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On the Multiplicity One Conjecture
in min-max theory

By Xin Zhou

Abstract

We prove that in a closed manifold of dimension between 3 and 7 with

a bumpy metric, the min-max minimal hypersurfaces associated with the

volume spectrum introduced by Gromov, Guth, Marques-Neves, are two-

sided and have multiplicity one. This confirms a conjecture by Marques-

Neves.

We prove that in a bumpy metric each volume spectrum is realized

by the min-max value of certain relative homotopy class of sweepouts of

boundaries of Caccioppoli sets. The main result follows by approximat-

ing such min-max value using the min-max theory for hypersurfaces with

prescribed mean curvature established by the author with Zhu.

0. Introduction

Let (Mn+1, g) be a closed orientable Riemannian manifold of dimension

3 ≤ (n + 1) ≤ 7. In [2], Almgren proved that the space of mod-2 cy-

cles Zn(M,Z2) is weakly homotopic the Eilenberg-MacLane space K(Z2, 1) =

RP∞. (See also [29] for a simpler proof.) Later, Gromov [15], [16], Guth [18],

Marques-Neves [28] introduced the notion of volume spectrum as a nonlinear

version of spectrum for the area functional in Zn(M,Z2). In particular, the

volume spectrum is a non-decreasing sequence of positive numbers

0 < ω1(M, g) ≤ · · · ≤ ωk(M, g) ≤ · · · → +∞,

which is uniquely determined by the metric g in a given closed manifold M .

By adapting the celebrated min-max theory developed by Almgren [3],

Pitts [31] (for 3 ≤ (n + 1) ≤ 6), and Schoen-Simon [33] (for n + 1 = 7),

Keywords: minimal hypersurfaces, hypersurfaces with prescribed mean curvature, min-

max theory, volume spectrum, multiplicity

AMS Classification: Primary: 53C42, 58E12, 49Q05, 49J35.

© 2020 Department of Mathematics, Princeton University.

767

http://annals.math.princeton.edu/about
https://doi.org/10.4007/annals.2020.192.3.3


768 XIN ZHOU

Marques-Neves [28], [27] proved that each ωk(M, g) is associated with an in-

tegral varifold Vk whose support is a disjoint collection of smooth, connected,

closed, embedded, minimal hypersurfaces {Σk
1, . . . ,Σ

k
lk
}, such that

(0.1) ωk(M, g) =

lk∑
i=1

mk
i ·Area(Σk

i ),

where {mk
1, . . . ,m

k
lk
} ⊂ N is a set of positive integers, usually called multi-

plicities. We refer to [39], [6], [10], [17], [9], [23], [7], [47], [50], [32] for other

variants of this theory.

Our main theorem states that all these integer multiplicities are identically

equal to one for a bumpy metric. A metric g is called bumpy if every closed

immersed minimal hypersurface is non-degenerate. White proved that the set

of bumpy metrics is generic in Baire sense [42], [44].

Theorem A. Given a closed manifold Mn+1 of dimension 3 ≤ (n + 1)

≤ 7 with a bumpy metric g, the min-max minimal hypersurfaces {Σk
i : k ∈

N, i = 1, . . . , lk} associated with volume spectrum are all two-sided and have

multiplicity one and index bounded by k. That is mk
i = 1 for all k ∈ N,

1 ≤ i ≤ lk,

ωk(M, g) =

lk∑
i=1

Area(Σk
i ) and

lk∑
i=1

index(Σk
i ) ≤ k.

Remark 0.1. This solves the Multiplicity One Conjecture of Marques-

Neves [29, 1.2] (see also [27] for an earlier weaker version of this conjecture).

We refer to Theorem 5.2 for a more detailed statement of this result. Note that

by standard compactness analysis (see [35]), the same conclusion concerning

two-sidedness and multiplicity one also holds true for a metric with positive

Ricci curvature.

Remark 0.2. This conjecture was proved earlier for one-parameter min-

max constructions under positive Ricci curvature assumption by Marques-

Neves [25], the author [48, 49], and Ketover-Marques-Neves [22]. Later it

was fully proved for one-parameter case by Marques-Neves [27]. Recently,

Chodosh-Mantoulidis [5] proved this conjecture in dimension three (n+ 1) = 3

for the Allen-Cahn setting (see [12] for earlier works along this direction); they

also proved that the total index is exactly k for their k-min-max solutions

when (n + 1) = 3. After our results were posted on arXiv, Marques-Neves

finished their program and also proved the same optimal index estimates for

3 ≤ (n+ 1) ≤ 7 [29, Addendum].

One motivation of this conjecture is to prove the Yau’s conjecture [46]

on existence of infinitely many closed minimal surfaces in three manifolds.
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Combining with the growth estimates of {ωk(M, g)} by Marques-Neves [28,

Ths. 5.1 and 8.1] and the Frankel Theorem [11], we have

Theorem B. Let Mn+1 be a closed manifold of dimension 3≤(n+1)≤7.

(a) For each bumpy metric g, there exists infinitely many smooth, con-

nected, closed, embedded, minimal hypersurfaces.

(b) If a metric g has positive Ricci curvature, then there exists a sequence of

smooth, connected, closed, embedded, minimal hypersurfaces {Σk}k∈N,

such that

Area(Σk) ∼ k
1

n+1 as k →∞.

Remark 0.3. Result (a) was already known even without the bumpy as-

sumption by combining Marques-Neves [28] and Song [40]. For a set of generic

metrics, Irie-Marques-Neves [21] and Marques-Neves-Song [30] proved dense-

ness and equi-distribution for the space of closed embedded minimal hyper-

surfaces, using the Weyl Law for volume spectrum by Liokumovich-Marques-

Neves [24]. Their generic set in principle could be much smaller than the set

of bumpy metrics.

Result (b) was also obtained by Chodosh-Mantoulidis [5] in dimension

three (n+ 1) = 3.

As a direct corollary of the compactness theory (see [35]), there is an

equivalent formulation of Theorem A for general metrics. Note that a closed

minimal hypersurface Σ is said to be degenerately stable if 0 is the lowest

eigenvalue for the second variation of area of Σ, and hence index(Σ) = 0

(when Σ is one-sided, one has to pass to its two-sided double cover).

Theorem C. Let Mn+1 be a closed manifold of dimension 3 ≤ (n+ 1) ≤
7 with an arbitrary metric g. Then in (0.1), every connected component of

{Σk
i : k ∈ N, i = 1, . . . , lk} which is not degenerately stable is two-sided and has

multiplicity one. That is, if Σk
i is not degenerately stable, k ∈ N, 1 ≤ i ≤ lk,

then Σk
i is two-sided, mk

i = 1, and

lk∑
i=1

index(Σk
i ) ≤ k.

Remark 0.4. This formulation was noticed by the author shortly after this

article was first posted, and had formally appeared in the author’s Oberwolfach

Report for Partial Differential Equations, 2019.

This theorem can be viewed as a strengthened version of the Weighted

Morse Index Bound Conjecture by Marques-Neves. As a significant milestone,

Marques-Neves [27] proved the above index upper bound estimates. However,

the estimates might not be sharp as the contribution of these multiple sheets

were not counted. They made a conjecture that the sharp estimates should
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contain the multiplicity as coefficients. Theorem C says that every component

which contributes nonzero index is two-sided and has multiplicity equal to one,

and hence proves sharpness of the estimates.

0.1. Sketch of the proof. The key idea of our proof is to approximate the

Area-functional by the weighted Ah-functional used in the prescribing mean

curvature (PMC) min-max theory developed by the author with Zhu [52]. Note

that the Ah-functional is only defined for boundaries of Caccioppoli sets; see

(1.1). A smooth critical point of Ah is a hypersurface whose mean curvature

is prescribed by the restriction of h to itself. There are two crucial parts in the

proof. In the first part, we consider min-max construction of minimal hyper-

surfaces using sweepouts of boundaries of Caccioppoli sets. We observe that

in a bumpy metric if one approximates Area by a sequence {Aεkh}k∈N where

{εk}k∈N → 0, and if h : M → R is carefully chosen, then the limit min-max

minimal hypersurfaces (of min-max PMC hypersurfaces associated with Aεkh)

are all two-sided and have multiplicity one; see Theorem 4.1. In the second

part, we show that in a bumpy metric the volume spectrum ωk(M, g) can be

realized by the area of some minimal hypersurfaces coming from min-max con-

structions using sweepouts of boundaries. We now elaborate the detailed ideas.

To implement the idea in the first part, we generalize the PMC min-

max theory in [52] to multi-parameter families using continuous sweepouts.

Since the space of Caccioppoli sets C(M) is contractible, there is no nontrivial

free homotopy class to do min-max, so we have to consider relative homo-

topy classes. Heuristically, given a k-dimensional parameter space X, a subset

Z ⊂ X, and a continuous map Φ0 : X → C(M), we can consider its rela-

tive (X,Z)-homotopy class Π = Π(Φ0) consisting of all maps Φ : X → C(M)

that are homotopic to Φ0 and such that Φ|Z ≡ Φ0|Z . If the min-max value

Lh = inf{maxx∈X Ah(Φ(x)) : Φ ∈ Π} satisfies the nontriviality condition

Lh > maxx∈Z Ah(Φ0(x)) with respect to theAh-functional, and if h is chosen in

a dense subset S(g) ⊂ C∞(M) (depending on the metric g, see [52, Prop. 0.2]),

we prove the existence of a smooth closed hypersurface Σh of prescribed mean

curvature h; moreover, it is represented as the boundary Σh = ∂Ωh for some

Caccioppoli set Ωh and Ah(Ωh) = Lh; hence Σh is two-sided and have mul-

tiplicity one. Σh is usually called a min-max PMC hypersurface. We also

established Morse index upper bounds following Marques-Neves [27]. That

is, we prove that the Morse index of Σh is bounded from above by k (the

dimension of parameter space).

Given a relative homotopy class Π as above, consider the min-max con-

struction for the Area-functional and let L=inf{maxx∈X Area(∂Φ(x)) : Φ∈Π}.
If the nontriviality condition L > maxx∈Z Area(∂Φ0(x)) is satisfied, we can ap-

proximate L by Lεh for a fixed h ∈ S(g) (to be chosen later) and small enough



MULTIPLICITY ONE CONJECTURE 771

ε > 0. We know that ε · h also belongs to the dense subset S(g). Denote

Σε as the min-max PMC hypersurface associated with Lεh. As the family

{Σε : ε > 0} have uniformly bounded area and Morse index, we can pick a

subsequence {Σk = Σεk : εk → 0} that converges as varifolds and also locally

smooth and graphically away from finitely many points to some limit minimal

hypersurface Σ∞ with integer multiplicity such that Area(Σ∞) = L. The limit

can be extended to a closed embedded minimal hypersurface Σ∞ across the

bad points, and Σ∞ also has the same Morse index upper bound. Hence Σ∞
is a min-max minimal hypersurface associated with L. As a standard process,

if the multiplicity is greater than one, or if a component is one-sided, one can

obtain solutions of the Jacobi operator LΣ∞ of Σ∞ by taking the limit of the

renormalizations of the heights between the top and bottom sheets of Σk. In

particular, there are two possibilities for the limit depending on the orienta-

tions of the top and bottom sheets. For simplicity, let us assume that Σ∞ is

connected and two-sided. An easier case happens when the top and bottom

sheets have the same orientation, and hence the limit is a nontrivial nonneg-

ative solution ϕ of the Jacobi equation LΣ∞ϕ = 0 which cannot happen in a

bumpy metric. When the top and bottom sheets have opposite orientations,

the limit is either a nontrivial nonnegative solution to the Jacobi equation, or

is a solution ϕ of the following equation:

LΣ∞ϕ = 2h|Σ∞ , such that ϕ does not change sign.

The key observation is that one can find a h ∈ S(g) so that the unique solution

(as Σ∞ is non-degenerate) of LΣ∞ϕ = 2h|Σ∞ must change sign, and hence

Σ∞ must have multiplicity one (see Lemma 4.2). Indeed, the set of minimal

hypersurfaces with bounded area and Morse index in a bumpy metric is finite

by the standard compactness results [35]. On each such Σ, we can construct

a hΣ ∈ C∞(Σ) such that the unique solution fΣ of LΣfΣ = 2hΣ must change

sign, and we can further make the support of all such hΣ pairwise disjoint.

Since S(g) is open and dense, we can pick a h ∈ S(g) that approximates all

hΣ on Σ as close as we want. Then the solution of LΣϕ = 2h|Σ must also

change sign. Up to here, we have elucidated how to construct two-sided min-

max minimal hypersurfaces with multiplicity one for sweepouts of boundaries

of Caccioppoli sets.

Lastly we apply the above multiplicity one result to the volume spec-

trum. Though the volume spectrum ωk(M, g) is defined using cohomological

relations, Marques-Neves proved in [27], using their Morse index estimates,

that in a bumpy metric ωk(M, g) is realized by the min-max value L(Π) for

certain free homotopy class Π of maps Φ : X → Zn(Mn+1,Z2), where X is

some fixed k-dimensional parameter space and Zn(Mn+1,Z2) is the space of

mod-2 cycles. It was observed by Marques-Neves [29] that the space of Cac-

cioppoli sets C(M) forms a double cover of Zn(Mn+1,Z2) via the boundary
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map ∂ : C(M)→ Zn(Mn+1,Z2). Therefore, by lifting to the double cover, for

each Φ ∈ Π, we can produce a map Φ̃ : X̃ → C(M), where π : X̃ → X is

a double cover, such that ∂Φ̃(x) = Φ(π(x)). To produce a nontrivial relative

homotopy class, we pick a map Φ0 ∈ Π such that maxx∈X Area(Φ0(x)) is very

close to L(Π) = ωk(M, g). Let Z ⊂ X to be the subset where each Φ0(x),

x ∈ Z, is ε-distance away from the set of smooth closed embedded minimal

hypersurface Σ with Area(Σ) ≤ L and index(Σ) ≤ k. Note that this set of

minimal hypersurfaces is finite in a bumpy metric, hence for ε small enough the

complement Y = X \ Z ⊂ X is topologically trivial in the sense that Y does

not detect the generator of the cohomological ring of Zn(Mn+1,Z2). There-

fore, the pre-image Ỹ = π−1(Y ) ⊂ X̃ is homeomorphic to two disjoint identical

copies of Y , denoted as Y + and Y −. On the other hand, since no element in

Φ0(Z) is regular, by Pitts’s combinatorial argument, one can homotopically

deform Φ0|Z so that maxx∈Z Area(Φ0(x)) < L. Now consider the relative

(X̃, Z̃)-homotopy class Π̃ generated by the map Φ̃0 : X̃ → C(M). One key

observation is that the min-max value L(Π̃) ≥ L(Π) > maxx∈Z Area(Φ0(x)).

To see this, given any homotopic deformation Ψ̃ : X̃ → C(M) of Φ̃0 relative

to (Φ̃0)|Z̃ , if maxx∈Y + Area(∂Ψ̃(x)) < L(Π), then we can pass it to quotient

and obtain a continuous map Ψ : X → Z(M,Z2) as Y + and Y − are dis-

joint and Ψ̃|Z̃ ≡ (Φ̃0)|Z̃ , so that maxx∈X Area(Ψ(x)) < L(Π), but this is a

contradiction as Ψ is homotopic to Φ0. Therefore, Π̃ is a nontrivial relative

homotopy class in C(M), and its associated min-max minimal hypersurfaces

are two-sided and have multiplicity one. Finally, as the metric is bumpy, the

min-max value L(Π̃) of Π̃ is equal to L(Π) when maxx∈X Area(Φ0(x)) is close

enough to L(Π) = ωk(M, g). Hence we have explained how to construct two-

sided min-max minimal hypersurfaces of multiplicity one whose areas realize

the volume spectrum.

0.2. Outline of the paper. In Section 1, we establish the multi-parameter

version of min-max theory for prescribing mean curvature hypersurfaces us-

ing continuous sweepouts. In Section 2, we prove several compactness results

for prescribing mean curvature hypersurfaces with uniform area and Morse in-

dex upper bounds. In Section 3, we prove the Morse index upper bound for

prescribing mean curvature hypersurfaces produced by our min-max theory.

In Section 4, we prove that min-max minimal hypersurfaces associated with

families of boundaries have multiplicity one in a bumpy metric. Finally, in

Section 5, we prove the Multiplicity One Conjecture for volume spectrum.
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1. Multi-parameter min-max theory

for prescribing mean curvature hypersurfaces

Here we present an adaption to multi-parameter families of the min-max

theory for hypersurfaces with prescribed mean curvature (abbreviated as PMC)

established by the author with Zhu [51], [52]. Let S = S(g) (depending on the

metric g) be the open and dense subset of C∞(M) chosen as in [52, Prop. 0.2].

More precisely, S(g) consists of all Morse functions h such that the zero set

Σ0 = {h = 0} is a smooth closed embedded hypersurface, and the mean curva-

ture of Σ0 vanishes to at most finite order. A hypersurface is almost embedded

(sometime also called strongly Alexandrov embedded) if it locally decomposes

into smooth embedded sheets that touch but do not cross. By [52, Th. 3.11],

any almost embedded hypersurface of prescribed mean curvature h ∈ S has

touching set (n− 1)-rectifiable, and no component is minimal.

