gpent, and Ghcp. The two cases Gfcc and Ghcp are treated in Theo-
rem 8.1, and the case Gpent is treated in Paper V.

The primary tool that will be used is linear programming. The linear pro-
grams are obtained as relaxations of the original nonlinear optimization problem
of maximizing σ(D) over all decomposition stars whose associated graph is a given
tame graph G. The upper bounds obtained through relaxation are upper bounds
to the nonlinear problem.

To eliminate a tame graph, we must show that it is not contravening. By def-
inition, this means we must show that σ(D) < 8 pt. When a single linear program
does not yield an upper bound under 8 pt, we branch into a sequence of linear pro-
grams that collectively imply the upper bound of 8 pt. This will call for a sequence
of increasingly complex linear programs.

For each of the tame plane graphs produced in Theorem 19.1, we define a
linear programming problem whose solution dominates the value of σ(D) on the set
of decomposition stars associated with the plane graph. A description of the linear
programs is presented in this section.

Theorem 23.1. If the plane graph of a contravening decomposition star is isomor-
phic to one in the list [Hal05b], then it is isomorphic to one of the following three
plane graphs: the plane graph of the pentahedral prism, that of the hexagonal-close
packing, or that of the face-centered cubic packing.

This theorem is one of the central claims described in Section 3.3 that lead to

289
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the proof of the Kepler conjecture.

23.1 Relaxation
(NLP) Let f : P → R be a function on a nonempty set P . Consider the nonlinear
maximization problem

max
p∈P

f(p).

(LP): Consider a linear programming problem

max c · x

such that Ax ≤ b, where A is a matrix, b, c are vectors of real constants and x is a
vector of variables x = (x1, . . . , xn). We write the linear programming problem as

max(c · x : Ax ≤ b).

An interpretation I of a linear programming problem (LP) is a nonempty set
|I|, together with an assignment xi 7→ xI

i of functions xI
i : |I| → R to variables

xi. We say the constraints Ax ≤ b of the linear program are satisfied under the
interpretation I if for all p ∈ |I|,

AxI(p) ≤ b.

The interpretation I is said to be a relaxation of the nonlinear program (NLP), if
the following three conditions hold.

1. P = |I|.
2. The constraints are satisfied under the interpretation.

3. f(p) ≤ c · xI(p), for all p ∈ |I|.

Lemma 23.2. Let (LP) be a linear program with relaxation I to (NLP). Then
(LP) has a feasible solution. Moreover, if (LP) is bounded above by a constant M ,
then M is an upper bound on the function f : |I| → R.

Proof. A feasible solution is xi = xI
i (p), for any p ∈ |I|. The rest is clear.

Remark 23.3. In general, it is to be expected that the interpretations AxI ≤ b
will be nonlinear inequalities on the domain P . In our situation, satisfaction of the
constraints will be proved by interval arithmetic. Thus, the construction of an upper
bound to (NLP) breaks into two tasks: to solve the linear programs and to prove the
nonlinear inequalities required to satisfy the constraints.

There are many nonlinear inequalities entering into our interpretation. These
have been proved by interval arithmetic on computer and are listed at [Hal05b].
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Remark 23.4. There is a second method of establishing the satisfaction of inequal-
ities under an interpretation. Suppose we wish to show that the inequality e · x ≤ b′

is satisfied under the interpretation I. Suppose that we have already established that
a system of inequalities Ax ≤ b is satisfied under the interpretation I. We solve
the linear programming problem max(e · x : Ax ≤ b). If this maximum is at most
b′, then the inequality e ·x ≤ b′ is satisfied under the interpretation I. We will refer
to e · x ≤ b′ as an LP-derived inequality (with respect to the system Ax ≤ b).

23.2 The Linear Programs
Let G be a tame plane graph. Let DS(G) be the space of all decomposition stars
whose associated plane graph is isomorphic to G.

Theorem 23.5. For every tame plane graph G other than Gfcc, Ghcp, and Gpent,
there exists a finite sequence of linear programs with the following properties.

1. Every linear program has an admissible solution and its solution is strictly
less than 8 pt.

2. For every linear program in this sequence, there is an interpretation I of the
linear program that is a relaxation of the nonlinear optimization problem

σ : |I| → R,

where |I| is a subset of DS(G).

3. The union of the subsets |I|, as we run over the sequence of linear programs,
is DS(G).

The proof is constructive. For every tame plane graph G a sequence of lin-
ear programs is generated by computer and solved. The optimal solutions are all
bounded above by 8 pt. It will be clear from construction of the sequence that the
union of the sets |I| exhausts DS(G). We estimate that nearly 105 linear programs
are involved in the construction. The rest of this paper outlines the construction of
some of these linear programs.

Remark 23.6. The paper [Hal03, Section 3.1.1] shows how the linear programs
that arise in connection with the Kepler conjecture can be formulated in such a way
that they always have a feasible solution and so that the optimal solution is bounded.
We assume that all our linear programs have been constructed in this way.

Corollary 23.7. If a tame graph G is not isomorphic to Gfcc, Ghcp, or Gpent,
then it is not contravening.

Proof. This follows immediately from Theorem 23.5 and Lemma 23.2.
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23.3 Basic Linear Programs
Let G be a tame plane graph. Specifically, G is one of the several thousands of
graphs that appear in the explicit classification [Hal05b].

To describe the basic linear program, we need the following indexing sets. Let
VERTEX be the set of all vertices in G. Let FACE be the set of all faces in G. (Recall
that by construction each face F of the graph carries an orientation.) Let ANGLE be
the set of all angles in G, defined as the set of pairs (v, F ), where the vertex v lies
in the face F . Let DIRECTED be the set of directed edges. It consists of all ordered
pairs (v, s(v, F )), where s(v, F ) denotes the successor of the vertex v in the oriented
face F . Let TRIANGLES be the subset of FACE consisting of those faces of length 3.
Let UNDIRECTED be the set of undirected edges. It consists of all unordered pairs
{v, s(v, F )}, for v ∈ F .

We introduce variables indexed by these sets. Following AMPL notation, we
write for instance y{VERTEX} to declare a collection of variables y[v] indexed by
vertices v in VERTEX. With this in mind, we declare the variables

α{ANGLE}, y{VERTEX}, e{UNDIRECTED},
σ{FACE}, τ{FACE}, sol{FACE}.

We obtain an interpretation I on the compact space DS(G). First, we define
an interpretation at the level of indexing sets. A decomposition star determines the
set U(D) of vertices of height at most 2t0 from the origin of D. Each decomposition
star D ∈ DS(G) determines a (metric) graph with geodesic edges on the surface of
the unit sphere, which is isomorphic to G as a (combinatorial) plane graph. There
is a map from the vertices of G to U(D) given by v 7→ vI , if the radial projection
of vI to the unit sphere at the origin corresponds to v under this isomorphism.
Similarly, each face F of G corresponds to a set F I of standard regions. Each edge
e of G corresponds to a geodesic edge eI on the unit sphere.

Now we give an interpretation I to the linear-programming variables at a
decomposition star D. As usual, we add a superscript I to a variable to indicate
its interpretation. Let α[v, F ]I be the sum of the interior angles at vI of the metric
graph in the standard regions F I . Let y[v]I be the length |vI | of the vertex vI ∈
U(D) corresponding to v. Let e[v, w]I be the length |vI − wI | of the edge between
vI and wI ∈ U(D). Let

σ[F ]I = σF (D),
sol[F ]I = sol(F I),
τ [F ]I = τF (D).

The objective function for the optimization problems is

max :
∑

F∈FACE
σ[F ].

Its interpretation under I is the score σ(D).
We can write a number of linear inequalities that will be satisfied under our
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interpretation. For example, we have the bounds

0 ≤ y[v] ≤ 2t0, v ∈ VERTEX,
0 ≤ e[v, w] ≤ 2t0, (v, w) ∈ EDGE,
0 ≤ α[v, F ] ≤ 2π, (v, F ) ∈ ANGLE,
0 ≤ sol[F ] ≤ 4π F,∈ FACE.

There are other linear relations that are suggested directly by the definitions or the
geometry. Here, v belongs to VERTEX.

τ [F ] = sol[F ]ζpt− σ[F ],
2π =

∑
F :v∈F α[v, F ],

sol[F ] =
∑

v∈F α[v, F ]− (len(F )− 2)π.

There are long lists of additional inequalities that come from interval arithmetic
verifications. Many are specifically designed to give relations between the variables.

σ[F ], τ [F ], α[v, F ],
sol[F ], y[v], e[v, w]

whenever F I is a single standard region having three sides. Similarly, other com-
puter calculations give inequalities for σ[F ] and related variables, when the length
of F is four. A complete list of inequalities that are used for triangular and quadri-
lateral faces is found in [Hal05b].

