Annals of Mathematics 192 (2020), 893-976
https://doi.org/10.4007 /annals.2020.192.3.5

The energy of dilute Bose gases

By S@REN FOURNAIS and JAN PHILIP SOLOVEJ

Abstract

For a dilute system of non-relativistic bosons interacting through a pos-
itive, compactly supported, L'-potential v with scattering length a we
prove that the ground state energy density satisfies the bound e(p) >
drap®(1 + 125\ /pad + o(y/pa?)), thereby proving the Lee-Huang-Yang

157
formula for the energy density.
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1. Introduction

Our goal in this paper is to solve the long standing conjecture in math-
ematical physics to rigorously establish the Lee-Huang-Yang (LHY) formula
for the second correction to the thermodynamic (infinite volume) ground state
energy per volume of a translation invariant Bose gas in the dilute limit. The
formula (i.e., (1.3) below with an equality) is one of the most fundamental re-
sults in quantum many-body theory. It appeared for the first time as equation
(25) in the seminal 1957 publication [15]. The striking feature of the formula is
that the first two terms of the asymptotics of the ground state energy in the di-
lute limit depend on the interaction potential only through a single parameter,
the scattering length. Fairly recently the LHY formula was tested experimen-
tally as reported in [27]. Here the coefficient %
be 4.4(5).

The derivation in [15] relies on the pseudo-potential method and offers
deep insight into the problem, but nevertheless lacks in mathematical rigor.

= 4.81 was measured to

An alternative, but still non-rigorous, argument was proposed in [17]. We
establish the LHY formula rigorously for a large family of two-body potentials
(see Assumption 1.1 below) which, however, does not include the hard core
potential.

The importance of the scattering length in understanding the energy and
excitation spectrum for interacting many-body gases had already been ob-
served in the celebrated 1947 paper of Bogolubov [5] where he introduced the
Bogolubov approximation and laid the foundation for the theory of superflu-
idity. In this paper Bogolubov studies the excitation spectrum of a Bose gas
and finds that it depends on the integral of the potential, not the scattering
length. In a famous footnote Bogolubov thanks Landau for making the im-
portant remark that this must be wrong and that the correct answer must be
to replace the integral of the potential by the scattering length. To establish
this rigorously has been a major challenge ever since. The first major rigorous
advance was achieved by Dyson in [10] where the leading order asymptotics
for the ground state energy was established as an upper bound, but where
the lower bound was off by a factor. The correct leading order asymptotics
was finally established by Lieb and Yngvason in [23] for all positive interac-
tion potentials with finite scattering length including the hard core potential.
This result was extended to the Gross-Pitaevskii limit in the case of trapped
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gases in [19]. These leading order results are reviewed in the monograph [18],
which also contains a non-rigorous derivation of the LHY formula using the
Bogolubov approximation. To the best of our knowledge the first works to
rigorously establish the validity of the Bogolubov approximation for a many-
body problem were [21], [22], [31], which studied the one- and two-component
charged Bose gases and established a conjecture of Dyson. Several ideas from
[21] are important also in the present work.

The first work to show an upper bound to the LHY order was [11] by
Erdds, Schlein, and Yau. This paper makes a very interesting observation
about the Bogolubov approximation. The usual approach to the Bogolubov
approximation is to approximate the Hamiltonian of the system by what is
referred to as a quadratic Hamiltonian. As mentioned above this leads to a
wrong approximation for the ground state energy where it will be expressed
in terms of the integral of the potential rather than the scattering length.
Quadratic Hamiltonians have ground states that are quasi-free (or Gaussian)
states. In [11] it is observed that if we do not approximate the Hamiltonian by
a quadratic Hamiltonian, but instead restrict the evaluation of the full Hamil-
tonian to quasi-free states, then miraculously the scattering length appears in
the leading order term, but to LHY order the answer is still wrong. The work
in [11] emphasizes that it may often be more fruitful to focus on classes of
states rather than to approximate the Hamiltonian. This approach was fur-
ther pursued in the papers [25], [26] where the positive temperature situation
was analyzed for the Hamiltonian restricted to quasi-free states. The leading
order correction to the positive temperature free energy for the full many-body
problem in the dilute limit was established in [29], [33].

For gases confined to a region in the Gross-Pitaevskii regime, there is a
formula for the second order correction to the ground state energy similar to
the LHY formula. This has recently been established in an impressive series
of papers by Boccato, Brennecke, Cenatiempo, and Schlein [2], [4], [3]. This,
however, does not imply the formula in the original thermodynamic infinite
volume setting discussed here. Our proof follows a very different strategy than
the one applied in the confined case.

In the confined or trapped case it is also possible to analyze the excitation
spectrum of the gas, which is particularly important for understanding super-
fluidity. The excitation spectrum is also studied in the papers by Boccato
et. al. The first result in this direction is, however, due to Seiringer [30] and
was also analyzed in [9], [14], [16], [24]. Getting the excitation spectrum in the
thermodynamic case seems much more difficult.

The LHY formula in the translation invariant thermodynamic setting was
finally rigorously established as an upper bound in the work [32] by Yau and
Yin, where they consider smooth rapidly decaying interaction potentials. It
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is this work that we complement by establishing the lower bound in (1.3), in
fact, for a much, larger class of interaction potentials. Thus the LHY formula
has been proved for all compactly supported potentials satisfying the assump-
tions in [32]. We shall not discuss the upper bound further in this paper. In
Bogolubov theory, the particles not in the condensate constitute pairs of op-
posite momentum. An important insight, confirmed by the contributions of
[32] and the present work, is that in order to get the correct energy to LHY
order, one has to go beyond these simple pairs and also consider “soft pairs.”
This means that not only pairs of particles of exactly opposite momentum
contribute. Also pairs of particles with non-zero total momentum—although
the individual momenta are much larger than the sum—are important for the
energy to this precision.

The LHY formula had previously been established as a lower bound in
the restricted case where the interaction potential is allowed to become softer
as the gas becomes more dilute. This was first achieved in [12]. In this case,
however, the potential still has a range much larger than the inter-particle
spacing, which is why the paper has “high density” in the title. Allowing
the potential to have range shorter than the inter-particle spacing, but still
required to be soft, was recently achieved in [7]. The softness condition was
removed in [6], but only to get the ground state energy to the correct LHY
order, not with the correct asymptotics. Several of the methods developed in
[7] and [6] are crucial to this work.

There has been a large literature also on the dynamics of interacting Bose
gases, but we will not review that here.

We now turn to describing the problem in details. We consider N bosons
in three dimensions described by the Hamiltonian

N
(1.1) Hy =Hy@w) => -Ai+ DY ol — ).
i=1 1<i<j<N
The first term above represents the kinetic energy, and the second term is the
potential energy due to interactions.
We will allow interactions described by the following assumptions.

AssuMPTION 1.1 (Potentials). The potential v # 0 is non-negative and
spherically symmetric, i.e., v(z) = v(|z|) > 0, and of class L'(R3) with com-
pact support. We fix R > 0 such that suppv C B(0, R).

We are interested in the thermodynamic limit of the ground state energy
density as a function of the particle density p:

(1.2) e(p,v) = lim L3 (¥, Hy (v) W)

1m
s, vecgE(o.nMer ([P
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We will omit the dependence on v from the notation and just write e(p) when
the potential is clear from the context. Here the inner product (-,-) and the
corresponding norm || - || are in the Hilbert space L?(2Y), where we have
denoted Q = [0, L]3. If we talk about bosons, the infimum above should be
over all symmetric functions in C§°(QY). It is, however, a well-known fact
that the infimum over all functions is actually the same as if constrained to
symmetric functions. When we restrict to functions with compact support in €2
we are effectively using Dirichlet boundary conditions, but it is not difficult to
see that the thermodynamic energy is independent of the boundary condition
used.!

The main result of this work is to establish the celebrated Lee-Huang-Yang
formula that gives a two-term asymptotic formula for e(p) in the dilute limit.
We express the diluteness in terms of the scattering length a of the potential v.
The definition of the scattering length and its basic properties will be given in
Section 3.

THEOREM 1.2 (The Lee-Huang-Yang Formula). If v satisfies Assump-
tion 1.1, then in the limit pa® — 0,

2 1/2+n>
(1.3) e(p) > 4rp-a (1 + 15f\/pa — C(pa®)

where 1 > 0 and C depend on R = [v/(87a) and R/a as given explicitly in
Theorem 6.8 below.

We have not attempted to optimize the dependence of the constant C on
R = [v/(8ma) and R/a. It follows from Theorem 6.8 that R and R/a only
need to be bounded by an appropriate negative power of pa®. By an approx-
imation argument, this would allow us to extend Theorem 1.2 to potentials
that do not have compact support (but sufficiently rapid decay; see, e.g., [6,
Th. 2.3]) and/or potentials that do not satisfy the L!-assumption.

As reviewed above, an upper bound consistent with the Lee-Huang-Yang
formula was given in [32] under more restrictive assumptions on the potential
(see also [1]). Combined with Theorem 1.2 the second term of the energy
asymptotics of the dilute Bose gas has therefore been established. It remains
an interesting open problem to give upper bounds consistent with (1.3) under
less restrictive assumptions on the potential than in [32], [1]. It remains, in
particular, an open problem to obtain upper and lower bounds for the hard
core potential.

!See also [28], where the condition on the interaction potential is slightly more restrictive
than ours.
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2. Strategy of the proof and organization of the paper

It is an important first step in Bogolubov’s approach that the ground state
of the Bose gas is close, in an appropriate sense, to a condensate, i.e., the state
corresponding to a product wave function where all particles are in the same
one-body state. Establishing condensation in a thermodynamically extended
Bose gas in the continuum is still one of the major open problems in the rig-
orous analysis of Bose gases. It turns out, however, that it is not necessary
to establish condensation in order to prove the validity of the Bogolubov ap-
proximation or the LHY formula. It is only important that the state is close
to a condensate on the relevant length scale. In fact, the relevant length is the
distance at which the excited Bogolubov pairs correlate. This scale is often
referred to as the “healing length,” and it turns out to be of the order (pa)_l/ 2,

An important ingredient in our rigorous proof is, therefore, to localize
the problem to the healing length and to establish condensation there. Lo-
calization here means that we can achieve an appropriate lower bound on the
thermodynamic energy density by considering a Hamiltonian restricted to a
finite box. This is done in Section 6. It is, however, very delicate for several
reasons. First of all, actually localizing to the healing length will interfere with
the system and affect its ground state energy to the LHY order. Localization
must necessarily be to a length scale somewhat longer than the healing length.
At this longer scale we can unfortunately not directly control condensation.
We therefore apply a double localization approach, where we first localize the
Hamiltonian to a scale somewhat longer than the healing length and then
further to a scale somewhat shorter than the healing length.

The key to achieve condensation is to have a localized kinetic energy with
the property that constant functions in the box, representing the condensate,
have zero kinetic energy and such that there is a gap in the kinetic energy
spectrum above the zero energy. If this gap is large enough, it will allow us to
control the number of excited particles, i.e., those not in the condensate. For
the box much larger than the healing length, the gap is not sufficiently large
to immediately control condensation. On the much smaller boxes the gap is,
however, large enough to absorb many error terms and get an a priori lower
bound on the energy that is almost of LHY order. This is done in Appendix B.
The a priori bound will then allow us to get sufficient control on condensation
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in the larger box. Indeed, the gap in the large box and the a priori bound on the
energy allow us in Section 7 to establish that the expected number of excited
particles is sufficiently small. We, however, need to control higher powers of the
number of excited particles, not just the expectation value. For this we apply
in Section 8 the method of localization of large matrices introduced in [21].

The second reason localization is delicate is that it may affect the full
kinetic energy spectrum. This would affect the effective scattering length and
hence the leading term in the LHY energy asymptotics. Hence we must ensure
that the localized kinetic energy is essentially unchanged for momenta much
larger than /pa, i.e., the momentum corresponding to the healing length.

The delicate localizations of both the kinetic and potential energies are
done in Section 6.2 using a sliding technique that appeared already in [7]. The
sliding technique for localizing the potential energy is motivated by [21], [22],
8], [13].

After localization we no longer know the exact number of particles in
the boxes. It is therefore convenient even before localization in Section 4 to
reformulate the problem in a grand canonical setting where the total particle
number is not fixed but a chemical potential is introduced and carried through
in the localization.

An important step in controlling the energy in both the small and large
boxes is to split the potential energy in terms of writing the identity in L?(box)
as 1 = P+ @, where P is the projection onto constant functions, i.e., the
condensate. The potential energy can then be written as a sum of 16 terms that
contain 0—4 @’s. One of the main new ideas in the present paper is to identify
in Section 6.4 an appropriate completion of the square containing the term
with 4 Q’s (see Lemma 6.9). After ignoring the positive square we will be left
with renormalized terms with 0-3 QQ’s, where the potential has essentially been
replaced by a renormalized potential whose integral is the scattering length.
As already mentioned in the introduction, a naive approach to the Bogolubov
approximation will give the integral of the potential and not the scattering
length. The completion of the square that we introduce partly resolves this
issue for a lower bound. It only resolves it partly because the integral of the
potential appears in estimating errors when applying the method of localization
of large matrices, which has to be done before the “completion of the square.”
This is the main reason why hard core potentials are not covered in our result.

The renormalized terms with 0-3 @)’s must now be studied more carefully.
In particular, the 3Q) terms pose serious difficulties. They can be ignored in
the small boxes, but not in the large box, as they include the effect of the soft
pairs mentioned in the introduction. The part of the 3Q) terms, which does
not correspond to soft pairs may, however, be ignored. We therefore split the
3(Q) terms in a relevant part and an irrelevant part. Recall that @ projects
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onto the space of momenta above the gap. The relevant part of the 3¢) terms
corresponds to restricting to one of the three momenta being sufficiently low
and the other two sufficiently high, corresponding to soft pairs. This is the
second main new ingredient in the present proof. The splitting of the 3@
terms is done in two steps. First the error in restricting one momentum to be
low is controlled using the gap and part of the positive completed square. This
is the contents of Section 9. Restricting to the other two momenta being high
is done in (10.13) after we have introduced second quantization in Section 10,
which is the natural next step in the analysis.

We are finally ready for the detailed analysis of the renormalized terms
with 0-2 @’s and the relevant renormalized 3@ terms. First we do c-number
substitution in Section 10.2 using the approach introduced in [20]. This allows
us to replace the annihilation operator for the constant function by a number
and, in particular, consider the density of particles in the condensate as a
number to be optimized. The optimization of this condensate density is done
at the end after the careful calculation of the ground state energy. However,
we need an initial a priori estimate on the condensate density to control errors.
This is achieved from initial rough energy bounds given in Section 11.

Finally, we are then left with (see (12.7))

e terms with no @’s that can be explicitly calculated;

e a quadratic (in creation and annihilation operators) Hamiltonian KB in-
cluding also some linear terms (corresponding to 1Q terms);

e the 3Q) terms that are left after the momentum cut-offs and additional
quadratic and linear terms not included above.

The quadratic Hamiltonian is treated Section 12.1 using the simplified Bogol-
ubov method in Appendix A. Our approach to localization of both the kinetic
and potential energies is chosen to conveniently allow us to use the simplified
Bogolubov method. This together with the no-@) terms will give the correct
energy up to the LHY correction and a positive quadratic operator (the diago-
nalized Bogolubov excitation Hamiltonian); see (12.8). This positive quadratic
operator together with the remaining 3¢) and other terms not treated by Bo-
golubov’s method is shown by a very detailed calculation in Section 12.2 to be
bounded below by a term of lower order than LHY. We emphasize that the 3Q)
terms themselves do contribute to the LHY order, and our calculation shows
that they exactly cancel the quadratic terms not included in the Bogolubov
Hamiltonian AB°8. This calculation is the last new main ingredient in our
proof. In Section 13 we put all the pieces together to arrive at the main result.

Before starting the whole analysis we review relevant facts about the scat-
tering solution and the scattering length in Section 3. As the proof requires
the consistent choices of many parameters, we have collected these choices in
Section 5.
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3. Facts about the scattering solution

In this short section we establish notation and recall results concerning
the scattering length and associated quantities.

We suppose that v satisfies Assumption 1.1 and refer to Appendix C of
[18] for details and a more general treatment. The scattering equation reads

(3.1) (—A + %v(x)) (1 -w(x)) =0, with w — 0, as |z| — oc.

The radial solution w to this equation satisfies that there exists a constant
a > 0 such that w(x) = a/|z| for x outside supp v. This constant a is the
scattering length of the potential v, and we will refer to w as the scattering
solution. Furthermore, w is radially symmetric and non-increasing with

(3.2) 0<w(r) <L
We introduce the function

(3.3) g:=v(l —w).
The scattering equation can be reformulated as
(3.4) —Aw = %g.

From this we deduce, using the divergence theorem, that?

(3.5) 0= (8m)! / g

and that the Fourier transform satisfies

~ oy (k)
(3.6) w(k) = BT

4. Grand canonical reformulation of the problem

To prove Theorem 1.2 we will reformulate the problem grand canonically
on Fock space. Consider, for given p, > 0, the following operator H,, on
the symmetric Fock space F5(L*(2)). The operator H,, commutes with par-
ticle number and satisfies, with H,, v denoting the restriction of H,, to the

2We have here used the convention—which will be used throughout the paper—of writing
J g instead of [ g(z)dz when the integration variable is clear from the context.
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N-particle subspace of Fy(L%(Q2)),

N
Hp,.N = HN — 8map,N = Z —A; + Zv(xz —xj) — 8map, N

i=1 i<j

= i (—Ai — Pu /}R3 g(zi —y) dy> + Zv(xZ — ;).

1<j

(4.1)

The new term in H,, n plays the role of a chemical potential justifying the
notation.
Define the corresponding ground state energy density:

. PR (U, H,,¥)
4.2 eo(py) == lim Q7! inf -~ P’
4.2) ) = g 1 s By s
We formulate the following result, which will be a consequence of Theorems 6.7

and 6.8 below.