Notation. We collect some notions. We refer to [36] and [31, §2.1] for

further materials in geometric measure theory.

Let (Mn+1, g) denote a closed, oriented, smooth Riemannian manifold of

dimension 3 ≤ (n+1) ≤ 7. Assume that (M, g) is embedded in some RL, L ∈ N.

Br(p) denotes the geodesic ball of (M, g). We denote by Hk the k-dimensional

Hausdorff measure; Ik(M) (or Ik(M,Z2)) the space of k-dimensional integral

(or mod 2) currents in RL with support in M ; Zk(M) (or Zk(M,Z2)) the space

of integral (or mod 2) currents T ∈ Ik(M) with ∂T = 0; Vk(M) the closure,

in the weak topology, of the space of k-dimensional rectifiable varifolds in RL
with support in M ; Gk(M) the Grassmannian bundle of un-oriented k-planes

over M ; F and M respectively the flat norm [36, §31] and mass norm [36,

26.4] on Ik(M); F the varifold F-metric on Vk(M) and currents F-metric on

Ik(M) or Ik(M,Z2), [31, 2.1(19)(20)]; C(M) or C(U) the space of sets Ω ⊂M
or Ω ⊂ U ⊂ M with finite perimeter (Caccioppoli sets), [36, §14][14, §1.6];

and X(M) or X(U) the space of smooth vector fields in M or supported in

U . ∂Ω denotes the (reduced)-boundary of [[Ω]] as an integral current, and ν∂Ω

denotes the outward pointing unit normal of ∂Ω, [36, 14.2].
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We also utilize the following definitions:

(a) Given T ∈ Ik(M), |T | and ‖T‖ denote respectively the integral varifold

and Radon measure in M associated with T ;

(b) Given c > 0, a varifold V ∈ Vk(M) is said to have c-bounded first variation

in an open subset U ⊂M , if

|δV (X)| ≤ c
∫
M
|X|dµV for any X ∈ X(U);

here the first variation of V alongX is δV (X)=
∫
Gk(M) divSX(x)dV (x, S),

[36, §39];

(c) Given a smooth immersed, closed, orientable hypersurface Σ in M , or a

set Ω ∈ C(M) with finite perimeter, [[Σ]], [[Ω]] denote the correspond-

ing integral currents with the natural orientation, and [Σ] denotes the

corresponding integer-multiplicity varifold.

As noted by Marques-Neves [29, §5], C(M) is identified with In+1(M,Z2).

In particular, the flat F-norm and the mass M-norm are the same on C(M).

Given Ω1,Ω2 ∈ C(M), the F-distance between them is:

F(Ω1,Ω2) = F(Ω1 − Ω2) + F(|∂Ω1|, |∂Ω2|).

Given Ω ∈ C(M), we will denote B
F
ε (Ω) = {Ω′ ∈ C(M) : F(Ω′,Ω) ≤ ε}.

We are interested in the following weighted area functional defined on

C(M). Given h : M → R, define the Ah-functional on C(M) as

(1.1) Ah(Ω) = Hn(∂Ω)−
∫

Ω
h dHn+1.

The first variation formula for Ah along X ∈ X(M) is (see [36, 16.2])

(1.2) δAh|Ω(X) =

∫
∂Ω
div∂ΩXdµ∂Ω −

∫
∂Ω
h〈X, ν〉 dµ∂Ω,

where ν = ν∂Ω is the outward unit normal on ∂Ω.

When the boundary ∂Ω = Σ is a smooth immersed hypersurface, we have

divΣX = H〈X, ν〉,

where H is the mean curvature of Σ with respect to ν; if Ω is a critical point

of Ah, then (1.2) directly implies that Σ = ∂Ω must have mean curvature

H = h|Σ. In this case, we can calculate the second variation formula for Ah
along normal vector fields X ∈ X(M) such that X = ϕν along ∂Ω = Σ where

ϕ ∈ C∞(Σ), [4, Prop. 2.5],

δ2Ah|Ω(X,X) = IIΣ(ϕ,ϕ)

=

∫
Σ

Ä
|∇ϕ|2 −

Ä
RicM (ν, ν) + |AΣ|2 + ∂νh

ä
ϕ2
ä
dµΣ.

(1.3)
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In the above formula, ∇ϕ is the gradient of ϕ on Σ; RicM is the Ricci curvature

of M ; AΣ is the second fundamental form of Σ.

1.1. Min-max construction for (X,Z)-homotopy class. In this part, we

describe the setup for min-max theory for PMC hypersurfaces associated with

multiple parameter families in C(M).

Let Xk be a cubical complex of dimension k ∈ N in some Im = [0, 1]m

and Z ⊂ X be a cubical subcomplex.

Let Φ0 : X → (C(M),F) be a continuous map (with respect to the F-

topology on C(M)). We let Π be the set of all sequences of continuous (in

F-topology) maps {Φi : X → C(M)}i∈N such that

(1) each Φi is homotopic to Φ0 in the flat topology on C(M), and

(2) there exist homotopy maps {Ψi : [0, 1]×X → C(M)}i∈N which are contin-

uous in the flat topology, Ψi(0, ·) = Φi, Ψi(1, ·) = Φ0, and satisfy

(1.4) lim sup
i→∞

sup{F(Ψi(t, x),Φ0(x)) : t ∈ [0, 1], x ∈ Z} = 0.

Note that a sequence {Φi}i∈N with Φi = Φ0 for all i ∈ N belongs to Π.

Definition 1.1. Given a pair (X,Z) and Φ0 as above, {Φi}i∈N is called a

(X,Z)-homotopy sequence of mappings into C(M), and Π is called the (X,Z)-

homotopy class of Φ0.

Remark 1.2. Π can be viewed as the relative homotopy class for Φ0 in

(C(M),Φ0|Z). However, we cannot fix the values Φi|Z to be exactly Φ0|Z . In

fact, in the later discretization/interpolation process, we will allow Φi|Z to

deviate slightly from Φ0|Z ; but the deviations will converge to zero as i→∞.

Definition 1.3. The h-width of Π is defined by:

Lh = Lh(Π) = inf
{Φi}∈Π

lim sup
i→∞

sup
x∈X
{Ah(Φi(x))}.

Definition 1.4. A sequence {Φi}i∈N ∈ Π is called a min-max sequence if

Lh(Φi) := sup
x∈X
Ah(Φi(x))

satisfies Lh({Φi}) := lim supi→∞ Lh(Φi) = Lh(Π).

Lemma 1.5. Given Φ0 and Π, there exists a min-max sequence.

Proof. Take a sequence {{Φα
i }i∈N}α∈N in Π, such that

lim
α→∞

Lh({Φα
i }i∈N) = Lh(Π).
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Now we pick up a new sequence by a diagonalization process. Take a sequence

εα → 0. For each α, we pick iα ∈ N, such that

sup
t∈[0,1],x∈Z

F(Ψα
iα(t, x),Φ0(x)) < εα and

Lh({Φα
i })− εα ≤ sup

x∈X
Ah(Φα

iα(x)) ≤ Lh({Φα
i }) + εα,

where Ψα
iα

is the homotopy between Φα
iα

and Φ0 in the flat topology. Hence

the sequence {Φα
iα
}α∈N belongs to Π and is a min-max sequence. �

Definition 1.6. The image set of {Φi}i∈N is defined by

K({Φi}) = {V = lim
j→∞

|∂Φij (xj)| as varifolds : xj ∈ X}.

If {Φi}i∈N is a min-max sequence in Π, the critical set of {Φi} is defined by

C({Φi})
= {V = lim

j→∞
|∂Φij (xj)| as varifolds : with lim

j→∞
Ah(Φij (xj)) = Lh(Π)}.

Now we are ready to state the continuous version of min-max theory for

PMC hypersurfaces associated with a (X,Z)-homotopy class. It is a general-

ization of [52, Th. 4.8 and Proposition 7.3], and the proof is given in Section 1.4.

Theorem 1.7 (Min-max theorem). Let (Mn+1, g) be a closed Riemannian

manifold of dimension 3 ≤ (n + 1) ≤ 7, and h ∈ S(g) which satisfies
∫
M h ≥

0. Given a map Φ0 : X → (C(M),F) continuous in the F-topology and the

associated (X,Z)-homotopy class Π, suppose

(1.5) Lh(Π) > max
{

max
x∈Z
Ah(Φ0(x)), 0

}
.

Let {Φi}i∈N ∈ Π be a min-max sequence for Π. Then there exists V ∈ C({Φi})
induced by a nontrivial, smooth, closed, almost embedded hypersurface Σn ⊂M
of prescribed mean curvature h with multiplicity one.

Moreover, V = limj→∞ |∂Φij (xj)| for some {ij} ⊂ {i}, {xj} ⊂ X\Z , with

limj→∞Ah(Φij (xj)) = Lh(Π), and Φij (xj) converges in the F-topology to some

Ω ∈ C(M) such that Σ = ∂Ω where its mean curvature with respect to the unit

outer normal is h, and

Ah(Ω) = Lh(Π).

1.2. Pull-tight. Now we describe the pull-tight process in [52, §5]. Let

c = supM |h|, and Lc = 2Lh + cVol(M). Denote

Ac∞ = {V ∈ Vn(M) : ‖V ‖(M)

≤ Lc, V has c-bounded first variation, or V ∈ |∂Φ0|(Z)}.
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We can follow [51, §4] or [52, §5] to construct a continuous map:

H : [0, 1]× (C(M),F) ∩ {M(∂Ω) ≤ Lc} → (C(M),F) ∩ {M(∂Ω) ≤ Lc}

such that

(i) H(0,Ω) = Ω for all Ω;

(ii) H(t,Ω) = Ω if |∂Ω| ∈ Ac∞;

(iii) if |∂Ω| /∈ Ac∞,

Ah(H(1,Ω))−Ah(Ω) ≤ −L(F(|∂Ω|, Ac∞)) < 0;

here L : [0,∞)→ [0,∞) is a continuous function with L(0) = 0, L(t) > 0

when t > 0;

(iv) for every ε > 0, there exists δ > 0 such that

x ∈ Z, F(Ω,Φ0(x)) < δ =⇒ F(H(t,Ω),Φ0(x)) < ε for all t ∈ [0, 1];

this is a direct consequence of (ii) since |∂Φ0|(Z) ⊂ Ac∞.

Note that to construct H, the only modification of [52, §5.1] is to add |∂Φ0|(Z)

into the definition of Ac∞ as we want to fix the values assumed on Z in the

tightening process; all other steps in [52, §5.1] carry out the same way. In

particular, (using notions in [52, §5.1]), H(t,Ω) :=
(
Ψ|∂Ω|(t)

)
(Ω).

Lemma 1.8. Given a min-max sequence {Φ∗i }i∈N ∈ Π, we define Φi(x) =

H(1,Φ∗i (x)) for every x ∈ X . Then {Φi}i∈N is also a min-max sequence in

Π. Moreover, C({Φi}) ⊂ C({Φ∗i }) and every element of C({Φi}) either has

c-bounded first variation, or belongs to |∂Φ0|(Z).

Proof. By continuity of H, we know that Φi is homotopic to Φ∗i in the flat

topology. By (iv), {Ψi(t, x) = H(t,Φ∗i (x))} satisfies (1.4), and hence {Φi} ∈ Π.

By (ii)(iii), Ah(Φi(x)) ≤ Ah(Φ∗i (x)) for every x ∈ X, so {Φi} is also a min-

max sequence. Finally, given any V ∈ C({Φi}), then V = limj→∞ |∂Φij (xj)|
where limj→∞Ah(Φij (xj)) = Lh. Denote V ∗ = limj→∞ |∂Φ∗ij (xj)|. By (iii),

limj→∞F(|∂Φ∗ij (xj)|, A
c
∞) = 0 (as limj→∞Ah(Φij (xj)) = limj→∞Ah(Φ∗ij (xj))

= Lh), so V ∗ ∈ Ac∞. On the other hand,

V = lim
j→∞

|∂H(1,Φ∗ij (xj))| = H(1, lim
j→∞

|∂Φ∗ij (xj)|) = H(1, V ∗) = V ∗.

(Note that H is also well defined as a continuous map H : [0, 1] × {V ∈
Vn(M), ‖V ‖(M) ≤ Lc} → {V ∈ Vn(M), ‖V ‖(M) ≤ Lc}.) Hence C({Φi}) ⊂
C({Φ∗i }) and the proof is finished. �

Definition 1.9. Let c = supM |h|. Any min-max sequence {Φi}i∈N ∈ Π

such that every element of C({Φi}) has c-bounded first variation or belongs to

|∂Φ0|(Z) is called pulled-tight.
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1.3. Discretization and interpolation results. We record several discretiza-

tion and interpolation results developed by Marques-Neves [26, 28]. Though

these results were proven for sweepouts in Zn(M,Z) or Zn(M,Z2), they work

well for sweepouts in C(M). We will point out necessary modifications.

We refer to Appendix A for the notion of cubic complex structure on X.

We refer to [52, §4] for the notion of discrete sweepouts. Though all definitions

therein were made when X = [0, 1], there is no change for discrete sweepouts

on X.

Recall that given a map φ : X(k)0 → C(M), the fineness of φ is defined as

f(φ) = sup{F(φ(x)− φ(y))

+ M(∂φ(x)− ∂φ(y)) : x, y are adjacent vertices in X(k)0}.

Definition 1.10 (cf. [28, §3.7 ]). Given a continuous (in the flat topology)

map Φ : X → C(M), we say that Φ has no concentration of mass if

lim
r→0

sup{‖∂Φ(x)‖(Br(p)), p ∈M,x ∈ X} = 0.

The purpose of the next theorem is to construct discrete maps out of a

continuous map in flat topology.

Theorem 1.11. Let Φ : X → C(M) be a continuous map in the flat topol-

ogy that has no concentration of mass, and supx∈X M(∂Φ(x)) < +∞. Assume

that Φ|Z is continuous under the F-topology. Then there exist a sequence of

maps

φi : X(ki)0 → C(M),

and a sequence of homotopy maps :

ψi : I(ki)0 ×X(ki)0 → C(M),

with ki < ki+1, ψi(0, ·) = φi−1 ◦ n(ki, ki−1), ψi(1, ·) = φi, and a sequence of

numbers {δi}i∈N → 0 such that

(i) the fineness f(ψi) < δi;

(ii)

sup{F(ψi(t, x)− Φ(x)) : t ∈ I(ki)0, x ∈ X(ki)0} ≤ δi;
(iii) for some sequence li →∞, with li < ki

M(∂ψi(t, x)) ≤ sup{M(∂Φ(y)) : x, y ∈ α for some α ∈ X(li)}+ δi;

and this directly implies that

sup{M(∂φi(x)) : x ∈ X(k0)0} ≤ sup{M(∂Φ(x)) : x ∈ X}+ δi.

As Φ|Z is continuous in F-topology, we have from (iii) that for all t ∈
I(ki)0 and x ∈ Z(ki)0

M(∂ψi(t, x)) ≤M(∂Φ(x)) + ηi
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with ηi → 0 as i → ∞. Applying [26, Lemma 4.1] with S = Φ(Z), we get by

(ii) that

(iv)

sup{F(ψi(t, x),Φ(x)) : t ∈ I(ki)0, x ∈ Z(ki)0} → 0, as i→∞.

Now given h ∈ C∞(M), denoting c = supM |h|, then we have from (ii)(iii)

that

(v)

Ah(φi(x)) ≤ sup{Ah(Φ(y)) : α ∈ X(li), x, y ∈ α}+ (1 + c)δi;

and hence

sup{Ah(φi(x)) : x ∈ X(ki)0} ≤ sup{Ah(Φ(x)) : x ∈ X}+ (1 + c)δi.

Proof. [26, Th. 13.1] and [28, Th. 3.9] proved this result when C(M) is

replaced by Zn(M) and Zn(M,Z2) respectively. The adaption to C(M) was

done in [49, Th. 5.1] when X = [0, 1] and it is the same for general X. �

The purpose of the next theorem is to construct a continuous map in the

F-topology out of a discrete map with small fineness.

Theorem 1.12. There exist some positive constants C0 = C0(M,m) and

δ0 = δ0(M,m) so that if Y is a cubical subcomplex of I(m, k) and

φ : Y0 → C(M)

has f(φ) < δ0, then there exists a map

Φ : Y → C(M)

continuous in the F-topology and satisfying

(i) Φ(x) = φ(x) for all x ∈ Y0;

(ii) if α is some j-cell in Y , then Φ restricted to α depends only on the values

of φ restricted on the vertices of α;

(iii)

sup{F(Φ(x),Φ(y)) : x, y lie in a common cell of Y } ≤ C0f(φ).

Proof. This result was proved in [28, Th. 3.10] for when C(M) is replaced

by Zn(M,Z2). We can use the double cover ∂ : C(M) → Zn(M,Z2) (see [29,

§5]) to lift the extension from Zn(M,Z2) to C(M).