For exceptional faces, we have an admissible weight function w(F ). According
to definitions w(F ) = τ [F ]/pt, so that the inequalities for the weight function can
be expressed in terms of the linear program variables.

When the exceptional face is not an aggregate, then it also satisfies the in-
equalities of Lemma 20.2.

23.4 Error Analysis
The variables of the linear programming problem are the dihedral angles, the scores
of each of the standard clusters, and their edge lengths.

We subject these variables to a system of linear inequalities. First of all, the
dihedral angles around each vertex sum to 2π. The dihedral angles, solid angles,
and score are related by various linear inequalities as described in Section 23.3. The
solid-angle variables are linear functions of dihedral angles. We have

σ(D) = σS1(D) + · · ·+ σSp(D) + σR1(D) + · · ·+ σRq (D).

Forgetting the origin of the scores, solid angles, and dihedral angles as nonlinear
functions of the standard clusters and treating them as formal variables subject
only to the given linear inequalities, we obtain a linear programming bound on the
score.

Floating-point arithmetic was used freely in obtaining these bounds. The
linear programming package CPLEX was used (see www.cplex.com). However, the
results, once obtained, could be checked rigorously as follows.136

136The output from each linear program that has no exceptional regions has been double checked
with interval arithmetic. Predictably, the error bounds presented here were satisfactory. 1/2002
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We present an informal analysis of the floating-point errors. For each quasi-
regular tetrahedron Si we have a nonnegative variable xi = pt − σ(Si). For each
quad cluster Rk, we have a nonnegative variable xk = −σ(Rk). A bound on σ(D)
is p pt − ∑

i∈I xi, where p is the number of triangular standard regions, and I
indexes the faces of the plane graph. We give error bounds for a linear program
involving scores and dihedral angles. Similar estimates can be made if there are
edges representing edge lengths. Let the dihedral angles be xj , for j in some indexing
set J . Write the linear constraints as Ax ≤ b. We wish to maximize c · x subject
to these constraints, where ci = −1, for i ∈ I, and cj = 0, for j ∈ J . Let z be an
approximate solution to the inequalities zA ≥ c and z ≥ 0 obtained by numerical
methods. Replacing the negative entries of z by 0 we may assume that z ≥ 0 and
that zAi > ci − ε, for i ∈ I ∪ J , and some small error ε. If we obtain the numerical
bound p pt + z · b < 7.9999 pt, and if ε < 10−8, then σ(D) is less than 8 pt. In fact,
we note that (

z

1 + ε

)
Ai

is at least ci for i ∈ I (since ci = −1), and that it is greater than ci − ε/(1 + ε), for
i ∈ J (since ci = 0). Thus, if N ≤ 60 is the number of vertices, and p ≤ 2(N − 2) ≤
116 is the number of triangular faces,

σ(D) ≤ p pt + c · x ≤ p pt +
(

z
1+ε

)
Ax + ε

1+ε

∑
j∈J xj

≤ p pt + z·b
1+ε + ε

1+ε2πN

≤ [p pt + z · b + ε(p pt + 2πN)] /(1 + ε)
≤ [

7.9999 pt + 10−8(116 pt + 500)
]
/(1 + 10−8) < 8 pt.

In practice, we used 0.4429 < 0.79984 pt as our cutoff, and N ≤ 14 in the
interesting cases, so that much tighter error estimates are possible.
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Section 24

Elimination of Aggregates

The proof of the following theorem occupies the entire section. It eliminates all the
pathological cases that we have had to carry along until now.

Theorem 24.1. Let D be a contravening decomposition star, and let G be its tame
graph. Every face of G corresponds to exactly one standard region of D. No standard
region of D has any enclosed vertices from U(D). (That is, a decomposition star
with one of the aggregates shown in Figure 20.1 is not contravening.)

24.1 Triangle and Quad Branching
Section 25 will discuss branch and bound strategies. Branch and bound strategies
replace a single linear program with a series of linear program, when a single linear
program does not suffice. There is one case of branch and bound that we need
before Section 25. This is a branching on triangular and quadrilateral faces.

We divide triangular faces with corners v1, v2, v3 into two cases:

e[v1, v2] + e[v2, v3] + e[v3, v1] ≤ 6.25,
e[v1, v2] + e[v2, v3] + e[v3, v1] ≥ 6.25,

whenever sufficiently good bounds are not obtained as a single linear program. We
also divide quadrilateral faces into four cases: two flat quarters, two flat quarters
with diagonal running in the other direction, four upright quarters forming a quar-
tered octahedron, and the mixed case. (A mixed cases by definition is any case that
is not one of the other three.) In general, if there are r1 triangles and r2 quadri-
laterals, we obtain as many as 2r1+2r2 cases by breaking the various triangles and
quadrilaterals into subcases.

We break triangular faces and quadrilaterals into subcases, as needed in the
linear programs that follow, without further comment.
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296 Section 24. Elimination of Aggregates

24.2 A pentagonal hull with n = 8

The next few sections treat the nonpolygonal standard regions described in Remark
20.18. In this subsection, there is an aggregate of the octagonal region and a triangle
has a pentagonal hull. Let P denote this aggregate.

Lemma 24.2. Let G be a contravening plane graph with the aggregate of Re-
mark 20.18. Some vertex on the pentagonal face has type not equal to (3, 0, 1).

Proof. If every vertex on the pentagonal face has type (3, 0, 1), then at the vertex
of the pentagon meeting the aggregated triangle, the four triangles together with
the octagon give

t8 +
∑

(4)

τLP(4, 0, 2π − 2(1.153)) > (4πζ − 8) pt,

so that the graph does not contravene.

For a general contravening plane graph with this aggregate, we have bounds

σF (D) ≤ pt + s8,
τF (D) ≥ t8.

We add the inequalities τ [F ] > t8 and σ[F ] < pt+ s8 to the exceptional face. There
is no other exceptional face, because t8 + t5 > (4πζ − 8) pt. We run the linear
programs for all tame graphs with the property asserted by Lemma 24.2. Every
upper bound is less than 8 pt, so that there are no contravening decomposition stars
with this configuration.

24.3 n = 8, hexagonal hull
We treat the two cases from Remark 20.18 that have a hexagonal hull (Figure 20.1).
One can be described as a hexagonal region with an enclosed vertex that has height
at most 2t0 and distance at least 2t0 from each corner over the hexagon. The other
is described as a hexagonal region with an enclosed vertex of height at most 2t0,
but this time with distance less than 2t0 from one of the corners over the hexagon.

The argument for the case n = 8 with hexagonal hull is similar to the argument
of Section 24.2. Add the inequalities τ [R] > t8 and σ[R] < s8 for each hexagonal
region. Run the linear programs for all tame graphs, and check that these additional
inequalities yield linear programming bounds under 8 pt.

24.4 n = 7, pentagonal hull
We treat the two cases illustrated in Figure 20.1 that have a pentagonal hull. These
cases require more work. One can be described as a pentagon with an enclosed
vertex that has height at most 2t0 and distance at least 2t0 from each corner of the
pentagon. The other is described as a pentagon with an enclosed vertex of height
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24.4. n = 7, pentagonal hull 297

at most 2t0, but this time with distance less than 2t0 from one of the corners of the
pentagon.

In discussing various maps, we let vi be the corners of the regions, and we set
yi = |vi| and yij = |vi − vj |. The subscript F is dropped, when there is no great
danger of ambiguity.

Add the inequalities τ [F ] > t7, σ[F ] < s7 for the pentagonal face. There is
no other exceptional region, because t5 + t7 > (4πζ − 8) pt. With these changes, of
all the tame plane graphs with a pentagonal face and no other exceptional face, all
but one of the linear programs give a bound under 8 pt.

The plane graph G0 that remains is easy to describe. It is the plane graph
with eleven vertices, obtained by removing from an icosahedron a vertex and all
five edges that meet at that vertex.

We treat the case G0. Let v12 be the vertex enclosed over the pentagon. We let
v1, . . . , v5 be the five corners of U(D) over the pentagon. Break the pentagon into
five simplices along {0, v12}: Si = {0, v12, vi, vi+1}. We have LP-derived bounds (in
the sense of Remark 23.4) y[vi] ≤ 2.168, and α[vi, F ] ≤ 2.89, for i = 1, 2, 3, 4, 5. In
particular, the pentagonal region is convex, for every contravening star D ∈ DS(G0).

Further LP-derived inequalities are

σ[F ] > −0.2345 and τ [F ] < 0.644.