THEOREM 4.1. Suppose that v satisfies Assumption 1.1. Then the ther-
modynamic ground state energy density of H,, satisfies for pua3 — 0 that

128
(4.3) eo(pu) > —47rpia (1 — W(puai%)lﬂ + C(Pua3)1/2+77) ’
where n > 0 and C depend on R = [v/(87a) and R/a as given explicitly in
Theorem 6.8.

Proof of Theorem 1.2. It is easy to deduce Theorem 1.2 from Theorem 4.1.
By inserting the ground state of Hy as a trial state in H,, one gets in the
thermodynamic limit for all p, p, > 0,

(4.4)  e(p) = eo(pu) +8mappy,
128

> 8mapp, — 47rpia (1 - m(ﬂua?’)l/? + C(pua?’)l/”") 7

where we have used the lower bound from Theorem 4.1. If we therefore choose
pu to be equal to p, we arrive at the LHY formula (1.3). O

5. The various parameters and their choices

As already mentioned in the introduction the important parameters given

a,/v,R.

All estimates will in the end depend on these. The most important combination
is the diluteness parameter

in the problem are

3
pPua”.
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The proof introduces a series of additional parameters. There is an integer
MeN

that determines the regularity of the localization function defined in Appen-
dix C. It will be chosen explicitly below. We cannot choose M = oo, which
would correspond to x being smooth, since it would complicate the double
localization. (Technically, some of the estimates in Appendix C depend on
the finiteness of M.) However, we need to choose M sufficiently large in the
control of various error terms.

The remaining parameters will be chosen to depend on pua?’ and R =
[ v/(8ma). There are dimensionless parameters 0 < s, d, ep that will be chosen
small, and there are dimensionless parameters 1 < Ky, K g, K m, Kp that will
be chosen large. The power in the error term will depend on the choice of these
seven parameters in terms of p,a® and R = [v/(8ma).

Let us describe how these parameters enter into the proof and list all
the conditions that they must satisfy. Finally we will make choices to show
that these conditions can all be satisfied. The reader not interested in the
description of all these conditions may just skip to (5.26) and the lines following
it, where concrete choices of parameters are made. One can then verify all
through the paper that these choices work at all stages of the proof.

As explained, the proof will use a double localization approach. First we
localize into large boxes of length scale

(5.1) 0 =: Ky(ppa)~'7?,
and then we localize further to small boxes of length scale
(5.2) dt = dKy(ppa)~V? < (pua)~V2,

which gives us our first condition that dKy < 1. Here and below, f < ¢ is used
in the precise meaning that (f/g) < (pua®)® for some positive € and likewise
for f > g.

The parameters e7, d, s appear in the kinetic energy localization formulas
of Section 6.2, and they must satisfy the conditions

(5.3) dPsM <« 1,

(5.4) (dK)? < erK;? <er < sdKy,
(5.5) sKp>1,

(5.6) sdK; > Kg'.

Throughout the paper there will also be logarithmic factors. They are ignored
here as they are always accommodated by the conditions given. Condition (5.3)
is needed to prove the kinetic energy localization into the small boxes (see
(B.13)). It relies on a result from [7]. The first condition in (5.4) is needed to
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have a sufficiently large gap in the small boxes, but in fact, this would only
require (dK;)? < ep. The need for the stronger condition will be explained
below. The condition dK, < 1 noted above is contained in (5.4). The last
condition in (5.4) is required to finally get the correct LHY constant when
the appropriate integral is estimated in Section 12. Condition (5.5) is also
needed to control the same integral; in fact, this condition implies that the
localized kinetic energy (see (6.20)) in the large boxes is essentially the original
kinetic energy at the relevant Bogolubov scales. Finally, (5.6) introduces the
parameter Kp to control that the small boxes are not too small. This is
required in order to get a good lower bound on the the energy in the small
boxes in Appendix B (see Theorem B.5) and hence for the a priori bound on
the energy in the large boxes and consequently on the number of particles and
excited particles in the large boxes (see Theorem 7.1). The parameter Kp has
to satisfy the additional conditions that

(5.7) Kp < (pua®) ™5,
(5.8) K}K? < (pua®) 4

Here (5.7) is a very weak condition implying that the a priori lower bound
on the energy in Theorem B.6 is at least better than the leading order term.
Condition (5.8) ensures that the a priori bounds on the particle number and
expected number of excited particles are both correct to leading order (see
(7.2)).

The technique of localizing large matrices from [21] allows us to restrict
the analysis to the subspace where the number of excited particles is bounded
above by a number

(5.9) M =: Kpy(pua®) V4,

It must satisfy

(5.10) K;f/v/a <1,

(5.11) KK} <M = Kp(pua®) ™4,
(5.12) KmK,? < (pua®)~12,

Condition (5.10) is needed to control the error in the energy when restricting to
the situation with a bounded number of excited particles. Condition (5.11) says
that the upper bound M on the number of excited particles must be much big-
ger than the expected number of these particles, which in Theorem 7.1 is shown
to be not much worse than K3K2p,(3(p,a®)'/? ~ K3 K). Condition (5.12) is
a very weak condition that ensures

(5.13) M < put?,
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i.e., that the bound on the number of excited particles is much less than the
total number of particles.

When splitting the 3Q) terms in a relevant and an irrelevant part we in-
troduce an upper cutoff for low momenta, which we choose to be KL(pua)l/Q,

and a lower cutoff for high momenta, which we choose to be (see Section 9)
(5.14) K7 (pua®)®/2at.

The relevance of the power 5/12 is technical and will appear in the proof
of Lemma 10.3. For convenience we also introduce the parameter Ky =
KH(pNa3)_5/12. We will not choose Ky, as a new parameter, but take

(5.15) Ky =: (Kgd2)_1 > Ky,

where the estimate follows from (5.4).
We get the additional conditions

(5.16) KK} < Ky,
(5.17) (KeKp)'™™ = d*M72 < (pua®)'/?,
(5.18) K Ky = (Ked®) ' Ky < (pua®) =12,

Condition (5.18) ensures that the high momenta are disjoint from the low
momenta. Condition (5.17) will be ensured by choosing the integer M that
appears in the explicit localization function large enough. The condition is
needed to control errors that occur because of the localization function. This
error will also appear in the final error on the lower bound on the energy (see
(12.41)). Condition (5.16) is needed to control the error (see (10.13)) in cutting
off the 3Q terms in momentum by absorbing it into the energy gap. It is here
that the powers in the choice (5.14) become important.

After c-number substitution, we need to a priori control that the density
in the c-number substituted condensate is sufficiently close to p,. This is done
in Section 11 and requires the additional conditions

(5.19) K (pul®) " MESKS = KK}~ (pua®) < 1,
(5.20)  KF(pul®) MBS Ky (pua®)V® = KKK, d 2 (pa®)¥/12 < 1.
These conditions ensure that ¢; defined in Lemma 11.1 is small enough to
satisfy (12.2). That (12.2) is, indeed, satisfied then follows from (5.6) and
(5.8).

The treatment of the quadratic Bogolubov Hamiltonian B given in
Theorem 12.1 requires the condition

(521) KMKE—S/Z(KZKH(pMGB)l/IQ)MfS < (pua3)1/2'

Note that the term taken to the power M here is small by (5.18) and the
estimate in (5.15).
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The last detailed calculation estimating the 3Q) terms, done in Section 12.2,
requires the conditions (see Theorem 12.4)

(5.22) K} K = (Kid®) 2K < (pua®) ™4,
(5.23) KPK}d ™0 < (pua®) ™3,
(5.24) KmK 3 K2 < (pua®) ™12,
(5.25) KK 2 d 2 (K 2K (p,0®)YOM =1 < (pa®)?/4,

Conditions (5.24) and (5.25) are needed in order for the errors in Theorem 12.4
to be of lower order than LHY. There are two additional error terms in (12.41).
One is, however, already controlled by condition (5.17), and the last term is
small. Condition (5.4) above will also be needed in Section 12.2.

If we choose to let all the parameters depend on a small parameter X < 1
in the following way,

(5.26) s=X,d=X% ep=X%M" K,= X372,
Kp=X5 Ky=X" Ky=X%3,

then all conditions (5.4)—(5.6), (5.16) will be satisfied. In order to satisfy (5.7),
(5.8), (5.11), (5.12), (5.18)—(5.20), (5.22)—(5.24) of which the most restrictive
is (5.19), we can choose

(5.27) X = (pua®)'/5%.

We can choose the integer M = 30 to ensure that (5.3), (5.17),(5.21), and
(5.25) hold. Finally, (5.10) holds if

(5.28) / v/a < (pua®) 23,

To get all the arguments to work we need the assumptions
(5.29)

R<dl, R< Kg/Q(puag)l/‘l(pua)*lm, R/l < (p“a3)1/4, R/a < (pua?’)*l/A‘.

The fourth assumption (which could be improved slightly) is the most restric-
tive and is used in (12.8). The first and the second assumptions are used in
Appendix B, and the third assumption says that the range of the potential
should be sufficiently much smaller than the size of the large boxes.

6. Localization

6.1. Setup and notation. The main part of the analysis will be carried
out on a box A = [—£/2,£/2]® of size £ given in (5.1). In this section we will
carry out the localization to the box A. The main result is given at the end
of the section as Theorem 6.7, which states that for a lower bound it suffices
to consider a “box energy,” i.e., the ground state energy of a Hamiltonian
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localized to a box of size ¢. For convenience, in Theorem 6.8 we state the
bound on the box energy that will suffice in order to prove Theorem 4.1.

It will be important to make an explicit choice of a localization function
x € CY~Y(R3) for M € N with support in [~1/2,1/2]3. Tt is given in Ap-
pendix C. The function will not be smooth, but it will be important in the
analysis that we choose M € N finite but sufficiently large. The explicit choice
M = 30 was explained in the previous section. We choose x to be even and
such that

(6.1) 0<x, /x2 =1.
We will also use the notation

(6.2) xa(@) = x(x/0).

For given u € R3, we define

X

(6.3) Xu(@) = X(5 —u) = xalz —ul).

Notice that y,, localizes to the box A(u) := lu + [—£/2,£/2]3.
We will also need the sharp localization function 6, to the box A(u), i.e.,

(6.4) O = Ly (u)-
Define P,,Q, to be the orthogonal projections in L?(R?) defined by
(6.5) Pup = L7300, 0)0u,  Qup := Oup — L7300, )0
In the case u = 0 we will use the notation
(6.6) P,o=Pr=P, Qu=0 = Qn = Q.

Furthermore, define

(6.7) W(z) = X*Uég/f)

That W is well-defined uses that R < /¢, which is a much weaker condition
than (5.29). Manifestly W depends on ¢ and thus p,, but we will not reflect
this in our notation.

Define the localized potentials

(6.8) wy(7,Y) = xu(@)W(z —y)xu(y),  w(@,y) = wu=o(z,y).
Notice the translation invariance

(6.9) Wytr(T,y) = wy(z — b1,y — 01).
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For some estimates it is convenient to invoke the scattering solution, and thus
we introduce the notation, which again is well-defined for pua3 sufficiently
small,

Wa(z) = W(z)(1 - w(z)) = )%

wi(z,y) = w(z,y)(1 —w(r —y)),

9(z) + gw(z)
X * x(x/0)

w(z,y) = w(z,y)(1 — w*(z —y)).

(6.10)
Wo(z) =W (z)(1 - w*(x)) =

)

If we add a subscript u, as above we mean the translated versions wy ,(z,y) =
wy(x — lu,y — fu). For pua?’ sufficiently small, a simple change of variables
yields, for all u € R3, the identities

(6.11)

1 T 1
~( 6// XCx Wi (- y) dady = ¢ 6// wi(z,y) dv dy
2 R3xr3 L l 2 R3%R3

1

= 55_3 /g = 4rral™3

and likewise

(6.12) EK_G // wa(x,y)dxdy = 16_3 /g(l + w).
2 R3xR3 2

The following simple lemma will often be useful.

LEMMA 6.1.
R2
(6.13) g(z) < Wi(x) < g(x) (1 + Cﬁ) .
Proof. The proof is an easy estimate of the convolution, noting that its
maximum is attained at the origin. We have used that R < £. (]

LEMMA 6.2. Suppose that f € L'(R3) satisfies supp f C B(0,R) and
f(=x) = f(x). Then

610 |1 - [ 1] <mioond (F) [

Proof. The proof is an easy application of a Taylor expansion and the
integral representation

£ xa(@) — xa (@) / f= / F@)xale — y) — xa(@)] dy. 0
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LEMMA 6.3. Suppose that R/¢ < 1. For some universal constant C > 0,
we have

w 2
(6.15) em [ 0k ()| < otr/?m0).
We also get
(6.16) / (Wl(k;k_f(k)y dk < CZ@(O).

Proof. Recall that (k) = k) by (3.6). Using the Fourier transformation

2k
and (6.13) we get
W2(k) — g2( (W — )(W1 +9)(y)
dkz dx d
o [ e f[¢ |x —y "

(6.17) <3c// o ) g dy

0]

This finishes the proof of (6.15). The proof of (6.16) follows from a similar
calculation and is omitted. g

6.2. Localization of the kinetic and potential energies. We will use a sliding
localization technique developed in the paper [7], where we estimate the kinetic
energy —A in R? below by an integral over kinetic energy operators in the boxes
A(u). The following theorem is essentially Lemma 3.7 in [7].

LEMMA 6.4 (Kinetic energy localizaton). Let —A{)f denote the Neumann
Laplacian in A(u). If the regularity of x has M > 5 (e.g., for our choice 30)
and the positive parameters e, d, s, b are smaller than some universal constant,
then for all £ > 0, we have

(6.18) Tudu < —A,
R3
where
1 —AN
(6.19) Tui= §6T(d€)_2—A{Y (@)
+002Qu + ber (d8) 2Qul(g-26-1 00) (V=D)Qu + Ty,
with
(6.20)

7= Qua{ (1= en) [V=A = 5607 +er[VEA - S0 b
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Proof. In Lemma 3.7 in [7] we have the same inequality except that the
terms above

1 L, =AY

ser(dl) TAN T (a2 + ber(d) 2 Qul (g-20-1,00) (V—2)Qu

2
_9 —AN
are replaced by the term ep(df) AN
Using scaling it is clear that we may assume £ = 1. The proof in Lemma 3.7
in [7] relies on the inequality (see (44) in [7])

AN _
Ay du < d—2 A

d_2 e =
AN+d 2 —A+d?

The lemma above will follow in the same way if we can also prove that

—-A

—2

Using Lemma 3.3 in [7] (with xy = 0y = Lx(,) and K(p) = bd 2142 o))
we can explicitly calculate the operator on the left in (6.21) to be H(—iV),
where

(6.22)
Hp) =(2m) ™ | Ow)0a) ~0lg —p))’da

<(2m)~*26d2(0(p) — 1)
YPRY ) 32bd 2 O(a — 1) — 0(a))2da.
></|>d29(q) dg + (2m)~*2bd /q (0(g —p) — 0(q))°dg
C

We clearly have H(0) = 0 and 0 < H(p) <
estimate if |p| < d~!. We will use that 0( )
is the characteristic function of [-1/2,1/2] C
s, t € R, with |s| < |t|/2 we have

bd 2. We will improve this

= (Q1)‘91((I2)91(Q3) where 6
R. We easily see that for all

2

~ ~ S

) S CO+E) Bile =) =00 < Oy

As the set |q| > d~2 is a subset of the union of the sets where |g;| > d=2/v/3,
i =1,2,3, we immediately see that the first term above in the estimate (6.22)
on H(p) is bounded by Cb|p|?. For the second term we use that

~ ~ ~ ~ ~ ~

0(q) — 0(p — q) = 01(q1)[01(42)01 (3) — 01 (P2 — 42)01 (p3 — q3)]
+[01(q1) = 61(p1 — 01)101(p2 — 42)81 (p3 — q3)
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and that

// (51(Q2)§1(Q3) —01(p2 — q2)01 (p3 — CJ3))2 dqadgs

= C’// ei(xlpﬁ”pﬂzdxgda;g
[~1/2, 1/2]2

< C(p3+13)

to see that

~

b2 / (6(q — p) — B(g))%dq < Chlpl?.
lq1|>d=2/v3

Here we have used that over the domain of integration, |pi| < [qi|/2 since
Ip] < d~! and d is chosen sufficiently small. The same holds for the inte-
grals over |ga| > d=2/4/3 and |ga| > d~2/V/3. Tt then follows that H(p) <
Cbmin{|p|?,d=2}. Hence (6.21) holds if b is smaller than a universal con-
stant. g

Remark 6.5. The kinetic operator in (6.19) looks complicated. This is
partly because we need to localize it even further into smaller boxes in order
to get a priori estimates (see Appendix B). The first term in (6.19) will give us
a Neumann gap in the small boxes. The second term in (6.19) is a Neumann
gap in the large boxes. The third term in (6.19) will control errors coming from
excited particles with very large momenta. (See Lemma 9.1 and the estimate
(12.49) in Lemma 12.5.) Finally the term 7 is the main kinetic energy term
in the large boxes.

The localization of the potential energy is much simpler and relies on the
identity in the following lemma, which is a straightforward computation similar
to Proposition 3.1 in [7].

LEMMA 6.6 (Potential energy localization). For points 1,...,xx € R3,
we have with the definitions of w1, and w, in (6.8) and (6.10) that

N
—puZ/g( y)dy + Y o(w; — )
=1

1<j

- y)d xj)|du.
/R3 pHZ/wluxz y+zwuxz l']

1<j

(6.23)

6.3. The localized Hamiltonian. The localized Hamiltonian H s ,, will be an
operator on the symmetric Fock space over L?(IR?) preserving particle number.
Its action on the N —particle sector is as

(6.24)  (Haulpw))n —Z'T(z _pMZ/wlu Ti, Y dy—I—Zwu xi, Tj),

1<j
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where the kinetic energy operator was given in (6.19) above. We abbreviate

(6.25) T i=Tu=0,  Halpu) = Hau=0(pp)-
We will also write
XA = Xu=0 = X( /£).
Define the ground state energy and energy density in the box by
(6.26) Ea(p,) = inf Spec Ha(py),
(6.27) ea(pu) == 3 inf Spec Ha(pu) = £ 2Er(pp).