Let C0 = C0(M,m) and δ0 = δ0(M) be given in [28, Th. 3.10]. Denote

φ̃ = ∂ ◦ φ : Y0 → Zn(M,Z2) as the projection of φ into Zn(M,Z2). Then

f(φ̃) < δ0, so by [28, Th. 3.10], there exists a map:

Φ̃ : Y → Zn(M,M,Z2)

continuous in the M-topology and satisfying
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(a) Φ̃(x) = φ̃(x) for all x ∈ Y0;

b) if α is some j-cell in Y , then Φ̃ restricted to α depends only on the values

of φ̃ restricted on the vertices of α;

(c) sup{M(Φ̃(x), Φ̃(y)) : x, y lie in a common cell of Y } ≤ C0f(φ).

By [29, Claim 5.2], Φ̃ can be uniquely lifted to a continuous map Φ : Y →
C(M) such that ∂ ◦ Φ = Φ̃ and Φ(x) = φ(x) for all x ∈ Y0. In fact, given a

j-cell α and a fixed vertex x0 ∈ α0, there is a unique lift Φ : α → C(M) such

that Φ(x0) = φ(x0). By the construction in [29, Claim 5.2], F(Φ(x),Φ(x0)) =

F(Φ̃(x), Φ̃(x0)) ≤ C0f(φ) for every x ∈ α, so we know by the Constancy

Theorem that Φ(x) = φ(x) for each vertex x ∈ α0 when δ0 is small enough.

Thus Φ can be obtained by lifting Φ̃ in each cell of Y .

Since ∂Φ(x) and Φ̃(x) represent the same varifold, Φ is continuous in the

F-topology. So we have proved (i) and (ii).

For (iii), we have

F(Φ(x),Φ(y)) = F(Φ(x),Φ(y)) + F(|∂Φ(x)|, |∂Φ(y)|) ≤ 2C0f(φ). �

Remark 1.13. Note that in general the mass of ∂Φ(x)− ∂Φ(y) as element

in Zn(M) may not be equal to that of Φ̃(x)− Φ̃(y), so we may not be able to

prove the M-continuity for Φ.

Following [28, 3.10], we call the map Φ given in Theorem 1.12 the Almgren

extension of φ. We will record a few properties concerning the homotopy

equivalence of Almgren’s extensions.

Before stating the next result, we first recall the notion of homotopic

equivalence between discrete sweepouts. Let Y be a cubical subcomplex of

I(m, k). Given two discrete maps φi : Y (li)0 → C(M), we say φ1 is homotopic

to φ2 with fineness less than η, if there exist l ∈ N, l > l1, l2 and a map

ψ : I(1, k + l)0 × Y (l)0 → C(M)

with fineness f(ψ) < η and such that

ψ([i− 1], y) = φi(n(k + l, k + li)(y)), i = 1, 2, y ∈ Y (l)0.

The following result is analogous to [28, Prop. 3.11]. We provide a slightly

different proof.

Proposition 1.14. With φ1, φ2 as above, if η < δ0(M,m) in Theo-

rem 1.12, then the Almgren extensions

Φ1,Φ2 : Y → C(M)

of φ1, φ2, respectively, are homotopic to each other in the F-topology.

Proof. By Theorem 1.12, the Almgren extension Ψ : I×Y → C(M) of ψ is

continuous in F-topology and is a homotopy between the Almgren extensions
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Φ′1,Φ
′
2 of φ′1, φ

′
2 : Y (l)0 → C(M) (given by φ′i(y) = ψ([i − 1], y)). Note that

Φ′i is just a reparametrization of the Almgren extension Φi of φi for i = 1, 2

respectively, so Φi is homotopic to Φ′i in the F-topology. Now let us describe

the reparametrization map. Given an arbitrary cell α and k ∈ N, we take αc
to be the center cell of α(k). We can define a map nα,k : α → α such that it

maps αc to α linearly, and for each x ∈ α\αc, if we denote by xc the nearest

point projection of x to ∂αc then nα,k maps x to nα,k(xc). This map dilates

αc to α and compresses α\αc to the boundary ∂α, and it is homotopic to the

identity map. With this notion Φ′i|α = Φi|α ◦ nα,l−li on each cell α ∈ Y (li).

Hence we finish the proof. �

The following result is the counterpart of [28, Cor. 3.12].

Proposition 1.15. Let {φi}i∈N and {ψi}i∈N be given by Theorem 1.11

applied to some Φ therein. Assume that Φ is continuous in the F-topology on

X . Then the Almgren extension Φi is homotopic to Φ in the F-topology for

sufficiently large i.

In particular, for i large enough, there exist homotopy maps Ψi : [0, 1] ×
X → C(M) continuous in the F-topology, Ψi(0, ·) = Φi, Ψi(1, ·) = Φ, and

lim sup
i→∞

sup
t∈[0,1],x∈X

F(Ψi(t, x),Φ(x))→ 0.

Therefore, for given h ∈ C∞(M), we have

lim sup
i→∞

sup
x∈X
Ah(Φi(x)) ≤ sup

x∈X
Ah(Φ(x)).

Proof. For i large enough such that δi < δ0 in Theorem 1.12, we let

Ψ̄i : I × X → C(M) be the Almgren extensions of ψi. By Theorem 1.11(iv)

(with Z = X) and Theorem 1.12(iii), we know that

(1.6) lim sup
i→∞

sup
t∈[0,1],x∈X

F(Ψ̄i(t, x),Φ(x))→ 0.

As in the proof of the above Proposition, we can amend Ψ̄i with the repara-

metrization maps associated with the two pairs (Φ′i−1,Φi−1) and (Φ′i,Φi), and

abuse the notation and still denote them by Ψ̄i. Then Ψ̄i is a continuous (in the

F-topology) homotopy between Φi−1 and Φi. Note that the reparametrizations

are done is small cells with sizes converging to zero, so (1.6) still holds true for

the amended maps by Theorem 1.12(iii) again. For given i large enough, to

construct the homotopy from Φi to Φ, we can just let Ψi : [0,∞]×X → C(M)

be the gluing of all {Ψ̄j}j≥i. Note that by (1.6), Ψi(∞, ·) = Φ (we can identify

[0,∞] with [0, 1] in the definition of Ψi), and (1.6) holds true with Ψ̄i replaced

by Ψi. Hence we finish the proof. �
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1.4. Proof of the min-max Theorem. One key ingredient in the Almgren-

Pitts theory to prove regularity of min-max varifold is to introduce the “almost

minimizing” concept. Given h ∈ S(g), we refer to [52, §6] for the detailed no-

tion of h-almost minimizing varifold and related properties. The existence of

almost minimizing varifolds follows from a combinatorial argument of Pitts

[31, p. 165-page 174] inspired by early work of Almgren [3]. Pitts’s argu-

ment works well in the construction of min-max PMC hypersurfaces; see [52,

Th. 6.4]. Marques-Neves has generalized Pitts’s combinatorial argument to a

more general form in [28, 2.12], and we can adapt their result to the PMC

setting with no change. We now describe the adaption.

Consider a sequence of cubical subcomplexes Yi of I(m, ki) with ki →∞,

and a sequence S = {ϕi}i∈N of maps

ϕi : (Yi)0 → C(M)

with fineness f(ϕi) = δi converging to zero. Define

Lh(S) = lim sup
i→∞

sup{Ah(ϕi(y)) : y ∈ (Yi)0},

K(S) = {V = lim
j→∞

|∂ϕij (yj)| as varifolds : yj ∈ (Yij )0},

and

C(S) = {V = lim
j→∞

|∂ϕij (yj)| as varifolds : with lim
j→∞

Ah(ϕij (yj)) = Lh(S)}.

We say that an element V ∈ C(S) is h-almost minimizing in small annuli

with respect to S (cf. [52, Def. 6.3]), if for any p ∈M and any small enough an-

nulus A = Ar1,r2(p) centered at p with radii 0 < r1 < r2, there exist sequences

{ij}j∈N ⊂ {i}i∈N and {yj : yj ∈ (Yij )0}j∈N, such that V = limj→∞ |∂ϕij (yj)|,
limj→∞Ah(ϕij (yj)) = Lh(S), and ϕij (yj) ∈ A h(A; εi, δi;M) (see [52, Def. 6.1])

for some εi, δi → 0. The last condition is usually called (εi, δi, h)-almost min-

imizing. Note that by [52, Prop. 6.5], V is also h-almost minimizing in small

annuli in the sense of [52, Def. 6.3].

The following is a variant of [28, Th. 2.13] and [31, Th. 4.10].

Theorem 1.16. If no element V ∈ C(S) is h-almost minimizing in small

annuli with respect to S, then there exists a sequence S̃ = {ϕ̃i} of maps

ϕ̃i : Yi(li)0 → C(M),

for some li ∈ N, such that

• ϕ̃i is homotopic to ϕi with fineness converging to zero as i→∞;

• Lh(S̃) < Lh(S).

Proof. By the assumption of the theorem, for each V ∈ C(S), there exists

a p ∈M , such that for any r̃ > 0, there exist r, s> 0, with r̃ > r+2s > r−2s > 0

and ε > 0, such that, if Ah(ϕi(y)) > Lh(S) − ε and F(|∂ϕi(y)|, V ) < ε, then
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ϕi(y) /∈ A h(Ar−2s,r+2s(p); ε, δ;M) for any δ > 0. As in the proof of [31,

Th. 4.10], we denote c = (3m)3m . By the compactness of C(S), we can find

a uniform ε > 0 and I ∈ N, and finitely many points p1, . . . , pν ∈ M , and

for each pj , we can find c concentric annuli Aj,1 ⊃⊃ · · · ⊃⊃ Aj,c (centered at

pj), such that, if Ah(ϕi(y)) > Lh(S) − ε and i > I, then there exists some

j ∈ {1, . . . , ν}, so that ϕi(y) /∈ A h(Aj,a; ε, δ;M) for all a ∈ {1, . . . , c} and for

any δ > 0. From here the construction in [31, Page 165-174] can be applied to

S so as to produce the desired S̃. �

Now we are ready to prove Theorem 1.7 following closely that of [27,

Th. 3.8]. The only additional thing is to keep track of the volume term∫
Ω hdH

n+1 in Ah(Ω) and the values of maps assumed on Z.

Proof of Theorem 1.7. Let {Φi}i∈N be a pulled-tight min-max sequence

for Π. By the assumption
∫
M h ≥ 0, Lh(Π) > 0, and [52, Lemma 4.11], every

element in C({Φi}) is nontrivial. Given Φi : X → C(M), it has no concentra-

tion of mass as it is continuous in the F-topology, so applying Theorem 1.11

gives a sequence of maps:

φji : X(kji )0 → C(M),

with kji < kj+1
i and a sequence of positive {δji }j∈N → 0, satisfying (i)· · · (v) in

Theorem 1.11.

As Φi is continuous in the F-topology, by the same reasoning as Theo-

rem 1.11(iii)(iv), we further have that for every x ∈ X(kji )0,

M(∂φji (x)) ≤M(∂Φi(x)) + ηji

with ηji → 0 as j →∞, and

sup{F(φji (x),Φi(x)) : x ∈ X(kji )0} → 0, as j →∞.

Now choose j(i)→∞ as i→∞, such that ϕi = φ
j(i)
i : X(k

j(i)
i )0 → C(M)

satisfies

• sup{F(ϕi(x),Φi(x)) : x ∈ X(k
j(i)
i )0} ≤ ai with ai → 0 as i→∞;

• sup{F(Φi(x),Φi(y)) : x, y ∈ α, α ∈ X(k
j(i)
i )} ≤ ai;

• the fineness f(ϕi)→ 0 as i→∞;

• the Almgren extensions Φ
j(i)
i : X → C(M) is homotopic to Φi in the F-

topology with homotopy maps Ψ
j(i)
i , and

lim sup
i→∞

sup{F(Ψ
j(i)
i (t, x),Φi(x)) : t ∈ [0, 1], x ∈ X} = 0,

and

lim sup
i→∞

sup
x∈X
Ah(Φ

j(i)
i (x)) ≤ lim sup

i→∞
sup
x∈X
Ah(Φi(x)) = Lh(Π),

by Proposition 1.15.
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Therefore, if S = {ϕi}, then Lh(S) = Lh({Φi}) and C(S) = C({Φi}). By

Theorem 1.16, if no element V ∈ C(S) is h-almost minimizing in small annuli

with respect to S, we can find a sequence S̃ = {ϕ̃i} of maps

ϕ̃i : X(k
j(i)
i + li)0 → C(M)

such that

• ϕ̃i is homotopic to ϕi with fineness converging to zero as i→∞;

• Lh(S̃) < Lh(S).

By Proposition 1.14, the Almgren extensions of ϕi, ϕ̃i:

Φ
j(i)
i , Φ̃i : X → C(M),

respectively, are homotopic to each other in the F-topology for i large enough,

so Φ̃i is homotopic to Φi in the F-topology.

By assumptions (1.5) and (1.4), for i large enough, ϕ̃i is the identical to

ϕi ◦ n(k
j(i)
i + li, k

j(i)
i ) near Z(k

j(i)
i + li)0; indeed, the deformation process in

Theorem 1.16 was only made to those ϕi(x) with Ah(ϕi(x)) close to Lh(S).

Therefore, the homotopy maps Ψ̃i between Φ
j(i)
i and Φ̃i produced by Proposi-

tion 1.14 when restricted to Z are just the reparametrization maps described

therein. Hence

lim sup
i→∞

sup{F(Ψ̃i(t, x),Φ
j(i)
i (x)) : t ∈ [0, 1], x ∈ Z} = 0.

Therefore, {Φ̃i}i∈N ∈ Π. However, by Theorem 1.12

lim sup
i→∞

sup{Ah(Φ̃i(x)) : x ∈ X} ≤ Lh(S̃) < Lh(S) = Lh(Π).

This is a contradiction. So some V ∈ C(S) = C({Φi}) is h-almost minimizing

in small annuli with respect to S, and hence is h-almost minimizing in small

annuli in the sense of [52, Def. 6.3].

To finish the proof, we need to show that V has c-bounded first variation,

and then [52, Th. 7.1 and Prop. 7.3] give the regularity of V and the existence

of Ω. Indeed, by Definition 1.9, V either has c-bounded first variation or

belongs to |∂Φ0|(Z). Being h-almost minimizing in small annuli implies that

V has c-bounded first variation away from finitely many points by [52, Lemma

6.2]. If V ∈ |∂Φ0|(Z), then the proof of [19, Th. 4.1] implies that ‖V ‖ has at

most rn−
1
2 -volume growth near these bad points, so the first variation extends

across these points, and hence V has c-bounded first variation in M . (Note

that even if V ∈ |∂Φ0|(Z), the associated Ω does not belong to Φ0(Z), as Ω

may be equal to M\Φ0(z) for some z ∈ Z.) So we finish the proof. �
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2. Compactness of PMC hypersurfaces with bounded Morse index

Now we present an adaption of Sharp’s compactness theorem [35] (for

minimal hypersurfaces) to the PMC setting and necessary modifications of the

proof. Given a closed Riemannian manifold (Mn+1, g) and h ∈ S(g), denote

by Ph the class of smooth, closed, almost embedded hypersurfaces Σ ⊂ M ,

such that Σ is represented as the boundary of some open subset Ω ⊂ M (in

the sense of current), and the mean curvature of Σ with respect to the outer

normal of Ω is prescribed by h, i.e.,

HΣ = h|Σ.

In the following we will sometime abuse the notation and identify Σ with Ω.

Note that when h ∈ S(g), the min-max PMC hypersurfaces produced in

Theorem 1.7 satisfy the above requirements. Indeed, such Σ = ∂Ω is a critical

point of the weighted Ah functional (1.1):

Ah(Ω) = Area(Σ)−
∫

Ω
h dHn+1.

The second variation formula for Ah along normal vector field X = ϕν ∈ X(M)

is given by

δ2Ah|Ω(X,X) =

∫
Σ

(|∇ϕ|2 − (RicM (ν, ν) + |AΣ|2 + ∂νh)ϕ2)dµΣ.

The classical Morse index for Σ is defined as the number of negative eigenvalues

of the the above quadratic form. However, since we will deal with hypersurfaces

with self-touching, a weaker version of index is needed. We adopt a concept

used by Marques-Neves [27, Def. 4.1]. As we will see, this weaker index works

well for proving both compactness theory and Morse index upper bound.

Definition 2.1. Given Σ ∈ Ph with Σ = ∂Ω, k ∈ N and ε ≥ 0, we say that

Σ is k-unstable in an ε-neighborhood if there exists 0 < c0 < 1 an a smooth

family {Fv}v∈Bk ⊂ Diff(M) with F0 = Id, F−v = F−1
v for all v ∈ B

k
(the

standard k-dimensional ball in Rk) such that, for any Ω′ ∈ B
F
2ε(Ω), the smooth

function

AhΩ′ : B
k → [0,∞), AhΩ′(v) = Ah(Fv(Ω

′))

satisfies

• AhΩ′ has a unique maximum at m(Ω′) ∈ Bk
c0/
√

10
(0);

• − 1
c0

Id ≤ D2AhΩ′(u) ≤ −c0 Id for all u ∈ Bk
.