By using branch and bound arguments on the triangular faces, as described in
Section 24.1, we can improve the LP-derived inequality to

τ [F ] < 0.6079.

Another LP-derived inequality gives a bound on the perimeter:
∑

|vi − vi+1| ≤ 11.407.

Yet another LP-derived inequality states that if v1, v2, v3 are consecutive corners
over the pentagonal region, then

|v1 − v2|+ |v2 − v3| < 4.804.

Lemma 24.3. Assume that R is a pentagonal standard region with an enclosed
vertex v of height at most 2t0. Assume further that

• |vi| ≤ 2.168 for each of the five corners.

• Each interior angle of the pentagon is at most 2.89.

• If v1, v2, v3 are consecutive corners over the pentagonal region, then |v1 −
v2|+ |v2 − v3| < 4.804.

• ∑
5 |vi − vi+1| ≤ 11.407.

Then σR(D) < −0.2345 or τR(D) > 0.6079.
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298 Section 24. Elimination of Aggregates

Proof. This is Lemma 14.5.

Since the bound τR(D) > 0.6079 contradicts the LP-derived inequality τ [F ] <
0.6079, this case does not occur in a contravening graph.

24.5 Type (p, q, r) = (5, 0, 1)

We return briefly to the case of six standard regions around a vertex discussed
in Remark 20.19. In the plane graph they are aggregated into an octagon. We
take each of the remaining cases with an octagon, and replace the octagon with a
pentagon and six triangles around a new vertex. There are eight ways of doing this.
All eight ways in each of the cases gives an LP bound under 8 pt. This completes
this case.

The second aggregate shown in Figure 20.4 contains a pentagon-triangle com-
bination that was ruled out by Lemma 21.10.

24.6 Summary

Lemma 24.4. None of the aggregates of Remark 20.19 and Remark 20.18 appear
in a contravening star. In particular, all regions are bounded by simple polygons,
and each face of the graph G(D) corresponds to exactly one standard region.

Proof. The proof is the main result of this section.
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Section 25

Branch and Bound
Strategies

When a single linear program does not give sufficiently good bounds, we apply
branch and bound methods to improve the bound. By branching repeatedly, we are
able to show in every case that a given tame graph is not contravening.

By relying to a greater degree on results that appear in unpublished (but
publicly available) computer logs, this section is more technical than the others.
The purpose of the section is to give a sketch of the various ways that the vari-
ous decomposition stars are divided into cases according to a branch and bound
strategy.

The first branching strategy has already been described in Section 24.1. It
divides the decomposition stars with a given graph into subcases according to the
structural properties of triangular and quadrilateral standard regions.

We assume the results from the Section 24 that eliminate the most unpleasant
types of configurations.

25.1 Review of Internal Structures
For the past several sections, it has not been necessary to refer to the internal
structure of the standard clusters. This section is different. To describe the branch-
ing operations, it will be necessary to use details about the structure of standard
clusters.

Recall that a quarter is a set of four vertices with five edges of length at least
2 and at most 2t0 and a sixth edge of length at least 2t0 and at most 2

√
2. The

long edge of the quarter is called its diagonal. A set of quarters with pairwise
disjoint interiors has been selected. Quarters in this set are said to belong to the
Q-system. The Q-system has been constructed in such a way that if one quarter
along a diagonal lies in the Q-system, then all quarters along that diagonal lie in
the Q-system. An anchor is a vertex of the packing that has distance at least 2
and at most 2t0 from both endpoints of a diagonal. Each diagonal has a context
(n, k), with n ≥ k, where n is the number of anchors around the diagonal and n−k
is the number of quarters that have that diagonal as an edge. If a diagonal has
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300 Section 25. Branch and Bound Strategies

context (n, k), then k is the number of gaps that occur between anchors; that is,
spaces that are not filled in by quarters. The context of a quarter is defined to be
the context of its diagonal.

Recall that a quarter (or its diagonal) is said to be upright if one endpoint of
its diagonal is the origin. A quarter is said to be flat if it is not upright and if some
vertex of the quarter is the origin.

There is a process of simplification of the decomposition stars and their scoring
functions that eliminates137 many of the contexts (n, k). (The upright quarters are
said to be erased.) We assume in the following discussion and lemmas that this
procedure has been carried out.

An upright diagonal is said to be a loop when there is a reasonable scheme
of inserting a simplex into each gap so that the diagonal is completely surrounded
by quarters and the inserted simplices. The simplices that are inserted in the gaps
are called anchored simplices. They are constructed in such a way that every edge
of an anchored simplex has length at most 3.2. All simplices in a given loop lie
over a single standard region. If the gaps cannot be filled with anchored simplices,
the upright diagonal is not a loop. Details of this construction can be found in
Section 11.5.

In every case, the simplices around a given upright diagonal lie in the cone
over a single standard region.

Lemma 25.1. Consider an upright diagonal that is a loop. Let R be the standard
region that contains the upright diagonal and its surround simplices. Then the
following contexts (n, k) are the only ones possible. Moreover, the constants that
appear in the columns marked σ and τ are upper and lower bounds respectively for
σR(D) and τR(D) when R contains one loop of that context.

std. region (n, k) σ τ

R quad:
(4, 0) −0.0536 0.1362

R pentagon:
(4, 1) s5 0.27385
(5, 0) −0.157 0.3665

R hexagon:
(4, 1) s6 0.41328
(4, 2) −0.1999 0.5309
(5, 1) −0.37595 0.65995

R heptagon:
(4, 1) s7 0.55271
(4, 2) −0.25694 0.67033

R octagon:
(4, 1) s8 0.60722
(4, 2) −0.31398 0.72484.

137In detail, we assume that all of the contexts that do not carry a penalty have been erased. We
leave loops, 3-crowded, 4-crowded, and 3-unconfined upright diagonals unerased at this point.
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Proof. This is Lemma 13.5.

25.2 3-crowded and 4-crowded upright diagonals

Definition 25.2. Consider an upright diagonal that is not a loop. Let R be the
standard region that contains the upright diagonal and its surrounding quarters.
Then the contexts (4, 1) and (5, 1) are the only contexts possible. In the context
(4, 1), if there does not exist a plane through the upright diagonal such that all three
quarters lie in the same half-space bounded by the plane, then we say that the context
is 3-unconfined. If such a plane exists, then we say that the context is 3-crowded. We
call the context (5, 1) a 4-crowded upright diagonal. Thus, every upright diagonal
is exactly one of the following: a loop, 3-unconfined, 3-crowded, or 4-crowded. A
contravening decomposition star contains at most one upright diagonal that is 3-
crowded or 4-crowded. See Section 11.9 for a proof of these facts and for further
details.

Lemma 25.3. Let R be a standard region that contains an upright diagonal that
is 4-crowded. Then

σR(D) < −0.25 and τR(D) > 0.4.

Let R be a standard region that contains an upright diagonal that is 3-crowded.
Then

σR(D) < −0.4339 and τR(D) > 0.5606.

Proof. See Lemmas 11.11 and 11.18.

Lemma 25.4. A contravening decomposition star does not contain any upright
diagonals that are 3-crowded.

Proof. If we have an upright diagonal that is 3-crowded, then there is only one
exceptional region (0.5606 + t5 > (4πζ − 8) pt). We add the inequalities τ > 0.5606
and σ < −0.4339 to the exceptional region. All linear programming bounds drop
under 8 pt when these changes are made.

Upright diagonals that are 4-crowded require more work. We begin with a
lemma.

Lemma 25.5. Let α be the dihedral angle along the large gap along an upright
diagonal that is 4-crowded. Let F be the union of the four upright quarters along
the upright diagonal. Let v1 and v2 be the anchors of U(D) lying along the large
gap. If |v1|+ |v2| < 4.6, then α > 1.78 and σF (D) < −0.31547.
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302 Section 25. Branch and Bound Strategies

Proof. The bound α > 1.78 comes from the inequality archive.138 The upper
bound on the score is a linear programming calculation involving the inequality
α > 1.78 and the known inequalities on the score of an upright quarter.

Lemma 25.6. A contravening decomposition star does not contain any upright
diagonals that are 4-crowded.

Proof. Add the inequalities σR(D) < −0.25 and τR(D) > 0.4 at the exceptional
regions. An upright diagonal that is 4-crowded does not appear in a pentagon for
purely geometrical reasons. Run the linear programs for all tame plane graphs with
an exceptional region that is not a pentagon. If this linear program fails to produce
a bound of 8 pt, we use the lemma to branch into two cases: either y[v1]+y[v2] ≥ 4.6
or σ[R] < −0.31547. In every case the bound drops below 8 pt.

