
Annals of Mathematics 192 (2020), 893–976
https://doi.org/10.4007/annals.2020.192.3.5

The energy of dilute Bose gases

By Søren Fournais and Jan Philip Solovej

Abstract

For a dilute system of non-relativistic bosons interacting through a pos-

itive, compactly supported, L1-potential v with scattering length a we

prove that the ground state energy density satisfies the bound e(ρ) ≥
4πaρ2(1 + 128

15
√
π

√
ρa3 + o(

√
ρa3 )), thereby proving the Lee-Huang-Yang

formula for the energy density.
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1. Introduction

Our goal in this paper is to solve the long standing conjecture in math-

ematical physics to rigorously establish the Lee-Huang-Yang (LHY) formula

for the second correction to the thermodynamic (infinite volume) ground state

energy per volume of a translation invariant Bose gas in the dilute limit. The

formula (i.e., (1.3) below with an equality) is one of the most fundamental re-

sults in quantum many-body theory. It appeared for the first time as equation

(25) in the seminal 1957 publication [15]. The striking feature of the formula is

that the first two terms of the asymptotics of the ground state energy in the di-

lute limit depend on the interaction potential only through a single parameter,

the scattering length. Fairly recently the LHY formula was tested experimen-

tally as reported in [27]. Here the coefficient 128
15
√
π

= 4.81 was measured to

be 4.4(5).

The derivation in [15] relies on the pseudo-potential method and offers

deep insight into the problem, but nevertheless lacks in mathematical rigor.

An alternative, but still non-rigorous, argument was proposed in [17]. We

establish the LHY formula rigorously for a large family of two-body potentials

(see Assumption 1.1 below) which, however, does not include the hard core

potential.

The importance of the scattering length in understanding the energy and

excitation spectrum for interacting many-body gases had already been ob-

served in the celebrated 1947 paper of Bogolubov [5] where he introduced the

Bogolubov approximation and laid the foundation for the theory of superflu-

idity. In this paper Bogolubov studies the excitation spectrum of a Bose gas

and finds that it depends on the integral of the potential, not the scattering

length. In a famous footnote Bogolubov thanks Landau for making the im-

portant remark that this must be wrong and that the correct answer must be

to replace the integral of the potential by the scattering length. To establish

this rigorously has been a major challenge ever since. The first major rigorous

advance was achieved by Dyson in [10] where the leading order asymptotics

for the ground state energy was established as an upper bound, but where

the lower bound was off by a factor. The correct leading order asymptotics

was finally established by Lieb and Yngvason in [23] for all positive interac-

tion potentials with finite scattering length including the hard core potential.

This result was extended to the Gross-Pitaevskii limit in the case of trapped
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gases in [19]. These leading order results are reviewed in the monograph [18],

which also contains a non-rigorous derivation of the LHY formula using the

Bogolubov approximation. To the best of our knowledge the first works to

rigorously establish the validity of the Bogolubov approximation for a many-

body problem were [21], [22], [31], which studied the one- and two-component

charged Bose gases and established a conjecture of Dyson. Several ideas from

[21] are important also in the present work.

The first work to show an upper bound to the LHY order was [11] by

Erdős, Schlein, and Yau. This paper makes a very interesting observation

about the Bogolubov approximation. The usual approach to the Bogolubov

approximation is to approximate the Hamiltonian of the system by what is

referred to as a quadratic Hamiltonian. As mentioned above this leads to a

wrong approximation for the ground state energy where it will be expressed

in terms of the integral of the potential rather than the scattering length.

Quadratic Hamiltonians have ground states that are quasi-free (or Gaussian)

states. In [11] it is observed that if we do not approximate the Hamiltonian by

a quadratic Hamiltonian, but instead restrict the evaluation of the full Hamil-

tonian to quasi-free states, then miraculously the scattering length appears in

the leading order term, but to LHY order the answer is still wrong. The work

in [11] emphasizes that it may often be more fruitful to focus on classes of

states rather than to approximate the Hamiltonian. This approach was fur-

ther pursued in the papers [25], [26] where the positive temperature situation

was analyzed for the Hamiltonian restricted to quasi-free states. The leading

order correction to the positive temperature free energy for the full many-body

problem in the dilute limit was established in [29], [33].

For gases confined to a region in the Gross-Pitaevskii regime, there is a

formula for the second order correction to the ground state energy similar to

the LHY formula. This has recently been established in an impressive series

of papers by Boccato, Brennecke, Cenatiempo, and Schlein [2], [4], [3]. This,

however, does not imply the formula in the original thermodynamic infinite

volume setting discussed here. Our proof follows a very different strategy than

the one applied in the confined case.

In the confined or trapped case it is also possible to analyze the excitation

spectrum of the gas, which is particularly important for understanding super-

fluidity. The excitation spectrum is also studied in the papers by Boccato

et. al. The first result in this direction is, however, due to Seiringer [30] and

was also analyzed in [9], [14], [16], [24]. Getting the excitation spectrum in the

thermodynamic case seems much more difficult.

The LHY formula in the translation invariant thermodynamic setting was

finally rigorously established as an upper bound in the work [32] by Yau and

Yin, where they consider smooth rapidly decaying interaction potentials. It
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is this work that we complement by establishing the lower bound in (1.3), in

fact, for a much, larger class of interaction potentials. Thus the LHY formula

has been proved for all compactly supported potentials satisfying the assump-

tions in [32]. We shall not discuss the upper bound further in this paper. In

Bogolubov theory, the particles not in the condensate constitute pairs of op-

posite momentum. An important insight, confirmed by the contributions of

[32] and the present work, is that in order to get the correct energy to LHY

order, one has to go beyond these simple pairs and also consider “soft pairs.”

This means that not only pairs of particles of exactly opposite momentum

contribute. Also pairs of particles with non-zero total momentum—although

the individual momenta are much larger than the sum—are important for the

energy to this precision.

The LHY formula had previously been established as a lower bound in

the restricted case where the interaction potential is allowed to become softer

as the gas becomes more dilute. This was first achieved in [12]. In this case,

however, the potential still has a range much larger than the inter-particle

spacing, which is why the paper has “high density” in the title. Allowing

the potential to have range shorter than the inter-particle spacing, but still

required to be soft, was recently achieved in [7]. The softness condition was

removed in [6], but only to get the ground state energy to the correct LHY

order, not with the correct asymptotics. Several of the methods developed in

[7] and [6] are crucial to this work.

There has been a large literature also on the dynamics of interacting Bose

gases, but we will not review that here.

We now turn to describing the problem in details. We consider N bosons

in three dimensions described by the Hamiltonian

HN = HN (v) =
N∑
i=1

−∆i +
∑

1≤i<j≤N
v(xi − xj).(1.1)

The first term above represents the kinetic energy, and the second term is the

potential energy due to interactions.

We will allow interactions described by the following assumptions.

Assumption 1.1 (Potentials). The potential v 6= 0 is non-negative and

spherically symmetric, i.e., v(x) = v(|x|) ≥ 0, and of class L1(R3) with com-

pact support. We fix R > 0 such that supp v ⊂ B(0, R).

We are interested in the thermodynamic limit of the ground state energy

density as a function of the particle density ρ:

e(ρ, v) = lim
L→∞

N/L3→ρ

L−3 inf
Ψ∈C∞0 ([0,L]N )\{0}

〈Ψ,HN (v)Ψ〉
‖Ψ‖2

.(1.2)
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We will omit the dependence on v from the notation and just write e(ρ) when

the potential is clear from the context. Here the inner product 〈·, ·〉 and the

corresponding norm ‖ · ‖ are in the Hilbert space L2(ΩN ), where we have

denoted Ω = [0, L]3. If we talk about bosons, the infimum above should be

over all symmetric functions in C∞0 (ΩN ). It is, however, a well-known fact

that the infimum over all functions is actually the same as if constrained to

symmetric functions. When we restrict to functions with compact support in Ω

we are effectively using Dirichlet boundary conditions, but it is not difficult to

see that the thermodynamic energy is independent of the boundary condition

used.1

The main result of this work is to establish the celebrated Lee-Huang-Yang

formula that gives a two-term asymptotic formula for e(ρ) in the dilute limit.

We express the diluteness in terms of the scattering length a of the potential v.

The definition of the scattering length and its basic properties will be given in

Section 3.

Theorem 1.2 (The Lee-Huang-Yang Formula). If v satisfies Assump-

tion 1.1, then in the limit ρa3 → 0,

(1.3) e(ρ) ≥ 4πρ2a

Å
1 +

128

15
√
π

√
ρa3 − C(ρa3)1/2+η

ã
,

where η > 0 and C depend on R =
∫
v/(8πa) and R/a as given explicitly in

Theorem 6.8 below.

We have not attempted to optimize the dependence of the constant C on

R =
∫
v/(8πa) and R/a. It follows from Theorem 6.8 that R and R/a only

need to be bounded by an appropriate negative power of ρa3. By an approx-

imation argument, this would allow us to extend Theorem 1.2 to potentials

that do not have compact support (but sufficiently rapid decay; see, e.g., [6,

Th. 2.3]) and/or potentials that do not satisfy the L1-assumption.

As reviewed above, an upper bound consistent with the Lee-Huang-Yang

formula was given in [32] under more restrictive assumptions on the potential

(see also [1]). Combined with Theorem 1.2 the second term of the energy

asymptotics of the dilute Bose gas has therefore been established. It remains

an interesting open problem to give upper bounds consistent with (1.3) under

less restrictive assumptions on the potential than in [32], [1]. It remains, in

particular, an open problem to obtain upper and lower bounds for the hard

core potential.

1See also [28], where the condition on the interaction potential is slightly more restrictive

than ours.
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2. Strategy of the proof and organization of the paper

It is an important first step in Bogolubov’s approach that the ground state

of the Bose gas is close, in an appropriate sense, to a condensate, i.e., the state

corresponding to a product wave function where all particles are in the same

one-body state. Establishing condensation in a thermodynamically extended

Bose gas in the continuum is still one of the major open problems in the rig-

orous analysis of Bose gases. It turns out, however, that it is not necessary

to establish condensation in order to prove the validity of the Bogolubov ap-

proximation or the LHY formula. It is only important that the state is close

to a condensate on the relevant length scale. In fact, the relevant length is the

distance at which the excited Bogolubov pairs correlate. This scale is often

referred to as the “healing length,” and it turns out to be of the order (ρa)−1/2.

An important ingredient in our rigorous proof is, therefore, to localize

the problem to the healing length and to establish condensation there. Lo-

calization here means that we can achieve an appropriate lower bound on the

thermodynamic energy density by considering a Hamiltonian restricted to a

finite box. This is done in Section 6. It is, however, very delicate for several

reasons. First of all, actually localizing to the healing length will interfere with

the system and affect its ground state energy to the LHY order. Localization

must necessarily be to a length scale somewhat longer than the healing length.

At this longer scale we can unfortunately not directly control condensation.

We therefore apply a double localization approach, where we first localize the

Hamiltonian to a scale somewhat longer than the healing length and then

further to a scale somewhat shorter than the healing length.

The key to achieve condensation is to have a localized kinetic energy with

the property that constant functions in the box, representing the condensate,

have zero kinetic energy and such that there is a gap in the kinetic energy

spectrum above the zero energy. If this gap is large enough, it will allow us to

control the number of excited particles, i.e., those not in the condensate. For

the box much larger than the healing length, the gap is not sufficiently large

to immediately control condensation. On the much smaller boxes the gap is,

however, large enough to absorb many error terms and get an a priori lower

bound on the energy that is almost of LHY order. This is done in Appendix B.

The a priori bound will then allow us to get sufficient control on condensation
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in the larger box. Indeed, the gap in the large box and the a priori bound on the

energy allow us in Section 7 to establish that the expected number of excited

particles is sufficiently small. We, however, need to control higher powers of the

number of excited particles, not just the expectation value. For this we apply

in Section 8 the method of localization of large matrices introduced in [21].

The second reason localization is delicate is that it may affect the full

kinetic energy spectrum. This would affect the effective scattering length and

hence the leading term in the LHY energy asymptotics. Hence we must ensure

that the localized kinetic energy is essentially unchanged for momenta much

larger than
√
ρa, i.e., the momentum corresponding to the healing length.

The delicate localizations of both the kinetic and potential energies are

done in Section 6.2 using a sliding technique that appeared already in [7]. The

sliding technique for localizing the potential energy is motivated by [21], [22],

[8], [13].

After localization we no longer know the exact number of particles in

the boxes. It is therefore convenient even before localization in Section 4 to

reformulate the problem in a grand canonical setting where the total particle

number is not fixed but a chemical potential is introduced and carried through

in the localization.

An important step in controlling the energy in both the small and large

boxes is to split the potential energy in terms of writing the identity in L2(box)

as 1 = P + Q, where P is the projection onto constant functions, i.e., the

condensate. The potential energy can then be written as a sum of 16 terms that

contain 0–4 Q’s. One of the main new ideas in the present paper is to identify

in Section 6.4 an appropriate completion of the square containing the term

with 4 Q’s (see Lemma 6.9). After ignoring the positive square we will be left

with renormalized terms with 0-3 Q’s, where the potential has essentially been

replaced by a renormalized potential whose integral is the scattering length.

As already mentioned in the introduction, a naive approach to the Bogolubov

approximation will give the integral of the potential and not the scattering

length. The completion of the square that we introduce partly resolves this

issue for a lower bound. It only resolves it partly because the integral of the

potential appears in estimating errors when applying the method of localization

of large matrices, which has to be done before the “completion of the square.”

This is the main reason why hard core potentials are not covered in our result.

The renormalized terms with 0–3 Q’s must now be studied more carefully.

In particular, the 3Q terms pose serious difficulties. They can be ignored in

the small boxes, but not in the large box, as they include the effect of the soft

pairs mentioned in the introduction. The part of the 3Q terms, which does

not correspond to soft pairs may, however, be ignored. We therefore split the

3Q terms in a relevant part and an irrelevant part. Recall that Q projects
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onto the space of momenta above the gap. The relevant part of the 3Q terms

corresponds to restricting to one of the three momenta being sufficiently low

and the other two sufficiently high, corresponding to soft pairs. This is the

second main new ingredient in the present proof. The splitting of the 3Q

terms is done in two steps. First the error in restricting one momentum to be

low is controlled using the gap and part of the positive completed square. This

is the contents of Section 9. Restricting to the other two momenta being high

is done in (10.13) after we have introduced second quantization in Section 10,

which is the natural next step in the analysis.

We are finally ready for the detailed analysis of the renormalized terms

with 0–2 Q’s and the relevant renormalized 3Q terms. First we do c-number

substitution in Section 10.2 using the approach introduced in [20]. This allows

us to replace the annihilation operator for the constant function by a number

and, in particular, consider the density of particles in the condensate as a

number to be optimized. The optimization of this condensate density is done

at the end after the careful calculation of the ground state energy. However,

we need an initial a priori estimate on the condensate density to control errors.

This is achieved from initial rough energy bounds given in Section 11.

Finally, we are then left with (see (12.7))

• terms with no Q’s that can be explicitly calculated;

• a quadratic (in creation and annihilation operators) Hamiltonian KBog in-

cluding also some linear terms (corresponding to 1Q terms);

• the 3Q terms that are left after the momentum cut-offs and additional

quadratic and linear terms not included above.

The quadratic Hamiltonian is treated Section 12.1 using the simplified Bogol-

ubov method in Appendix A. Our approach to localization of both the kinetic

and potential energies is chosen to conveniently allow us to use the simplified

Bogolubov method. This together with the no-Q terms will give the correct

energy up to the LHY correction and a positive quadratic operator (the diago-

nalized Bogolubov excitation Hamiltonian); see (12.8). This positive quadratic

operator together with the remaining 3Q and other terms not treated by Bo-

golubov’s method is shown by a very detailed calculation in Section 12.2 to be

bounded below by a term of lower order than LHY. We emphasize that the 3Q

terms themselves do contribute to the LHY order, and our calculation shows

that they exactly cancel the quadratic terms not included in the Bogolubov

Hamiltonian KBog. This calculation is the last new main ingredient in our

proof. In Section 13 we put all the pieces together to arrive at the main result.

Before starting the whole analysis we review relevant facts about the scat-

tering solution and the scattering length in Section 3. As the proof requires

the consistent choices of many parameters, we have collected these choices in

Section 5.
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3. Facts about the scattering solution

In this short section we establish notation and recall results concerning

the scattering length and associated quantities.

We suppose that v satisfies Assumption 1.1 and refer to Appendix C of

[18] for details and a more general treatment. The scattering equation readsÅ
−∆ +

1

2
v(x)

ã
(1− ω(x)) = 0, with ω → 0, as |x| → ∞.(3.1)

The radial solution ω to this equation satisfies that there exists a constant

a > 0 such that ω(x) = a/|x| for x outside supp v. This constant a is the

scattering length of the potential v, and we will refer to ω as the scattering

solution. Furthermore, ω is radially symmetric and non-increasing with

0 ≤ ω(x) ≤ 1.(3.2)

We introduce the function

g := v(1− ω).(3.3)

The scattering equation can be reformulated as

−∆ω =
1

2
g.(3.4)

From this we deduce, using the divergence theorem, that2

a = (8π)−1

∫
g(3.5)

and that the Fourier transform satisfies

ω̂(k) =
ĝ(k)

2k2
.(3.6)

4. Grand canonical reformulation of the problem

To prove Theorem 1.2 we will reformulate the problem grand canonically

on Fock space. Consider, for given ρµ > 0, the following operator Hρµ on

the symmetric Fock space Fs(L
2(Ω)). The operator Hρµ commutes with par-

ticle number and satisfies, with Hρµ,N denoting the restriction of Hρµ to the

2We have here used the convention—which will be used throughout the paper—of writing∫
g instead of

∫
g(x) dx when the integration variable is clear from the context.
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N -particle subspace of Fs(L
2(Ω)),

Hρµ,N = HN − 8πaρµN =

N∑
i=1

−∆i +
∑
i<j

v(xi − xj)− 8πaρµN

=
N∑
i=1

Å
−∆i − ρµ

∫
R3

g(xi − y) dy

ã
+
∑
i<j

v(xi − xj).

(4.1)

The new term in Hρµ,N plays the role of a chemical potential justifying the

notation.

Define the corresponding ground state energy density:

e0(ρµ) := lim
|Ω|→∞

|Ω|−1 inf
Ψ∈Fs\{0}

〈Ψ,HρµΨ〉
‖Ψ‖2

.(4.2)

We formulate the following result, which will be a consequence of Theorems 6.7

and 6.8 below.

Theorem 4.1. Suppose that v satisfies Assumption 1.1. Then the ther-

modynamic ground state energy density of Hρµ satisfies for ρµa
3 → 0 that

e0(ρµ) ≥ −4πρ2
µa

Å
1− 128

15
√
π

(ρµa
3)1/2 + C(ρµa3)1/2+η

ã
,(4.3)

where η > 0 and C depend on R =
∫
v/(8πa) and R/a as given explicitly in

Theorem 6.8.

Proof of Theorem 1.2. It is easy to deduce Theorem 1.2 from Theorem 4.1.

By inserting the ground state of HN as a trial state in Hρµ one gets in the

thermodynamic limit for all ρ, ρµ > 0,

e(ρ ) ≥ e0(ρµ) + 8πaρρµ(4.4)

≥ 8πaρρµ − 4πρ2
µa

Å
1− 128

15
√
π

(ρµa
3)1/2 + C(ρµa3)1/2+η

ã
,

where we have used the lower bound from Theorem 4.1. If we therefore choose

ρµ to be equal to ρ, we arrive at the LHY formula (1.3). �

5. The various parameters and their choices

As already mentioned in the introduction the important parameters given

in the problem are

a,

∫
v,R.

All estimates will in the end depend on these. The most important combination

is the diluteness parameter

ρµa
3.
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The proof introduces a series of additional parameters. There is an integer

M ∈ N

that determines the regularity of the localization function defined in Appen-

dix C. It will be chosen explicitly below. We cannot choose M = ∞, which

would correspond to χ being smooth, since it would complicate the double

localization. (Technically, some of the estimates in Appendix C depend on

the finiteness of M .) However, we need to choose M sufficiently large in the

control of various error terms.

The remaining parameters will be chosen to depend on ρµa
3 and R =∫

v/(8πa). There are dimensionless parameters 0 < s, d, εT that will be chosen

small, and there are dimensionless parameters 1 < K`,KM, ‹KH ,KB that will

be chosen large. The power in the error term will depend on the choice of these

seven parameters in terms of ρµa
3 and R =

∫
v/(8πa).

Let us describe how these parameters enter into the proof and list all

the conditions that they must satisfy. Finally we will make choices to show

that these conditions can all be satisfied. The reader not interested in the

description of all these conditions may just skip to (5.26) and the lines following

it, where concrete choices of parameters are made. One can then verify all

through the paper that these choices work at all stages of the proof.

As explained, the proof will use a double localization approach. First we

localize into large boxes of length scale

(5.1) ` =: K`(ρµa)−1/2,

and then we localize further to small boxes of length scale

(5.2) d` = dK`(ρµa)−1/2 � (ρµa)−1/2,

which gives us our first condition that dK` � 1. Here and below, f � g is used

in the precise meaning that (f/g) ≤ (ρµa
3)ε for some positive ε and likewise

for f � g.

The parameters εT , d, s appear in the kinetic energy localization formulas

of Section 6.2, and they must satisfy the conditions

d−5sM+1 � 1,(5.3)

(dK`)
2 � εTK

−2
` � εT � sdK`,(5.4)

sK` � 1,(5.5)

sdK` �K−1
B .(5.6)

Throughout the paper there will also be logarithmic factors. They are ignored

here as they are always accommodated by the conditions given. Condition (5.3)

is needed to prove the kinetic energy localization into the small boxes (see

(B.13)). It relies on a result from [7]. The first condition in (5.4) is needed to



904 SØREN FOURNAIS and JAN PHILIP SOLOVEJ

have a sufficiently large gap in the small boxes, but in fact, this would only

require (dK`)
2 � εT . The need for the stronger condition will be explained

below. The condition dK` � 1 noted above is contained in (5.4). The last

condition in (5.4) is required to finally get the correct LHY constant when

the appropriate integral is estimated in Section 12. Condition (5.5) is also

needed to control the same integral; in fact, this condition implies that the

localized kinetic energy (see (6.20)) in the large boxes is essentially the original

kinetic energy at the relevant Bogolubov scales. Finally, (5.6) introduces the

parameter KB to control that the small boxes are not too small. This is

required in order to get a good lower bound on the the energy in the small

boxes in Appendix B (see Theorem B.5) and hence for the a priori bound on

the energy in the large boxes and consequently on the number of particles and

excited particles in the large boxes (see Theorem 7.1). The parameter KB has

to satisfy the additional conditions that

KB � (ρµa
3)−1/6,(5.7)

K3
BK

2
` � (ρµa

3)−1/4.(5.8)

Here (5.7) is a very weak condition implying that the a priori lower bound

on the energy in Theorem B.6 is at least better than the leading order term.