Since Σ is a critical point of Ah, necessarily m(Ω) = 0.
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Remark 2.2. If a sequence Ωi converges to Ω in the F-topology, then AhΩi
tends to AhΩ in the smooth topology. Thus if a Σ ∈ Ph is k-unstable in a

0-neighborhood, then it is k-unstable in an ε-neighborhood for some ε > 0.

Definition 2.3. Given a Σ ∈ Ph and k ∈ N, we say that its Morse index

is bounded (from above) by k, denoted as

index(Σ) ≤ k,

if it is not j-unstable in 0-neighborhood for any j ≥ k + 1.

All the above concepts can be localized to an open subset U ⊂M by using

Diff(U) in place of Diff(M). If Σ has index equal to 0 in U , we say Σ is weakly

stable in U .

Proposition 2.4. If Σ ∈ Ph is smoothly embedded with no self-touching,

then Σ is k-unstable (in 0-neighborhood) if and only if its classical Morse index

is ≥ k.

Proof. The proof is the same as [27, Prop. 4.3]. �

We have the following curvature estimates as a variant of [52, Th. 3.6]

(with relatively weaker stability assumptions).

Theorem 2.5 (Curvature estimates for weakly stable PMC). Let 3 ≤
(n+ 1) ≤ 7, and let U ⊂M be an open subset. Let Σ ∈ Ph be weakly stable in

U with Area(Σ) ≤ C . Then there exists C1 depending only on n,M, ‖h‖C3 , C ,

such that

|AΣ|2(x) ≤ C1

dist2
M (x, ∂U)

for all x ∈ Σ.

Proof. The curvature estimates follow from standard blowup arguments

together with the Bernstein Theorem [34, Th. 2] and [33, Th. 3]. In particular,

being weakly stable in U means that for any ambient vector field X ∈ X(U)

that generates the flow φXt , we have

(2.1)
d2

dt2

∣∣∣
t=0
Ah(φXt (Ω)) ≥ 0.

Assume the conclusion is false. Then there exists a sequence of weakly stable

hypersurfaces {Σi}i∈N with prescribing functions {hi}i∈N satisfying uniform

bounds, but supU dist2
M (·, ∂U)|AΣi |2(·)→∞. By the standard blowup process

(cf. [41]), one can take a sequence of rescalings of Σi that converges locally in

C3,α and graphically to a non-flat minimal hypersurface Σ∞ in Rn+1. Note that

the rescalings of {hi} converges to 0 locally uniformly in C3. By the almost

embedded assumption and the maximum principle for minimal hypersurfaces

([8]), Σ∞ is embedded and hence is two-sided. By the classical monotonicity

formula and area upper bound assumption on {Σi}, Σ∞ has polynomial volume
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growth. The key observation is that (2.1) is preserved under locally C3,α

convergence, and hence Σ∞ is a stable minimal hypersurface. Therefore, it has

to be flat by the Bernstein Theorem, but this is a contradiction. �

Given h ∈ S(g), 0 < Λ ∈ R and I ∈ N, let

Ph(Λ, I) := {Σ ∈ Ph : Area(Σ) ≤ Λ, index(Σ) ≤ I}.

Theorem 2.6 (Compactness for PMCs with bounded index). Let (M, g)

be a closed Riemannian manifold of dimension 3 ≤ (n+ 1) ≤ 7. Assume that

{hk}k∈N is a sequence of smooth functions in S(g) such that limk→∞ hk = h∞
in smooth topology, where h∞ ∈ S(g) or h∞ ≡ 0. Let {Σk}k∈N be a sequence

of hypersurfaces such that Σk ∈ Phk(Λ, I) for some fixed Λ > 0 and I ∈ N.

Then,

(i) Up to a subsequence, there exists a smooth, closed, almost embedded hy-

persurface Σ∞ with prescribed mean curvature h∞, such that Σk → Σ∞
(possibly with integer multiplicity) in the varifold sense, and hence also

in the Hausdorff distance by monotonicity formula.

(ii) There exists a finite set of points Y ⊂ M with #Y ≤ I , such that the

convergence of Σk → Σ∞ is locally smooth and graphical on Σ∞ \ Y .

(iii) If h∞ ∈ S(g), then the multiplicity of Σ∞ is 1, and Σ∞ ∈ Ph∞(Λ, I).

(iv) Assuming Σk 6= Σ∞ eventually and hk = h∞ = h ∈ S(g) for all k such

that every Σ ∈ Ph is properly embedded with no self-touching, then Y = ∅,
and the nullity of Σ∞ with respect to δ2Ah is ≥ 1.

(v) If h∞ ≡ 0, then the classical Morse index of Σ∞ satisfies index(Σ∞) ≤ I
(without counting multiplicity).

Remark 2.7. Here we choose to only present the proof when h∞ ∈ S(g)

or h∞ ≡ 0. The results also hold true for arbitrary h∞ ∈ C∞(M), and details

will appear elsewhere.

Proof. The proof follows in essentially the same way as [35, Th. 2.3] once

we use Theorem 2.5 to replace [35, Th. 2.1]; we will provide necessary modifi-

cations.

Part 1. We first have the following variant of [35, Lemma 3.1]. Given any

collection of I+1 pairwise disjoint open sets {Ui}I+1
i=1 , we have that Σk (we drop

the sub-index k in this paragraph) is weakly stable in Ui for some 1 ≤ i ≤ I+1.

Indeed, suppose this is false. Then Σ = ∂Ω is at least 1-unstable in each Ui,

and hence there exist ci ∈ (0, 1) and {F it }t∈[−1,1] ⊂ Diff(Ui) with F i−t = (F it )
−1,

such that − 1
ci
≤ d2

dt2
Ah(F it (Ω)) ≤ −ci. Now for v = (v1, . . . , vI+1) ∈ BI+1

, let

Fv(x) = FvI+1 ◦ · · · ◦ Fv1(x). Since {Ui} are pairwise disjoint, it is easy to see

that c0 = min{ci} and {Fv} give an (I + 1)-unstable pair for Σ, and hence is

a contradiction.
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This fact, together with Theorem 2.5, implies that (up to a subsequence)

Σk converges locally smoothly and graphically to an almost embedded hyper-

surface Σ∞ of prescribed mean curvature h∞ (possibly with integer multiplic-

ity) away from at most I points, which we denote by Y. Since as varifolds Σk

have uniformly bounded first variation, by Allard’s compactness theorem [1],

Σk also converges as varifolds to an integral varifold represented by Σ∞.

Now we prove that Σ∞ extends smoothly as an almost embedded hyper-

surface across the singular points Y; i.e., Y are removable. By the argument

in [35, Claim 2, p. 326], for each yi ∈ Y, there exists some ri > 0 such that

Σ∞ is weakly stable in Bri(yi)\{yi} in the following sense. Denote Ω∞ as the

weak limit of Ωk as Caccioppoli sets where Σk = ∂Ωk. If h∞ ∈ S(g), then by

the first paragraph in Part 2 below, Σ∞ = ∂Ω∞ away from Y, HΣ∞ = h∞|Σ∞ ,

and Ah∞(Σ∞) = Area(Σ∞) −
∫

Ω∞
h∞dHn+1; if h∞ ≡ 0, then Σ∞ is a min-

imal hypersurface and Ah∞(Σ∞) = Area(Σ∞). In both cases, we say that

Σ∞ is weakly stable in Bri(yi)\{yi} if for any X ∈ X(Bri(yi)\{yi}) with the

associated flow {φXt : t ∈ [−ε, ε]}, d2

dt2

∣∣
t=0
Ah∞(φXt (Σ∞)) ≥ 0. Note that if

this is not true for some X ∈ X(Bri(yi)\{yi}), as Ahk(φXt (Σk)) converges to

Ah∞(φXt (Σ∞)) smoothly as functions of t, then Σk is not weakly stable in

Bri(yi)\{yi} for k sufficiently large. Following [35, Claim 2, p. 326], we can

deduce the required stability property for Σ∞. Since Σ∞ has bounded first

variation, then by a classical removable singularity result (see Theorem B.1

when h∞ ∈ S(g), and [33] when h∞ ≡ 0), we get the smooth extension. Up to

here, we have finished proving (i) and (ii).

Part 2. If h∞ ∈ S(g), then [52, Th. 3.20] implies that Σ∞ has multiplicity

one and is the boundary of some open set Ω∞ (note that when h∞ ∈ S(g),

only case (2) of [52, Th. 3.20] will happen). In fact, fix a point p ∈ Σ∞ where

Σ∞ is properly embedded. If the limit Σ∞ has multiplicity ≥ 2, then for i

sufficiently large and inside a neighborhood of p, Σi consists of several sheets

with normal pointing to the same side of Σ∞, but this cannot happen when

Σi bounds a region Ωi. We refer to the proof of [52, Th. 3.20] for more details.

If index(Σ∞) > I, then there exist c0 ∈ (0, 1) and {Fv : v ∈ B
I+1} ⊂

Diff(M) such that − 1
c0

Id ≤ D2Ah∞(Fv(Ω∞)) ≤ −c0 Id for all v ∈ BI+1
. Since

Σk = ∂Ωk converges to Σ∞ smoothly away from finitely many points, we know

that Ωk converges to Ω∞ in the F-topology as Caccioppoli sets, and then the

sequence v 7→ Ahk(Fv(Ωk)) converges to v 7→ Ah∞(Fv(Ω∞)) smoothly as func-

tions on B
I+1

. Therefore, for k large enough, − 2
c0

Id ≤ D2Ahk(Fv(Ωk)) ≤
− c0

2 Id, so Σk is (I + 1)-unstable, which is a contradiction. This finishes the

proof of (iii).

Part 3. Assuming Σk 6= Σ∞ eventually and hk = h∞ = h ∈ S(g) such

that every element in Ph is properly embedded, we know Y = ∅ by multiplicity
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one convergence and the Allard regularity theorem [1]. Next we will produce

a Jacobi field for the second variation δ2Ah along Σ∞; this implies the nullity

is ≥ 1.

By (1.3), the Jacobi operator associated with δ2Ah along a PMC Σ ∈ Ph is

LhΣϕ = −4Σϕ−
(

RicM (ν, ν) + |AΣ|2 + ∂νh
)
ϕ.

The smooth graphical convergence of Σk → Σ implies that for k sufficiently

large, Σk can be written as a graph uk in the normal bundle of Σ∞, and uk → 0

uniformly in smooth topology. Subtracting the mean curvature operators be-

tween Σk and Σ∞, we get

h(x, uk)− h(x, 0) = HΣk −HΣ∞ = LΣ∞uk + o(uk),

where LΣ∞u = −4u−
(

RicM (ν, ν)+ |AΣ|2
)
u is the Jacobi operator for second

variation of area, and the second equation follows from [37] and [35, p. 331].

(Note that though the calculation in [35, p. 331] is done assuming h ≡ 0, it

does not depend on h.) The left-hand side equals to ∂νh(x, t(x)uk) · uk by the

mean value theorem. Let ũk = uk/‖uk‖L2(Σ∞) be the renormalizations, then

standard elliptic estimates imply that ũk converges smoothly to a nontrivial

ϕ ∈ C∞(Σ∞) such that ∂νh · ϕ = LΣ∞ϕ. This is the same as LhΣ∞ϕ = 0, so

we finish proving (iv).

Part 4. Assuming h∞ ≡ 0, then Σ∞ is an embedded minimal hypersur-

face. Assume without loss of generality that Σ∞ is connected with multiplicity

m ∈ N. Suppose the Morse index index(Σ∞) ≥ I + 1. Then by similar

argument as in (iii), we can deduce a contradiction. In particular, by [27,

Prop. 4.3], there exist c0 ∈ (0, 1) and {Fv : v ∈ BI+1} ⊂ Diff(M) such that

− 1
c0

Id ≤ D2 Area(Fv(Σ∞)) ≤ −c0 Id for all v ∈ BI+1
. Since Σk converges to

m · Σ∞ as varifolds, and since hk → 0 uniformly, we know that Ahk(Fv(Ωk))

converges to m ·Area(Fv(Σ∞)) smoothly as functions on B
I+1

. Therefore, for

k large enough, Ωk is (I + 1)-unstable, which is a contradiction. So we finish

proving (v). �

There is also a theorem analogous to the above one in the setting of

changing ambient metrics on M ; see [35, Th. A.6] for a similar result for

minimal hypersurfaces. The proof proceeds the same way when one realizes

that the constant C1 in Theorem 2.5 depends only on the ‖g‖C4 when g is

allowed to change.

Theorem 2.8. Let Mn+1 be a closed manifold of dimension 3≤(n+1)≤7,

and let {gk}k∈N be a sequence of metrics on M that converges smoothly to

some limit metric g. Let {hk}k∈N be a sequence of smooth functions with

hk ∈ S(gk) that converges smoothly to some limit h∞ ∈ S(g). Let {Σk}k∈N
be a sequence of hypersurfaces with Σk ∈ Phk(Λ, I) for some fixed Λ > 0 and
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I ∈ N. Then there exists a smooth, closed, almost embedded hypersurface Σ∞
with prescribing mean curvature h∞, such that all properties (i), (ii) and (iii)

in the above theorem are satisfied.

3. Morse index upper bound

In this part, we will establish Morse index upper bound for min-max PMC

hypersurfaces obtained in Theorem 1.7. We will follow closely the strategy of

Marques-Neves [27, Th. 1.2], where they proved Morse index upper bound for

min-max minimal hypersurfaces. Recall that the Morse index of an almost

embedded PMC hypersurface Σ is given in Definition 2.3.

Theorem 3.1. Let (Mn+1, g) be a closed Riemannian manifold of dimen-

sion 3 ≤ (n + 1) ≤ 7, and let h ∈ S(g), which satisfies
∫
M h ≥ 0. Given a k-

dimensional cubical complex X and a subcomplex Z ⊂ X , let Φ0 : X → C(M)

be a map continuous in the F-topology, and let Π be the associated (X,Z)-

homotopy class of Φ0. Suppose

(3.1) Lh(Π) > max
{

max
x∈Z
Ah(Φ0(x)), 0

}
.

Then there exists a nontrivial, smooth, closed, almost embedded hypersurface

Σn ⊂M , such that

• Σ is the boundary of some Ω ∈ C(M) where its mean curvature with respect

to the unit outer normal of Ω is h, i.e.,

HΣ = h|Σ;

• Ah(Ω) = Lh(Π);

• index(Σ) ≤ k.

3.1. Preliminary lemmas. Let h ∈ S(g). Assume that Σ0 = ∂Ω0 ∈ Ph
is k-unstable in an ε-neighborhood, ε > 0. Let {Fv}v∈Bk be the associated

smooth family given in Definition 2.1.

The first lemma is a counterpart of [27, Lemma 4.4].

Lemma 3.2. There exists η̄ = η̄(ε,Σ0, {Fv}) > 0, such that if Ω ∈ C(M)

with F(Ω,Ω0) ≥ ε satisfies

Ah(Fv(Ω)) ≤ Ah(Ω) + η̄

for some v ∈ Bk
, then F(Fv(Ω),Ω0) ≥ 2η̄.

Proof. Assume by contradiction that there exist Ωi, F(Ωi,Ω0)≥ε satisfy-

ing

Ah(Fvi(Ωi)) ≤ Ah(Ωi) +
1

i

for some vi ∈ B
k
, but F(Fvi(Ωi),Ω0) ≤ 2

i .
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Denote v = lim vi, and pass to the limit as i → ∞. Then Ωi → F−v(Ω0)

in F-metric, and Ah(Ω0) ≤ Ah(F−v(Ω0)), which implies that v = 0; hence

Ωi → Ω0 in the F-metric, which is a contradiction. �

For each Ω ∈ B
F
2ε(Ω0), consider the one-parameter flow {φΩ(·, t) : t ≥ 0}

⊂ Diff(B
k
) generated by the vector field

u→ −(1− |u|2)∇AhΩ(u), u ∈ Bk
.

When u ∈ Bk
is fixed, the function t→ AhΩ(φΩ(u, t)) is non-increasing.

The following lemma is a variant of [27, Lemma 4.5], and the proof is

recorded in Appendix C.

Lemma 3.3. For any δ < 1/4, there exists T = T (δ, ε,Ω0, {Fv}, c0) ≥ 0

such that for any Ω ∈ B
F
2ε(Ω0) and v ∈ Bk

with |v −m(Ω)| ≥ δ, we have

AhΩ(φΩ(v, T )) < AhΩ(0)− c0

10
and |φΩ(v, T )| > c0

4
.

3.2. Deformation theorem. Taking a min-max sequence {Φi}i∈N, we will

prove a deformation theorem as an adaption of [27, Th. 5.1] to our setting.

Recall that Ph denotes the class of smooth, closed, almost embedded hyper-

surface Σ ⊂ M represented as boundary Σ = ∂Ω, and of prescribed mean

curvature h.

Fix a σ > 0 such that Lh − supx∈Z Ah(Φ0(x)) > 2σ. Denote

Xi,σ = {x ∈ X, such that Ah(Φi(x)) ≥ Lh − σ}.

