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A sharp square function estimate
for the cone in R3

By Larry Guth, Hong Wang, and Ruixiang Zhang

Abstract

We prove a sharp square function estimate for the cone in R3 and con-

sequently the local smoothing conjecture for the wave equation in 2 + 1

dimensions.

1. Introduction

1.1. Main results. This paper concerns the restriction theory of the cone

in R3. Let Γ be the truncated light cone Γ = {ξ2
1 + ξ2

2 = ξ2
3 , 1/2 ≤ ξ3 ≤ 1},

and let NR−1(Γ) denote its R−1-neighborhood. Cover NR−1(Γ) by finitely

overlapping sectors θ of angular width R−1/2, where each sector is a rectangular

box of dimensions about R−1 × R−1/2 × 1. If f̂ has support on NR−1(Γ), we

consider a set of functions {fθ} such that

(a) f̂θ is supported on θ, and

(b) f =
∑

θ fθ.

For example,1 here is a natural way to choose {fθ}: let ψθ be a smooth partition

of unity subordinate to the covering {θ}, and define fθ by f̂θ = f̂ψθ. We prove

the following sharp square function estimate for this decomposition:

Theorem 1.1 (Square function estimate). For any ε > 0, R ≥ 1 and any

function f whose Fourier transform is supported on NR−1(Γ), we have

‖f‖L4(R3) ≤ CεRε
∥∥∥∥∥∥
(∑

θ

|fθ|2
)1/2

∥∥∥∥∥∥
L4(R3)

.

This type of square function estimate was considered by Mockenhaupt

[19] who proved that it implies the cone multiplier conjecture in R3, and by

Keywords: wave equation, local smoothing, square function estimate, incidence estimate

AMS Classification: Primary: 35L05, 42B15; Secondary: 42B25, 42B20.

c© 2020 Department of Mathematics, Princeton University.
1We remark that what we prove about {fθ} in this paper is uniform as long as (a) and

(b) are satisfied, i.e., it does not depend on the particular choice of {fθ}.
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Mockenhaupt–Seeger–Sogge [20] (in a slightly different form) who essentially

showed that it implies the local smoothing conjecture for the wave equation in

2 + 1 dimensions. Here we recall the local smoothing conjecture, and we refer

to [19] and [18] for more information about the cone multiplier conjecture. The

local smoothing conjecture was formulated by Sogge in [23]. If u is a solution to

the wave equation on Rn, a local smoothing inequality bounds ‖u‖Lp(Rn×[1,2])

in terms of the Sobolev norms of the initial data. In particular, the local

smoothing conjecture in 2 + 1 dimensions is the following estimate.

Theorem 1.2 (Local smoothing in 2+1 dimensions). Suppose that u(x, t)

is a solution of the wave equation in 2+1 dimensions, with initial data u(x, 0) =

u0(x) and ∂tu(x, 0) = u1(x). Then for any p ≥ 4, and any α > 1
2 −

2
p ,

(1) ‖u‖Lp(R2×[1,2]) ≤ Cα (‖u0‖p,α + ‖u1‖p,−1+α) .

Theorem 1.2 follows by combining Theorem 1.1 with the arguments

in [20].

In [23], Sogge formulated the local smoothing conjecture, and he noticed

that Bourgain’s proof of the boundedness of the circular maximal operator

in [1] can be used to establish “local smoothing” estimates with a non-trivial

gain of regularity. The critical case of Theorem 1.2 is when p = 4 and α is

close to zero. Mockenhaupt, Seeger, and Sogge [20] proved that (1) holds for

p = 4 with α > 1/8, and this was improved afterwards by several authors ([24],

[27], [17]). In [26], Wolff proved the local smoothing conjecture for p ≥ 74 in

the full range2 of α. In that paper, Wolff introduced the idea of decoupling.

His method was extended to higher dimensions by  Laba–Wolff [16] and refined

by Garrigós–Seeger [12], [13] and Garrigós–Schlag–Seeger [11]. Then in [2],

Bourgain and Demeter proved a sharp decoupling estimate for the cone in

every dimension, in particular, proving the local smoothing conjecture in 2 + 1

dimensions for p ≥ 6 in the full range of α. The sharp decoupling estimate for

the cone does not, however, imply the full range of local smoothing estimates;

at the end of the introduction we will discuss what the issue is.

