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On the Multiplicity One Conjecture
in min-max theory

By XiN ZHOU

Abstract

We prove that in a closed manifold of dimension between 3 and 7 with
a bumpy metric, the min-max minimal hypersurfaces associated with the
volume spectrum introduced by Gromov, Guth, Marques-Neves, are two-
sided and have multiplicity one. This confirms a conjecture by Marques-
Neves.

We prove that in a bumpy metric each volume spectrum is realized
by the min-max value of certain relative homotopy class of sweepouts of
boundaries of Caccioppoli sets. The main result follows by approximat-
ing such min-max value using the min-max theory for hypersurfaces with
prescribed mean curvature established by the author with Zhu.

0. Introduction

Let (M™*! g) be a closed orientable Riemannian manifold of dimension
3 < (n+1) <7 In [2], Almgren proved that the space of mod-2 cy-
cles Z,,(M,Z3) is weakly homotopic the Eilenberg-MacLane space K(Za,1) =
RP*°. (See also [29] for a simpler proof.) Later, Gromov [15], [16], Guth [18],
Marques-Neves [28] introduced the notion of volume spectrum as a nonlinear
version of spectrum for the area functional in Z,(M,Zs). In particular, the
volume spectrum is a non-decreasing sequence of positive numbers

0<wi(M,g) < Swp(M,g) < — +o0,

which is uniquely determined by the metric ¢ in a given closed manifold M.
By adapting the celebrated min-max theory developed by Almgren [3],
Pitts [31] (for 3 < (n + 1) < 6), and Schoen-Simon [33] (for n +1 = 7),
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Marques-Neves [28], [27] proved that each wy (M, g) is associated with an in-
tegral varifold Vi whose support is a disjoint collection of smooth, connected,
closed, embedded, minimal hypersurfaces {¥%,.. ., Efk}, such that

Uk
(0.1) wp(M,g) =Y mf - Area(S}),
i=1
where {m’f, .. ,mfk} C N is a set of positive integers, usually called multi-

plicities. We refer to [39], [6], [10], [17], [9], [23], [7], [47], [50], [32] for other
variants of this theory.

Our main theorem states that all these integer multiplicities are identically
equal to one for a bumpy metric. A metric g is called bumpy if every closed
immersed minimal hypersurface is non-degenerate. White proved that the set
of bumpy metrics is generic in Baire sense [42], [44].

THEOREM A. Given a closed manifold M" ' of dimension 3 < (n + 1)
< 7 with a bumpy metric g, the min-max minimal hypersurfaces {Ef ke
N,i = 1,...,lx} associated with volume spectrum are all two-sided and have
multiplicity one and inder bounded by k. That is mf =1 for oll k € N,
1< <,

I I
wi(M,g) = ZArea(Ef) and Zindex(Zf) < k.
i=1 i=1

Remark 0.1. This solves the Multiplicity One Conjecture of Marques-
Neves [29, 1.2] (see also [27] for an earlier weaker version of this conjecture).
We refer to Theorem 5.2 for a more detailed statement of this result. Note that
by standard compactness analysis (see [35]), the same conclusion concerning
two-sidedness and multiplicity one also holds true for a metric with positive
Ricci curvature.

Remark 0.2. This conjecture was proved earlier for one-parameter min-
max constructions under positive Ricci curvature assumption by Marques-
Neves [25], the author [48, 49], and Ketover-Marques-Neves [22]. Later it
was fully proved for one-parameter case by Marques-Neves [27]. Recently,
Chodosh-Mantoulidis [5] proved this conjecture in dimension three (n+1) = 3
for the Allen-Cahn setting (see [12] for earlier works along this direction); they
also proved that the total index is exactly k for their k-min-max solutions
when (n 4+ 1) = 3. After our results were posted on arXiv, Marques-Neves
finished their program and also proved the same optimal index estimates for
3<(n+1) <729, Addendum)].

One motivation of this conjecture is to prove the Yau’s conjecture [46]
on existence of infinitely many closed minimal surfaces in three manifolds.
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Combining with the growth estimates of {wy(M,g)} by Marques-Neves [28,
Ths. 5.1 and 8.1] and the Frankel Theorem [11], we have

THEOREM B. Let M™* ! be a closed manifold of dimension 3<(n+1)<7.

(a) For each bumpy metric g, there exists infinitely many smooth, con-
nected, closed, embedded, minimal hypersurfaces.

(b) If a metric g has positive Ricci curvature, then there exists a sequence of
smooth, connected, closed, embedded, minimal hypersurfaces { g }ken,
such that )

Area(Xg) ~ k1 as k — oo.

Remark 0.3. Result (a) was already known even without the bumpy as-
sumption by combining Marques-Neves [28] and Song [40]. For a set of generic
metrics, Irie-Marques-Neves [21] and Marques-Neves-Song [30] proved dense-
ness and equi-distribution for the space of closed embedded minimal hyper-
surfaces, using the Weyl Law for volume spectrum by Liokumovich-Marques-
Neves [24]. Their generic set in principle could be much smaller than the set
of bumpy metrics.

Result (b) was also obtained by Chodosh-Mantoulidis [5] in dimension
three (n + 1) = 3.

As a direct corollary of the compactness theory (see [35]), there is an
equivalent formulation of Theorem A for general metrics. Note that a closed
minimal hypersurface ¥ is said to be degenerately stable if 0 is the lowest
eigenvalue for the second variation of area of 3, and hence index(X) = 0
(when X is one-sided, one has to pass to its two-sided double cover).

THEOREM C. Let M™ ! be a closed manifold of dimension 3 < (n+1) <
7 with an arbitrary metric g. Then in (0.1), every connected component of
{E’Zl?C ckeNyi=1,...,lk} which is not degenerately stable is two-sided and has
multiplicity one. That is, if Ef 1s not degenerately stable, k € N, 1 < i < I,
then Ef‘ is two-sided, mf =1, and

Uk
> index(S) < k.
i=1

Remark 0.4. This formulation was noticed by the author shortly after this
article was first posted, and had formally appeared in the author’s Oberwolfach
Report for Partial Differential Equations, 2019.

This theorem can be viewed as a strengthened version of the Weighted
Morse Index Bound Conjecture by Marques-Neves. As a significant milestone,
Marques-Neves [27] proved the above index upper bound estimates. However,
the estimates might not be sharp as the contribution of these multiple sheets
were not counted. They made a conjecture that the sharp estimates should
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contain the multiplicity as coefficients. Theorem C says that every component
which contributes nonzero index is two-sided and has multiplicity equal to one,
and hence proves sharpness of the estimates.

0.1. Sketch of the proof. The key idea of our proof is to approximate the
Area-functional by the weighted A"-functional used in the prescribing mean
curvature (PMC) min-max theory developed by the author with Zhu [52]. Note
that the A"-functional is only defined for boundaries of Caccioppoli sets; see
(1.1). A smooth critical point of A" is a hypersurface whose mean curvature
is prescribed by the restriction of A to itself. There are two crucial parts in the
proof. In the first part, we consider min-max construction of minimal hyper-
surfaces using sweepouts of boundaries of Caccioppoli sets. We observe that
in a bumpy metric if one approximates Area by a sequence {A%"},.cyn where
{ek}reny — 0, and if h : M — R is carefully chosen, then the limit min-max
minimal hypersurfaces (of min-max PMC hypersurfaces associated with A%*")
are all two-sided and have multiplicity one; see Theorem 4.1. In the second
part, we show that in a bumpy metric the volume spectrum wy (M, g) can be
realized by the area of some minimal hypersurfaces coming from min-max con-
structions using sweepouts of boundaries. We now elaborate the detailed ideas.

To implement the idea in the first part, we generalize the PMC min-
max theory in [52] to multi-parameter families using continuous sweepouts.
Since the space of Caccioppoli sets C(M) is contractible, there is no nontrivial
free homotopy class to do min-max, so we have to consider relative homo-
topy classes. Heuristically, given a k-dimensional parameter space X, a subset
Z C X, and a continuous map ®g : X — C(M), we can consider its rela-
tive (X, Z)-homotopy class II = II(®g) consisting of all maps ® : X — C(M)
that are homotopic to ®y and such that ®|; = ®p|z. If the min-max value
L" = inf{max,ex A"(®(z)) : ® € I} satisfies the nontriviality condition
L" > max,e 7 A"(®¢(x)) with respect to the A"-functional, and if h is chosen in
a dense subset S(g) C C°°(M) (depending on the metric g, see [52, Prop. 0.2]),
we prove the existence of a smooth closed hypersurface X" of prescribed mean
curvature h; moreover, it is represented as the boundary " = 9Q" for some
Caccioppoli set Q" and A"(Q") = L"; hence ©" is two-sided and have mul-
tiplicity one. X" is usually called a min-max PMC hypersurface. We also
established Morse index upper bounds following Marques-Neves [27]. That
is, we prove that the Morse index of ¥ is bounded from above by k (the
dimension of parameter space).

Given a relative homotopy class Il as above, consider the min-max con-
struction for the Area-functional and let L=inf{max,c x Area(0®(z)) : ® €Il}.
If the nontriviality condition L > max,cz Area(0®o(z)) is satisfied, we can ap-
proximate L by L" for a fixed h € S(g) (to be chosen later) and small enough
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e > 0. We know that ¢ - h also belongs to the dense subset S(g). Denote
Y. as the min-max PMC hypersurface associated with L&". As the family
{¥: : € > 0} have uniformly bounded area and Morse index, we can pick a
subsequence {3 = X, : ¢ — 0} that converges as varifolds and also locally
smooth and graphically away from finitely many points to some limit minimal
hypersurface ¥, with integer multiplicity such that Area(X,) = L. The limit
can be extended to a closed embedded minimal hypersurface ., across the
bad points, and ¥, also has the same Morse index upper bound. Hence ¥
is a min-max minimal hypersurface associated with L. As a standard process,
if the multiplicity is greater than one, or if a component is one-sided, one can
obtain solutions of the Jacobi operator Ly of ¥ by taking the limit of the
renormalizations of the heights between the top and bottom sheets of ;. In
particular, there are two possibilities for the limit depending on the orienta-
tions of the top and bottom sheets. For simplicity, let us assume that ¥, is
connected and two-sided. An easier case happens when the top and bottom
sheets have the same orientation, and hence the limit is a nontrivial nonneg-
ative solution ¢ of the Jacobi equation Ly__¢ = 0 which cannot happen in a
bumpy metric. When the top and bottom sheets have opposite orientations,
the limit is either a nontrivial nonnegative solution to the Jacobi equation, or

is a solution ¢ of the following equation:
Ly o =2h|n., such that ¢ does not change sign.

The key observation is that one can find a h € S(g) so that the unique solution
(as Yoo is non-degenerate) of Ly ¢ = 2h|n,, must change sign, and hence
Yoo must have multiplicity one (see Lemma 4.2). Indeed, the set of minimal
hypersurfaces with bounded area and Morse index in a bumpy metric is finite
by the standard compactness results [35]. On each such ¥, we can construct
a hy € C*°(X) such that the unique solution fs; of Ly fs; = 2hy must change
sign, and we can further make the support of all such hy pairwise disjoint.
Since S(g) is open and dense, we can pick a h € S(g) that approximates all
hs; on ¥ as close as we want. Then the solution of Lyp = 2h|y must also
change sign. Up to here, we have elucidated how to construct two-sided min-
max minimal hypersurfaces with multiplicity one for sweepouts of boundaries
of Caccioppoli sets.

Lastly we apply the above multiplicity one result to the volume spec-
trum. Though the volume spectrum wy (M, g) is defined using cohomological
relations, Marques-Neves proved in [27], using their Morse index estimates,
that in a bumpy metric wg (M, g) is realized by the min-max value L(II) for
certain free homotopy class II of maps ® : X — Z,(M"*! Zy), where X is
some fixed k-dimensional parameter space and Z,(M"*! Zs) is the space of
mod-2 cycles. It was observed by Marques-Neves [29] that the space of Cac-
cioppoli sets C(M) forms a double cover of Z,(M™"! Zy) via the boundary
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map 9 : C(M) — Z,(M"™"1,Zy). Therefore, by lifting to the double cover, for
cach ® € II, we can produce a map ® : X — C(M), where 7 : X — X is
a double cover, such that d®(x) = ®(n(z)). To produce a nontrivial relative
homotopy class, we pick a map @ € II such that max,cx Area(®y(x)) is very
close to L(IT) = wi(M,g). Let Z C X to be the subset where each ®¢(x),
r € Z, is e-distance away from the set of smooth closed embedded minimal
hypersurface ¥ with Area(¥) < L and index(¥) < k. Note that this set of
minimal hypersurfaces is finite in a bumpy metric, hence for € small enough the
complement Y = X \ Z C X is topologically trivial in the sense that Y does
not detect the generator of the cohomological ring of Z,(M"*! Zs). There-
fore, the pre-image Y = 7~ (Y") C X is homeomorphic to two disjoint identical
copies of Y, denoted as Y and Y. On the other hand, since no element in
Oy (Z) is regular, by Pitts’s combinatorial argument, one can homotopically
deform ®g|z so that max,cz Area(®o(r)) < L. Now consider the relative
(X, Z)-homotopy class II generated by the map ®g : X — C(M). One key
observation is that the min-max value L(IT) > L(II) > max,cz Area(®o(z)).
To see this, given any homotopic deformation W : X — C(M) of ® relative
to (®g)|z, if max,cy+ Area(9¥(x)) < L(II), then we can pass it to quotient
and obtain a continuous map ¥ : X — ZM, Zs) as YT and Y~ are dis-
joint and \T/]Z = (@0)]2, so that max,cx Area(¥(x)) < L(IT), but this is a
contradiction as ¥ is homotopic to ®g. Therefore, II is a nontrivial relative

homotopy class in C(M), and its associated min-max minimal hypersurfaces
are two-sided and have multiplicity one. Finally, as the metric is bumpy, the
min-max value L(II) of II is equal to L(IT) when max,cy Area(®o(z)) is close
enough to L(II) = wg(M, g). Hence we have explained how to construct two-
sided min-max minimal hypersurfaces of multiplicity one whose areas realize
the volume spectrum.

0.2. Outline of the paper. In Section 1, we establish the multi-parameter
version of min-max theory for prescribing mean curvature hypersurfaces us-
ing continuous sweepouts. In Section 2, we prove several compactness results
for prescribing mean curvature hypersurfaces with uniform area and Morse in-
dex upper bounds. In Section 3, we prove the Morse index upper bound for
prescribing mean curvature hypersurfaces produced by our min-max theory.
In Section 4, we prove that min-max minimal hypersurfaces associated with
families of boundaries have multiplicity one in a bumpy metric. Finally, in
Section 5, we prove the Multiplicity One Conjecture for volume spectrum.
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1. Multi-parameter min-max theory
for prescribing mean curvature hypersurfaces

Here we present an adaption to multi-parameter families of the min-max
theory for hypersurfaces with prescribed mean curvature (abbreviated as PMC)
established by the author with Zhu [51], [52]. Let S = S(g) (depending on the
metric g) be the open and dense subset of C°°(M) chosen as in [52, Prop. 0.2].
More precisely, S(g) consists of all Morse functions h such that the zero set
Y9 = {h = 0} is a smooth closed embedded hypersurface, and the mean curva-
ture of ¥ vanishes to at most finite order. A hypersurface is almost embedded
(sometime also called strongly Alezandrov embedded) if it locally decomposes
into smooth embedded sheets that touch but do not cross. By [52, Th. 3.11],
any almost embedded hypersurface of prescribed mean curvature h € S has
touching set (n — 1)-rectifiable, and no component is minimal.

Notation. We collect some notions. We refer to [36] and [31, §2.1] for
further materials in geometric measure theory.

Let (M™*!, g) denote a closed, oriented, smooth Riemannian manifold of
dimension 3 < (n41) < 7. Assume that (M, g) is embedded in some R”, I, € N.
B,.(p) denotes the geodesic ball of (M, g). We denote by H* the k-dimensional
Hausdorff measure; I (M) (or Ix(M,Zs)) the space of k-dimensional integral
(or mod 2) currents in R” with support in M; Z, (M) (or Zi(M, 7)) the space
of integral (or mod 2) currents T € I(M) with 9T = 0; Vi(M) the closure,
in the weak topology, of the space of k-dimensional rectifiable varifolds in R
with support in M; Gy (M) the Grassmannian bundle of un-oriented k-planes
over M; F and M respectively the flat norm [36, §31] and mass norm [36,
26.4] on I (M); F the varifold F-metric on V(M) and currents F-metric on
I.(M) or I,(M, Z3), [31, 2.1(19)(20)]; C(M) or C(U) the space of sets 2 C M
or Q C U C M with finite perimeter (Caccioppoli sets), [36, §14][14, §1.6];
and X(M) or X(U) the space of smooth vector fields in M or supported in
U. 9§ denotes the (reduced)-boundary of [[€2]] as an integral current, and vgq
denotes the outward pointing unit normal of 02, [36, 14.2].
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We also utilize the following definitions:

(a) Given T € Ix(M), |T| and ||T|| denote respectively the integral varifold
and Radon measure in M associated with T’

(b) Given ¢ > 0, a varifold V' € Vi (M) is said to have c-bounded first variation
in an open subset U C M, if

|6V (X)| < c/ | X |dpy for any X € X(U);
M

here the first variation of V along X is 0V (X) = ka(M) divg X (x)dV (z, S),
(36, §39];

(c) Given a smooth immersed, closed, orientable hypersurface ¥ in M, or a
set € C(M) with finite perimeter, [[X]], [[2]] denote the correspond-
ing integral currents with the natural orientation, and [X] denotes the
corresponding integer-multiplicity varifold.