Condition (5.8) ensures that the a priori bounds on the particle number and

expected number of excited particles are both correct to leading order (see

(7.2)).

The technique of localizing large matrices from [21] allows us to restrict

the analysis to the subspace where the number of excited particles is bounded

above by a number

(5.9) M =: KM(ρµa
3)−1/4.

It must satisfy

K−2
M

∫
v/a� 1,(5.10)

K3
BK

5
` �M = KM(ρµa

3)−1/4,(5.11)

KMK
−3
` � (ρµa

3)−1/4.(5.12)

Condition (5.10) is needed to control the error in the energy when restricting to

the situation with a bounded number of excited particles. Condition (5.11) says

that the upper boundM on the number of excited particles must be much big-

ger than the expected number of these particles, which in Theorem 7.1 is shown

to be not much worse than K3
BK

2
` ρµ`

3(ρµa
3)1/2 ∼ K3

BK
5
` . Condition (5.12) is

a very weak condition that ensures

(5.13) M� ρµ`
3,
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i.e., that the bound on the number of excited particles is much less than the

total number of particles.

When splitting the 3Q terms in a relevant and an irrelevant part we in-

troduce an upper cutoff for low momenta, which we choose to be KL(ρµa)1/2,

and a lower cutoff for high momenta, which we choose to be (see Section 9)

(5.14) ‹K−1
H (ρµa

3)5/12a−1.

The relevance of the power 5/12 is technical and will appear in the proof

of Lemma 10.3. For convenience we also introduce the parameter KH =‹KH(ρµa
3)−5/12. We will not choose KL as a new parameter, but take

KL =: (K`d
2)−1 � K`,(5.15)

where the estimate follows from (5.4).

We get the additional conditions

KMK
4
` � ‹K3

H ,(5.16)

(K`KL)1−M = d2M−2 � (ρµa
3)1/2,(5.17)

KL
‹KH = (K`d

2)−1‹KH � (ρµa
3)−1/12.(5.18)

Condition (5.18) ensures that the high momenta are disjoint from the low

momenta. Condition (5.17) will be ensured by choosing the integer M that

appears in the explicit localization function large enough. The condition is

needed to control errors that occur because of the localization function. This

error will also appear in the final error on the lower bound on the energy (see

(12.41)). Condition (5.16) is needed to control the error (see (10.13)) in cutting

off the 3Q terms in momentum by absorbing it into the energy gap. It is here

that the powers in the choice (5.14) become important.

After c-number substitution, we need to a priori control that the density

in the c-number substituted condensate is sufficiently close to ρµ. This is done

in Section 11 and requires the additional conditions

K8
` (ρµ`

3)−1MK6
LK

6
` =KMK

5
` d
−12(ρµa

3)1/4 � 1,(5.19)

K8
` (ρµ`

3)−1M3K6
L
‹K4
H(ρµa

3)4/3 =K3
M
‹K4
HK

−1
` d−12(ρµa

3)13/12 � 1.(5.20)

These conditions ensure that δ1 defined in Lemma 11.1 is small enough to

satisfy (12.2). That (12.2) is, indeed, satisfied then follows from (5.6) and

(5.8).

The treatment of the quadratic Bogolubov Hamiltonian KBog given in

Theorem 12.1 requires the condition

(5.21) KMK
−3/2
` (K`

‹KH(ρµa
3)1/12)M−5 � (ρµa

3)1/2.

Note that the term taken to the power M here is small by (5.18) and the

estimate in (5.15).
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The last detailed calculation estimating the 3Q terms, done in Section 12.2,

requires the conditions (see Theorem 12.4)

K3
LKM = (K`d

2)−3KM � (ρµa
3)−1/4,(5.22)

K2
`
‹K4
Hd
−6 � (ρµa

3)−1/3,(5.23)

KMK
−3
`
‹K−2
H � (ρµa

3)−1/12,(5.24)

KMK
−3
` d−12(K−2

`
‹K2
H(ρµa

3)1/6)M−1 � (ρµa
3)3/4.(5.25)

Conditions (5.24) and (5.25) are needed in order for the errors in Theorem 12.4

to be of lower order than LHY. There are two additional error terms in (12.41).

One is, however, already controlled by condition (5.17), and the last term is

small. Condition (5.4) above will also be needed in Section 12.2.

If we choose to let all the parameters depend on a small parameter X � 1

in the following way,

s = X, d = X6, εT = X23/4, K` = X−3/2,(5.26)

KB = X−6, KM = X−1, ‹KH = X−8/3,

then all conditions (5.4)–(5.6), (5.16) will be satisfied. In order to satisfy (5.7),

(5.8), (5.11), (5.12), (5.18)–(5.20), (5.22)–(5.24) of which the most restrictive

is (5.19), we can choose

(5.27) X = (ρµa
3)1/323.

We can choose the integer M = 30 to ensure that (5.3), (5.17),(5.21), and

(5.25) hold. Finally, (5.10) holds if

(5.28)

∫
v/a� (ρµa

3)−2/323.

To get all the arguments to work we need the assumptions

(5.29)

R < d`, R ≤ K1/2
B (ρµa

3)1/4(ρµa)−1/2, R/`� (ρµa
3)1/4, R/a� (ρµa

3)−1/4.

The fourth assumption (which could be improved slightly) is the most restric-

tive and is used in (12.8). The first and the second assumptions are used in

Appendix B, and the third assumption says that the range of the potential

should be sufficiently much smaller than the size of the large boxes.

6. Localization

6.1. Setup and notation. The main part of the analysis will be carried

out on a box Λ = [−`/2, `/2]3 of size ` given in (5.1). In this section we will

carry out the localization to the box Λ. The main result is given at the end

of the section as Theorem 6.7, which states that for a lower bound it suffices

to consider a “box energy,” i.e., the ground state energy of a Hamiltonian
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localized to a box of size `. For convenience, in Theorem 6.8 we state the

bound on the box energy that will suffice in order to prove Theorem 4.1.

It will be important to make an explicit choice of a localization function

χ ∈ CM−1
0 (R3) for M ∈ N with support in [−1/2, 1/2]3. It is given in Ap-

pendix C. The function will not be smooth, but it will be important in the

analysis that we choose M ∈ N finite but sufficiently large. The explicit choice

M = 30 was explained in the previous section. We choose χ to be even and

such that

0 ≤ χ,
∫
χ2 = 1.(6.1)

We will also use the notation

χΛ(x) := χ(x/`).(6.2)

For given u ∈ R3, we define

χu(x) = χ(
x

`
− u) = χΛ(x− u`).(6.3)

Notice that χu localizes to the box Λ(u) := `u+ [−`/2, `/2]3.

We will also need the sharp localization function θu to the box Λ(u), i.e.,

θu := 1Λ(u).(6.4)

Define Pu, Qu to be the orthogonal projections in L2(R3) defined by

Puϕ := `−3〈θu, ϕ〉θu, Quϕ := θuϕ− `−3〈θu, ϕ〉θu.(6.5)

In the case u = 0 we will use the notation

(6.6) Pu=0 = PΛ = P, Qu=0 = QΛ = Q.

Furthermore, define

W (x) :=
v(x)

χ ∗ χ(x/`)
.(6.7)

That W is well-defined uses that R < `, which is a much weaker condition

than (5.29). Manifestly W depends on ` and thus ρµ, but we will not reflect

this in our notation.

Define the localized potentials

wu(x, y) := χu(x)W (x− y)χu(y), w(x, y) := wu=0(x, y).(6.8)

Notice the translation invariance

wu+τ (x, y) = wu(x− `τ, y − `τ).(6.9)
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For some estimates it is convenient to invoke the scattering solution, and thus

we introduce the notation, which again is well-defined for ρµa
3 sufficiently

small,

W1(x) := W (x)(1− ω(x)) =
g(x)

χ ∗ χ(x/`)
,

w1(x, y) := w(x, y)(1− ω(x− y)),

W2(x) := W (x)(1− ω2(x)) =
g(x) + gω(x)

χ ∗ χ(x/`)
,

w2(x, y) := w(x, y)(1− ω2(x− y)).

(6.10)

If we add a subscript u, as above we mean the translated versions w1,u(x, y) =

w1(x − `u, y − `u). For ρµa
3 sufficiently small, a simple change of variables

yields, for all u ∈ R3, the identities

1

2
`−6

∫∫
R3×R3

χ(
x

`
)χ(

y

`
)W1(x− y) dx dy =

1

2
`−6

∫∫
R3×R3

w1(x, y) dx dy

=
1

2
`−3

∫
g = 4πa`−3

(6.11)

and likewise

1

2
`−6

∫∫
R3×R3

w2(x, y) dx dy =
1

2
`−3

∫
g(1 + ω).(6.12)

The following simple lemma will often be useful.

Lemma 6.1.

g(x) ≤W1(x) ≤ g(x)

Å
1 + C

R2

`2

ã
.(6.13)

Proof. The proof is an easy estimate of the convolution, noting that its

maximum is attained at the origin. We have used that R < `. �

Lemma 6.2. Suppose that f ∈ L1(R3) satisfies supp f ⊂ B(0, R) and

f(−x) = f(x). Then∣∣∣∣f ∗ χΛ(x)− χΛ(x)

∫
f

∣∣∣∣ ≤ max
i,j
‖∂i∂jχ‖∞

Å
R

`

ã2 ∫
|f |.(6.14)

Proof. The proof is an easy application of a Taylor expansion and the

integral representation

f ∗ χΛ(x)− χΛ(x)

∫
f =

∫
f(y)[χΛ(x− y)− χΛ(x)] dy. �
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Lemma 6.3. Suppose that R/` ≤ 1. For some universal constant C > 0,

we have ∣∣∣∣∣(2π)−3

∫
Ŵ1(k)2

2k2
dk − ĝω(0)

∣∣∣∣∣ ≤ C(R/`)2ĝω(0).(6.15)

We also get ∫
(Ŵ1(k)− ĝ(k))2

2k2
dk ≤ CR

4

`4
ĝω(0).(6.16)

Proof. Recall that ω̂(k) = ĝ(k)
2k2

by (3.6). Using the Fourier transformation

and (6.13) we get∣∣∣∣∣(2π)−3

∫
Ŵ 2

1 (k)− ĝ2(k)

2k2
dk

∣∣∣∣∣ = C

∫∫
(W1 − g)(x)(W1 + g)(y)

|x− y|
dx dy

≤ 3C
R2

`2

∫∫
g(x)g(y)

|x− y|
dx dy

= C ′
R2

`2
ĝω(0).

(6.17)

This finishes the proof of (6.15). The proof of (6.16) follows from a similar

calculation and is omitted. �

6.2. Localization of the kinetic and potential energies. We will use a sliding

localization technique developed in the paper [7], where we estimate the kinetic

energy−∆ in R3 below by an integral over kinetic energy operators in the boxes

Λ(u). The following theorem is essentially Lemma 3.7 in [7].

Lemma 6.4 (Kinetic energy localizaton). Let −∆Nu denote the Neumann

Laplacian in Λ(u). If the regularity of χ has M ≥ 5 (e.g., for our choice 30)

and the positive parameters εT , d, s, b are smaller than some universal constant,

then for all ` > 0, we have

(6.18)

∫
R3

Tudu ≤ −∆,

where

Tu :=
1

2
εT (d`)−2 −∆Nu

−∆Nu + (d`)−2

+ b`−2Qu + bεT (d`)−2Qu1(d−2`−1,∞)(
√
−∆)Qu + T ′u,

(6.19)

with

T ′u := Quχu

{
(1− εT )

[√
−∆− 1

2
(s`)−1

]2

+
+ εT

[√
−∆− 1

2
(ds`)−1

]2

+

}
χuQu.

(6.20)
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Proof. In Lemma 3.7 in [7] we have the same inequality except that the

terms above

1

2
εT (d`)−2 −∆Nu

−∆Nu + (d`)−2
+ bεT (d`)−2Qu1(d−2`−1,∞)(

√
−∆)Qu

are replaced by the term εT (d`)−2 −∆Nu
−∆Nu +(d`)−2 .

Using scaling it is clear that we may assume ` = 1. The proof in Lemma 3.7

in [7] relies on the inequality (see (44) in [7])

d−2

∫
R3

−∆Nu
−∆Nu + d−2

du ≤ d−2 −∆

−∆ + d−2
.

The lemma above will follow in the same way if we can also prove that

(6.21) bd−2

∫
R3

Qu1(d−2,∞)(
√
−∆)Qudu ≤

1

2
d−2 −∆

−∆ + d−2
.

Using Lemma 3.3 in [7] (with χu = θu = 1Λ(u) and K(p) = bd−2
1(d−2,∞))

we can explicitly calculate the operator on the left in (6.21) to be H(−i∇),

where

H(p) =(2π)−3bd−2

∫
|q|>d−2

(θ̂(p)θ̂(q)− θ̂(q − p))2dq

≤(2π)−32bd−2(θ̂(p)− 1)2

×
∫
|q|>d−2

θ̂(q)2dq + (2π)−32bd−2

∫
|q|>d−2

(θ̂(q − p)− θ̂(q))2dq.

(6.22)

We clearly have H(0) = 0 and 0 ≤ H(p) ≤ Cbd−2. We will improve this

estimate if |p| < d−1. We will use that θ̂(q) = θ̂1(q1)θ̂1(q2)θ̂1(q3), where θ1

is the characteristic function of [−1/2, 1/2] ⊂ R. We easily see that for all

s, t ∈ R, with |s| < |t|/2 we have

θ̂1(t)2 ≤ C(1 + t2)−1, (θ̂1(t− s)− θ̂1(t))2 ≤ C s2

(1 + t2)
.

As the set |q| > d−2 is a subset of the union of the sets where |qi| > d−2/
√

3,

i = 1, 2, 3, we immediately see that the first term above in the estimate (6.22)

on H(p) is bounded by Cb|p|2. For the second term we use that

θ̂(q)− θ̂(p− q) = θ̂1(q1)[θ̂1(q2)θ̂1(q3)− θ̂1(p2 − q2)θ̂1(p3 − q3)]

+ [θ̂1(q1)− θ̂1(p1 − q1)]θ̂1(p2 − q2)θ̂1(p3 − q3)
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and that ∫∫ Ä
θ̂1(q2)θ̂1(q3)− θ̂1(p2 − q2)θ̂1(p3 − q3)

ä2
dq2dq3

= C

∫∫
[−1/2,1/2]2

|1− ei(x1p1+x2p2 |2dx2dx2

≤ C(p2
2 + p2

3)

to see that

bd−2

∫
|q1|>d−2/

√
3
(θ̂(q − p)− θ̂(q))2dq ≤ Cb|p|2.

Here we have used that over the domain of integration, |p1| < |q1|/2 since

|p| < d−1 and d is chosen sufficiently small. The same holds for the inte-

grals over |q2| > d−2/
√

3 and |q2| > d−2/
√

3. It then follows that H(p) ≤
Cbmin{|p|2, d−2}. Hence (6.21) holds if b is smaller than a universal con-

stant. �

Remark 6.5. The kinetic operator in (6.19) looks complicated. This is

partly because we need to localize it even further into smaller boxes in order

to get a priori estimates (see Appendix B). The first term in (6.19) will give us

a Neumann gap in the small boxes. The second term in (6.19) is a Neumann

gap in the large boxes. The third term in (6.19) will control errors coming from

excited particles with very large momenta. (See Lemma 9.1 and the estimate

(12.49) in Lemma 12.5.) Finally the term T ′u is the main kinetic energy term

in the large boxes.

The localization of the potential energy is much simpler and relies on the

identity in the following lemma, which is a straightforward computation similar

to Proposition 3.1 in [7].

Lemma 6.6 (Potential energy localization). For points x1, . . . , xN ∈ R3,

we have with the definitions of w1,u and wu in (6.8) and (6.10) that

−ρµ
N∑
i=1

∫
g(xi − y) dy +

∑
i<j

v(xi − xj)

=

∫
R3

[
− ρµ

N∑
i=1

∫
w1,u(xi, y) dy +

∑
i<j

wu(xi, xj)
]
du.

(6.23)

6.3. The localized Hamiltonian. The localized HamiltonianHΛ,u will be an

operator on the symmetric Fock space over L2(R3) preserving particle number.

Its action on the N -particle sector is as

(6.24) (HΛ,u(ρµ))N :=

N∑
i=1

T (i)
u − ρµ

N∑
i=1

∫
w1,u(xi, y) dy +

∑
i<j

wu(xi, xj),
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where the kinetic energy operator was given in (6.19) above. We abbreviate

(6.25) T := Tu=0, HΛ(ρµ) := HΛ,u=0(ρµ).

We will also write

χΛ := χu=0 = χ( · /`).
Define the ground state energy and energy density in the box by

EΛ(ρµ) := inf SpecHΛ(ρµ),(6.26)

eΛ(ρµ) := `−3 inf SpecHΛ(ρµ) = `−3EΛ(ρµ).(6.27)

With these conventions, we find

Theorem 6.7. We have

e0(ρµ) ≥ eΛ(ρµ).(6.28)

Proof. The proof of this statement follows from the fact that (HΛ,u(ρµ))N
and (HΛ,u′(ρµ))N are unitarily equivalent by (6.9). Thus, using Lemmas 6.4

and 6.6 we find that

Hρµ,N ≥
∫
`−1(Ω+B(0,`/2))

(HΛ,u(ρµ))N du ≥ `−3|Ω +B(0, `/2)|EΛ(ρµ).(6.29)

Now the desired result follows upon using that |Ω +B(0, `/2)|/|Ω| → 1 in the

thermodynamic limit. �

It is clear, using Theorem 6.7, that Theorem 4.1 is a consequence of the

following theorem on the box Hamiltonian. Therefore, the remainder of the

paper will be dedicated to the proof of Theorem 6.8 below.

Theorem 6.8. Suppose that v satisfies Assumption 1.1, (5.28) and (5.29).

Then with R = (8πa)−1
∫
v and the parameters chosen in (5.26) with X as in

(5.27), and with M as chosen in Section 5, we have in the limit ρµa
3 → 0,

eΛ(ρµ) ≥ −4πρ2
µa+ 4πρ2

µa
128

15
√
π

(ρµa
3)

1
2

− Cρ2
µa(ρµa

3)1/2

Å
X2R+

R2

a2
(ρµa

3)
1
2 +X

1
5

ã
.

(6.30)

6.4. Potential energy splitting. Using that P+Q=1Λ we will in Lemma 6.9

below arrive at a very useful decomposition of the potential.

Define the (commuting) operators

n0 =
N∑
i=1

Pi, n+ =
N∑
i=1

Qi, n =
N∑
i=1

1Λ,i = n0 + n+.(6.31)

We furthermore define

ρ+ := n+`
−3, ρ0 := n0`

−3.(6.32)
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A crucial idea in this paper is to write the potential energy in the form given

in the next lemma, where the important observation is to identify the positive

term Qren
4 , which we will ignore in our lower bound.

Lemma 6.9 (Potential energy decomposition). We have

(6.33)

− ρµ
N∑
i=1

∫
w1(xi, y) dy +

1

2

∑
i 6=j

w(xi, xj) = Qren
0 +Qren

1 +Qren
2 +Qren

3 +Qren
4 ,

where3

Qren
4 :=

1

2

∑
i 6=j

[
QiQj + (PiPj + PiQj +QiPj)ω(xi − xj)

]
w(xi, xj)

×
[
QjQi + ω(xi − xj)(PjPi + PjQi +QjPi)

]
,

(6.34)

Qren
3 :=

∑
i 6=j

PiQjw1(xi, xj)QjQi + h.c.

(6.35)

Qren
2 :=

∑
i 6=j

PiQjw2(xi, xj)PjQi +
∑
i 6=j

PiQjw2(xi, xj)QjPi

− ρµ
N∑
i=1

Qi

∫
w1(xi, y) dyQi +

1

2

∑
i 6=j

(PiPjw1(xi, xj)QjQi + h.c.),

(6.36)

Qren
1 :=

∑
i,j

PjQiw2(xi, xj)PiPj − ρµ
∑
i

Qi

∫
w1(xi, y) dyPi + h.c.,

(6.37)

Qren
0 :=

1

2

∑
i 6=j

PiPjw2(xi, xj)PjPi − ρµ
∑
i

Pi

∫
w1(xi, y) dyPi.

(6.38)

Proof. The identity (6.33) follows using simple algebra and the identities

(6.10). We simply write Pi +Qi = 1Λ,i for all i. Inserting this identity in both

i and j on both sides of w(xi, xj) and expanding yields 16 terms, which we

have organized in a positive Q4 term and terms depending on the number of

Q’s occurring. �

3Here and in the rest of the paper, we have used that standard abbreviation “h.c.” for

“hermitian conjugate.” To be precise, for an operator A we have A+ h.c. = A+ A∗, where

A∗ is the adjoint of A.
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It will be useful to rewrite and estimate these terms as in the following

lemma.

Lemma 6.10. If v and hence W1 are non-negative, then we have

Qren
0 =

n0(n0 − 1)

2|Λ|2

∫∫
w2(x, y) dxdy − ρµ

n0

|Λ|

∫∫
w1(x, y) dxdy

=
n0(n0 − 1)

2|Λ|

(
ĝ(0) + ĝω(0)

)
− ρµn0ĝ(0),

(6.39)

Qren
1 = (n0|Λ|−1 − ρµ)

∑
i

QiχΛ(xi)W1 ∗ χΛ(xi)Pi + h.c.

+ n0|Λ|−1
∑
i

QiχΛ(xi)(W1ω) ∗ χΛ(xi)Pi + h.c.
(6.40)

and

Qren
2 ≥

∑
i 6=j

PiQjw2(xi, xj)PjQi +
1

2

∑
i 6=j

(PiPjw1(xi, xj)QjQi + h.c.)

+
(

(ρ0 − ρµ)”W1(0) + ρ0
‘W1ω(0)

)
×
∑
i

QiχΛ(xi)
2Qi − C(ρµ + ρ0)a(R/`)2n+.

(6.41)

Proof. The rewriting of Q0 is straightforward using (6.11) and (6.12). The

rewriting of Qren
1 follows from

Qren
1 =

(
(n0|Λ|−1 − ρµ)

∑
i

Qi

∫
w1(xi, y) dyPi + h.c.

)
+
(
n0|Λ|−1

∑
i

Qi

∫
w1(xi, y)ω(xi − y) dyPi + h.c.

)
.

We carry out the similar calculation on the part of the 2Q-term where P acts

in the same variable on both sides of the potential, i.e., the second term in

(6.36), to get

Qren
2 =

∑
i 6=j

PiQjw2(xi, xj)PjQi +
1

2

∑
i 6=j

(PiPjw1(xi, xj)QjQi + h.c.)