Note that when i is sufficiently large, Xi,σ ⊂ X\Z.

Now we present the deformation theorem, and the proof follows closely

that of [27, Th. 5.1]. Given two subsets A,B ⊂ C(M), we denote

F(A,B) := inf{F(ΩA,ΩB) : ΩA ∈ A,ΩB ∈ B}.

Theorem 3.4. Suppose that

(a) Σ = ∂Ω ∈ Ph is (k + 1)-unstable;

(b) K ⊂ C(M) is a subset, so that F({Ω},K) > 0 and F(Φi(Xi,σ),K) > 0 for

all i ≥ i0;

(c) Ah(Ω) = Lh.

Then there exist ε̄ > 0, j0 ∈ N, and another sequence {Ψi}i∈N, Ψi : X →
(C(M),F), so that

(i) Ψi is homotopic to Φi in the F-topology for all i ∈ N and Ψi|Z = Φi|Z
for i ≥ j0;

(ii) Lh({Ψi}) ≤ Lh;

(iii) F(Ψi(Xi,σ),B
F
ε̄ (Ω) ∪K) > 0 for all i ≥ j0.
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Proof. Denote d = F({Ω},K) > 0.

By (a), Σ is (k + 1)-unstable in some ε-neighborhood. Let {Fv}v∈Bk+1 ,

c0 be the associated family and constant as in Definition 2.1. By possibly

changing ε, {Fv}, c0, we can assume that

(3.2) inf{F(Fv(Ω
′),K), v ∈ Bk+1} > d

2
for all Ω′ ∈ B

F
2ε(Ω).

Let X(ki) be a sufficiently fine subdivision of X so that

F(Φi(x),Φi(y)) < δi

for any x, y belonging to the same cell in X(ki) with δi = min{2−(i+k+2), ε/4}.
We can also assume that

|m(Φi(x))−m(Φi(y))| < δi

for any x, y with F(Φi(x),Ω) ≤ 2ε, F(Φi(y),Ω) ≤ 2ε, and belonging to the

same cell in X(ki).

For η>0, let Ui,η be the union of all cells σ∈X(ki) so that F(Φi(x),Ω)<η

for all x ∈ σ. Then Ui,η is a subcomplex of X(ki). If a cell β /∈ Ui,η, then

F(Φi(x
′),Ω) ≥ η for some x′ ∈ β. Therefore, F(Φi(x),Ω) ≥ η−δi for all x ∈ β.

By (c) (after possibly shrinking ε), we can assume

Ui,2ε ⊂ Xi,σ.

For each i ∈ N and x ∈ Ui,2ε, we simply denote Ahi,x = AhΦi(x), mi(x) =

m(Φi(x)) and φi,x = φΦi(x). The function mi : Ui,2ε → B
k+1

is continuous,

and the two families {Ahi,x}x∈Ui,2ε , {φi,x}x∈Ui,2ε are continuous in x. Following

[27, 5.1] we can define a continuous map

Ĥi : Ui,2ε × [0, 1]→ Bk+1
1/2i

(0) so that Ĥi(x, 0) = 0 for all x ∈ Ui,2ε

and

(3.3) inf
x∈Ui,2ε

|Ĥi(x, 1)−mi(x)| ≥ ηi > 0 for some ηi > 0.

The construction here is the same so we omit details. The crucial ingredient

is the fact that Ui,2ε has dimension less than or equal to k while the image set

B
k+1

has dimension k + 1.

Let c : [0,∞)→ [0, 1] be a cutoff function that is non-increasing, is equal

to 1 in a neighborhood of [0, 3ε/2], and 0 in a neighborhood of [7ε/4,+∞).

For y /∈ Ui,2ε, F(Φi(y),Ω) ≥ 2ε− δi ≥ 7ε/4. Hence

c(F(Φi(y),Ω)) = 0 for all y /∈ Ui,2ε.

Consider the map Hi : X × [0, 1]→ Bk+1
2−i

(0) defined as

Hi(x, t) = Ĥi(x, c(F(Φi(x),Ω))t) if x ∈ Ui,2ε
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and

Hi(x, t) = 0 if x ∈ X\Ui,2ε.
Then Hi is continuous.

With ηi as given in (3.3), let Ti = T (ηi, ε,Ω, {Fv}, c0) ≥ 0 be given by

Lemma 3.3. Now we set Di : X → B
k+1

such that

Di(x) = φi,x(Hi(x, 1), c(F(Φi(x),Ω))Ti) if x ∈ Ui,2ε
and

Di(x) = 0 if x ∈ X\Ui,2ε.
Then Di is continuous.

Define

Ψi : X → C(M), Ψi(x) = FDi(x)(Φi(x)).

In particular,

Ψi(x) = Φi(x) if x ∈ X\Ui,2ε.
Hence Ψi|Z = Φi|Z for i sufficiently large.

Note that the map Di is homotopic to the zero map in B
k+1

, so Ψi is

homotopic to Φi in the F-topology for all i ∈ N. Thus far, we have proved (i).

Claim 1. Lh({Ψ}i∈N) ≤ Lh.

By the non-increasing property of t → Ahi,x(φi,x(u, t)), we have that for

all x ∈ X,

Ah(Ψi(x)) ≤ Ah(FHi(x,1)(Φi(x))).

Using the fact that Hi(x, 1) ∈ Bk+1
1/2i

(0) for all x ∈ X and that ‖Fv− Id ‖C2 → 0

uniformly as v → 0, we have that

(3.4) lim
i→∞

sup
x∈X

∣∣Ah(Φi(x))−Ah(FHi(x,1)(Φi(x)))
∣∣ = 0,

and this finishes proving Claim 1.

Claim 2. There exists ε̄ > 0, such that for all sufficiently large i,

F(Ψi(X),Ω) > ε̄.

There are three cases. If x ∈ X\Ui,2ε, then Ψi(x) = Φi(x) and so

F(Ψi(x),Ω) ≥ 7ε
4 .

If x ∈ Ui,2ε\Ui,5ε/4, then F(Φi(x),Ω) ≥ ε. The non-increasing property of

t→ Ahi,x(φi,x(u, t)) implies

Ah(Ψi(x)) = Ah(FDi(x)(Φi(x))) ≤ Ah(FHi(x,1)(Φi(x))).

From (3.4), we have that for i large enough,

Ah(FHi(x,1)(Φi(x))) ≤ Ah(Φi(x)) + η̄ for all x ∈ X,
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where η̄= η̄(ε,Ω, {Fv})>0 is given by Lemma 3.2. Combining the two inequal-

ities with Lemma 3.2 applied to Φi(x), v = Di(x), we get F(Ψi(x),Ω) ≥ 2η̄.

Finally when x ∈ Ui,5ε/4, c(F(Φi(x),Ω)) = 1. Hence by Lemma 3.3 (with

δ = ηi, Ω = Φi(x), v = Hi(x, 1)) we have

Ah(Ψi(x)) = Ahi,x(φi,x(Hi(x, 1), Ti)) < Ahi,x(0)− c0

10
= Ah(Φi(x))− c0

10
.

Note that there exists γ̄ = γ̄(Ω, c0) so that

Ah(Ω′) ≤ Ah(Ω)− c0

20
=⇒ F(Ω′,Ω) ≥ 2γ̄.

By assumption (c), we can choose i sufficiently large so that

sup
x∈X
Ah(Φi(x)) ≤ Ah(Ω) +

c0

20
.

So

Ah(Ψi(x)) ≤ Ah(Ω)− c0

20
.

This implies that F(Ψi(x),Ω) ≥ 2γ̄, and hence ends the proof of Claim 2.

Claim 3. For all i, F(Ψi(Xi,σ),K) > 0.

If x ∈ Xi,σ\Ui,2ε, then Ψi(x) = Φi(x) and so F(Ψi(Xi,σ\Ui,2ε),K) > 0. If

x ∈ Ui,2ε, then F(Φi(x),Ω) ≤ 2ε, and by (3.2) we have F(Ψi(x),K) ≥ d
2 . So

we finish proving Claim 3, and hence the theorem. �

3.3. Proof of Morse index upper bound. Let Mn+1 be a closed manifold

of dimension 3 ≤ (n+ 1) ≤ 7. A pair (g, h) consisting of a Riemannian metric

g and a smooth function h ∈ C∞(M) is called a good pair if

• h ∈ S(g), i.e., h is Morse and the zero set {h = 0} is a smooth embedded

hypersurface in M with mean curvature H vanishing to at most finite order;

and

• g is bumpy for Ph, i.e., every Σ ∈ Ph is properly embedded (no self-

touching), and is nondegenerate (nullity equal to zero).

Denote by S0 the class of smooth functions h ∈ C∞(M) such that h is

Morse and the zero set {h = 0} is a smooth embedded hypersurface. Note

that S0 is open and dense in C∞(M), and it is independent of the choice of a

metric (see [52, Prop. 3.8]).

Lemma 3.5. Given h ∈ S0, the set of Riemannian metrics g on M with

(g, h) as a good pair is generic in the Baire sense.

Proof. By the proof of [52, Prop. 3.8], we know that the set of metrics

g under which {h = 0} has mean curvature vanishing to at most finite order

is an open and sense subset. In particular, openness follows as small smooth

perturbations of g will bound the order of vanishing of H{h=0}. To show
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denseness,1 note that it is proved in [52, Prop. 3.8] that for any h ∈ S0 and

any metric g, one can first perturb g slightly so that {h = 0} is not a minimal

hypersurface. Then there exists a flow {Ft : t ∈ (−ε, ε)} ⊂ Diff(M) supported

near {h = 0}, such that the zero set of h◦(Ft)
−1 has mean curvature vanishing

to at most finite order for t > 0. That is to say, the zero set {h = 0} satisfies

the requirement for the pull-back metrics F ∗t g.

In a series of celebrated papers [42], [44], [45], White proved that for a

fixed h ∈ S0, the set of metrics under which all closed, simple immersed PMCs

are non-degenerate and self-transverse is generic in the Baire sense. In fact,

White proved in [42, §7] that the set of metrics under which all closed, simple

immersed CMC hypersurfaces are non-degenerate is generic, and the proof is

the same in a smooth neighborhood of an arbitrary pair (g, h) when h ∈ S(g),

hence the result follows as the set of g where h ∈ S(g) is open and dense. In

[45, Th. 33], White further proved self-transverse property for a generic set

of metrics. Our almost embedded hypersurfaces are simple immersed. So for

such generic metrics, almost embedded PMCs are properly embedded.

To finish the proof, we take the intersection of the two generic sets of

metrics, which is still generic in the Baire sense. �

The following theorem is a counterpart of [27, Th. 6.1], and the proof

follows closely. We remark that by Theorem 2.6(iv), if (g, h) is a good pair,

then there are only finitely many elements in Ph(Λ, I).

Theorem 3.6. Assume that (g, h) is a good pair, and let {Φi}i∈N be a

min-max sequence of Π such that Lh({Φi}i∈N) = Lh(Π) = Lh and (3.1) is

satisfied.

There exists a smooth, closed, properly embedded hypersurface Σ = ∂Ω ∈
C({Φi}i∈N) such that Σ ∈ Ph with

Lh(Π) = Ah(Ω) and index(Σ) ≤ k.

Proof. By the finiteness remark above, it suffices to show that, for every

r > 0, there is a Σ̃ = ∂Ω̃ ∈ Ph such that F([Σ̃],C({Φi}i∈N)) < r,

Lh(Π) = Ah(Ω̃) and index(Σ̃) ≤ k.

Denote by W the set of all Σ̃ = ∂Ω̃ ∈ Ph with Ah(Ω̃) = Lh and by W(r)

the set

{Σ ∈ W : F([Σ],C({Φi}i∈N)) ≥ r}.

1After this article was first posted, we noticed that denseness can also be proved by using

conformal deformation of metrics; cf. [21, Prop. 2.3]. Indeed, by arbitrarily small conformal

perturbation of the metric, we can make the mean curvature H{h=0} be a Morse function on

{h = 0}.
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Lemma 3.7. There exist i0∈N and ε̄0>0 such that F(Φi(X),W(r)) >ε̄0

for all i ≥ i0.

Proof. Suppose by contradiction for some subsequence {j} ⊂ {i} that we

have xj ∈ X and Σ̃j = ∂Ω̃j ∈ W(r) so that

lim
j→∞

F(Φj(xj), Ω̃j) = 0.

Since Ah(Ω̃j) ≡ Lh, we have limj→∞Ah(Φj(xj)) = Lh. Hence a subsequence

|∂Φj(xj)| will converge as varifolds to some V ∈ C({Φi}i∈N), which is a con-

tradiction to F(|∂Ω̃i|,C({Φi}i∈N)) ≥ r. �

Denote Wk+1 as the collection of elements in W with index greater than

or equal to (k+1). As (g, h) is a good pair, this set is countable by the remark

above the theorem, and we can writeWk+1\BF
ε̄0(W(r)) = {Σ1,Σ2, · · · }, where

Σi = ∂Ωi. Note that by possibly perturbing ε̄0, we can make sure Wk+1 ∩
∂B

F
ε̄0(W(r)) = ∅.

Using Theorem 3.4 (we can take Xi,σ to be X) with K = B
F
ε̄0(W(r)) and

Σ = Σ1, we find ε̄1 > 0, i1 ∈ N, and {Φ1
i }i∈N so that

• Φ1
i is homotopic to Φi in the F-topology for all i ∈ N and Φ1

i |Z = Φi|Z for

i ≥ i1;

• Lh({Φ1
i }i∈N) ≤ Lh;

• F(Φ1
i (X),B

F
ε̄1(Ω1) ∪B

F
ε̄0(W(r))) > 0 for i ≥ i1;

• no Ωj belongs to ∂B
F
ε̄1(Ω1).

We consider Σ2 now. If Ω2 /∈ B
F
ε̄1(Ω1), we apply Theorem 3.4 with K =

B
F
ε̄1(Ω1) ∪B

F
ε̄0(W(r)), Σ = Σ2, and find ε̄2 > 0, i2 ∈ N, and {Φ2

i }i∈N so that

• Φ2
i is homotopic to Φi in the F-topology for all i ∈ N and Φ2

i |Z = Φi|Z for

i ≥ i2;

• Lh({Φ2
i }i∈N) ≤ Lh;

• F(Φ2
i (X),B

F
ε̄1(Ω1) ∪B

F
ε̄2(Ω2) ∪B

F
ε̄0(W(r))) > 0 for i ≥ i2;

• no Ωj belongs to ∂B
F
ε̄1(Ω1) ∪ ∂BF

ε̄2(Ω2).

If F(Ω2,Ω1) < ε̄1, we skip it and repeat the construction with Σ3.

By induction there are two possibilities. We can find for all l ∈ N a

sequence {Φl
i}i∈N, ε̄l > 0, il ∈ N, and Σjl ∈ Wk+1\BF

ε̄0(W(r)) for some subse-

quences {jl} ⊂ N so that

• Φl
i is homotopic to Φi in the F-topology for all i ∈ N and Φl

i|Z = Φi|Z for

i ≥ il;
• Lh({Φl

i}i∈N) ≤ Lh;
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• F(Φl
i(X),∪lq=1B

F
ε̄q(Ωjq) ∪B

F
ε̄0(W(r))) > 0 for i ≥ il;

• {Ω1, . . . ,Ωl} ⊂ ∪lq=1B
F
ε̄q(Ωjq);

• no Ωj belongs to ∂B
F
ε̄q(Ωjq) for all q = 1, . . . , l.

Or the process ends in finitely many steps. That means we can find some

m ∈ N, a sequence {Φm
i }i∈N, ε̄1, . . . , ε̄m > 0, im ∈ N and Σj1 , . . . ,Σjm ∈

Wk+1\BF
ε̄0(W(r)) so that

• Φm
i is homotopic to Φi in the F-topology for all i ∈ N and Φm

i |Z = Φi|Z for

i ≥ im;

• Lh({Φm
i }i∈N) ≤ Lh;

• F(Φm
i (X),∪mq=1B

F
ε̄q(Ωjq) ∪B

F
ε̄0(W(r))) > 0 for i ≥ im;

• {Ωj : j ≥ 1} ⊂ ∪mq=1B
F
ε̄q(Ωjq).

In the first case we choose an increasing sequence pl ≥ il so that

sup
x∈X
Ah(Φl

pl
) ≤ Lh +

1

l
,

and we set Ψl = Φl
pl

. In the second case we set pl = l and Ψl = Φm
l . The

sequence {Ψl}l∈N satisfies that

(i) Ψl is homotopic to Φpl in the F-topology, and Ψl|Z = Φpl |Z for all l;

(ii) Lh({Ψl}l∈N) ≤ Lh;

(iii) given any subsequence {lj} ⊂ {l}, xj ∈ X, if limj→∞Ah(Ψlj (xj)) = Lh,

then {Ψlj (xj)}j∈N does not converge in F-topology to any element in

Wk+1 ∪W(r).