25.3 Five Anchors
Now turn to the decomposition stars with an upright diagonal with five anchors.
Five quarters around a common upright diagonal in a pentagonal region can cer-
tainly occur. We claim that any other upright diagonal with five anchors leads to
a decomposition star that does not contravene. In fact, the only other possible
context is (n, k) = (5, 1) (see Lemma 25.1).

Lemma 25.7. Let D be a contravening decomposition star. Then there are no
loops with context (5, 1) in D.

Proof. By Lemma 25.1, the standard region R that contains the loop must be a
hexagon. By the same lemma, we have

τR(D) > 0.65995 and σR(D) < −0.37595.

Add these constraints to the linear program of the tame graphs with a hexagonal
face. The LP-bound on σ(D) with these additional inequalities is less than 8 pt.

25.4 Penalties
From now on, we assume that there are no loops with context (5, 1), and no 3-
crowded or 4-crowded upright diagonals. This leaves various loops and 3-unconfined
upright diagonals.

At times, it is necessary to erase certain loops and 3-unconfined upright di-
agonals. There is a penalty for doing so. Let D be a decomposition star with an

138calc-161665083
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upright diagonal {0, v}. Let D′ be the decomposition star that is identical in all
respects, except that v and all indices in the decomposition star that point to v (in
the sense of Section 6.1) have been deleted. Let R be the standard region of D over
which v is located, and let R′ be the corresponding standard region of D′. We say
that the upright diagonal can be erased with penalty πR if

σR(D) ≤ σR′(D′) + πR.

Definition 25.8. When we break a single region into smaller regions (by taking
the part of the region that meets the cone over a quarter, anchored simplex, and
so forth) the smaller regions will be called subregions. An anchored simplex that
overlaps a flat quarter is said to mask the flat quarter. (Masked flat quarters are
not in the Q-system.)

Remark 25.9. A function σ̂ has been defined in Section 11.10. The details of the
definition of this function are not important here. It is proved there that σ̂ is a good
upper bound on the scoring function on flat quarters no matter what the origin of
the flat quarter. It gives bounds for flat quarters in the Q-system, masked quarters,
isolated quarters, and all the other types of flat quarters. The function τ̂ on the
space of flat quarters is defined as

τ̂(Q) = sol(Q)ζpt− σ̂(Q).

Remark 25.10. At times, we work with various upper bounds to σR(D), say,

σR(D) ≤ fR(D).

When we have a specific upper bound fR(D) in view, then we will also say that the
upright diagonal can be erased with penalty πR if

fR(D) ≤ fR′(D′) + πR.

In more detail, let R = {R1, . . . , Rk} be the set of subregions over the anchored
simplices in a loop. Let fRi(D) be the approximations of the score of each anchored
simplex. Let Q1, . . . , Q` be the flat quarters masked by the anchored simplices in the
loop. Let R′ be the subregion of points in the union of R that are not in the cone
over any Qi. Then we erase with penalty πR if

∑

i

fRi(D) ≤
∑

`

σ̂(Qj) = vorR′,0(D) + πR.

If the upright diagonal is not a loop, we include in the set R all regions along the
“gaps” around the upright diagonal.

Sections 13.4 and 13.6 makes various estimates of the penalties that are in-
volved in erasing various loops and 3-unconfined upright diagonals. Most of the
penalties are calculated as integer combinations of the constants ξΓ = 0.01561,
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ξV = 0.003521, and 0.008. It is proved139 in Section 11.7 that ξΓ is the penalty for
erasing a single upright quarter of compression type, and that ξV is the penalty for
erasing a single upright quarter of Voronoi type.

Lemma 25.11. Let {0, v} be an upright diagonal.

• If the upright diagonal is 3-unconfined, then the upright diagonal can be erased
with penalty 0.008.

• If the upright diagonal is 3-unconfined and it masks a flat quarter, then the
upright diagonal can be erased with penalty 0.

• If a flat quarter is masked, then its diagonal has length at least 2.6. Also, if
the diagonal of a masked flat quarter has length at most 2.7, then the height
of its central vertex is at least 2.2.

Proof. See Section 11.9.

25.5 Pent and Hex Branching
If a single linear program does not yield the bound σ(D) < 8 pt, then we divide
the set of decomposition stars with graph G into several subsets, according to the
arrangements of quarters inside each standard cluster. This section gives a rough
classification of possible arrangements of quarters in the cone over pentagonal and
hexagonal standard regions.

The possibilities are listed in the diagram only up to symmetry by the dihedral
group action on the polygon. We do not prove the completeness of the list, but
its completeness can be seen by inspection, in view of the comments that follow
here and in Section 25.4. Details about the size of the penalties can be found in
Section 13.6.

0.008

Figure 25.1. Pentagonal face refinements

139calc-751772680 and calc-310679005
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2(0.008) 0.008

Figure 25.2. Hexagonal face refinements. The only figures with a penalty
are the first two on the top row and those on the bottom row. The first two on the
top row have penalties 2(0.008) and 0.008. Those on the bottom row have penalties
3ξΓ, 3ξΓ, ξΓ + 2ξV , and ξΓ + 2ξV .

The conventions for generating the possibilities are different for the pentagons
and hexagons than for the heptagons and octagons. We describe the pentagons and
hexagons first. We erase all 3-unconfined upright diagonals. If there is one loop we
leave the loop in the figure. If there are two loops (so that both necessarily have
context (n, k) = (4, 1)), we erase one and keep the other.

The figures are interpreted as follows. An internal vertex in the polygon
represents an upright diagonal. Edges from that vertex are in 1-1 correspondence
with the anchors around that upright diagonal. Edges between nonadjacent vertices
of the polygon represent the diagonals of flat quarters. We draw all edges from an
upright diagonal to its anchors, and all edges of length [2t0, 2

√
2] that are not

masked by upright quarters. Since the only remaining upright quarters belong to
loops, the four simplices around a loop are anchored simplices and the edge opposite
the diagonal has length at most 3.2.

Various inequalities in the inequality archive have been designed for subre-
gions of pentagons. Additional inequalities have been designed for subregions in
hexagonal regions. Thus, we are able to obtain greatly improved linear program-
ming bounds when we break each pentagonal region into various cases, according
to the list of Figures 25.1 and 25.2.
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25.6 Hept and Oct Branching
When the figure is a heptagon or octagon, we proceed differently. We erase all
3-unconfined upright diagonals and all loops (either context (n, k) = (4, 1) or (4, 2))
and draw only the flat quarters. An undrawn diagonal of the polygon has length at
least 2t0. Overall, in these cases much less internal structure is represented.

3x
G v

+2x

3x
G v

+2x   x
G v

+4x

5x
G

6x
G

Figure 25.3. Hept face refinements

In the cases where 3-confined upright diagonals or loops have been erased,
a number indicating a penalty accompanies the diagram (Figures 25.3 and 25.4.
These penalties are derived in Sections 13.6 and 13.4.

Define values

Z(3, 1) = 0.00005 and D(3, 1) = 0.06585.

Here are some special arguments that are used for heptagons and octagons.
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6x
G6x

G

4x
G v
+2x 4x

G v
+2x 4x

G v
+2x

2x
G v
+4x

2x
G v
+4x 0

Figure 25.4. Oct face refinements

25.6.1 One flat quarter

Suppose that the standard region breaks into two subregions: the triangular region
of a flat quarter Q and one other. Let n = n(R) ∈ {7, 8}. We have the inequality:

σR(D) < (σ̂(Q)− Z(3, 1)) + sn + ξΓ + 2ξV .

The penalty term ξΓ + 2ξV comes from a possible anchored simplex masking a flat
quarter. Let v be the central vertex of the flat quarter Q. Let {v1, v2} be its
diagonal. Masked flat quarters satisfy restrictive edge constraints. It follows from
Section 11.10 that we have one of the following three possibilities:

1. y[v] ≥ 2.2,

2. e[v1, v2] ≥ 2.7,

3. σR(D) < (σ̂(Q)− Z(3, 1)) + sn(R).

25.6.2 Two flat quarters

We proceed similarly if the standard region R breaks into three subregions: two
regions R1 and R2 cut out by flat quarters Q1, Q2 and one other region made from
what remains. Write σ̂1 for σ̂(Q1), and so forth. It follows from Section 11.10 that
we have one of the following three possibilities:

1. The height of a central vertex is at least 2.2.

2. The diagonal of a flat quarter is at least 2.7.
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3.
σR(D) < (σ̂1 − Z(3, 1)) + (σ̂2 − Z(3, 1)) + sn(R),
τR(D) > (τ̂1 −D(3, 1)) + (τ̂2 −D(3, 1)) + tn(R).