+ (ρ0 − ρµ)
∑
i

QiχΛ(xi)W1 ∗ χΛ(xi)Qi

+ ρ0

∑
i

QiχΛ(xi)(W1ω) ∗ χΛ(xi)Qi.
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At this point we invoke Lemma 6.2 to get, for example,

∑
i

QiχΛ(xi)W1 ∗ χΛ(xi)Qi ≥
(∫

W1

)∑
i

QiχΛ(xi)
2Qi

(6.42)

−max
i,j
‖∂i∂jχ‖∞(R/`)2

(∫
W1

)
‖χ‖∞n+. �

The decomposition in Lemma 6.9 easily implies a simple lower bound on

the potential energy.

Lemma 6.11 (Simple bound on the potential energy). If the 2-body poten-

tial v ≥ 0, we have for all x1, . . . , xN ∈ R3 the following bound on the potential

energy :

−ρµ
N∑
i=1

∫
w1(xi, y) dy +

1

2

∑
i 6=j

w(xi, xj) ≥ − C(n2`−3 + ρ2
µ`

3)a+
1

2
Qren

4 .

(6.43)

Moreover, we also have the bounds

±Qren
1 ≤ C(n2`−3 + ρ2

µ`
3)a,(6.44)

±
(∑
i 6=j

QjQiw1(xi, xj)PiPj + h.c.
)
≤ Cn2`−3a+

1

4
Qren

4 ,(6.45)

±
(∑
i,j

PjQ
′
iw1(xi, xj)QiQj + h.c.

)
≤ Cn2`−3a+

1

4
Qren

4(6.46)

for any (not necessarily self adjoint) operator Q′ on L2(R3) with QQ′ = Q′

and ‖Q′‖ ≤ 1.

Proof. Since 0 ≤
∫
W1 ≤ Ca, we have

(6.47) 0 ≤ ρµ
N∑
i=1

∫
w1(xi, y) dy ≤ Ca‖χΛ‖2∞ρµn ≤ Ca‖χΛ‖2∞(ρ2

µ`
3 + n2`−3).

The off-diagonal terms in the one-body potential can be estimated using a

Cauchy-Schwarz inequality relying on the positivity of w1

±ρµ
( N∑
i=1

Pi

∫
w1(xi, y) dyQi + h.c.

)
≤ ρµ

N∑
i=1

Pi

∫
w1(xi, y) dyPi

+ ρµ

N∑
i=1

Qi

∫
w1(xi, y) dyQi

≤Ca(1 + ‖χΛ‖2∞)ρµn.

(6.48)
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We also have

0 ≤
∑
i,j

PiQjw1(xi, xj)PiQj

= n0|Λ|−1
∑
j

QjχΛ(xj)W1 ∗ χΛ(xj)Qj ≤ Cn0n+`
−3a‖χΛ‖2∞

or more generally, using again Cauchy-Schwarz inequalities, we have for all

k = 0, 1, . . . ,

±
(∑
i,j

PiQ
′
j(w1ω

k)(xi, xj)PiQj + h.c.
)

≤ Cn0`
−3a‖χΛ‖2∞

(
εn+ + ε−1

∑
i

Q′iQ
′∗
i

)
,

(6.49)

±
(∑
i,j

PiQ
′
j(w1ω

k)(xi, xj)PjQi + h.c.
)

≤ Cn0`
−3a‖χΛ‖2∞

(
εn+ + ε−1

∑
i

Q′iQ
′∗
i

)
,

(6.50)

±
(∑
i,j

PjQ
′
i(w1ω

k)(xi, xj)PiPj + h.c.
)

≤
∑
i,j

PjQ
′
i(w1ω

k)(xi, xj)Q
′∗
i Pj

+
∑
i,j

PjPi(w1ω
k)(xi, xj)PiPj

≤ Cn0a`
−3
(
‖χΛ‖2∞

∑
i

Q′iQ
′∗
i + n0

)
(6.51)

for all ε > 0, where we have abbreviated

(w1ω
k)(x1, x2) = w1(x1, x2)ω(x1 − x2)k.

In this proof we will choose ε = 1 and use
∑

iQ
′
iQ
′∗
i ≤ n+ ≤ n. The freedom to

choose ε 6= 1 will be used in the proof of Corollary 6.12 below. The estimates in

(6.49)–(6.51) prove (6.44) if we recall that w2 = w1(1 +ω) and choose Q′ = Q.

To prove (6.46) we rewrite the terms in Qren
3 as follows:∑

i,j

PiQ
′
jw1(xi, xj)QjQi

=
∑
i,j

(
PiQ

′
jw1(xi, xj)

[
QjQi + ω(xi − xj)(PjPi + PjQi +QjPi)

])
−
∑
i,j

(
PiQ

′
jw1(xi, xj)ω(xi − xj)(PjPi + PjQi +QjPi)

)(6.52)
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and likewise for the Hermitian conjugate terms. Thus applying a Cauchy-

Schwarz inequality and the estimates (6.49)–(6.51) we arrive at

±
(∑
i,j

PiQ
′
jw1(xi, xj)QjQi + h.c.

)
≤ 1

2
Qren

4 + C
∑
i 6=j

PiQ
′
jw1(xi, xj)(1− ω(xi − xj))Q′∗j Pi + Cn2a`−3,

which implies (6.46). The estimate (6.45) follows in the same way. Finally, the

estimate (6.43) follows from (6.45), (6.46), and (6.47)–(6.51) with Q′ = Q. �

In our more detailed analysis of the Q3 terms in Section 9 we will need

the following more refined version of the estimate in (6.46).

Corollary 6.12. With the same notation as in Lemma 6.11 we have for

all 0 < ε < 1,∑
i,j

(
PjQ

′
iw1(xi, xj)QiQj + PjQ

′
iw1(xi, xj)ω(xi − xj)PiPj

)
+ h.c.

≥ −Cn0`
−3a
(
ε−1

∑
i

Q′iQ
′∗
i + εn+

)
− 1

4
Qren

4 .

(6.53)

Proof. We again use the identity (6.52) and perform the same Cauchy-

Schwarz as above, but the term with three P operators now appear on the left

and we do not have to estimate it using (6.51). We, however, use (6.49) and

(6.50) with 0 < ε < 1. �

7. A priori bounds on particle number and excited particles

In the section we will give some important a priori bounds on the particle

number n, the number of excited particles n+ as well as on some of the potential

energy terms. The bounds on n and n+ essentially say that for states with

sufficiently low energy, n is close to what one would expect; i.e., ρµ`
3 and the

expectation of n+ is smaller with a factor that is not much worse than the

relative LHY error. These bounds are difficult to prove and are given in (7.2)

below. The proof is in Appendix B. They rely on a very detailed analysis of a

further localization into smaller boxes.

Theorem 7.1 (A priori bounds). Assume that conditions (5.3), (5.4),

(5.6), (5.7), and (5.29) on KB , R, εT , s, and d are satisfied and that ρµa
3

is small enough. Then there is a universal constant C > 0 such that if Ψ ∈
Fs(L2(Λ)) is an n-particle normalized state in the bosonic Fock space over

L2(Λ) satisfying

〈Ψ,HΛ(ρµ)Ψ〉 ≤ −4πρ2
µa`

3(1− J(ρµa
3)

1
2 )(7.1)
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for a 0 < J ≤ K3
B (the freedom to take J < K3

B will be used in Lemma 8.2),

then

(7.2)

|n`−3−ρµ| ≤ ρµCK3/2
B K`(ρµa

3)1/4 and 〈Ψ, n+Ψ〉 ≤ Cρµ`3K3
BK

2
` (ρµa

3)1/2.

Moreover, we also have

(7.3) 0 ≤ 〈Ψ,Qren
4 Ψ〉 ≤ Cρ2

µa`
3

and

∣∣∣〈Ψ, ρµ N∑
i=1

(
Pi

∫
w1(xi, y)dyQi + h.c.

)
Ψ〉
∣∣∣

+
∣∣∣〈Ψ,∑

i 6=j
(QjPiw(xi, xj)PiPj + h.c.)Ψ〉

∣∣∣
+
∣∣∣〈Ψ,∑

i,j

(PjQiw(xi, xj)QiQj + h.c.)Ψ〉
∣∣∣

+
∣∣∣〈Ψ,∑

i 6=j
(QjQiw(xi, xj)PiPj + h.c.)Ψ〉

∣∣∣
≤ Cρ2

µ`
3

∫
v.

(7.4)

Remark 7.2. Note that the expressions on the left of (7.4) above contain

w instead of w1, which appeared in (6.44)–(6.46). We will need the estimates

(7.4) in the next section, and this will be the only place where an estimate

containing
∫
v will be used.

Proof. As explained, the bounds (7.2) are proved in Theorem B.6. Due

to our assumptions they, in particular, imply that n ≤ Cρµ`3.

This a priori bound on n, the positivity of the kinetic energy T , and the

bound in (6.43) immediately imply

〈Ψ,HΛ(ρµ)Ψ〉 ≥ −Cρ2
µa`

3 +
1

2
〈Ψ,Qren

4 Ψ〉,

which by the assumption on Ψ gives the bound (7.3).

The bounds on the first two terms in (7.4) follow exactly as the proofs

of (6.49)–(6.51) for k = 0 and with w1 replaced by w such that a has to be

replaced by
∫
v ≥ 8πa in the bounds. The bounds on the last two terms in

(7.4) follow the same lines as the proof of (6.45) and (6.46). We sketch it for
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the last term in (7.4). We rewrite∑
i 6=j

PiPjw(xi, xj)QiQj

=
∑
i 6=j

PiPjw(xi, xj)(QiQj + ω(xi − xj)(PiPj +QiPj + PiQj))

−
∑
i 6=j

PiPjw(xi, xj)ω(xi − xj)(PiPj +QiPj + PiQj)

(7.5)

and likewise for the Hermitian conjugate. If we recall that 0 ≤ ω ≤ 1, the

last sum is estimated as in the case of (6.49)–(6.51) again with a replaced

by
∫
v . The first term above together with its complex conjugate is after a

Cauchy-Schwarz controlled by a similar term and Qren
4 ; i.e., we get∞

Ψ,
(∑
i 6=j

PiPjw(xi, xj)QiQj + h.c.
)

Ψ

∫
≤ Cρ2

µ`
3

∫
v + C〈Ψ, Qren

4 Ψ〉,

which by the bound (7.3) implies what we want. �

8. Localization of the number of excited particles n+

As in [7] we shall use the following theorem from [21] to restrict the number

of excited particles.

Theorem 8.1 (Localization of large matrices). Suppose A is an (N + 1)

× (N + 1) Hermitian matrix, and let A(k), with k = 0, 1, . . . , N , denote the

matrix consisting of the kth supra- and infra-diagonal of A. Let ψ ∈ CN+1

be a normalized vector, and set dk = 〈ψ,A(k)ψ〉 and λ = 〈ψ,Aψ〉 =
∑N

k=0 dk.

(Note that ψ need not be an eigenvector of A.) Choose some positive integer

M′ ≤ N + 1. Then, with M′ fixed, there is some n′ ∈ [0, N + 1 − M′]
and some normalized vector ϕ ∈ CN+1 with the property that ϕj = 0 unless

n′ + 1 ≤ j ≤ n′ +M′ (i.e., ϕ has localization length M′) and such that

〈ϕ,Aϕ〉 ≤ λ+
C

M′2
M′−1∑
k=1

k2|dk|+ C

N∑
k=M′

|dk|,(8.1)

where C > 0 is a universal constant. (Note that the first sum starts at k = 1.)

This will allow us to prove the following result using the estimate (7.4).

We emphasize that this is the only place in the proof of our main result where

an estimate depends explicitly on
∫
v and not just on a.

Lemma 8.2 (Restriction on n+). Let M be as defined in (5.9) and sat-

isfying (5.10) and (5.11). Assume, moreover, that ρµa
3 is small enough.

There is then a universal C > 0 such that if there is a normalized n-particle
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Ψ ∈ Fs(L2(Λ)) satisfying (7.1) under the assumptions in Theorem 7.1 with J =
1
2K

3
B , then there is also a normalized n-particle wave function ‹Ψ ∈ Fs(L

2(Λ))

with the property that ‹Ψ = 1[0,M](n+)‹Ψ,(8.2)

i.e., only values of n+ smaller than M appear in ‹Ψ, and such that

(8.3)
¨‹Ψ,HΛ(ρµ)‹Ψ∂ ≤ 〈Ψ,HΛ(ρµ)Ψ〉+ CK−2

M ρ2
µ`

3(ρµa
3)1/2

∫
v.

Proof. We may assume from (5.11) that M ≥ 5 and that M ≤ n since

otherwise there is nothing to prove.

We shall apply Theorem 8.1 on localization of large matrices to the (n+1)

× (n+ 1)-matrix with elements

Ai,j = ‖1n+=iΨ‖−1‖1n+=jΨ‖−1〈1n+=iΨ, HΛ(ρµ)1n+=jΨ〉.

(If any of the norms are zero, we set the element to zero.) Then we get a

normalized vector ψ = (‖1n+=0Ψ‖, . . . , ‖1n+=nΨ‖) in Cn+1 and

〈ψ,Aψ〉 = 〈Ψ, HΛ(ρµ)Ψ〉.

Moreover, for the matrix A, using the notation of Theorem 8.1, only the A(k)

with k = 0, 1, 2 are non-vanishing. In fact, we have

d1 = 〈ψ,A(1)ψ〉

=
〈

Ψ,
(
−ρµ

N∑
i=1

(Pi

∫
w1(xi, y)dyQi + h.c.)

+
∑
i 6=j

(QjPiw(xi, xj)PiPj + h.c.) +
∑
i 6=j

(PiQjw(xi, xj)QjQi + h.c.)
)

Ψ
〉

and

d2 = 〈ψ,A(2)ψ〉 =
〈

Ψ,
(∑
i 6=j

(PiPjw(xi, xj)QjQi + h.c.)
)

Ψ
〉
.

It thus follows from (7.4) that |d1|, |d2| ≤ Cρ2
µ`

3
∫
v.

The theorem on localization of large matrices tells us that if we choose

M′ equal to the integer part ofM/2, we can find a normalized ϕ ∈ Cn+1 with

localization length M′ such that

〈ϕ,Aϕ〉 ≤ 〈ψ,Aψ〉+ CM′−2(|d1|+ |d2|))

≤〈Ψ, HΛ(ρµ)Ψ〉+ CK−2
M ρ2

µ`
3(ρµa

3)1/2

∫
v.

(8.4)
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Let ϕ̃ ∈ Cn+1 be given by ϕ̃i = ϕi if ‖1n+=iΨ‖ 6= 0 and ϕ̃i = 0 if ‖1n+=iΨ‖ = 0.

Then ‖ϕ̃‖ ≤ 1. We then have

〈ϕ̃,Aϕ̃〉 = 〈ϕ,Aϕ〉 ≤ 〈Ψ, HΛ(ρµ)Ψ〉+ CK−2
M ρ2

µ`
3(ρµa

3)1/2

∫
v < 0,(8.5)

where the negativity follows from J = 1
2K

3
B, (5.7), and (5.10). In particular,

ϕ̃ 6= 0. Define ‹Ψ = ‖ϕ̃‖−1
n∑
i=0

ϕ̃i‖1n+=iΨ‖−1
1n+=iΨ.

Then ‹Ψ is normalized and satisfies¨‹Ψ, HΛ(ρµ)‹Ψ∂ = ‖ϕ̃‖−2〈ϕ̃,Aϕ̃〉 ≤ 〈ϕ̃,Aϕ̃〉,

since the term on the right is negative and ‖ϕ̃‖−2 ≥ 1. This proves that ‹Ψ
satisfies (8.3). It remains to prove that ‹Ψ satisfies (8.2). We know from the

construction that the possible values of n+ that occur in ‹Ψ lie in an interval of

length M′. We need to prove that this interval lies close to zero. This follows

from the estimate (8.3), J = 1
2K

3
B, and (5.10). which imply that we may use

the a priori bound (7.2) on the expectation value of n+ in ‹Ψ. The consequence

is that the interval of n+ values in ‹Ψ must be contained in

[0,M′ + Cρµ`
3K3

BK
2
` (ρµa

3)1/2] = [0,M′ + CK3
BK

5
` ] ⊆ [0,M]

by (5.11). �

9. Localization of the 3Q-term

In this section we will absorb an unimportant part of the 3Q term in the

positive 4Q term.

We first define the “low” and “high” momentum regions as follows:

PL := {|p| ≤ KL
√
ρµa}, PH := {|p| ≥ ‹K−1

H (ρµa
3)

5
12a−1} = {|p| ≥ K−1

H a−1},
(9.1)

where KL, ‹KH were defined in Section 5. The somewhat peculiar definition

of PH is convenient for later estimates. (See the proof of Lemma 10.3.) We

will always assume that (5.18) is satisfied. This assures that PL and PH are

disjoint.

We will define the low momentum localization operator QL as follows. Let

f ∈ C∞(R) be a monotone non-increasing function satisfying that f(s) = 1

for s ≤ 1 and f(s) = 0 for s ≥ 2. We further define

fL(s) := f
( s

KL
√
ρµa

)
;(9.2)
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i.e., fL is a smooth localization to the low momenta PL. With this notation,

we define

QL := QfL(
√
−∆), QL := Q(1− fL(

√
−∆)).(9.3)

Notice that QL is not self-adjoint.

We will choose KL such that KL
√
ρµa = d−2`−1—this is equivalent to

(5.15)—where d is from the definition of the “small boxes” (see (5.2)).

We define

nH+ :=
N∑
j=1

Qj1(d−2`−1,∞)(
√
−∆j)Qj .(9.4)

With this definition and the choice of KL above, we have

(9.5)
N∑
j=1

QL,j(QL,j)
∗ ≤ nH+ .

Lemma 9.1. Define

(9.6) ‹Q(1)
3 :=

∑
i 6=j

(PiQL,jw1(xi, xj)QjQi + h.c.).

We assume (5.4), (5.17) and (7.2). With the notation from (6.34), (6.35),

we get

Qren
3 +

1

4
Qren

4 +
b

100

Ä
`−2n+ + εT (d`)−2nH+

ä
≥ ‹Q(1)

3 − Cρ
2
µa`

3

Å
(K`KL)1−M +

R2

`2

ã
.

(9.7)

Proof. Using Corollary 6.12, with Q′ = QL, and ε = cK−2
` for some suffi-

ciently small constant c, as well as (9.5) we find

1

4
Qren

4 +
b

100`2
n+ +Qren

3 − ‹Q(1)
3

≥
∑
i,j

(
PjQL,iw1(xi, xj)ω(xi − xj)PiPj + h.c.

)
− C`−2K4

` n
H
+ .

(9.8)

Using (5.4) it is clear that the nH+ term is dominated by half of the positive

nH+ term from (9.7).

To estimate the remaining terms in (9.8) we start by using the estimate

on the convolution from Lemma 6.2 to get

−
∑
i 6=j

(
PiQL,jw1(xi, xj)ω(xi − xj)PjPi + h.c.

)
≥ −I`−3

(
n0

∑
j

QL,jχ
2
Λ(xj)Pj + h.c.

)
− Can2`−3R

2

`2
,

(9.9)

where I :=
∫
W1(y)ω(y) ≤ Ca.
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To complete the proof we write, with M − 1 ≤ 2M̃ ≤M ,

QLχ
2
ΛP + h.c. = QL(`−2 −∆)−M̃

[
(`−2 −∆)M̃χ2

Λ

]
P + h.c.(9.10)

and notice that

|(`−2 −∆)M̃χ2
Λ| ≤ C`−2M̃ .(9.11)

Therefore,

QLχ
2
ΛP + h.c. ≤ ε2P + ε−1

2 `2M̃QL(`−2 −∆)−2M̃ (QL)∗

≤ ε2P + ε−1
2 (K`KL)−2M̃QL(QL)∗.

(9.12)

Choosing ε2 = (K`KL)−2M̃ and using again (5.4), we get (9.7) upon summing

this estimate in the particle indices and absorbing the nH+ term as before. �

10. Second quantized operators

10.1. Creation/annihilation operators. We will use a, a† to denote the

standard bosonic annihilation/creation operators on the bosonic Fock space

Fs(L2(Λ)).

We define a0 as the annihilation operator associated to the condensate

function for the box Λ, i.e., a0 = `−3/2a(θ), where we recall that θ defined in

(6.4) is the characteristic function of the box. In more detail, for Ψ ∈ ⊗Ns L2(Λ),

we have

(a0Ψ)(x2, . . . , xN ) :=

√
N

`3/2

∫
Λ

Ψ(y, x2, . . . , xN ) dy.

Therefore,

〈Ψ, n0Ψ〉 = 〈Ψ | a†0a0Ψ〉 =
N

`3

∫ ∣∣∣∣∫
Λ

Ψ(y, x2, . . . , xN ) dy

∣∣∣∣2 dx2 · · · dxN .(10.1)

Due to the localization function χΛ it is convenient to work with the

localized annihilation/creation operators ak, a
†
k defined in (10.3) below. How-

ever, we will also need the non-localized versions ãk, ã
†
k. Since these are more

standard, we give their definition first.

For k ∈ R3 \ {0}, we let

ãk := `−3/2a(Q(eikxθ)), ã†k := `−3/2a†(Q(eikxθ))(10.2)

Clearly, for k, k′ ∈ R3 \ {0},

[ãk, ãk′ ] = 0, [ãk, ã
†
k′ ] = `−3〈eikxθ,Qeik′xθ〉.(10.3)

We also define, for k ∈ R3 \ {0},

ak := `−3/2a(Q(eikxχΛ)) and a†k := `−3/2a(Q(eikxχΛ))∗.(10.4)
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Then, for all k, k′ ∈ R3 \ {0},

[ak, ak′ ] = 0(10.5)

and

[ak, a
†
k′ ] = `−3〈Q(eikxχΛ), Q(eik

′xχΛ)〉 = χ̂2((k − k′)`)− χ̂(k`)χ̂(k′`).(10.6)

In particular,

[ak, a
†
k] ≤ 1.(10.7)

Furthermore, we introduce the Fourier multiplier corresponding to the localized

kinetic energy (after the separation of the constant term), i.e.,

τ(k) := (1− εT )
[
|k| − 1

2
(s`)−1

]2

+
+ εT

[
|k| − 1

2
(ds`)−1

]2

+
.(10.8)

We can express the different parts of the Hamiltonian HΛ(ρµ) in second quan-

tized formalism. We give this as the following Lemma 10.1. The proof is a

standard calculation and will be omitted.

Lemma 10.1. We have the following expressions for the operators in sec-

ond quantized formalism (with T ′ the part of the kinetic energy operator defined

in (6.20)) acting on the N -particle sector of Fock space:

n0 =
Ä
a†0a0

ä
N
,

n2
0 =
Ä
(a†0a0)2

ä
N

=
Ä
(a†0)2a2

0 − a
†
0a0

ä
N
,

n+ =

Å
(2π)−3`3

∫
ã†kãk dk

ã
N

N∑
j=1

T ′j =

Å
(2π)−3`3

∫
k∈R3

τ(k)a†kak

ã
N

,

N∑
i 6=j

PiPjw1(xi, xj)QjQi =

Å
(2π)−3

∫
Ŵ1(k)a†0a

†
0aka−k dk

ã
N

,

N∑
j 6=s

PjQsw2(xi, xj)PsQj =

Å
(2π)−3

∫
Ŵ2(k)a†−ka

†
0a0a−k dk

ã
N

,

N∑
i=1

Qif(xi)χΛ(xi)Pi =

Å
(2π)−3

∫
f̂(k)a†ka0 dk

ã
N

,

N∑
i 6=j

PiQL,jw1(xi, xj)QjQi =

Å
`3(2π)−6

∫∫
fL(s)Ŵ1(k)a†0ã

†
sas−kak dk ds

ã
N

.