With these conventions, we find
THEOREM 6.7. We have

(6.28) eolpu) = elpy).

Proof. The proof of this statement follows from the fact that (Ha.(pu))N
and (Ha . (pp))n are unitarily equivalent by (6.9). Thus, using Lemmas 6.4
and 6.6 we find that

(0:29) Hpon > [ (Hau(pu)) v du > €919+ BO0,0/2)| Ba(py)
—1(Q+B(0,£/2))

Now the desired result follows upon using that |2+ B(0,¢/2)|/|Q| — 1 in the
thermodynamic limit. O

It is clear, using Theorem 6.7, that Theorem 4.1 is a consequence of the
following theorem on the box Hamiltonian. Therefore, the remainder of the
paper will be dedicated to the proof of Theorem 6.8 below.

THEOREM 6.8. Suppose that v satisfies Assumption 1.1, (5.28) and (5.29).
Then with R = (8ma)~! [v and the parameters chosen in (5.26) with X as in
(5.27), and with M as chosen in Section 5, we have in the limit p,a® — 0,

).

6.4. Potential energy splitting. Using that P4-Q =1, we will in Lemma 6.9
below arrive at a very useful decomposition of the potential.
Define the (commuting) operators

N N N
(6.31) ng:ZH, TZ+:ZQZ‘, HZZILA71':H0+H+.
i=1 i=1

i=1

1

128 1

ealpu) = _47Tpia + 47Tpl2ﬂ (Puag) 2
15/7

(6.30)

(ST
rl=

R2
- sza(Pua?))l/z <X2R + ?(p“ag) +X

We furthermore define

(6.32) Py =ny L3, po = nol 3.
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A crucial idea in this paper is to write the potential energy in the form given
in the next lemma, where the important observation is to identify the positive
term Q3°", which we will ignore in our lower bound.

LEMMA 6.9 (Potential energy decomposition). We have
(6.33)

_pHZ/wl Ti, Y dy—|— Z JZZ,.TJ Qren+ Qren + Qren + Qren + Qzenv
wﬁ]

where>
(6.34)

Q" = % > [Qi@j + (PP + PQj + QiPj)w(z; — $j)} w(zi, ;)

i#]
X [Qj@i + w(w — x;) (PP + PQi + iji)} ;
(6.35)
QF" = PiQjuwi(wi,7;)Q;Qi + h.c.
i#£j
(6.36)
oy = Z P;Qjwo (x4, x;)P;Q; + Z P;Qjwo (x4, 2;)Q; P;
i#] i#j
- puZQl/wl L, )dle + = Z PP wl(xzal'j)Qle +h. C)
1#]
(6.37)
O = P Qualana)PF = 5 30 [ wrtas vy, + b,
7]
(6.38)
oy = ZPP wa(x;, x;) PPy — pMZP /w1 xi,y) dyP;.
17&3

Proof. The identity (6.33) follows using simple algebra and the identities
(6.10). We simply write P; + Q; = 15 for all 4. Inserting this identity in both
i and j on both sides of w(x;,z;) and expanding yields 16 terms, which we
have organized in a positive Q4 term and terms depending on the number of
Q)’s occurring. O

3Here and in the rest of the paper, we have used that standard abbreviation “h.c.” for

“hermitian conjugate.”

A”* is the adjoint of A.

To be precise, for an operator A we have A+ h.c. = A+ A*, where



914 SOREN FOURNALIS and JAN PHILIP SOLOVEJ

It will be useful to rewrite and estimate these terms as in the following
lemma.

LEMMA 6.10. If v and hence W1 are non-negative, then we have

ren __ 0_1
Oy = 2|A|2 //ngydxdy pMA|//w1xydxdy

(6.39) no(no — 1) /. N ~

T (9(0) + gw(0)> — punog(0),

Q1™ = (no|Al™" = pu) D Qixa (i) Wi * xa (i) Pi + hec.
(6.40) '
+nol AT Qi (i) (W1w) * xa () P + hec.
and
" > Z P;Qjwa (s, xj) PiQ; + % Z(B’ijl(xi, 7;)Q;Q; + h.c.)

i#] i#]

(6.41) + ((po — p)W1(0) + poﬂ//l\w(o))

X Z Qixa(2i)*Qi — Clpyu + po)a(R/0)*n.

Proof. The rewriting of Q is straightforward using (6.11) and (6.12). The
rewriting of Q7°" follows from

Qren — <(7’I,0|A‘ 1 — Pu ZQZ/wI T, Y )dsz—l-hc)
+ (nolA] lzczz/wl v y)o(e; — y)dyPs +he.).

We carry out the similar calculation on the part of the 2Q)-term where P acts
in the same variable on both sides of the potential, i.e., the second term in
(6.36), to get

Q™ = PiQjwa(wi, ;) PQi + % > (PiPywy (i, 7;)Q;Qi + h.c.)
i#j i
+(po = pu) > Qixali) W * xa(2:) Qs

+p0 ) Qixa(@i)(Wiw) * xa(2:)Qs.

)
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At this point we invoke Lemma 6.2 to get, for example,

(6.42)
ZQiXA(xi)Wl * XA () Qi > (/ W1) Z Qixa(2i)*Q;

— max 0.0 (R ([ W) s O

The decomposition in Lemma 6.9 easily implies a simple lower bound on
the potential energy.

LEMMA 6.11 (Simple bound on the potential energy). If the 2-body poten-

tial v > 0, we have for all x1,...,xx € R3 the following bound on the potential
enerqy:
(6.43)
—pNZ/wl zi,y)dy + = Z w(z;, ) > — C(n*0” 3—1—,0#63)@—1- Qien.
1753
Moreover, we also have the bounds
(6.44) QI < C(n*07° + pll?)a,
1
(6.45) ﬂ:(z Qjinl (l’i, ZE])PZPJ + h.C.> < Cn?l~3a + ZQZGH,
i#]
(6.46) (Z P;Qwn (2, 2)Q:Q; + h.c. ) < COn?03a+ = Qren

7.]

for any (not necessarily self adjoint) operator Q' on L*(R3) with QQ' = Q'
and ||Q']| < 1.

Proof. Since 0 < f W1 < Ca, we have

N
(6.47) 0 < PMZ/wl(mi,y) dy < Callxall3pun < Callxall3(pl? +n2072).

The off-diagonal terms in the one-body potential can be estimated using a
Cauchy-Schwarz inequality relying on the positivity of w;

:I:pu<ZP /w1 i,y dyQZthc) <pHZP /wl(xi,y)dyPi
+puZQz/w1 i, y) dyQi

< Ca(l+||xallZ)pun-

(6.48)
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We also have
0< ZPinwl(fUi,xj)Pin
,J
= nolAI™ ) Qixa (@)W * xa(2)Q; < Cnony £ 2alxall%
J

or more generally, using again Cauchy-Schwarz inequalities, we have for all
k=0,1,...,

+ <Z R-Q;-(wlwk)(xi, xj)PQj + h.c.)
(6.49) “
< Onotalxa i (ens +571 2 QIQF),

+ <Z RQ; (wlwk)(xi, ZC])PJQz + h.C.)
(6.50) I
< Cnotalxal% (ens + 7 Y QIQF),

+ (Z P Qj(w1w") (ws, ) PPj + h'c')
ij
< Y PQi(wie) (@i, ) QI Py
(6.51) "
+ ZPjﬂ(wlwk)(xi,xj)RPj
i.j

< Croat™ (IealZ Y Q@5 +no)
for all € > 0, where we have abbreviated

(wlwk)(:nl,fcg) = wi (1, v2)w(T1 — :L'Q)k.

In this proof we will choose ¢ = 1 and use ), Q.Q%* < ny < n. The freedom to
choose ¢ # 1 will be used in the proof of Corollary 6.12 below. The estimates in
(6.49)—(6.51) prove (6.44) if we recall that we = w1 (1 +w) and choose Q' = Q.

To prove (6.46) we rewrite the terms in Q%" as follows:

ZPiQ;'wl(xiy-rj)QjQi
1,
652) =2 (PQun(ri2))[QQi +wlei — ) (PP + PiQi + Q)] )
1]

=3 (PQjwi (i, ) (ws — ) (PP + PiQi + Q)

4,3
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and likewise for the Hermitian conjugate terms. Thus applying a Cauchy-
Schwarz inequality and the estimates (6.49)—(6.51) we arrive at

+ (Z PQw (x4, ) Q;Q; + h-C~>
i,J

1
< §Qien +C Z PQbwy (i, x5) (1 — wlw; — x5)) Q7 P + Cn*al™3,
i#]
which implies (6.46). The estimate (6.45) follows in the same way. Finally, the
estimate (6.43) follows from (6.45), (6.46), and (6.47)—(6.51) with Q' = Q. O

In our more detailed analysis of the Q3 terms in Section 9 we will need
the following more refined version of the estimate in (6.46).

COROLLARY 6.12. With the same notation as in Lemma 6.11 we have for
all0 <e <1,

> (PjQéwl(fL‘i, 2)QiQ; + PjQiwi (v, xj)w(wi — xj)Pin) +h.c.

)

(6.53) 1
> —Cnoe—3a(5—1 S Qi+ £n+> - Lo
1
Proof. We again use the identity (6.52) and perform the same Cauchy-
Schwarz as above, but the term with three P operators now appear on the left
and we do not have to estimate it using (6.51). We, however, use (6.49) and
(6.50) with 0 < & < 1. O

7. A priori bounds on particle number and excited particles

In the section we will give some important a priori bounds on the particle
number n, the number of excited particles n, as well as on some of the potential
energy terms. The bounds on n and ny essentially say that for states with
sufficiently low energy, n is close to what one would expect; i.e., puf?’ and the
expectation of n, is smaller with a factor that is not much worse than the
relative LHY error. These bounds are difficult to prove and are given in (7.2)
below. The proof is in Appendix B. They rely on a very detailed analysis of a
further localization into smaller boxes.

THEOREM 7.1 (A priori bounds). Assume that conditions (5.3), (5.4),
(5.6), (5.7), and (5.29) on Kp, R, er, s, and d are satisfied and that p,a3
1s small enough. Then there is a universal constant C > 0 such that if ¥ €

Fs(L2(A)) is an n-particle normalized state in the bosonic Fock space over
L2(A) satisfying

(7.1) (U, Ha(p) V) < —dmpal®(1 — J(pua®)?)
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for a 0 < J < K3}, (the freedom to take J < K3 will be used in Lemma 8.2),
then
(7.2)
063 — pul < PuCK Y Ke(pua®)Vt and (W, V) < Cp L KHKE (pua®)'/2.

Moreover, we also have
(73) 0.< (¥, Q™) < Cpfal’

and

’<\Il, Py g:(P, /wl(xi, y)dyQ; + h.C.) \IJ)‘
=1
+ [0, S (QPw(ei, o)) PPy —i—h.c.)‘l/)‘
i
(7.4) (0, ST (P Quw (s, 2,)QiQ5 + he) W)

i7j

+ (¥, Z(Qj@iw(fci, x;) PPy + h.c.)\11>‘
7]

< Cpiﬁ/v.

Remark 7.2. Note that the expressions on the left of (7.4) above contain
w instead of w;, which appeared in (6.44)—(6.46). We will need the estimates
(7.4) in the next section, and this will be the only place where an estimate
containing [ v will be used.

Proof. As explained, the bounds (7.2) are proved in Theorem B.6. Due
to our assumptions they, in particular, imply that n < Cp,ﬂ?’.

This a priori bound on n, the positivity of the kinetic energy 7, and the
bound in (6.43) immediately imply

]‘ ren
(O, Ha(p) W) > ~Cpal’ + (¥, QM ),

which by the assumption on ¥ gives the bound (7.3).

The bounds on the first two terms in (7.4) follow exactly as the proofs
of (6.49)—(6.51) for £ = 0 and with w; replaced by w such that a has to be
replaced by [v > 8ma in the bounds. The bounds on the last two terms in
(7.4) follow the same lines as the proof of (6.45) and (6.46). We sketch it for
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the last term in (7.4). We rewrite

ZPinw(a?i,wj)Qin

i
(7.5) =Y BiPjw(i, 2;)(QiQ; + w(xi — x;)(PiPy + Qi P + PiQy))
i#j
= PiPjw(ws, xj)w(x; — ;) (PP + QiPj + PiQ;)
i#j

and likewise for the Hermitian conjugate. If we recall that 0 < w < 1, the
last sum is estimated as in the case of (6.49)—(6.51) again with a replaced
by [v . The first term above together with its complex conjugate is after a

Cauchy-Schwarz controlled by a similar term and Q}™"; i.e., we get

v, (Z ‘P’LP]w(‘T’M:U])QZQ] +hC>\II < CpZKS/U—i_COIJaQZen >7
G
which by the bound (7.3) implies what we want. O

8. Localization of the number of excited particles n

As in [7] we shall use the following theorem from [21] to restrict the number
of excited particles.

THEOREM 8.1 (Localization of large matrices). Suppose A is an (N + 1)
x (N 4 1) Hermitian matriz, and let A®) | with k = 0,1,...,N, denote the
matriz consisting of the k™ supra- and infra-diagonal of A. Let ¢ € CN*t1
be a normalized vector, and set dj, = (1, AFp) and X = (¥, Ap) = chv:o dy,.
(Note that ¥ need not be an eigenvector of A.) Choose some positive integer
M' < N+ 1. Then, with M’ fized, there is some n’ € [0,N + 1 — M|
and some normalized vector ¢ € CNTL with the property that @j = 0 unless
n'+1<j<n+ M (ie., ¢ has localization length M') and such that

C M'—1 N
(5.1 (P AR) S A+ 5 O KA +C Y Idl,
k=1 k=M’

where C' > 0 is a universal constant. (Note that the first sum starts at k = 1.)

This will allow us to prove the following result using the estimate (7.4).
We emphasize that this is the only place in the proof of our main result where
an estimate depends explicitly on [v and not just on a.

LEMMA 8.2 (Restriction on ny). Let M be as defined in (5.9) and sat-
isfying (5.10) and (5.11). Assume, moreover, that p,a® is small enough.
There is then a universal C' > 0 such that if there is a normalized n-particle
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U € Fy(L?(N)) satisfying (7.1) under the assumptions in Theorem 7.1 with J =
3K3,, then there is also a normalized n-particle wave function ¥ € Fy(L?(A))
with the property that

~ ~

(8:2) ¥ = 1pn(n4)¥,

i.e., only values of ny smaller than M appear in 6, and such that

53 (BHAGIT) < (8 Ha ()W) + OR3P [0

Proof. We may assume from (5.11) that M > 5 and that M < n since
otherwise there is nothing to prove.

We shall apply Theorem 8.1 on localization of large matrices to the (n+1)
X (n + 1)-matrix with elements

Ai,j = H ]lm-:i\I’Hil H ﬂn-‘-:j\ynil <ﬂn+=iq]7 HA(pu)]ln+=j\I}>'

(If any of the norms are zero, we set the element to zero.) Then we get a
normalized vector ¢ = (|1, =0¥|,..., || 1n, =¥ in C"! and

(¥, AY) = (¥, Hx(pp) W)

Moreover, for the matrix A, using the notation of Theorem 8.1, only the AK)
with k = 0, 1,2 are non-vanishing. In fact, we have

dy = (1, AV )
N
- <\Ij (_”ﬂ Z(B/M(%y)dy@ +h.c.)
=1

+ D (QiPaw(wi, w) PPy +he) + > (PQjuw(wi, 2)Q5Q: + hie.) )W)
i#] 1#]
and
dy = (1, AP9) = (W, (S(PPjw(es,2)QQi + hoe) )W),
i#j
It thus follows from (7.4) that |dy|, |d2] < Cp2f? [ v.
The theorem on localization of large matrices tells us that if we choose

M’ equal to the integer part of M /2, we can find a normalized ¢ € C"*! with
localization length M’ such that

(p, Ap) < (th, Ap) + CM'(|dy| + |da]))

(8.4) B
< (U, Ha(p)¥) + CK 2 (0,092 [ o
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Let ¢ € C""! be given by ¢; = ¢; if || 1n, = ¥| # 0 and @; = 0if || 1, = ¥|| = 0.
Then ||¢|| < 1. We then have

(85)  (3.A) = (9, Ag) < (¥, H(0,)¥) + CK 22 (pya®) /2 / v <0,

where the negativity follows from J = $ K3, (5.7), and (5.10). In particular,
© # 0. Define

n
U =37 @il =P =
i=0

Then ¥ is normalized and satisfies
(U, Ha(p)¥) = || 3] 7@, AP) < (3, AP),

since the term on the right is negative and ||¢||=2 > 1. This proves that i
satisfies (8.3). It remains to prove that U satisfies (8.2). We know from the
construction that the possible values of n4 that occur in U lie in an interval of
length M’. We need to prove that this interval lies close to zero. This follows
from the estimate (8.3), J = 1 K3, and (5.10). which imply that we may use
the a priori bound (7.2) on the expectation value of ny in . The consequence
is that the interval of n, values in ¥ must be contained in

[0, M + Cpul* K K (pua®)'?] = [0, M' + CKR K] € [0, M]
by (5.11). O

9. Localization of the 3Q-term

In this section we will absorb an unimportant part of the 3Q) term in the
positive 4@ term.
We first define the “low” and “high” momentum regions as follows:

9.1)
~_ 5 1 —
P = {lp| < Kpppa}, Pu:={lp|> K5 (pa®)2a™} = {|p| > Kz'a™'},

where K L,IN( 1 were defined in Section 5. The somewhat peculiar definition
of Py is convenient for later estimates. (See the proof of Lemma 10.3.) We
will always assume that (5.18) is satisfied. This assures that P, and Py are
disjoint.