With heptagons, it is helpful on occasion to use an upper bound on the penalty
of 3ξΓ = 0.04683. This bound holds if neither flat quarter is masked by a loop. For
this, it suffices to show that the first two of the given three cases do not hold.

If there is a loop of context (n, k) = (4, 2), we have the upper bounds of
Lemma 25.1. If, on the other hand, there is no loop of context (n, k) = (4, 2), then
we have the upper bound

σR(D) ≤ (σ̂(Q1)− Z(3, 1)) + (σ̂(Q2)− Z(3, 1)) + sn(R) + 2(ξΓ + 2ξV ),

where n(R) ∈ {7, 8}.

25.7 Branching on Upright Diagonals
We divide the upright simplices into two domains depending on the height of the
upright diagonal, using |v| = 2.696 as the dividing point. We break the upright
diagonals (of unerased quarters in the Q-system) into cases:

1. The upright diagonal has height at most 2.696.

2. The upright diagonal {0, v} has height at least 2.696, and some anchor w along
the flat quarter satisfies |w| ≥ 2.45 or |v − w| ≥ 2.45. (There is a separate
case here for each anchor w.)

3. The upright diagonal {0, v} has height at least 2.696, and every anchor w
along the flat quarter satisfies |w| ≤ 2.45 and |v − w| ≤ 2.45.

Many inequalities have been specially designed to hold on these smaller domains.
They are included into the linear programming problems as appropriate.

When all the upright quarters can be erased, then the case for upright quarters
follows from some other case without the upright quarters. An upright quarter can
be erased in the following situations. If the upright quarter Q has compression type
(in the sense of Definition 7.8) and the diagonal has height at least 2.696, then140

σ(Q) < s-vor0(Q).

(If there are masked flat quarters, they become scored by σ̂.) If an upright quarter
has Voronoi type and the anchors w satisfy |w| ≤ 2.45 and |v−w| ≤ 2.45, then the
quarter can be erased141

σ(Q) < s-vor0(Q)

In general, we only have the weaker inequality142

σ(Q) < s-vor0(Q) + 0.003521.

140calc-214637273.
141calc-378432183.
142calc-310679005.
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In a pentagon or hexagon, consider an upright diagonal with three upright
quarters, that is, context (n, k) = (4, 1). If the upright diagonal has height at
most 2.696, and if an upright quarter shares both faces along the upright diagonal
with other upright quarters, then we may assume that the upright quarter has
compression type. For otherwise, there is a face of circumradius at least

√
2, and

hence two upright quarters of Voronoi type. The inequality

octavor < octavor0−0.008, (25.1)

if y1 ∈ [2t0, 2.696], and η126 ≥
√

2 shows that the upright quarters can be erased
without penalty because

ξΓ − 0.008− 0.008 < 0.

If erased, the case is treated as part of a different case.
This allows the inequalities143 to be used that relate specifically to upright

quarters of compression type. Furthermore, it can often be concluded that all three
upright quarters have compression type. For this, we use various inequalities in the
archive which can often be used to show that if the anchored simplex has a face of
circumradius at least

√
2, then the linear programming bound on σ(D) is less than

8 pt.

25.8 Branching on Flat Quarters
We make a few general remarks about flat quarters.

Remark 25.12. Information about the internal structure of an exceptional face
gives improvements to the constants 1.4 pt and 1.5 pt of Property 4 in the definition
of admissible weight assignments. (The bounds remain fixed at 1.4 pt and 1.5 pt,
but these arguments allow us to specify more precisely which simplices contribute
to these bounds.) These constants contribute to the bound on τ(D) through the
admissible weight assignment. Assume that at the vertex v there are four quasi-
regular tetrahedra and an exceptional face, and that the exceptional face has a flat
quarter with central vertex v. The calculations of Section 22.3 show that the union
F of the four quasi-regular tetrahedra and exceptional region give τF (D) ≥ 1.5 pt. If
there is no flat quarter with central vertex v, then the union F of four quasi-regular
tetrahedra along {0, v} give τF (D) ≥ 1.5 pt. We can make similar improvements
when tri(v) = 3.

Remark 25.13. There are a few other interval-based inequalities that are used
in particular cases. The inequalities y1 ≤ 2.2, y4 ≤ 2.7, η234, η456 ≤

√
2 imply that

the flat quarter has compression type (see Section 7.1). The circumradius is not a
linear-programming variable, so its upper bound must be deduced from edge-length
information.

If all three corners of a flat quarter have height at most 2.14, and if the diagonal
has length less than 2.77, then the circumradius of the face containing the origin
143See, for example, calc-867513567-*
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and diagonal is at most η(2.14, 2.14, 2.77) <
√

2. This allows us to branch combine
into three cases.

Lemma 25.14. Let Q be a flat quarter whose corners vi have height at most 2.14
and whose diagonal is at most 2.77. Then one of the following is true.

1. σ(Q) = Γ(Q).

2. The diagonal has length ≤ 2.7, η(y4, y5, y6) ≥
√

2, and σ(Q) ≤ s-vor0(Q).

3. The diagonal has length ≥ 2.7 and σ(Q) ≤ s-vor0(Q).

Proof. Case 1 holds when Q is a quarter of compression type in the Q-system. If
Q is in the Q-system but is not of compression type, then η(y4, y5, y6) ≥

√
2 and

σ(Q) ≤ s-vor0(Q). If Q is not in the Q-system, then s-vor0(Q) is an upper bound
Lemma 11.26. If Q is not in the Q-system, then its diagonal has length at least 2.7,
or the central vertex has height at most 2.2 (see Lemma 25.11.) In this case, we
use the upper bound s-vor0(Q).

Various inequalities in the archive have been designed specifically for each of
these three cases. Thus, whenever the hypotheses of the lemma are met, we are able
to improve on the linear programming bounds by breaking into these three cases.

25.9 Branching on Simplices that are not Quarters

Lemma 25.15. Suppose that a triangular subregion comes from a simplex S with
one vertex at the origin and three other vertices of height at most 2t0. Suppose
that the edge lengths of the fourth, fifth, and sixth edges satisfy y5, y6 ∈ [2t0, 2

√
2],

y4 ∈ [2, 2t0]. Suppose that min(y5, y6) ≤ 2.77. Then one of the following is true.

1. The edges have lengths y5, y6 ∈ [2t0, 2.77], η456 ≥
√

2, and σ(S) ≤ s-vor0(S).

2. y5, y6 ∈ [2t0, 2.77], and σ(S) ≤ s-vor(S) (the analytic Voronoi function).

3. An edge (say y6) has length y6 ≥ 2.77 and σ(S) ≤ s-vor0(S).

Proof. If we ignore the statements about σ, then the conditions in the lemma
concerning edge-length are exhaustive. The bounds on σ in each case are given by
Section 9.6.

There are linear programming inequalities that are tailored to each case.

25.10 Branching on Quadrilateral subregions
One of the inequalities of holds for a quadrilateral subregion, if certain conditions
are satisfied. One of the conditions is y4 ∈ [2

√
2, 3.0], where y4 is a diagonal of
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the subregion. Since this diagonal is not one of the linear-programming variables,
these bounds cannot be verified directly from the linear program. Instead we use
an inequality which relates the desired bound y4 ≤ 3 to the linear-programming
variables α[v, F ], y2, y3, y5, and y6.

25.11 Implementation Details for Branching
We will now make a detailed examination of the internal structure of exceptional
regions.

A refinement F̃ of a face F of a plane graph G is a set F̃ of faces such that

1. The intersection of the vertex set of G with that of F̃ is the set F .

2. F̃ ∪ {F op} is a plane graph.

We use refinements of faces to describe the internal structure of faces.
We introduce indexing sets FACE-F̃ , VERTEX-F̃ , ANGLE-F̃ , EDGE-F̃ , the sets of

faces, vertices, angles, and edges in F̃ , respectively, analogous to those introduced
for G.

We create variables π[F̃ ], and indexed variables

sol{FACE-F̃}, sc{FACE-F̃} τsc{FACE-F̃},
α{ANGLE-F̃}, y{VERTEX-F̃}, e{EDGE-F̃}.

(Variables with names “y[v]” and “e[v, w]” were already created for some v, w ∈
VERTEX-F̃ ∩ VERTEX. In these cases, we use the variables already created.)

Each vertex v in the refinement will be interpreted either as a vertex vI ∈
U(D), or as the endpoint of an upright diagonal lying over the standard region
F I . We will interpret the faces of the refinement in terms of the geometry of
the decomposition star D variously as flat quarters, upright quarters, anchored
simplices, and the other constructs of Paper IV. This interpretation depends on
the context, and will be described in greater detail below.