(10.9)
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Proposition 10.2. Assume that ‹Ψ satisfies (8.2) and (8.3) and that the

parameters satisfy (5.16), (5.4), and (5.17). Then, the operator HΛ(ρµ) defined

in (6.24) satisfies

〈‹Ψ,HΛ(ρµ)‹Ψ〉 ≥ 〈‹Ψ,H2nd
Λ (ρµ)‹Ψ〉 − Cρ2

µa`
3

Å
(K`KL)1−M +

R2

`2

ã
,(10.10)

where

H2nd
Λ = (2π)−3`3

∫
τ(k)a†kak dk +

b

2`2
n+ + εT

b

2d2`2
nH+

+
1

2
`−3a†0a

†
0a0a0

(
ĝ(0) + ĝω(0)

)
− ρµĝ(0)a†0a0

+
(

(`−3a†0a0 − ρµ)Ŵ1(0)(2π)−3

∫
χ̂Λ(k)a†ka0 dk + h.c.

)
+
(
`−3a†0a0

‘Wω1(0)(2π)−3

∫
χ̂Λ(k)a†ka0 dk + h.c.

)
+ (2π)−3

∫ Ä
Ŵ1(k) + ‘W1ω(k)

ä
a†0a
†
kaka0 dk

+
1

2
Ŵ1(k)

Ä
a†0a
†
0aka−k + a†ka

†
−ka0a0

ä
dk

+
(

(`−3a†0a0 − ρµ)”W1(0) + `−3a†0a0
‘W1ω(0)

)
(2π)−3`−3

∫
a†kak dk

+ ‹Q3,

(10.11)

where‹Q3 := `3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)(a†0ã
†
sas−kak + a†ka

†
s−kãsa0) dk ds.

(10.12)

Proof. Notice that (7.2) holds, using (8.3) and Theorem 7.1.

We apply Lemma 6.9. For the operators Qren
0 and Qren

1 , we use the simpli-

fications of Lemma 6.10 before making the explicit calculation of their second

quantifications. For Qren
2 , we also use the simplifications of Lemma 6.10. The

error term in (6.41) is absorbed in the gap in the kinetic energy. This uses

that R� (ρµa)−1/2 and the relation n ≈ ρµ`3 from (7.2).

Finally we consider Qren
3 and Qren

4 . By Lemma 9.1 and the positivity of

v we have the lower bound (9.7). What remains of Qren
4 will be discarded

for a lower bound. The application of (9.7) also costs a bit of the gap in the

kinetic energy. What remains is to compare ‹Q(1)
3 with ‹Q3; this is the content of

Lemma 10.3 below. Using (5.16) the error term from (10.13) can be absorbed

in the gap in the kinetic energy. This finishes the proof of Proposition 10.2. �

In the above proof we used the following localization of the 3Q-term.
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Lemma 10.3. Assume that ‹Ψ satisfies (8.2) and (8.3). Let ‹Q(1)
3 be as

defined in Lemma 9.1 and ‹Q3 from (10.12).

Then,

〈‹Ψ, ‹Q(1)
3
‹Ψ〉 ≥ 〈‹Ψ, ‹Q3

‹Ψ〉 − Cann+

`3
‹K−3/2
H K

1/2
M .(10.13)

Proof. Again (7.2) holds, using (8.3) and Theorem 7.1.

In second quantization we have‹Q(1)
3 = `3(2π)−6

∫∫
fL(s)Ŵ1(k)(a†0ã

†
sas−kak + a†ka

†
s−kãsa0) dk ds,(10.14)

so we have to estimate the part of the integral where k /∈ PH . Let ε > 0. Then,

〈‹Ψ, `3(2π)−6

∫∫
{|k|≤K−1

H a−1}
fL(s)Ŵ1(k)(a†0ã

†
sas−kak + a†ka

†
s−kãsa0) dkds‹Ψ〉

≥ −Ca`3(2π)−6

∫∫
{|k|≤K−1

H a−1}
fL(s)

(
ε〈‹Ψ, ã†sa†0a0ãs‹Ψ〉
+ ε−1〈‹Ψ, a†ka†s−kas−kak‹Ψ〉) dkds

≥ −Cann+

`3

Å
ε`3(KHa)−3 + ε−1M

n

ã
.

(10.15)

Here we used, in particular, that 〈‹Ψ, n2
+
‹Ψ〉 ≤ Mn+ since ‹Ψ satisfies (7.2).

Observe that we have not assumed that Ŵ1(k) has a sign and that the Cauchy-

Schwarz inequality in (10.15) is valid for Ŵ1(k) of variable sign.

We choose ε =
(
MK3

Ha
3

n`3

)1/2
. Using the relation n ≈ ρµ`

3 from (7.2),

the error term in parenthesis in (10.15) becomes of magnitude
√

M
ρµa3K3

H
=‹K−3/2

H K
1/2
M . �

It will also be useful to notice the following representation in terms of the

operators ãk.

Lemma 10.4. We have the identitiesÅ
(2π)−6`6

∫∫
ã†kχ̂

2
(
(k − k′)`

)
ãk′

ã
N

=
N∑
j=1

Qjχ
2
Λ(xj)Qj(10.16)

andÅ
(2π)−6`6

∫∫
fL(k)fL(k′)ã†kχ̂

2
(
(k − k′)`

)
ãk′

ã
N

=

N∑
j=1

QL,jχ
2
Λ(xj)QL,j .

(10.17)



THE ENERGY OF DILUTE BOSE GASES 927

10.2. c-number substitution. It is convenient to apply the technique of

c-number substitution as described in [20].

Let Ψ ∈ F(L2(Λ)). We can think of L2(Λ) = Ran(P ) ⊕ Ran(Q), with

Ran(P ) being spanned by the constant vector θ (defined in (6.4)). This leads

to the splitting F(L2(Λ)) = F(Ran(P )) ⊗ F(Ran(Q)). We let Ω denote the

vacuum vector in F(Ran(P )).

For z ∈ C, we define

|z〉 := exp

Å
−|z|

2

2
− za†0

ã
Ω.(10.18)

Given z and Ψ, we can define

Φ(z) := 〈z|Ψ〉 ∈ F(Ran(Q)),(10.19)

where the inner product is considered as a partial inner product induced by

the representation F(L2(Λ)) = F(Ran(P ))⊗F(Ran(Q)).

It is a simple calculation that

1 = π−1

∫
C
|z〉〈z| d2z and a0|z〉 = z|z〉.(10.20)

Theorem 10.5. Define

ρz := |z|2`−3(10.21)

and

K(z) =
b

2`2
n+ + εT

b

2d2`2
nH+ +

1

2
ρ2
z`

3
(
ĝ(0) + ĝω(0)

)
− ρµĝ(0)ρz`

3

+ (2π)−3`3
∫ Ä

τ(k) + ρzŴ1(k)
ä
a†kak +

1

2
ρzŴ1(k)

Ä
aka−k + a†ka

†
−k

ä
dk

+ (ρz − ρµ)”W1(0)(2π)−3`3
∫
a†kak dk

+Q1(z) +Qex
1 (z) +Qex

2 (z) +Q3(z),

(10.22)

with

Q1(z) :=
(

(ρz − ρµ)Ŵ1(0)(2π)−3

∫
χ̂Λ(k)a†kz dk + h.c.

)
,(10.23)

Qex
1 (z) :=

(
ρz‘W1ω(0)(2π)−3

∫
χ̂Λ(k)a†kz dk + h.c.

)
,(10.24)

Q3(z) := `3(2π)−6z

∫∫
{k∈PH}

fL(s)Ŵ1(k)(ã†sas−kak + a†ka
†
s−kãs),(10.25)

and

Qex
2 = Qex

2 (z) := (2π)−3ρz`
3

∫ (‘W1ω(k) + ‘W1ω(0)
)
a†kak.(10.26)
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Assume that ‹Ψ satisfies (8.2). Then,

〈‹Ψ,H2nd
Λ (ρµ)‹Ψ〉 ≥ inf

z∈R+

inf
Φ
〈Φ,K(z)Φ〉 − Cρµa,(10.27)

where C is some universal constant and the second infimum is over all nor-

malized Φ ∈ F(Ran(Q)) with

Φ = 1[0,M](n+)Φ.(10.28)

Proof. As before (7.2) holds, using (8.3) and Theorem 7.1.

We define K̃(z) to be the operator H2nd
Λ defined in (10.11) above, but

where the following substitutions have been performed:

a†0a
†
0a0a0 7→ |z|4 − 4|z|2 + 2,

a†0a0a0 7→ |z|2z − 2z, a0a
†
0a
†
0 7→ |z|

2z,

a0a0 7→ z2, a†0a
†
0 7→ z2, a†0a0 7→ |z|2 − 1,

a0 7→ z, a†0 7→ z.

(10.29)

Then, we will prove that

〈‹Ψ,H2nd
Λ
‹Ψ〉 = π−1<

∫
〈Φ(z), K̃(z)Φ(z)〉 d2z

= π−1<
∫
〈Φ̃(z), K̃(z)Φ̃(z)〉n2(z) d2z,

(10.30)

where n(z) = ‖Φ(z)‖F(Ran(Q)) and Φ̃(z) = Φ(z)/n(z) and < denotes the real

part.

To obtain (10.30) we write all polynomials in a0, a
†
0 in anti-Wick ordering,

for example, a†0a0 = a0a
†
0 − 1. Therefore,

〈Ψ, a†0a0Ψ〉 = π−1

∫
〈a†0Ψ|z〉〈z|a†0Ψ〉 − 〈Ψ|z〉〈z|Ψ〉 d2z

= π−1

∫
(|z|2 − 1)〈Φ(z)|Φ(z)〉 d2z.

(10.31)

Performing this type of calculation for each term in H2nd
Λ yields (10.30).

Suppose that ‹Ψ ∈ Fs(L
2(B)) is such that‹Ψ = 1[0,M](n+)‹Ψ.(10.32)

Then, for all z ∈ C, we have with Φ̃(z) := 〈z|‹Ψ〉 ∈ F(Ran(Q)),

Φ̃(z) = 1[0,M](n+)Φ̃(z),(10.33)

with Φ̃(z) = 〈z|‹Ψ〉 as above.

The next step of the proof is to remove the lower order terms coming from

the substitutions in (10.29) above.
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We first consider the negative term −4|z|2 in the substitution of a†0a
†
0a0a0.

By undoing the integrations leading to K̃(z) for this term, we see that it con-

tributes with∫
〈Φ(z),−4

1

2
|z|2`−3

(
ĝ(0) + ĝω(0)

)
Φ(z)〉 d2z ≥ −Ca`−3〈‹Ψ, a0a

†
0
‹Ψ〉

≥ −Ca`−3(n+ 1),

(10.34)

in agreement with the error term in (10.27) (using that n ≈ ρµ`3 � 1).

We also estimate the term linear in z coming from the substitution of

a†0a0a0 in (10.29). This substitution occurs twice, but we will only explicitly

treat one of them, namely, the term

<
∫ 〈

Φ(z),−2`−3Ŵ1(0)(2π)−3

∫
χ̂Λ(k)a†kz dkΦ(z)

〉
d2z

= −2`−3Ŵ1(0)(2π)−3

∫ 〈
Φ(z),

∫
χ̂Λ(k)(a†kz + akz) dkΦ(z)

〉
d2z

≥ −Ca`−3

∫ 〈
Φ(z),

∫
|χ̂Λ(k)|(εa†kak + ε−1|z|2) dkΦ(z)

〉
d2z,

(10.35)

where ε > 0 will be chosen in the end. Notice that |χ̂Λ(k)| = `3|χ̂(k`)| and

that χ̂ ∈ L1(R3) for M ≥ 4. Redoing the calculation in (10.34) we therefore

find with ε =
»
〈‹Ψ, n+

‹Ψ〉/√n+ 1 that

<
∫ 〈

Φ(z),−2`−3Ŵ1(0)(2π)−3

∫
χ̂Λ(k)a†kz dkΦ(z)

〉
d2z

≥ −Ca`−3
√
n+ 1

»
〈‹Ψ, n+

‹Ψ〉.(10.36)

This is also easily absorbed in the error term in (10.27).

The other error terms from the substitutions are (10.29) estimated in a

similar manner, and we will leave out the details.

Finally, we need to restrict to non-negative z. Suppose z = |z|eiϕ. In the

operator K(z) we can replace a±k by eiϕa±k. This substitution will not affect

the commutation relations, and in this way all occurrences of z will be replaced

by |z|. This finishes the proof. �

11. First energy bounds

In this section we will make a rough estimate on the energy. This rough

estimate will be used to eliminate the values of ρz that are far away from ρµ
from the minimization problem in (10.27).
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Lemma 11.1. For any state Φ satisfying (10.28) and assuming that M≤
C−1ρµ`

3 for some sufficiently large constant C , we have the bound

〈Φ,K(z)Φ〉 ≥ − ĝ(0)

2
ρ2
µ`

3

+
ĝ(0)

2
(ρµ − ρz)2`3 − a(ρz + ρµ)3/2ρ1/2

µ `3δ1 − ρ2
za`

3δ2

− Cρ2
µa`

3 ρµa
3

K6
` (ds)6

,

(11.1)

with

δ1 := C

 
M
ρµ`3

(
K3
L
‹K2
H(ρµa

3)2/3M+K3
LK

3
`

)
,

δ2 := C

Å
R2

`2
+

a

ds`

(
1 + log

(ds`
a

))ã
.

(11.2)

Before we give the proof of Lemma 11.1 we will state its main consequence,

Proposition 11.2 below. Our choices of parameters in Section 5 ensure that

δ1 + δ2 � 1.

Proposition 11.2. Suppose that δ1 + δ2 ≤ 1
2 . Suppose furthermore that

for some sufficiently large universal constant C > 0, we have

|ρz − ρµ| ≥ Cρµ max

Ç(
δ1 + δ2 +

ρµa
3

K6
` (ds)6

) 1
2 , (ρµa

3)
1
4

å
.(11.3)

Then, for any state Φ satisfying (10.28), we have

〈Φ,K(z)Φ〉 ≥ − ĝ(0)

2
ρ2
µ`

3 + 2ρ2
µa`

3 128

15
√
π

»
ρµa3.(11.4)

Proof. Using the convexity of t 7→ tσ, for σ ∈ {3/2, 2} and Jensen’s in-

equality, (11.1) implies the bound

〈Φ,K(z)Φ〉 ≥ − ĝ(0)

2
ρ2
µ`

3 +
ĝ(0)

2
(1− δ1 − δ2)(ρµ − ρz)2`3

− Cρ2
µa`

3
(
δ1 + δ2 +

ρµa
3

K6
` (ds)6

)
≥ − ĝ(0)

2
ρ2
µ`

3 +
ĝ(0)

4
(ρµ − ρz)2`3 − Cρ2

µa`
3
(
δ1 + δ2 +

ρµa
3

K6
` (ds)6

)
.

(11.5)

If (11.3) is satisfied, then the term quadratic in (ρµ − ρz) dominates both the

error term above and the LHY correction. This finishes the proof of Proposi-

tion 11.2. �
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Proof of Lemma 11.1. Since za†k+zak ≤ δ′|z|2 +(δ′)−1a†kak for any δ′ > 0,

we find

∫
χ̂Λ(k)(za†k + zak) dk ≤ δ′|z|2

∫
|χ̂Λ(k)| dk + |χ̂Λ(0)|(δ′)−1

∫
a†kak dk

≤ C(δ′|z|2 + (δ′)−1n+).

(11.6)

Therefore, setting δ′ =
√
M/(ρz`3) and using (10.28) and the definitions in

(10.23) and (10.24), we easily get

〈Φ,
(
Q1(z) +Qex

1 (z)
)
Φ〉 ≥ −C`3a

 
M|z|2
`3

(|ρz − ρµ|+ ρz),(11.7)

in agreement with (11.1) (where we used that KL,K` ≥ 1).

Quadratic terms of the form `3
∫
Ŵ (k)a†kak dk are easily estimated as

±〈Φ, `3
∫
Ŵ (k)a†kak dkΦ〉 ≤ CaM.(11.8)

This allows us to estimate all the quadratic terms in K(z) except the kinetic

energy and the off-diagonal quadratic terms and to absorb the corresponding

terms in the error in (11.1) (using, in particular, that M≤ ρµ`3).

Therefore, to establish (11.1) all that remains is to estimate the sum of

the kinetic energy, Q3(z) and the “off-diagonal” quadratic terms. This we

will do by first adding and subtracting an n+ term, which is easily estimated

as above. We will prove the following three inequalities, where ε < 1/2 is a

(small) parameter that we will optimize in the end (see (11.22)), and where Φ

is a state satisfying (10.28):

−
≠

Φ, (2π)−3`3ρzε
−1/2a

∫
a†kak dkΦ

∑
≥ −Cε−1/2`3ρza

M
`3
,(11.9) ≠

Φ,

Å
(2π)−3`3

∫
ετ(k)a†kak dk +Q3(z)

ã
Φ

∑
≥ −ε−1Cρza

M
`3
`3
(
K3
LK

2
HK

3
`

Ma3

`3
+K3

LK
3
`

)
,

(11.10)

and

(2π)−3`3
∫ (
A1(k)a†kak +

1

2
B1(k)

Ä
a†ka
†
−k + aka−k

ä)
dk

≥ −1

2
ρ2
z`

3ĝω(0)− C`3ρ2
za

Å
ε+

R2

`2
+

a

ds`

(
1 + log

(ds`
a

))ã
− Cρ2

µa`
3 ρµa

3

K6
` (ds)6

,

(11.11)
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where we have introduced

A1(k) := (1− ε)τ(k) + ρzε
−1/2a, B1(k) := ρzŴ1(k).(11.12)

The estimate (11.9) is easy given the discussion above.

We proceed to prove (11.11). We symmetrize the term in k as

(2π)−3`3
∫ (
A1(k)a†kak +

1

2
B1(k)a†ka

†
−k +

1

2
B1(k)aka−k

)
dk

=
1

2
(2π)−3`3

∫ (
A1(k)a†kak +A1(k)a†−ka−k + B1(k)a†ka

†
−k + B1(k)aka−k

)
dk.

(11.13)

At this point we apply the “Bogolubov lemma,” Lemma A.5, to get

A1(k)a†kak +A1(k)a†−ka−k + B1(k)a†ka
†
−k + B1(k)aka−k

≥ −
(
A1(k)−

»
A1(k)2 − |B1(k)|2

)
,

(11.14)

where we have also used (10.7).

Using (6.13), we have |B1(k)|/A1(k) ≤ Cε1/2. Therefore, for ε sufficiently

small, a Taylor expansion gives

−
(
A1(k)−

»
A1(k)2 − |B1(k)|2

)
≥ −
Å

1

2
+ Cε

ã |B1|2

A1
.(11.15)

Below we will need the following estimate of an integral:

∫
{|k|≥(ds`)−1}

|B1|2

2τ(k)

≤ ρ2
z

(∫ Ŵ1(k)2

2k2
+ C

a2

ds`

∫
{(ds`)−1≤|k|≤a−1}

|k|−3 + C
a

ds`

∫
Ŵ1(k)2

2k2

)
≤ ρ2

z

(
1 +

R2

`2

)
ĝω(0) + Cρ2

za
2(ds`)−1(1 + log(ds`/a)),

(11.16)

where we used that 0 ≤ k2 − τ(k) ≤ 2|k|(ds`)−1 for |k| ≥ (ds`)−1 and we also

used (6.15).
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Inserting these considerations, we find

(2π)−3`3
∫
A1(k)a†kak +

1

2
B1(k)

Ä
a†ka
†
−k + aka−k

ä
dk

≥ −
(1

2
+ Cε

)
(2π)−3`3

(∫
|k|≤(ds`)−1

ε1/2 |B1|2

2ρza
+

∫
|k|≥(ds`)−1

|B1|2

2(1− ε)τ(k)

)
≥ −1

2
ρ2
z`

3ĝω(0)− C`3ρza
(
ε1/2(ds`)−3 + ρz

(
ε+

R2

`2

)
+ Cρz

a

ds`

(
1 + log

(ds`
a

)))
≥ −1

2
ρ2
z`

3ĝω(0)− C`3ρ2
za

Å
ε+

R2

`2
+

a

ds`

(
1 + log

(ds`
a

))ã
− Ca(ds)−6`−3.

(11.17)

This implies (11.11).

To prove (11.10) we use a similar approach. By definition (10.25), the

k-integral in Q3(z) is restricted to the high momentum region PH . For these

momenta, we have τ(k) ≥ 1
2k

2. Therefore, dropping a part of the kinetic

energy, it suffices to bound

(11.18)

`3(2π)−3

∫
{k∈PH}

(
ε

2
k2a†kak+(2π)−3

∫
fL(s)Ŵ1(k)(zã†sas−kak+a†ka

†
s−kãsz) ds

)
dk.

We estimate, with b̃k := ak + 2(2π)−3
∫
fL(s)Ŵ1(k)

εk2
za†s−kãs ds,

`3(2π)−3

∫
{k∈PH}

(
ε

2
k2a†kak + (2π)−3

·
∫
fL(s)Ŵ1(k)(zã†sas−kak + a†ka

†
s−kãsz) ds

)
dk

= `3(2π)−3

∫
{k∈PH}

(
ε

2
k2b̃†k b̃k − 4(2π)−6

·
∫∫

fL(s)fL(s′)
Ŵ1(k)2

εk2
|z|2ã†s′as′−ka

†
s−kãs

)
dk

≥ −4ε−1`3(2π)−9

∫
{k∈PH}

Ŵ1(k)2

k2
|z|2

·
∫∫

fL(s)fL(s′)ã†s′(a
†
s−kas′−k + [as′−k, a

†
s−k])ãs.

(11.19)
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On the term without a commutator, we estimate ã†s′a
†
s−kas′−kãs by Cauchy-

Schwarz and (since k ∈ PH), Ŵ1(k)2

k2
≤ CK2

Ha
4. Therefore, for a Φ satisfying

(10.28), we findÆ
Φ, `3

∫
{k∈PH}

Ŵ1(k)2

k2
|z|2

∫∫
fL(s)fL(s′)ã†s′a

†
s−kas′−kãsΦ

∏
≤ Cρz

Ç∫
{|s|≤2KL

√
ρµa}

ds

å
K2
Ha

4M2

≤ Cρza`3K3
LK

3
`

a3K2
HM2

`6
.