We will define the low momentum localization operator @)1, as follows. Let
f € C*°(R) be a monotone non-increasing function satisfying that f(s) =1
for s <1 and f(s) =0 for s > 2. We further define

(9.2) 116 i= 1 (g, o)
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i.e., fr is a smooth localization to the low momenta P;. With this notation,
we define

(9.3) QL =Qft(V-4), Qr:=QU - fL(vV-A)).

Notice that @, is not self-adjoint.

We will choose K such that K L+/Ppul = d—2¢~1—this is equivalent to
(5.15)—where d is from the definition of the “small boxes” (see (5.2)).

We define

(9.4) n+ = ZQ] —2¢—1,00) (\/TAJ)QJ

With this definition and the choice of K above, we have

(9.5) > Qr;(@Qr ) <ni.
j=1
LEMMA 9.1. Define
(9.6) QY =" (PQLjwi(wi,2;)Q;Q: + hoc.).
G

We assume (5.4), (5.17) and (7.2). With the notation from (6.34), (6.35),
we get

ren ren b

(1) 3 1-M R2
> Q3 C’puaﬁ ((K Kr) + €2>

Proof. Using Corollary 6.12, with Q" = @L’ and € = cK, 2 for some suffi-
ciently small constant ¢, as well as (9.5) we find

(9.7)

ven 0 ren _ 5(1)
(9.8) Q T oo™ T s
‘ > Z(Pj@wwl(xi, xj)w(a:i — l’j)PZ‘Pj + h.C.) ol 4 H
12

Using (5.4) it is clear that the nf’ term is dominated by half of the positive
nil term from (9.7).

To estimate the remaining terms in (9.8) we start by using the estimate
on the convolution from Lemma 6.2 to get

— Z (B@ijwl(mi, zj)w(x; — x;) PP + h.c.)
i#j
(9:9) 3 A2 2,3 R’
—I0~ <nOZQL,jXA($j)Pj + h.c.) — Can*l~ 7

J
where I := [ W;(y)w(y) < Ca.
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To complete the proof we write, with M — 1 < oM <M,

(9.10) Q3P +he =Q (02— A)M[( 2 - AM Xﬂ P+he.
and notice that

(9.11) (72 — A)YMy2| < 002,

Therefore,

QuP +he. < 0P+ & VL7 - ) (@)

(9.12) » P
< &P +ey (KKp) " Qr(Qr).

Choosing g9 = (KgKL)*M7 and using again (5.4), we get (9.7) upon summing
this estimate in the particle indices and absorbing the nf term as before. [

10. Second quantized operators

10.1. Creation/annihilation operators. We will use a,a’ to denote the
standard bosonic annihilation/creation operators on the bosonic Fock space
FAL2(M).

We define ag as the annihilation operator associated to the condensate
function for the box A, i.e., ag = £~3/2a(f), where we recall that 6 defined in
(6.4) is the characteristic function of the box. In more detail, for ¥ € @~ L2(A),

we have
VN

(G/O‘Il)(m'Q,...’xN) = W A

\Il(y7x27' . '7{EN) dy

Therefore,
2

N
(10.1) (¥,no¥) = <\Il|a$ao‘li> = ﬁ/'/j\‘lf(y,xg,...,xzv) dy| dzg---dry.

Due to the localization function ya it is convenient to work with the
localized annihilation/creation operators ay, aL defined in (10.3) below. How-
ever, we will also need the non-localized versions Ek,ﬁl. Since these are more
standard, we give their definition first.

For k € R3\ {0}, we let

(10.2) = Pa@EM),  al =R Q™)
Clearly, for k, k' € R?\ {0},
(103) [Zik7ak/] = 0’ [ak7a'£:/] — £—3<eik$0’Qeik’1‘9>‘

We also define, for k € R?\ {0},
(10.4) ag = K*S/QQ(Q(e“mXA)) and a}; = 673/2a(Q(e"kaA))*.
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Then, for all k, k" € R3\ {0},

(10.5) [ak,ar] =0

and

(10.6) [ar, af] = £-3(Q(e™x4), Q(e™*xa)) = X2((k — K')) — R(EOR(K0).
In particular,

(10.7) [ag,al] < 1.

Furthermore, we introduce the Fourier multiplier corresponding to the localized
kinetic energy (after the separation of the constant term), i.e.,

(10.8) F(k) = (1 —ep) k] - ;(se)—l]i ter Ik - %(dsé)_l i

We can express the different parts of the Hamiltonian Ha(p,) in second quan-
tized formalism. We give this as the following Lemma 10.1. The proof is a
standard calculation and will be omitted.

LEMMA 10.1. We have the following expressions for the operators in sec-
ond quantized formalism (with T’ the part of the kinetic energy operator defined
in (6.20)) acting on the N-particle sector of Fock space:

(10.9)
no = (CL&")CLO)]\[7
i (i), = (el o),
= 363 ~T~ dk
ny <(27r) /akak >N
N
| = - f
;7; - ((27T) 3¢3 /keR3 T(k)akak>N’
N —
g;Pinw(xi,wj)QjQi = ((2#)3/W1(k)a$a$akak dk)]\ﬂ
N —
;%QSMQ(SUi,-Tj)Pst = ((27r)—3/W2(k)aT_ka(T)aoa_k d]g)N7
N
s N o [t
S-@usater= (20 [ fwalaoar)
N

i#j N
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PROPOSITION 10.2. Assume that U satisfies (8.2) and (8.3) and that the
parameters satisfy (5.16), (5.4), and (5.17). Then, the operator Ha(p,) defined
in (6.24) satisfies

(1010) (8, Hap)B) > (8,13 (0,)8) — Coat® (KoK p)'~ M+R2)

2
where
(10.11)
X ) b b
#3d = (2n) 363/7(1(.:)(12% dk + 2"+ + €T2d2€2nf
1 _ - _— —~
+ 56 3a$a$a0a0 (g(O) + gw(O)) - pug(O)agao
+ ( (3 aoao - p,u)Wl( )(27) 3/@&(1{:)@2@0 dk —|—h.c.)
n (z abaoWew: (0)(2rm) =3 / 2a(k)alao dk:+h.c.>
+ (271-)3/ (Wl(k) + VTfl\w(k)) agaZakao dk
1~
+ §W1(k) (agagaka,k + aLaT_kaoao) dk
+ (a0 — )W (0) + £ afagWraa(0) ) (2m) ¢ / ol a di
+Qs,
where
(10.12)

Qs = 3(2n)~° //{ }fL(s)fV\l(k)(aEEias_kak + aZai_kasao) dk ds.
kePy

Proof. Notice that (7.2) holds, using (8.3) and Theorem 7.1.

We apply Lemma 6.9. For the operators Q™ and Qi°", we use the simpli-
fications of Lemma 6.10 before making the explicit calculation of their second
quantifications. For Q5", we also use the simplifications of Lemma 6.10. The
error term in (6.41) is absorbed in the gap in the kinetic energy. This uses
that R < (pua)~'/2 and the relation n = p,£3 from (7.2).

Finally we consider Q5™ and Q). By Lemma 9.1 and the positivity of
v we have the lower bound (9.7). What remains of Q)" will be discarded
for a lower bound. The application of (9.7) also costs a bit of the gap in the
kinetic energy. What remains is to compare @31) with @3; this is the content of
Lemma 10.3 below. Using (5.16) the error term from (10.13) can be absorbed
in the gap in the kinetic energy. This finishes the proof of Proposition 10.2. [

In the above proof we used the following localization of the 3Q-term.
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LEMMA 10.3. Assume that W satisfies (8.2) and (8.3). Let ngl) be as

defined in Lemma 9.1 and 63 from (10.12).
Then,

= ()5 = o Ny ~-3/2,.1/2
(10.13) (W, Q) > (U, QsV) — Can—5 Ky PRz
Proof. Again (7.2) holds, using (8.3) and Theorem 7.1.
In second quantization we have

(10.14) Q= £4em) ™ [ [ 1u(o)Wi(0) el san +alal_anan) dids,

so we have to estimate the part of the integral where k ¢ Pg. Let ¢ > 0. Then,
(10.15)

\IJ 32m)” //{|k| - )VVl(k:)(aoaTaS kQk —f—ak,aJr k0s00) dkds \IJ>
< _

> —Cal®(2m)~6 // fr( )( (\I/ a aoao%q;)
{|kI<K; a1}
+ 8_1 <f[;7 azal_ka‘g,kak”\ﬂ» dkds

> —Ccm%}+ (563(KH¢1)3 + 81/::1) .
Here we used, in particular, that (ﬁ, niﬁl/) < Mny since U satisfies (7.2).
Observe that we have not assumed that W (k) has a sign and that the Cauchy-

Schwarz inequality in (10.15) is valid for /Wl(k') of variable sign.
3 3 1/2
We choose ¢ = (Mf;gf“ ) . Using the relation n ~ p,¢* from (7.2),
the error term in parenthesis in (10.15) becomes of magnitude 1/% =
23 H

~—3/2,-1/2
K, 2K\ O

It will also be useful to notice the following representation in terms of the
operators ay.

LEMMA 10.4. We have the identities

(10.16) (27T 6g6//akx ((k—K')e ak/) ZQ]XA (2;)Q

and
(10.17)

(eme [[ nwnwa? -1 a) Z@Lm £)Qr;.

N
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10.2. c-number substitution. It is convenient to apply the technique of
c-number substitution as described in [20].

Let ¥ € F(L%*(A)). We can think of L?(A) = Ran(P) @ Ran(Q), with
Ran(P) being spanned by the constant vector € (defined in (6.4)). This leads
to the splitting F(L2(A)) = F(Ran(P)) ® F(Ran(Q)). We let © denote the
vacuum vector in F(Ran(P)).

For z € C, we define

. R
(10.18) |z) == exp Ty T4 Q.
Given z and ¥, we can define
(10.19) O(z) := (2|¥) € F(Ran(Q)),

where the inner product is considered as a partial inner product induced by
the representation F(L?(A)) = F(Ran(P)) ® F(Ran(Q)).
It is a simple calculation that

(10.20) 1= 711/ |2) (2| d*z and aplz) = z|z).
C
THEOREM 10.5. Define

(10.21) p. = |z|2073
and
(10.22)

b b w1 oo —~ ~ 3
K(z) = Yok + T3 + ipzﬂ (g(O) + gw(O)) — pug(0)p.¢

- 1~
+ (27T)3£3/ (T(k) + pzwl(k')) azak + ipzwl(k') (aka,k + CLLaT_k> dk

+ (0 = )W (0)(20) 8 [ alay i
T O1(:) + OF(:) + Q=) + Qa(2),
with

(10.23)  Qi(2):

(0 = P Ta2m) [ RatBialzdh + he.),
(10.24)  Q(z) = (pzv/vlTu(O)(zw)*?) / ;zA(k;)a;zdmh.c.),

(10.25)  Qy(2) = (3(27) "> / / Fo(s) W (k) @las_par + alal_, ),
{kePn}
and

(10.26) = Q%(2) 1= (2m) 3p. L3 / (Wiw(k) + W1w(0))alax.
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Assume that U satisfies (8.2). Then,
(10.27) (W, HM (p,) W) > nf inf(®, K(2)®) — Cpua,
where C' is some universal constant and the second infimum is over all nor-
malized ® € F(Ran(Q)) with
(10.28) ® = 1jg pq ().

Proof. As before (7.2) holds, using (8.3) and Theorem 7.1.
We define K(2) to be the operator H3® defined in (10.11) above, but
where the following substitutions have been performed:

aéagaoao 2]t — 42 + 2,

a:gagao = |22z — 22, aoagag - |2)%z,
(10:29) apag — 22, agag — 72, agao - |22 -1,

ap — Z, ag — Z.

Then, we will prove that

(U, 1) = 77 1R / (D(2),K(2)®(2)) d*z
(10.30) o
= 7T1§FE/<(I)(Z),IC(Z)(I)(Z)>HZ(Z) d’z,

where n(z) = ||®(2)| FRran(q)) and ®(z) = ®(2)/n(z) and R denotes the real
part.

To obtain (10.30) we write all polynomials in ag, a:g in anti-Wick ordering,
for example, ag)ao = aoag — 1. Therefore,

(U, abag®) = 77! /<agq/|z><z\ag\p> — (U]2) (2| W) d?=
(10.31)
! [ - i@ ) .

Performing this type of calculation for each term in H3"! yields (10.30).

Suppose that W € Fy(L%(B)) is such that
(10.32) U =10 () V.

Then, for all z € C, we have with ®(z) := (z|¥) € F(Ran(Q)),
(10.33) ®(2) = Ljg g (n4)2(2),
with ®(z) = (z@} as above.
The next step of the proof is to remove the lower order terms coming from
the substitutions in (10.29) above.
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We first consider the negative term —4|z|? in the substitution of aéaéagao.

By undoing the integrations leading to K(z) for this term, we see that it con-
tributes with

/ (®(2), —4%|z12f3 (3(0) + 7(0))@(2)) = > ~Cat (T, aga T}

> —Cal™3(n+1),

(10.34)

in agreement with the error term in (10.27) (using that n ~ p, 03 > 1).

We also estimate the term linear in z coming from the substitution of
agaoao in (10.29). This substitution occurs twice, but we will only explicitly
treat one of them, namely, the term

R / <<1>(z),—2e*3§v\1(0)(2w)*3 / R (k)al 2 dk(I)(z)>d2z
(10.35) = —20=3T¥(0)(27) > / (a(2). / Ra(k)(alz + ai?) dkd(2) )z
> —0a£—3/<q>(z),/|>zA(k)\(saLak+g—1yz|2)qu>(z)>d22,

where ¢ > 0 will be chosen in the end. Notice that |xa(k)| = £3|xX(k¢)| and
that ¥ € L'(R3) for M > 4. Redoing the calculation in (10.34) we therefore

find with ¢ = \/(¥,n, ¥)/v/n+ 1 that

R / <q>(z),—2£*3W1(0)(2n)*3 / QA(k)adekCD(z)>d22
> —Cal™>vn+1\/ (9, n+5>

This is also easily absorbed in the error term in (10.27).
The other error terms from the substitutions are (10.29) estimated in a
similar manner, and we will leave out the details.

(10.36)

Finally, we need to restrict to non-negative z. Suppose z = |z|e/?. In the
operator K(z) we can replace ai by e*?a. This substitution will not affect
the commutation relations, and in this way all occurrences of z will be replaced
by |z|. This finishes the proof. O

11. First energy bounds

In this section we will make a rough estimate on the energy. This rough
estimate will be used to eliminate the values of p, that are far away from p,
from the minimization problem in (10.27).
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LEMMA 11.1. For any state ® satisfying (10.28) and assuming that M <
C'_lpuﬁ3 for some sufficiently large constant C, we have the bound

(@, K(2)®) > 7@/}283

2
q(0
(11.1) + 9(2)(/)” — p2)20% — a(p= + pu) 2 p)/ 20361 — plal®s,
3
2 g3 Pud
Cpuat K5(ds)®’
with
[ M
51 =C P €3 (KLKH(pua )2/3M + KLKK)
(11.2) .

)}

Before we give the proof of Lemma 11.1 we will state its main consequence,
Proposition 11.2 below. Our choices of parameters in Section 5 ensure that
01+ 00 < 1.

PROPOSITION 11.2. Suppose that 01 + 69 < % Suppose furthermore that
for some sufficiently large universal constant C > 0, we have

3
Pua 1 3y 1
(11.3) |pz — pul > Cp, max (((51 + 09 + m)%(pua )4) :

Then, for any state ® satisfying (10.28), we have

(11.4) (<I>,IC(Z)<I>)2—§(2) 20+ 2p a€315f\/ as.

Proof. Using the convexity of ¢t — t7, for 0 € {3/2,2} and Jensen’s in-
equality, (11.1) implies the bound

(11.5)
@) > M2 905 ), - oy
_ C’pucw?’ (61 + 9o + Kﬁ(d3) )

9(0) 2 43 9(0) 23 3< Pu )
> 2 72 g 7 — -
> 5 Pl + 4 (pu — p2)“t C’puaé 01+ 02 + KS(ds)°
If (11.3) is satisfied, then the term quadratic in (p, — p.) dominates both the

error term above and the LHY correction. This finishes the proof of Proposi-
tion 11.2. U
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Proof of Lemma 11.1. Since zal—i—?ak < 5’|z]2+(5’)*1a2ak for any ¢’ > 0,
we find

(11.6)
/;a(k)(zahzak)dkg5'\z|2/|>a(k)|dk+\;?A(O)\(a’)1/a;akdk

< ()2 + (8) " ns).

Therefore, setting 0’ = /M /(p,¢3) and using (10.28) and the definitions in
(10.23) and (10.24), we easily get

ex 3 M’Z‘Q
A7) @@ + 9 )e) = ~Clay | M (o g4 p0)

in agreement with (11.1) (where we used that K, K, > 1).
Quadratic terms of the form ¢3 [ W(k:)a,t:ak dk are easily estimated as

(11.8) i<c1>,e3//v?(k)a,tak dk®) < CaM.

This allows us to estimate all the quadratic terms in IC(z) except the kinetic
energy and the off-diagonal quadratic terms and to absorb the corresponding
terms in the error in (11.1) (using, in particular, that M < p,¢3).

Therefore, to establish (11.1) all that remains is to estimate the sum of
the kinetic energy, Qs(z) and the “off-diagonal” quadratic terms. This we
will do by first adding and subtracting an ny term, which is easily estimated
as above. We will prove the following three inequalities, where ¢ < 1/2 is a
(small) parameter that we will optimize in the end (see (11.22)), and where ®
is a state satisfying (10.28):

_ _ _ M
(11.9) — <‘1>,(27r) 303p.¢ UZa/aLak dk <I>> > —Ce 1/263,02a€—37
<(I>, <(27r)3£3/57'(k)a2ak dk + Q3(2)> CI)>
(11.10) Wy s
_ a
> ¢ 1cpza73£3(K§K§IK§T3 +K§K§),
and
1
(27T)3£3/ (A1(k)azak + 551(1@ (CLLCLT_,C + aka_k) )dk
L 93—~ 3 2 R* dst
(11.11) > —§pzé gw(0) — Clpa s+£—2+@(1+log (7))

3
2 3 Ppd
— Cpuaﬂ W’
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where we have introduced
(11.12) Ar(k) == (1= )7(k) + poe~V2a,  Bi(k) :== p.Wi (k).