In a different direction, Lee and Vargas [18] proved a sharp L3 square

function estimate using multilinear restriction.

1.2. Proof strategy. One new feature of our approach is that we prove a

stronger estimate that works better for induction on scales. We need a little

notation to state this estimate. The precise details and definitions are provided

2To be more specific, Sogge originally made the conjecture for α in the range α > 1
2
− 2

p

and Wolff confirmed Sogge’s conjecture for p ≥ 74 and α in this range. Later in the work

[15] of Heo, Nazarov and Seeger it was conjectured further that when p > 4, the conjecture

should hold for α ≥ 1
2
− 2

p
.
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in Section 3. First we recall the locally constant property of f . For each

sector θ, we let θ∗ denote the dual rectangular box: since θ has dimensions

1×R−1/2 ×R−1, θ∗ has dimensions 1×R1/2 ×R. We call such a θ∗ a plank.

Recall that |fθ| is roughly constant3 on each translated copy of θ∗. In this

paper we tile R3 with translated copies of θ∗. The restriction of fθ to one

translated copy of θ∗ is called a wave packet . In addition to the sectors θ, we

will consider larger angular sectors τ with any angle between R−1/2 and 1. We

write d(τ) to denote this angle, which we call the aperture of τ .

τ

d(τ)

For each τ , we define4 fτ =
∑

θ⊂τ fθ, and we define τ∗ to be the dual

rectangle to τ . If d(τ) = s, then τ∗ has dimensions 1 × s−1 × s−2, and |fτ |
is roughly constant on each translated copy of τ∗. Next we define Uτ,R to be

a scaled copy of τ∗ with diameter R. If d(τ) = s, then Uτ,R has dimensions

Rs2×Rs×R. Note that if θ ⊂ τ and if T is a translated copy of θ∗ that passes

through the center of Uτ,R, then T ⊂ 10Uτ,R, where 10Uτ,R means the dilation

of Uτ,R by a factor of 10 with respect to its centroid. For each τ , we tile R3

by translated copies of Uτ,R:

R3 =
⊔

U a translated copy of Uτ,R

U.

This tiling is natural because for each θ ⊂ τ , the support of each wave packet

of fθ is essentially contained in ∼ 1 tiles U in the tiling. Here the notation

for two quantities A ∼ B means that A ≤ C1B ≤ C2A for some positive

absolute constants C1 and C2. We write
∑

U//Uτ,R
to denote the sum over all

the translated copies U of Uτ,R in the tiling of R3.

3Such kind of “locally constant” heuristic will be used a few times in the current paper.

To justify this intuition one can use Corollary 4.3 in [3]. See also Lemmas 6.1 and 6.2 in

Section 6 of the current paper.
4This definition works best if τ is honestly tiled by θ. In general we abuse the notation

a bit: Throughout this paper, by writing “summing over θ ⊂ τ ,” we really mean “summing

over all θ ∈ A(τ)” where the collection A(τ) is chosen as follows: Each A(τ) only contains

those θ’s who intersect τ , and all A(τ) form a disjoint union {θ} =
⊔
τ A(τ).
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If U is a translated copy of Uτ,R, then we define the square function SUf

associated with U to be

SUf =

(∑
θ⊂τ
|fθ|2

)1/2

|U .

We can now state our main estimate.

Theorem 1.3. Suppose that f has Fourier support on NR−1(Γ). Then

(2) ‖f‖4L4(R3) ≤ CεR
ε

∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUf‖4L2 .

Here the sum over s is over dyadic values of s in the range R−1/2 ≤ s ≤ 1.

Let us take a moment to digest the right-hand side of this estimate. For

this discussion, suppose that f is essentially supported on one BR. We start

with the term where s = R−1/2. In this case τ is one of the original sectors θ

of aperture R−1/2, Uτ,R is equal to θ∗, and |SUf | = |fθ|
∣∣
U

. Since |SUf | = |fθ|
is roughly constant on U ,

|U |−1‖SUf‖4L2 ∼ ‖SUf‖4L4 .