(11.20)

For the commutator term, we estimate (using (10.6) and the Cauchy-Schwarz

inequality)

ã†s′ [as′−k, a
†
s−k])ãs ≤ 2ã†s′ ãs′ + 2ã†sãs

and
∫ Ŵ1(k)2

k2
≤ Ca. This leads to (for a Φ satisfying (10.28))Æ
Φ, `3

∫
{k∈PH}

Ŵ1(k)2

k2
|z|2

∫∫
fL(s)fL(s′)ã†s′ [as′−k, a

†
s−k]ãsΦ

∏
≤ CMa|z|2

∫
{|s|≤2KL

√
ρµa}

ds

≤ Caρz
M
`3
`3K3

LK
3
` .

(11.21)

Combining the estimates (11.19), (11.20) and (11.21) proves (11.10).

We choose

ε =
M1/2√

(ρµ + ρz)`3
.(11.22)

We will add the estimates of (11.9), (11.10) and (11.11) with this choice of ε.

Since M ≤ ρµ`
3, the contribution from (11.9) will be smaller than the terms

appearing in the other estimates. Therefore, we get,

〈
Φ,

Å
1

2
ρ2
z`

3ĝω(0) + (2π)−3`3
∫
τ(k)a†kak dk +Q3(z)

ã
Φ
〉

≥ −Cρza`3
Ç√
M(ρµ + ρz)`3

`3

(
K3
LK

2
H(ρµa

3)3/2M+K3
LK

3
`

)
+ ρz

R2

`2

å
.

(11.23)

This finishes the proof of (11.1). �
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12. More precise energy estimates

From Proposition 11.2 above, we see that the energy is too high unless

ρz ≈ ρµ. We now focus on this regime. More precisely, we will in this section

always assume that

|ρz − ρµ| ≤ ρµC max

Ç(
δ1 + δ2 +

ρµa
3

K6
` (ds)6

) 1
2
, (ρµa

3)
1
4

å
,(12.1)

with the notation from Proposition 11.2.

We will need the condition that

K2
` max

Ç(
δ1 + δ2 +

ρµa
3

K6
` (ds)6

) 1
2
, (ρµa

3)
1
4

å
≤ C−1(12.2)

for some sufficiently large universal constant. This condition is satisfied by

(5.19), (5.20), (5.6) and (5.8).

Using (12.1) and (12.2) we have

|ρz − ρµ|
ρµ

≤ C−1K−2
` .(12.3)

For convenience of notation, we define the parameter δ to be the square

of the ratio between
√
ρµa and the inner radius of PH , i.e.,

δ :=
ρµa

K−2
H a−2

= (ρµa
3)

1
6 ‹K2

H .(12.4)

Using (5.18), we see that δ � 1.

We define the quadratic Bogolubov Hamiltonian as follows:

KBog =
1

2
(2π)−3`3

∫ (
A(k)(a†kak + a†−ka−k) + B(k)(a†ka

†
−k + aka−k)

+ C(k)(a†k + a†−k + ak + a−k)
)
dk,

(12.5)

with

A(k) := τ(k) + ρz”W1(k), B(k) := ρz”W1(k),

C(k) := `−3(ρz − ρµ)”W1(0)χ̂Λ(k)z.
(12.6)
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With this notation, we can rewrite/estimate K(z) from (10.22) as follows:

K(z) = KBog +
1

2
ρ2
z`

3
(
ĝ(0) + ĝω(0)

)
− ρµĝ(0)ρz`

3

+
b

2`2
n+ + εT

b

2d2`2
nH+ + (ρz − ρµ)Ŵ1(0)(2π)−3`3

∫
a†kak dk

+Qex
1 (z) +Qex

2 (z) +Q3(z)

≥ −1

2
ρ2
µ`

3ĝ(0) +
1

2
ρ2
z`

3ĝω(0) +
1

2
(ρz − ρµ)2`3ĝ(0) +KBog

+
b

4`2
n+ + εT

b

2d2`2
nH+ +Qex

1 (z) +Qex
2 (z) +Q3(z).

(12.7)

Here we used (12.2) to absorb a quadratic part in the gap.

12.1. The Bogolubov Hamiltonian.

Theorem 12.1 (Analysis of Bogolubov Hamiltonian). Assume Φ satisfies

(10.28) and that 1
2ρµ ≤ ρz ≤ 2ρµ. Let δ be the parameter defined in (12.4).

Then,

〈Φ,KBogΦ〉 ≥ (2π)−3`3
≠

Φ,

∫
Dkb†kbk dkΦ

∑
− 1

2
(2π)−3`3

∫ (
A(k)−

»
A(k)2 − B(k)2

)
dk

− (ρz − ρµ)2 ĝ(0)

2
`3
Å

1 + C
R2

a2
(ρµa

3)

ã
− Cρ2

µa`
3KMK

−3/2
` (K2

` δ)
M−5

2 .

(12.8)

Here

Dk :=
1

2

(
A(k) +

»
A(k)2 − B(k)2

)
(12.9)

and

bk := ak + αka
†
−k + ck,(12.10)

with

αk := B(k)−1
(
A(k)−

»
A(k)2 − B(k)2

)
(12.11)

and

ck :=


2C(k)

A(k)+B(k)+
√
A(k)2−B(k)2

, |k| ≤ 1
2K
−1
H a−1,

0, |k| > 1
2K
−1
H a−1.

(12.12)
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Proof. To simplify later calculations we start by removing C(k) for |k| >
1
2K
−1
H a−1 from KBog, so we aim to prove

1

2
(2π)−3`3

∫
{|k|> 1

2
K−1
H a−1}

C(k)(a†k + a†−k + ak + a−k) dk

≥ −Cρ2
µa`

3KMK
−3/2
` (K2

` δ)
M−5

2 .

(12.13)

Obviously,

ak + a†k ≤ a
†
kak + 1.

Therefore,

1

2
(2π)−3`3

∫
{|k|> 1

2
K−1
H a−1}

C(k)(a†k + a†−k + ak + a−k) dk

≥ −(2π)−3|ρz − ρµ|”W1(0)|z|
∫
{|k|> 1

2
K−1
H a−1}

|χ̂Λ(k)|(a†kak + 1) dk

≥ −C|ρz − ρµ|”W1(0)|z|(n+ + 1)ε(χ),

(12.14)

where

ε(χ) := `−3 sup
{|k|> 1

2
K−1
H a−1}

(1 + (k`)2)2|χ̂Λ(k)| ≤ C(K−2
` δ)M̃−2,(12.15)

where we used Lemma C.1 to get the last estimate. Estimating n+ using

(10.28) and using (12.1) to control |z|, it is elementary to conclude (12.13).

By the estimate above, it suffices to consider

K̃Bog :=
1

2
(2π)−3`3

∫ (
A(k)(a†kak + a†−ka−k) + B(k)(a†ka

†
−k + aka−k)

+ C̃(k)(a†k + a†−k + ak + a−k)
)
dk,

(12.16)

with A,B from (12.5) and

C̃(k) :=

{
0, |k| ≥ 1

2K
−1
H a−1,

`−3(ρz − ρµ)”W1(0)χ̂Λ(k)z, otherwise.
(12.17)

With the notation from Theorem 12.1 and using Theorem A.1 combined

with (10.7) we find

K̃Bog ≥ (2π)−3`3
∫
Dkb†kbk dk

− 1

2
(2π)−3`3

∫ (
A(k)−

»
A(k)2 − B(k)2

)
dk

− (ρz − ρµ)2”W1(0)2z2(2π)−3`−3

∫
{|k|≤ 1

2
K−1
H a−1}

|χ̂Λ(k)|2

A(k) + B(k)
.

(12.18)
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It is elementary, using that W1 is even, that∣∣∣Ŵ1(k)− Ŵ1(0)
∣∣∣ ≤ Ca(kR)2.(12.19)

Therefore, we easily get the lower bound

A(k) + B(k) ≥ 2ρz÷W1(0)

Å
1− C(ρµa

3)
R2

a2

ã
,(12.20)

using that the kinetic energy is dominating, unless |k| ≤ C√ρµa.

Therefore, the last term in (12.18) becomes controlled as

(ρz − ρµ)2”W1(0)2z2(2π)−3`−3

∫
{|k|≤ 1

2
K−1
H a−1}

|χ̂Λ(k)|2

A(k) + B(k)

≤ (ρz − ρµ)2
”W1(0)

2
`3
Å

1 + C(ρµa
3)
R2

a2

ã
≤ (ρz − ρµ)2 ĝ(0)

2
`3
Å

1 + C(ρµa
3)
R2

a2

ã
,

(12.21)

where we used that `−2 � ρµa to get the last estimate.

This finishes the proof of Theorem 12.1. �

Remark 12.2. We notice that following commutation relations (using the

ones for the ak’s (10.6) and that χ̂ is even and real),

[bk, bk′ ] = (αk − αk′)
(
χ̂2((k + k′)`)− χ̂(k`)χ̂(k′`)

)
.(12.22)

Also,

[bk, b
†
k′ ] = (1− αkαk′)

(
χ̂2((k − k′)`)− χ̂(k`)χ̂(k′`)

)
.(12.23)

Lemma 12.3. Assume that (12.1) holds and that 9
10ρµ ≤ ρz ≤ 11

10ρµ. We

have the estimate

−1

2
(2π)−3`3

∫ (
A(k)−

»
A(k)2 − B(k)2

)
dk

≥ − ĝω(0)

2
ρ2
z`

3 + 4π
128

15
√
π
ρ2
za
√
ρza3`3

− Cε(ρµ, ρz)ρ2
za
√
ρza3`3 − Cρ2

z`
3R

2

`2
ĝω(0),

(12.24)

with C a universal constant and

ε(ρµ, ρz) = (ρµa)
1
4

√
R+ εT + (K`s)

−1

Å
1 + log(d−1) + log

Å
K`ds

(ρµa3)1/2

ãã
+ εT (K`ds)

−1

Å
1 + log

Å
K`ds

(ρµa3)1/2

ãã
.

(12.25)
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Proof. We regularize the integral as

∫
A(k)−

»
A(k)2 − B(k)2 dk

=

∫
A(k)−

»
A(k)2 − B(k)2 − ρ2

z

”W1(k)2

2k2
dk + ρ2

z

∫ ”W1(k)2

2k2
dk.

(12.26)

The last integral is controlled by (6.15) and contributes with the first and

the last term in (12.24).

In the regularized integral in (12.26) we perform the change of variables√
ρza t = k. In this way we get∫

A(k)−
»
A(k)2 − B(k)2 − ρ2

z

”W1(k)2

2k2
dk = ρ2

z

√
ρza3aI1,(12.27)

with

I1 =

∫
α(t)−

»
α(t)2 − β(t)2 −

”W1(
√
ρzat)

2

2a2t2
dt,

α(t) = τ̃(t) + a−1”W1(
√
ρzat),

β(t) = a−1”W1(
√
ρzat),

τ̃(t) = (1− εT )
[
|t| − 1

2K`s
(
ρµ
ρz

)1/2
]2

+
+ εT

[
|t| − 1

2K`ds
(
ρµ
ρz

)1/2
]2

+
.

(12.28)

We will prove that I1 ≈ −64π4 128
15
√
π

with an error estimated by ε(ρµ, ρz) from

(12.25). For this we write I1 as

I1 =

∫
α(t)−

»
α(t)2 − β(t)2 − β2

2t2

=

∫
α(t)− β2

2α
−
»
α(t)2 − β(t)2 +

Å
β2

2α
− β2

2t2

ã
=

∫
α(t)− β2

2α
−
»
α(t)2 − β(t)2 +

β2

2

t2 − τ̃ − β
t2α

= I ′1 + I ′′1 ,

(12.29)

with

I ′1 :=

∫
α(t)− β2

2α
−
»
α(t)2 − β(t)2 − β3

2t2α
,

I ′′1 :=

∫
β2

2

t2 − τ̃
t2α

.

(12.30)

It is not difficult to apply dominated convergence to the integral I ′1 to get

I ′1 ≈
∫
R3

t2 + 8π − (8π)2

2t2
−
»

(t2 + 8π)2 − (8π)2 dt = −64π4 128

15
√
π
.(12.31)
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More precisely, we will prove that∣∣∣∣I ′1 − ∫
R3

t2 + 8π − (8π)2

2t2
−
»

(t2 + 8π)2 − (8π)2 dt

∣∣∣∣
≤ C

Ä
(ρµa)

1
4

√
R+ εT + (K`s)

−1
ä
.

(12.32)

This estimate is included in the error defined in (12.25).

The part of both integrals where |t| ≤ 10(K`s)
−1 is bounded by

C(K`s)
−1

for sufficiently small ρµ (using that ρz ≈ ρµ). This is in agreement with (12.32).

For |t| ≥ 10(K`s)
−1, we will use

(12.33) |β(t)−8π| ≤ C√ρµaR|t|, 0 ≤ t2− τ̃(t) ≤ εT t2+
1

K`s

Å
ρµ
ρz

ã1/2

|t|.t

It follows by interpolation that |β(t) − 8π| ≤ C(ρµa)
1
4R

1
2 |t|

1
2 and also that

τ̃ ≥ 1
2 t

2 when εT is sufficiently small (since
ρµ
ρz

is close to 1).

For |t| ≥ 100 we use Taylor’s formula with remainder (applied to
√

1− x)

to write ∫
{|t|≥10(K`s)−1}

α(t)− β2

2α
−
»
α(t)2 − β(t)2 − β3

2t2α
dt

−
∫
{|t|≥10(K`s)−1}

t2 + 8π − (8π)2

2t2
−
»

(t2 + 8π)2 − (8π)2 dt

=

∫
{10(K`s)−1≤|t|≤100}

(
(α− t2 − 8π)−

Å
β2

2α
− (8π)2

2(t2 + 8π)

ã
−
(»

α(t)2 − β(t)2 −
»

(t2 + 8π)2 − (8π)2)
)
dt

+

∫
{|t|≥100}

∫ 1

0
f(τ̃ , β, σ)− f(t2, 8π, σ) dσ dt

−
∫
{|t|≥10(K`s)−1}

β3

2t2α
− (8π)3

2t2(t2 + 8π)
dt,

(12.34)

with

(12.35) f(τ, β, σ) :=
−β4

4
[τ2 + 2βτ + (1− σ)β2]−3/2(1− σ).

The last integral in (12.34) is easily estimated, as

∣∣∣∣∣
∫
{|t|≥10(K`s)−1}

β3

2t2α
− (8π)3

2t2(t2 + 8π)
dt

∣∣∣∣∣ ≤ C Ä(ρµa)
1
4

√
R+ εT + (K`s)

−1
ä
,

(12.36)

in agreement with (12.32).
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For the Taylor expansion part in (12.34), we use that τ̃2+2βτ̃+(1−σ)β ≥
1
4 t

4, when |t| ≥ 100. Therefore,∣∣∣f(τ̃ , β, σ)− f(t2, 8π, σ)
∣∣∣

≤ C|β4 − (8π)4|t−6

+ Ct2
∣∣[τ̃2 + 2βτ̃ + (1− σ)β2]−2 − [t4 + 16πt2 + (1− σ)(8π)2]−2

∣∣∣
+ Ct−8 (τ̃2 + 2βτ̃ + (1− σ)β2)− (t4 + 16πt2 + (1− σ)(8π)2)√

τ̃2 + 2βτ̃ + (1− σ)β2 +
√
t4 + 16πt2 + (1− σ)(8π)2

.

(12.37)

Now the integrals can easily be estimated to get an error consistent with

(12.32).

Finally, we consider the integral over {10(K`s)
−1 ≤ |t| ≤ 100} in (12.34).

Here one may estimate term by term and use the finiteness of the domain of

integration. Therefore, this part is also consistent with (12.32), which finishes

the proof of (12.32).

The integral I ′′1 from (12.30) is split in three parts. For |t| ≤ 10(K`s)
−1,

we have 0 ≤ t2 − τ̃(t) ≤ t2. Therefore,∣∣∣∣∣
∫
{|t|≤10(K`s)−1}

β2

2

t2 − τ̃
t2α

∣∣∣∣∣ ≤ C(K`s)
−1,(12.38)

which is again included in the error defined in (12.25).

For 10(K`s)
−1 ≤ |t| ≤ 10(K`ds)

−1, we have (12.33) above. Therefore,

∣∣∣∣∣
∫
{10(K`s)−1≤|t|≤10(K`ds)−1}

β2

2

t2 − τ̃
t2α

∣∣∣∣∣ ≤ CεT (K`ds)
−1 + C(K`s)

−1 log(d−1),

(12.39)

which may again be absorbed in (12.25).

Finally, we turn to the case |t| ≥ 10(K`ds)
−1. Here, 0 ≤ t2 − τ̃(t) ≤

C|t|((K`s)
−1 + εT (K`ds)

−1) and α ≥ 1
2 t

2. Therefore,∣∣∣∣∣
∫
{|t|≥10(K`ds)−1}

β2

2

t2 − τ̃
t2α

∣∣∣∣∣
≤ C((K`s)

−1 + εT (K`ds)
−1)

∫
{10(K`ds)−1≤|t|≤(ρza3)−1/2}

|t|−3

+ C((K`s)
−1 + εT (K`ds)

−1)(ρza
3)1/2a−2

∫
Ŵ1(
√
ρzat)

2

t2

≤ C((K`s)
−1 + εT (K`ds)

−1)

Å
log

Å
K`ds

(ρµa3)1/2

ã
+ 1

ã
.

(12.40)

This may again be absorbed in (12.25). This finishes the proof of Lemma 12.3.

�
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12.2. The control of Q3(z). The diagonalized quadratic Bogolubov Hamil-

tonian (2π)−3`3
∫
Dkb†kbk dk from (12.8) turns out to control the 3Q-termQ3(z)

from (10.25). This we summarize as follows

Theorem 12.4. Assume that Φ satisfies (10.28). Assume furthermore

that (12.1) and (5.29) are satisfied. Let δ be as defined in (12.4). We will

furthermore assume (5.4), (5.11), (5.18), (5.19), (5.22), and (5.23).

Then,

〈
Φ,

Å
(2π)−3`3

∫
Dkb†kbk dk +Q3(z) +Qex

2

+ρzz‘W1ω(0)(2π)−3

∫
χ̂2

Λ(s)(ã†s + ãs) ds+
b

50

Å
1

`2
n+ +

εT
(d`)2

nH+

ãã
Φ

〉

≥ −Cρ2
µa`

3

[ 
M
|z|2

(‹K−1
H (ρµa

3)
5
12 + (K`KL)−M +K3

`K
3
L(K−2

` δ)
M−1

2

)
+ δ4a

`
+
»
ρµa3

(
K−3
` d−12δ2

(
K−2
` δ

)M−1
)]

.

(12.41)

Proof of Theorem 12.4. Notice that

|B(k)/A(k)| ≤ Cδ ∀ |k| ≥ 1

2
‹K−1
H (ρµa

3)5/12a−1.(12.42)

In particular, |B(k)/A(k)| ≤ 1
2 for ρµ sufficiently small.

This implies, by expansion of the square root, that

|αk| = |B(k)|−1
(
A(k)−

»
A(k)2 − B(k)2

)
| ≤ Cδ(12.43)

for all |k| ≥ 1
2
‹K−1
H (ρµa

3)5/12a−1. In particular, (12.42) and (12.43) are valid

for k = k′ − s, when s ∈ PL and k′ ∈ PH .

For later convenience, we reformulate the first-order operator in (12.41)

in terms of the ãs. (Recall definitions (10.2) and (10.4).) We get

− ρzz‘W1ω(0)(2π)−3

∫
χ̂Λ(s)(a†s + as) ds

= −ρzz‘W1ω(0)(2π)−3

∫
χ̂2

Λ(s)(ã†s + ãs) ds

= −ρzz‘W1ω(0)(2π)−3`3
∫
χ̂2(s`)(ã†s + ãs) ds.

(12.44)

We start by rewriting Q3(z) in terms of the bk’s defined in (12.10). Notice

that ck, cs−k = 0 if k ∈ PH and s ∈ PL. We find the basic relation (we will
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freely use that all involved functions are symmetric, e.g., αk = α−k)

as−k =
1

1− α2
s−k

(
bs−k − αs−kb†k−s

)
, ak =

1

1− α2
k

(
bk − αkb†−k

)
.(12.45)

Therefore,

as−kak =
1

1− α2
k

1

1− α2
s−k

(
bs−kbk − αkb†−kbs−k − αs−kb

†
k−sbk

+ αkαs−kb
†
k−sb

†
−k − αk[bs−k, b

†
−k]
)
.

(12.46)

We will decompose Q3(z) according to the different terms in (12.46), i.e.,

Q3(z) = Q(1)
3 (z) +Q(2)

3 (z) +Q(3)
3 (z) +Q(4)

3 (z),(12.47)

where

Q(1)
3 (z) := z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)

(1− α2
k)(1− α2

s−k)

×
Ä
ã†sbs−kbk + αkαs−kã

†
sb
†
k−sb

†
−k + h.c.

ä
,

Q(2)
3 (z) := −z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)αk
(1− α2

k)(1− α2
s−k)

Ä
ã†sb
†
−kbs−k + b†s−kb−kãs

ä
,

Q(3)
3 (z) := −z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)αs−k
(1− α2

k)(1− α2
s−k)

Ä
ã†sb
†
k−sbk + b†kbk−sãs

ä
,

and

Q(4)
3 (z) := (2π)−6z`3

∫∫
k∈PH

fL(s)Ŵ1(k)
−αk

(1− α2
k)(1− α2

s−k)
[bs−k, b

†
−k](ã

†
s + ãs).

(12.48)

The different Q(j)
3 (z)’s will be estimated individually. The result of this is

summarized in Lemma 12.5. Theorem 12.4 follows by adding the estimates of

Lemma 12.5. We have used that the K’s (K`,KM, ‹KH , and KB) are larger

than 1 and (5.11) to simplify the total remainder. This finishes the proof. �

Lemma 12.5. Let δ be as defined in (12.4). Assume that Φ satisfies

(10.28). Assume furthermore that (5.29), (12.1), (5.18), (5.19), (5.22), (5.4)
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and (5.23) are satisfied. Then,

〈
Φ,
(
Q(1)

3 (z) + (1− δ2)(2π)−3`3
∫
{|k|≥ 1

2
K−1
H a−1}

Dkb†kbk +Qex
2

+
b

100

Å
1

`2
n+ +

εT
(d`)2

nH+

ã)
Φ
〉

≥ −Cρ2
µa`

3δK
−3/2
` (ρµa

3)
1
4 (M+ (K3

`K
3
L))
(
K−2
` δ

)M−1
2

− Cρ2
µa`

3
»
ρµa3

Å
K−3
` d−12δ2

Ä
K−2
`
‹K2
H(ρµa

3)
1
6

äM−1
ã
,

(12.49)

〈
Φ,
(
Q(2)

3 (z) +Q(3)
3 (z) + δ2(2π)−3`3

∫
{|k|≥ 1

2
K−1
H a−1}

Dkb†kbk
)

Φ
〉

≥ −Cρ2
µa`

3(K−2
` δ)M̃K3

LK
3/2
` (ρµa

3)
1
4 ,

(12.50)

〈
Φ,
(
Q(4)

3 (z) + ρzz‘W1ω(0)(2π)−3

∫
χ̂2

Λ(s)(ã†s + ãs) ds+
1

100

b

`2
n+

)
Φ
〉

≥ −Cρ2
za`

3

 
M
|z|2

(‹K−1
H (ρµa

3)
5
12 + (K`KL)−M +K

3/2
` K

3/2
L (K−2

` δ)
M−1

2

)
− Cρ2

µa`
3δ4a

`
.