The estimate (11.9) is easy given the discussion above.
We proceed to prove (11.11). We symmetrize the term in k as

(11.13)
(277)353/ (A1( )akak—i— Bl(k)akaTk—l— Bl(k)aka_k)dk:

1 _
:5(27'() 353/ (.Al( )akak +A1( ) 0k —i—Bl(k)aka & +Bl(k)aka,k)dk:.
At this point we apply the “Bogolubov lemma,” Lemma A.5, to get

- Aq (k:)a;gak + A (k )a L O—F —1—15’1(/6)% L+ Bi(k)aga_g
(S > = (k) = A (0)2 = By (R)2)

where we have also used (10.7).
Using (6.13), we have |By(k)|/ A1 (k) < Ce'/2. Therefore, for e sufficiently
small, a Taylor expansion gives

(11.15) ( )=V AL(R)? = [Bi(k)2) = (; +Ce> ‘1111'2.

Below we will need the following estimate of an integral:

(11.16)

/ |B1/?
{Ikf(ast) 1 2 27 (k)
Wi (k)?

2 W (k)2
<2 [N @ / e / !
_pz< 2k?2 +Cd8€ {(dsf)*1§|k|§a*1}|| +Cd$€ 2k2 >

2

< 721+ 25 ) 7(0) + Co2a>(dst) (1 + log(dst fa),

where we used that 0 < k2 — 7(k) < 2|k|(dsf)~" for |k| > (dsf)~! and we also
used (6.15).
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Inserting these considerations, we find

(11.17)
1
(27r)—3£3/,41(/€)a£ak + §Bl(l€) (aLaT_k + aka,k) dk

1 _ |B1|? |B1|?
—( 1) em e / 51/2+/ __BE
<2 >( ) ( B<@s)-t 2020 Jjp>(ase 2(1—5)T<k)>

2

L g3~ 3 1/2 -3 R
> - . -
2p 20°gw(0) — CY pza<€ (dst)™> + ps (E + 72 )

+Co g (14108 (7))

2
> —fpzé?’gw( ) — Cep2a (5 + ]; dag (1 + log (dsﬁ))) — Ca(ds)™5¢73.

This implies (11.11).

To prove (11.10) we use a similar approach. By definition (10.25), the
k-integral in Qs(z) is restricted to the high momentum region Py. For these
momenta, we have 7(k) > %k2. Therefore, dropping a part of the kinetic
energy, it suffices to bound

(11.18)
63(277)/ <2k2akak+ (2m)~ /fL Wl as kak—kazai 1 0s? )ds)dk:.
{kePy}
Wl(k
We estimate, with bk =ag +2(27)" ff 2 zas jOs s,
(11.19)

03 (2m) 3 / “K2alay, + (2m)73
{kePy} \ 2

. /fL(s)/Wl(k)(z?ilas_kak + a};aiik&’sz) ds) dk

— 3(2m) 3 / <;k2525k—4(2w)—6
{kePy}
Wi(k)?2 o ~
/ fr(s)fo(s) ;;2) |z|2ai,aslkalkas)dk‘

W, (1)2
> —4e7103(2m) 0 / Wl(f) ER
(kePyy K

/ F2(8) fo(s)ah (0l _aw—t + [ay—r al )
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On the term without a commutator, we estimate El,aiikasukas by Cauchy-

Schwarz and (since k € Pp), W2(2k)2 < C’K%a‘l. Therefore, for a ® satisfying

(10.28), we find

Wi (k)2 - -
<<1>,£3 Lo e fL(s)fL(s’>a;a2_kasf_kas<b>
€y

(11.20) < Cp, (/ d,s) K¥a* M?
{|s|<2K,/pra}

32 A2
< szaESK%K?%.

For the commutator term, we estimate (using (10.6) and the Cauchy-Schwarz
inequality)

al/ [as’—k, al_k])as < 252/55/ + 25255

and [ %5)2 < Ca. This leads to (for a ® satisfying (10.28))

3 /V[71(k)2 2 Nt T
<M /{kepH} Sl [ [ 119 ool S

(11.21) < CMaz\Q/ ds
{|s|<2K 1 /pra}

< Capz%ﬁgK%Kg’.

Combining the estimates (11.19), (11.20) and (11.21) proves (11.10).
We choose

M1/2
Vipw+ )6
We will add the estimates of (11.9), (11.10) and (11.11) with this choice of .

Since M < p,¢3, the contribution from (11.9) will be smaller than the terms
appearing in the other estimates. Therefore, we get,

(11.22) €=

(11.23)
1
<<I>, <§p§£3g/@(0) + (27‘r)—3£3 /T(k)a};ak dk + Qg(z)) <I)>
M(p,, + p2) 03 R?
> ~Cpratt (VBT (316 0,000+ KRR 40,0 ).

This finishes the proof of (11.1). O



THE ENERGY OF DILUTE BOSE GASES 935

12. More precise energy estimates

From Proposition 11.2 above, we see that the energy is too high unless
p> =~ pyu. We now focus on this regime. More precisely, we will in this section
always assume that

W=

(12.1) lp: — pul < puC max (5 +9 _{_pua?’>§ (pua®)
. z wl = Pu 1 2 Kg(ds)fi s (P )

with the notation from Proposition 11.2.
We will need the condition that

K2 5 (5 pﬂag % 3\1 < C—l
(122) ¢ max ( 1+ 2+[{W> ,(p#a )4 <

for some sufficiently large universal constant. This condition is satisfied by

(5.19), (5.20), (5.6) and (5.8).
Using (12.1) and (12.2) we have

(12.3) lp= = pul CK; 2.
Pu

For convenience of notation, we define the parameter § to be the square
of the ratio between ,/p,a and the inner radius of Py, i.e.,

Pud 34 2
12.4 0= —5— = (pua’)s K.
(124) b = ) K

Using (5.18), we see that § < 1.
We define the quadratic Bogolubov Hamiltonian as follows:

1
[CBo8 = - (2m) ¢ / (A(kz)(aLak +al ya_y) + B(k)(alal }, + apa_y)

(12.5)

+C(k)(al +al, +ap + a,k)) dk,
with
(12.6) A(k) = 7(k) + p Wi (), B(k) := p.Wi(k),

C(k) == £73(p. — pu)W1(0)xa (k)2
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With this notation, we can rewrite/estimate (z) from (10.22) as follows:

K(z) = K28 4+ 2265 (5(0) + 5(0)) ~ p,(0)p-0°

b b = _
+opn+ terg g €2n T (p2 — pu) Wi (0)(2m) 20 / alay, dk

(12.7) + 97 (2) + Qe"( )+ Q3(2)

15 5. 1 ~ o
> S REF0) + 52ET0) + (0 — pPE5(0) + K

Qr(2) + Q3°(2) + Qs(2)-

b
n+—|—ET2d2€2n+

462
Here we used (12.2) to absorb a quadratic part in the gap.
12.1. The Bogolubov Hamiltonian.

THEOREM 12.1 (Analysis of Bogolubov Hamiltonian). Assume ® satisfies
(10.28) and that %pﬂ < pz < 2pyu. Let 0 be the parameter defined in (12.4).
Then,

(@, KBe) > (2m) 3¢ <c1>, / Dy.b! by, dk c1>>

- S / (A(k) = \JA(k)2 = B(k)2) di

(12.8)
(o= 2?20 (140 )
— CpRal* KK, P (K36)" 7
Here
(12.9) Dy = % (A(k) + /A2 = B(k)?)
and
(12.10) by = ag + apal , + ek,
with
(12.11) ag == B(k)™! (A(k) —JAR)? - B(k)2)
and
2C(k) 7 |]€’ < 1K 1 —17
(12.12) = A(k)+B(k)++/ A(k)2—B(k)?
{0, k| > iK; a .
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Proof. To simplify later calculations we start by removing C(k) for |k| >
%Kﬁla_l from kB2, so we aim to prove

1
L amy-33 / Ck)(al +at, +ap + a_y) dk
(12.13) 2 (k>3 K 'a1}
> —CpRal’ KK, (K26)" 7
Obviously,
a +al < alay + 1.
Therefore,
1
—(2m) 7303 / C(k)(a,TC + atk +ai +a_y)dk
2 {|k|>3 K5 a1}
(214 > —@2m) 3. — p, W1 (0)]2 XA ()| (ahax + 1) dk
{|k|>1 K a1}
> —Clpz — pulW1(0)|2](ny + De(x),
where

(1215) () =03  sup  (1+ (kO22[Xa (k)| < O(K;25)M-2,
{|k|>s K5 a1}

where we used Lemma C.1 to get the last estimate. Estimating ni using
(10.28) and using (12.1) to control |z|, it is elementary to conclude (12.13).
By the estimate above, it suffices to consider

(12.16)
~ 1
iCBog . 2(2%)353/ (A(k:)(azak + aT_ka,k) + B(k)(aLaT_k + agpa_p)
+ 5(k)(a£ + a[k +ay + a_k)) dk,
with A, B from (12.5) and

5 0 k| > 3K a™t
(12.17) Clk)y =1 ", . e
0= (p2 — pu)W1(0)xa(k)z, otherwise.

With the notation from Theorem 12.1 and using Theorem A.1 combined
with (10.7) we find

KKBo8 > (27) =3¢ / Dy.b! by, dk
(12.18) - ;(QW)_3€3/ (A(k) —\/A(k)? —B(k:)2> dk

_ . 2717 2,2(9\=3p—3 |>?A(k')|2
(P2 — pu)* W1 (0)%2°(2m) ¢ /{kS;K;,lal}A(kHB(k)’
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It is elementary, using that Wj is even, that
(12.19) ﬁauo-ﬁaan)g<nukRﬁ.
Therefore, we easily get the lower bound

— R?
(12.20) A(k) + B(k) > 2p.W1(0) (1 — C(pua3)¥> :

using that the kinetic energy is dominating, unless |k| < C.,/p,a.
Therefore, the last term in (12.18) becomes controlled as

2717 ()2 -2 —3,-3 |>?A(k‘)|2
Pz — Pu) W1(0)“2*(2m) >4 / —_—
( M) 1( ) ( ) {\k|§%KI_{1a*1} A(k)+8(k)
%1% R?
(12.21) < (0 — p)? 1( W1(0) 3 <1 +C(ﬂua3)a2)
9(0 ) R
< (o= 2 (14 Clopan )
where we used that (72 < pua to get the last estimate.
This finishes the proof of Theorem 12.1. ([l

Remark 12.2. We notice that following commutation relations (using the
ones for the ai’s (10.6) and that X is even and real),

(12.22) bk, bie] = (o — ) (X2 ((k + K)0) = REOR(K'D) ).
Also,
(12.23) bk, bl ] = (1= ) (X2((k — K)8) = REO(K) ).

LEMMA 12.3. Assume that (12.1) holds and that %Pu <p, < %Pu' We
have the estimate

_;@m—%f/( (k) — (HZ—B%V)dk

gw(0) 20 4 3,3
12.24 > — 3
( ) — 2 6 15\/>pza’ pza g
R?

— Ce(py, p2)p a % Pza3£3 09363672@(0)7

with C' a universal constant and
(12.25)

elpus p2) = (pua) IVR + e + (Kps) ™! (1 +log(d™") +log (M»

(Pua3)1/2
Kyds
-1 J4
+€T(Kgd$) <1+10g (W)) .
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Proof. We regularize the integral as
(12.26)

/ Ak VA(k)? = B(k)? dk

=/mm— AR~ B - 20 g /W}

The last integral is controlled by (6.15) and contributes with the first and
the last term in (12.24).

In the regularized integral in (12.26) we perform the change of variables
vpzat =k. In this way we get

(22 [ A~ AR B0 - 2 A gk = 2 S,

with
I = /a(t) —Ja(t)? = B(t)? — W dt

2a2t2 ’
oz A0 =70+ T
B(t) = a~'Wi(y/pzat),

~N (1 _L@l/QQ #Pul/z
F(t) = (1—en) It 35 (o) L+wh\2m%%) R

We will prove that I; ~ —64W4% with an error estimated by €(p,, p-) from

(12.25). For this we write I; as

(12.29) 20 2 22
2 2 t2 ~
— [a0- 5 - Val? =507 + 5"
s
with
He/@w—ﬁ— a0 P - 2
(12.30) 20 262«

e [2EF

It is not difficult to apply dominated convergence to the integral I] to get

87)? 128
12.31) I' ~ | t?+ 87— ( 4 .
(12.31) /Rs T o 15v/7

— \/(t2 +8m)2 — (87)%2 dt = —64~
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More precisely, we will prove that

2 (8m)

< C ((pua) VR +er + (Kgs) ).

This estimate is included in the error defined in (12.25).
The part of both integrals where |t| < 10(Kys)™! is bounded by

C(Kys)™!

(12.32)

for sufficiently small p,, (using that p, =~ p,). This is in agreement with (12.32).
For [t| > 10(Kys) ™!, we will use

_ 1 1/2
(12.33) |B(t)—8x| < C\/ppaR|t],  0<£—7(t) < aTt2+K7$ (f}“) It].t

It follows by interpolation that |5(t) — 87| < C(pua)iR%\t\% and also that
7 > 1t? when ey is sufficiently small (since ’;—‘Z‘ is close to 1).
For |t| > 100 we use Taylor’s formula with remainder (applied to v/1 — x)

to write

5 83
t)— o —va(t)? = Bt)? - 55 dt
/{ﬂzwms)l} “M~ 2 i) = B = o
N 2ysn - O V(2 + 8m)2 — (8m)2 dt
{|t|>10(K,s)~1} 2t2
:/ ((a—t2—87r)—<62_(287r)2>
(12.34) {10(Ks) 1 <[t|<100} 200 2(t% + 8m)

= (Va2 =82 = /(22 + 872 = (37)2) ) at
1
e
+/{|t>100}/0 f(7,8,0) — f(t*,87,0) do dt

_/ B? _ (87)3 "
(t1>10(K,s) 1} 262 262(t2 + 8m)

with
_54
(12.35) f(r.B,0) == — =7 + 287+ (1= 0)8%) (1 - 0).
The last integral in (12.34) is easily estimated, as
(12.36)
8° (8m) 1 -1
- dt| < C ivVR K, ,
/{|t|210(KzS)1} 2% 20°(t* +8m) | T ((p“a) ter+ (Kes) )

in agreement with (12.32).
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For the Taylor expansion part in (12.34), we use that 72+287+(1—0)3 >
3t%, when [t| > 100. Therefore,

‘f(%/757 U) - f(t27 87T, U)
< C|pt = (8m)*|t°

(12.37) 2|12 ~ B 29—2 44 2 _ 21-2

+ Ct?|[7* + 287 + (1 — 0)57] [t* + 167t" + (1 — 0)(87)7]
(72 + 2687+ (1 — 0)B?%) — (t* + 167t + (1 — 0)(87)?)
V2287 + (1 —0)B2 + /th+ 1672 + (1 — 0)(87)%
Now the integrals can easily be estimated to get an error consistent with
(12.32).

Finally, we consider the integral over {10(K;s)~! < [t| < 100} in (12.34).
Here one may estimate term by term and use the finiteness of the domain of

+Ct8

integration. Therefore, this part is also consistent with (12.32), which finishes
the proof of (12.32).

The integral I7 from (12.30) is split in three parts. For [¢t| < 10(K,s)™ !,
we have 0 < t? — 7(t) < t2. Therefore,

/ gt -7
(<101} 2 o

which is again included in the error defined in (12.25).
For 10(Kys)™! < |t| < 10(K,ds)~!, we have (12.33) above. Therefore,

(12.39)

(12.38) < C(Kes) ™,

62t2_7":

/ 5 12 < C’ET(Kgals)_1 + C'(Kgs)_l log(d_l),
(10(Kes) -1 <[t|<10(Kds)—-1} 2 T

which may again be absorbed in (12.25).
Finally, we turn to the case |t| > 10(Kyds)~!. Here, 0 < ¢ — 7(t) <
Clt|((Kes)™! + er(Keds)™') and o > 2. Therefore,

/ B -7
(t>10(K.ds)-1} 2 tPa

< C((Kes)™' + 6T(Keds)_1)/ 1t
(12.40) {10(K[ds)—1§|t‘§(pi“\3)71/2}
Wi(y/pzat)?

+ C((Kes) ™" + er(Keds) N (poa®)/?a2 / Wyt

< C((Kus)™ + ex(Keds)™) <log (%) + 1) |

This may again be absorbed in (12.25). This finishes the proof of Lemma 12.3.
U
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12.2. The control of Q3(z). The diagonalized quadratic Bogolubov Hamil-
tonian (2m) 363 [ Dkbz‘bk dk from (12.8) turns out to control the 3Q-term Qs(z)
from (10.25). This we summarize as follows

THEOREM 12.4. Assume that ® satisfies (10.28). Assume furthermore
that (12.1) and (5.29) are satisfied. Let § be as defined in (12.4). We will
furthermore assume (5.4), (5.11), (5.18), (5.19), (5.22), and (5.23).

Then,

(12.41)

<<I>, ((277)_3£3/Dkb,tbk dk + Q3(z) + Q5

+pzz@(0)(2w)—3/ﬁ(s)(&’l +as)ds + % (;21% + é&nf)) <I>>

M ~_ 5 _ _ M-—1
- _CpM[VW(KHl(pMaP’)m ()™ 4 K (1720) )

- 54% e (K126 (K;26) ) ] .

Proof of Theorem 12.4. Notice that
1~
(12.42) IB(k)/A(k)| < C5 ¥ k| > §K§1(pﬂa3)5/12a_1.