As noted by Marques-Neves [29, §5], C(M) is identified with L, (M, Zs2).
In particular, the flat F-norm and the mass M-norm are the same on C(M).
Given Q1,Q9 € C(M), the F-distance between them is:

F(Ql, QQ) = ]:(Ql — Qg) + F(\8(21|, |8Q2|)

Given Q € C(M), we will denote ﬁf(ﬂ) ={Y eC(M):F(Y,Q) <e}.
We are interested in the following weighted area functional defined on
C(M). Given h : M — R, define the A"-functional on C(M) as

(1.1) AR Q) :H”(8Q)—/hdH”+1.
Q

The first variation formula for A" along X € X(M) is (see [36, 16.2])

(1.2) 5Ah!Q(X):/ dianXdMaﬂ—/ X, v) dpog,
o9 00

where v = vyq is the outward unit normal on 9€).
When the boundary 92 = ¥ is a smooth immersed hypersurface, we have

divs X = H(X,v),

where H is the mean curvature of X with respect to v; if 2 is a critical point
of A" then (1.2) directly implies that ¥ = 9Q must have mean curvature
H = h|x. In this case, we can calculate the second variation formula for A"
along normal vector fields X € X(M) such that X = pv along 92 = ¥ where
p € C*(X), [4, Prop. 2.5],

8 AMa(X, X) = ITs(p, ¢)

(1.3) _ /E (162 = (Ric™ (v, v) + [AZ[ + 0,h) ¢2) dpis.
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In the above formula, V¢ is the gradient of ¢ on 3; RicM is the Ricci curvature
of M; A* is the second fundamental form of X.

1.1. Min-mazx construction for (X, Z)-homotopy class. In this part, we
describe the setup for min-max theory for PMC hypersurfaces associated with
multiple parameter families in C(M).

Let X* be a cubical complex of dimension k¥ € N in some I™ = [0, 1]™
and Z C X be a cubical subcomplex.

Let &y : X — (C(M),F) be a continuous map (with respect to the F-
topology on C(M)). We let II be the set of all sequences of continuous (in
F-topology) maps {®; : X — C(M)};en such that

(1) each ®; is homotopic to ®g in the flat topology on C(M), and
(2) there exist homotopy maps {¥; : [0,1] x X — C(M)};en which are contin-
uous in the flat topology, ¥;(0,-) = ®;, ¥;(1,-) = ¢, and satisfy

(1.4) lim sup sup{F(¥;(t, z), Po(z)) : t € [0,1],2 € Z} = 0.
1—00
Note that a sequence {®;};cn with ®; = & for all i € N belongs to II.

Definition 1.1. Given a pair (X, Z) and ®¢ as above, {®;};en is called a
(X, Z)-homotopy sequence of mappings into C(M ), and II is called the (X, Z)-
homotopy class of .

Remark 1.2. 11 can be viewed as the relative homotopy class for ®g in
(C(M), ®g|z). However, we cannot fix the values ®;|7 to be exactly ®g|z. In
fact, in the later discretization/interpolation process, we will allow ®;|z to
deviate slightly from ®y|z; but the deviations will converge to zero as i — 0.

Definition 1.3. The h-width of II is defined by:

L" = L") = inf limsupsup{A"(®;(x))}.

D tell j00 zeX

Definition 1.4. A sequence {®;};cn € II is called a min-maz sequence if

L"(®;) := sup A"(®;(z))
rxeX

satisfies L"({®;}) := limsup,_, ., L"(®;) = L(II).
LEMMA 1.5. Given ®g and 11, there exists a min-maz sequence.

Proof. Take a sequence {{®$};cn}aen in II, such that

lim L"({®{};en) = L(II).

a—o0
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Now we pick up a new sequence by a diagonalization process. Take a sequence
€a — 0. For each «, we pick i, € N, such that

sup  F(V (t,2),Po(x)) < eq and
t€l0,1],zeZ

L"({®f}) — ea < sup A"(®F, (2)) < L"({8F}) + ea,

zeX
where W is the homotopy between ®f and @ in the flat topology. Hence
the sequence {®f }oen belongs to II and is a min-max sequence. (]

Definition 1.6. The image set of {®;};en is defined by
K({®;}) ={V = lim [0®;,(x;)| as varifolds : z; € X}.
j—o0

If {®; };en is a min-max sequence in I1, the critical set of {®;} is defined by

C({®:})
={V = lim |0®;,(x;)| as varifolds : with lim .Ah(CI),-j (z;)) = LM(1D)}.
j—00 :

J]—00

Now we are ready to state the continuous version of min-max theory for
PMC hypersurfaces associated with a (X, Z)-homotopy class. It is a general-
ization of [52, Th. 4.8 and Proposition 7.3|, and the proof is given in Section 1.4.

THEOREM 1.7 (Min-max theorem). Let (M™*!, g) be a closed Riemannian
manifold of dimension 3 < (n+1) <7, and h € S(g) which satisfies [, h >
0. Given a map 9 : X — (C(M),F) continuous in the F-topology and the
associated (X, Z)-homotopy class 11, suppose

(1.5) L"(11) > max{l;leagAh@o(m)),O}.

Let {®;}ien € 1T be a min-mazx sequence for I1. Then there exists V € C({®;})
induced by a nontrivial, smooth, closed, almost embedded hypersurface X™ C M
of prescribed mean curvature h with multiplicity one.

Moreover, V = lim; o |0®;; ()| for some {i;} C {i}, {z;} C X\Z, with
lim ;o0 Ah(q)ij (z)) = LM(10), and ®;,(w;) converges in the F-topology to some
Q€ C(M) such that ¥ = 0 where its mean curvature with respect to the unit
outer normal is h, and

Al(Q) = L),

1.2. Pull-tight. Now we describe the pull-tight process in [52, §5]. Let
¢ = supy, |h|, and L¢ = 2L" 4 ¢ Vol(M). Denote

AL ={V € V(M) V][ (M)
< L€,V has c-bounded first variation, or V € |0®¢|(Z)}.



MULTIPLICITY ONE CONJECTURE ot

We can follow [51, §4] or [52, §5] to construct a continuous map:
H:[0,1] x (C(M),F)Nn{M(09Q) < L°} = (C(M),F) N {M(99Q) < L}

such that
(i) H(0,Q) = Q for all ;
(il) H(t, Q) =Qif |09Q| € AS;
(iii) if |0Q| ¢ AS,

A"(H(1,9)) - AM(Q) < —L(F(|09], A%,)) < 0;

here L : [0,00) — [0, 00) is a continuous function with L(0) = 0, L(t) > 0
when t > 0;
(iv) for every € > 0, there exists 6 > 0 such that

xe€Z, F(Q, & (z)) <d = F(H(Q),P(x)) < e forall t €0,1];

this is a direct consequence of (ii) since |0Pg|(Z) C AS.

Note that to construct H, the only modification of [52, §5.1] is to add [0®|(Z)
into the definition of AS  as we want to fix the values assumed on Z in the
tightening process; all other steps in [52, §5.1] carry out the same way. In
particular, (using notions in [52, §5.1]), H(t,Q) := (¥ g (t)) ().

LEMMA 1.8. Given a min-maz sequence {®}}ien € I1, we define ®;(z) =
H(1,®!(x)) for every x € X. Then {®;}ien is also a min-max sequence in
II. Moreover, C({®;}) C C({®;}) and every element of C({®;}) either has
c-bounded first variation, or belongs to |0Py|(Z).

Proof. By continuity of H, we know that ®; is homotopic to ®; in the flat
topology. By (iv), {¥;(t,z) = H(t, ®}(x))} satisfies (1.4), and hence {®;} € II.
By (ii)(iil), AM(®;(z)) < A"(@¥(z)) for every z € X, so {®;} is also a min-
max sequence. Finally, given any V' € C({®;}), then V' = lim; o [0®;, (z;)]
where lim;_,c A"(®;,(7;)) = L". Denote V* = lim;_,o 007 (x;)]. By (iii),
lim e B0, (7)), A%) = 0 (as limj e A(@, () = limj e A(@], (1))
= L"), so V* € AS,. On the other hand,

V= lim [0H(1,®; (z;))| = H(1, lim |0®] (z;)|) = H(1,V*) =V".
j—o0 J j—o0 J

(Note that H is also well defined as a continuous map H : [0,1] x {V €
Vn(M), [[VI[(M) < L} = {V € Vo(M),[[V][(M) < L°}.) Hence C({®i}) C
C({®;}) and the proof is finished. O

Definition 1.9. Let ¢ = supy; |h|. Any min-max sequence {®;};en € II
such that every element of C({®;}) has c-bounded first variation or belongs to
|0®g|(Z) is called pulled-tight.
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1.3. Discretization and interpolation results. We record several discretiza-
tion and interpolation results developed by Marques-Neves [26, 28]. Though
these results were proven for sweepouts in Z,(M,Z) or Z,(M,7Zs), they work
well for sweepouts in C(M). We will point out necessary modifications.

We refer to Appendix A for the notion of cubic complex structure on X.
We refer to [52, §4] for the notion of discrete sweepouts. Though all definitions

therein were made when X = [0, 1], there is no change for discrete sweepouts
on X.
Recall that given a map ¢ : X (k)o — C(M), the fineness of ¢ is defined as

f(¢) = sup{F(o(z) — ¢(y))
+ M(9¢(z) — 06(y)) : =,y are adjacent vertices in X (k)o}.

Definition 1.10 (cf. [28, §3.7 ]). Given a continuous (in the flat topology)
map @ : X — C(M), we say that ® has no concentration of mass if

lim sup{[|0® () |(B:(p)),p € M,z € X} = 0.

The purpose of the next theorem is to construct discrete maps out of a
continuous map in flat topology.

THEOREM 1.11. Let ® : X — C(M) be a continuous map in the flat topol-
ogy that has no concentration of mass, and sup,cx M(0®(z)) < +00. Assume
that ®|z is continuous under the F-topology. Then there exist a sequence of
maps

O : X(kl)o — C(M),
and a sequence of homotopy maps:
?,ZJi : I(k‘z)o X X(k?l)o — C(M),
with k; < kiz1, ¥i(0,:) = ¢i—1 on(ki, ki—1), ¥i(1,-) = ¢4, and a sequence of
numbers {0; }ien — 0 such that
(i) the fineness £(1);) < ;;
(i)
sup{]-"(i/)i(t,a:) — (I)({L‘)) 1t e I(k‘i)o,$ € X(k‘l)o} < 6y
(iii) for some sequence l; — oo, with l; < k;
M(0¢;(t, z)) < sup{M(0P(y)) : =,y € a for some o € X (;)} + ds;
and this directly implies that
sup{M(0¢;(x)) : x € X (ko)o} < sup{M(0®(x)) : x € X} + 0;.

As ®|z is continuous in F-topology, we have from (iii) that for all t €

I(k‘i)o and x € Z(]{Z')o

M(0vi(t, x)) < M(0®(x)) + n;
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with n; — 0 as i — oo. Applying (26, Lemma 4.1] with S = ®(Z), we get by
(ii) that

(iv)
sup{F(¢;(t,x), ®(z)) : t € I[(k;)o,z € Z(ki)o} — 0, asi — oc.

Now given h € C*°(M), denoting ¢ = sup,; |h|, then we have from (i) (7ii)
that

(v)
A (¢i(x)) < sup{A"(®(y)) : @ € X(L), w,y € a} + (1 + ¢)6;
and hence
sup{A"(¢i(x)) : z € X (ki)o} < sup{A"(®(z)):x € X} + (1+ ¢)d;.

Proof. [26, Th. 13.1] and [28, Th. 3.9] proved this result when C(M) is
replaced by Z,(M) and 2Z,(M,Zs) respectively. The adaption to C(M) was
done in [49, Th. 5.1] when X = [0,1] and it is the same for general X. O

The purpose of the next theorem is to construct a continuous map in the
F-topology out of a discrete map with small fineness.

THEOREM 1.12. There exist some positive constants Cy = Co(M,m) and
5o = do(M,m) so that if Y is a cubical subcomplex of I(m,k) and
¢:Yy—C(M)
has £(¢) < do, then there exists a map
.Y - C(M)
continuous in the F-topology and satisfying
(i) ®(x) = ¢(x) for all x € Yp;

(ii) of o is some j-cell in'Y', then ® restricted to o depends only on the values
of ¢ restricted on the vertices of «;

(i)
sup{F(®(z), ®(y)) : z,y lie in a common cell of Y} < Cof (o).

Proof. This result was proved in [28, Th. 3.10] for when C(M) is replaced
by Z,(M,Z2). We can use the double cover 0 : C(M) — Z,(M,Zs) (see [29,
§5]) to lift the extension from Z,,(M,Zs) to C(M).

Let Cp = Co(M,m) and dp = 6o(M) be given in [28, Th. 3.10]. Denote
d=00¢:Yy — Z,(M,Zs) as the projection of ¢ into Z,(M,Zs3). Then

f(¢) < do, so by [28, Th. 3.10], there exists a map:
O:Y — Z,(M,M,Zs)

continuous in the M-topology and satisfying
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(a) ®(z) = ¢(x) for all z € Yp;

b) if « is some j-cell in Y, then P restricted to o depends only on the values
of gzg restricted on the vertices of «;

(c) sup{M(®(z),®(y)) : z,y lie in a common cell of Y} < Cof(¢).

By [29, Claim 5.2], ® can be uniquely lifted to a continuous map ® : Y —
C(M) such that o ® = ® and ®(z) = ¢(z) for all z € Yy. In fact, given a
j-cell a and a fixed vertex xg € «y, there is a unique lift ® : o — C(M) such
that ®(zo) = ¢(xo). By the construction in [29, Claim 5.2], F(®(z), ®(zg)) =
F(®(x),®(20)) < Cof(¢) for every z € a, so we know by the Constancy
Theorem that ®(z) = ¢(x) for each vertex x € ag when g is small enough.
Thus & can be obtained by lifting ® in each cell of Y.

Since d®(z) and ®(z) represent the same varifold, ® is continuous in the
F-topology. So we have proved (i) and (ii).

For (iii), we have

F(2(z),(y)) = F(2(x), 2(y)) + F(|02(2)], [0(y)]) < 2Cof(¢). O
Remark 1.13. Note that in general the mass of 9®(x) — 0®(y) as element

in Z,(M) may not be equal to that of ®(z) — ®(y), so we may not be able to
prove the M-continuity for &.

Following [28, 3.10], we call the map ® given in Theorem 1.12 the Almgren
extension of ¢. We will record a few properties concerning the homotopy
equivalence of Almgren’s extensions.

Before stating the next result, we first recall the notion of homotopic
equivalence between discrete sweepouts. Let Y be a cubical subcomplex of
I(m, k). Given two discrete maps ¢; : Y (l;)g — C(M), we say ¢1 is homotopic
to ¢o with fineness less than n, if there exist [ € N, [ > [1,ls and a map

Y I(LE+1)oxY(l)y— C(M)
with fineness f(¢)) < n and such that

qu - l]ay> = ¢z(n(k +1k+ lz)(y))7 1=1,2,y€ Y(Z)O

The following result is analogous to [28, Prop. 3.11]. We provide a slightly
different proof.

PROPOSITION 1.14. With ¢1,¢2 as above, if n < 0o(M,m) in Theo-
rem 1.12, then the Almgren extensions

(I)l,q)g Y — C(M)
of @1, pa, respectively, are homotopic to each other in the F-topology.

Proof. By Theorem 1.12, the Almgren extension ¥ : I xY — C(M) of ¢ is
continuous in F-topology and is a homotopy between the Almgren extensions
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B, @ of ¢}, : V(1o — C(M) (given by ¢!(y) = (i — 1], ). Note that
P’ is just a reparametrization of the Almgren extension ®; of ¢; for i = 1,2
respectively, so ®; is homotopic to @} in the F-topology. Now let us describe
the reparametrization map. Given an arbitrary cell « and k € N, we take a,
to be the center cell of a(k). We can define a map n, ;, : @« — a such that it
maps «. to « linearly, and for each x € a\«., if we denote by x. the nearest
point projection of x to da. then n, j maps  to n, x(x.). This map dilates
o, to a and compresses a\a. to the boundary d«, and it is homotopic to the
identity map. With this notion ®}|, = ®;|q 0 14—, on each cell a € Y (1;).
Hence we finish the proof. O

The following result is the counterpart of [28, Cor. 3.12].

PROPOSITION 1.15. Let {¢;}ien and {¢;}ien be given by Theorem 1.11
applied to some ® therein. Assume that ® is continuous in the F-topology on
X. Then the Almgren extension ®; is homotopic to ® in the F-topology for
sufficiently large 1.

