[ kepler | Source | Keywords | Summary | Ancestors | All Members | Descendants ]
Back to the top of linearization
There is one potential source of serious errors with these
routines. The domain is given as a function of the
The partial derivative information in the returned lineInterval is always with respect to the squared coordinates.
Back to the top of linearization
Back to the top of linearization
lineInterval delta(const domain&);
The volume of a simplex is sqrt(delta)/12. This may be used as
a definition of the polynomial delta. Reference SP I.8.1.
static lineInterval delta(const domain&);
Back to the top of linearization
lineInterval dih(const domain&);
The dihedral angle of a simplex along the first edge.
Explicit formulas for this function appear in SP I.8.3.1.
The edge numbering conventions are given in SP I.1.
static lineInterval dih(const domain&);
Back to the top of linearization
lineInterval dih2(const domain&);
The dihedral angle of a simplex along the second edge.
Explicit formulas for this function appear in SP I.8.3.1.
The edge numbering conventions are given in SP I.1.
static lineInterval dih2(const domain&);
Back to the top of linearization
lineInterval dih3(const domain&);
The dihedral angle of a simplex along the third edge.
Explicit formulas for this function appear in SP I.8.3.1.
The edge numbering conventions are given in SP I.1.
static lineInterval dih3(const domain&);
Back to the top of linearization
lineInterval solid(const domain&);
The solid angle of a simplex at its distinguished vertex.
Explicit formulas for this function appear in SP I.8.4.
static lineInterval solid(const domain&);
Back to the top of linearization
lineInterval gamma(const domain&);
The compression of a simplex.
Explicit formulas for this function appear in SP I.8.5.
static lineInterval gamma(const domain&);
Back to the top of linearization
lineInterval eta2(const domain&);
The circumradius squared of the face along edges 1,2,6 of a simplex.
Explicit formulas for this function appear in SP I.8.2.
The variables are the lengths squared of the edges of the triangle.
static lineInterval eta2(const domain&);
Back to the top of linearization
lineInterval eta2_135(const domain&);
The circumradius squared of the face along edges 1,3,5 of a simplex.
Explicit formulas for this function appear in SP I.8.2.
The variables are the lengths squared of the edges of the triangle.
static lineInterval eta2_135(const domain&);
Back to the top of linearization
lineInterval eta2_234(const domain&);
The circumradius squared of the face along edges 2,3,4 of a simplex.
Explicit formulas for this function appear in SP I.8.2.
The variables are the lengths squared of the edges of the triangle.
static lineInterval eta2_234(const domain&);
Back to the top of linearization
lineInterval eta2_456(const domain&);
The circumradius squared of the face along edges 4,5,6 of a simplex.
Explicit formulas for this function appear in SP I.8.2.
The variables are the lengths squared of the edges of the triangle.
static lineInterval eta2_456(const domain&);
Back to the top of linearization
lineInterval rad2(const domain&);
The circumradius squared of a simplex.
Explicit formulas for this function appear in SP I.8.2.
static lineInterval rad2(const domain&);
Back to the top of linearization
lineInterval vorAnalytic(const domain&);
The analytic voronoi function.
Explicit formulas for this function appear in SP I.8.6.3.
The original domain of the function is the set of all simplices
with edges of length in the interval [2,sqrt(8)], such that
the simplex contains its own circumcenter. This function is
analytically continued using the formula of SP I.8.6.3.
static lineInterval vorAnalytic(const domain&);
Back to the top of linearization
lineInterval chi324(const domain&);
The function chi determinining the orientation of simplices,
where orientation is used in the sense of SP I.8.2.3.
Explicit formulas for this function appear in SP I.8.2.
static lineInterval chi324(const domain&);
Back to the top of linearization
lineInterval VorVc(const domain&);
The function vor(S,1.255) of [Formulation].
This is the truncation of the Voronoi function at 1.255.
Explicit formulas for this function appear in [Formulation].
The first three edges must be at most 2.51 in length.
There is a different function uprightVorVc that should be
used if one of the edges is greater than 2.51.
static lineInterval VorVc(const domain&);
Back to the top of linearization
lineInterval VorSqc(const domain&);
The function vor(S,sqrt(2)) of [Formulation].
This is the truncation of the Voronoi function at sqrt(2).
Explicit formulas for this function appear in [Formulation].
static lineInterval VorSqc(const domain&);
Back to the top of linearization
lineInterval VorInverted(const domain&);
The function vorAnalytic(hat Q) of [Formulation].
The domain is upright quarters. Hat Q is the inversion of Q.
The function value is equal to vorAnalytic(x1,x6,x5,x4,x3,x2).
The derivatives have been reindexed appropriately.
static lineInterval VorInverted(const domain&);
Back to the top of linearization
lineInterval uprightVorVc(const domain&);
The function vorVc is not analytic or even differentiable
as the length of one of the first three edges crosses the line at
twice the truncation (2t = 2.51). The version VorVc is intended
for simplices whose first three edges are at most 2.51. The
version here is intended for use when the first edge has length
greater than 2.51, which occurs, for instance, on upright quarters.
static lineInterval uprightVorVc(const domain&);
Back to the top of linearization
lineInterval uprightVorVcInverted(const domain&);
The function uprightVorVcInverted is the variant of VorVcInverted
that is to be used when the first edge has length greater
than 2.51, which occurs on upright quarters.
static lineInterval uprightVorVcInverted(const domain&);
Back to the top of linearization
lineInterval quo(const domain&);
The function quo is the quoin of a single Rogers simplex located
along the edges 1,2,6 of the domain. It only depends on
the variable y1,y2,y6.
static lineInterval quo(const domain&);
Back to the top of linearization
void selfTest();
Check the correctness of the linearization procedures.
static void selfTest();
Back to the top of linearization
Back to the top of linearization
Back to the top of linearization
Back to the top of linearization
Report problems to jkotula@unimax.com