(12.51)

Proof of Lemma 12.5. The proofs of (12.49), (12.50) and (12.51) are each

rather lengthy and will be carried out individually.

Proof of (12.51). Using Lemma C.1 applied to χ2 we have∥∥∥χ̂2
Λ(s)

(
1− fL(s)

)∥∥∥
∞
≤ C0`

3(1 + (K`KL)2)−M ,(12.52)

with C0 =
∫ ∣∣(1−∆)Mχ2

∣∣. Therefore, by a simple application of the Cauchy-

Schwarz inequality, we get for any state Φ satisfying (10.28),∣∣∣∣≠Φ,

∫
χ̂2

Λ(s)(ã†s + ãs) dsΦ

∑∣∣∣∣ ≤ C√M(12.53)

and ∣∣∣∣≠Φ,

∫
χ̂2

Λ(s)
(

1− fL(s)
)

(ã†s + ãs) dsΦ

∑∣∣∣∣ ≤ C√M(K`KL)−M .(12.54)
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Therefore, using Lemma 12.6 below to estimate the k-integral, we find

∣∣∣∣≠Φ, z
(
ρz‘W1ω(0)(2π)−3

∫
χ̂2

Λ(s)(ã†s + ãs) ds

−(2π)−6

∫∫
k∈PH

Ŵ1(k)αkχ̂
2
Λ(s)fL(s)(ã†s + ãs) ds

)
Φ

∏∣∣∣∣∣
≤ Cρ2

za`
3

 
M
|z|2

(‹K−1
H (ρµa

3)
5
12 + (K`KL)−M

)
.

(12.55)

The estimate is in agreement with the error term in (12.51).

What remains in order to prove (12.51) is to estimate a difference of two

integrals over the same domain. Writing out the commutator using (12.23) we

have to estimate

z(2π)−6`3
∫∫

k∈PH
Ŵ1(k)αkχ̂2(s`)fL(s)

Ç
1− 1− αs−kα−k

(1− α2
k)(1− α2

s−k)

å
(ã†s + ãs)

(12.56)

and

z(2π)−6`3
∫∫

k∈PH
Ŵ1(k)αkfL(s)

1− αs−kα−k
(1− α2

k)(1− α2
s−k)

χ̂(k`)χ̂
(
(k − s)`

)
(ã†s + ãs).

(12.57)

To estimate (12.56) we use (12.43), (12.61) and Cauchy-Schwarz to get

(12.56) ≤ Cρzaδ2`3
∫
χ̂2(s`)(ε−1 + εã†sãs) ≤ Cρzaδ2(ε−1 + εn+).(12.58)

We choose ε−1 = Dρza`
2δ2 for some sufficiently large constant D to allow the

n+ term to be absorbed in the kinetic energy gap. Thereby, the magnitude of

the error (the ε−1-term) becomes (using (12.1))

Cρ2
µa`

3δ4a

`
,(12.59)

which can clearly be absorbed in the error term in (12.51).

In the second integral (12.57) the terms χ̂(k`) are very small due to reg-

ularity of χ and the fact that k ∈ PH . Therefore this integral is much smaller.
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We easily get, for arbitrary ε > 0,〈
Φ, z(2π)−6`3

∫∫
k∈PH

Ŵ1(k)αkfL(s)

· 1− αs−kα−k
(1− α2

k)(1− α2
s−k)

χ̂(k`)χ̂
(
(k − s)`

)
(ã†s + ãs)Φ

〉

≥ −Czρµa sup
k∈PH

|χ̂(k`)|`3
≠

Φ,

∫
fL(s)(εã†sãs + ε−1)Φ

∑
≥ −Cρ2

µa`
3

 
M
|z|2

K
3/2
` K

3/2
L (K−2

` δ)M̃ ,

(12.60)

where we optimized in ε and used Lemma C.1 to get the last estimate. This

error term is clearly in agreement with (12.51). This finishes the proof of

(12.51). �

In the proof of (12.51) we used the following result.

Lemma 12.6. Assume (5.4), (5.18) and (12.1).

Then for sufficiently small values of ρµ, we have∣∣∣∣ρz‘W1ω(0)− (2π)−3

∫
k∈PH

Ŵ1(k)αk dk

∣∣∣∣ ≤ Cρza(ρµa
3)

5
12 ‹K−1

H .(12.61)

Furthermore, ∣∣∣∣∣‘W1ω(0)− (2π)−3

∫
k∈PH

Ŵ1(k)2

2Dk
dk

∣∣∣∣∣ ≤ Ca(ρµa
3)

5
12 ‹K−1

H .(12.62)

Proof. We will use the following weaker version of (5.18),

(ρµa
3)−

1
12 ≥

‹KH

dsK`
(1 + log(KH)),(12.63)

which follows from (5.18) using (5.4).

Collecting the estimates below, we really get

∣∣∣∣ρz‘W1ω(0)− (2π)−3

∫
k∈PH

Ŵ1(k)αk dk

∣∣∣∣
≤ Cρza

(
K−1
H + (ρza

3)KH +R2/`2 + (ρza
3)2K3

H +
a

ds`
(1 + logKH)

)
.

(12.64)

From this (12.61) follows upon using (5.18), (12.63) and (5.29) to compare the

magnitudes of the different terms.
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We calculate

ρz‘W1ω(0)− (2π)−3

∫
k∈PH

”W1(k)αk dk

= (2π)−3

∫
k∈PH

”W1(k)
(
ρz
ĝ(k)

2k2
− αk

)
dk + (2π)−3

∫
k/∈PH

ρz”W1(k)
ĝ(k)

2k2
dk.

(12.65)

We first estimate the last integral,∣∣∣ ∫
k/∈PH

”W1(k)
ĝ(k)

2k2
dk
∣∣∣ ≤ Ca2

∫
{|k|≤K−1

H a−1}
k−2 dk = CaK−1

H .(12.66)

This is consistent with the error term in (12.64).

To continue, we write”W1(k)αk = ρ−1
z A(k)

(
1−
»

1− B(k)2/A(k)2
)
.(12.67)

Notice that |B(k)/A(k)| ≤ 1
2 for ρµ sufficiently small using (12.42) and

(5.18). Therefore,∣∣∣”W1(k)αk −
ρz”W1(k)2

2A(k)

∣∣∣ ≤ Cρ3
z

”W1(k)4

A(k)3
≤ Cρ3

za
4k−6,(12.68)

where we used that A(k) ≥ 1
2k

2 in PH . Upon integrating over PH we find a

term of magnitude∫
PH

∣∣∣”W1(k)αk −
ρz”W1(k)2

2A(k)

∣∣∣ ≤ Cρza(ρza
3)2K3

H ,(12.69)

in agreement with (12.64).

Finally, we estimate, using 0 ≤ k2 − τ(k) ≤ 2|k|(ds`)−1 in PH ,

ρz

∣∣∣ ∫
k∈PH

”W1(k)
( ĝ(k)

2k2
− Ŵ1(k)

2A(k)

)∣∣∣
≤ ρz

∣∣∣ ∫
k∈PH

”W1(k)
ĝ(k)− Ŵ1(k)

2k2

∣∣∣+ ρz

∣∣∣ ∫
k∈PH

”W1(k)2

2k2

(
1− k2

A(k)

)∣∣∣
≤ ρz

∣∣∣ ∫
k∈PH

”W1(k)
ĝ(k)− Ŵ1(k)

2k2

∣∣∣+ Cρ2
za

3

∫
k∈PH

k−4

+ Cρz(ds`)
−1
(∫
{K−1

H ≤a|k|≤1}
a2|k|−3 + a

∫ ”W1(k)2

2k2

)
≤ ρza

R2

`2
+ ρza(ρza

3)KH + Cρza
2(ds`)−1(1 + log(KH)),

(12.70)

where the estimate of the first term follows from Cauchy-Schwarz and (6.16).

This finishes the proof of (12.61).



948 SØREN FOURNAIS and JAN PHILIP SOLOVEJ

The proof of (12.62) is similar. One can for instance use (12.61) and

(12.69) and the fact that |1 − A(k)
Dk | ≤ C B(k)2

A(k)2
≤ Cρ2

µa
2k−4 in PH . Then

(12.62) follows. �

Proof of (12.50). The two operators Q(2)
3 (z) and Q(3)

3 (z) are very similar

and can be estimated in identical fashion, so we will only explicitly consider

the first. We decompose

Q(2)
3 (z) = I + II,(12.71)

where

I := −z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)αk
(1− α2

k)(1− α2
s−k)

Ä
b†−kã

†
sbs−k + b†s−kãsb−k

ä
,

II := −z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)αk
(1− α2

k)(1− α2
s−k)

Ä
[ã†s, b

†
−k]bs−k + b†s−k[b−k, ãs]

ä
.

(12.72)

The second term II will be very small, due to the smallness of the commutator.

(Notice that s and k are “far apart” since s ∈ PL and k ∈ PH .) So the main

term is I, which we estimate using Cauchy-Schwarz and (12.43) as

I ≥ −C`3zaδ
∫∫

k∈PH
fL(s)

Ä
εb†−kã

†
sãsb−k + ε−1b†s−kbs−k

ä
.(12.73)

We estimate
∫
ã†sãs ≤ `−3M. Upon choosing ε =

»
K3
`K

3
L/M and using an

easy bound on Dk, this leads to the estimate

〈Φ, IΦ〉 ≥ −CzaδK3/2
` K

3/2
L M

1/2〈Φ,
∫
{|k|≥ 1

2
K−1
H a−1}

b†kbkΦ〉

≥ −Cδ2`3
(K3

`K
3
LM

ρµ`3

)1/2
〈Φ,
∫
{|k|≥ 1

2
K−1
H a−1}

Dkb†kbkΦ〉.
(12.74)

Using (5.22),

K3
`K

3
LM

ρµ`3
= K3

LKM(ρµa
3)

1
4 � 1.(12.75)

Therefore, I can be absorbed in the δ2(2π)−3`3
∫
{|k|≥ 1

2
K−1
H a−1}Dkb

†
kbk term in

(12.50).

We now return to the term II from (12.72). This is easily estimated as

II ≥ −2z`3(2π)−6 sup |[ã†s, b
†
−k]|

∫∫
{k∈PH}

fL(s)|Ŵ1(k)αk|
Ä
b†s−kbs−k + 1

ä
≥ −Cz

(
sup

|p|≥ 1
2
K−1
H a−1

χ̂(p`)
)

(KLK`)
3

Ç
ρµa+ aδ

∫
|k|≥ 1

2
K−1
H a−1

b†kbk

å
.

(12.76)
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The b†kbk is easily absorbed in the δ2`3
∫
{|k|≥ 1

2
K−1
H a−1}Dkb

†
kbk term in (12.50).

Therefore, using (12.1) and Lemma C.1, II contributes with an error term of

order

ρ2
µa`

3(K−2
` δ)M̃K3

LK
3/2
` (ρµa

3)
1
4(12.77)

to (12.50).

This finishes the proof of (12.50). �

Proof of (12.49) . Finally, we estimate Q(1)
3 (z). We rewrite

Q(1)
3 (z) = z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)

(1− α2
k)(1− α2

s−k)

×
Ä
ã†sbs−kbk + αkαs−kã

†
−sb
†
s−kb

†
k + h.c.

ä
,

(12.78)

where we performed a change of variables in the second term to get the equality.

We combine this term with the diagonalized Bogolubov Hamiltonian. We

leave a δ2-part of this operator in order to control error terms appearing below.

Therefore, we consider

(2π)−3`3
∫
{k∈PH}

(1− 2δ2)Dkb†kbk dk + z`3(2π)−6

∫∫
{k∈PH}

fL(s)Ŵ1(k)

(1− α2
k)(1− α2

s−k)

×
Ä
ã†sbs−kbk + αkαs−kã

†
−sb
†
s−kb

†
k + h.c.

ä
= (2π)−3`3

∫
{k∈PH}

(1− 2δ2)Dkc†kck + T1(k) + T2(k)

≥ (2π)−3`3
∫
{k∈PH}

T1(k) + T2(k).

(12.79)

Here we have introduced the operators,

ck := bk + z(2π)−3

∫
fL(s)Ŵ1(k)

(1− 2δ2)Dk(1− α2
k)(1− α2

s−k)

×
Ä
b†s−kãs + αkαs−kã−sb

†
s−k

ä
ds,

(12.80)

(12.81) T1(k) := −z(2π)−3

∫
fL(s)Ŵ1(k)αkαs−k
(1− α2

k)(1− α2
s−k)

Ä
[b†k, ã−sb

†
s−k] + h.c.

ä
ds,
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and

T2(k) := − |z|2Ŵ1(k)2

(1− 2δ2)Dk(1− α2
k)

2
(2π)−6

∫∫
fL(s)fL(s′)

(1− α2
s−k)(1− α2

s′−k)

×
Ä
ã†s′bs′−k + αkαs′−kbs′−kã

†
−s′
ä Ä
b†s−kãs + αkαs−kã−sb

†
s−k

ä
ds ds′

≥ −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)

×
Ä
ã†s′bs′−k + αkαs′−kbs′−kã

†
−s′
ä Ä
b†s−kãs + αkαs−kã−sb

†
s−k

ä
ds ds′,

(12.82)

where we used (12.43) to get the estimate on T2. Notice that

ã†s′bs′−k + αkαs′−kbs′−kã
†
−s′ =

Ä
ã†s′ + αkαs′−kã

†
−s′
ä
bs′−k + αkαs′−k[bs′−k, ã

†
−s′ ].

(12.83)

The contribution from the commutator term is very small, both due to the

factors of α and to the commutator, since k ∈ PH , s′ ∈ PL. Therefore, we

estimate

T2(k) ≥ (1 + ε)T ′2(k) + (1 + ε−1)T ′′2 (k),(12.84)

where

T ′2(k) := −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)

×
Ä
ã†s′ + αkαs′−kã

†
−s′
ä
bs′−kb

†
s−k (ãs + αkαs−kã−s) ds ds

′

T ′′2 (k) := −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

×
∫∫

fL(s)fL(s′)|αk|2αs′−kαs−k[bs′−k, ã†−s′ ][ã−s, b
†
s−k].

(12.85)

With this choice, we estimate using (12.62), (5.18) and (12.43),

(2π)−3`3
∫
k∈PH

(1 + ε−1)T ′′2 (k) dk

≥ −Cρza(K`KL)6δ2 sup
k∈PH ,s∈PL

|[ã−s, b†s−k]|
2

≥ −Cρ2
µa`

3(ρµa
3)

1
2K3

`K
6
Lδ

2 sup
k∈PH ,s∈PL

|[ã−s, b†s−k]|
2.

(12.86)

We continue to estimate the other part of T2(k):

T ′2(k) := −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)

×
Ä
ã†s′ + αkαs′−kã

†
−s′
ä
bs′−kb

†
s−k (ãs + αkαs−kã−s) ds ds

′

= T ′2,comm(k) + T ′2,op(k),

(12.87)
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with

T ′2,comm(k) := −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)

×
Ä
ã†s′ + αkαs′−kã

†
−s′
ä

[bs′−k, b
†
s−k] (ãs + αkαs−kã−s) ds ds

′,

T ′2,op(k) := −
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)

×
Ä
ã†s′ + αkαs′−kã

†
−s′
ä
b†s−kbs′−k (ãs + αkαs−kã−s) ds ds

′.

(12.88)

We start by estimating the last term in (12.87). We introduce the notation

C := sup
s,s′∈PL,k∈PH

∣∣∣[ã†s′ + αkαs′−kã
†
−s′ , b

†
s−k]

∣∣∣ ≤ 1.(12.89)

In fact, it follows from (10.6), (12.10), (12.43), and (C.4) that

C ≤ Cδ
Ä
K−2
`
‹K2
H(ρµa

3)
1
6

äM−1
2 .(12.90)

To estimate the last term in (12.87) we first apply Cauchy-Schwarz, then

commute the ã’s through the b’s and apply Cauchy-Schwarz to the commutator

terms. This yields≠
Φ,

∫∫
fL(s)fL(s′)

Ä
ã†s′ + αkαs′−kã

†
−s′
ä
b†s−kbs′−k (ãs + αkαs−kã−s) Φ

∑
≤ 2

∫∫
fL(s)fL(s′)

¨
Φ, b†s−k

Ä
ã†s′ + αkαs′−kã

†
−s′
ä

(ãs′ + αkαs′−kã−s′) bs−kΦ
∂

+ CC
∫∫

fL(s)fL(s′)
¨
Φ,
Ä
εb†s−kbs−k + Cε−1ãs′ ã

†
s′ + C

ä
Φ
∂

≤ C(`−3M+ ε|PL|C)
∫
fL(s)〈Φ, b†s−kbs−kΦ〉

+ Cε−1|PL|C(`−3M+ |PL|) + C|PL|2C2.

(12.91)

For simplicity, we choose ε = M
`3|PL|C and get≠

Φ,

∫∫
fL(s)fL(s′)

Ä
ã†s′ + αkαs′−kã

†
−s′
ä
b†s−kbs′−k (ãs + αkαs−kã−s) Φ

∑
≤ C`−3M

≠
Φ,

∫
fL(s)b†s−kbs−kΦ

∑
+ C|PL|2C2

(
1 +

`3|PL|
M

)
.

(12.92)
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Therefore, using (12.62),Æ
Φ, (2π)−3`3

∫
k∈PH

T ′2,op(k)Φ

∏
≥ −Cρµ`3

a2

(mink∈ 1
2
PH
Dk)2

M|PL|
Æ

Φ

∫
{q∈ 1

2
PH}
Dqb†qbqΦ

∏
− ρµ`6a|PL|2C2

Å
1 +

`3|PL|
M

ã
.

(12.93)

Notice that Dk ≥ C−1‹K−2
H (ρµa

3)
5
6a−2 for k ∈ 1

2PH . Therefore, using (12.4)

and (5.22),

ρµ
a2

(mink∈ 1
2
PH
Dk)2

M|PL| ≤ δ2K3
LKM(ρµa

3)
1
4 � δ2.(12.94)

Therefore, the negative Dqb†qbq-term in (12.93) can be absorbed in a fraction

of the similar (positive) term left out in (12.79) exactly for this purpose.

Using (5.15), we see that `3|PL| ≤ C(KLK`)
3 = d−6 . Therefore, it follows

from (5.19) that `3|PL|
M � 1. So, using (12.90) we can estimate the error term

in (12.93) as

− ρµ`6a|PL|2C2

Å
1 +

`3|PL|
M

ã
≥ − Cρ2

µa`
3
»
ρµa3

Å
K−3
` d−12δ2

Ä
K−2
`
‹K2
H(ρµa

3)
1
6

äM−1
ã
.

(12.95)

This is clearly seen to agree with (12.49).

We next consider the commutator term T ′2,comm(k) from (12.87).

From (12.23) and using Lemma C.1, we see that∣∣∣[bs′−k, b†s−k]− χ̂2((s− s′)`)
∣∣∣ ≤ Cδ2|χ̂2((s− s′)`)|+ C(K−2

` δ)
M−1

2 .(12.96)

Therefore, using that M ≥ 5,

T ′2,comm(k) ≥
(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)ã†s′χ̂

2((s− s′)`)ãs

− C|z|2 Ŵ1(k)2

Dk
δ2|PL|`−3n+.

(12.97)
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Using (10.17) and (12.62) we see that

−(2π)−3`3
∫
k∈PH

(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)ã†s′χ̂

2((s− s′)`)ãs

= −ρz
(
1 + Cδ2

)Ç
(2π)−3

∫
k∈PH

Ŵ1(k)2

Dk

å∑
j

QL,jχ
2QL,j

≥ −2ρz
(
1 + Cδ2

)‘W1ω(0)
∑
j

QL,jχ
2QL,j .

(12.98)

Here we used (5.18) to control the error from (12.62).

We now notice that, for all ε > 0,∑
j

QL,jχ
2QL,j ≤ (1 + ε)

∑
j

QL,jχ
2QL,j + Cε−1nH+ .(12.99)

We notice that ρµa = (dK`)
2 1
d2`2

. Therefore, choosing ε proportional to

ε−1
T (dK`)

2, we find, using (12.62),

−(2π)−3`3
∫
k∈PH

(
1 + Cδ2

)
|z|2 Ŵ1(k)2

Dk
(2π)−6

∫∫
fL(s)fL(s′)ã†s′χ̂

2((s− s′)`)ãs

≥ −2ρz
(
1 + Cδ2 + Cε−1

T (dK`)
2
)‘W1ω(0)

∑
j

Qjχ
2Qj −

1

100

1

(d`)2
nH+ .

(12.100)

Using (5.4), (5.23), (12.4) and (12.1),

ρza[δ2 + ε−1
T (dK`)

2]� `−2.(12.101)

Therefore, the above error terms can be absorbed in the energy gap.

To estimate the error term in (12.97) we integrate

−(2π)−3`3
∫
k∈PH

C|z|2 Ŵ1(k)2

Dk
δ2|PL|`−3n+ ≥ −Cρµaδ2(`3|PL|)n+.(12.102)

By (5.23) and (5.15), we see that ρµaδ
2(`3|PL|) � `−2, so this term can also

be absorbed in the energy gap.

We now estimate the other commutator term, namely T1(k) from (12.80).

We clearly have

T1(k) ≥ −Czδ sup
k∈PH ,s∈PL

Ä
|[b†k, b

†
s−k]|
ä
|αkŴ1(k)|

∫
fL(s)

Ä
ã†−sã−s + 1

ä
ds

− Czδ sup
k∈PH ,s∈PL

Ä
|[b†k, ã

†
−s]|
ä
|αkŴ1(k)|

∫
fL(s)

Ä
b†s−kbs−k + 1

ä
ds.

(12.103)



954 SØREN FOURNAIS and JAN PHILIP SOLOVEJ

Therefore,

`3(2π)−3

∫
k∈PH

T1(k) dk

≥ −Czδ
(

sup
k∈PH ,s∈PL

|[b†k, b
†
s−k]|

)
ρa(n+ + (K`KL)3)

− Czδ
(

sup
k∈PH ,s∈PL

|[b†k, ã
†
−s]|
)
ρa(K`KL)3 − Czδ2

(
sup

k∈PH ,s∈PL
|[b†k, ã

†
−s]|
)

×
(

sup
k∈PH ,s∈PL

|Ds−k|−1
)
a(K`KL)3

∫
{|k|≥ 1

2
K−1
H a−1}

Dkb
†
kbk.