In particular, for i large enough, there exist homotopy maps V; : [0,1] x
X — C(M) continuous in the F-topology, ¥;(0,-) = ®;, U;(1,:) = ®, and

limsup sup F(;(¢t,x),®(x)) — 0.
i—oo  tel0,1],zeX

Therefore, for given h € C*°(M), we have

lim sup sup A"(®;(z)) < sup A"(®(z)).
=00 z€X reX
Proof. For i large enough such that §; < Jdp in Theorem 1.12, we let
WU; : I x X — C(M) be the Almgren extensions of v;. By Theorem 1.11(iv)
(with Z = X) and Theorem 1.12(iii), we know that

(1.6) limsup sup F(¥;(t,z),®(z)) — 0.
i—oo  te[0,1],z€X

As in the proof of the above Proposition, we can amend V¥; with the repara-
metrization maps associated with the two pairs (®}_,, ®;_1) and (P}, ®;), and
abuse the notation and still denote them by ¥;. Then W, is a continuous (in the
F-topology) homotopy between ®;_; and ®;. Note that the reparametrizations
are done is small cells with sizes converging to zero, so (1.6) still holds true for
the amended maps by Theorem 1.12(iii) again. For given ¢ large enough, to
construct the homotopy from ®; to ®, we can just let ¥; : [0,00] x X — C(M)
be the gluing of all {¥,},>;. Note that by (1.6), ¥;(00,-) = ® (we can identify
[0, 0o] with [0,1] in the definition of ¥;), and (1.6) holds true with ¥; replaced
by ;. Hence we finish the proof. U
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1.4. Proof of the min-max Theorem. One key ingredient in the Almgren-
Pitts theory to prove regularity of min-max varifold is to introduce the “almost
minimizing” concept. Given h € S(g), we refer to [52, §6] for the detailed no-
tion of hA-almost minimizing varifold and related properties. The existence of
almost minimizing varifolds follows from a combinatorial argument of Pitts
[31, p. 165-page 174] inspired by early work of Almgren [3]. Pitts’s argu-
ment works well in the construction of min-max PMC hypersurfaces; see [52,
Th. 6.4]. Marques-Neves has generalized Pitts’s combinatorial argument to a
more general form in [28, 2.12], and we can adapt their result to the PMC
setting with no change. We now describe the adaption.

Consider a sequence of cubical subcomplexes Y; of I(m, k;) with k; — oo,
and a sequence S = {y; }ien of maps

i (Yi)o = C(M)
with fineness f(p;) = J; converging to zero. Define

L"(S) = limsup sup{ A" (s()) : y € (Yi)o},

1— 00
K(S) ={V = lim |0¢;,(y;)| as varifolds : y; € (Y;;)o},
j—oo
and
C(S) = {V = lim |9¢;,(y;)| as varifolds : with lim A"(¢;,(y;)) = L"(S)}.
j—o0 J—00

We say that an element V' € C(5) is h-almost minimizing in small annuli
with respect to S (cf. [52, Def. 6.3]), if for any p € M and any small enough an-
nulus A = A, ,,(p) centered at p with radii 0 < r; < rg, there exist sequences
{15}jen C {itien and {y; : y; € (¥3;)o}jen, such that V' = lim; o0 [0¢s; (y;)],
limj o0 A" (3, (y5)) = L"(S), and @5, (y;) € @"(A; 24,05 M) (see [52, Def. 6.1])
for some €;,0; — 0. The last condition is usually called (&, d;, h)-almost min-
imizing. Note that by [52, Prop. 6.5], V is also h-almost minimizing in small
annuli in the sense of [52, Def. 6.3].

The following is a variant of [28, Th. 2.13] and [31, Th. 4.10].

THEOREM 1.16. If no element V€ C(S) is h-almost minimizing in small
annuli with respect to S, then there exists a sequence S = {@;} of maps
@i+ Yi(li)o — C(M),
for some l; € N, such that
e ©; is homotopic to p; with fineness converging to zero as i — oo;

o L(S) < LM(S).

Proof. By the assumption of the theorem, for each V' € C(5), there exists
ap € M, such that for any 7 > 0, there exist r, s >0, with # > r+2s > r—2s > 0
and ¢ > 0, such that, if A"(p;(y)) > L"(S) — ¢ and F(|0p;i(y)|,V) < ¢, then
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0i(y) & F"(Ar—2sr425(p);e,8; M) for any § > 0. As in the proof of [31,
Th. 4.10], we denote ¢ = (3™)3". By the compactness of C(S), we can find
a uniform € > 0 and I € N, and finitely many points p1,...,p, € M, and
for each p;, we can find ¢ concentric annuli A;1 DD --- DD A;. (centered at
pj), such that, if A"(p;(y)) > L"(S) — ¢ and i > I, then there exists some
j€{l,...,v}, so that v;(y) ¢ @"(Aj4;e,6;M) for all a € {1,...,c} and for
any d > 0. From here the construction in [31, Page 165-174] can be applied to
S so as to produce the desired S. O

Now we are ready to prove Theorem 1.7 following closely that of [27,
Th. 3.8]. The only additional thing is to keep track of the volume term
Jo hdH™ ! in AM(Q) and the values of maps assumed on Z.

Proof of Theorem 1.7. Let {®;};en be a pulled-tight min-max sequence
for II. By the assumption [, h > 0, L"(II) > 0, and [52, Lemma 4.11], every
element in C({®;}) is nontrivial. Given ®; : X — C(M), it has no concentra-
tion of mass as it is continuous in the F-topology, so applying Theorem 1.11
gives a sequence of maps:

¢1: X(k])o — C(M),

(2
with k:f < k‘gﬂ and a sequence of positive {55}3'61\1 — 0, satisfying (i)--- (v) in
Theorem 1.11.
As ®; is continuous in the F-topology, by the same reasoning as Theo-
rem 1.11(iii)(iv), we further have that for every x € X (k)o,

M(96](x)) < M(0@(x)) + ]
with 77{ — 0 as j — oo, and
sup{F(gﬁ{(x), ®;(z)) :x € X(/{:g)o} — 0, as j — oo.

Now choose j(i) — oo as i — oo, such that ¢; = qﬁg(i) : X(kg(i))o — C(M)
satisfies
o sup{F(pi(z),®;(x)):x € X(k:z].(l))o} < a; with a; = 0 as i — o0;
o sup{F(®;(2), ®:(y) : 2,y € a,0 € X(K)} < ayy
e the fineness f(y;) — 0 as i — oo;
e the Almgren extensions @7 W x - C(M) is homotopic to ®; in the F-

topology with homotopy maps \Ilz (z), and
lim sup Sup{F(l/g(i) (t,z),Pi(x)):t€[0,1],z € X} =0,

1—00
and
lim sup sup Ah(@z(i) (z)) < limsup sup A™(®;(z)) = L"(1I),
i—oo xeX i—oo xeX

by Proposition 1.15.
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Therefore, if S = {¢;}, then L"(S) = L"({®;}) and C(S) = C({®;}). By
Theorem 1.16, if no element V' € C(S) is h-almost minimizing in small annuli
with respect to S, we can find a sequence S = {@;} of maps

@it XKD +1,)0 - c(M)

such that

e ; is homotopic to ; with fineness converging to zero as i — oo;
° Lh(S) < Lh(S).

By Proposition 1.14, the Almgren extensions of ¢;, @;:
oD &, X - (M),

respectively, are homotopic to each other in the F-topology for i large enough,
so ®; is homotopic to ®; in the F-topology.

By assumptions (1.5) and (1.4), for ¢ large enough, ¢; is the identical to
;0 n(kg(i) + U, kf(i)) near Z(kg(i) + l;)o; indeed, the deformation process in
Theorem 1.16 was only made to those o;(z) with A"(p;(x)) close to L(S).
Therefore, the homotopy maps T; between CIJg @ and &, produced by Proposi-
tion 1.14 when restricted to Z are just the reparametrization maps described
therein. Hence

lim sup sup{F (¥, (¢, z), @g(i)(:r)) :tel0,1,z € Z} =0.

1—>00
Therefore, {®;}ien € II. However, by Theorem 1.12

lim sup sup{ A" (®;(x)) : z € X} < LMS) < LM(S) = LM(11).
1—00
This is a contradiction. So some V' € C(S5) = C({®;}) is h-almost minimizing
in small annuli with respect to .S, and hence is h-almost minimizing in small
annuli in the sense of [52, Def. 6.3].

To finish the proof, we need to show that V' has c¢-bounded first variation,
and then [52, Th. 7.1 and Prop. 7.3] give the regularity of V' and the existence
of Q2. Indeed, by Definition 1.9, V either has c-bounded first variation or
belongs to [0®g|(Z). Being h-almost minimizing in small annuli implies that
V has c¢-bounded first variation away from finitely many points by [52, Lemma
6.2]. If V € |0®y|(Z), then the proof of [19, Th. 4.1] implies that ||V|| has at
most 7"~ 3-volume growth near these bad points, so the first variation extends
across these points, and hence V' has c-bounded first variation in M. (Note
that even if V' € |0®|(Z), the associated €2 does not belong to ®y(Z), as
may be equal to M\ ®q(z) for some z € Z.) So we finish the proof. O
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2. Compactness of PMC hypersurfaces with bounded Morse index

Now we present an adaption of Sharp’s compactness theorem [35] (for
minimal hypersurfaces) to the PMC setting and necessary modifications of the
proof. Given a closed Riemannian manifold (M"*!, g) and h € S(g), denote
by P" the class of smooth, closed, almost embedded hypersurfaces ¥ C M,
such that ¥ is represented as the boundary of some open subset Q@ C M (in
the sense of current), and the mean curvature of ¥ with respect to the outer
normal of §2 is prescribed by h, i.e.,

Hs, = hls..

In the following we will sometime abuse the notation and identify X with .

Note that when h € S(g), the min-max PMC hypersurfaces produced in
Theorem 1.7 satisfy the above requirements. Indeed, such ¥ = 02 is a critical
point of the weighted A" functional (1.1):

AM(Q) = Area(X) — / hdH™ .
Q

The second variation formula for A" along normal vector field X = v € X(M)
is given by

52 AP |o(X, X) = /(\WP — (Ric™ (v, 1) + |AZ + 0,h) ) dpis.
>

The classical Morse index for ¥ is defined as the number of negative eigenvalues
of the the above quadratic form. However, since we will deal with hypersurfaces
with self-touching, a weaker version of index is needed. We adopt a concept
used by Marques-Neves [27, Def. 4.1]. As we will see, this weaker index works
well for proving both compactness theory and Morse index upper bound.

Definition 2.1. Given ¥ € P" with ¥ = 09, k € N and € > 0, we say that
Y is k-unstable in an e-neighborhood if there exists 0 < ¢y < 1 an a smooth
family {F,} g C Diff(M) with Fy = Id, F., = F; ! for all v € B (the

standard k-dimensional ball in R¥) such that, for any Q' € EgE(Q), the smooth
function

Al i BY = [0,00), Al (v) = AMF,())
satisfies
o A%, has a unique maximum at m(§) € Bfo/m(());
. —%Id < D? AR, (u) < —cold for all u € B

Since ¥ is a critical point of A", necessarily m(Q) = 0.
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Remark 2.2. If a sequence €2; converges to €2 in the F-topology, then A}éi
tends to .Ag in the smooth topology. Thus if a ¥ € P" is k-unstable in a
0-neighborhood, then it is k-unstable in an e-neighborhood for some £ > 0.

Definition 2.3. Given a ¥ € P" and k € N, we say that its Morse index
is bounded (from above) by k, denoted as

index(X) < k,

if it is not j-unstable in 0-neighborhood for any 7 > k + 1.

All the above concepts can be localized to an open subset U C M by using
Diff(U) in place of Diff (M). If ¥ has index equal to 0 in U, we say ¥ is weakly
stable in U.

PROPOSITION 2.4. If ¥ € P! is smoothly embedded with no self-touching,

then X is k-unstable (in 0-neighborhood) if and only if its classical Morse index
is > k.

Proof. The proof is the same as [27, Prop. 4.3]. O

We have the following curvature estimates as a variant of [52, Th. 3.6]
(with relatively weaker stability assumptions).

THEOREM 2.5 (Curvature estimates for weakly stable PMC). Let 3 <
(n+1) <7, and let U C M be an open subset. Let ¥ € P" be weakly stable in
U with Area(X) < C. Then there exists Cy depending only on n, M, ||h||cs, C,
such that

C
|A¥ P (z) < 2—1
disty;(x, OU)

Proof. The curvature estimates follow from standard blowup arguments
together with the Bernstein Theorem [34, Th. 2] and [33, Th. 3]. In particular,
being weakly stable in U means that for any ambient vector field X € X(U)
that generates the flow ¢;*, we have
1) L a0

' dt? lt=o ¢ -
Assume the conclusion is false. Then there exists a sequence of weakly stable

for all x € X.

hypersurfaces {¥;};en with prescribing functions {h;};en satisfying uniform
bounds, but supy; dist3,(-, OU)|A¥|?(-) — co. By the standard blowup process
(cf. [41]), one can take a sequence of rescalings of ¥; that converges locally in
C3® and graphically to a non-flat minimal hypersurface ¥, in R"*!. Note that
the rescalings of {h;} converges to 0 locally uniformly in C®. By the almost
embedded assumption and the maximum principle for minimal hypersurfaces
([8]), oo is embedded and hence is two-sided. By the classical monotonicity
formula and area upper bound assumption on {¥;}, ¥, has polynomial volume
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growth. The key observation is that (2.1) is preserved under locally C3¢
convergence, and hence Y, is a stable minimal hypersurface. Therefore, it has
to be flat by the Bernstein Theorem, but this is a contradiction. O

Given h € §(g), 0 < AeR and I € N, let
PR T) := {2 € P": Area(X) < A, index(X) < I}.

THEOREM 2.6 (Compactness for PMCs with bounded index). Let (M, g)
be a closed Riemannian manifold of dimension 3 < (n+ 1) < 7. Assume that
{hi}ken is a sequence of smooth functions in S(g) such that limg_,o0 by = hoo
in smooth topology, where ho € S(g) or hoo = 0. Let {3k }ren be a sequence
of hypersurfaces such that Xy € P (A, I) for some fized A > 0 and I € N.
Then,

(i) Up to a subsequence, there exists a smooth, closed, almost embedded hy-
persurface Yoo with prescribed mean curvature hoo, such that 3 — Yoo
(possibly with integer multiplicity) in the varifold sense, and hence also
i the Hausdorff distance by monotonicity formula.

(ii) There exists a finite set of points Y C M with #Y < I, such that the
convergence of Xy, — Yo is locally smooth and graphical on Yoo \ V.

(iii) If hoo € S(g), then the multiplicity of Yoo is 1, and Yoo € P (A, ).

(iv) Assuming Xy # Yoo eventually and hy, = hoo = h € S(g) for all k such
that every ¥ € P is properly embedded with no self-touching, then' Y = ),
and the nullity of oo with respect to 62 A" is > 1.

(v) If hoo = 0, then the classical Morse index of Yo satisfies index(X) < I
(without counting multiplicity).

Remark 2.7. Here we choose to only present the proof when ho € S(g)
or hoo = 0. The results also hold true for arbitrary ho, € C°°(M), and details
will appear elsewhere.

Proof. The proof follows in essentially the same way as [35, Th. 2.3] once
we use Theorem 2.5 to replace [35, Th. 2.1]; we will provide necessary modifi-
cations.

Part 1. We first have the following variant of [35, Lemma 3.1]. Given any
collection of 141 pairwise disjoint open sets {U; {:11, we have that X, (we drop
the sub-index k in this paragraph) is weakly stable in U; for some 1 <4 < I+1.
Indeed, suppose this is false. Then ¥ = 0 is at least 1-unstable in each U,
and hence there exist ¢; € (0,1) and {F{ }4¢_1 1) C Diff(U;) with F*, = (F{)™*,
such that —C%_ < %Ah(Ff(Q)) < —¢;. Now for v = (v1,...,v741) € EIH, let
Fy(x) = Fy, ., 00 Fy (). Since {U;} are pairwise disjoint, it is easy to see
that ¢o = min{¢;} and {F,} give an (I + 1)-unstable pair for ¥, and hence is
a contradiction.
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This fact, together with Theorem 2.5, implies that (up to a subsequence)
>;, converges locally smoothly and graphically to an almost embedded hyper-
surface ¥, of prescribed mean curvature ho (possibly with integer multiplic-
ity) away from at most I points, which we denote by ). Since as varifolds X,
have uniformly bounded first variation, by Allard’s compactness theorem [1],
Y also converges as varifolds to an integral varifold represented by ..

Now we prove that ¥, extends smoothly as an almost embedded hyper-
surface across the singular points Y; i.e., ) are removable. By the argument
in [35, Claim 2, p. 326], for each y; € ), there exists some r; > 0 such that
Yo is weakly stable in By, (y;)\{yi} in the following sense. Denote 2, as the
weak limit of 0 as Caccioppoli sets where ¥ = 0Q. If hoo € S(g), then by
the first paragraph in Part 2 below, ¥, = 0o away from Y, Hs_ = hoolx_,
and A">(3,) = Area(Xs) — fQoo hoodH™ Y if hey = 0, then Yo is a min-
imal hypersurface and A"<(¥.) = Area(¥s). In both cases, we say that
Yo is weakly stable in B, (y;)\{v:} if for any X € X(By,(y;)\{v:}) with the
associated flow {¢5 : t € [—¢,¢]}, %L:OAFL“(Q%(EOO)) > 0. Note that if
this is not true for some X € X(B,.(y;)\{vi}), as A" (¢ (X})) converges to
Al (X (£4)) smoothly as functions of ¢, then X is not weakly stable in
By, (yi)\{yi} for k sufficiently large. Following [35, Claim 2, p. 326], we can
deduce the required stability property for Y.,. Since ¥, has bounded first
variation, then by a classical removable singularity result (see Theorem B.1
when hoo € S(g), and [33] when ho = 0), we get the smooth extension. Up to
here, we have finished proving (i) and (ii).