In particular, |B(k)/A(k)| < § for p, sufficiently small.
This implies, by expansion of the square root, that

(12.43) | = |BUk)| (A(k) — JA(K)? - B(k)2) < Cs

for all |k| > %I?ﬁl(p#a?’)wma_l. In particular, (12.42) and (12.43) are valid
for k = k' — s, when s € P, and k' € Py.

For later convenience, we reformulate the first-order operator in (12.41)
in terms of the a,. (Recall definitions (10.2) and (10.4).) We get

~ 02 W(0)2n) " [ TR(s)lal + ) ds
(12.44) = s Wio0)(2n) ™ [ G ()@l + @) ds
o Thw(0)(2m) 33 / ()@t +ay) ds.

We start by rewriting Q3(z) in terms of the by’s defined in (12.10). Notice
that cg,cs_r = 0 if k € Py and s € P,. We find the basic relation (we will
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freely use that all involved functions are symmetric, e.g., ap = a_g)

1 1
(1245) Qg = ﬁ (bs—k’ — O‘s—kb;273>7 ap = m (bk — Oéka,k> .
s—k k
Therefore,
1 1
Us—kk = T 573 (bsfkbk - @kbikbsfk — OésfkbL,Sbk
(12.46) T Yk

+apas ibl_ bl — aplbsy, bT_;J)-

We will decompose Q3(z) according to the different terms in (12.46), i.e

(12.47) Qs(2) = Q4 (2) + 9 (2) + Q7 (2) + &V (=),
where
(12.48)
A ==t ff féi%?( "
x (@lbsrbi + akoe_galtbl_ b, +h.c.),
QP (2) = —263(2m)~ / /kePH} fLL:)(Wi 1(_)042 . (@bl yboi + b _bsa ),
OP(2) = —263(2m)~ / /kEPH} (11(%_)22 l;) (albf _ bi + bbr—ss),
and
QW (2) := (2m) 023 / /k IRCCLACT —ai)_(?k— oyt L )

The different ng )(z)’s will be estimated individually. The result of this is
summarized in Lemma 12.5. Theorem 12.4 follows by adding the estimates of
Lemma 12.5. We have used that the K’s (KZ,KM,IN(H, and Kp) are larger
than 1 and (5.11) to simplify the total remainder. This finishes the proof. [

LEMMA 12.5. Let § be as defined in (12.4). Assume that ® satisfies
(10.28). Assume furthermore that (5.29), (12.1), (5.18), (5.19), (5.22), (5.4)
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and (5.23) are satisfied. Then,

(12.49)
(2.(0(2) + (1 - )(2m) 2 / Diblby + QF
{Ik[25 K a"1}

* 180 (£12 n++ 02 (dg)z f) )@)
2 ~Cryatsk,” 2<pua3>z<M - <K§’K%>> (K‘25) E
(12.50)
<c1>,(gg2)(z) 09 (2) + 62(2m) 308 /

{lk>2K; a1}

Dibjbe) @)
> Cpp,agg( 25)MKL S/Q(pu )1 )
(12.51)

(2.(04") + posWr(O)(2m) ™ [ A(s)@ + @) ds + 15 55m+)2)

M = 5 _ _ M—1
sza£31/| ‘Q(KHl(puag)lz (KoK ™ + KPR (1725) %5

— Cplals

Z.

Proof of Lemma 12.5. The proofs of (12.49), (12.50) and (12.51) are each
rather lengthy and will be carried out individually.
Proof of (12.51). Using Lemma C.1 applied to x? we have

(12.52) H;&(s (1= fuls )H < Col*(1 + (KeKp)*) ™™,

with Cy = [ |(1 — AWM X2|~ Therefore, by a simple application of the Cauchy-
Schwarz inequality, we get for any state ® satisfying (10.28),

(12.53) ’<q>,/§%(s)(ag +3,)ds <1>>' < ovVM

and

(12.54) ‘<c1>,/§i(s)(1 —fL(s))(a’g + @) ds <1>>' < OVM(KKp)™
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Therefore, using Lemma 12.6 below to estimate the k-integral, we find

'<<I>,z<pZW1\w(O)(27r)_3 / A ()@ + ) ds
(12.55) —(2m)~° / | Tmed )@+ a) ds)<1>>‘

M ~_ 5 _
< Cplal® W(KHl(puag)lz + (KK M)-

The estimate is in agreement with the error term in (12.51).

What remains in order to prove (12.51) is to estimate a difference of two
integrals over the same domain. Writing out the commutator using (12.23) we
have to estimate

(12.56)

sem) o6 | -y, TBa(s0.11() (1 - ;{;;;W;g_k)) (@l +a.)
and
(12.57)

(2m) 6 [ W) o b ROR ()L + 7).

To estimate (12.56) we use (12.43), (12.61) and Cauchy-Schwarz to get
(12.58) (12.56) < C’pza(52€3/)/<5(5€)(51 +ealas) < Cp.ad®(e ! +eny).

We choose et = Dp,al?§? for some sufficiently large constant D to allow the
n4 term to be absorbed in the kinetic energy gap. Thereby, the magnitude of
the error (the e~!-term) becomes (using (12.1))

a
(12.59) Cpia€354z,
which can clearly be absorbed in the error term in (12.51).

In the second integral (12.57) the terms X(k¢) are very small due to reg-
ularity of x and the fact that k € Py. Therefore this integral is much smaller.
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We easily get, for arbitrary € > 0,

<<I>,z(27r)_6€3/k . Wl(k)@ka(s)

1—043 EO_ [

T ag)(I— = )g(ke)y((k — 5)¢) (al + as)q>>

(12.60) sk
> —Czpua sup |X(k0)|6 /fL alas + ¢ 1)<I>>
kEPy
M 30372, o AT
—Cptal’\ | S KPR (K 26N,

|22

where we optimized in € and used Lemma C.1 to get the last estimate. This
error term is clearly in agreement with (12.51). This finishes the proof of
(12.51). O

In the proof of (12.51) we used the following result.

LEMMA 12.6. Assume (5.4), (5.18) and (12.1).
Then for sufficiently small values of p,, we have

(12.61)  |p-W1w(0) — (27)~3 Wi (k) dk‘ < Cp.alpua®) 2Ky,
kePy

Furthermore,

(12.62) Wiw(0) — (27) 3 Wa(k)® dk| < Ca(pua®) 2Ky,
kepy 2Dk

Proof. We will use the following weaker version of (5.18),

Ky
> I (14 log(Kr),

(12.63) (pua®)~12

which follows from (5.18) using (5.4).
Collecting the estimates below, we really get

(12.64)
P Wiw(0) — (27)73 Wi (k) dk
k‘ePH
< sza<KI}1 4 (poa®) K + R/ + (p,a®)2 K3, + ﬂu +log Kir) ).

From this (12.61) follows upon using (5.18), (12.63) and (5.29) to compare the
magnitudes of the different terms.
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We calculate

(12.65)

pWiw(0) — (27)73 W1 (k)ay, dk

ke Py
- = 9(k) 3 / — g(k)
= (2m) 73 Wi (k) pr ot — oy ) dk 4 (2 Wy (k dk.
( ﬂ-) ke Py 1( )<p 2k2 Oék) +( 7T) k¢ Py ’ 1( ) 2k2
We first estimate the last integral
(12.66) ‘ W (e 2% - dk‘ < Ca / k2 dk = CaK3;'.
k¢ Pry 2k {lk|<K'a1}

This is consistent with the error term in (12.64).
To continue, we write

(12.67) Wi (k) = pT LAk (1 — /1= B(k)2/ A(k)? )

Notice that |B(k)/A(k)| < 3 for p, sufficiently small using (12.42) and
(5.18). Therefore,

7 pzﬁ/\(k)2 W (k)
(12.68) ’Wl(k:)ak— 2A1(/<:) } cp Ay <O BatkS,

where we used that A(k) > %kz in Py. Upon integrating over Py we find a
term of magnitude

—

= P WA (R)? 3\2 73
(12.69) /PH ‘Wl(kz)ak 2 A(K) ‘ < Cpra(p.a’) Ky,

in agreement with (12.64).
Finally, we estimate, using 0 < k? — 7(k) < 2|k|(dsf)~! in Py,

(12.70)

o5

—  G(k) — Wi(k) Wi (k)2 2
< p, _ . 1—
=P f e, Wik =5 ’Jr vep, 2k? ( A(k))‘
— G(k) — Wi(k
<pz Wl(k)g()QkQI()) _|_Cpga3/ k—4
kJEPH kEPH

B ) Wi (k)2
+ Cp,(dst)~! / k|2 +a
peldst) ( (K5 <alk|<1} & 2k? )

2

R _
<p ey + pa(p.a®) Ky + Cp.a®(dst) ™ (1 +log(Kgx)),

where the estimate of the first term follows from Cauchy-Schwarz and (6.16).
This finishes the proof of (12.61).
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The proof of (12.62) is similar One can for instance use (12.61) and
(12.69) and the fact that |1 — ] < C’B((k))2 < C’piaQI(4 in Pg. Then
(12.62) follows. O

Proof of (12.50). The two operators Q:(f) (z) and Q:(,?)(z) are very similar
and can be estimated in identical fashion, so we will only explicitly consider
the first. We decompose

(12.71) 0P (z) = I +11,
where
(12.72)
Wﬁ(k) o~ o~
= —203(2m)” // b albs g+ b asb ),
ety Tl - (Ll Ht)

Wl(k:) N _
I = —z03(2m)~ // al, bl b i+ b0 [bg,ds]) -

The second term I will be very small, due to the smallness of the commutator.

(Notice that s and k are “far apart” since s € P, and k € Py.) So the main
term is I, which we estimate using Cauchy-Schwarz and (12.43) as

(12.73) 1> CgSZaa//kEP (&b jataab_y + 210 _ybes).
H

We estimate fasas < £73M. Upon choosing ¢ = \/K}K3} /M and using an

easy bound on Dy, this leads to the estimate

(®, 1®) > —Czas K2 K22 MY(&, / bl b, @)
(12.74) (2t
' K}K3 M

1/2
> —C8%° <1>/ Dibbi®).
> ~Cae(=LoLT) e, s ot 1y DER®)

Using (5.22),

K}K}M
pu£3

Therefore, I can be absorbed in the §2(27)~3¢3 f{lklzéK,}la—l} Dkb,tbk term in

(12.50).
We now return to the term I7 from (12.72). This is easily estimated as

(12.76)
17> —2253(2w)—6sup|[ag,bik]|//{k . }fL(s)|W1( Y| (b _ybe—i +1)
€Py

(12.75) = K3 Kpm(pua®)i < 1.

Z—Cz< sup ;z(pg))(KLm)?’ (pua—l-a(; 1 bLbk).
lp|>iK g et k|>1Kta—
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The bLbk is easily absorbed in the §2¢3 f{lkE%K;{la,l} Dkblbk term in (12.50).
Therefore, using (12.1) and Lemma C.1, I contributes with an error term of
order

(12.77) P2al3 (K25 M K3 K (p,a®)i
0 (12.50).
This finishes the proof of (12.50). O

Proof of (12.49) . Finally, we estimate le)(z). We rewrite

(1)) — 396 f1(s)Wi (k)
(12.78) o= //{kepH} (1-af)(1—a3 )

(a bs_kby, + pas_pal bl bl +h.c.),

sVs—k

where we performed a change of variables in the second term to get the equality.
We combine this term with the diagonalized Bogolubov Hamiltonian. We

leave a §%-part of this operator in order to control error terms appearing below.
Therefore, we consider

(12.79)

—343 952 T 3 —6 fL(S)Wl(k)
(2m) -3¢ /{kEPH}(l 262)Dybl by di + 263 (2r) //{kEPH} (e T

x (agbs_kbk + apos gl bbb+ h.c.)

= (2m) 7303 /{ }(1 — 26%)Dyel ey, + Ty (k) + Ta(k)
kePy

> (2m)-3¢3 / Ty (k) + To(k).
{kePu}
Here we have introduced the operators,

s Fu(s) T2 ()
P A eyt e

X (b;rfk'ds + akas,k"d_sbsfk) ds,

Fr(s)Wh (k) agos i

(12.81)  Ti(k) := —2(2m)~? - a2 ;(1 —a2 )

(I} @b, +h.c.)ds,
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and
(12.82)
To(k) := — IZLQWI( // L) 2
(1 —262)Di(1 — a3)? 1—ozsk 1—a k)
X (al, ko + apay by _gdl ,) (btkas + akozs_ka_sbsfk) dsds’
—(1+C8%) |z ’2Wl / fr(s)fr(s

X (as,bs/_k + akasl_kbsl_ka-‘;s/) (bl_kas + akas,kfi_sbi_k) dsds’,
where we used (12.43) to get the estimate on 75. Notice that
(12.83)
=t b ot (ot =t Ve b ol
ay by g + opog by _pal , = (ay, + oapag_gal ) by_p + apay by g, al ).

The contribution from the commutator term is very small, both due to the
factors of o and to the commutator, since k € Py, s’ € P. Therefore, we
estimate

(12.84) To(k) > (1 4+ &)Ty(k) + (1 + e DTy (k),

where

Ty(k) == — (1 +C6%) |2 I2W1 //f )fr(s

X (?il, + akas/_kaT_S,) bsl_kbs_k (as + apos_pa_g) dsds’
W1 (k
Ty = — (14 C9%) 22 HES o6
Dy,
x‘/“ F1(8)f1(8) P _xatslbe—is @ ]G, b} ).

With this choice, we estimate using (12.62), (5.18) and (12.43),

(2m) 7303 /k . 1+ HTY (k) dk

(12.86) > ~Cp.a(KK)%*  sup  |[@_s,b_ ]
kEEPH,SEPL
1 ~
2 _Cpiaﬂ?’(pua?’)iKgKgéz sup  |[a—s, bi_k”Q'
k}EPH,SGPL

We continue to estimate the other part of Tz(k):

W
148 = = (1+08) oA o) [ [ 1) s
X (Eiz/ + akas/_kais,) bs’—kbs_k (as + apas_pa_g) dsds’
= Té,comm(k) + Té,op(k)?

(12.87)
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with
(12.88)
Té,comm(k) (1 + 062) ‘ |2 //f fL

X <5T + ozkasz_kaT ) [b ’—k’bl—k] (as + apos_pa_g) dsds’,

T op () = (+052)H2 0[] fuents

X (a;r, + akas/,kaT_S,) blfkbs/,k (s + apas_pa_g) dsds’.
We start by estimating the last term in (12.87). We introduce the notation

(12.89) C:=  sup ([ai,+akas,_kais,,bi_k])31.
s,8'€ Py, k€ Py

In fact, it follows from (10.6), (12.10), (12.43), and (C.4) that

(12.90) C < C6 (K, 2K (pua®)s )

To estimate the last term in (12.87) we first apply Cauchy-Schwarz, then
commute the a’s through the b’s and apply Cauchy-Schwarz to the commutator
terms. This yields

12 91)

/ fo(s)fr(s a + apog gal )bl_kbs’—kz (as +ak0£s—k5—s)q’>
< 2/ fr(s)fo(s’) < NI (ai, + Oék%ukfiisf) (as + g _pa_y) bs—k:(I)>
+ccC / / Fr(s)fu(s) (@, (ebl_ybe—i + Ce'aydl, +C) @)
< CE M+ elPLIC) [ Fulo)@b D)
+ Ce Y PLIC(U> M + |Pr|) + C|Pr|*C2.

For simplicity, we choose ¢ = and get

M
BIPL|C
(12. 92

(o [[ 16206 (@ + gl ) bl b @+ v @)

3 t 272 0| Py
< 13 M q>, FL(s)bl_ be_y®) + C|PL2C (1+ v )
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Therefore, using (12.62),

<<1>, (2m) 363 / T2’70p(k)<1>>
k€ Py

a2
(12.93) > —Cpl3— M|Pp| <<1>/ D,blb <1>>
! (mmke%PH Dy)? {qci Py} e

I |PL|>
M

— pulPa|Pr|C? (1 +
Notice that Dy > C’_lEI}Q(pMa‘g)%a_Q for k € $Py. Therefore, using (12.4)
and (5.22),

a2

(12.94) Pug SM|Pr| < K3 K p(pua®)s < 62

mingc1p,, Dx)

Therefore, the negative qugbq-term in (12.93) can be absorbed in a fraction
of the similar (positive) term left out in (12.79) exactly for this purpose.

Using (5.15), we see that £3|Py| < C(KK;)? = d=5 . Therefore, it follows
from (5.19) that % < 1. So, using (12.90) we can estimate the error term
n (12.93) as

||
— putla|Pr|*C? (1 + o >

_ 1\M-1
> — C’piafzj’\/pua:g ( 3d7126% (K ( 2KH(pua )6) ) .

This is clearly seen to agree with (12.49).
We next consider the commutator term T3 ., (k) from (12.87).
From (12.23) and using Lemma C.1, we see that

(12.95)

—

(12.96)  |[by—, )] = X2((s = 8)0)| < CPC((s = )] + C(K; %)=

Therefore, using that M > 5,
(12.97)

T} comm (k) > (14 C62)|2 PWI / Fo(8) Fu(s)ah R (s — )00z

2W1(k)

— Cz|2—=—=8%| P[0 30y
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Using (10.17) and (12.62) we see that
(12.98)

_3,3 2 2W1 a
—(2m) 3¢ /kEPH(HC(s )|2| //f V(a3 (s — §)0)a,
= —p:(1+Cd?%) ((27r)_3 Wl ) ZQL X°QLy
k€Px

> —2pz( +C(52 Wlw ZQLJX Qr,;-

Here we used (5.18) to control the error from (12.62).
We now notice that, for all € > 0,

(12.99) ZQL,JX Qr;<(l+e¢ ZQL]X Qr,j+Ce 'nfl.