(12.104)

The last term in this inequality is easily seen to be estimated as

≥ −δ2

®
δ

1√
ρµ`3

K3
`K

3
L

(
sup

k∈PH ,s∈PL
|[b†k, ã

†
−s]|
)´

`3
∫
{|k|≥ 1

2
K−1
H a−1}

Dkb
†
kbk,

(12.105)

and using the properties of the commutator and Lemma C.1, we see that this

term can easily be absorbed in the extra δ2`3
∫
{|k|≥ 1

2
K−1
H a−1}Dkb

†
kbk omitted

in (12.79).

The two remaining terms in (12.104) can be estimated (in particular, using

Lemma C.1 and (12.43)) as

(12.106) ≥ −Cρ2
µa`

3δK
−3/2
` (ρµa

3)
1
4 (M+ (K3

`K
3
L))
(
K−2
` δ

)M−1
2 .

This finishes the proof of (12.49) �

Now we have established all three inequalities (12.49), (12.50) and (12.51).

This finishes the proof of Lemma 12.5. �

13. Proof of the main theorem

In this section we will combine the results of the previous sections in order

to prove Theorem 1.2.

Proof of Theorem 1.2. As noted in Section 4, Theorem 1.2 follows from

Theorem 4.1, which again—as observed in Section 6.3—follows from Theo-

rem 6.8. We will use the concrete choice of parameters set down in (5.26) and

(5.27) in Section 5. Recall, in particular, the notation X defined in (5.27).

To prove Theorem 6.8, let Ψ ∈ Fs(L2(Λ)) be a normalized n-particle

trial state satisfying (7.1). If such a state does not exist, there is nothing to

prove. Using Lemma 8.2 there exists a normalized n-particle wave function‹Ψ ∈ Fs(L
2(Λ)) satisfying (8.2) and such that

〈Ψ,HΛ(ρµ)Ψ〉 ≥
¨‹Ψ,HΛ(ρµ)‹Ψ∂− CX2Rρ2

µa`
3(ρµa

3)1/2.(13.1)

The error term in (13.1) is consistent with the error term in Theorem 6.8.
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Using Proposition 10.2 we find that our localized state ‹Ψ satisfies

〈‹Ψ,HΛ(ρµ)‹Ψ〉 ≥ 〈‹Ψ,H2nd
Λ (ρµ)‹Ψ〉

− Cρ2
µa`

3(ρµa
3)1/2

Ä
(ρµa

3)
348
323
− 1

2 +X3(Ra−1)2(ρµa
3)1/2

ä
,

(13.2)

where the error is clearly consistent with the error term in Theorem 6.8.

At this point, we can apply Theorem 10.5 to get the lower bound

〈‹Ψ,H2nd
Λ (ρµ)‹Ψ〉 ≥ inf

z∈R+

inf
Φ
〈Φ,K(z)Φ〉 − Cρµa,(13.3)

where the second infimum is over all normalized Φ ∈ F(Ran(Q)) satisfying

(10.28).

Since

ρµa = ρ2
µa`

3
»
ρµa3K−3

` = ρ2
µa`

3
»
ρµa3X

9
2 ,(13.4)

which is in agreement with the error term in Theorem 6.8, this implies that

we need to prove that

inf
Φ
〈Φ,K(z)Φ〉 ≥ −4πρ2

µa`
3 + 4πρ2

µa`
3 128

15
√
π

(ρµa
3)

1
2

− Cρ2
µa`

3(ρµa
3)

1
2

Å
R2

a2
(ρµa

3)
1
2 +X

1
5

ã(13.5)

for all normalized Φ satisfying (10.28).

We will use that with our choice of parameters (12.2) is satisfied.

If ρz = |z|2/`3 satisfies (11.3), i.e., is “far away” from ρµ, then Propo-

sition 11.2 provides a lower bound on 〈Φ,K(z)Φ〉 that is larger than needed

for (13.5) by a factor of 2 on the LHY-term. Since (12.2) is satisfied, the

assumptions of Proposition 11.2 are verified.

If ρz satisfies the complementary inequality (12.1) and Φ satisfies (10.28),

then by (12.7) (using again that (12.2) is satisfied) and Theorem 12.1 combined

with Lemma 12.3 we get

〈Φ,K(z)Φ〉 ≥ −1

2
ρ2
µ`

3ĝ(0) + 4π
128

15
√
π
ρza
√
ρza3`3

+

≠
Φ,

Å
b

4`2
n+ + εT

b

2d2`2
nH+ +Qex

1 (z) +Qex
2 (z) +Q3(z)

ã
Φ

∑
+ (2π)−3`3〈Φ,

∫
Dkb†kbk dkΦ〉 − E1,

(13.6)

where the error term E1 satisfies

E1 ≤ Cρ2
µa`

3(ρµa
3)

1
2

Å
R2

a2
(ρµa

3)
1
2 +X

1
5 + (ρµa

3)
1
4 (Ra−1)

1
2

ã
.(13.7)
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Here the error term in X
1
5 comes from the ε(ρµ, ρz) in Lemma 12.3. This error

is compatible with (13.5) using Young’s inequality for products.

Now we can apply Theorem 12.4 to obtain the inequality

(2π)−3`3
≠

Φ,

∫
Dkb†kbk dkΦ

∑
+

≠
Φ,

Å
b

4`2
n+ + εT

b

2d2`2
nH+ +Qex

1 (z) +Qex
2 (z) +Q3(z)

ã
Φ

∑
≥ −E2,

(13.8)

with error term

E2 ≤ Cρ2
µa`

3
»
ρµa3(ρµa

3)
1
6X−

11
12 .(13.9)

Here the dominant contribution to the error (with our choice of parameters)

comes from the ‹K−1
H (ρµa

3)
5
12 -term. This error is clearly consistent with (13.5).

Combining (13.6) and (13.8), we get

〈Φ,K(z)Φ〉 ≥ −1

2
ρ2
µ`

3ĝ(0) + 4π
128

15
√
π
ρµa
»
ρµa3`3

−
(
E1 + E2 + C

∣∣∣ρµa»ρµa3 − ρza
√
ρza3

∣∣∣ `3) .(13.10)

This establishes (13.5) for ρz satisfying (12.1), since by (12.1), (12.2) and

(5.26), we have

∣∣∣ρµa»ρµa3 − ρza
√
ρza3

∣∣∣ `3 ≤ Cρµa»ρµa3`3K−2
` = Cρµa

»
ρµa3`3X3.

(13.11)

This finishes the proof of (13.5) and therefore of Theorem 6.8, which in turn

implies Theorems 4.1 and 1.2. �

Appendix A. Bogolubov method

In this section we recall a simple consequence of the Bogolubov method

(see [21, Th. 6.3] and [7])

Theorem A.1 (Simple case of Bogolubov’s method). Let a± be operators

on a Hilbert space satisfying [a+, a−] = 0. For A > 0, B ∈ R satisfying either

|B| < A or B = A and arbitrary κ ∈ C, we have the operator identity

A(a∗+a+ + a∗−a−) + B(a∗+a
∗
− + a+a−) + κ(a∗+ + a−) + κ(a+ + a∗−)

= D(b∗+b+ + b∗−b−)− 1

2

Ä
A−

√
A2 − B2

ä
([a+, a

∗
+] + [a−, a

∗
−])− 2|κ|2

A+ B
,

(A.1)

where

D :=
1

2

Ä
A+

√
A2 − B2

ä
(A.2)
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and

b+ := a+ + αa∗− + c0, b− := a− + αa∗+ + c0,(A.3)

with

α := B−1
Ä
A−

√
A2 − B2

ä
, c0 :=

2κ

A+ B +
√
A2 − B2

.(A.4)

In particular,

A(a∗+a+ + a∗−a−) + B(a∗+a
∗
− + a+a−) + κ(a∗+ + a∗−) + κ(a+ + a−)

≥ −1

2

Ä
A−

√
A2 − B2

ä
([a+, a

∗
+] + [a−, a∗−])− 2|κ|2

A+ B
.

(A.5)

Proof. The identity (A.1) is elementary. From here the inequality (A.5)

follows by dropping the positive operator term D(b∗+b+ + b∗−b−). �

Appendix B. Localization to small boxes

The Hamiltonian HB(ρµ) defined in (6.24) (with u = 0) is localized to

the box Λ := Λ(0) = [−`/2, `/2]3. In order to arrive at the a priori bounds in

Theorem 7.1 we will localize again to boxes with a length scale `d� (ρa)−1/2.

The reason for this second localization is that we need a larger Neumann gap

in order to absorb errors. We therefore introduce a new family of boxes (some

of which will have a rectangular shape) given by

(B.1) B(u) = [−`/2, `/2]3 ∩
(
`du+ [−`d/2, `d/2]3

)
, u ∈ R3.

The functions that localize to these boxes are

(B.2) χB(u)(x) = χ
(x
`

)
χ
( x
d`
− u
)
, u ∈ R3,

where χ is given in (C.1) in terms of the positive integer M . Observe that

(B.3)

∫∫
χB(u)(x)2dxdu = `3.

We consider the projections

PB(u)ϕ = |B(u)|−1〈1B(u), ϕ〉1B(u), QB(u)ϕ = 1B(u)ϕ− PB(u)ϕ.

In these small boxes we consider the Hamiltonian

(B.4)

HB(u)(ρµ) =
N∑
i=1

Å
TB(u),i − ρµ

∫
w1,B(u)(xi, y)dy

ã
+

1

2

∑
i 6=j

wB(u)(xi, xj),

where (omitting the index u)

(B.5) TB =
1

2
εT (1 + π−2)−1(d`)−2QB +QBχB[

√
−∆− (ds`)−1]−2

+ χBQB
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and

(B.6)

wB(x, y) = χB(x)W s(x− y)χB(y), w1,B(x, y) = χB(x)W s
1(x− y)χB(y),

with (where the superscript s refers to small)

(B.7) W s(x) =
W (x)

χ ∗ χ(x/(d`))
, W s

1(x) =
W1(x)

χ ∗ χ(x/(d`))
.

Here we use that R < d` by (5.29). As in the large boxes we will also need

(B.8) w2,B(x, y) = χB(x)W s
2(x− y)χB(y), W s

2(x) =
W2(x)

χ ∗ χ(x/(d`))
.

Since ω ≤ 1, we have

(B.9)

∫
W s

2 ≤ 2

∫
W s

1(x) ≤ Ca.

We have by a Schwarz inequality that

(B.10)∫∫
w1,B(x, y)dxdy ≤

∫∫
χB(x)2W s

1(x− y)dxdy ≤ (cst.)a

∫
χ2
B ≤ Ca|B|.

Observe also that

(B.11)

∫∫∫
w1,B(u)(x, y)dxdydu = `3

∫
g = 8πa`3.

It was proved in [7, Th. 3.10] that the operator HΛ(ρµ) defined in (6.24)

and (6.25) can be bounded below by (we are for the lower bound ignoring the

third term in T in (6.19))

(B.12) HΛ(ρµ) ≥
N∑
i=1

b

2
QΛ,i`

−2 +

∫
R3

HB(u)(ρµ)du

if

(B.13) εT , s, ds
−1, and (s−2 + d−3)(sd)−2sM

are smaller than some universal constant. Note that, if ρµa
3 is small enough,

this is satisfied for our choices in Section 5, in particular, due to (5.3).

In the integral above the operators HB(u)(ρµ) are, however, not unitarily

equivalent. Depending on u the boxes B(u) can be rather small and rectan-

gular. We denote by λ1(u) ≤ λ2(u) ≤ λ3(u) ≤ d` the side lengths of the boxes

B(u). To avoid boxes that are very small, i.e., where λ1(u) ≤ ρ
−1/3
µ , we will

restrict the integral above to u such that

‖`du‖∞ ≤
`

2
(1 + d)− ρ−1/3

µ .

Note that since the full integral would be over the set where ‖`du‖∞ ≤ `
2(1+d)

we see that the restriction implies that all boxes will satisfy λ1(u) ≥ ρ−1/3
µ .
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For the kinetic energy and the repulsive potential this restriction will only

give a further lower bound. For the chemical potential term we will use the

following result.

Lemma B.1. For all x ∈ Λ, we have the estimate

−ρµ
∫∫

w1,B(u)(x, y)dydu

≥− ρµ
∫
‖u‖∞− 1

2( 1
d

+1)≤−(`dρ
1/3
µ )−1

∫
w1,B(u)(x, y)dydu

− 3ρµ

∫
−2(`dρ

1/3
µ )−1≤‖u‖∞− 1

2( 1
d

+1)≤−(`dρ
1/3
µ )−1

∫
w1,B(u)(x, y)dydu.

(B.14)

Proof. The estimate above follows if we can show that for all x, y ∈ Λ we

have

χ ∗ χ
(x− y

`d

)
≤
∫
‖u‖∞− 1

2( 1
d

+1)≤−(`dρ
1/3
µ )−1

χ
( x
`d
− u
)
χ
( y
`d
− u
)
du

+ 3

∫
−2(`dρ

1/3
µ )−1≤‖u‖∞− 1

2( 1
d

+1)≤−(`dρ
1/3
µ )−1

χ
( x
`d
− u
)
χ
( y
`d
− u
)
du.

(B.15)

We have

χ ∗ χ
(x− y

`d

)
−
∫
‖u‖∞− 1

2( 1
d

+1)≤−(`dρ
1/3
µ )−1

χ
( x
`d
− u
)
χ
( y
`d
− u
)
du

=

∫
‖u‖∞− 1

2( 1
d

+1)≥−(`dρ
1/3
µ )−1

χ
( x
`d
− u
)
χ
( y
`d
− u
)
du.

(B.16)

Since x, y ∈Λ, the integral on the right is supported on ‖u‖∞− 1
2

(
1
d +1

)
≤0.

Using the fact that ρ
−1/3
µ < `d/2 and that χ is a product of symmetric de-

creasing functions of the coordinates u1, u2, u3 respectively, we may observe

that for fixed u2, u3, we have

max
1
2( 1

d
+1)−(`dρ

1/3
µ )−1≤|u1|≤ 1

2( 1
d

+1)
χ
( x
`d
− u
)
χ
( y
`d
− u
)

≤ min
1
2( 1

d
+1)−2(`dρ

1/3
µ )−1≤|u1|≤ 1

2d
+ 1

2
−(`dρ

1/3
µ )−1

χ
( x
`d
− u
)
χ
( y
`d
− u
)
.

(B.17)

Using this repeatedly (also with u1, u2 and u1, u3 fixed) gives the result in the

lemma. �
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As a consequence of the lemma we find from (B.12), if (B.13) is satisfied,

that

(B.18) HΛ(ρµ) ≥ b

2
`−2

N∑
i=1

QΛ,i +

∫
‖`du‖∞≤ 1

2
`(1+d)−ρ−1/3

µ

HB(u)(m(u)ρµ)du,

where m(u) = 1 if ‖`du‖∞ ≤ 1
2`(1 + d)− 2ρ

−1/3
µ and m(u) = 4 otherwise, i.e.,

for u near the boundary.

The goal in the rest of this section is to give a lower bound on the ground

state energy of the operators HB(u)(m(u)ρµ) to conclude an a priori lower

bound on the ground state energy of HΛ(ρµ). We may now assume that the

shortest side length of B(u) satisfies λ1(u) ≥ ρ−1/3
µ , and we will make use of the

fact that the range R of the potential satisfies R � ρ
−1/3
µ . For simplicity, we

will often omit the parameter u. A main ingredient in getting a lower bound

is to get a priori bounds on the operators

(B.19) n =

N∑
i=1

1B,i, n0 =

N∑
i=1

PB,i, n+ =

N∑
i=1

QB,i.

Note that the operator n commutes with HB, so we may consider n a number.

Applying the decomposition of the potential energy in Section 6.4 to the

small boxes we arrive at the following lemma.

Lemma B.2. There is a constant C > 0 such that on any small box B,

we have

−ρµ
N∑
i=1

∫
w1,B(x, y) dy +

1

2

∑
i 6=j

wB(xi, xj) ≥ A0 +A2 − Ca(ρµ + n0|B|−1)n+,

(B.20)

where

A0 =
n0(n0 − 1)

2|B|2

∫∫
w2,B(x, y) dxdy

−
Ç
ρµ

n0

|B|
+

1

4

Å
ρµ −

n0 − 1

|B|

ã2
å∫∫

w1,B(x, y) dxdy

(B.21)

and

(B.22) A2 =
1

2

∑
i 6=j

PB,iPB,jw1,B(xi, xj)QB,jQB,i + h.c.
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Proof. We use the identity (6.33), which also holds in the small boxes with

P,Q and w,w1, w2 replaced by PB, QB and wB, w1,B, w2,B respectively. Let us

denote the corresponding terms Qren
i,B, i = 0, . . . , 4. Then

Qren
0,B =

n0(n0 − 1)

2|B|2

∫∫
w2,B(x, y) dxdy − ρµ

n0

|B|

∫∫
w1,B(x, y) dxdy.

As in the proof of Lemma 6.11 we apply a Cauchy-Schwarz inequality—using

the positivity of wB—to absorb Qren
3,B in Qren

4,B. This results in the following

inequality:

Qren
3,B +Qren

4,B

≥ −C
∑
i 6=j

PB,iQB,jw1,B(xi, xj)QB,jPB,i

−
∑
i 6=j

(
PB,iQB,jw1,Bω(xi, xj)PB,jPB,i + h.c.

)
− 2

∑
i 6=j

(
PB,iQB,jw1,BωPB,jQB,i + h.c.

)
≥ −C

∑
i 6=j

PB,iQB,jw1,B(xi, xj)QB,jPB,i

−
∑
i 6=j

(
PB,iQB,jw1,Bω(xi, xj)PB,jPB,i + h.c.

)
≥ −

∑
i 6=j

(
PB,iQB,jw1,Bω(xi, xj)PB,jPB,i + h.c.

)
− Can0|B|−1n+,

(B.23)

where we have used the pointwise inequality 0 ≤ ω ≤ 1, an additional Cauchy-

Schwartz inequality in the second inequality, and

∑
i 6=j

PB,iQB,jw1,B(xi, xj)QB,jPB,i

≤ C‖χB‖2∞n0|B|−1n+

∫
W s

1 ≤ Can0|B|−1n+,

(B.24)

which follows from∫
χB(x)W s

1(x− y)χB(y) dy ≤ ‖χB‖2∞
∫
W s

1 .
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If we rewrite Qren
B,1 as in (6.40), the first term on the right side of (B.23) cancels

the second line of (6.40). The remaining part of Qren
B,1 we estimate as follows:

|B|−1(n0 − ρµ|B|)
∑
i

QB,iχB(xi)W
s
1 ∗ χB(xi)PB,i + h.c.

= |B|−1(n0
1/2 + (ρµ|B|)1/2)

×
∑
i

QB,iχB(xi)W
s
1 ∗ χB(xi)PB,i((n0 − 1)1/2 − (ρµ|B|)1/2) + h.c.

≥ −4|B|−1
Ä
n

1/2
0 + (ρµ|B|)1/2

ä2∑
i

QB,iχB(xi)W
s
1 ∗ χB(xi)QB,i

− 1

4
|B|−1

Ä
(n0 − 1)1/2 − (ρµ|B|)1/2

ä2∑
i

PB,iχB(xi)W
s
1 ∗ χB(xi)PB,i.

(B.25)

The first term above we estimate similarly to the estimate in (B.24). The last

term above is equal to

− 1

4

n0

|B|2
Ä
(n0 − 1)1/2 − (ρµ|B|)1/2

ä2
∫∫

w1,B(x, y) dxdy

≥ −1

4

Å
n0 − 1

|B|
− ρµ

ã2 ∫∫
w1,B(x, y) dxdy,

where we used that ρµ|B| ≥ 1 to get the last inequality. This, together with

Qren
0,B, give the A0 term in the lemma.

The first three terms in Qren
2,B are absorbed into the last term in (B.20)

using again the same Cauchy-Schwartz as in the second inequality in (B.23).

Finally, the last terms in Qren
2,B are exactly the terms collected in A2. �

We express the term A2 from the lemma in second quantization. Intro-

ducing the operators

b†p = |B|−1/2a†(QBχBe
−ipx)a0

we can write

A2 =
1

2
(2π)−3

∫ ”W s
1(p)(b†pb

†
−p + b−pbp)dp.

We shall control A2 using Bogolubov’s method. In order to do this we will add

and subtract a term

(B.26) A1 = (2π)−3Ksa

∫
(b†pbp + b†−pb−p)dp,

with the constant Ks > 0 chosen appropriately. Note that we have

(B.27) A1 ≤ Ksa
n0 + 1

|B|
n+‖χB‖2∞ ≤ CKsa

n0 + 1

|B|
n+.
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Lemma B.3 (Bogolubov’s method in small boxes). There exists a constant

C > 0 such that

N∑
i=1

QB,iχB,i[
√
−∆i − (ds`)−1]−2

+ χB,iQB,i +A2

≥ −1

2
(1 + C(R/(d`))2)(1 + C(ds`)−1a)ĝω(0)

(n+ 1)n

|B|2

∫
χ2
B

− C
Ç
a2(ds`)−1 log(ds`a−1)

n+ 1

|B|
+a4(ds`)3

Å
n+ 1

|B|

ã3

+a(ds`)−3

å
n

|B|

∫
χ2
B

− Can+ 1

|B|
n+.

(B.28)

Moreover, for all ε > 0, there is a Cε > 0 such that if

(B.29) (R/d`)2 < C−1
ε , a(ds`)−1 log(ds`a−1) < C−1

ε ,

then

N∑
i=1

QB,iχB,i[
√
−∆i − (ds`)−1]−2

+ χB,iQB,i +A2

≥ −1

2
((1 + ε)ĝω(0) + εa)

(n+ 1)n

|B|2

∫
χ2
B

− Cεa(ds`)−3 n

|B|

∫
χ2
B − Cεa

n+ 1

|B|
n+.

(B.30)

Proof. We add A1 from (B.26) to the term we want to estimate. Using

n0 ≤ n we may write

N∑
i=1

QB,iχB,i[
√
−∆i − (ds`)−1]−2

+ χB,iQB,i +A1 +A2 ≥ (2π)−3 1

2

∫
h(p)dp,

where h is the operator

h(p) =

Å |B|
n+ 1

[|p| − (ds`)−1]2+ + 2Ksa

ã
(b†pbp+b†−pb−p)+”W s

1(p)(b†pb
†
−p+b−pbp).

We observe that

[bp, b
†
p] ≤ n0|B|−1

∫
χ2
B ≤ n|B|−1

∫
χ2
B.

We will now apply the simple case of Bogolubov’s method in Theorem A.1

with

A(p) =
|B|
n+ 1

[|p| − (ds`)−1]2+ + 2Ksa, B(p) = ”W s
1(p).
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We have by (B.9) that

|B(p)| = |”W s
1(p)| ≤

∫
W s

1 ≤ C0a.