Part 2. If hoo € S(g), then [52, Th. 3.20] implies that ¥, has multiplicity
one and is the boundary of some open set 2o, (note that when ho € S(g),
only case (2) of [52, Th. 3.20] will happen). In fact, fix a point p € ¥, where
Yoo is properly embedded. If the limit Yo, has multiplicity > 2, then for ¢
sufficiently large and inside a neighborhood of p, ¥; consists of several sheets
with normal pointing to the same side of ¥, but this cannot happen when
¥; bounds a region €;. We refer to the proof of [52, Th. 3.20] for more details.

If index(X) > I, then there exist ¢y € (0,1) and {F, : v € EIH} C
Diff (M) such that —% Id < D? A" (F,(Qs)) < —cold for all v € B Since
Y = 09 converges to X, smoothly away from finitely many points, we know
that Qj converges to (1 in the F-topology as Caccioppoli sets, and then the
sequence v — A (F,(Q)) converges to v — A"=(F, (0 )) smoothly as func-
tions on B . Therefore, for k large enough, —%Id < D2AM(F, (%)) <
—%1d, so Xy is (I + 1)-unstable, which is a contradiction. This finishes the
proof of (iii).

Part 3. Assuming ¥ # Yo eventually and hy = hoo = h € S(g) such
that every element in P” is properly embedded, we know Y = () by multiplicity
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one convergence and the Allard regularity theorem [1]. Next we will produce
a Jacobi field for the second variation 62A" along ¥ ; this implies the nullity
is > 1.

By (1.3), the Jacobi operator associated with 624" along a PMC X € P" is

Lio = —Agp— (RicM(V, v) + |A%)? + h)e.

The smooth graphical convergence of ¥ — ¥ implies that for k sufficiently
large, i can be written as a graph wug in the normal bundle of ¥, and ux — 0
uniformly in smooth topology. Subtracting the mean curvature operators be-
tween X and Y, we get

h(xvuk) - h($7 0) = sz - HZOO = LEoouk + O(Uk),

where Ly u = —Au— (RicM(u, v)+|A%|?)u is the Jacobi operator for second
variation of area, and the second equation follows from [37] and [35, p. 331].
(Note that though the calculation in [35, p. 331] is done assuming h = 0, it
does not depend on h.) The left-hand side equals to 9, h(z, t(x)uy) - ux by the
mean value theorem. Let @y = uy/|ug||2(s.) be the renormalizations, then
standard elliptic estimates imply that uj; converges smoothly to a nontrivial
v € O®°(Xs) such that d,h - ¢ = Ly__ . This is the same as nggo =0, so
we finish proving (iv).

Part 4. Assuming hs, = 0, then X, is an embedded minimal hypersur-
face. Assume without loss of generality that X, is connected with multiplicity
m € N. Suppose the Morse index index(¥) > I + 1. Then by similar
argument as in (iii), we can deduce a contradiction. In particular, by [27,
Prop. 4.3], there exist ¢o € (0,1) and {F, : v € EI—H} C Diff (M) such that
—% Id < D? Area(F, (X)) < —colId for all v € B Since Yk converges to
m - Yoo as varifolds, and since hy — 0 uniformly, we know that A" (F, (%))
converges to m - Area(F, (X)) smoothly as functions on B 1. Therefore, for
k large enough, €y is (I + 1)-unstable, which is a contradiction. So we finish
proving (v). O

There is also a theorem analogous to the above one in the setting of
changing ambient metrics on M; see [35, Th. A.6] for a similar result for
minimal hypersurfaces. The proof proceeds the same way when one realizes
that the constant C} in Theorem 2.5 depends only on the ||g||cs when g is
allowed to change.

THEOREM 2.8. Let M™ L be a closed manifold of dimension 3< (n+1)<7,
and let {gr}ren be a sequence of metrics on M that converges smoothly to
some limit metric g. Let {hi}ren be a sequence of smooth functions with
hi € S(gr) that converges smoothly to some limit hoo € S(g). Let {X}ren
be a sequence of hypersurfaces with ¥, € P (A, I) for some fired A > 0 and
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I € N. Then there exists a smooth, closed, almost embedded hypersurface Yoo
with prescribing mean curvature hoo, such that all properties (i), (ii) and (iii)
in the above theorem are satisfied.

3. Morse index upper bound

In this part, we will establish Morse index upper bound for min-max PMC
hypersurfaces obtained in Theorem 1.7. We will follow closely the strategy of
Marques-Neves [27, Th. 1.2], where they proved Morse index upper bound for
min-max minimal hypersurfaces. Recall that the Morse index of an almost
embedded PMC hypersurface X is given in Definition 2.3.

THEOREM 3.1. Let (M™*!, g) be a closed Riemannian manifold of dimen-
sion 3 < (n+1) <7, and let h € S(g), which satisfies fM h > 0. Gien a k-
dimensional cubical complex X and a subcomplex Z C X, let ¢ : X — C(M)
be a map continuous in the F-topology, and let 11 be the associated (X,Z)-
homotopy class of ®y. Suppose

(3.1) L"(IT) > max { I;leagAh@o(x)), 0}.

Then there exists a nontrivial, smooth, closed, almost embedded hypersurface
X" C M, such that

e Y is the boundary of some Q € C(M) where its mean curvature with respect
to the unit outer normal of Q2 is h, i.e.,

Hy, = hly;

o AM(Q) = LM1D);
e index(X) < k.

3.1. Preliminary lemmas. Let h € S(g). Assume that ¥y = 99 € P"
is k-unstable in an e-neighborhood, ¢ > 0. Let {FU}UEEIC be the associated
smooth family given in Definition 2.1.

The first lemma is a counterpart of [27, Lemma 4.4].

LEMMA 3.2. There exists = 7j(e, Xo, {Fy}) > 0, such that if Q € C(M)
with F(Q,Qy) > e satisfies

AMF, () < AMQ) + 17
for some v € Ek, then F(F, (), Qo) > 27.

Proof. Assume by contradiction that there exist Q;, F(£2;, Qo) > ¢ satisfy-
ing
1
AM(F(00) < AMS) + -

for some v; € Ek, but F(F,, (), Q) < %
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Denote v = limv;, and pass to the limit as i — co. Then Q; — F_, ()
in F-metric, and A"(Qq) < A"(F_,(Qp)), which implies that v = 0; hence
Q; — Qp in the F-metric, which is a contradiction. O

For each Q € Ei(QO), consider the one-parameter flow {¢%(-,t) : t > 0}
C Diff (Ek) generated by the vector field

w— —(1— |u?)VAL(u), ueB".

When u € B" is fixed, the function ¢ — A% (¢ (u,t)) is non-increasing.
The following lemma is a variant of [27, Lemma 4.5], and the proof is
recorded in Appendix C.

LEMMA 3.3. For any 6 < 1/4, there exists T = T(d,¢,Q0,{Fv},c0) > 0
such that for any Q) € Ega(ﬂg) and v € B with v —m(Q)| > 9§, we have
AB(6%(0,T)) < AB(0) = 18 and [67(v,T)| > 7.

3.2. Deformation theorem. Taking a min-max sequence {®;};cn, we will
prove a deformation theorem as an adaption of [27, Th. 5.1] to our setting.
Recall that P" denotes the class of smooth, closed, almost embedded hyper-
surface ¥ C M represented as boundary > = 0f2, and of prescribed mean
curvature h.

Fix a ¢ > 0 such that L" — sup,., A"(®¢(x)) > 20. Denote

Xio ={x € X, such that Ah(q),-(q;)) > Lk — o}

Note that when i is sufficiently large, X; , C X\ Z.
Now we present the deformation theorem, and the proof follows closely
that of [27, Th. 5.1]. Given two subsets A, B C C(M), we denote

F(A,B) :=inf{F(Q4,0p) : Q4 € A,Qp € B}.
THEOREM 3.4. Suppose that
(a) ¥ =00 € Ph is (k + 1)-unstable;
(b) K C C(M) is a subset, so that F({Q}, K) >0 and F(®;(X; ), K) >0 for
all i > io;
(c) AMQ) =L".
Then there exist € > 0, jo € N, and another sequence {¥;}ien, ¥; : X —
(C(M),F), so that
(i) U; is homotopic to ®; in the F-topology for all i € N and ¥;|z = @4z
for i > jo;
(i) L"({®;}) < L7
(iii) F(;(X,0), Br(Q)UK) >0 for alli > jo.
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Proof. Denote d = F({Q2}, K) > 0.

By (a), ¥ is (k + 1)-unstable in some e-neighborhood. Let {Fv}v€§k+17
co be the associated family and constant as in Definition 2.1. By possibly
changing e, {F,}, cp, we can assume that

—k+1

d _
(3.2) inf{F(F, (), K),v € B} > T for all © € BS. ().

Let X (k;) be a sufficiently fine subdivision of X so that
F(®(z), ®i(y)) < b

for any z, y belonging to the same cell in X (k;) with §; = min{2-0t++2) ¢/4}.
We can also assume that

[m(®i(x)) — m(Pi(y))| < d;

for any z,y with F(®;(z),Q) < 2, F(®;(y),Q2) < 2e, and belonging to the
same cell in X (k;).

For >0, let U; ,; be the union of all cells o € X (k;) so that F(®;(x), Q) <n
for all x € 0. Then U;, is a subcomplex of X (k;). If a cell B ¢ U, ,, then
F(®;(2'),Q) > n for some 2’ € B. Therefore, F(®;(z),Q) > n—9; for all x € .
By (c) (after possibly shrinking ¢), we can assume

Ui2e C Xio-
For each i € N and = € U; o, we simply denote AZI, = Agi(x), m;(z) =

m(P;(z)) and ¢;, = %@ The function m; : Uipe = B s continuous,
and the two families {Aﬁm}zeUmE, {¢i.z}zev, ,. are continuous in . Following
[27, 5.1] we can define a continuous map

H; : Uiz x [0,1] — Bf/g}(()) so that f{l(lL‘, 0) =0 for all x € Uj 2c

and

~

(3.3) igf |H;(x,1) — m;(x)| > n; > 0 for some n; > 0.
z€Uj 2¢
The construction here is the same so we omit details. The crucial ingredient

is the fact that U; 2. has dimension less than or equal to k£ while the image set

Ekﬂ has dimension k£ + 1.

Let ¢ : [0,00) — [0,1] be a cutoff function that is non-increasing, is equal
to 1 in a neighborhood of [0,3¢/2], and 0 in a neighborhood of [7e/4, +00).
For y ¢ U; 2c, F(®;(y),Q) > 2e — 6; > 7e/4. Hence

c(F(®;(y),Q)) =0 for all y ¢ U 2c.
Consider the map H; : X x [0,1] — Bgi-l (0) defined as

A~

Hi(z,t) = Hi(z, c(F(®i(x),Q))t) if x € Uj 2e
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and
Hi(z,t) =0if x € X\Uj 2.

Then H; is continuous.

With 7; as given in (3.3), let T; = T(n;,¢,Q,{F,},co) > 0 be given by
Lemma 3.3. Now we set D; : X — EkH such that

Di(z) = ¢iz(Hi(x, 1), c(F(Pi(z), Q2))T;) if 2 € Uj 2
and
Di(z) =0if x € X\Uj 2.

Then D; is continuous.

Define

Ut X = C(M), Vi(z)= Fp,u(Pi(r)).
In particular,
Ui(x) = ®;(x) if z € X\Uj 2.

Hence ¥;|z = ®;|z for i sufficiently large.

Note that the map D; is homotopic to the zero map in §k+1, so U; is
homotopic to ®; in the F-topology for all i € N. Thus far, we have proved (i).

Claim 1. LM({¥},en) < LA

By the non-increasing property of ¢t — Azx(qbi,x(u,t)), we have that for
all z € X,
AMWi(x)) < AM(Fpry a0y (Pi(2)))-
Using the fact that Hy(x,1) € B¥F1(0) for all 2 € X and that || F, —Id ||c2 — 0

1/2
uniformly as v — 0, we have that
(3.4) lim sup | A" (®(2)) — AM(Fp,(0,1)(®i(2)))| = 0,
7 oo TrE

and this finishes proving Claim 1.
Claim 2. There exists € > 0, such that for all sufficiently large i,
F(¥;(X),Q) > ¢
There are three cases. If z € X\U;a., then ¥;(z) = ®;(x) and so
F(;(z),Q) > L.
If © € Ui 2:\Uj 574, then F(®;(z), Q) > . The non-increasing property of
t— AZI(@-@(U, t)) implies

AN (Wi(2)) = AN (Fp,(0)(®i(2))) < A" (Fay(e,1)(Pi(2)))-
From (3.4), we have that for i large enough,

A" (P, o1y (@4(2))) < AM(®i(x)) + 7 for all 2 € X,
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where 7=1(e, 2, {F,}) >0 is given by Lemma 3.2. Combining the two inequal-
ities with Lemma 3.2 applied to ®;(z), v = D;(z), we get F(¥;(x),Q) > 27.

Finally when = € U; 5. /4, ¢(F(®;(x),Q)) = 1. Hence by Lemma 3.3 (with
d=mn;, Q= d;(x), v=H;(x,1)) we have

ANWi()) = ALy (b0 (Hilw, 1), 1)) < ALy (0) = 10 = A" (@) — 72
Note that there exists 7 = J(€2, ¢g) so that
A < AMQ) — ;’% — F(,Q) > 27.

By assumption (c), we can choose i sufficiently large so that

sup A" (®;(x)) < A"(Q) + 2.
rxeX 20

So
AN (Wy(a)) < ANQ) - 2.
This implies that F(¥;(x),) > 27, and hence ends the proof of Claim 2.

Claim 3. For all i, F(V;(X,; ), K) > 0.

If x € Xi’o—\Ui’QE, then \I/z(.l‘) = ‘I’Z(ZL') and so F(\Ifi(Xi7g\Ui725),K) > 0. If
z € Uj e, then F(®;(z),Q) < 2¢, and by (3.2) we have F(¥;(z), K) > 4. So
we finish proving Claim 3, and hence the theorem. ([l

3.3. Proof of Morse index upper bound. Let M™*! be a closed manifold
of dimension 3 < (n+ 1) < 7. A pair (g, h) consisting of a Riemannian metric
g and a smooth function h € C°°(M) is called a good pair if

e h € §(9g), i.e., h is Morse and the zero set {h = 0} is a smooth embedded
hypersurface in M with mean curvature H vanishing to at most finite order;
and

e g is bumpy for P ie., every ¥ € P" is properly embedded (no self-
touching), and is nondegenerate (nullity equal to zero).

Denote by Sp the class of smooth functions h € C°°(M) such that h is
Morse and the zero set {h = 0} is a smooth embedded hypersurface. Note
that Sp is open and dense in C°°(M), and it is independent of the choice of a
metric (see [52, Prop. 3.8]).

LEMMA 3.5. Given h € Sy, the set of Riemannian metrics g on M with
(g,h) as a good pair is generic in the Baire sense.

Proof. By the proof of [52, Prop. 3.8], we know that the set of metrics
g under which {h = 0} has mean curvature vanishing to at most finite order
is an open and sense subset. In particular, openness follows as small smooth
perturbations of g will bound the order of vanishing of Hy,—gy. To show
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denseness,! note that it is proved in [52, Prop. 3.8] that for any h € Sy and
any metric g, one can first perturb g slightly so that {h = 0} is not a minimal
hypersurface. Then there exists a flow {F} : t € (—¢,¢)} C Diff (M) supported
near {h = 0}, such that the zero set of ho(F;)~! has mean curvature vanishing
to at most finite order for ¢ > 0. That is to say, the zero set {h = 0} satisfies
the requirement for the pull-back metrics F}'g.

In a series of celebrated papers [42], [44], [45], White proved that for a
fixed h € Sp, the set of metrics under which all closed, simple immersed PMCs
are non-degenerate and self-transverse is generic in the Baire sense. In fact,
White proved in [42, §7] that the set of metrics under which all closed, simple
immersed CMC hypersurfaces are non-degenerate is generic, and the proof is
the same in a smooth neighborhood of an arbitrary pair (g, h) when h € S(g),
hence the result follows as the set of g where h € S(g) is open and dense. In
[45, Th. 33], White further proved self-transverse property for a generic set
of metrics. Our almost embedded hypersurfaces are simple immersed. So for
such generic metrics, almost embedded PMCs are properly embedded.

To finish the proof, we take the intersection of the two generic sets of
metrics, which is still generic in the Baire sense. O

The following theorem is a counterpart of [27, Th. 6.1], and the proof
follows closely. We remark that by Theorem 2.6(iv), if (g, h) is a good pair,
then there are only finitely many elements in P"*(A, I).

THEOREM 3.6. Assume that (g,h) is a good pair, and let {®;}ien be a
min-maz sequence of 11 such that L'({®;};en) = LA(I1) = L" and (3.1) is
satisfied.

There exists a smooth, closed, properly embedded hypersurface ¥ = 082 €
C({®;}ien) such that ¥ € P" with

L"(11) = A"(Q) and index(%) < k.