If the functions fθ are essentially supported on disjoint regions, we would have

‖f‖4L4 ∼
∑

d(θ)=R−1/2

∑
U//Uτ,R

‖SUf‖4L4 ,

which matches the term s = R−1/2 on the right-hand side of (2). Next consider

the term where s = 1. In this case, there is only one τ that covers all of Γ,

and the contribution to the right-hand side is essentially |BR|−1‖SBRf‖4L2 ∼
|BR|−1‖f‖4L2(BR). If |f | is roughly constant on the whole BR, then we would

have

‖f‖4L4(R3) ∼‖f‖
4
L4(BR) ∼ |BR|

−1‖f‖4L2(BR) ∼ |BR|
−1‖SBRf‖

4
L2(BR),

which matches the term s = 1 on the right-hand side of (2). Finally we consider

the intermediate values of s. It may happen that f = fτ for some τ , that f is

essentially supported on a particular translated copy U of Uτ,R, and that |f |
is roughly constant on U . In this case,

‖f‖4L4(R3) ∼‖fτ‖
4
L4(U) ∼ |U |

−1‖fτ‖4L2(U) ∼ |U |
−1‖SUf‖4L2 ,

which is the term corresponding to U on the right-hand side of (2).

The proof of Theorem 1.3 is based on a new Kakeya-type estimate, which

controls the overlapping of the planks in the wave packet decomposition of f .
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Lemma 1.4. Suppose that f̂ has support on NR−1(Γ). Let g denote the

(squared) square function g =
∑

d(θ)=R−1/2 |fθ|2. Then∫
R3

|g|2 .
∑

R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUf‖4L2 ,

where A . B means that A ≤ CB for some absolute positive constant C .

Recall that each function |fθ| is morally constant on the translated copies

of θ∗, where each θ∗ is a 1×R1/2 ×R plank. The estimate in Lemma 1.4 is a

Kakeya-type bound on the overlapping of these planks. The new feature of this

estimate compared to previous Kakeya-type estimates is the structure of the

right-hand side, which is designed to match the right-hand side of Theorem 1.3.

The terms on the right-hand side keep track of how planks are packed into the

rectangular boxes U . If the planks are spread out in the sense that each box

U does not contain too many planks, then it gives a strong bound.

In [26], Wolff connected Kakeya-type estimates for overlapping planks to

incidence geometry problems in the spirit of the Szemerédi–Trotter problem.

He adapted the cutting method from incidence geometry to this setting and he

used it to estimate the overlaps of planks. He applied those geometric estimates

at many scales to prove his results on local smoothing. In [2], Bourgain and

Demeter apply multilinear Kakeya estimates at many scales to prove decou-

pling. In this paper, we apply Lemma 1.4 at many scales to prove Theorem 1.3.

Lemma 1.4 is proven using Fourier analysis. By Plancherel,
∫
|g|2 =

∫
|ĝ|2.

Roughly speaking, we decompose the Fourier space, and the contributions of

different regions to
∫
|ĝ|2 correspond to the different terms on the right-hand

side of Lemma 1.4. This approach to proving Kakeya-type estimates is based

on some work of Orponen in projection theory [21] and is related to Vinh’s

work [25] about incidence geometry over finite fields. It builds on [14], which

applies similar ideas to rectangles and tubes instead of planks.

1.3. Local estimates. Our Theorem 1.3 and Lemma 1.4 have “local” coun-

terparts involving polynomially decaying weights that are essentially supported

on a given box. For any box BR of diameter R, define the weight

wBR,E(x) =

Å
1 +

dist(x,BR)

R

ã−E
.

Here is the local version of Theorem 1.3.

Theorem 1.5. If f has Fourier support on NR−1(Γ), then for any E > 0,

(3) ‖f‖4L4(BR) ≤ Cε,ER
ε

∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖wBR,E · SUf‖
4
L2 .