If we therefore choose Ks ≥ C0, we see that |B|/A ≤ 1/2, and we get the

following lower bound from Theorem A.1:

h(p) ≥ −1

2

(
A(p)−

»
A(p)2 − B(p)2

)
n0|B|−1

∫
χ2
B.

Using that |B|/A ≤ 1/2 we have

h(p) ≥ −CB(p)2

A(p)
n|B|−1

∫
χ2
B.

We use this for |p| < 2(ds`)−1, and for the integral over |p| < 2(ds`)−1, we find∫
|p|<2(ds`)−1

B(p)2

A(p)
dp ≤C

2
0

Ks
a

∫
|p|<2(ds`)−1

1dp ≤ C2
0

Ks
(ds`)−3.(B.31)

For the simple bound (B.30), we may choose Ks large depending on ε to have

h(p) ≥ −1

2
(1 + ε/2)

B(p)2

A(p)
n|B|−1

∫
χ2
B

and use this in the range |p| > 2(ds`)−1. For the more refined bound (B.28),

in the range |p| > 2(ds`)−1, we use

h(p) ≥ −
Å

1

2

B(p)2

A(p)
+ C
B(p)4

A(p)3

ã
n|B|−1

∫
χ2
B.

For |p| > 2(ds`)−1, we have

B(p)2

A(p)
≤ n+ 1

|B|
”W s

1(p)2

(|p| − (ds`)−1)2
≤
”W s

1(p)2

p2
(1 + C(ds`)−1|p|−1)

n+ 1

|B|
,

and hence by splitting the integral over the error in |p| < a−1 and |p| > a−1

we obtain∫
|p|>2(ds`)−1

B(p)2

A(p)
dp

≤ (1 + C(ds`)−1a)
n+ 1

|B|

∫
R3

”W s
1(p)2

p2
dp+ Ca2(ds`)−1n+ 1

|B|
log(ds`a−1).
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Finally, we use that

1

4
(2π)−3

∫
R3

”W s
1(p)2

p2
dp =

1

4

∫∫
W s

1(x)W s
1(y)

4π|x− y|
dxdy

≤1

4
(1 + C(R/(d`))2)

∫∫
g(x)g(y)

4π|x− y|
dxdy

=
1

4
(1 + C(R/(d`))2)(2π)−3

∫
R3

ĝ(p)2

p2
dp

=
1

2
(1 + C(R/(d`))2)ĝω(0).

(B.32)

Finally, to get (B.28) we estimate∫
|p|>2(ds`)−1

B(p)4

A(p)3

≤ (cst.)a4

Å
n+ 1

|B|

ã3 ∫
|p|>2(ds`)−1

|p|−6dp = Ca4

Å
n+ 1

|B|

ã3

(ds`)3.

(B.33)

Using the estimate (B.27) on A1 gives the last term in (B.28). �

In order to use this lemma we will control the negative term quadratic

in n in (B.30) in terms of the positive term quadratic in n0 in (B.21). The

difference between n and n0 will be absorbed in the Neumann gap of TB. It

is, however, important to establish the result in the following lemma.

Lemma B.4. There is a constant C > 0 such that if the shortest side

length λ1 of the box B satisfies R ≤ 1
2C
−1/2 min{λ1, `d}, then

∫∫
w1,B(x, y)dxdy ≥ 8πa

Å
1− C

( R
λ1

)2
ãÅ

1− C
(R
`d

)2
ã∫

χ2
B,

(B.34)

∫∫
w2,B(x, y)dxdy

≥
∫∫

w1,B(x, y)dxdy +

Å
1− C

( R
λ1

)2
ãÅ

1− C
(R
`d

)2
ã
ĝω(0)

∫
χ2
B.

(B.35)

Moreover, for any 0 < ε < 1/10, we can find a C ′ε > 0 such that if R ≤
(C ′ε)

−1/2 min{λ1, `d}, then

(B.36)∫∫
w2,B(x, y)dxdy ≥ 3

4

∫∫
w1,B(x, y)dxdy + ((1 + ε)ĝω(0) + εa)

∫
χ2
B.
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Proof. The estimate (B.35) follows from∫∫
w2,B(x, y)dxdy −

∫∫
w1,B(x, y)dxdy

=

∫∫
ω(x− y)w1,B(x, y)dxdy

≥
∫
ω(x)W s

1(x)dx

Å∫
χ2
B − CR2‖∇2χB‖∞

∫
χB

ã
≥
(
1− C(Rλ−1

1 )2
) ∫

ω(x)W s
1(x)dx

∫
χ2
B

≥
(
1− C(Rλ−1

1 )2
) (

1− C(R/(`d))2
)Å∫

gω

ã∫
χ2
B,

where we have used that ωW is spherically symmetric, that |B|−1
(∫
χB
)2 ≤∫

χ2
B, and that

(B.37) ‖∂i∂jχB‖∞ ≤ CMλ−2
1 |B|

−1

∫
χB,

which is a simple exercise (see Appendix C). The estimate (B.34) follows in

the same way without ω and using
∫
g = 8πa. Finally, (B.36) follows from

ω ≤ 1. �

We are now ready to give the bound on the energy in the small boxes.

Theorem B.5 (Lower bound on energy in small boxes). Assume B is

a box with shortest side length λ1 ≥ ρ
−1/3
µ . There are universal constants

C,C ′ > 1 and 0 < c < 1/2 such that for all 1 ≤ KB ≤ C ′−1(ρµa
3)−1/6, we

have for the Hamiltonian defined in (B.4) that

HB(ρµ) ≥
Ç
c
(n|B|−1 − ρµ)2

1 + n
|B|ρµ

− 1

2
ρ2
µ

å∫∫
w1,B(x, y)dxdy

− Cρ2
µa
Ä
(Rλ−1

1 )2 +K3
B(ρµa

3)1/2
ä∫

χ2
B − Cρµa

(B.38)

if

(B.39) C ′ε
−1/2
T (ρµa

3)1/2 ≤ a(d`)−1 ≤ a(ds`)−1 ln(ds`a−1) ≤ KB(ρµa
3)1/2

and

(B.40) R ≤ K1/2
B (ρµa

3)1/4(ρµa)−1/2.

We are assuming that εT , s, d ≤ 1.

Note that all the assumptions on KB, R, εT , s, and d are satisfied with

our choices in Section 5 if ρµa
3 is small enough. Specifically, the assumption

on KB is a consequence of (5.7), formula (B.39) follows from (5.4), (5.6), and

(5.7), and (B.40) was given in (5.29).
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Proof. Note that (B.39) is equivalent to

(ρµa)−1/2K−1
B ≤ sd`

ln(ds`a−1)
≤ d` ≤

ε
1/2
T

C ′
(ρµa)−1/2.

This, in particular, implies that

(B.41)

N∑
i=1

1

2
εT (1 + π−2)−1(`d)−2QB,i ≥ C ′2(1 + π−2)−1ρµan+.

Moreover, we see from (B.40) that

Rρ1/3
µ ≤ K1/2

B (ρµa
3)1/12, R/(`d) ≤ K3/2

B (ρµa
3)1/4.

We now first choose ε so small, e.g., to be 1/20, so that we can apply

Lemma B.4. Hence if C ′ is large enough, we can, since λ1 > ρ
−1/3
µ , use (B.34),

(B.35), and (B.36) from Lemma B.4. We choose the same ε in (B.30) and again,

by assuming that C ′ large enough, we can ensure that (B.29) is satisfied.

We may of course assume that n > 0, since the inequality we want to

prove is obviously satisfied if n = 0 since the operator is 0 whereas the lower

bound is negative in this case. We choose a constant Ξ > 2 to be determined

precisely below (see estimate (B.43)) to depend only on the constants C and

Cε in Lemmas B.3 and B.4. Our final choice of the constant C ′ in the theorem

will also depend on the choice of Ξ. Observe that ρµ|B| ≥ 1. Hence we can

choose an integer n′ in the interval [Ξρµ|B|, (Ξ + 1)ρµ|B|), and we may write

n = mn′+n′′ with m,n′, n′′ non-negative integers and n′′ < n′ < (Ξ + 1)ρµ|B|.
We will get a lower bound on the energy if in the Hamiltonian we think of

dividing the particles in m groups of n′ particles and one group of n′′ particles

ignoring the positive interaction between the groups. It is not important that

the Hamiltonian is no longer symmetric between the particles since we are not

considering it as an operator on the symmetric subspace, but only calculating

its expectation value in a symmetric state. We arrive at the conclusion that if

we denote by eB(n, ρµ) the ground state energy of HB(ρµ) restricted to states

with n particles in the box B, then

(B.42) eB(n, ρµ) ≥ meB(n′, ρµ) + eB(n′′, ρµ).

We have that both n′ and n′′ are less than (Ξ + 1)ρµ|B| ≤ 2Ξρµ|B|. This

means that the last terms in (B.20), (B.28), and (B.30) in both cases can be

absorbed in the positive term from (B.41) if we choose C ′ ≥ CΞ1/2. Using

(B.10) we see that the same is also true for the errors we get by replacing n′0
and n′′0 by n′ and n′′ respectively everywhere in A0 in (B.21).
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In the case of the m groups of n′ particles we will use Lemma B.2 and

(B.30) to arrive at

eB(n′, ρµ) ≥ n′2

2|B|2

∫∫
w2,B(x, y) dxdy

−
Ç
ρµ

n′

|B|
+

1

4

Å
ρµ −

n′

|B|

ã2
å∫∫

w1,B(x, y) dxdy

− 1

2
((1 + ε)ĝω(0) + εa)

n′2

|B|2

∫
χ2
B − Cρµan′|B|−1

∫
χ2
B,

where we have used that (B.39) and the assumption on KB imply that a(ds`)−3

≤ ρµa. We have also used that the error in replacing n′ − 1 by n′ in several

terms can also be absorbed in the last term. Thus applying (B.36) we arrive at

eB(n′, ρµ) ≥ 1

8

Å
ρµ −

n′

|B|

ã2 ∫∫
w1,B(x, y) dxdy − Cρµan′|B|−1

∫
χ2
B.

It follows, using (B.34), that if we choose the constant Ξ large enough depend-

ing only on the constants in Lemmas B.3 and B.4, then

eB(n′, ρµ) ≥ 1

9

Å
ρµ −

n′

|B|

ã2 ∫∫
w1,B(x, y) dxdy

≥ 1

18
ρµ

n′

|B|

∫∫
w1,B(x, y) dxdy ≥ 0.

(B.43)

This is what fixes the choice of Ξ. Hence

meB(n′, ρµ) ≥ 1

18
ρµ
mn′

|B|

∫∫
w1,B(x, y) dxdy

=
1

18
ρµ
n− n′′

|B|

∫∫
w1,B(x, y) dxdy.

(B.44)

We turn to the group of n′′ particles. We can again replace n′′0 by n′′ by

absorbing the resulting error terms in the positive gap. If we apply Lemma B.2

and (B.28), we see that since n′′ ≤ 2Ξρµ|B|, we have

eB(n′′, ρµ) ≥ n′′2

2|B|2

∫∫
w2,B(x, y) dxdy

−
Ç
ρµ
n′′

|B|
+

1

4

Å
ρµ −

n′′

|B|

ã2
å∫∫

w1,B(x, y) dxdy

− 1

2
ĝω(0)

n′′2

|B|2

∫
χ2
B − CΞ4ρ2

µaK
3
B(ρµa

3)1/2

∫
χ2
B − CΞρµa.

The last term comes from repeatedly replacing n′′ − 1 by n′′ in the leading

terms, which leads to an error n′′a|B|−2
∫
χ2
B ≤ Cn′′|B|−1a. In the error

terms we can, for the same replacement, alternatively use that 1 ≤ ρµ|B|.
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If we now apply the estimate (B.35) in Lemma B.4, we find that

eB(n′′, ρµ) ≥1

4

Å
n′′

|B|
− ρµ

ã2 ∫∫
w1,B(x, y) dxdy − 1

2
ρ2
µ

∫∫
w1,B(x, y) dxdy

− Cρ2
µa
Ä
(Rλ−1

1 )2 +K3
B(ρµa

3)1/2
ä∫

χ2
B − Cρµa,

(B.45)

where we have now ignored the explicit dependence on Ξ, which is after all

now a chosen constant.

We have arrived at the bound that

eB(n, ρµ) ≥
Ç

1

4

Å
n′′

|B|
− ρµ

ã2

+
1

18
ρµ
n− n′′

|B|

å∫∫
w1,B(x, y) dxdy

− 1

2
ρ2
µ

∫∫
w1,B(x, y) dxdy

− Cρµa2
Ä
(Rλ−1

1 )2 +K3
B(ρµa

3)1/2
ä∫

χ2
B − Cρµa.

This easily implies the result in the theorem. �

We will now apply the small box estimate from the previous theorem to

get an a priori bound on the energy and on the number of particles n and

excited particles n+ in the large box.

Theorem B.6 (A priori estimates in large box). Assume (5.1), (B.39),

(B.40). Then there is a constant C > 0 such that if 1 ≤ KB ≤ C ′−1(ρµa
3)−1/6

and ρµa
3 is smaller than some universal constant, then we have

(B.46) HΛ(ρµ) ≥ −4πρ2
µa`

3(1 + CK3
B(ρµa

3)1/2) +
b

2`2
n+.

Moreover, if there exists a normalized Ψ ∈ Fs(L
2(Λ)) with n particles in Λ,

such that (7.1) holds for a 0 < J ≤ K3
B , then the a priori bounds (7.2) on n

and n+ hold.

As explained just after Theorem B.5 the assumptions (B.39), (B.40), and

the assumption on KB are satisfied with our choices in Section 5.

Proof. We use (B.18) together with the estimate in Theorem B.5. We

will denote by n(u), n0(u), and n+(u) the operators defined in (B.19). The

corresponding operators in the large box Λ will be denoted n, n0, and n+. On

the set

I =
{
u ∈

[
− 1

2
(1 +

1

d
),

1

2
(1 +

1

d
)
]3 ∣∣∣ 1

2
`(1 + d)− 2ρ−1/3

µ

≤ ‖`du‖∞ ≤
1

2
`(1 + d)− ρ−1/3

µ

}
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we have that ρµ is replaced by 4ρµ. On this set we have, according to (C.6),

that |χB(u)(x)| ≤ C(ρ
−1/3
µ /`)M ≤ C(ρµa

3)M/6 with (C depending on M), and

therefore

(B.47)

∫
I

∫
χB(u)(x)2dx du ≤ C(ρµa

3)M/3(`d)3d−3 ≤ C(ρµa
3)M/3`3.

If we use Theorem B.5 and (B.10) to get the the rough estimate

HB(4ρµ) ≥ −Cρ2
µa

∫
χ2
B − Cρµa,

we obtain

(B.48)

∫
I
HB(4ρµ) ≥ −Cρ2

µa(ρµa
3)M/3`3 − Cρµad−3.

In order to apply the estimate in Theorem B.5 over the remaining u, we need

to control ∫
(Rλ1(u)−1)2

∫
χ2
B(u)(x)dxdu

≤ CR2(d`)−2

∫
(λ1(u)/(d`))M−2

∫
χB(u)(x)dxdu

≤ C(R/(`d)2)`3 ≤ CK3
B`

3,

(B.49)

where we have used (C.5), i.e., ‖χB‖∞ ≤ C(λ1/(d`))
M and

∫∫
χB(u)(x)dxdu =

C`3. If we combine this with (B.48) (with M = 8), (B.18), (B.11), (B.3), and

the estimate in Theorem B.5, we arrive at the final a priori lower bound

〈Ψ,HΛ(ρµ)Ψ〉 ≥RΨ +

≠
Ψ,

b

2`2
n+Ψ

∑
− 4πρ2

µa`
3 − CK3

B(ρµa
3)1/2`3 − Cρµad−3

≥RΨ +

≠
Ψ,

b

2`2
n+Ψ

∑
− 4πρ2

µa`
3
Ä
1 + CK3

B(ρµa
3)1/2

ä
,

where

0 ≤ RΨ =

Æ
Ψ,

Ç∫
I−
F

Å
n(u)

|B(u)|

ã∫∫
w1,B(u)(x, y)dxdydu

å
Ψ

∏
with F (t) = c

(t−ρµ)2

1+tρ−1
µ

and

I− =

ß
u ∈ R3 | ‖`du‖∞ ≤

1

2
`(1 + d)− 2ρ−1/3

µ

™
.

Since RΨ and n+ are non-negative, this immediately gives (B.46) and

(B.50) RΨ ≤ Cρ2
µa`

3K3
B(ρµa

3)1/2 and 〈Ψ, n+Ψ〉 ≤ Cρµ`3K3
BK

2
` (ρµa

3)1/2

for a normalized n-particle Ψ satisfying (7.1). It remains to establish the

a priori bound on n in (7.2).
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Using that the function F is convex and denoting

C =

∫
I−

∫∫
w1,B(u)(x, y)dxdydu,

we obtain

(B.51) RΨ ≥ CF
Ç
C−1

Æ
Ψ,

Ç∫
I−

n(u)

|B(u)|

∫∫
w1,B(u)(x, y)dxdydu

å
Ψ

∏å
.

We have by (B.11) that

8πa`3(1− C(ρµa
3)M/3) ≤ C ≤ 8πa`3,

where we used (B.10) and as in (B.47) that |χB(u)(x)| ≤ C(ρ
−1/3
µ /`)M ≤

C(ρµa
3)M/6 for u outside I−.

We may write

C−1

∫
I−

n(u)

|B(u)|

∫∫
w1,B(u)(x, y)dxdydu =

N∑
i=1

U(xi),

where

U(z) = C−1

∫
I−
|B(u)|−1

1B(u)(z)

∫∫
w1,B(u)(x, y)dxdydu.

Using the form of F and the a priori bound on RΨ in (B.50), we see that

(B.52)

∣∣∣∣∣
〈

Ψ,
∑
i

U(xi)Ψ

〉
− ρµ

∣∣∣∣∣ ≤ CρµK3/2
B (ρµa

3)1/4.

Note that by (B.10) and
∫
1B(u)du = 1Λ, we have that U(z) ≤ C`−3, and that

PΛUPΛ = PΛ|Λ|−1

∫
Λ
U(z)dz = PΛ`

−3.

Using that for all ε > 0,

(1− ε)
N∑
i=1

(PΛUPΛ)i − ε−1
N∑
i=1

(QΛUQΛ)i

≤
N∑
i=1

U(xi) ≤ (1 + ε)
N∑
i=1

(PΛUPΛ)i + (1 + ε−1)
N∑
i=1

(QΛUQΛ)i,

we see that

(1− ε)n0`
−3 − Cε−1n+`

−3 ≤
N∑
i=1

U(xi) ≤ (1 + ε)n0`
−3 + (1 + ε−1)Cn+`

−3.

Choosing ε = K
3/2
B K`(ρµa

3)1/4 and using the a priori bounds on the expec-

tation values of n+ in (B.50) and U in (B.52), we conclude the result in the

theorem. �
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Appendix C. The explicit localization function

In this section we discuss the explicit choice of the localization function χ

and its properties. Define

ζ(y) =

{
cos(πy), |y| ≤ 1/2,

0, |y| > 1/2

and

χ(x) = CM (ζ(x1)ζ(x2)ζ(x3))M .(C.1)

Here M ∈ N is to be chosen large enough; we explained the need to choose

M = 30 in Section 5. The constant CM is chosen such that the normalization∫
χ2 = 1 from (6.1) holds. We have 0 ≤ χ ∈ CM−1(R3).

Lemma C.1. Let χ be the localization function from (C.1). Let M̃ =

max{n ∈ Z|2n ≤M}. Then, for all k ∈ R3,

|χ̂(k)| ≤ Cχ(1 + |k|2)−M̃ ,(C.2)

where

Cχ =

∫ ∣∣∣(1−∆)M̃χ
∣∣∣ .(C.3)

In particular, when |k| ≥ 1
2
‹K−1
H (ρµa

3)
5
12a−1, with the notation from (5.14), we

have

|χ̂Λ(k)| = `3|χ̂(k`)| ≤ C`3(K−2
`
‹K2
H(ρµa

3)
1
6 )M̃ .(C.4)

The proof of Lemma C.1 is elementary and will be omitted.

The explicit choice of χ is important when we analyze the behavior of the

small box localization function. Recall that according to (B.2) and the explicit

choice of χ, we may write χB(x) = C2
MF (x)M , where

F (x) = hu1(x1)hu2(x2)hu3(x3)

and

hv(t) = ζ

Å
t

`

ã
ζ

Å
t

`d
− v
ã
.

If we denote by λ1 the shortest side length in the box B, we see by estimating

one of the ζ factors of scale d` and using that it must vanish at one of the sides

that

(C.5) χB(x) ≤ CC2
M (λ1/(d`))

M .

If the shortest side length λ1 of the box B satisfies that λ1 < d`, we can

improve this slightly to

(C.6) χB(x) ≤ CC2
M (λ1/`)

M .
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This follows by estimating a ζ factor of scale ` and using that it vanishes at

one of the sides.

In the rest of this short appendix we will briefly sketch how to get the

estimate (B.37) on χB. Our first claim is that

‖χB‖∞ ≤ C ′M |B|−1

∫
χB,

for some constant C ′M depending on M . It is enough to show this for the func-

tion hv(t)
M . Since ζ is concave on its support we have that if hv is supported

on [a, b] and takes its maximum in c then

hv(t) ≥ ‖hv‖∞min

ß
(t− a)2

(c− a)2
,

(t− b)2

(c− b)2

™
.

In particular, hv is bigger than 1
4‖hv‖∞ on half the interval. The claim follows

from this.

Our second claim is that

max
i
‖∂iχB‖∞ ≤ C ′Mλ−1

1 ‖χB‖∞, max
i,j
‖∂i∂jχB‖∞ ≤ C ′Mλ−2

1 ‖χB‖∞.

It is easy to see that it is enough to show these properties for hv, i.e., that

‖h′v‖∞ ≤ C ′(b− a)−1‖hv‖∞, ‖h′′v‖∞ ≤ C ′(b− a)−2‖hv‖∞.

In the case when (b−a) < `d, we have that one factor in hv vanishes at one end

point and the other factor vanishes at the other endpoint. It is then easy to

see that ‖h′v‖∞ ≤ C(b−a)/(d`2), ‖h′′v‖∞ ≤ C(`−2 + (`d)−2)‖hv‖∞+C(`2d)−1,

and ‖hv‖∞ ≥ c(b− a)2(d`2)−1. In case b− a = `d. Both endpoints occur when

the second ζ factor in hv vanish. Without loss of generality we may consider

v > 0 and let D = |`(1/2 − dv)| denote the distance from the middle of the

support of hv, i.e., ldv to the right endpoint of the support of the first ζ factor,

i.e., `/2. Then `d/2 ≤ D ≤ `/2 and

‖h′v‖ ≤ C ′(`2d)−1D,

‖h′′v‖ ≤ C ′(`−2 + (`d)−2)‖hv‖∞ + C ′(`2d)−1,

‖hv‖∞ ≥ cD/`.
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