Proof. By the finiteness remark above, it suffices to show that, for every
r > 0, there is a ¥ = 99 € P" such that F([X], C({®;}ien)) < 7,

L"(I1) = A"(Q) and index(X) < k.
Denote by W the set of all & = 9Q € P with A"(Q) = L" and by W(r)
the set
(X e W F(X], C({®i}ien)) = 7}

! After this article was first posted, we noticed that denseness can also be proved by using
conformal deformation of metrics; cf. [21, Prop. 2.3]. Indeed, by arbitrarily small conformal
perturbation of the metric, we can make the mean curvature Hy,—o) be a Morse function on

{h=0}.
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LEMMA 3.7. There exist ig €N and £y >0 such that F(®;(X), W(r)) >¢&o
for all © > 1.

Proof. Suppose by contradiction for some subsequence {j} C {i} that we
have z; € X and ¥; = 0Q; € W(r) so that

lim F(®;(x;), ;) = 0.

j—o0
Since A"(Q;) = L, we have lim;_,, A"(®;(z;)) = L". Hence a subsequence
|0®;(x;)| will converge as varifolds to some V' € C({®;};en), which is a con-
tradiction to F(|09Q;], C({®;}ien)) > 7. O

Denote W+ as the collection of elements in W with index greater than
or equal to (k+1). As (g, h) is a good pair, this set is countable by the remark
above the theorem, and we can write Wk+1\§§;(W(T)) = {¥1,%9, -}, where
¥; = 0€;. Note that by possibly perturbing &y, we can make sure WFt1 N

—F
OB, (W(r)) = 0.

Using Theorem 3.4 (we can take X;, to be X) with K = E;(W(r)) and

¥ =34, we find & > 0, i1 € N, and {®}};en so that

e ®! is homotopic to ®; in the F-topology for all i € N and ®}|7 = ®;|z for
12> 115

o L"({®}}ien) < LM

o F(31(X),BL () UBL (W(r))) > 0 for i > iy;

e no §2; belongs to Gﬁg ().

We consider Yo now. If Qo ¢ E;(Ql), we apply Theorem 3.4 with K =
E?l (1) UE;(W(T)), Y = Y9, and find & > 0, i3 € N, and {®?},cy so that
e ®? is homotopic to ®; in the F-topology for all i € N and ®?|; = &;|z for

12> 12;

o L"({®7}ien) < L7
o F(32(X),BL, () UBL, () UBL (W(r))) > 0 for i > i;
e 10 ©; belongs to Bz, () U IBL, ().

If F(Q9,Q1) < &1, we skip it and repeat the construction with 3s.

By induction there are two possibilities. We can find for all [ € N a
sequence {®};en, £ > 0,4, € N, and %, € Wk“\ﬁgo (W(r)) for some subse-
quences {j;} C N so that

e ®! is homotopic to ®; in the F-topology for all i € N and ®!|; = ®;|7 for
@ 2>
o L"({®}}ien) < L7
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=F =F o
o F(®}(X),U,_,B;, (9j,) UB;, (W(r))) > 0 for i > ij;
=F
o (O, 0} cU_BE (@)
e 1o §; belongs to Gﬁgq((qu) forall g =1,...,1.

Or the process ends in finitely many steps. That means we can find some
m € N;;L sequence {®"}ien, €1,...,6m > 0, 4y, € N and ¥;,,...,%;, €
WHI\B_ (W(r)) so that
e ®7" is homotopic to ®; in the F-topology for all i € N and ®]"|z = ®;| for
U2 iy
o L'"({®"}ien) < LM
o F(7(X), U, BL (9;,) UBL (W(r))) > 0 for i > iy;
. =F
o {Q;:j>1} C UL, B (Q5,).
In the first case we choose an increasing sequence p; > 4; so that
1
sup A*(®),) <" + -,
zeX l
and we set ¥U; = @él. In the second case we set p; = [ and ¥; = ®". The
sequence {¥,}cn satisfies that
(i) ¥; is homotopic to ®,, in the F-topology, and ;|7 = ®,, |z for all [;
(i) L"({¥i}en) < L7
(ili) given any subsequence {l;} C {l}, z; € X, if limj o .Ah(\I/lj (zj)) = L,
then {¥; (z;)}jen does not converge in F-topology to any element in

WU W(r).
The Min-max Theorem 1.7 applied to {¥;};cn implies that W\ (W*+1 U
W(r)) is not empty, and this proves the theorem. O

Now we can use the previous theorem and the Compactness Theorem 2.8
to prove Theorem 3.1.

Proof of Theorem 3.1. Given (g, h) as in the theorem, then h € S(g) C Sp.
By Lemma 3.5, there exists a sequence of metrics {g;}jen converging smoothly
to g such that (g;,h) is a good pair for all j € N. If L? = L?(H,gj) is the
h-width of II with respect to g;, then the sequence {L?}jeN tends to the
h-width L*(II, g) with respect to g, and for j large enough (3.1) is satisfied
with g; in place of g. For each j large enough, the previous theorem gives a
properly embedded closed hypersurface ¥3; = 9Q; € P" with A" (Q;) = L?
and index(X;) < k (with respect to gj). Let Yoo = Qs be the limit of
{¥;};en given in Theorem 2.8. Then the locally smooth convergence implies
that A"(Qu) = LM(I1, ¢) and index(X4) < k. O
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4. Min-max hypersurfaces associated with sweepouts of boundaries
have multiplicity one in a bumpy metric

We present our first multiplicity one result. In particular, we will prove
that the min-max minimal hypersurfaces associated with sweepouts of bound-
aries of Caccioppoli sets are two-sided and have multiplicity one in a bumpy
metric. We will approximate the area functional by the weighted A%"-func-
tionals for some prescribing function h when ¢ — 0. We know by Section 1
that the min-max PMC hypersurfaces are two-sided with multiplicity one, and
we will prove that the limit minimal hypersurfaces (when ¢ — 0) are also two-
sided and have multiplicity one by choosing the right prescribing function h.

Recall that a Riemannian metric g is said to be bumpy if every smooth
closed immersed minimal hypersurface is non-degenerate. White proved that
the set of bumpy metrics is generic in the Baire sense [42], [44].

THEOREM 4.1 (Multiplicity one theorem for sweepouts of boundaries).
Let (M™* g) be a closed Riemannian manifold of dimension 3 < (n+1) < 7.
Let X be a k-dimensional cubical complexr and Z C X be a subcomplex, and
let &9 : X — C(M) be a map continuous in the F-topology. Let II be the
associated (X, Z)-homotopy class of ®g. Assume that

(4.1) L(II) > max M(9®o(2)),

where we let h =0 as in Section 1.1.

If g is a bumpy metric, then there exists a disjoint collection of smooth,
connected, closed, embedded, two-sided, minimal hypersurfaces ¥ = Uij\ilzi,
such that

N N
L(II) = ZArea(Zi) and index(X) = Zindex(Zi) < k.
=1 i=1

In particular, each component of ¥ is two-sided and has exactly multiplicity
one.

Proof. Pick a h € S(g) with [,, h > 0 (to be fixed at the end) and ¢ > 0
small enough so that

L(II) — max M(0®g(x)) > 2esup|h| - Vol(M).
z M
Note that for each Q2 € C(M), we have
(4.2) M(9Q) — esup|h| - Vol(M) < A(Q) < M(9Q) + esup |h| - Vol(M).
M M

The above two inequalities imply that if we consider the A%"-functional
in place of the mass M-functional for the (X, Z)-homotopy class II, we have

L(IT) > max { max AP (@g(2)),0}.
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Note that when h € S(g), ch also belongs to S(g). Therefore, Theorem 3.1
applies to II and produces a nontrivial, smooth, closed, almost embedded hy-
persurface Y., such that

e . is the boundary for some Q. € C(M) where its mean curvature with
respect to the unit outer normal v (of €2.) is € - h, i.e.,
HEE =& h|2€;

o Ah(Q,) = LI,
e index(X;) < k.

We denote L = L(IT) and L& = Le*(II). In the following, we proceed the
proof by parts.

Part 1. L* — L when € — 0.

Proof. From (4.2), it is easy to see
L —esup|h|Vol(M) < L® <L+ esup |h| Vol(M).
M M

Part 2. By Theorem 2.6, there exists a subsequence {e;} — 0, such that
Y =2¢,
Yoo (with integer multiplicity) in the sense of Theorem 2.6(i) and (ii). We
denote ) as the set of points where the convergence fails to be smooth. In
particular, by (4.2) and Part 1 and Theorem 2.6(v), we have

M(X) =L and index(X) < k.

converges to some smooth, closed, embedded, minimal hypersurface

That is to say, Yo is & min-max minimal hypersurface associated with II.

Without loss of generality, we assume from Part 3 to Part 8 that 3., has
only one connected component. If ¥, is two-sided with the multiplicity equal
to one, then we are done; otherwise we may assume that either the multiplicity
m > 1 or Y is one-sided.

Part 3. We first assume that Y., is two-sided. We will implicitly use
exponential normal coordinates of Y., with respect to one fixed unit normal
of Y. By the local, smooth graphical convergence ¥ — Y, away from ),
we know that there exists an exhaustion by compact domains {Uy C Xoo\V}
and some small 0 > 0, so that for k large enough, ¥, N (U x (—9,)) can be
written as a set of m-normal graphs {ui,...,ul : ui € C>(Uy)} over Uy, and
such that

up <ui <--- <l and ul, — 0, in smooth topology as k — oco.

Since Y is the boundary of some set Q, by the Constancy Theorem (applied
to Q in Ug X (—0,0)), we know that the unit outer normal v of € will
alternate orientations along these graphs. In particular, if v restricted to the
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graph of uﬁc points upward (or downward), then vy restricted to the graph of
u}jl will point downward (or upward).

Part 4. We first deal with an easier case: m is an odd number. Hence
m > 3. In this case vy, restricted to the bottom (ui) and top (u}?) sheets point
to the same side of ¥, and without loss of generality we may assume that v
points upward therein. This means that for x € Uy,

H’Graph(uzl)(x) :gkh($7 UZL(HT)) and H‘Graph(u}g)(l.) :Ekh(x7 ullc(x»

Here and in the following, the sign convention is made so that H ]Graph(u) is
defined with respect to the upward pointing normal of Graph(u), and hence
the linearized operator is positively definite.

Note that since eh € S(g), by the Strong Maximum Principle [52, Lemma
3.12] (applied to two sheets of the same orientation), we know

u"(z) — ug(z) > 0 for all z € Uy,.
Now by subtracting the above two equations and using the fact that
H‘Graph(u?) - H’Graph(ui) =Ly, (U?’ - ullc) + O(U? - ullc)
(see [35, p. 331] and Part 3 in the proof of Theorem 2.6), we have
(43)  Lyo (uf — wp) +o(ufl' —uy) = e - dhlw, v(@)) - (ui (x) — up(2)),

where vy (z) = t(x)ul(x) + (1 — t(x))ul(x) for some t(z) € [0, 1].

Now it is a standard argument to produce a nontrivial positive Jacobi field
on Yoo \Y. Let us present the details for completeness. Write hy, = v} — u,{,,
and pick a fixed point p € U;. Let hy = hy,/hy(p), then hy(p) = 1. By
standard Harnack and elliptic estimates, hy, will converge locally smoothly to
a positive function ¢ on any fixed U C Uy, and by a diagonalization process,

we can extend ¢ to X\, and such that
Ly, ¢ = 0 outside V.

Part 5. Next we use White’s local foliation argument [41] to prove that ¢
extends smoothly across ), and this will contradict the bumpy assumption of g.

Fix y € ). We use the exponential normal coordinates (z,z) € Yo X
[—9,d]. Let € > 0 be as given in Proposition D.1. Fix a small radius 0 < 7 < ¢,
and choose k large enough such that [[ug|l2,a, [|u}||l2, < €7 near OB (y) so
that some extensions of them to the whole B} (y) have C?“-norms bounded
by en. Let Uli,ﬁvz,lt : Bi(y) — R, t € [-n,n], be the PMC local foliations
associated with egh,

HGraph(v}i‘t)(m) = 5kh($’vlic,t(x))7 i=1m,ze Bg(y)
and

v,i’t(a:) = u}c(az) +t,i=1m,z€ 8Bg(y).
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By the Hausdorff convergence of ¥, — ¥ and the Strong Maximum Prin-
ciple [52, Lemma 3.12] (applied to Graph(u;,) and {Graph(v,iﬁt)}, Graph(u')
and {Graph(v}",)}), we have

uM(x) — up(z) < vpo(T) — Uli,o(x) when z € Up N By (y).

By subtracting the mean curvature equations for Graph(v,i, 0), 4 =1,m,
we get an equation similar to (4.3),

Ly (vio — Uli,o) + o(vilo — Uli,o) = ek - Ouh(x, vp(z)) - (vip(z) — ”é,o(m))-
Note that the two graphs Graph(v}'ﬁyo),i = 1, m must be disjoint by the Strong
Maximum Principle. By elliptic estimates via the weak maximum principle
[13, Th. 3.7], for n small enough and k sufficiently large and a uniform C' > 0,
we have

max(vfly — vio) < Cmax(vfly — vio).

This implies

s (4 () — (@) < Cmas(u' () — wh0).

n

Hence Maxy, NBy flk < C’maxaB;]z flk, S0 ¢ is uniformly bounded and hence
extends smoothly across .

Part 6. We now take care of the more interesting case: m is an even
number. Hence m > 2. In this case v restricted to the bottom (u}) and
top (uj') sheets point to different side of ¥, and without loss of generality
we may assume that v points downward on top sheet, and upward on bottom

sheet. This means that for x € Uy,

H’Graph(u}?)(x) - _Ekh(x7u?(x)> and H‘Graph(u}g)(x) = Ekh(xv ullc(x))

Note that
up'(x) — u,lc(x) >0 for all x € Uy,

but it may take zeros in a co-dimension 1 subset by [52, Prop. 3.17].

Again by subtracting the above two equations, and using the fact that
H|Graph(u;€") - H|Graph(u}c) =Ly, (u? - ullﬂ) + 0(“? - ullg)v we have
(44) Ly (uf' —up) +o(uf" — up) = —ey, - (h(z, uy(2)) + h(z, uj(x))).

Fix a point p € U;. We discuss the renormalization in two cases. Again
write hy, = up’ — u/,l€

h(p)
€k

hy(z)/hy(p). Then by the same reasoning as in Part 4, hy converges locally
smoothly to a nontrivial function ¢ > 0 on ¥\, and such that

Case 1: limsupy,_,, = +00. Consider renormalizations hy(z) =

Ly, ¢ = 0 outside V.
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hy (p)
ek

Case 2: limsupy_, ., < +00. Consider renormalizations hy(z) =

hy(z)/e,. Then again by the same reasoning, hy, converges locally smoothly
to a nonnegative ¢ > 0 on ¥ \Y, and such that

Ly, ¢ = —2h|s_ outside V.

Part 7. We will follow a slightly different local foliation argument to prove
removable singularity for ¢. We inherit all the notation from Part 5. With-
out loss of generality, we may assume sup,, |h| = 1. Let Ul%,t’ vgy s By — R,
t € [-n,n], be the CMC local foliations associated with —ej, and e, respectively,

HGraph(vL’ft)(x) = ¢y, and HGraph(v}c’t)(:U) =€, TE B;;I(y)
and
vpe(z) = up(z) +t,i=1,m, z € 9B, (y).
By the same reasoning as in Part 5, using the Strong Maximum Principle
for varifolds by White [43], we get

e (0] () — k(&) < max(uo() — oo (o).

Note that slightly differently from Part 5, we have
LZOO(UZ,LO - U}i,o) + 0(”2,10 - Uli,()) = 2¢ey.

By [13, Th. 3.7], for n small enough, k large enough and for some uniform
C > 0, we have

e (0 (2) — ul(0) < O (amas(u (a) — () + &%),
Then for both Cases 1 and 2, this implies that ¢ is uniformly bounded and
hence extends smoothly across ).

Note that if we flip the orientations of the top and bottom sheets, then
in Case 2 the limit of renormalizations of heights will converge to a solution of
Ly, = 2h|x_, where ¢ > 0. Note that in the previous case, we can just flip
the sign of ¢ and obtain

Ly, o = 2h|s, where ¢ <0.

Part 8. Now we briefly record the case when Y, is only one-sided. Then
the convergence of ¥ must have multiplicity at least 2; otherwise the con-
vergence will be smooth by the Allard regularity theorem [1], and hence all
> will be one-sided for k sufficiently large, which is a contradiction. Denote
71 Yoo — Yoo as the two-sided double cover of Yoo, and denote 7 : Yoo = Yoo
as the deck transformation map. By the same argument for the two-sided case
applied to the double cover Yo, we can either construct a non-trivial Jacobi
field ¢ on Yo with g o7 = ¢ and

Liwgo = 0;
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or a smooth function ¢ on X with ¢ o 7 = ¢, such that ¢ does not change
sign, and
Ly ¢ =2h|s o

By [44], the first case cannot happen in a bumpy metric.

Summarizing the discussion, we proved that if g is bumpy, then each con-
nected two-sided component X, of ¥, with multiplicity bigger than one must
carry a smooth solution ¢ to the equation

(4.5) Ly, p = 2h[s,;

and the double cover f)u of each one-sided component Y, of ¥, must carry a
smooth solution ¢

(4.6) Lg ¢ =2h[g, omand poT = .
Moreover, in both cases ¢ does not change sign.

Part 9. We will show that for a nicely chosen h € S(g), the (unique)
solutions to (4.5) and (4.6) must change sign. Thus there is no one-sided
component, and the multiplicity for two-sided component must be one.