Here the sum over s is over dyadic values of s in the range R−1/2 ≤ s ≤ 1.
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In the above theorem, the sum on the right-hand side is also “morally

localized.” It is ∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R,U⊂100BR

|U |−1‖SUf‖4L2

plus some decaying error term. To prove Theorem 1.5, we multiply f by a

rapidly decaying bump function φR adapted to BR such that |φR| > 1
C > 0 on

BR and φ̂R is supported on the ball BR−1 centered at the origin, and then we

apply Theorem 1.3 to the decomposition φRf =
∑

θ φRfθ.

1.4. Relationship with decoupling. While working on this project, we were

strongly influenced by ideas related to decoupling, but the proof given here does

not use the decoupling theorem per se. It does make use of a nice observation

that Bourgain and Demeter used to reduce the decoupling theorem for the cone

to the decoupling theorem for the paraboloid. (See [2]. Similar ideas can also

be traced back to the iteration argument of Pramanik–Seeger [22].) Instead

of working with a truncated cone of height 1, Bourgain and Demeter worked

with a truncated cone of height 1/K for a large constant K, denoted Γ 1
K

. This

shorter truncated cone can be approximated by a parabola at various scales.

We will also work with Γ 1
K

, allowing us to bring into play some estimates for

the parabola.

As we mentioned above, sharp decoupling theorems do not imply the full

range of local smoothing estimates or the square function estimate. Let us

explain a little further what the issue is. The decoupling theorem for the cone

gives the following bounds, which are sharp for every p between 2 and ∞:

‖f‖Lp(R3) ≤ CεRε
Ñ ∑
d(θ)=R−1/2

‖fθ‖2Lp(R3)

é1/2

if 2 ≤ p ≤ 6,(4)

‖f‖Lp(R3) ≤ CεR
1
4
− 3

2p
+ε

Ñ ∑
d(θ)=R−1/2

‖fθ‖2Lp(R3)

é1/2

if p ≥ 6.(5)

For any given p, (5) implies local smoothing for that p. But the inequal-

ity (5) cannot hold for any p < 6 because the power of R would be negative.

The power of R in a decoupling inequality cannot be negative because of the

following example: suppose that for each θ, |fθ| is approximately the charac-

teristic function of BR, and at each point |f | ∼
(∑

θ |fθ|2
)1/2

. In this case,

‖f‖Lp ∼
(∑

θ ‖fθ‖2Lp
)1/2

for all p. This example is not a counterexample for

local smoothing, but to prove local smoothing for some p < 6 we have to do

better than inequality (4) in some scenarios—for instance, if the supports of
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fθ are essentially disjoint at time 0. Roughly speaking, we need to improve the

bound (4) when p < 6 and when each fθ is essentially supported on a sparse

region of BR. Theorem 1.3 makes this precise.

There are similar issues in the problem of decoupling into small caps, which

was studied in [9]. For instance, consider an exponential sum of the form

(6) f(x1, x2) =
N∑
j=1

aje

Å
j

N
x1 +

j2

N2
x2

ã
, with |aj | ≤ 1 for all j.

The decoupling theorem for the parabola gives a sharp bound on ‖f‖Lp(BN2 )

for every p. But suppose we want to bound ‖f‖Lp(BR) for some R < N2. If

we divide the parabola into arcs θ of length R−1/2, then each fθ is a sum of

∼ NR−1/2 terms of (6). It is not hard to estimate the largest possible value of

‖fθ‖Lp(BR) for each p. Combining this bound for ‖fθ‖Lp(BR) with decoupling

gives an upper bound for ‖f‖Lp(BR), but it is not sharp. When ‖fθ‖Lp(BR) is

close to its largest value, then |fθ| is concentrated on a sparse region of BR.

The argument in [9] exploits this sparsity to improve the bound from decou-

pling and give sharp estimates for ‖f‖Lp(BR) for every p. The proof of the main

theorem here builds on that proof.

The paper [9] also considers a decoupling problem in which the cone is

divided into small squares instead of sectors. This problem was raised by

Bourgain and Watt [5] in their work on the Gauss circle problem. The paper [9]

shows that the square function estimate Theorem 1.1 implies a sharp estimate

for this decoupling problem.