Once the interpretation of faces is fixed, the interpretations are as before for
the variable names introduced already: y, e, α, sol. The lower and upper bounds
for α and sol are as before. The lower and upper bounds for y[v] are 2 and 2t0 if
vI ∈ U(D), but if (0, vI) is an upright diagonal, then the bounds are [2t0, 2

√
2].

The lower and upper bounds for e will depend on the context.

25.12 Variables related to score
The variables sc are a stand-in for the score σ on a face. We do not call them σ
because the sum of these variables will not in general equal the variable σ[F ], when
F̃ is a refinement of F :

[
∑

F ′∈F̃

sc[F ′] 6= σ[F ]].
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We will use have a weaker relation:

σ[F ] ≤
∑

F ′∈F̃

sc[F ′] + π[F̃ ].

The variable π[F̃ ] is called the penalty associated with the refinement F̃ . (Penalties
are discussed at length in Sections 13.6 and 13.4.) The interpretations of sc and
π[F̃ ] are rather involved, and will be discussed on a case-by-case basis below. The
interpretation of τsc follows from the identity:

τsc[F ′] = sol[F ′]ζpt− sc[F ′], ∀F ′ ∈ F̃ .

The interpretation of variables that follows might appear to be hodge-podge
at first. However, they are obtained in a systematic way. We analyze the proofs
and approximations in Part IV, and define sc[F ]I as the best penalty-free scoring
approximation that is consistent with the given face refinement. here are the details.

If the subregion is a flat quarter, the interpretation of sc[F ] is the function σ̂,
defined in 11.10. If the subregion is an upright quarter Q, the interpretation of
sc[F ] is the function σ(Q) from Section 7. If the subregion is an anchored simplex
that is not an upright quarter, sc[F ] is interpreted as the analytic Voronoi function
vor if the simplex has type C or C ′, and as vor0 otherwise. (The types A, B, C
and C ′ are defined in Section 9.4.) Whether or not the simplex has type C, the
inequality sc[F ] ≤ 0 is satisfied. In fact, if vor0 scoring is used, we note that there
are no quoins, and φ(1, t0) < 0.

If the subregion is triangular, if no vertex represents an upright diagonal, and
if the subregion is not a quarter, then sc[F ] is interpreted as vor or vor0 depending
on whether the simplex has type A. In either case, the inequality sc[F ] ≤ vor0 is
satisfied.

In most other cases, the interpretation of sc[F ] is vor0. However, if R is a
heptagon or octagon, and F has ≥ 4 sides, then sc[F ] is interpreted as vor0 except
on simplices of type A, where it becomes the analytic Voronoi function.

If R is a pentagon or hexagon, and F is a quadrilateral that is not adjacent
to a flat quarter, and if there are no penalties in the region, then the interpretation
of sc[F ] is the actual score of the subregion over the subregion. In this case, the
score σR has a well-defined meaning for the quadrilateral, because it is not possible
for an upright quarter in the Q-system to straddle the quadrilateral region and an
adjacent region. Consequently, any erasing that is done can be associated with
the subregion without ambiguity. By the results of Sections 8.4 and 8.5, we have
sc[F ] ≤ 0. We also have sc[F ] ≤ vor0.

One other bound that we have not explicitly mentioned is the bound σR(D) <
sn. For heptagons and octagons that are not aggregates, this is a better bound
than the one used in the definition of tameness (Property 6). In heptagons and
octagons that are not aggregates, if we have a subregion with four or more sides,
then sc[F ] < Z(n, k) and τsc[F ] > D(n, k). (See Section 13.5, Equations 13.1 and
13.2.

The variables are subject to a number of compatibility relations that are evi-
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dent from the underlying definitions and geometry.

sol[F ′] =
∑

v∈F ′ α[v, F ′]− (len[F ′]− 2)π, ∀F ′∑
F ′:v∈F ′,F ′∈FACE-F̃ α[v, F ′] = α[v, F ], ∀v

Assume that a face F1 ∈ F̃ has been interpreted as a subregion R = F I
1 of a

standard region. Assume that each vertex of F1 is interpreted as a vertex in U(D)
or as the endpoint of an upright diagonal over F I . One common interpretation of sc
is vor0,F (U(D)), the truncated Voronoi function. When this is the interpretation,
we introduce further variables:

quo[v, s(v, F1)] ∀v ∈ F1,
quo[s(v, F1), v] ∀v ∈ F1,
Adih[v, F1] ∀v ∈ F1,

We interpret the variables as follows. If w = s(v), and the triangle (0, vI , wI) has
circumradius η at most t0, then

quo[v, w]I = quo(R(|vI |/2, η, t0)),
quo[w, v]I = quo(R(|wI |/2, η, t0)).

If the circumradius is greater than t0, we take

quo[v, w]I = quo[w, v]I = 0.

The variable Adih has the following interpretation:

Adih[v, F1]I =

{
A(|vI |/2)α(vI , F I

1 ) |vI | ≤ 2t0,

0 otherwise.

Under these interpretations, the following identity is satisfied:

sc[F1] = sol[F1]φ0 +
∑

v∈F1
Adih[v, F1]

−4δoct

∑
quo[v, w].

The final sum runs over all pairs (v, w), where v = s(w,F1) or w = s(v, F1).
For this to be useful, we need good inequalities governing the individual vari-

ables. Such inequalities for Adih[v, F ] and quo[v, w] are found in Calculations calc-
815275408 and calc-349475742. To make of use these inequalities, it is necessary
to have lower and upper bounds on α[v, F ] and y[v]. We obtain such bounds as
LP-derived inequalities in the sense of Remark 23.4.

25.13 Appendix Hexagonal Inequalities
There are a number of inequalities that have been particularly designed for standard
regions that are hexagons. This appendix describes those inequalities. They are
generally inequalities involving more than six variables, and because of current
technological limitations on interval arithmetic, we were not able to prove these
inequalities directly with interval arithmetic.

Instead we give various lemmas that deduce the inequalities from inequalities
in a smaller number of variables (small enough to prove by interval arithmetic.)
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25.13.1 Statement of results

There are a number of inequalities that hold in special situations when there is a
hexagonal region. Although these inequalities do not appear in the main text of
the proof of the Kepler conjecture, they are used in the linear programs.

After stating all of them, we will turn to the proofs.

1. If there are no flat quarters and no upright quarters (so that there is a single
subregion F ), then

vor0 < −0.212 (25.2)
τ0 > 0.54525. (25.3)

2. If there is one flat quarter and no upright quarters, there is a pentagonal
subregion F . It satisfies

vor0 < −0.221
τ0 > 0.486.

3. If there are two flat quarters and no upright quarters, there is a quadrilateral
subregion F . It satisfies

vor0 < −0.168,
τ0 > 0.352.

These are twice the constants appearing in 11;

4. If there is an edge of length between 2t0 and 2
√

2 running between two opposite
corners of the hexagonal cluster, and if there are no flat or upright quarters
on one side, leaving a quadrilateral region F , then F satisfies

vor0 < −0.075,
τ0 > 0.176.

5. If the hexagonal cluster has an upright diagonal with context (4, 2), and if
there are no flat quarters (Figure 25.5), then the hexagonal cluster R satisfies

σR < −0.297,
τR > 0.504.

6. If the hexagonal cluster has an upright diagonal with context (4, 2), and if
there is one unmasked flat quarter (Figure 25.6, let {F} be the set of four
subregions around the upright diagonal. (That is, take all subregions except
for the flat quarter.) In the following inequality and Inequality 7, let σ+

R be
defined as σR on quarters, and vorx on other anchored simplices. τ+

R is the
adapted squander function.

∑
(4) σ+

R < −0.253,∑
(4) τ+

R > 0.4686.
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Figure 25.5. A hexagonal cluster with context (4, 2).

Figure 25.6. A hexagonal cluster with context (4, 2).

7. If the hexagonal cluster has an upright diagonal with context (4, 2), and if
there are two unmasked flat quarters (Figure 25.7), let {F} be the set of four
subregions around the upright diagonal. (That is, take all subregions except
for the flat quarters.) ∑

(4) σ+
R < −0.2,∑

(4) τ+
R > 0.3992.

Figure 25.7. A hexagonal cluster with context (4, 2).
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8. If the hexagonal cluster has an upright diagonal in context (4, 1), and if there
are no flat quarters, let {F} be the set of four subregions around the upright
diagonal. Assume that the edge opposite the upright diagonal on the anchored
simplex has length at least 2

√
2. (See Figure 25.8.)

vor0,R(D) +
∑

(3) σ(Q) < −0.2187
τ0,R(D) +

∑
(3) τ(Q) > 0.518.