LEMMA 4.2 (Key Lemma). Assume that g is bumpy. Given L > 0 and
k € N, there exists h € S(g), such that if ¥ is a smooth, connected, closed,
embedded minimal hypersurface with

Area(X) <L and index(X) < k,

then the solution of (4.5) (when X is two-sided) or (4.6) (when X is one-sided)
must change sign.

Proof. As g is bumpy, by the compactness analysis of Sharp [35], there are
only finitely many such ¥ with Area(¥) < L and index(X) < k, and we can
denote them as {¥1,...,Xp}. If ¥; is one-sided, we use 7; : ¥; — Y to denote
the two-sided double cover, and 7; : Si — ii to denote the deck transformation
map.

On each 3;, we can choose two disjoint open subsets U;r and U, C X,
so that the collection of subsets {Uii}izl,..‘, 1, are pairwise disjoint. Moreover,
by possibly changing Uii, we can make sure that the pre-images m; '(U;'),
T 1(Ui_) are diffeomorphic to two disjoint copies of Ui+, U;” respectively. In

that case, we will denote the two copies as U;rl, UZ-JFQ, and U{l, U{Q. That is

m WU = U/ U0k and o ' (U;7) = U U U,
For each i € {1,..., L} such that ¥; is two-sided, we can choose an arbi-

trary pair of nontrivial smooth functions f;* € C>(U;"), f~ € C°(U;") such

7
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that
ff>0and f(p;) >0 at some p; € U;"
and
f7 <0and f; (p;) <0 at some p; € U}
Let b € C®(UY) and h; € C°(U;") be defined by
hi =Ls,f, h; =Ls,f.

If 33; is one-sided, we choose flil € C’é’o(ﬁi), fziz € C’é’o(Ufz) in the same

way, and we can make sure they are the same under deck transformation:

+ _ j£ ~
i1 °T = [ In particular,

f;ﬁ >0 and ffl > (0 somewhere in U{S

and

f.i,_l < 0 and fz_l < 0 somewhere in (71_1

Then we define h;tl, hﬁ in the same manner, so obviously hl?tl oT = hz?tQ, and
they pass to two functions

hi € C(U;) and h; € C(U;).

We can extend each h;t to a function defined on ¥; by letting it be zero
outside Uii. Using the fact that the set of smooth functions S(g) is open and
dense in C*°(M), we can choose a h € S(g) so that

h is as close to hf as we want in any C*“norm when restricted to ¥;.

We may need to flip the sign of h to make | u 1= 0, but the following argu-
ment proceeds the same way. Since all {¥; : i =1,..., L} are non-degenerate
(the Jacobi operator is an isomorphism), we know that if

Ly, = 2h|y, when ¥; is two-sided, or
Ls o= 2h|y, o m; when ¥ is one-sided,
then
@ is as close to fi¥ or ;ij (1=1,2)
as we want in C*2%norm when restricted to >; or f}i.

Then ¢ must change sign, and this is what we want to prove. O

Note that by Part 2, all connected components of a min-max minimal hy-
persurface must satisfy the area and index bound in Lemma 4.2. So we finish
the proof of the theorem. O
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Remark 4.3. Indeed, we can obtain more information. Since ¥, has mul-
tiplicity one, the Allard regularity theorem [1] implies that the convergence
Y — Yoo is smooth everywhere, and hence ¥ is properly embedded for &
large.

Remark 4.4. Without assuming that g is bumpy, our proof says that if the
multiplicity of a two-sided component is greater than two, or if the multiplicity
for a one-sided component is greater than one, then there exists a nontrivial,
nonnegative Jacobi field. Let us point out the necessary details for two-sided
case; the one-sided case follows the same way. Indeed, we only need to focus
on the case when the multiplicity m is even and m > 4; and moreover, we can
focus on Case 2 in Part 6. Using the notation from Parts 6 and 7, we consider

the height difference between the two pairs (up,u; ') and (u2, uj?):

a _ ,m—1 1 b _ ., m 2
hi =u"™" —wy, hy =" —uy.

Then both hf, and hz are positive and satisfy equations of type (4.3) since the
graphs of the two pairs have outer normals pointing to the same side. Consider
the renormalizations h{ = h¢ /), and h? = h? /e;,. Then

h¢, h? < hy, and h{ +h% > hy.

Note that the limit of hy, cannot be identically zero, as then hlx, = 0, violating
the assumption h € S(g). Then the above two inequalities and standard
elliptic estimates imply that at least one limit of the two sequences {le}keN
and {BZ}keN must be a smooth, nontrivial, nonnegative Jacobi field.

Part of the proof of the theorem can be summarized as the following mul-
tiplicity one convergence result, which we believe has its independent interests.

THEOREM 4.5 (Multiplicity one convergence). Let (M™ !, g) be a closed
manifold of dimension 3 < (n+ 1) <7 with a bumpy metric g. Given L > 0,
I € N, then there exists a smooth function h : M — R, h € S(g), such that the
following holds:

Let {Ek}ken be a sequence of smooth, closed, almost embedded hypersur-
faces, and let {ex}ren — 0, such that

e 3. is the boundary of some open set Q, and the mean curvature of ¥y with
respect to the outer normal of Q. is prescribed by eph;
o Area(Xy) <L and index(X) < I.

Then up to a subsequence, {X}ren converges smoothly to a smooth, closed,
embedded, two-sided, minimal hypersurface Yoo with multiplicity one.
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5. Application to volume spectrum

In this part, we will show how to apply the result in Section 4 to study
volume spectrum introduced by Gromov, Guth, and Marques-Neves. In par-
ticular, we will prove that in a bumpy metric, the volume spectrum can be
realized by the area of min-max minimal hypersurfaces produced by Theo-
rem 4.1. To do this, we will carefully pick a sequence of sweepouts of mod
2 cycles and open the parameter space so as to produce sweepouts of bound-
aries of Caccioppoli sets, whose relative homotopy classes satisfy (4.1). As the
space of Caccioppoli sets forms a double cover of the space of mod 2 cycles,
the parameter-space-opening process is achieved by lifting to the double cover.

We first recall the definition of volume spectrum following [28, §4]. Let
(M1, g) be a closed Riemannian manifold. Let X be a cubical subcomplex
of I"™ = [0,1]™ for some m € N. Given k € N, a continuous map ¢ : X —
Z,(M,Zs) is a k-sweepout if

O* (A7) #£ 0 € HF (X, Zo),

where A € HY(Z,(M,Zs),72) = Zs is the generator. Note that ® is said to
be admissible if it has no concentration of mass. Denote by Pi the set of all
admissible k-sweepouts. Then

Definition 5.1. The k-width of (M, g) is

wr(M,g) = @iél?gk sup{M(®(z)) : z € dmn(P)},

where dmn(®) is the domain of ®.

It was proved in [28, Ths. 5.1 and 8.1] that there exists some constant
C = C(M,g), such that

1
akﬁl < we(M,g) < Ckir,

Assume from now on that the dimension satisfies 3 < (n + 1) < 7. It was
later observed by Marques-Neves in [27] that one can restrict to a subclass of Py,
in the definition of wi (M, g). In particular, let Py, denote those elements ® € Py,
that are continuous under the F-topology and whose domain X = dmn(®) has
dimension k (and is identical to its k-skeleton). Then

wr(M,g) = @iélé sup{M(®(x)) : x € dmn(P)}.

They also proved in [27] that for each k& € N there exists a disjoint collection of
smooth, connected, closed, embedded minimal hypersurfaces { Ef ci=1,. .k}
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with integer multiplicities {m? :i =1,...,1;} C N, such that
Ik Uk
wr(M,g) = me -Area(xF)  and Zindex(Ef) < k.
i=1 i=1

Now we are going to state and prove our main theorem.

THEOREM 5.2 (Theorem A). If g is a bumpy metric and 3 < (n+1) <7,
then for each k € N, there exists a disjoint collection of smooth, connected,
closed, embedded, two-sided minimal hypersurfaces {Zf ci=1,...,1l}, such
that

lk lk
wip(M, g) = ZArea(Ef) and Zindex(Zf) <k.
i=1 i=1
That is to say, the min-max minimal hypersurfaces are all two-sided and have
multiplicity one.

Proof. If g is bumpy, then there are only finitely many closed, embedded,
minimal hypersurfaces with Area < A and index < [ for given A > 0,1 € N by
Sharp’s result [35]. Using the Morse index upper bound estimates for min-max
theory by Marques-Neves [27], we have

LEMMA 5.3. Suppose g is bumpy. Then for each k € N, there exist a
k-dimensional cubical complex Xy, and a map ®oy, : Xy = Z,(M,F,Zs) con-
tinuous in the F-topology with ®¢ ;. € Py, such that

L(II) = wk(M, g),
where I, = I1(®g ) is the class of all maps ® : Xy, — Z,(M,F,Zs) continuous
in the F-topology that are homotopic to @y in flat topology.

Proof. From definition we know that
wr(M, g) = mE{L(II(®)), D € Py}.

By area and index upper bounds and the finiteness result, the infimum is
achieved. 0

Now we fix £ € N and omit the sub-index k in the following. Take II =
[Pg: X — Z,(M,F,Zy)] with L(II) = wg. The following result is an outcome
of the proof of [27, Th. 6.1].

LEMMA 5.4. Suppose g is bumpy. Then there exists a pull-tight (see [27,
3.7]) min-maz sequence {®;};en of 11 such that if ¥ € C({®;};en) has support
a smooth, closed, embedded minimal hypersurface, then

IZ|[(M) = wi(M, g) and index(support of ¥2) < k.

We proceed the proof by the following four steps.
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Step 1. In this and the next step, we show how to find another min-max se-
quence, still denoted as {®;}icn, such that for i sufficiently large, either |®;(x)]
is close to a regular min-mazx minimal hypersurface, or the mass M(®;(x)) is
strictly less than wi(M, g).

We recall the following observation by [28, Claim 6.2]. Let S be the set
of all stationary integral varifolds with Area < wy whose support is a smooth
closed embedded minimal hypersurface with index(support) < k. Consider
the set 7 of all mod 2 flat cycles T € Z,,(M,Zs) with M(T') < wy, and such
that either 7" = 0 or the support of T' is a smooth closed embedded minimal
hypersurface with index < k. By the bumpy assumption, both sets S and T
are finite. Moreover,

LEMMA 5.5 (Claim 6.2 in [28]). For every & > 0, there exists € > 0 such
that
T € Z,(M,Zs) with F(|T|,S) <2 = F(T,T) <E&.

We also need another observation by [28, Cor. 3.6]. Denote S* by the unit
circle.

LEMMA 5.6 (Corollary 3.6 in [28]). If € is sufficiently small, depending
on T, then every map ® : St — Z,(M,Zs) with

d(SY c BI(T)={T € 2,(M,Zs) : F(T,T) < &}
18 homotopically trivial.

Let {®;};cn be chosen as in Lemma 5.4. We choose £ as in Lemma 5.6
and ¢ by Lemma 5.5. Take a sequence {k;};cny — 00, such that

sup{F(®;(z), ®;(y)) : v € X(ki), 2,y € a} <e/2.
Consider Z; to be the cubical subcomplex of X (k;) consisting of all cells o €
X (ki) so that
F(|®;(z)|,S) > ¢ for every vertex z in a.
Hence F(|®;(z)|,S) > ¢/2 for all z € Z;.

Consider this sub-coordinating sequence {®;|z, }ien. Then L({®;|z,}) and
C({®;|z}) are defined in the same way as in Section 1.1 with A" replaced
by M.

LEMMA 5.7. We have the following dichotomy:

e no element V€ C({®P;|z, }ien) is Za-almost minimizing in small annuli
(see [28, 2.10]),

® Or

(5.1) L{{®i]z }ien) < L(II) = wg.
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Proof. Suppose that (5.1) does not hold; then L({®;|z, }ien) = L(II). As
{®;}ien is pull-tight, we know that every V € C({®;|z }ien) is stationary.
If V is also Zs-almost minimizing in small annuli, then V is regular by the
regularity of Pitts [31, Th. 7.11] and Schoen-Simon [33, Th. 4]. (See also [28,
Th. 2.11] for the adaption to Zs-coefficients.) By Lemma 5.4, V € S, which is
a contradiction. O

Let Y; = X\Z,;. It then follows that

3
(5.2) F(|®;(x)],S) < € for all z € Y].
We also write B; = Y; N Z;. In fact, B; is the topological boundary of Y; and
Z;. For later purpose, we consider the set
B; = the union of all cells o € Z; such that N B; # (.

Here B; can be thought of as the “thickening” of B; inside Z;.

Let A = ®(\) € H'(X,Zy). Consider the inclusion maps i1 : V; — X
and ig : Z; — X. It then follows from (5.2) and Lemmas 5.5 and 5.6 that

it(\) =0¢€ HY\(Y;, Zy).
Then by [28, Claim 6.3], (®;)|z, is a (k — 1)-sweepout, i.e.,
(N £ 0 e HY Y24, 2).

Now we let Y/ = Y; UB; and Z! = Z;\B;, and we let ¢/ : Y/ — X and
i, + Z! — X be the inclusion maps. Note that (5.2) is satisfied with Y;, 3¢
replaced by Y/, 2e respectively, so by similar reasoning we have

() (\) = 0 € H'(Y{,Zs) and (i5)*(\*"1) # 0 € H*1(Z], Zs).

Step 2. The strategy is to follow the idea in the proof of Theorem 1.7
and apply [28, Th. 2.13] (see also Theorem 1.16) to deform {®;},en so as to
decrease L({(®;)|z, }ien) and make (5.1) be satisfied.

If (5.1) holds true, then we are done for this step. So let us assume that
(5.3) L{®i|z }ien) = L(I) = wy.
By Lemma 5.7 and our assumption (5.3), we know that no element V' €

C({®i|z }ien) is Zo-almost minimizing in small annuli.

Since ®; : X — Z,(M,F,Zs) has no concentration of mass as it is continu-
ous in F-topology, we can apply [28, Th. 3.9] (the counterpart of Theorem 1.11
for maps to Z,,(M,Zs)) to produce a sequence of maps

¢l X (ki + ko — Z,(M, Zs),

with k‘zj € Nand ki < k{“ for all j € N and a sequence of positive {5{}]@\; — 0,
such that
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(i) the fineness f(gb{) < (5j
(it) sup{F(¢!(x) — ®i(x)) : x € X (ki + K)o} < 67;
(iii) for some sequence I/ — oo with I < k7,

M(¢](z)) < sup{M(®;(y)) : 2,y € o for some @ € X (k; + 1)} + 5.

As ®; is continuous in F-topology, we get from property (iii) that for all

x e X(ki + kf-)o,
M(¢; (x)) < M(®i(x)) + 11/,

with 1727' — 0 as j — oo. Applying [26, Lemma 4.1] with S = ®;(X), we get by
(ii) that
(iv) sup{F(¢! (), ®i(z)) : x € X (k; + kg)o} — 0 as j — oo.

We can choose j(i) — oo as i — oo (then k:g(i)
X (ki + k:] l)) Zn (M, Zs) satisfies

o sup{F(pi(z),P;(x)):x € X(k; +k: )0} <al Wlth a; — 0 as i — 00;

e sup{F(®;(z),®;(y)) : aryEOzaEX(k—i—kj )}<CLZ7

e the fineness f(¢;) — 0 as i — oo;

e the Almgren extension @g(i) : X — Z,(M,M,Zs) (see [28, 3.10] for the
definition; it is continuous in the M-topology) is homotopic to ®; in the
flat topology (by [28, Cor. 3.12]), and sup{F(Cbz(i) (2),®i(z)):x € X} =0
as i — oo (by [28, 3.10]).

If we let S = {¢;}ien be a discrete sweepout, then we have L(S) = L({®; }ien)
and C(5) = C({®;}ien). Moreover, consider the restrictions of ¢; to Zi(k:f(i))oz

— 00) such that ¢; = gi)g(i)

Sy ={¢i : Zi(k! D)o = Z,(M, Zy)}.
Similarly, we have
L(5z) = L{®i|z }ien) = L(II) and C(Sz) = C({®i[z }ien)-

AsnoV € C(Syz) is Zz-almost minimizing in small annuli, by [28, Th. 2.13]
(which is a reformulation of Almgren-Pitts combinatorial argument [31, Th.
4.10]), we can find a sequence Sz = {@;} of maps

Bi 0 Zi(kY 4 1)o — Z,(M,Zy)
and a sequence of homotopies
bi: I(1)o x Zi(KY + 1Yo — Za (M, Zo),
such that

o 4i((0),2) = i on(k] " + 1, K]V (@) and gy([1],2) = Gi(a);
e the fineness of ; tends to zero as i — o0;
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o limsupsup{M(t;(t, 2)) : (t,x) € I(I;)o x Z(k'™ +1;)o} = L(Sz) — this
i—00

property was not explicitly listed in [28, Th. 2.13], but it follows from
the construction in [31, Th. 4.10];
° L(Sz) < L(Sz).

Now we construct a new sequence S* = {7 };eny with
or X (ki + kD + 1)o = Za(M, Z),

defined as

o pi(z)=¢p;o0 n(k:g(i) + 1, kg(i))(x), when x € Yl-(kg(i) +1i)o;

o o (z)=1;(t(z),z), where € B;(l;)o and t(z) =min{37% - d(z,B; N Y;), 1}
€ I(l;)o (here d is the distance function restricted to B;(l;)o — see Appen-
dix A; N

e oi(z) = @i(x), when = € Zg(kf-(z) + l;)o — note that ¢(x) > 1 when
x € Zz/ N B;.
By the construction, we see that

e (7 is homotopic to ¢; with fineness tending to zero as i — oo;
o L(5*) = L(II);
e limsup; . sup{M(p(z)) :z € Z{(kf-(l) +1i)o} < L(Sz) < L(1II).