The Min-max Theorem 1.7 applied to {Ψl}i∈N implies that W\(Wk+1 ∪
W(r)) is not empty, and this proves the theorem. �

Now we can use the previous theorem and the Compactness Theorem 2.8

to prove Theorem 3.1.

Proof of Theorem 3.1. Given (g, h) as in the theorem, then h ∈ S(g) ⊂ S0.

By Lemma 3.5, there exists a sequence of metrics {gj}j∈N converging smoothly

to g such that (gj , h) is a good pair for all j ∈ N. If Lhj = Lhj (Π, gj) is the

h-width of Π with respect to gj , then the sequence {Lhj }j∈N tends to the

h-width Lh(Π, g) with respect to g, and for j large enough (3.1) is satisfied

with gj in place of g. For each j large enough, the previous theorem gives a

properly embedded closed hypersurface Σj = ∂Ωj ∈ Ph with Ahj (Ωj) = Lhj
and index(Σj) ≤ k (with respect to gj). Let Σ∞ = ∂Ω∞ be the limit of

{Σj}j∈N given in Theorem 2.8. Then the locally smooth convergence implies

that Ah(Ω∞) = Lh(Π, g) and index(Σ∞) ≤ k. �
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4. Min-max hypersurfaces associated with sweepouts of boundaries

have multiplicity one in a bumpy metric

We present our first multiplicity one result. In particular, we will prove

that the min-max minimal hypersurfaces associated with sweepouts of bound-

aries of Caccioppoli sets are two-sided and have multiplicity one in a bumpy

metric. We will approximate the area functional by the weighted Aεh-func-

tionals for some prescribing function h when ε → 0. We know by Section 1

that the min-max PMC hypersurfaces are two-sided with multiplicity one, and

we will prove that the limit minimal hypersurfaces (when ε→ 0) are also two-

sided and have multiplicity one by choosing the right prescribing function h.

Recall that a Riemannian metric g is said to be bumpy if every smooth

closed immersed minimal hypersurface is non-degenerate. White proved that

the set of bumpy metrics is generic in the Baire sense [42], [44].

Theorem 4.1 (Multiplicity one theorem for sweepouts of boundaries).

Let (Mn+1, g) be a closed Riemannian manifold of dimension 3 ≤ (n+ 1) ≤ 7.

Let X be a k-dimensional cubical complex and Z ⊂ X be a subcomplex, and

let Φ0 : X → C(M) be a map continuous in the F-topology. Let Π be the

associated (X,Z)-homotopy class of Φ0. Assume that

(4.1) L(Π) > max
x∈Z

M(∂Φ0(x)),

where we let h ≡ 0 as in Section 1.1.

If g is a bumpy metric, then there exists a disjoint collection of smooth,

connected, closed, embedded, two-sided, minimal hypersurfaces Σ = ∪Ni=1Σi,

such that

L(Π) =
N∑
i=1

Area(Σi) and index(Σ) =
N∑
i=1

index(Σi) ≤ k.

In particular, each component of Σ is two-sided and has exactly multiplicity

one.

Proof. Pick a h ∈ S(g) with
∫
M h ≥ 0 (to be fixed at the end) and ε > 0

small enough so that

L(Π)−max
x∈Z

M(∂Φ0(x)) > 2ε sup
M
|h| ·Vol(M).

Note that for each Ω ∈ C(M), we have

(4.2) M(∂Ω)− ε sup
M
|h| ·Vol(M) ≤ Aεh(Ω) ≤M(∂Ω) + ε sup

M
|h| ·Vol(M).

The above two inequalities imply that if we consider the Aεh-functional

in place of the mass M-functional for the (X,Z)-homotopy class Π, we have

Lεh(Π) > max
{

max
x∈Z
Aεh(Φ0(x)), 0

}
.



MULTIPLICITY ONE CONJECTURE 799

Note that when h ∈ S(g), εh also belongs to S(g). Therefore, Theorem 3.1

applies to Π and produces a nontrivial, smooth, closed, almost embedded hy-

persurface Σε, such that

• Σε is the boundary for some Ωε ∈ C(M) where its mean curvature with

respect to the unit outer normal ν (of Ωε) is ε · h, i.e.,

HΣε = ε · h|Σε ;

• Aεh(Ωε) = Lεh(Π);

• index(Σε) ≤ k.

We denote L = L(Π) and Lε = Lεh(Π). In the following, we proceed the

proof by parts.

Part 1. Lε → L when ε→ 0.

Proof. From (4.2), it is easy to see

L− ε sup
M
|h|Vol(M) ≤ Lε ≤ L + ε sup

M
|h|Vol(M).

Part 2. By Theorem 2.6, there exists a subsequence {εk} → 0, such that

Σk = Σεk converges to some smooth, closed, embedded, minimal hypersurface

Σ∞ (with integer multiplicity) in the sense of Theorem 2.6(i) and (ii). We

denote Y as the set of points where the convergence fails to be smooth. In

particular, by (4.2) and Part 1 and Theorem 2.6(v), we have

M(Σ∞) = L and index(Σ∞) ≤ k.

That is to say, Σ∞ is a min-max minimal hypersurface associated with Π.

Without loss of generality, we assume from Part 3 to Part 8 that Σ∞ has

only one connected component. If Σ∞ is two-sided with the multiplicity equal

to one, then we are done; otherwise we may assume that either the multiplicity

m > 1 or Σ∞ is one-sided.

Part 3. We first assume that Σ∞ is two-sided. We will implicitly use

exponential normal coordinates of Σ∞ with respect to one fixed unit normal

of Σ∞. By the local, smooth graphical convergence Σk → Σ∞ away from Y,

we know that there exists an exhaustion by compact domains {Uk ⊂ Σ∞\Y}
and some small δ > 0, so that for k large enough, Σk ∩ (Uk × (−δ, δ)) can be

written as a set of m-normal graphs {u1
k, . . . , u

m
k : uik ∈ C∞(Uk)} over Uk, and

such that

u1
k ≤ u2

k ≤ · · · ≤ umk and uik → 0, in smooth topology as k →∞.

Since Σk is the boundary of some set Ωk, by the Constancy Theorem (applied

to Ωk in Uk × (−δ, δ)), we know that the unit outer normal νk of Ωk will

alternate orientations along these graphs. In particular, if νk restricted to the
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graph of uik points upward (or downward), then νk restricted to the graph of

ui+1
k will point downward (or upward).

Part 4. We first deal with an easier case: m is an odd number. Hence

m ≥ 3. In this case νk restricted to the bottom (u1
k) and top (umk ) sheets point

to the same side of Σ∞, and without loss of generality we may assume that νk
points upward therein. This means that for x∈Uk,

H|Graph(umk )(x) = εkh(x, umk (x)) and H|Graph(u1k)(x) = εkh(x, u1
k(x)).

Here and in the following, the sign convention is made so that H|Graph(u) is

defined with respect to the upward pointing normal of Graph(u), and hence

the linearized operator is positively definite.

Note that since εh ∈ S(g), by the Strong Maximum Principle [52, Lemma

3.12] (applied to two sheets of the same orientation), we know

umk (x)− u1
k(x) > 0 for all x ∈ Uk.

Now by subtracting the above two equations and using the fact that

H|Graph(umk ) −H|Graph(u1k) = LΣ∞(umk − u1
k) + o(umk − u1

k)

(see [35, p. 331] and Part 3 in the proof of Theorem 2.6), we have

(4.3) LΣ∞(umk − u1
k) + o(umk − u1

k) = εk · ∂νh(x, vk(x)) · (umk (x)− u1
k(x)),

where vk(x) = t(x)umk (x) + (1− t(x))u1
k(x) for some t(x) ∈ [0, 1].

Now it is a standard argument to produce a nontrivial positive Jacobi field

on Σ∞\Y. Let us present the details for completeness. Write hk = umk − u1
k,

and pick a fixed point p ∈ U1. Let h̃k = hk/hk(p), then h̃k(p) = 1. By

standard Harnack and elliptic estimates, h̃k will converge locally smoothly to

a positive function ϕ on any fixed U ⊂ Uk, and by a diagonalization process,

we can extend ϕ to Σ∞\Y, and such that

LΣ∞ϕ = 0 outside Y.
Part 5. Next we use White’s local foliation argument [41] to prove that ϕ

extends smoothly across Y, and this will contradict the bumpy assumption of g.

Fix y ∈ Y. We use the exponential normal coordinates (x, z) ∈ Σ∞ ×
[−δ, δ]. Let ε > 0 be as given in Proposition D.1. Fix a small radius 0 < η < ε,

and choose k large enough such that ‖u1
k‖2,α, ‖umk ‖2,α � εη near ∂Bn

η (y) so

that some extensions of them to the whole Bn
η (y) have C2,α-norms bounded

by εη. Let v1
k,t, v

m
k,t : Bn

η (y) → R, t ∈ [−η, η], be the PMC local foliations

associated with εkh,

HGraph(vik,t)
(x) = εkh(x, vik,t(x)), i = 1,m, x ∈ Bn

η (y)

and

vik,t(x) = uik(x) + t, i = 1,m, x ∈ ∂Bn
η (y).
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By the Hausdorff convergence of Σk → Σ∞ and the Strong Maximum Prin-

ciple [52, Lemma 3.12] (applied to Graph(u1
k) and {Graph(v1

k,t)}, Graph(umk )

and {Graph(vmk,t)}), we have

umk (x)− u1
k(x) ≤ vmk,0(x)− v1

k,0(x) when x ∈ Uk ∩Bn
η (y).

By subtracting the mean curvature equations for Graph(vik,0), i = 1,m,

we get an equation similar to (4.3),

LΣ∞(vmk,0 − v1
k,0) + o(vmk,0 − v1

k,0) = εk · ∂νh(x, vk(x)) · (vmk,0(x)− v1
k,0(x)).

Note that the two graphs Graph(vik,0), i = 1,m must be disjoint by the Strong

Maximum Principle. By elliptic estimates via the weak maximum principle

[13, Th. 3.7], for η small enough and k sufficiently large and a uniform C > 0,

we have

max
Bnη

(vmk,0 − v1
k,0) ≤ C max

∂Bnη
(vmk,0 − v1

k,0).

This implies

max
Uk∩Bnη

(umk (x)− u1
k(x)) ≤ C max

∂Bnη
(umk (x)− u1

k(x)).

Hence maxUk∩Bnη h̃k ≤ C max∂Bnη h̃k, so ϕ is uniformly bounded and hence

extends smoothly across y.

Part 6. We now take care of the more interesting case: m is an even

number. Hence m ≥ 2. In this case νk restricted to the bottom (u1
k) and

top (umk ) sheets point to different side of Σ∞, and without loss of generality

we may assume that νk points downward on top sheet, and upward on bottom

sheet. This means that for x ∈ Uk,

H|Graph(umk )(x) = −εkh(x, umk (x)) and H|Graph(u1k)(x) = εkh(x, u1
k(x)).

Note that

umk (x)− u1
k(x) ≥ 0 for all x ∈ Uk,

but it may take zeros in a co-dimension 1 subset by [52, Prop. 3.17].

Again by subtracting the above two equations, and using the fact that

H|Graph(umk ) −H|Graph(u1k) = LΣ∞(umk − u1
k) + o(umk − u1

k), we have

(4.4) LΣ∞(umk − u1
k) + o(umk − u1

k) = −εk ·
(
h(x, u1

k(x)) + h(x, umk (x))
)
.

Fix a point p ∈ U1. We discuss the renormalization in two cases. Again

write hk = umk − u1
k.

Case 1: lim supk→∞
hk(p)
εk

= +∞. Consider renormalizations h̃k(x) =

hk(x)/hk(p). Then by the same reasoning as in Part 4, h̃k converges locally

smoothly to a nontrivial function ϕ ≥ 0 on Σ∞\Y, and such that

LΣ∞ϕ = 0 outside Y.
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Case 2: lim supk→∞
hk(p)
εk

< +∞. Consider renormalizations h̃k(x) =

hk(x)/εk. Then again by the same reasoning, h̃k converges locally smoothly

to a nonnegative ϕ ≥ 0 on Σ∞\Y, and such that

LΣ∞ϕ = −2h|Σ∞ outside Y.

Part 7. We will follow a slightly different local foliation argument to prove

removable singularity for ϕ. We inherit all the notation from Part 5. With-

out loss of generality, we may assume supM |h| = 1. Let v1
k,t, v

m
k,t : Bn

η → R,

t ∈ [−η, η], be the CMC local foliations associated with−εk and εk respectively,

HGraph(vmk,t)
(x) = εk and HGraph(v1k,t)

(x) = −εk, x ∈ Bn
η (y)

and

vik,t(x) = uik(x) + t, i = 1,m, x ∈ ∂Bn
η (y).

By the same reasoning as in Part 5, using the Strong Maximum Principle

for varifolds by White [43], we get

max
Uk∩Bnη

(umk (x)− u1
k(x)) ≤ max

Bnη
(vmk,0(x)− v1

k,0(x)).

Note that slightly differently from Part 5, we have

LΣ∞(vmk,0 − v1
k,0) + o(vmk,0 − v1

k,0) = 2εk.

By [13, Th. 3.7], for η small enough, k large enough and for some uniform

C > 0, we have

max
Uk∩Bnη

(umk (x)− u1
k(x)) ≤ C

(
max
∂Bnη

(umk (x)− u1
k(x)) + εk

)
.

Then for both Cases 1 and 2, this implies that ϕ is uniformly bounded and

hence extends smoothly across Y.

Note that if we flip the orientations of the top and bottom sheets, then

in Case 2 the limit of renormalizations of heights will converge to a solution of

LΣ∞ϕ = 2h|Σ∞ , where ϕ ≥ 0. Note that in the previous case, we can just flip

the sign of ϕ and obtain

LΣ∞ϕ = 2h|Σ∞ where ϕ ≤ 0.

Part 8. Now we briefly record the case when Σ∞ is only one-sided. Then

the convergence of Σk must have multiplicity at least 2; otherwise the con-

vergence will be smooth by the Allard regularity theorem [1], and hence all

Σk will be one-sided for k sufficiently large, which is a contradiction. Denote

π : Σ̃∞ → Σ∞ as the two-sided double cover of Σ∞, and denote τ : Σ̃∞ → Σ̃∞
as the deck transformation map. By the same argument for the two-sided case

applied to the double cover Σ̃∞, we can either construct a non-trivial Jacobi

field ϕ on Σ̃∞ with ϕ ◦ τ = ϕ and

LΣ̃∞
ϕ = 0;
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or a smooth function ϕ on Σ̃∞ with ϕ ◦ τ = ϕ, such that ϕ does not change

sign, and

LΣ̃∞
ϕ = 2h|Σ∞ ◦ π.

By [44], the first case cannot happen in a bumpy metric.

Summarizing the discussion, we proved that if g is bumpy, then each con-

nected two-sided component Σo of Σ∞ with multiplicity bigger than one must

carry a smooth solution ϕ to the equation

(4.5) LΣoϕ = 2h|Σo ;

and the double cover Σ̃u of each one-sided component Σu of Σ∞ must carry a

smooth solution ϕ

(4.6) LΣ̃u
ϕ = 2h|Σu ◦ π and ϕ ◦ τ = ϕ.

Moreover, in both cases ϕ does not change sign.

Part 9. We will show that for a nicely chosen h ∈ S(g), the (unique)

solutions to (4.5) and (4.6) must change sign. Thus there is no one-sided

component, and the multiplicity for two-sided component must be one.

Lemma 4.2 (Key Lemma). Assume that g is bumpy. Given L > 0 and

k ∈ N, there exists h ∈ S(g), such that if Σ is a smooth, connected, closed,

embedded minimal hypersurface with

Area(Σ) ≤ L and index(Σ) ≤ k,

then the solution of (4.5) (when Σ is two-sided) or (4.6) (when Σ is one-sided)

must change sign.

Proof. As g is bumpy, by the compactness analysis of Sharp [35], there are

only finitely many such Σ with Area(Σ) ≤ L and index(Σ) ≤ k, and we can

denote them as {Σ1, . . . ,ΣL}. If Σi is one-sided, we use πi : Σ̃i → Σi to denote

the two-sided double cover, and τi : Σ̃i → Σ̃i to denote the deck transformation

map.

On each Σi, we can choose two disjoint open subsets U+
i and U−i ⊂ Σi,

so that the collection of subsets {U±i }i=1,...,L are pairwise disjoint. Moreover,

by possibly changing U±i , we can make sure that the pre-images π−1
i (U+

i ),

π−1
i (U−i ) are diffeomorphic to two disjoint copies of U+

i , U−i respectively. In

that case, we will denote the two copies as Ũ+
i,1, Ũ

+
i,2, and Ũ−i,1, Ũ

−
i,2. That is

π−1
i (U+

i ) = Ũ+
i,1 ∪ Ũ

+
i,2 and π−1

i (U−i ) = Ũ−i,1 ∪ Ũ
−
i,2.

For each i ∈ {1, . . . , L} such that Σi is two-sided, we can choose an arbi-

trary pair of nontrivial smooth functions f+
i ∈ C∞c (U+

i ), f− ∈ C∞c (U−i ) such
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that

f+
i ≥ 0 and f+

i (p+
i ) > 0 at some p+

i ∈ U
+
i

and

f−i ≤ 0 and f−i (p−i ) < 0 at some p−i ∈ U
1
i .