Figure 25.8. A hexagonal cluster with context (4, 1).

9. In this same context, let F be the pentagonal subregion along the upright
diagonal. It satisfies

vor0 < −0.137, (25.4)
τ0 > 0.31. (25.5)

10. If the hexagonal cluster has an upright diagonal in context (4, 1), and if there
is one unmasked flat quarter, let {F} be the set of four subregions around the
upright diagonal. Assume that the edge opposite the upright diagonal on the
anchored simplex has length at least 2

√
2. (There are five subregions, shown

in Figure 25.9.)

vor0,R(D) +
∑

(3) σ(Q) < −0.1657,

τ0,R(D) +
∑

(3) τ(Q) > 0.384.

11. In this same context, let F be the quadrilateral subregion in Figure 25.9. It
satisfies

vor0 < −0.084,
τ0 > 0.176.
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Figure 25.9. A hexagonal cluster with context (4, 1).

25.13.2 Proof of inequalities

Proposition 25.16. Inequalities 1 –11 are valid.

We prove the inequalities in reverse order 11– 1. The bounds144 vor0 < 0.009
and τ0 > 0.05925 for what a flat quarters with diagonal

√
8 will be used repeatedly.

Some of the proofs will make use of tcc-bounds, which are described in 12.9.

Proof. (Inequality 10 and Inequality 11.) Break the quadrilateral cluster into two
simplices S and S′ along the long edge of the anchored simplex S. The anchored
simplex S satisfies τ(S) ≥ 0, σ(S) ≤ 0. The other simplex satisfies τ0(S′) > 0.176
and vor0(S′) < −0.084 by an interval calculation.145 This gives Inequality 11. For
Inequality 10, we combine these bounds with the linear programming bound on the
four anchored simplices around the upright diagonal. From a series of inequalities146

we find that they score < −0.0817 and squander > 0.208. Adding these to the
bounds from Inequality 11, we obtain Inequality 10.

Proof. (Inequality (8) and (9).) The pentagon is a union of an anchored simplex
and a quadrilateral region. LP-bounds similar to those in the previous paragraph
and based on the inequalities of Section 13.12 show that the loop scores at most
−0.0817 and squanders at least 0.208. If we show that the quadrilateral satisfies

vor0 < −0.137, (25.6)
τ0 > 0.31, (25.7)

then Inequalities (8) and (9) follow. If by deformations a diagonal of the quadrilat-
eral drops to 2

√
2, then the result follows interval calculations.147 By this we may

144calc-148776243
145calc-938091791
146calc-815492935, calc-187932932, calc-485049042, calc-835344007
147calc-148776243,calc-468742136
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now assume that the quadrilateral has the form

(a1, 2, a2, 2, a3, 2, a4, b4), a2, a3 ∈ {2, 2t0}.

If the diagonals drop under 3.2 and max(a2, a3) = 2t0, again the result follows
from interval calculations.148 If the diagonals drop under 3.2 and a2 = a3 = 2,
then the result follows from further interval calculations.149 So finally we attain by
deformations b4 = 2

√
2 with both diagonals greater than 3.2. But this does not

exist, because
∆(4, 4, 4, 3.22, 4, 8, 3.22) < 0.

Proof. (Inequality 5, Inequality 6, and Inequality 7.) Inequalities 7 are derived
in Section 13.12. Inequalities 5, 6 are LP-bounds based on interval calculations.150

Proof. (Inequality 4.) Deform as in Section 12. If at any point a diagonal of the
quadrilateral drops to 2

√
2, then the result follows from interval calculations151 and

Inequality 11:
vor0 < 0.009− 0.084 = −0.075,
τ0 > 0 + 0.176 = 0.176,

Continue deformations until the quadrilateral has the form

(a1, 2, a2, 2, a3, 2, a4, b4), a2, a3 ∈ {2, 2t0}.

There is necessarily a diagonal of length ≤ 3.2, because

∆(4, 4, 3.22, 8, 4, 3.22) < 0.

Suppose the diagonal between vertices v2 and v4 has length at most 3.2. If a2 = 2t0
or a3 = 2t0, the result follows from interval calculations152 and Inequality 11. Take
a2 = a3 = 2. Inequality 4 now follows from interval calculations.153

Proof. (Inequality 3). We prove that the quadrilateral satisfies

vor0 < −0.168
τ0 > 0.352.

148calc148776243,calc-468742136
149calc-128523606
150calc-815492935, calc-187932932, calc-485049042
151calc-148776243
152calc-148776243
153calc-128523606
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There are two types of quadrilaterals. In (a), there are two flat quarters whose
central vertices are opposite corners of the hexagon. In (b), the flat quarters share
a vertex. We consider case (a) first.

Case (a). We deform the quadrilateral as in Section 12.If at any point there is
a diagonal of length at most 3.2, the result follows from Inequality 10 and Inequality
11. Otherwise, the deformations give us a quadrilateral

(a1, 2, a2, 2t0, a3, 2, a4, 2), ai ∈ {2, 2t0}.
The tcc approximation now gives the result (see Section 12.10).

Case (b). Label the vertices of the quadrilateral v1, . . . , v4, where (v1, v2) and
(v1, v4) are the diagonals of the flat quarter. Again, we deform the quadrilateral.
If at any point of the deformation, we find that |v1 − v3| ≤ 3.2, the result follows
from Inequalities 10, 11. If during the deformation |v2 − v4| ≤ 2

√
2, the result

follows from interval calculations.154 If the diagonal (v2, v4) has length at least 3.2
throughout the deformation, we eventually obtain a quadrilateral of the form

(a1, 2t0, a2, 2, a3, 2, a4, 2t0), ai ∈ {2, 2t0}.
But this does not exist:

∆(4, 4, 3.22, (2t0)2, (2t0)2, 3.22) < 0.

We may assume that |v2 − v4| ∈ [2
√

2, 3.2]. The result now follows from
interval calculations.155

Proof. (Inequality 2). This case requires more effort. We show that

vor0 < −0.221
τ0 > 0.486

Label the corners (v1, . . . , v5) cyclically with (v1, v5) the diagonal of the flat quarter
in the hexagonal cluster. We use the deformation theory of Section 12. The proof
appears in steps (1), . . . , (6).

(1) If during the deformations, |v1 − v4| ≤ 3.2 or |v2 − v5| ≤ 3.2, the result
follows from Inequalities 25.13.2 and 11. We may assume this does not occur.

(2) If an edge (v1, v3), (v2, v4), or (v3, v5) drops to 2
√

2, continue with defor-
mations that do not further decrease this diagonal. If |v1 − v3| = |v3 − v5| = 2

√
2,

then the result follows from interval calculations.156

If we have |v1 − v3| = 2
√

2, deform the figure to the form

(a1, 2, a2, 2, a3, 2, a4, 2, a5, 2t0), a2, a4, a5 ∈ {2, 2t0}.
Once it is in this form, break the flat quarter (0, v1, v2, v3) from the cluster and
deform v3 until a3 ∈ {2, 2t0}. The result follows from an interval calculation.157

154calc-148776243,calc-315678695
155calc-315678695
156calc-148776243,calc-673399623
157calc-297256991
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We handle a boundary case of the preceding calculation separately. After
breaking the flat quarter off, we have the cluster

(a1, 2
√

2, a3, 2, a4, 2, a5, 2t0), a3, a4, a5 ∈ {2, 2t0}.
If |v1 − v4| = 3.2, we break the quadrilateral cluster into two pieces along this
diagonal and use interval calculations158 to conclude the result. This completes the
analysis of the case |v1 − v3| = 2

√
2.

(3) If |v2 − v4| ≤ 3.2, then deform until the cluster has the form

(a1, 2, a2, 2, a3, 2, a4, 2, a5, 2t0), a1, a3, a5 ∈ {2, 2t0}.
Then cut along the special simplex to produce a quadrilateral. Disregarding cases
already treated by the interval calculations,159 we can deform it to

(a1, 2, a2, 2
√

2, a4, 2, a5, 2t0), ai ∈ {2, 2t0},
with diagonals at least 3.2. The result now follows from interval calculations.160

In summary of (1), (2), (3), we find that by disregarding cases already con-
sidered, we may deform the cluster into the form

(a1, 2, a2, 2, a3, 2, a4, 2, a5, 2t0), ai ∈ {2, 2t0},
|v1 − v3| > 2

√
2, |v3 − v5| > 2

√
2, |v2 − v4| > 3.2.