Consider the Almgren’s extension of ¢}:
O X — Z,(M,M, Zs).

Then

(a) @f is homotopic to @g(i) and hence to ®; in the flat topology by [28, 3.11]
and by [28, 3.10];

(b) sup{F(®!(x), ®i(x)):z €Y;} — 0;

(¢) L({®7}) = L(5") = L(ID); i

(d) limsupsup{M(®!(z)) : = € Z/} < L(5z) < L(II).

71— 00

By summarizing what we have done (and abusing the notation Y; = Y/

and Z; = Z!), we produced another min-max sequence {®}};cny C II such that

(1) X can be decomposed to Y; and Z; with Z; = X\Y;, and for ¢ large enough,
it(\) =0 € HY(Y;, Zo) and i5(\*1) £ 0 € H*1(Z;, Zy);

(2) LH®7}) = L({®i}) = L(ID);
(3) lir'risup sup{M(®; (z)) : z € Z;} < L(II).

Note that both Y; and Z; are nonempty for ¢ large enough by (1)(3).
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Step 3. Now we want to produce sweepouts in C(M) by lifting to the dou-
ble cover 0 : C(M) — Z,(M,Z3) so as to produce sweepouts satisfying the
assumption of Theorem 4.1.

We abuse notation and still write {®}} as {®;}. Since (®;)*(\) # 0 €
HY(X,7Zs) = Zs, there exist a double cover 7 : X — X with deck transforma-
tion map 7 : X — X and the lifting maps

d;: X = (C(M),F),

satisfying dd; = ®; o 7. Indeed, the cohomological condition implies that the
induced maps (9;). : m(X) — m(Z2,(M,Zs)) = Zy are surjective; see [28,
Def. 4.1 (i)]. So the kernel of (®;). is a subgroup of 71 (X) with index 2. Then
the existence of such liftings follows from [20, Props. 1.36 and 1.33].

Note that i\ = 0 € H'(Y;,Zs), so the pre-image of Y; is disconnected
and is a disjoint union of two copies of Y;:

Y =m (V) =Y, Uy

where both Yf and Y;” are homeomorphic to ¥;. In fact, the cohomological
condition implies that every closed curve v : S* — Y; lies in the kernel of (®;).,
so the lift 4 of v to X is still a closed curve. This means that Y; is disconnected
as we want.

Denote by ZZ-, B’i and Bi the pre-images of Z;, B;, B; under 7 respectively.
Then B; = Bj‘ U B, is also a disjoint union of two copies of B;.

LEMMA 5.8. For i large enough, if II; is the (X, Z;)-homotopy class as-
sociated with ®;, then we have

L(II;) > L(II) > max M(0®;(z)).
xEL;
Proof. Fix i large, so that

sup M(®;i(z)) < L(II);

we will omit the sub-index in the following proof.
If the conclusion is not true, then we can find a sequence of maps {¥; :
X — (C(M),F)}jen C II, such that

lim sup sup{M(d¥,(z)) : « € X} < L(II),

Jj—r00
and homotopy maps {H; : [0,1] x X — C(M)} that are continuous in the flat
topology, H;(0,-) = ¥;, H;(1,-) = ®, and
lim sup sup{F(H;(t,z), ®(x)) : t € [0,1],2 € Z} = 0.

Jj—o00

We construct a new sequence of maps {\ilj }jen defined as
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U(z),if r € YT, and ‘if;‘(m) =T;o7(2),ifz €Y

. @j () = H;(t(z), z), where t(z) = min{dist(x, Bt NY™*),1} if 2 € BT, and
U%(z) = Hjor(z), if v € B™ — here dist is the distance function by viewing

B as a cube complex in some I(m,1);

. \ilj(x) = ®(z), if 2 € Z' — note that t(x) > 1 for z € Z'N (BT NB7).
Note that though ‘if;‘ themselves may not be continuous as maps to C(M), ¥}

[}
K

¥ S.x
—~
8
SN—
Il

can be passed to quotient as continuous maps from X to Z,(M,Zz). This is
essentially where we used the structures of ¥ and B, that is, (YT, Y ™) and
(B*,B™) are pairwise disjoint.

Denote the quotient maps of {\i/;" }ien by

(U5 =00W; 1 X — Z,(M,Zs)}jen.

We have

e U7 is homotopic to @ in the flat topology;

e limsup; . sup{M(¥}(z)) : z € X} < L(II) = wi(M,g) (by the three
above inequalities).

This will lead to a contradiction with the definition of k-width once we prove

that \113k is an admissible k-sweepout when j is sufficiently large. Indeed, the

only thing left is to show that ¥} has no concentration of mass. This follows

from the third inequality above. So we finish the proof. ([

Step 4. We are ready to finish the proof of Theorem 5.2.

For i large enough as in Lemma 5.8, Theorem 4.1 applied to II; gives a
disjoint collection of smooth, connected, closed, embedded, two-sided, minimal
hypersurfaces ¥; = Uﬁy:ilEi,j, such that

N;
L(IL;) = ZArea(Zm) and index(%;) < k.
j=1
Note also that L(II;) < L(®;) — L(II) = wy. Counting the fact that there
are only finitely many smooth, closed, embedded minimal hypersurfaces with
Area < wi, + 1 and index < k, for 4 sufficiently large we have

L(IL) = L) = - = wp.
Hence we finish the proof of Theorem 5.2. O

Remark 5.9. By the course of the above proof, in a bumpy metric, the
min-max minimal hypersurfaces associated with any homotopically nontrivial
sweepouts of mod-2 cycles are always two-sided and have multiplicity one. In
fact, if ® : X — Z,(M,Zs) is homotopically nontrivial, then the induced
map @, : m(X) — m(2,.(M,Z2)) = Zy must be surjective. Otherwise by [20,
Prop. 1.33], ® can be lifted to a map ® : X — C(M) that is then homotopically
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trivial as C(M) is contractible. With this topological information, the above
proof works the same way and implies the two-sidedness and multiplicity one
for min-max minimal hypersurfaces associated with II(®).

Remark 5.10. After this article was first posted on arXiv, we realized that
the main consequences obtained in Steps 1 and 2 in the above proof are also
contained in [29, Th. 4.9].

Appendix A. Cubical complex structures

Here we recall several cubical complex structures in [28, 2.1].
For each k € N, I(1,k) denotes the cubical complex on the unit inter-

val I = [0,1] whose 1-cells and O-cells (which are also called vertices) are,
respectively,
0,37, 37,237, ..., 1 =37, 1] and [0], 37", [1 = 37F), 1],

We then denote by I(m, k) the cell complex on I™:
I(m,k)=1(1,k)®---®1I(1,k) m times.

Then a@ = a3 ® -+ ® ayy, is a g-cell of I(m, k) if and only if «; is a cell of
I(1,k) for each i, and )", dim(oy;) = q. We often identify a g-cell o with its
support ag X - -+ X ay, C I™. The distance function d on I(m,k)o is defined
as d(z,y) = 358 |z — wil, z,y € I(m, k)o, [31, 4.1(1)(e)].

Let X C I"™ be a cubical subcomplex. The cubical complex X (k) is the
union of all cells of I(m, k) whose support is contained in some cell of X. We
use the notation X (k) to denote the set of all g-cells in X (k), and particularly
X (k)o to denote the set of vertices in X (k). Two vertices z,y € X(k)o are
adjacent if they belong to a common cell in X (k).

Let Y C I(m, k) be a cubical subcomplex. Similarly, the cubical complex
Y (1) is the union of all cells of I(m, k 4 1) whose support is contained in some
cell of Y. Here Y (k), is defined in the same way.

Given k,l € N, we define n(k,[) : X(k)o — X (1)o so that n(7, j)(x) is the
element in X (1) that is closest to = (see [31, p. 141]).

Appendix B. Removing singularity for weakly stable PMC
We record the following standard removable singularity result.

THEOREM B.1. Let (M™*!, g) be a closed Riemannian manifold of dimen-
sion 3 < (n+1) < 7. Given h € §(g) and ¥ C B:(p)\{p} an almost embedded
hypersurface with 0% N B:(p)\{p} = 0, assume that ¥ has prescribing mean
curvature h, and X is weakly stable. If 33 represents a varifold of bounded first
variation in Be(p), then ¥ extends smoothly across p as an almost embedded
hypersurface in B(p).
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Proof. Given any sequence of positive \; — 0, consider the blowups
{Bpr,(2) C ppy (M)}, where py, ) (z) = 5P, Since ¥ has bounded first
variation, p, 5. (¥) converges (up to a subsequence) to a stationary integral
rectifiable cone C in R"*! = T, M. By weakly stability and Theorem 2.5, the
convergence is locally smooth and graphical away from the origin, so C' is an
integer multiple of some embedded minimal hypercone; moreover, C' is weakly
stable, and hence is stable as an embedded minimal hypersurface away from 0.
Therefore, C'is an integer multiple of some n-plane P by Simons’s classification
[38], i.e., C = m - P, where m = O"(X,p). Note that a priori C' may not be
unique.

By the locally smooth and graphical convergence, there exists og > 0
small enough, such that for any 0 < o < 0¢, ¥ has an m-sheeted, ordered (in
the sense of [52, Def. 3.2]), graphical decomposition in the annulus A, /5 ,(p) =

Ba'(p)\Ea/?(p):
XN AU/Q,a(p) = U?llzi(o-)‘

Here each ¥;(0) is a graph over A,/ 5(p) N P for some n-plane P C T),M.
We can continue each 3;(o) all the way to By, (p)\{p}, and we denote
the continuation by ;. Each ¥; can be extended as a varifold across p with
uniformly bounded first variation. (Since ¥; C X satisfies the area decay
estimates, area(X; N By(p)) < Co™.) We claim that the density satisfies
©"(%;,p) = 1 for each i. In fact, ©"(X;,p) > 1 as any blowups of ¥; con-
verges to an n-plane, but m = ©"(%,p) = >, ©"(%;,p). Now applying the
Allard regularity theorem [1] to each ¥;, we get that ¥; extends as a C1® hy-
persurface across p. Higher regularity of 3; follows from the prescribing mean
curvature equation and elliptic regularity. ([

Appendix C. Proof of Lemma 3.3

[27, Lemma 4.5] is purely a result in finite dimensional multi-variable
calculus. Let us translate the problem as follows: let B be some compact
topological space with 0 € B, and let {f € COO(Ek) : w € B} be a family of
smooth functions defined on Ek, such that w — f“ is a continuous map in the
smooth topology on C'*° (Ek) Moreover, we assume

Jig» and m(0) = 0;

. —% Id < D?f*(u) < —co1d for all u € B" and for some co € (0,1).

So for each w € B, we have

(C1) F2 ) = 5 fu = m@) < ) < fm(w) - Pl - m(e)?

e f“ has a unique maximum m(w) € B(’fo/

for all u € Ek.
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For each f“, consider the one-parameter flow {¢“(-,¢) : ¢t > 0} C Diff(?k)
generated by the vector field

u— —(1—[uP)VFfu), ueB.

For fixed u € Ek, the function t — f“(¢“(u,t)) is non-increasing.
The prototype of [27, Lemma 4.5] is the following lemma, and the proof
is essentially the same as therein so we omit it.

LEMMA C.1. For any § < %, there exists T = T(6,B,{f“},co) > 0 such
that for any w € B and v € B* with v — m(w)| > d, we have
€0

F6°(0,7)) < f2(0) = 75 and |¢(0,T)] > %0

Now we are ready to prove Lemma 3.3. Note that the ball E;Z (Qp) is not
compact under the F-topology, so to apply Lemma C.1, we need to introduce
. . =F
a compactification of By, (£o).

Proof of Lemma 3.3. Given a F-Cauchy sequence {€;} C ESE(QO), we
denote (Voo, Qo) € V(M) x C(M) as the limit such that Voo = lim; o0 |0€2]
as varifolds and Q. = lim;_, €2; as Caccioppoli sets. If we define

Al (v) = ||[(Fy) 4 Vao || (M) — / hdH™ ! for each v € Pk,
F,(R0)
then Agi converges smoothly to A% as functions in C> (Ek)

Now take B as the union of §2F€(Qo) with the limits of the form (Va, Qs0),
= Ap and f(Veol?) = AR Then Lemma 3.3 follows from Lemma C.1. 0

Appendix D. Existence of local PMC foliations

We recall the following classical result of White [41, Appendix and Rem. 2].
Note that the A”"-functional can be locally expressed as the integration of an
elliptic integrand.

PRrOPOSITION D.1. Given a Riemannian metric g in a neighborhood U of
0 € R", there exists an € > 0, such that if h : U — R is a smooth function
with ||hljs,a <€, r <e, and if

w: B CR"™ = R satisfies ||wl|2,o < e,

then for each t € [—r,r], there exists a C*-function vy : B® — R whose graph
G, satisfies

HGt = h|Gt
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(where Hg, is evaluated with respect to the upward pointing normal of Gy),

and

v(z) =w(z)+t if x € OB .

Furthermore, vy depends on r,t,h,w in C' and the graphs {Gy : t € [—r,r]}
form a foliation.

[1]
2]

[10]

[11]

References

W. K. ALLARD, On the first variation of a varifold, Ann. of Math. (2) 95 (1972),
417-491. MR 0307015. Zbl 0252.49028. https://doi.org/10.2307/1970868.

F. J. ALMGREN, JR., The homotopy groups of the integral cycle groups, Topol-
ogy 1 (1962), 257-299. MR 0146835. Zbl 0118.18503. https://doi.org/10.1016/
0040-9383(62)90016-2.

F. J. ALMGREN, JR., The theory of varifolds, mimeographed notes, Princeton,
1965.

J. L. BARBOSA, M. Do CARMO, and J. ESCHENBURG, Stability of hypersurfaces
of constant mean curvature in Riemannian manifolds, Math. Z. 197 no. 1 (1988),
123-138. MR 0917854. Zbl 0653.53045. https://doi.org/10.1007/BF01161634.
O. CuoposH and C. MANTOULIDIS, Minimal surfaces and the Allen-Cahn
equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. of
Math. (2) 191 no. 1 (2020), 213-328. MR 4045964. Zbl 1431.49045. https:
//doi.org/10.4007 /annals.2020.191.1.4.

T. H. CoLpING and C. DE LELLIS, The min-max construction of minimal sur-
faces, in Surveys in Differential Geometry, Vol. VIII (Boston, MA, 2002), Surv.
Differ. Geom. 8, Int. Press, Somerville, MA, 2003, pp. 75-107. MR 2039986.
Zbl 1051.53052. https://doi.org/10.4310/SDG.2003.v8.n1.a3.

T. H. CoLpING and W. P. Minicozzi, 11, Width and finite extinction time of
Ricci flow, Geom. Topol. 12 no. 5 (2008), 2537-2586. MR 2460871. Zbl 1161.
53352. https://doi.org/10.2140/gt.2008.12.2537.

T. H. CoLpING and W. P. Minicozzi, 11, A Course in Minimal Surfaces,
Grad. Stud. Math. 121, American Mathematical Society, Providence, RI, 2011.
MR 2780140. Zbl 1242.53007. https://doi.org/10.1090/gsm/121.

C. DE LEerLLis and J. RAMIC, Min-max theory for minimal hypersurfaces
with boundary, Ann. Inst. Fourier (Grenoble) 68 no. 5 (2018), 1909-1986.
MR 3893761. Zbl 1408.53079. https://doi.org/10.5802/aif.3200.

C. DE LerLLis and D. TASNADY, The existence of embedded minimal hy-
persurfaces, J. Differential Geom. 95 no. 3 (2013), 355-388. MR 3128988.
7bl 1284.53057. https://doi.org/10.4310/jdg/1381931732.

T. FRANKEL, On the fundamental group of a compact minimal submanifold,
Ann. of Math. (2) 83 (1966), 68-73. MR 0187183. Zbl 0189.22401. https://doi.
org/10.2307/1970471.

P. Gaspar and M. A. M. GUARACO, The Allen-Cahn equation on closed man-
ifolds, Calc. Var. Partial Differential FEquations 57 no. 4 (2018), Paper No. 101,
42. MR 3814054. Zbl 1396.53064. https://doi.org/10.1007/s00526-018-1379-x.


http://www.ams.org/mathscinet-getitem?mr=0307015
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0252.49028
https://doi.org/10.2307/1970868
http://www.ams.org/mathscinet-getitem?mr=0146835
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0118.18503
https://doi.org/10.1016/0040-9383(62)90016-2
https://doi.org/10.1016/0040-9383(62)90016-2
http://www.ams.org/mathscinet-getitem?mr=0917854
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0653.53045
https://doi.org/10.1007/BF01161634
http://www.ams.org/mathscinet-getitem?mr=4045964
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1431.49045
https://doi.org/10.4007/annals.2020.191.1.4
https://doi.org/10.4007/annals.2020.191.1.4
http://www.ams.org/mathscinet-getitem?mr=2039986
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1051.53052
https://doi.org/10.4310/SDG.2003.v8.n1.a3
http://www.ams.org/mathscinet-getitem?mr=2460871
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1161.53352
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1161.53352
https://doi.org/10.2140/gt.2008.12.2537
http://www.ams.org/mathscinet-getitem?mr=2780140
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1242.53007
https://doi.org/10.1090/gsm/121
http://www.ams.org/mathscinet-getitem?mr=3893761
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1408.53079
https://doi.org/10.5802/aif.3200
http://www.ams.org/mathscinet-getitem?mr=3128988
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1284.53057
https://doi.org/10.4310/jdg/1381931732
http://www.ams.org/mathscinet-getitem?mr=0187183
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0189.22401
https://doi.org/10.2307/1970471
https://doi.org/10.2307/1970471
http://www.ams.org/mathscinet-getitem?mr=3814054
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1396.53064
https://doi.org/10.1007/s00526-018-1379-x

818

[13]

[14]

[15]

[16]

[17]

[18]

XIN ZHOU

D. GILBARG and N. S. TRUDINGER, Elliptic Partial Differential Equations of
Second Order, Classics Math., Springer-Verlag, Berlin, 2001, reprint of the 1998
edition. MR 1814364. Zbl 1042.35002.