We notice that p,a = (dK;)? %
ert (dKy)?, we find, using (12.62),

(12.100)
—(2m)%8 /kepH(1+C52)' |2W1 0 [ [ sonaas - s

Therefore, choosing e proportional to

1
2 —1 i
> 29, (1+ C8% + Cey ' (dKy)?) Wiw(0 ZQJX T (de) 2

Using (5.4), (5.23), (12.4) and (12.1),

(12.101) pal6® + ept(dKy)?]) < 072

Therefore, the above error terms can be absorbed in the energy gap.
To estimate the error term in (12.97) we integrate

2W1"“) WAR) 521 py o3y > —Copad () Py s

(12.102) —(2@363/ Clz|
ke Py
By (5.23) and (5.15), we see that pua52(€3\PL\) < (72 5o this term can also
be absorbed in the energy gap.
We now estimate the other commutator term, namely 75 (k) from (12.80).
We clearly have

(12.103)

Tik) = —C26 sup (116}, 1 1) low T () / Fu(s) (a'*_sa'_sﬂ) ds
kGPH,SGPL

—Cz6 sup (\[b;, ]|) \Oékwl \/fL by_.bs— k+1) ds.
kGPH,SGPL
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Therefore,
(12.104)

3 -3
3 (2m) /k Ttk ds

> —Cx5( s |of bl ) palns + (oK)

kEPH,SEPL
—C26 bl al K,K1)? — Cz5? bl,al
z sup  |[by,al]| ) pa(KeK L) z sup  |[by, al ]|
kEPy,s€P;, k€Pm,s€Py,
X ( sup |Ds—k|_1)a(KZKL)3/ Dyblby.
kePp,sePr, {|k|>2 Ky a1}

The last term in this inequality is easily seen to be estimated as
(12.105)

1
> —§? {5 3K§Kg< sup y[bz,zﬁ_s]\)} 53/ ) Dyblbg,
VPul kePy,sePp {k>i K a1}

and using the properties of the commutator and Lemma C.1, we see that this
: : 243 i ;
term can easily be absorbed in the extra §¢ f{\k\z%K;Ilafl} Dy.b; by, omitted
in (12.79).
The two remaining terms in (12.104) can be estimated (in particular, using
Lemma C.1 and (12.43)) as

—3/2 1 g M1
(12.106) > —Cp2al’sK, 1 (pua®) s (M + (K}K3)) (K, 25) 2
This finishes the proof of (12.49) O
Now we have established all three inequalities (12.49), (12.50) and (12.51).
This finishes the proof of Lemma 12.5. ([

13. Proof of the main theorem

In this section we will combine the results of the previous sections in order
to prove Theorem 1.2.

Proof of Theorem 1.2. As noted in Section 4, Theorem 1.2 follows from
Theorem 4.1, which again—as observed in Section 6.3—follows from Theo-
rem 6.8. We will use the concrete choice of parameters set down in (5.26) and
(5.27) in Section 5. Recall, in particular, the notation X defined in (5.27).

To prove Theorem 6.8, let ¥ € F,(L?(A)) be a normalized n-particle
trial state satisfying (7.1). If such a state does not exist, there is nothing to
prove. Using Lemma 8.2 there exists a normalized n-particle wave function
Ve Fs(L*(A)) satisfying (8.2) and such that

(13.1) (W, Ha(p) W) > (U, Halp) V) — CX Rpjal®(pua®)'/.

The error term in (13.1) is consistent with the error term in Theorem 6.8.
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Using Proposition 10.2 we find that our localized state U satisfies
(13.2)
(W, Ha(pu) ) > (¥, HR (p,) T)
— Cptal(pua®)? ((pua®) 2 + X*(Ra™")(pua®)'/?)

where the error is clearly consistent with the error term in Theorem 6.8.
At this point, we can apply Theorem 10.5 to get the lower bound

(13.3) (W, 13 (p,) W) > inf inf(®,K(2)®) — Cpua,
zeRy @
where the second infimum is over all normalized ® € F(Ran(Q)) satisfying
(10.28).
Since
(13.4) Ppa = piaﬂ?’ pualK;? = piaﬁ?’ pua?’X%,

which is in agreement with the error term in Theorem 6.8, this implies that
we need to prove that

N

. 3 3
%f(CI),IC(z) ) > 47rpua€ +47rpua,€ 3)

15\f(l)u

(13.5) 2
(& pua®)

o=
=
=

— Cppal*(pua®) +X

for all normalized ® satisfying (10.28).

We will use that with our choice of parameters (12.2) is satisfied.

If p, = |2]?/03 satisfies (11.3), i.e., is “far away” from p,, then Propo-
sition 11.2 provides a lower bound on (®,KC(z)®) that is larger than needed
for (13.5) by a factor of 2 on the LHY-term. Since (12.2) is satisfied, the
assumptions of Proposition 11.2 are verified.

If p, satisfies the complementary inequality (12.1) and ® satisfies (10.28),
then by (12.7) (using again that (12.2) is satisfied) and Theorem 12.1 combined
with Lemma 12.3 we get

(13.6)
1 ~
(@.K()®) = —5C5(0) + dn 2= pa/peal
b b H ex ex
+ (& | gant Tergmpny + () + Q5 (2) + Qs(2) ) @
+ (2m) 303 (@, /Dkb;bk dk ®) — &1,
where the error term &; satisfies

R2
(13.7) & < Cpiafy’(pua‘g)% <?(pua3)% + X5 4 (pua 3)i(Ra~ )%> :
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Here the error term in X5 comes from the €(pu; p=) in Lemma 12.3. This error
is compatible with (13.5) using Young’s inequality for products.
Now we can apply Theorem 12.4 to obtain the inequality

s, (2m) 363 <<I>, / Dy.b! by qu>>

b b ex ex
+ <GI> <4£2n+ +€T2d2£2n+ + 97 (2) + Q5%(2) + Q3(2)> ¢>> > &,
with error term

1,11
(13.9) & < Cpal’y/ puad(pua’)s X1z,
Here the dominant contribution to the error (with our choice of parameters)

comes from the IN(I? (pua® )%—term. This error is clearly consistent with (13.5).
Combining (13.6) and (13.8), we get

1 N 128
(®,K(2)®) > —502539(0) + 4”@@%/ pua’t®
- (51 +&+C ’pucn/pua3 - pza\/pza3‘ €3> .

This establishes (13.5) for p, satisfying (12.1), since by (12.1), (12.2) and
(5.26), we have
(13.11)

‘pua\/pua:‘ - pza\/pza?" 0 < Cppan/puadPK;? = Cpuan/ puadt> X°.

This finishes the proof of (13.5) and therefore of Theorem 6.8, which in turn
implies Theorems 4.1 and 1.2. O

(13.10)

Appendix A. Bogolubov method

In this section we recall a simple consequence of the Bogolubov method
(see [21, Th. 6.3] and [7])

THEOREM A.1 (Simple case of Bogolubov’s method). Let ay be operators
on a Hilbert space satisfying [at+,a_] = 0. For A > 0, B € R satisfying either
|B| < A or B=A and arbitrary k € C, we have the operator identity
(A.1)

A(aay +a’a_) + B(ajaf +ara_)+ k(al +a-) +E(ag +al)

2
=D(bi by +0b) ( — VA2 — 82) ([at,aZ] + a_,a*_])—j|j_|8,

where

(A.2)

= (A+ Ve -B)

[\D\H
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and
(A.3) by :=ay + aa” + 7, b_:=a_ + aa’, + co,
with
(A4) =B (A-VE_B), o= &l

A+ B+ VAZ - B>

In particular,

Alatay +a*a )+ B(aia® +aya_) + k(. +a’) +F(ayr +a-)

(A.5) 2| k|2
2—7( — VA% - BQ) (lag,a%] + a_,a*_])—A+B.
Proof. The identity (A.1) is elementary. From here the inequality (A.5)
follows by dropping the positive operator term D(b% by + b* b_). O

Appendix B. Localization to small boxes

The Hamiltonian Hp(p,) defined in (6.24) (with v = 0) is localized to
the box A := A(0) = [—¢/2,£/2]3. In order to arrive at the a priori bounds in
Theorem 7.1 we will localize again to boxes with a length scale ¢d < (pa)~/2.
The reason for this second localization is that we need a larger Neumann gap
in order to absorb errors. We therefore introduce a new family of boxes (some
of which will have a rectangular shape) given by

(B.1) B(u) = [£/2,0/2]° N (tdu + [—£d/2,0d/2]%), u € R>.
The functions that localize to these boxes are
_ z xz 3

where x is given in (C.1) in terms of the positive integer M. Observe that

(B.3) / / XB(w) () dodu = (%,

We consider the projections

Ppye = 1BW)| " (1pw), ©) 1w @pw® = Law)® — Ppu)®-
In these small boxes we consider the Hamiltonian
(B.4)
N

HB(u)(pu) = Z (TB(u),z pu/wl,B( ) (w4, y ) ZwB(u xhl‘] )

i=1 z;é]

where (omitting the index w)

(B.5) Tp= %ET(l + 777N d0) QB + Qexs[V—A — (ds) ') *xpQ5
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and
(B.6)
wp(@,y) = xB(@)W*(x —y)xp(y), wi,B(,y) = xB@)Wi(z —y)xs(Y),
with (where the superscript s refers to small)
s _ W(x) s . Wi (z)
R TE () N R eYeer))
Here we use that R < d¢ by (5.29). As in the large boxes we will also need

Wa ()
B. = S _ s 2
Since w < 1, we have
(B.9) /W2S < 2/Wls(x) < Ca.
We have by a Schwarz inequality that
(B.10)

[ wintepizay < [[xa@Wite - ydsdy < (est)a [ ¥ < Calpl.

Observe also that

(B.11) /// w1, B(u) (T, y)drdydu = Eg/g = 8mal’.

It was proved in [7, Th. 3.10] that the operator Ha(p,) defined in (6.24)
and (6.25) can be bounded below by (we are for the lower bound ignoring the
third term in 7 in (6.19))

N
b _
(B.12) Halpou) = Y oQuil ™+ /R Aoy (o)
i=1
if
(B.13) er, s,ds™, and (s7% 4 d3)(sd)"2sM

are smaller than some universal constant. Note that, if pua?’ is small enough,
this is satisfied for our choices in Section 5, in particular, due to (5.3).

In the integral above the operators Hpy,) (pu) are, however, not unitarily
equivalent. Depending on u the boxes B(u) can be rather small and rectan-
gular. We denote by Aj(u) < A2(u) < Az(u) < df the side lengths of the boxes
/3

B(u). To avoid boxes that are very small, i.e., where A\j(u) < pll , we will

restrict the integral above to u such that
14 _
[tdulloo < 5(1+d) = i,

Note that since the full integral would be over the set where [|(dul|o < £(1+d)
we see that the restriction implies that all boxes will satisfy Aj(u) > pﬁl/ 5,
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For the kinetic energy and the repulsive potential this restriction will only
give a further lower bound. For the chemical potential term we will use the
following result.

LEMMA B.1. For all x € A, we have the estimate

(B.14)
—Ppu //w1 B(u) (z,y)dydu

>—p / /w1,B w (@, y)dydu
" oo (2+1) <—(edpl/*) 1 “

" S oty <ot (141) <ty S

Proof. The estimate above follows if we can show that for all z,y € A we
have

(B.15)
oo ()
: /uoo L)<= (=) (g =)

+3
—2(tdpy/*) 1< ulloo— 5 (3 4+1)<-

We have

D) gy )X ()

- /uoo—;(;ﬂ)z_(edp;/a‘)l X (% - “) (@ - “) du.

Since z,y € A, the integral on the right is supported on [jullos — 3 (3+1) <0.
Using the fact that p, 8 < ¢d/2 and that x is a product of symmetric de-
creasing functions of the coordinates ui,us,us respectively, we may observe
that for fixed us, ug, we have

i
’&3
QL
Z
Vw
|
I
VN
~
N
|
N———
>
VN
~
NS
|
e
N———
.
S

(B.16)

max X<%—u>x(%_u)
By @RS G
< min (i _ u) (7 _ u)
L(34+1)—=2(tdpl/*) 1 <fur| < 2 —(eapl/ ) N d

Using this repeatedly (also with wuj, ue and uq, us fixed) gives the result in the
lemma. ([l
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As a consequence of the lemma we find from (B.12), if (B.13) is satisfied,
that

b N
(B19) Halo) 2 50°3Qnact / Moty (m(w)py )

edulloo < 30(1+d)—pp

where m(u) = 1 if |[fdul|os < 26(1 + d) — 2p, /3 and m(u) = 4 otherwise, i.e.,
for u near the boundary.

The goal in the rest of this section is to give a lower bound on the ground
state energy of the operators Hp,)(m(u)p,) to conclude an a priori lower
bound on the ground state energy of Ha(p,). We may now assume that the

shortest side length of B(u) satisfies A1 (u) > ,0;1/ % and we will make use of the

fact that the range R of the potential satisfies R < p,jl/ % For simplicity, we
will often omit the parameter u. A main ingredient in getting a lower bound
is to get a priori bounds on the operators

N N N
(B.19) n = Z Ipi, mno= ZPB,z’a nt = ZQB,@'-
i=1 i=1 i=1

Note that the operator n commutes with H g, so we may consider n a number.
Applying the decomposition of the potential energy in Section 6.4 to the
small boxes we arrive at the following lemma.

LEMMA B.2. There is a constant C > 0 such that on any small box B,
we have

(B. 20)

—pMZ/wlB x,y)dy + = ZwB (@i, j) > Ao + Az — Ca(py + no|B|~ )n+,
l#y

where

77,0 no—l
Ap = 2\B]2 //wgg z,y) dxdy

(B.21) . . 1
Puir (pu— : //ww:ryd:rdy
IB\ B

and

1
(B.22) Ay = B Z PBJPBJ‘UJLB(HJ@‘, mj)QB,jQB,i + h.c.
i#]
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Proof. We use the identity (6.33), which also holds in the small boxes with
P, @Q and w, w1, ws replaced by Pg,()p and wp, w1, p, w2, p respectively. Let us

denote the corresponding terms Qi°z, @ =0,...,4. Then

no(ng — 1)
Qo.B = 02|OB|2 //w2B$y dxdy — p“|B| //wlgxy dxdy.

As in the proof of Lemma 6.11 we apply a Cauchy-Schwarz inequality—using
the positivity of wp—to absorb Q3'p in Q5. This results in the following
inequality:

Qren + Qren

= _CZ PpiQpjw1,5(%i,vj)QB,;PB,
i#j
B Z (PB»iQB,jwl,Bw(miy xj)Pp jPp; + h.C.)
i#j

—92 Z (PB,iQB,jwl,BWPB,jQB,i + hC>

(B.23) Py

> —CZ Pp QB jwi,B(xi,x;)QB,;PB.
i#]
_ Z (PB,iQB,jwl,BW(fUia xj)PB,jPB,i + h.C.)
i#j
> - (PB,iQB,jwl,BW($ia ) Pp,jPp; + h-C-> — Cang|B|™'n.,
i#j

where we have used the pointwise inequality 0 < w < 1, an additional Cauchy-
Schwartz inequality in the second inequality, and

Y PpiQpjw,p(wi,2;)Qp,Pa.
(B.24) e
< Cllxalinol Bl 'ny [ W < CanolBlns,

which follows from

/ NB@ W@ — y)xa) dy < lxsl / ws,
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If we rewrite Q" as in (6.40), the first term on the right side of (B.23) cancels

the second line of (6.40). The remaining part of Q5 we estimate as follows:

(B.25)
1Bl (no — pul B) > _ @p.ixs(x:)W; % xp(2:)Ppi + h.c.

=B (0" + (pu| B))'/?)
< Y Qpaixs(@:)W; = xp(2:)Psi((no — 1)/ = (pu| B)'/?) + h.c.

(]

2
> —4|B|7! (ng? + (ol BDY?)" " Qpaxs(@) W3 * x5(2:) Q.

7

1, 2 s
= 31BI7 (0 = D)2 = (pul B)'2)" 3 Praxs(ai) Wi * x5 () P

The first term above we estimate similarly to the estimate in (B.24). The last
term above is equal to

1n 2
— 7p (0 =DV = (B 2) / / wi,B(@,y) dedy

1 (nog—1 )2//
> _
= A ( |B‘ Pu wl,B(mv y) diﬁdy,

where we used that p,|B| > 1 to get the last inequality. This, together with
Qv B> give the Ap term in the lemma.

The first three terms in Q3"p are absorbed into the last term in (B.20)
using again the same Cauchy-Schwartz as in the second inequality in (B.23).

Finally, the last terms in Q5% are exactly the terms collected in As. (]

We express the term As from the lemma in second quantization. Intro-
ducing the operators

bl = |B|72al (Qpxpe™"")ao
we can write
1 [~
Ay = 320 [ W)O[EL, + o).

We shall control Ay using Bogolubov’s method. In order to do this we will add
and subtract a term

(B.26) Ay = (2m) 3 Ka / (b + 0L b_)dp,

with the constant Ky > 0 chosen appropriately. Note that we have
1 1

(B.27) A< Ksam’;_‘mrHXBHQ < C’Ksan();_’ ..
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LeEMMA B.3 (Bogolubov’s method in small boxes). There exists a constant
C > 0 such that

(B.28)

N
> Qpixsilv/—Ai — (dst) 7 xB.iQp.i + As
i=1

L1+ @0 + Cldst) a0 LD / X

2 |BJ2
—C( (dst) "' log(dsta™ ) ntl a4(ds€)3(n+1>3+a(d85)3>”/Xz
B B 1B] ) *P
1
—Cai

n
| B

Moreover, for all € > 0, there is a Cz > 0 such that if

(B.29) (R/d0)? < C71,  a(dst)log(dsta™) < C L,

then

N
> QpixsilvV/—=Ai = (ds0) ) *x5.Qp.i + Az
=1

(B.30) > _

(1 + )g(0) + ea) (”‘;”” / %

N |

n+1
— C.a(dst)™ /X C.a———
\B! v B[ "

Proof. We add A; from (B.26) to the term we want to estimate. Using
ng < n we may write

N
11— a1
ZQB,iXB,i[\/ —A; — (ds0) N 2xpiQBi + A1+ Ay > (27) 32/h(p)dpa
i=1
where h is the operator

B _ —
h(p) = <n‘+’ 1[|p| (dst) 1]1+2Ksa) (b;bp+b1pb,p)+Wf(p)(bj,bip+b,pbp).