Let h+
i ∈ C∞c (U+

i ) and h−i ∈ C∞c (U−i ) be defined by

h+
i = LΣif

+
i , h−i = LΣif

−
i .

If Σi is one-sided, we choose f̃±i,1 ∈ C∞c (Ũ±i,1), f̃±i,2 ∈ C∞c (Ũ±i,2) in the same

way, and we can make sure they are the same under deck transformation:

f̃±i,1 ◦ τ = f̃±i,2. In particular,

f̃+
i,1 ≥ 0 and f̃+

i,1 > 0 somewhere in Ũ+
i,1

and

f̃−i,1 ≤ 0 and f̃−i,1 < 0 somewhere in Ũ−i,1.

Then we define h±i,1, h
±
i,2 in the same manner, so obviously h±i,1 ◦ τ = h±i,2, and

they pass to two functions

h+
i ∈ C

∞
c (U+

i ) and h−i ∈ C
∞
c (U−i ).

We can extend each h±i to a function defined on Σi by letting it be zero

outside U±i . Using the fact that the set of smooth functions S(g) is open and

dense in C∞(M), we can choose a h ∈ S(g) so that

h is as close to h±i as we want in any Ck,α-norm when restricted to Σi.

We may need to flip the sign of h to make
∫
M h ≥ 0, but the following argu-

ment proceeds the same way. Since all {Σi : i = 1, . . . , L} are non-degenerate

(the Jacobi operator is an isomorphism), we know that if

LΣiϕ = 2h|Σi when Σi is two-sided, or

LΣ̃i
ϕ = 2h|Σi ◦ πi when Σ is one-sided,

then

ϕ is as close to f±i or f̃±i,j (j = 1, 2)

as we want in Ck+2,α-norm when restricted to Σi or Σ̃i.

Then ϕ must change sign, and this is what we want to prove. �

Note that by Part 2, all connected components of a min-max minimal hy-

persurface must satisfy the area and index bound in Lemma 4.2. So we finish

the proof of the theorem. �
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Remark 4.3. Indeed, we can obtain more information. Since Σ∞ has mul-

tiplicity one, the Allard regularity theorem [1] implies that the convergence

Σk → Σ∞ is smooth everywhere, and hence Σk is properly embedded for k

large.

Remark 4.4. Without assuming that g is bumpy, our proof says that if the

multiplicity of a two-sided component is greater than two, or if the multiplicity

for a one-sided component is greater than one, then there exists a nontrivial,

nonnegative Jacobi field. Let us point out the necessary details for two-sided

case; the one-sided case follows the same way. Indeed, we only need to focus

on the case when the multiplicity m is even and m ≥ 4; and moreover, we can

focus on Case 2 in Part 6. Using the notation from Parts 6 and 7, we consider

the height difference between the two pairs (u1
k, u

m−1
k ) and (u2

k, u
m
k ):

hak = um−1
k − u1

k, hbk = umk − u2
k.

Then both hak and hbk are positive and satisfy equations of type (4.3) since the

graphs of the two pairs have outer normals pointing to the same side. Consider

the renormalizations h̃ak = hak/εk and h̃bk = hbk/εk. Then

h̃ak, h̃
b
k ≤ h̃k and h̃ak + h̃bk ≥ h̃k.

Note that the limit of h̃k cannot be identically zero, as then h|Σ∞ ≡ 0, violating

the assumption h ∈ S(g). Then the above two inequalities and standard

elliptic estimates imply that at least one limit of the two sequences {h̃ak}k∈N
and {h̃bk}k∈N must be a smooth, nontrivial, nonnegative Jacobi field.

Part of the proof of the theorem can be summarized as the following mul-

tiplicity one convergence result, which we believe has its independent interests.

Theorem 4.5 (Multiplicity one convergence). Let (Mn+1, g) be a closed

manifold of dimension 3 ≤ (n+ 1) ≤ 7 with a bumpy metric g. Given L > 0,

I ∈ N, then there exists a smooth function h : M → R, h ∈ S(g), such that the

following holds :

Let {Σk}k∈N be a sequence of smooth, closed, almost embedded hypersur-

faces, and let {εk}k∈N → 0, such that

• Σk is the boundary of some open set Ωk, and the mean curvature of Σk with

respect to the outer normal of Ωk is prescribed by εkh;

• Area(Σk) ≤ L and index(Σk) ≤ I .

Then up to a subsequence, {Σk}k∈N converges smoothly to a smooth, closed,

embedded, two-sided, minimal hypersurface Σ∞ with multiplicity one.
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5. Application to volume spectrum

In this part, we will show how to apply the result in Section 4 to study

volume spectrum introduced by Gromov, Guth, and Marques-Neves. In par-

ticular, we will prove that in a bumpy metric, the volume spectrum can be

realized by the area of min-max minimal hypersurfaces produced by Theo-

rem 4.1. To do this, we will carefully pick a sequence of sweepouts of mod

2 cycles and open the parameter space so as to produce sweepouts of bound-

aries of Caccioppoli sets, whose relative homotopy classes satisfy (4.1). As the

space of Caccioppoli sets forms a double cover of the space of mod 2 cycles,

the parameter-space-opening process is achieved by lifting to the double cover.

We first recall the definition of volume spectrum following [28, §4]. Let

(Mn+1, g) be a closed Riemannian manifold. Let X be a cubical subcomplex

of Im = [0, 1]m for some m ∈ N. Given k ∈ N, a continuous map Φ : X →
Zn(M,Z2) is a k-sweepout if

Φ∗(λ̄k) 6= 0 ∈ Hk(X,Z2),

where λ̄ ∈ H1(Zn(M,Z2),Z2) = Z2 is the generator. Note that Φ is said to

be admissible if it has no concentration of mass. Denote by Pk the set of all

admissible k-sweepouts. Then

Definition 5.1. The k-width of (M, g) is

ωk(M, g) = inf
Φ∈Pk

sup{M(Φ(x)) : x ∈ dmn(Φ)},

where dmn(Φ) is the domain of Φ.

It was proved in [28, Ths. 5.1 and 8.1] that there exists some constant

C = C(M, g), such that

1

C
k

1
n+1 ≤ ωk(M, g) ≤ Ck

1
n+1 .

Assume from now on that the dimension satisfies 3 ≤ (n+ 1) ≤ 7. It was

later observed by Marques-Neves in [27] that one can restrict to a subclass of Pk
in the definition of ωk(M, g). In particular, let P̃k denote those elements Φ ∈ Pk
that are continuous under the F-topology and whose domain X = dmn(Φ) has

dimension k (and is identical to its k-skeleton). Then

ωk(M, g) = inf
Φ∈P̃k

sup{M(Φ(x)) : x ∈ dmn(Φ)}.

They also proved in [27] that for each k ∈ N there exists a disjoint collection of

smooth, connected, closed, embedded minimal hypersurfaces {Σk
i : i= 1, . . . , lk}
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with integer multiplicities {mk
i : i = 1, . . . , lk} ⊂ N, such that

ωk(M, g) =

lk∑
i=1

mk
i ·Area(Σk

i ) and

lk∑
i=1

index(Σk
i ) ≤ k.

Now we are going to state and prove our main theorem.

Theorem 5.2 (Theorem A). If g is a bumpy metric and 3 ≤ (n+ 1) ≤ 7,

then for each k ∈ N, there exists a disjoint collection of smooth, connected,

closed, embedded, two-sided minimal hypersurfaces {Σk
i : i = 1, . . . , lk}, such

that

ωk(M, g) =

lk∑
i=1

Area(Σk
i ) and

lk∑
i=1

index(Σk
i ) ≤ k.

That is to say, the min-max minimal hypersurfaces are all two-sided and have

multiplicity one.

Proof. If g is bumpy, then there are only finitely many closed, embedded,

minimal hypersurfaces with Area ≤ Λ and index ≤ I for given Λ > 0, I ∈ N by

Sharp’s result [35]. Using the Morse index upper bound estimates for min-max

theory by Marques-Neves [27], we have

Lemma 5.3. Suppose g is bumpy. Then for each k ∈ N, there exist a

k-dimensional cubical complex Xk and a map Φ0,k : Xk → Zn(M,F,Z2) con-

tinuous in the F-topology with Φ0,k ∈ P̃k, such that

L(Πk) = ωk(M, g),

where Πk = Π(Φ0,k) is the class of all maps Φ : Xk → Zn(M,F,Z2) continuous

in the F-topology that are homotopic to Φ0,k in flat topology.

Proof. From definition we know that

ωk(M, g) = inf{L(Π(Φ)), Φ ∈ P̃k}.

By area and index upper bounds and the finiteness result, the infimum is

achieved. �

Now we fix k ∈ N and omit the sub-index k in the following. Take Π =

[Φ0 : X → Zn(M,F,Z2)] with L(Π) = ωk. The following result is an outcome

of the proof of [27, Th. 6.1].

Lemma 5.4. Suppose g is bumpy. Then there exists a pull-tight (see [27,

3.7]) min-max sequence {Φi}i∈N of Π such that if Σ ∈ C({Φi}i∈N) has support

a smooth, closed, embedded minimal hypersurface, then

‖Σ‖(M) = ωk(M, g) and index(support of Σ) ≤ k.

We proceed the proof by the following four steps.
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Step 1. In this and the next step, we show how to find another min-max se-

quence, still denoted as {Φi}i∈N, such that for i sufficiently large, either |Φi(x)|
is close to a regular min-max minimal hypersurface, or the mass M(Φi(x)) is

strictly less than ωk(M, g).

We recall the following observation by [28, Claim 6.2]. Let S be the set

of all stationary integral varifolds with Area ≤ ωk whose support is a smooth

closed embedded minimal hypersurface with index(support) ≤ k. Consider

the set T of all mod 2 flat cycles T ∈ Zn(M,Z2) with M(T ) ≤ ωk and such

that either T = 0 or the support of T is a smooth closed embedded minimal

hypersurface with index ≤ k. By the bumpy assumption, both sets S and T
are finite. Moreover,

Lemma 5.5 (Claim 6.2 in [28]). For every ε̄ > 0, there exists ε > 0 such

that

T ∈ Zn(M,Z2) with F(|T |,S) ≤ 2ε =⇒ F(T, T ) < ε̄.

We also need another observation by [28, Cor. 3.6]. Denote S1 by the unit

circle.

Lemma 5.6 (Corollary 3.6 in [28]). If ε̄ is sufficiently small, depending

on T , then every map Φ : S1 → Zn(M,Z2) with

Φ(S1) ⊂ BFε̄ (T ) = {T ∈ Zn(M,Z2) : F(T, T ) < ε̄}

is homotopically trivial.

Let {Φi}i∈N be chosen as in Lemma 5.4. We choose ε̄ as in Lemma 5.6

and ε by Lemma 5.5. Take a sequence {ki}i∈N →∞, such that

sup{F(Φi(x),Φi(y)) : α ∈ X(ki), x, y ∈ α} ≤ ε/2.

Consider Zi to be the cubical subcomplex of X(ki) consisting of all cells α ∈
X(ki) so that

F(|Φi(x)|,S) ≥ ε for every vertex x in α.

Hence F(|Φi(x)|,S) ≥ ε/2 for all x ∈ Zi.
Consider this sub-coordinating sequence {Φi|Zi}i∈N. Then L({Φi|Zi}) and

C({Φi|Zi}) are defined in the same way as in Section 1.1 with Ah replaced

by M.

Lemma 5.7. We have the following dichotomy :

• no element V ∈ C({Φi|Zi}i∈N) is Z2-almost minimizing in small annuli

(see [28, 2.10]),

• or

(5.1) L({Φi|Zi}i∈N) < L(Π) = ωk.
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Proof. Suppose that (5.1) does not hold; then L({Φi|Zi}i∈N) = L(Π). As

{Φi}i∈N is pull-tight, we know that every V ∈ C({Φi|Zi}i∈N) is stationary.

If V is also Z2-almost minimizing in small annuli, then V is regular by the

regularity of Pitts [31, Th. 7.11] and Schoen-Simon [33, Th. 4]. (See also [28,

Th. 2.11] for the adaption to Z2-coefficients.) By Lemma 5.4, V ∈ S, which is

a contradiction. �

Let Yi = X\Zi. It then follows that

(5.2) F(|Φi(x)|,S) ≤ 3

2
ε for all x ∈ Yi.

We also write Bi = Yi ∩ Zi. In fact, Bi is the topological boundary of Yi and

Zi. For later purpose, we consider the set

Bi = the union of all cells α ∈ Zi such that α ∩Bi 6= ∅.

Here Bi can be thought of as the “thickening” of Bi inside Zi.

Let λ = Φ∗i (λ̄) ∈ H1(X,Z2). Consider the inclusion maps i1 : Yi → X

and i2 : Zi → X. It then follows from (5.2) and Lemmas 5.5 and 5.6 that

i∗1(λ) = 0 ∈ H1(Yi,Z2).

Then by [28, Claim 6.3], (Φi)|Zi is a (k − 1)-sweepout, i.e.,

i∗2(λk−1) 6= 0 ∈ Hk−1(Zi,Z2).

Now we let Y ′i = Yi ∪ Bi and Z ′i = Zi\Bi, and we let i′i : Y ′i → X and

i′2 : Z ′i → X be the inclusion maps. Note that (5.2) is satisfied with Yi,
3
2ε

replaced by Y ′i , 2ε respectively, so by similar reasoning we have

(i′1)∗(λ) = 0 ∈ H1(Y ′i ,Z2) and (i′2)∗(λk−1) 6= 0 ∈ Hk−1(Z ′i,Z2).

Step 2. The strategy is to follow the idea in the proof of Theorem 1.7

and apply [28, Th. 2.13] (see also Theorem 1.16) to deform {Φi}i∈N so as to

decrease L({(Φi)|Zi}i∈N) and make (5.1) be satisfied.

If (5.1) holds true, then we are done for this step. So let us assume that

(5.3) L({Φi|Zi}i∈N) = L(Π) = ωk.

By Lemma 5.7 and our assumption (5.3), we know that no element V ∈
C({Φi|Zi}i∈N) is Z2-almost minimizing in small annuli.

Since Φi : X → Zn(M,F,Z2) has no concentration of mass as it is continu-

ous in F-topology, we can apply [28, Th. 3.9] (the counterpart of Theorem 1.11

for maps to Zn(M,Z2)) to produce a sequence of maps

φji : X(ki + kji )0 → Zn(M,Z2),

with kji ∈ N and kji < kj+1
i for all j ∈ N and a sequence of positive {δji }j∈N → 0,

such that
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(i) the fineness f(φji ) ≤ δ
j
i ;

(ii) sup{F(φji (x)− Φi(x)) : x ∈ X(ki + kji )0} ≤ δji ;
(iii) for some sequence lji →∞ with lji < kji ,

M(φji (x)) ≤ sup{M(Φi(y)) : x, y ∈ α for some α ∈ X(ki + lji )}+ δji .

As Φi is continuous in F-topology, we get from property (iii) that for all

x ∈ X(ki + kji )0,

M(φji (x)) ≤M(Φi(x)) + ηji ,

with ηji → 0 as j →∞. Applying [26, Lemma 4.1] with S = Φi(X), we get by

(ii) that

(iv) sup{F(φji (x),Φi(x)) : x ∈ X(ki + kji )0} → 0 as j →∞.

We can choose j(i)→∞ as i→∞ (then k
j(i)
i →∞) such that ϕi = φ

j(i)
i :

X(ki + k
j(i)
i )0 → Zn(M,Z2) satisfies

• sup{F(ϕi(x),Φi(x)) : x ∈ X(ki + k
j(i)
i )0} ≤ ai with ai → 0 as i→∞;

• sup{F(Φi(x),Φi(y)) : x, y ∈ α, α ∈ X(ki + k
j(i)
i )} ≤ ai;

• the fineness f(ϕi)→ 0 as i→∞;

• the Almgren extension Φ
j(i)
i : X → Zn(M,M,Z2) (see [28, 3.10] for the

definition; it is continuous in the M-topology) is homotopic to Φi in the

flat topology (by [28, Cor. 3.12]), and sup{F(Φ
j(i)
i (x),Φi(x)) : x ∈ X} → 0

as i→∞ (by [28, 3.10]).

If we let S = {ϕi}i∈N be a discrete sweepout, then we have L(S) = L({Φi}i∈N)

and C(S) = C({Φi}i∈N). Moreover, consider the restrictions of ϕi to Zi(k
j(i)
i )0:

SZ = {ϕi : Zi(k
j(i)
i )0 → Zn(M,Z2)}.

Similarly, we have

L(SZ) = L({Φi|Zi}i∈N) = L(Π) and C(SZ) = C({Φi|Zi}i∈N).

As no V ∈ C(SZ) is Z2-almost minimizing in small annuli, by [28, Th. 2.13]

(which is a reformulation of Almgren-Pitts combinatorial argument [31, Th.