E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Monogr.
Math. 80, Birkhauser Verlag, Basel, 1984. MR 0775682. Zbl 0545.49018. https:
//doi.org/10.1007/978-1-4684-9486-0.

M. GrROMOV, Dimension, non-linear spectra and width, in Geometric Aspects of
Functional Analysis (1986/87), Lecture Notes in Math. 1317, Springer, Berlin,
1988, pp. 132-184. MR 0950979. Zbl 0664.41019. https://doi.org/10.1007/
BFb0081739.

M. GRrOMOV, Isoperimetry of waists and concentration of maps, Geom. Funct.
Anal. 13 no. 1 (2003), 178-215. MR 1978494. Zbl 1044 .46057. https://doi.org/
10.1007/s000390300004.

M. A. M. GUARACO, Min-max for phase transitions and the existence of em-
bedded minimal hypersurfaces, J. Differential Geom. 108 no. 1 (2018), 91-133.
MR 3743704. Zbl 1387.49060. https://doi.org/10.4310/jdg/1513998031.

L. GuTH, Minimax problems related to cup powers and Steenrod squares, Geom.
Funct. Anal. 18 no. 6 (2009), 1917-1987. MR 2491695. Zbl 1190.53038. https:
//doi.org/10.1007/300039-009-0710-2.

R. HARVEY and B. LAwWsSON, Extending minimal varieties, Invent. Math.
28 (1975), 209-226. MR 0370319. Zbl 0316.49032. https://doi.org/10.1007/
BF01425557.

A. HATCHER, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002.
MR 1867354. Zbl 1044 .55001.

K. Irig, F. C. MARQUES, and A. NEVES, Density of minimal hypersurfaces
for generic metrics, Ann. of Math. (2) 187 no. 3 (2018), 963-972. MR 3779962.
Zbl 1387.53083. https://doi.org/10.4007/annals.2018.187.3.8.

D. KETOVER, F. C. MARQUES, and A. NEVES, The catenoid estimate and
its geometric applications, J. Differential Geom. 115 no. 1 (2020), 1-26.
MR 4081930. Zbl 1439.53064. https://doi.org/10.4310/jdg/1586224840.

M. M.-C. L1 and X. ZHOU, Min-max theory for free boundary minimal hyper-
surfaces I-regularity theory, 2016, J. Differential Geom., to appear. arXiv 1611.
02612.

Y. LiokuMovicH, F. C. MARQUES, and A. NEVES, Weyl law for the volume
spectrum, Ann. of Math. (2) 187 no. 3 (2018), 933-961. MR 3779961. Zbl 1390.
53034. https://doi.org/10.4007/annals.2018.187.3.7.

F. C. MARQUES and A. NEVES, Rigidity of min-max minimal spheres in three-
manifolds, Duke Math. J. 161 no. 14 (2012), 2725-2752. MR 2993139. Zbl 1260.
53079. https://doi.org/10.1215/00127094-1813410.

F. C. MARQUES and A. NEVES, Min-max theory and the Willmore conjecture,
Ann. of Math. (2) 179 no. 2 (2014), 683-782. MR 3152944. Zbl 1297.49079.
https://doi.org/10.4007 /annals.2014.179.2.6.


http://www.ams.org/mathscinet-getitem?mr=1814364
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1042.35002
http://www.ams.org/mathscinet-getitem?mr=0775682
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0545.49018
https://doi.org/10.1007/978-1-4684-9486-0
https://doi.org/10.1007/978-1-4684-9486-0
http://www.ams.org/mathscinet-getitem?mr=0950979
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0664.41019
https://doi.org/10.1007/BFb0081739
https://doi.org/10.1007/BFb0081739
http://www.ams.org/mathscinet-getitem?mr=1978494
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1044.46057
https://doi.org/10.1007/s000390300004
https://doi.org/10.1007/s000390300004
http://www.ams.org/mathscinet-getitem?mr=3743704
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1387.49060
https://doi.org/10.4310/jdg/1513998031
http://www.ams.org/mathscinet-getitem?mr=2491695
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1190.53038
https://doi.org/10.1007/s00039-009-0710-2
https://doi.org/10.1007/s00039-009-0710-2
http://www.ams.org/mathscinet-getitem?mr=0370319
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0316.49032
https://doi.org/10.1007/BF01425557
https://doi.org/10.1007/BF01425557
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1044.55001
http://www.ams.org/mathscinet-getitem?mr=3779962
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1387.53083
https://doi.org/10.4007/annals.2018.187.3.8
http://www.ams.org/mathscinet-getitem?mr=4081930
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1439.53064
https://doi.org/10.4310/jdg/1586224840
http://www.arxiv.org/abs/1611.02612
http://www.arxiv.org/abs/1611.02612
http://www.ams.org/mathscinet-getitem?mr=3779961
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.53034
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.53034
https://doi.org/10.4007/annals.2018.187.3.7
http://www.ams.org/mathscinet-getitem?mr=2993139
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1260.53079
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1260.53079
https://doi.org/10.1215/00127094-1813410
http://www.ams.org/mathscinet-getitem?mr=3152944
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1297.49079
https://doi.org/10.4007/annals.2014.179.2.6

[27]

[28]

[34]

[35]

MULTIPLICITY ONE CONJECTURE 819

F. C. MARQUES and A. NEVES, Morse index and multiplicity of min-max min-
imal hypersurfaces, Camb. J. Math. 4 no. 4 (2016), 463-511. MR 3572636.
Zbl 1367.49036. https://doi.org/10.4310/CIM.2016.v4.n4.a2.

F. C. MARQUEs and A. NEVES, Existence of infinitely many minimal hyper-
surfaces in positive Ricci curvature, Invent. Math. 209 no. 2 (2017), 577-616.
MR 3674223. Zbl 1390.53064. https://doi.org/10.1007/s00222-017-0716-6.

F. C. MARQUES and A. NEVES, Morse index of multiplicity one min-max mini-
mal hypersurfaces, 2018. arXiv 1803.04273v1.

F. C. MARQUES, A. NEVES, and A. SONG, Equidistribution of minimal hypersur-
faces for generic metrics, Invent. Math. 216 no. 2 (2019), 421-443. MR 3953507.
Zbl 1419.53061. https://doi.org/10.1007/s00222-018-00850-5.

J. T. PirTS, Existence and regularity of minimal surfaces on Riemannian man-
ifolds, Mathematical Notes 27, Princeton Univ. Press, Princeton, N.J.; Univ. of
Tokyo Press, Tokyo, 1981. MR 0626027. Zbl 0462.58003.

T. RIVIERE, A viscosity method in the min-max theory of minimal surfaces, Publ.
Math. Inst. Hautes Etudes Sci. 126 (2017), 177-246. MR 3735867. Zbl 1387.
53084. https://doi.org/10.1007/s10240-017-0094-z.

R. SCHOEN and L. SiMON, Regularity of stable minimal hypersurfaces, Comm.
Pure Appl. Math. 34 no. 6 (1981), 741-797. MR 0634285. Zbl 0497 .49034. https:
//doi.org/10.1002/cpa.3160340603.

R. ScHOEN, L. SiMON, and S. T. YAU, Curvature estimates for minimal hyper-
surfaces, Acta Math. 134 no. 3-4 (1975), 275-288. MR 0423263. Zbl 0323.53039.
https://doi.org/10.1007/BF02392104.

B. SHARP, Compactness of minimal hypersurfaces with bounded index, J. Dif-
ferential Geom. 106 no. 2 (2017), 317-339. MR 3662994. Zbl 1390.53065.
https://doi.org/10.4310/jdg/1497405628.

L. SIMON, Lectures on Geometric Measure Theory, Proc. Centre Math. Anal.
Aust. Nat. Univ. 3, Australian National Univ. , Centre for Mathematical Analysis,
Canberra, 1983. MR 0756417. Zbl 0546.49019.

L. SIMON, A strict maximum principle for area minimizing hypersurfaces, J.
Differential Geom. 26 no. 2 (1987), 327-335. MR 0906394. Zbl 0625.53052.
https://doi.org/10.4310/jdg/1214441373.

J. SiMONS, Minimal varieties in riemannian manifolds, Ann. of Math. (2) 88
(1968), 62-105. MR 0233295. Zbl 0181.49702. https://doi.org/10.2307/1970556.
F. R. SmiTH, On the existence of embedded minimal 2-spheres in the 3-sphere,
endowed with an arbitrary Riemannian metric, 1982, Ph.D. thesis, Australian
National Univ., supervisor: Leon Simon.

A. Song, Existence of infinitely many minimal hypersurfaces in closed manifolds,
2018. arXiv 1806.08816v1.

B. WHITE, Curvature estimates and compactness theorems in 3-manifolds for
surfaces that are stationary for parametric elliptic functionals, Invent. Math. 88
no. 2 (1987), 243-256. MR 0880951. Zbl 0615.53044. https://doi.org/10.1007/
BF01388908.


http://www.ams.org/mathscinet-getitem?mr=3572636
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1367.49036
https://doi.org/10.4310/CJM.2016.v4.n4.a2
http://www.ams.org/mathscinet-getitem?mr=3674223
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.53064
https://doi.org/10.1007/s00222-017-0716-6
http://www.arxiv.org/abs/1803.04273v1
http://www.ams.org/mathscinet-getitem?mr=3953507
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1419.53061
https://doi.org/10.1007/s00222-018-00850-5
http://www.ams.org/mathscinet-getitem?mr=0626027
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0462.58003
http://www.ams.org/mathscinet-getitem?mr=3735867
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1387.53084
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1387.53084
https://doi.org/10.1007/s10240-017-0094-z
http://www.ams.org/mathscinet-getitem?mr=0634285
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0497.49034
https://doi.org/10.1002/cpa.3160340603
https://doi.org/10.1002/cpa.3160340603
http://www.ams.org/mathscinet-getitem?mr=0423263
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0323.53039
https://doi.org/10.1007/BF02392104
http://www.ams.org/mathscinet-getitem?mr=3662994
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1390.53065
https://doi.org/10.4310/jdg/1497405628
http://www.ams.org/mathscinet-getitem?mr=0756417
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0546.49019
http://www.ams.org/mathscinet-getitem?mr=0906394
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0625.53052
https://doi.org/10.4310/jdg/1214441373
http://www.ams.org/mathscinet-getitem?mr=0233295
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0181.49702
https://doi.org/10.2307/1970556
http://www.arxiv.org/abs/1806.08816v1
http://www.ams.org/mathscinet-getitem?mr=0880951
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0615.53044
https://doi.org/10.1007/BF01388908
https://doi.org/10.1007/BF01388908

820

[42]

[43]

[45]

[46]

[47]

[48]

[49]

XIN ZHOU

B. WHITE, The space of minimal submanifolds for varying Riemannian metrics,
Indiana Univ. Math. J. 40 no. 1 (1991), 161-200. MR 1101226. Zbl 0742.58009.
https://doi.org/10.1512/iumj.1991.40.40008.

B. WHITE, The maximum principle for minimal varieties of arbitrary codimen-
sion, Comm. Anal. Geom. 18 no. 3 (2010), 421-432. MR 2747434. Zbl 1226.
53061. https://doi.org/10.4310/CAG.2010.v18.n3.al.

B. WHITE, On the bumpy metrics theorem for minimal submanifolds, Amer.
J. Math. 139 no. 4 (2017), 1149-1155. MR 3689325. Zbl 1379.53084. https:
//doi.org/10.1353 /ajm.2017.0029.

B. WHITE, Generic transversality of minimal submanifolds and generic regularity
of two-dimensional area-minimizing integral currents, 2019. arXiv 1901.05148.
S. T. Yau, Problem section, in Seminar on Differential Geometry, Ann. of
Math. Stud. 102, Princeton Univ. Press, Princeton, N.J., 1982, pp. 669-706.
MR 0645762. Zbl 0479.53001.

X. Zuou, On the existence of min-max minimal torus, J. Geom. Anal. 20
no. 4 (2010), 1026-1055. MR 2683775. Zbl 1203.58001. https://doi.org/10.1007/
$12220-010-9137-0.

X. ZHou, Min-max minimal hypersurface in (M"*! g) with Ric >0 and 2 <n
< 6, J. Differential Geom. 100 no. 1 (2015), 129-160. MR 3326576. Zbl 1331.
53092. https://doi.org/10.4310/jdg/1427202766.

X. ZuHou, Min-max hypersurface in manifold of positive Ricci curvature, J.
Differential Geom. 105 no. 2 (2017), 291-343. MR 3606731. Zbl 1367.53054.
https://doi.org/10.4310/jdg/1486522816.

X. ZHOoU, On the existence of min-max minimal surface of genus g > 2, Commun.
Contemp. Math. 19 no. 4 (2017), 1750041, 36. MR 3665358. Zbl 1369.49059.
https://doi.org/10.1142/50219199717500419.

X. ZHou and J. J. ZHU, Min-max theory for constant mean curvature hypersur-
faces, Invent. Math. 218 no. 2 (2019), 441-490. MR 4011704. Zbl 1432.53086.
https://doi.org/10.1007/500222-019-00886- 1.

X. ZHOU and J. J. ZHU, Existence of hypersurfaces with prescribed mean curva-
ture I — generic min-max, Camb. J. Math. 8 no. 2 (2020), 311-362. MR 4091027.
Zbl 07192738. https://doi.org/10.4310/CIM.2020.v8.n2.a2.

(Received: February 5, 2019)
(Revised: September 9, 2020)

UNIVERSITY OF CALIFORNIA SANTA BARBARA, SANTA BARBARA, CA and
INSTITUTE FOR ADVANCED STUDY, PRINCETON, NJ

E-mail: xinzhouQcornell.edu,zhou@math.ucsb.edu

Current address: CORNELL UNIVERSITY, ITHACA, NY


http://www.ams.org/mathscinet-getitem?mr=1101226
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0742.58009
https://doi.org/10.1512/iumj.1991.40.40008
http://www.ams.org/mathscinet-getitem?mr=2747434
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1226.53061
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1226.53061
https://doi.org/10.4310/CAG.2010.v18.n3.a1
http://www.ams.org/mathscinet-getitem?mr=3689325
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1379.53084
https://doi.org/10.1353/ajm.2017.0029
https://doi.org/10.1353/ajm.2017.0029
http://www.arxiv.org/abs/1901.05148
http://www.ams.org/mathscinet-getitem?mr=0645762
http://www.zentralblatt-math.org/zmath/en/search/?q=an:0479.53001
http://www.ams.org/mathscinet-getitem?mr=2683775
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1203.58001
https://doi.org/10.1007/s12220-010-9137-0
https://doi.org/10.1007/s12220-010-9137-0
http://www.ams.org/mathscinet-getitem?mr=3326576
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1331.53092
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1331.53092
https://doi.org/10.4310/jdg/1427202766
http://www.ams.org/mathscinet-getitem?mr=3606731
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1367.53054
https://doi.org/10.4310/jdg/1486522816
http://www.ams.org/mathscinet-getitem?mr=3665358
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1369.49059
https://doi.org/10.1142/S0219199717500419
http://www.ams.org/mathscinet-getitem?mr=4011704
http://www.zentralblatt-math.org/zmath/en/search/?q=an:1432.53086
https://doi.org/10.1007/s00222-019-00886-1
http://www.ams.org/mathscinet-getitem?mr=4091027
http://www.zentralblatt-math.org/zmath/en/search/?q=an:07192738
https://doi.org/10.4310/CJM.2020.v8.n2.a2
mailto:xinzhou@cornell.edu, zhou@math.ucsb.edu

	0. Introduction
	0.1. Sketch of the proof
	0.2. Outline of the paper
	Acknowledgements

	1. Multi-parameter min-max theory for prescribing mean curvature hypersurfaces
	Notation
	1.1. Min-max construction for (X, Z)-homotopy class
	1.2. Pull-tight
	1.3. Discretization and interpolation results
	1.4. Proof of the min-max Theorem

	2. Compactness of PMC hypersurfaces with bounded Morse index
	3. Morse index upper bound
	3.1. Preliminary lemmas
	3.2. Deformation theorem
	3.3. Proof of Morse index upper bound

	4. Min-max hypersurfaces associated with sweepouts of boundaries have multiplicity one in a bumpy metric
	5. Application to volume spectrum
	Appendix A. Cubical complex structures
	Appendix B. Removing singularity for weakly stable PMC
	Appendix C. Proof of Lemma 3.3
	Appendix D. Existence of local PMC foliations
	References