Acknowledgements. We would like to thank Ciprian Demeter for sharing

his ideas and for many helpful conversations. He proposed the problem of

decoupling into small caps and suggested improving decoupling when each fθ
is concentrated in a sparse region. We would also like to thank Misha Rudnev

for sharing thoughtful comments about [14] that helped us in this project.

We would like to thank Terence Tao for helpful comments that improved the

exposition of the proof of Proposition 3.4. We would like to thank Zhipeng Lu

and Xianchang Meng for pointing out several typos in an earlier version. LG

was supported by a Simons Investigator Award. HW was supported by the

Simons Foundation grant for David Jerison. RZ was supported by the National

Science Foundation under Grant Number DMS-1856541. He would like to

thank Andreas Seeger for helpful historical remarks about square functions

and local smoothing. Part of this work was done when RZ was visiting MIT

and he would like to thank MIT for the warm hospitality.

We would like to thank the anonymous referees for their thorough readings

and many helpful suggestions.



558 LARRY GUTH, HONG WANG, and RUIXIANG ZHANG

2. Proof of the square function estimate from Theorem 1.3

In this section, we explain how Theorem 1.3 implies the square function es-

timate Theorem 1.1, and we discuss how the latter implies the local smoothing

Theorem 1.2. First we recall the statement of Theorem 1.1:

Theorem. For any function f whose Fourier transform is supported on

NR−1(Γ), we have

‖f‖L4(R3) ≤ CεRε‖

Ñ ∑
d(θ)=R−1/2

|fθ|2
é1/2

‖L4(R3).

Proof. Let U be a translated copy of Uτ,R. Recall that

‖SUf‖2L2 =

∫
U

∑
θ⊂τ
|fθ|2.

By Cauchy–Schwarz,

‖SUf‖4L2 ≤ |U |
∫
U

(∑
θ⊂τ
|fθ|2

)2

.

Therefore, ∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUf‖4L2 ≤
∑
d(τ)=s

∫
R3

(∑
θ⊂τ
|fθ|2

)2

≤
∫
R3

(∑
θ

|fθ|2
)2

. �

Summing in s (dyadic numbers) contributes an additional logR factor com-

pared to Theorem 1.3.

Essentially by [20], the square function estimate in Theorem 1.1 implies the

local smoothing Theorem 1.2 for the wave equation in 2 + 1 dimensions. This

implication was sketched in Proposition 6.2 of [24]. One technical difference is

that the square function considered in [20] was the one in terms of “small caps”

ζ, R−1/2-squares on Γ. Instead of the Littlewood–Paley estimate corresponding

to equally spaced decompositions in R2 used in [20] (see (1.9) and the following

first two lines on page 214 of [20]), one needs such an estimate for angular

decompositions. In the L4 case, such an angular square function estimate

was proved by Córdoba (see ii) on the first page of [8]). Another proof5 by

Carbery–Seeger can be found in [6].

5See Proposition 4.6 in [6]. That proposition has two parameters and Córdoba’s estimate

(up to an Rε-loss) can be viewed as a simpler one-parameter variant. See also the remark in

the end of Section 4 in [6]
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3. Outline of the proof of the main theorem

In this section, we give an overview of the proof of Theorem 1.3 and

outline the rest of the paper. First we review the statement of Theorem 1.3

and present it in a more detailed way.

Let Γ be the truncated light cone Γ = {ξ2
1 + ξ2

2 = ξ2
3 , 1/2 ≤ |ξ3| ≤ 1}. We

now precisely define the sectors discussed in the introduction. For each point

ξ ∈ Γ with ξ3 = 1, we define a basis of R3 as follows: the core line direction is

c(ξ) = (ξ1, ξ2, 1), the normal direction is n(ξ) = (ξ1, ξ2,−1), and the tangent

direction is t(τ) = (−ξ2, ξ1, 0). Now for each such ξ, and each s < 1, we define

the sector with direction ξ and aperture s as follows:

τ(s, ξ) = {ω ∈ R3 : 1 ≤ c(ξ) · ω ≤ 2 and |n(ξ) · ω| ≤ s2 and |t(ξ) · ω| ≤ s}.