We observe that
by, b1] < 1| B|™! / \% < n|B|! / 3.

We will now apply the simple case of Bogolubov’s method in Theorem A.1
with
|B|

n 4+

Ap) = —— L llpl = (dst) 2 +2Ksa, B(p) = Wi (p).
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We have by (B.9) that

B = W) < [ W < Coa
If we therefore choose Ky > Cp, we see that |B|/A < 1/2, and we get the
following lower bound from Theorem A.1:

1

o) =~ (AW) — VAP~ BE?) nalBl ! [

Using that |B|/A < 1/2 we have

2
h(p) > _BW) n|B_1/X2B-

We use this for |p| < 2(dsf)~!, and for the integral over |p| < 2(dsf)~!, we find

2 2 2
(B.31) / B(p) dp S&a 1dp < &(dsf)*‘g.
pl<2(dse)-1 AD) Ky Jip<2(dse)-1 K

For the simple bound (B.30), we may choose K large depending on ¢ to have

1 B(p)® -
) = —5(1+ /250l [

and use this in the range |p| > 2(dsf)~!. For the more refined bound (B.28),
in the range [p| > 2(dsf)~!, we use

2 4
h(p) > — (;li(gz) +Cﬁg))3> n\B[‘l/XZB.

For |p| > 2(dsf)~!, we have

n+1
1B|

Bp)* _ntl  Wip)?  _ Wip)?

Ay < TBT M- (st = gz OO

and hence by splitting the integral over the error in [p| < a=! and |p| > a™!
we obtain

B(p)?
d
/|p|>2(dse)1 A(p) P

1 [ Wip)? 1
§(1+C(ds€)_1a)n’;‘ - 1p(2p) dp—l—C’aQ(dsﬁ)_ln‘; log(dsfa™1).
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Finally, we use that

1 s [ Wi)? 1 [ Wi(z)W(y)
Z(2r)3 VY g == [ | 221 o
1% /R 2 P 4/ drfz—y] Y

1 5 9(z)g(y)
Sl(l + C(R/(d)) )// mdmd?/

1+ CR/@0)2m) [ we,,

R3 p2

1
4

:;1 + C(R/(d0))*)gw(0).

Finally, to get (B.28) we estimate

/ B(p)*
|p|>2(ds)—1 A(p)?

+1)\? - n+41\3
< (cst.)at <n ) / p|"%dp = Ca* ( ) dst)3.
SOTTBT) a7 B ) Y

Using the estimate (B.27) on A; gives the last term in (B.28). O

(B.33)

In order to use this lemma we will control the negative term quadratic
in n in (B.30) in terms of the positive term quadratic in ng in (B.21). The
difference between n and ng will be absorbed in the Neumann gap of Tp. It
is, however, important to establish the result in the following lemma.

LEmMMA B.4. There is a constant C' > 0 such that if the shortest side
length A1 of the box B satisfies R < %C"l/Q min{\q, {d}, then

(B.34)

// wy,g(x,y)dzdy > 8ma (1 — C(if) <1 - C(gf) /XZB,

(B.35)

[ vteini
> //wLB(x,y)d:Edy—{— (1 — C(i)Q) <1 — C<Z>2> gw(0) /XQB.

Moreover, for any 0 < & < 1/10, we can find a C. > 0 such that if R <
(CHY=Y2min{\y, £d}, then
(B.36)

[ wentepizdy = [ [ st edy+ @+ 55(0) + <0) [
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Proof. The estimate (B.35) follows from

/ / wn (. y)ddy — / / w2, y)dady
- / / w(z — y)w1 p(x, y)dedy
> /w(x)Wl( )z (/ - 0R2Hv2XBHOO/XB>
> (L= CRAT) [w@Wi)s [
> (1-C(RA\H?) ( (

) (- cie?) ([ o) [

where we have used that wW is spherically symmetric, that |B|~* ( Ix 3)2 <
[ x%, and that

(B.37) 005kl < Carri 81" [ x

which is a simple exercise (see Appendix C). The estimate (B.34) follows in
the same way without w and using [ ¢ = 8ma. Finally, (B.36) follows from
w<1. O

We are now ready to give the bound on the energy in the small boxes.

THEOREM B.5 (Lower bound on energy in small boxes). Assume B is
a box with shortest side length A\1 > py, B There are universal constants
C,C" > 1 and 0 < ¢ < 1/2 such that for all 1 < Kp < C'""Y(p,a®)~/%, we

have for the Hamiltonian defined in (B. 4) that

n|B|~! —
,HB(pN)Z<(‘1L_ ou)” )//w13$yd$d?/
lBlp

— Cpla ((RAT')? + K (pua®)?) /x% — Cpua

(B.38)

if

(B.39) C'e 1/2(p a®)Y? < a(df)™ < a(dst) " n(dstat) < Kp(pua®)/?
and

(B.40) R < K} (pua®)*(pua)~'/2.

We are assuming that er,s,d < 1.

Note that all the assumptions on Kpg, R, €7, s, and d are satisfied with
our choices in Section 5 if pua?’ is small enough. Specifically, the assumption
on Kp is a consequence of (5.7), formula (B.39) follows from (5.4), (5.6), and
(5.7), and (B.40) was given in (5.29).
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Proof. Note that (B.39) is equivalent to

sdl M2
et o P < IT —1/2,
(Pua) B S fasta) = %= 5 (Pua)
This, in particular, implies that
N
(B.41) > ger(l+ )7 (td) "2 Qp, > C*(1 + 7)) puany.
=1

Moreover, we see from (B.40) that
1/2 3/2
Rp,l/g < KB/ (P#ag)l/m: R/(d) < KB/ (Pua3)1/4-

We now first choose € so small, e.g., to be 1/20, so that we can apply
Lemma B.4. Hence if C’ is large enough, we can, since A\; > p,zl/S, use (B.34),
(B.35), and (B.36) from Lemma B.4. We choose the same ¢ in (B.30) and again,
by assuming that C’ large enough, we can ensure that (B.29) is satisfied.

We may of course assume that n > 0, since the inequality we want to
prove is obviously satisfied if n = 0 since the operator is 0 whereas the lower
bound is negative in this case. We choose a constant = > 2 to be determined
precisely below (see estimate (B.43)) to depend only on the constants C' and
C. in Lemmas B.3 and B.4. Our final choice of the constant C’ in the theorem
will also depend on the choice of Z. Observe that p,|B| > 1. Hence we can
choose an integer n' in the interval [Ep,|B|, (4 1)p,|B|), and we may write
n = mn’ +n" with m,n’, n” non-negative integers and n” < n’ < (2+1)p,|B].
We will get a lower bound on the energy if in the Hamiltonian we think of
dividing the particles in m groups of n’ particles and one group of n” particles
ignoring the positive interaction between the groups. It is not important that
the Hamiltonian is no longer symmetric between the particles since we are not
considering it as an operator on the symmetric subspace, but only calculating
its expectation value in a symmetric state. We arrive at the conclusion that if
we denote by eg(n, p,) the ground state energy of Hpg(p,) restricted to states
with n particles in the box B, then

(B.42) ep(n, pu) > meB(n/’pM) + eB(nH7pM)'

We have that both n’ and n” are less than (2 + 1)p,|B| < 2Zp,|B|. This
means that the last terms in (B.20), (B.28), and (B.30) in both cases can be
absorbed in the positive term from (B.41) if we choose C' > CZY2. Using
(B.10) we see that the same is also true for the errors we get by replacing ny,
and ng by n’ and n” respectively everywhere in Aj in (B.21).
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In the case of the m groups of n’ particles we will use Lemma B.2 and
(B.30) to arrive at

es(n’, pu) _2|B‘2//w23xy dxdy

(’””(f;\ (e \B|> )//wlB = y) dady

1 _ n'?
— 5 (14 1(0) +20) (i [ xh = Cppan'i| ! [,

where we have used that (B.39) and the assumption on K g imply that a(ds¢)~3
< ppa. We have also used that the error in replacing n’ — 1 by n’ in several
terms can also be absorbed in the last term. Thus applying (B.36) we arrive at

1 n \? _
eB(n/,pu) > g (pu - W> // wl,B($7?/) dxdy — Cpuan/|B’ ! /X2B

It follows, using (B.34), that if we choose the constant = large enough depend-
ing only on the constants in Lemmas B.3 and B.4, then

1 n \?
eg(n', pu) > 9 <pu - |B|) // wy,g(z,y) drdy

1 n
> —p,— dxdy > 0.
il 18pll«|B‘ //wLB(x?y) €T y -

This is what fixes the choice of =. Hence
mep(n’, p,) > 18p“ B //wlB x,y) dedy
n—mn'
) dzd
18 \B\ //w1B$Z/ ray.

We turn to the group of n” particles. We can again replace ng by n” by

(B.43)

(B.44)

absorbing the resulting error terms in the positive gap. If we apply Lemma B.2
and (B.28), we see that since n” < 2Z2p,|B|, we have

//2

(p“|B| ; (p“ |Br) )//W > y) dndy

1 nl/2 _ _
gu)(O)‘B’2 /XQB - C:4piaK139(pua3)1/2/XQB — C=pa.

The last term comes from repeatedly replacing n” — 1 by n” in the leading
terms, which leads to an error n”a|B|72 [x% < Cn”|B|7'a. In the error
terms we can, for the same replacement, alternatively use that 1 < p,|B|.
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If we now apply the estimate (B.35) in Lemma B.4, we find that
(B.45)

1/ n" 2 1
es(n”, pu) 27 <|ﬂ - pu) // wy,p(7,y) dedy — §pﬁ // wy,5(z,y) dzdy
- Cra ((RAT)? + K(pua®)"?) [ 5 = Cppa,

where we have now ignored the explicit dependence on =, which is after all
now a chosen constant.
We have arrived at the bound that

1/n" 21 n—n
> 2 (2 il
er(n, pu) > (4 (\B pu> + 18p“ B )//wLB(x,y) dxdy
1
- iﬂi // wl,B(%y) dxdy

— Cpua® ((RATY)? + K (pua®)'/?) /XZB — Cppa.
This easily implies the result in the theorem. O

We will now apply the small box estimate from the previous theorem to
get an a priori bound on the energy and on the number of particles n and
excited particles n in the large box.

THEOREM B.6 (A priori estimates in large box). Assume (5.1),
(B.40). Then there is a constant C > 0 such that if 1 < Kg < C'"(p,
and pua3 1s smaller than some universal constant, then we have

(B.39),
a?)~1/6

(B.46) Halpu) = —Ampal’(1+ CK(pua®)'?) + o ns

Moreover, if there exists a normalized ¥ € Fy(L*(A)) with n particles in A,
such that (7.1) holds for a 0 < J < K%, then the a priori bounds (7.2) on n
and ny hold.

As explained just after Theorem B.5 the assumptions (B.39), (B.40), and
the assumption on Kp are satisfied with our choices in Section 5.

Proof. We use (B.18) together with the estimate in Theorem B.5. We
will denote by n(u),no(u), and ny(u) the operators defined in (B.19). The
corresponding operators in the large box A will be denoted n,ng, and ny. On
the set

1= {ué [—%(1+$),%(1+$)r ( %f(l—l—d)—?p;l/?’

1 ~1/3
< < — _
< ||ldu| 0o < 26(1 +d)—p, }
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we have that p, is replaced by 4p,. On this set we have, according to (C.6),

that [xp)(z)] < C(p;1/3/€)M < C(pua®)M/6 with (C depending on M), and

therefore

(B.47) /I / N (@) du < C(p,a®)MB3(0d)d= < Clpua®) /36,

If we use Theorem B.5 and (B.10) to get the the rough estimate
Hp(4pu) > —Cpia/x% — Cppa,

we obtain

(B.48) /ZHB(4PM) > —C’pia(pua3)M/3£3 _ Cpuad*?n

In order to apply the estimate in Theorem B.5 over the remaining u, we need
to control

/ (RA1(u)~1)? / XB(uy(@)dzdu
(B.49) < CR*(dt)™2 /()\1<u)/(d£))M2/XB(u)(x)dxdu
< O(R/(td)?)6® < CK3,63,

where we have used (C.5), i.e., [[xBlloo < C(A1/(d0))™ and [ x p(u)(x)dzdu =
C/¢3. If we combine this with (B.48) (with M = 8), (B.18), (B.11), (B.3), and
the estimate in Theorem B.5, we arrive at the final a priori lower bound

b
(U, Halpp)¥) >Ry + <‘I’, ﬁn+\I’> - 47rpia€3 - CK%(pMQB’)lmE?’ - Cpuad™®

b
>Ry + (W, 55 W)~ Amglal® (1 4+ (e ?)

0<Ry= <\I/, (/I F (|Z,((Z))’> // wLB(u)(x,y)de‘dydu) \I/>

where

1 _
I - {u € R | [[duloe < 3001 +d) - 2,0“1/3} .
Since Ry and ny are non-negative, this immediately gives (B.46) and
(B.50) Ry < Cpiaf?’K%(puas)l/Q and (¥,ny¥) < Cpuﬂ?’K%Kg(pua?’)l/Q

for a normalized n-particle ¥ satisfying (7.1). It remains to establish the
a priori bound on n in (7.2).
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Using that the function F' is convex and denoting

C :/ // wl,B(u)(xay)dxdydu>
T_
we obtain

(B51) Ry >CF (c—l < (/ Z I // (z,y dq:dydu) >) .

We have by (B.11) that
8ral®(1 — C(pa®)M/?) < ¢ < 8mal?,

where we used (B.10) and as in (B.47) that |xp()(z)| < C(pQI/S/E)M <
C(pua®)M/6 for u outside Z-_.
We may write

n(u
/ u’//wlB(u):vydxdydu—ZUmz

i=1

where

U= | 1B a0 @) [ [ w100 y)dodyan

Using the form of F' and the a priori bound on Ry in (B.50), we see that

<\II, Z U(mz)\If> — Pu

Note that by (B.10) and [ 1p(,)du = 14, we have that U(z) < C¢7?, and that

(B.52) < CpuK iy (pua®) /1.

P\UPy = PAyA|—1/ U(z)dz = Pp0=3.
A

Using that for all € > 0,

N N
(1—¢ Z (PAUP,); Z(QAUQA)i
=1 N =1 N N
<D Ui) < (L+e)) (PAUP)i+(1+e7")) (QaUQn)
=1 =1 =1

we see that

N
(1—e)npl™3 —Cetnpt3 < Z Ulz) < (A +e)ngl3 +(1+eHCn 073
i=1
Choosing ¢ = K%/2Kg(pua3)1/4 and using the a priori bounds on the expec-
tation values of n4 in (B.50) and U in (B.52), we conclude the result in the
theorem. 0
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Appendix C. The explicit localization function

In this section we discuss the explicit choice of the localization function x
and its properties. Define

_ Jeos(my), [yl <1/2,
C(y)_{o, > 1/2

and

(C.1) X(@) = Car (C(a1)¢ (a2) ¢ (a3))™M .

Here M € N is to be chosen large enough; we explained the need to choose
M = 30 in Section 5. The constant C}; is chosen such that the normalization
[x? =1 from (6.1) holds. We have 0 < y € CM~1(R3).

LEmMMA C.1. Let x be the localization function from (C.1). Let M =
max{n € Z|2n < M}. Then, for all k € R3,
(C.2) X(k)| < Oy (1 +[K[%) ™,

where

(C.3) c_/‘1_

In particular, when |k| > K Y(pu )12a , with the notation from (5.14), w
have

(C.4) KA (B)| = BIR(kO)| < CBK, 2K 3 (pua®)s)™.

The proof of Lemma C.1 is elementary and will be omitted.

The explicit choice of x is important when we analyze the behavior of the
small box localization function. Recall that according to (B.2) and the explicit
choice of y, we may write xp(x) = C%,F ()™, where

F(2) = huy (21)huy (22) g (23)

w=c()e(-)

If we denote by Ay the shortest side length in the box B, we see by estimating
one of the ( factors of scale d¢ and using that it must vanish at one of the sides
that

(C.5) xB(2) < CCRr(Ay/(d))™

If the shortest side length A; of the box B satisfies that A\ < d¢, we can
improve this slightly to

(C.6) xB(z) < CCH (M /0)M

and



THE ENERGY OF DILUTE BOSE GASES 973

This follows by estimating a ¢ factor of scale ¢ and using that it vanishes at
one of the sides.

In the rest of this short appendix we will briefly sketch how to get the
estimate (B.37) on xp. Our first claim is that

x5l < Chul B! / e,

for some constant C'j; depending on M. It is enough to show this for the func-
tion h,(t)™. Since ( is concave on its support we have that if h, is supported
on [a,b] and takes its maximum in ¢ then

(t - a)? (t—b>2}
(c—a? (c— b))

e(t) 2 o]l min {

In particular, h, is bigger than 1||A, || on half the interval. The claim follows
from this.
Our second claim is that

max [|9ixploc < ChL x50 max [[0:0;x B0 < CrAr*l1xBlloo-

It is easy to see that it is enough to show these properties for h,, i.e., that
1Hylloo < C' (0= @) Hlholloo, — hlloo < C'(b— @) 72|l y|oc-

In the case when (b—a) < fd, we have that one factor in h,, vanishes at one end
point and the other factor vanishes at the other endpoint. It is then easy to
see that || s < C(b—a)/(d2), [R!]loo < C(E2 + (£d)~2) o]l oo + C(£2d) Y,
and ||y |lco > c(b—a)?(d¢?)~!. In case b—a = £d. Both endpoints occur when
the second ( factor in h, vanish. Without loss of generality we may consider
v >0 and let D = |[¢(1/2 — dv)| denote the distance from the middle of the
support of h,, i.e., Idv to the right endpoint of the support of the first  factor,

i.e., £/2. Then ¢d/2 < D < ¢/2 and
Ikl < €"(¢d) =" D,
1]l < C'(€72 + (€d) ) [ hwlow + C"(€2d) 7,
[holloc = cD/E.
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