4.10]), we can find a sequence S̃Z = {ϕ̃i} of maps

ϕ̃i : Zi(k
j(i)
i + li)0 → Zn(M,Z2)

and a sequence of homotopies

ψi : I(li)0 × Zi(kj(i)i + li)0 → Zn(M,Z2),

such that

• ψi([0], x) = ϕi ◦ n(k
j(i)
i + li, k

j(i)
i )(x) and ψi([1], x) = ϕ̃i(x);

• the fineness of ψi tends to zero as i→∞;
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• lim sup
i→∞

sup{M(ψi(t, x)) : (t, x) ∈ I(li)0 × Zi(kj(i)i + li)0} = L(SZ) — this

property was not explicitly listed in [28, Th. 2.13], but it follows from

the construction in [31, Th. 4.10];

• L(S̃Z) < L(SZ).

Now we construct a new sequence S∗ = {ϕ∗i }i∈N with

ϕ∗i : X(ki + k
j(i)
i + li)0 → Zn(M,Z2),

defined as

• ϕ∗i (x) = ϕi ◦ n(k
j(i)
i + li, k

j(i)
i )(x), when x ∈ Yi(kj(i)i + li)0;

• ϕ∗i (x)=ψi(t(x), x), where x∈Bi(li)0 and t(x)=min{3−li · d(x,Bi ∩ Yi), 1}
∈ I(li)0 (here d is the distance function restricted to Bi(li)0 — see Appen-

dix A;

• ϕ∗i (x) = ϕ̃i(x), when x ∈ Z ′i(k
j(i)
i + li)0 — note that t(x) ≥ 1 when

x ∈ Z ′i ∩Bi.

By the construction, we see that

• ϕ∗i is homotopic to ϕi with fineness tending to zero as i→∞;

• L(S∗) = L(Π);

• lim supi→∞ sup{M(ϕ∗i (x)) : x ∈ Z ′i(k
j(i)
i + li)0} ≤ L(S̃Z) < L(Π).

Consider the Almgren’s extension of ϕ∗i :

Φ∗i : X → Zn(M,M,Z2).

Then

(a) Φ∗i is homotopic to Φ
j(i)
i and hence to Φi in the flat topology by [28, 3.11]

and by [28, 3.10];

(b) sup{F(Φ∗i (x),Φi(x)) : x ∈ Yi} → 0;

(c) L({Φ∗i }) = L(S∗) = L(Π);

(d) lim sup
i→∞

sup{M(Φ∗i (x)) : x ∈ Z ′i} ≤ L(S̃Z) < L(Π).

By summarizing what we have done (and abusing the notation Yi = Y ′i
and Zi = Z ′i), we produced another min-max sequence {Φ∗i }i∈N ⊂ Π such that

(1) X can be decomposed to Yi and Zi with Zi = X\Yi, and for i large enough,

i∗1(λ) = 0 ∈ H1(Yi,Z2) and i∗2(λk−1) 6= 0 ∈ Hk−1(Zi,Z2);

(2) L({Φ∗i }) = L({Φi}) = L(Π);

(3) lim sup
i→∞

sup{M(Φ∗i (x)) : x ∈ Zi} < L(Π).

Note that both Yi and Zi are nonempty for i large enough by (1)(3).
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Step 3. Now we want to produce sweepouts in C(M) by lifting to the dou-

ble cover ∂ : C(M) → Zn(M,Z2) so as to produce sweepouts satisfying the

assumption of Theorem 4.1.

We abuse notation and still write {Φ∗i } as {Φi}. Since (Φi)
∗(λ̄) 6= 0 ∈

H1(X,Z2) = Z2, there exist a double cover π : X̃ → X with deck transforma-

tion map τ : X̃ → X̃ and the lifting maps

Φ̃i : X̃ → (C(M),F),

satisfying ∂Φ̃i = Φi ◦ π. Indeed, the cohomological condition implies that the

induced maps (Φi)∗ : π1(X) → π1(Zn(M,Z2)) = Z2 are surjective; see [28,

Def. 4.1 (i)]. So the kernel of (Φi)∗ is a subgroup of π1(X) with index 2. Then

the existence of such liftings follows from [20, Props. 1.36 and 1.33].

Note that i∗1λ = 0 ∈ H1(Yi,Z2), so the pre-image of Yi is disconnected

and is a disjoint union of two copies of Yi:

Ỹi = π−1(Yi) = Y +
i ∪ Y

−
i ,

where both Y +
i and Y −i are homeomorphic to Yi. In fact, the cohomological

condition implies that every closed curve γ : S1 → Yi lies in the kernel of (Φi)∗,

so the lift γ̃ of γ to X̃ is still a closed curve. This means that Ỹi is disconnected

as we want.

Denote by Z̃i, B̃i and B̃i the pre-images of Zi, Bi,Bi under π respectively.

Then B̃i = B+
i ∪B−i is also a disjoint union of two copies of Bi.

Lemma 5.8. For i large enough, if Π̃i is the (X̃, Z̃i)-homotopy class as-

sociated with Φ̃i, then we have

L(Π̃i) ≥ L(Π) > max
x∈Z̃i

M(∂Φ̃i(x)).

Proof. Fix i large, so that

sup
x∈Zi

M(Φi(x)) < L(Π);

we will omit the sub-index in the following proof.

If the conclusion is not true, then we can find a sequence of maps {Ψ̃j :

X̃ → (C(M),F)}j∈N ⊂ Π̃, such that

lim sup
j→∞

sup{M(∂Ψ̃j(x)) : x ∈ X} < L(Π),

and homotopy maps {Hj : [0, 1]× X̃ → C(M)} that are continuous in the flat

topology, Hj(0, ·) = Ψ̃j , Hj(1, ·) = Φ̃, and

lim sup
j→∞

sup{F(Hj(t, x), Φ̃(x)) : t ∈ [0, 1], x ∈ Z̃} = 0.

We construct a new sequence of maps {Ψ̃∗j}j∈N defined as
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• Ψ̃∗j (x) = Ψ̃j(x), if x ∈ Y +, and Ψ̃∗j (x) = Ψ̃j ◦ τ(x), if x ∈ Y −;

• Ψ̃∗j (x) = Hj(t(x), x), where t(x) = min{dist(x,B+ ∩Y +), 1} if x ∈ B+, and

Ψ̃∗j (x) = Hj ◦τ(x), if x ∈ B− — here dist is the distance function by viewing

B as a cube complex in some I(m, l);

• Ψ̃∗j (x) = Φ̃(x), if x ∈ Z̃ ′ — note that t(x) ≥ 1 for x ∈ Z̃ ′ ∩ (B+ ∩B−).

Note that though Ψ̃∗j themselves may not be continuous as maps to C(M), Ψ∗j
can be passed to quotient as continuous maps from X to Zn(M,Z2). This is

essentially where we used the structures of Ỹ and B̃, that is, (Y +, Y −) and

(B+,B−) are pairwise disjoint.

Denote the quotient maps of {Ψ̃∗j}j∈N by

{Ψ∗j = ∂ ◦ Ψ̃∗j : X → Zn(M,Z2)}j∈N.

We have

• Ψ∗j is homotopic to Φ in the flat topology;

• lim supj→∞ sup{M(Ψ∗j (x)) : x ∈ X} < L(Π) = ωk(M, g) (by the three

above inequalities).

This will lead to a contradiction with the definition of k-width once we prove

that Ψ∗j is an admissible k-sweepout when j is sufficiently large. Indeed, the

only thing left is to show that Ψ∗j has no concentration of mass. This follows

from the third inequality above. So we finish the proof. �

Step 4. We are ready to finish the proof of Theorem 5.2.

For i large enough as in Lemma 5.8, Theorem 4.1 applied to Π̃i gives a

disjoint collection of smooth, connected, closed, embedded, two-sided, minimal

hypersurfaces Σi = ∪Nij=1Σi,j , such that

L(Π̃i) =

Ni∑
j=1

Area(Σi,j) and index(Σi) ≤ k.

Note also that L(Π̃i) ≤ L(Φi) → L(Π) = ωk. Counting the fact that there

are only finitely many smooth, closed, embedded minimal hypersurfaces with

Area ≤ ωk + 1 and index ≤ k, for i sufficiently large we have

L(Π̃i) = L(Π̃i+1) = · · · = ωk.

Hence we finish the proof of Theorem 5.2. �

Remark 5.9. By the course of the above proof, in a bumpy metric, the

min-max minimal hypersurfaces associated with any homotopically nontrivial

sweepouts of mod-2 cycles are always two-sided and have multiplicity one. In

fact, if Φ : X → Zn(M,Z2) is homotopically nontrivial, then the induced

map Φ∗ : π1(X)→ π1(Zn(M,Z2)) = Z2 must be surjective. Otherwise by [20,

Prop. 1.33], Φ can be lifted to a map Φ̃ : X → C(M) that is then homotopically
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trivial as C(M) is contractible. With this topological information, the above

proof works the same way and implies the two-sidedness and multiplicity one

for min-max minimal hypersurfaces associated with Π(Φ).

Remark 5.10. After this article was first posted on arXiv, we realized that

the main consequences obtained in Steps 1 and 2 in the above proof are also

contained in [29, Th. 4.9].

Appendix A. Cubical complex structures

Here we recall several cubical complex structures in [28, 2.1].

For each k ∈ N, I(1, k) denotes the cubical complex on the unit inter-

val I = [0, 1] whose 1-cells and 0-cells (which are also called vertices) are,

respectively,

[0, 3−k], [3−k, 2 · 3−k], . . . , [1− 3−k, 1] and [0], [3−k], . . . , [1− 3−k], [1].

We then denote by I(m, k) the cell complex on Im:

I(m, k) = I(1, k)⊗ · · · ⊗ I(1, k) m times.

Then α = α1 ⊗ · · · ⊗ αm is a q-cell of I(m, k) if and only if αi is a cell of

I(1, k) for each i, and
∑m

i=1 dim(αi) = q. We often identify a q-cell α with its

support α1 × · · · × αm ⊂ Im. The distance function d on I(m, k)0 is defined

as d(x, y) = 3k
∑k

i=1 |xi − yi|, x, y ∈ I(m, k)0, [31, 4.1(1)(e)].

Let X ⊂ Im be a cubical subcomplex. The cubical complex X(k) is the

union of all cells of I(m, k) whose support is contained in some cell of X. We

use the notation X(k)q to denote the set of all q-cells in X(k), and particularly

X(k)0 to denote the set of vertices in X(k). Two vertices x, y ∈ X(k)0 are

adjacent if they belong to a common cell in X(k)1.

Let Y ⊂ I(m, k) be a cubical subcomplex. Similarly, the cubical complex

Y (l) is the union of all cells of I(m, k + l) whose support is contained in some

cell of Y . Here Y (k)q is defined in the same way.

Given k, l ∈ N, we define n(k, l) : X(k)0 → X(l)0 so that n(i, j)(x) is the

element in X(l)0 that is closest to x (see [31, p. 141]).

Appendix B. Removing singularity for weakly stable PMC

We record the following standard removable singularity result.

Theorem B.1. Let (Mn+1, g) be a closed Riemannian manifold of dimen-

sion 3 ≤ (n+ 1) ≤ 7. Given h ∈ S(g) and Σ ⊂ Bε(p)\{p} an almost embedded

hypersurface with ∂Σ ∩ Bε(p)\{p} = ∅, assume that Σ has prescribing mean

curvature h, and Σ is weakly stable. If Σ represents a varifold of bounded first

variation in Bε(p), then Σ extends smoothly across p as an almost embedded

hypersurface in Bε(p).
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Proof. Given any sequence of positive λi → 0, consider the blowups

{µp,λi(Σ) ⊂ µp,λi(M)}, where µp,λi(x) = x−p
λi

. Since Σ has bounded first

variation, µp,λi(Σ) converges (up to a subsequence) to a stationary integral

rectifiable cone C in Rn+1 = TpM . By weakly stability and Theorem 2.5, the

convergence is locally smooth and graphical away from the origin, so C is an

integer multiple of some embedded minimal hypercone; moreover, C is weakly

stable, and hence is stable as an embedded minimal hypersurface away from 0.

Therefore, C is an integer multiple of some n-plane P by Simons’s classification

[38], i.e., C = m · P , where m = Θn(Σ, p). Note that a priori C may not be

unique.

By the locally smooth and graphical convergence, there exists σ0 > 0

small enough, such that for any 0 < σ ≤ σ0, Σ has an m-sheeted, ordered (in

the sense of [52, Def. 3.2]), graphical decomposition in the annulus Aσ/2,σ(p) =

Bσ(p)\Bσ/2(p):

Σ ∩Aσ/2,σ(p) = ∪mi=1Σi(σ).

Here each Σi(σ) is a graph over Aσ/2,σ(p) ∩ P for some n-plane P ⊂ TpM .

We can continue each Σi(σ) all the way to Bσ0(p)\{p}, and we denote

the continuation by Σi. Each Σi can be extended as a varifold across p with

uniformly bounded first variation. (Since Σi ⊂ Σ satisfies the area decay

estimates, area(Σi ∩ Bσ(p)) ≤ Cσn.) We claim that the density satisfies

Θn(Σi, p) = 1 for each i. In fact, Θn(Σi, p) ≥ 1 as any blowups of Σi con-

verges to an n-plane, but m = Θn(Σ, p) =
∑m

i=1 Θn(Σi, p). Now applying the

Allard regularity theorem [1] to each Σi, we get that Σi extends as a C1,α hy-

persurface across p. Higher regularity of Σi follows from the prescribing mean

curvature equation and elliptic regularity. �

Appendix C. Proof of Lemma 3.3

[27, Lemma 4.5] is purely a result in finite dimensional multi-variable

calculus. Let us translate the problem as follows: let B be some compact

topological space with 0 ∈ B, and let {fω ∈ C∞(B
k
) : ω ∈ B} be a family of

smooth functions defined on B
k
, such that ω → fω is a continuous map in the

smooth topology on C∞(B
k
). Moreover, we assume

• fω has a unique maximum m(ω) ∈ Bk
c0/
√

10
, and m(0) = 0;

• − 1
c0

Id ≤ D2fω(u) ≤ −c0 Id for all u ∈ Bk
and for some c0 ∈ (0, 1).

So for each ω ∈ B, we have

(C.1) fω(m(ω))− 1

2c0
|u−m(ω)|2 ≤ fω(u) ≤ fω(m(ω))− c0

2
|u−m(ω)|2

for all u ∈ Bk
.
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For each fω, consider the one-parameter flow {φω(·, t) : t ≥ 0} ⊂ Diff(B
k
)

generated by the vector field

u→ −(1− |u|2)∇fω(u), u ∈ Bk
.

For fixed u ∈ Bk
, the function t→ fω(φω(u, t)) is non-increasing.

The prototype of [27, Lemma 4.5] is the following lemma, and the proof

is essentially the same as therein so we omit it.

Lemma C.1. For any δ < 1
4 , there exists T = T (δ,B, {fω}, c0) ≥ 0 such

that for any ω ∈ B and v ∈ Bk
with |v −m(ω)| ≥ δ, we have

fω(φω(v, T )) < fω(0)− c0

10
and |φω(v, T )| > c0

4
.

Now we are ready to prove Lemma 3.3. Note that the ball B
F
2ε(Ω0) is not

compact under the F-topology, so to apply Lemma C.1, we need to introduce

a compactification of B
F
2ε(Ω0).

Proof of Lemma 3.3. Given a F-Cauchy sequence {Ωi} ⊂ B
F
2ε(Ω0), we

denote (V∞,Ω∞) ∈ Vn(M) × C(M) as the limit such that V∞ = limi→∞ |∂Ωi|
as varifolds and Ω∞ = limi→∞Ωi as Caccioppoli sets. If we define

Ah∞(v) = ‖(Fv)#V∞‖(M)−
∫
Fv(Ω∞)

h dHn+1 for each v ∈ Bk
,

then AhΩi converges smoothly to Ah∞ as functions in C∞(B
k
).

Now take B as the union of B
F
2ε(Ω0) with the limits of the form (V∞,Ω∞),

fΩ = AhΩ and f (V∞,Ω∞) = Ah∞. Then Lemma 3.3 follows from Lemma C.1. �

Appendix D. Existence of local PMC foliations

We recall the following classical result of White [41, Appendix and Rem. 2].

Note that the Ah-functional can be locally expressed as the integration of an

elliptic integrand.

Proposition D.1. Given a Riemannian metric g in a neighborhood U of

0 ∈ Rn+1, there exists an ε > 0, such that if h : U → R is a smooth function

with ‖h‖4,α < ε, r < ε, and if

w : Bn
r ⊂ Rn → R satisfies ‖w‖2,α < εr,

then for each t ∈ [−r, r], there exists a C2,α-function vt : Bn
r → R whose graph

Gt satisfies

HGt = h|Gt
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(where HGt is evaluated with respect to the upward pointing normal of Gt),

and

vt(x) = w(x) + t if x ∈ ∂Bn
r .

Furthermore, vt depends on r, t, h, w in C1 and the graphs {Gt : t ∈ [−r, r]}
form a foliation.
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