Here s = d(τ) is the aperture of τ as described in the introduction.

For each s, We choose 10s−1 evenly spaced ξ in the circle Γ ∩ {ξ3 = 1},
and we let Ss be the set of τ(s, ξ) for these ξ. It is straightforward to check

that these form a finitely overlapping cover of Ns2(Γ).

In the introduction, we considered a finitely-overlapping cover of NR−1Γ

by sectors θ with dimensions ∼ R−1 × R−1/2 × 1. The set of these sectors is

SR−1/2 .

For each τ = τ(s, ξ), and each ρ ≥ s−2, we define a box Uτ,ρ as follows:

(7) Uτ,ρ = {x ∈ R3 : |c(ξ) · x| ≤ ρs2 and |n(ξ) · x| ≤ ρ and |t(ξ) · x| ≤ ρs}.

The box Uτ,ρ is approximately the convex hull of the union of θ∗ over all

sectors θ ⊂ τ with d(θ) = ρ−1/2. In other words, Uτ,ρ is approximately the

smallest rectangular box such that for any ρ−1/2-sector θ ⊂ τ , if a translated

copy of θ∗ intersects Uτ,ρ, then it must lie in 10Uτ,ρ. We tile R3 by translated

copies of Uτ,ρ.

If U is a translated copy of Uτ,ρ, then we define SUf by

(8) SUf =

Ö ∑
θ∈S

ρ−1/2 :θ⊂τ
|fθ|2

è1/2

|U .

As written, this definition appears to depend upon U , τ , and ρ. But in

fact the parameters ρ and τ can be read off from U . The parameter ρ is the

diameter of U . The aperture d(τ) = s can be read off from the dimensions

of U , which are ρs2× ρs× ρ. And the direction ξ of τ can be read off from the

direction of U . To illustrate this, suppose that U is Br — a ball of radius r.

The diameter of U is r, and so ρ = r. The dimensions of U are r × r × r, and
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so d(τ) = 1. Since τ has aperture 1, it covers all of Γ. Therefore,

SBrf =

Ñ ∑
θ∈S

r−1/2

|fθ|2
é1/2 ∣∣

Br
.

In particular, |SB1f | is just |f | restricted to B1.

We define S(r,R) as the smallest constant such that for every function f

with suppf̂ ⊂ NR−1(Γ),

(9)
∑

Br⊂R3

|Br|−1‖SBrf‖4L2(Br)
≤ S(r,R)

∑
R−1/2≤s≤1

∑
τ∈Ss

∑
U//Uτ,R

|U |−1‖SUf‖4L2 .

On the left-hand side of inequality (9),
∑

Br⊂R3 means the sum over the

balls Br in a finitely overlapping cover of R3. On the right-hand side of in-

equality (9), the first sum,
∑

R−1/2≤s≤1, means the sum over dyadic numbers

s between R−1/2 and 1. The last sum,
∑

U//Uτ,R
, means the sum over a set of

translates of Uτ,R that tile R3.

By Hölder’s inequality, S(r,R) < ∞ for any 0 < r,R < ∞. We will

only consider S(r,R) when r ≤ R. Theorem 1.3 is equivalent to the bound

S(1, R) ≤ CεRε since |SB1f | = |f | on any B1 and |f | is morally constant on B1.

We will derive Theorem 1.3 from a series of bounds for S(r,R).

In Section 4, we prove the Kakeya-type estimate Lemma 1.4, and we use

it to prove

Lemma 3.1. For any r ≥ 10, r1 ∈ [r, r2],

S(r1, r
2)≤ C.