(4) Assume |v1 − v3|, |v3 − v5| ≤ 3.2. If max(a1, a3, a5) = 2t0, we invoke
interval calculations161 to prove the inequalities. So we may assume a1 = a3 =
a5 = 2. The result now follows from interval calculations.162 This completes the
case |v1 − v3|, |v3 − v5| ≤ 3.2.

(5) Assume |v1 − v3|, |v3 − v5| ≥ 3.2. We deform to

(a1, 2, a2, 2, a3, 2, a4, 2, a5, 2t0), ai ∈ {2, 2t0}.
If a2 = 2t0 and a1 = a3 = 2, then the simplex does not exist by Section 13.7.
Similarly, a4 = 2t0, a5 = a3 = 2 does not exist. The tcc bound gives the result
except when a2 = a4 = 2. The condition |v2 − v4| ≥ 3.2 forces a3 = 2. These
remaining cases are treated with interval calculations.163

(6) Assume |v1 − v3| ≤ 3.2 and |v3 − v5| ≥ 3.2. This case follows from
deformations, interval calculations.164 This completes the proof of Inequalities 2.

Proof. (Inequality 1). Label the corners of the hexagon v1, . . . , v6. The proof to
this inequality is similar to the other cases. We deform the cluster by the method
158calc-861511432
159calc-861511432
160calc-746445726
161calc-148776243,calc-297256991
162calc-897046482
163calc-928952883
164calc-297256991,calc-673800906
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of Section 12 until it breaks into pieces that are small enough to be estimated by
interval calculations. If a diagonal between opposite corners has length at most
3.2, then the hexagon breaks into two quadrilaterals and the result follows from
Inequality 25.13.2.

If a flat quarter is formed during the course of deformation, then the result
follows from Inequality 2 and interval calculations.165 Deform until the hexagon
has the form

(a1, 2, a2, 2, . . . , a6, 2), ai ∈ {2, 2t0}.

We may also assume that the hexagon is convex (see Section 12.12).
If there are no special simplices, we consider the tcc-bound. The tcc-bound

implies Inequality 1, except when ai = 2, for all i. But if this occurs, the perimeter
of the convex spherical polygon is 6 arc(2, 2, 2) = 2π. Thus, there is a pair of
antipodal points on the hexagon. The hexagon degenerates to a lune with vertices
at the antipodal points. This means that some of the angles of the hexagon are π.
One of the tccs has the form C(2, 1.6, π), in the notation of Section 12.10. With
this extra bit of information, the tcc bound implies Inequality 1.

If there is one special simplex, say |v5 − v1| ∈ [2
√

2, 3.2], we remove it. The
score of the special simplex is166

vor0 < 0, τ0 > 0.05925, if max(|v1|, |v5|) = 2t0,
vor0 < 0.0461, τ0 > 0, if |v1| = |v5| = 2,

The resulting pentagon can be deformed. If by deformations, we obtain |v2 − v5| =
3.2 or |v1 − v4| = 3.2, the result follows from Inequalities 25.13.2 and two interval
calculations.167

If |v5 − v1| = 2
√

2, we use Inequality 2 and interval calculations168 unless
|v1| = |v5| = 2. If |v1| = |v5| = 2, we use interval calculations.169 If a second
special simplex forms during the deformations, the result follows from interval cal-
culations.170

The final case of Inequality 1 to consider is that of two special simplices. We
divide this into two cases. (a) The central vertices of the specials are v2 and v6.
(b) The central vertices are opposite v1 and v4. In case (a), the result follows
by deformations and interval calculations.171 In case (b), the result follows by
deformations and interval calculations.172 This completes the proof of Inequalities
1 and the proof of the Proposition.

165calc-148776243
166calc-148776243
167calc-725257062, calc-977272202
168calc-148776243
169calc-377409251
170calc-586214007
171calc-89384104
172calc-859726639
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322 Section 25. Branch and Bound Strategies

25.14 Conclusion
By combinations of branching along the lines set forth in the preceding sections,
a sequence of linear programs is obtained that establishes that σ(D) is less than
8 pt. For details of particular cases, the interested reader can consult the log files in
[Hal05b], which record which branches are followed for any given tame graph. (For
most tame graphs, a single linear program suffices.)

This completes the proof of the Kepler conjecture.
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Index

A, 89
adjacent, 253
adjacent pair, 51
admissible (weight assignment), 256
aggregation, 271
anc, 136
anchor, 45, 299
anchored simplex, 300
arc, 101

sequence, 174
archival list of graphs, 37
axis, 47
A, 34
a(n), 201, 255
A1, 82

barrier, 58
base point, 51
boundary edges, 168
b(p, q), 255

C ′(v), 103
c-vor, 88
calc-123456789, 98
cap, 80
central, 285
central (vertex), 269
circuit, 254
circumradius, 49
cluster

quad, 86, 96
standard, 86

colored
points, 74
space, 74

compression, 82
compression type, 83

concave, 166, 174
cone, 88, 97
conflicting diagonal, 51
conflicting diagonals, 53
context, 300
context (of a quarter), 78
contravening, 37
contravening plane graph, 271
convex, 166, 174
corner, 51, 271
corrected volume, 34
cross, 46
crowded, 301
3-crowded, 300
4-crowded, 300
4-crowded, 148
3-crowded, 148
cycle, 253

length, 253
c(n), 255

decomposition star, 35, 71
contravening, 37

decoupling lemma, 66
degree (of a vertex), 254
diagonal, 44, 299
dih (dihedral angle), 46
DS(G), 291
D(v, Λ), 71
d(n), 256
DS, 71

edge (of a plane graph), 253
enclosed, 51
enclosed vertex, 279
erase, 300, 303
exceptional, 254
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face, 254
extremal (quarter), 98

face, 253
face-centered cubic, 37
fcc-compatible, 34
Ferguson, 38, 77
first

edge, 46
flat, 300

gaps, 300
geometric considerations, 48

height, 50
hexagonal-close packing, 37

interpretation, 290
isolated, 51

Kepler conjecture, 33

labels
edge, 46

law of cosines, 101
length (of a cycle), 253
linear programming, 290
local optimality, 95
loop, 300
LP, 290
LP-derived inequality, 291

mask, 303
masked, 150

negligible, 34, 84

obstructed, 58
octahedron, 44
orientation, 61
orthosimplex, 78
overlap, 34, 44

packing, 33
pair

isolated, 51
passes through, 49
patch, 260

penalty, 300, 303
penalty-free, 172
penalty-inclusive, 172
pentahedral prism, 38, 41, 289, 291
pivot, 47
planar graph, 254
plane graph, 253, 254
point, 36, 85, 98
projection of a set, 46
proper isomorphism, 254
pt, 36

Q′0, 103
Q-system, 45, 299
quad cluster, 86
quadrilateral, 254
quarter, 98, 299

flat, 44
strict, 44
upright, 44, 83

quasi-regular, 44
tetrahedron, 44, 98
triangle, 44, 49, 58

quasi-regular triangle, 44
quoin, 78, 79
Qv, 63

Rw, 114
r-vor, 88
radial projection, 46
relaxation, 290
right circular cone, 88
Rogers simplex, 78, 79, 96, 97

satisfaction, 290
saturated, 34, 43
score, 36, 85, 88
scoring function, 36
separated set, 256, 282
simplex, 44, 61
sol, 80
sol(R), 265
solid angle, 80
standard region, 64
subregion, 303
successor, 253
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s(v, C), 253

tame, 37, 257
target, 255
tgt = 14.8, 255
total weight, 256
triangle, 101, 254
triangular

standard region, 64
truncation parameter, 37
truncation parameter (t0 = 1.255), 43
type (of a vertex), 255, 267
t0 = 1.255, 37
tri(v), 254

unconfined, 301
3-unconfined, 148
upright, 300
U(D), 37, 73, 95
U(v, Λ), 37

V-cell, 59, 72
vertex, 34, 43, 253

distinguished, 97
enclosed, 51

vor, 88
Voronoi cell, 34, 35, 57, 63
Voronoi type, 83
V C(v) (V -cell), 59
vorR, 87

W e, 112
W, 112
wedge, 112
weight assignment, 256

η, 49
Γ, 82
δ(x, r,Λ), 34
∆, 148
∆(v, W e), 113
∆−(v, W e), 114
δ(v,W e), 113
δoct, 36
δtet, 36
ζ = 1/(2 arctan(

√
2/5)), 255, 265

εv(Λ, x), 114

ε′v(Λ, x), 114
η0, 112
ν, 144
πR, 303
σ, 82
σ(D), 85
σR, 87
τ , 265
τR, 265
τLP(p, q), 267
χ, 61
ξΓ, 151
ξV , 151
Ω(D), 35
Ω(v), 34
0.8638, 269
1.153, 269
1.453, 112