Next we bring into play a trick from the proof of decoupling for the cone

in [2]: instead of working with Γ we work with a subset of Γ that lies close

to a short parabolic cylinder. We let P denote an arc of a parabola of length

∼ 1 lying in Γ. For any K ≥ 10, we define Γ 1
K

to be the 1/K-neighborhood

of P in Γ. We will eventually choose K to be a large constant depending on ε

(which remains fixed as R → ∞). The precise formula for Γ 1
K

is designed

to make Lorentz rescaling work in a clean way, and we give the formula in

Section 5 when we discuss Lorentz rescaling. We can define a sector τ ⊂ Γ 1
K

and its aperture d(τ) in the same way as before (again see Section 5). Then we

define SK(r,R) as the smallest constant such that (9) holds for every f with

supp f̂ ⊂ NR−1(Γ 1
K

). Since Γ 1
K
⊂ Γ, SK(r,R) ≤ S(r,R). On the other hand,

since K will be a chosen constant, SK(r,R) is almost equal to S(r,R) and we

can use it equally well to prove Theorem 1.3.
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If R = K, thenNR−1(Γ 1
K

) is the 1/K-neighborhood of the parabolic arc P ,

and the restriction theory for the parabola can be used to study SK(1,K). In

Section 6 we use this idea to prove the following lemma:

Lemma 3.2. For any K ≥ 10, any 1 ≤r ≤ K , and any δ > 0, we have

SK(r,K) ≤ CδKδ.

Theorem 1.3 will follow by combining Lemmas 3.1 and 3.2 with a Lorentz

rescaling argument. We review the Lorentz rescaling in Section 5. We use it

in Section 7 to prove the following lemma, which relates SK(r,R) for various

values of r,R:

Lemma 3.3. For any r1 < r2 ≤ r3,

SK(r1, r3) ≤ log r2 · SK(r1, r2) max
r
−1/2
2 ≤s≤1

SK(s2r2, s
2r3).

This lemma is an important motivation for working with SK(r,R). It

allows Lemmas 3.1 and 3.2 to be applied at many different scales. A key point

of studying Theorem 1.3 instead of trying to prove Theorem 1.1 directly is that

it allows this multiscale analysis to come into play.

Assuming the lemmas, we now prove bounds on SK(r,R) and use them

to deduce Theorem 1.3.

Proposition 3.4. For any ε > 0, there exists K = K(ε) so that for any

1 ≤ r ≤ R, we have
SK(r,R) ≤ ‹Cε(R/r)ε.

Proof. First we note that if r > R1/2, then Lemma 3.1 tells us that

SK(r,R) ≤ S(r,R) ≤ C, and so the conclusion holds.

Let K = K(ε) > 10 be a constant depending only on ε that we will

choose below. (The constant K(ε) will depend on ε and on the constants in

Lemmas 3.1 and 3.2.)

We apply induction on the ratio R/r.

Our base case is when R/r ≤
√
K. We have already checked the proposi-

tion in case r > R1/2. If r ≤ R1/2 and R/r ≤
√
K, then R ≤ K. In this case,

since K is a constant depending only on ε, it is straightforward to check that

SK(r,R) is bounded by a constant C̃K = C̃ε. This finishes the base case.

Next we proceed with the induction. Given a pair (r,R), our induction

hypothesis is the following: for any pair (r′, R′) with R′/r′ ≤ R/2r, we have

SK(r′, R′) ≤ C̃ε(R′/r′)ε.
The proof of the induction has two cases, depending on whether r ≤ K1/2.

If r ≤ K1/2, we apply Lemma 3.3 with r1 = r, r2 = K1/2r, and r3 = R,

which gives

SK(r,R) ≤ logK · SK(r,K1/2r) max
r
−1/2
2 ≤s≤1

SK(s2K1/2r, s2R).
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We bound the first SK factor using Lemma 3.2, and we bound the second SK
factor using induction. These bounds give

SK(r,R) ≤ logK · SK(r,K1/2r) max
r
−1/2
2 ≤s≤1

SK(s2K1/2r, s2R)

≤ logK · Cδ‹CεKδ

Å
R

K1/2r

ãε
.

We choose δ = ε/4, and then we choose K =K(ε) large enough so that logK ·
Cε/4K

−ε/4 ≤ 1, and the induction closes in this case.

Now suppose r ≥ K1/2. Recall from the start of the proof that we may

assume r ≤ R1/2. We apply Lemma 3.3 with r1 = r, r2 = r2, and r3 = R,

which gives

SK(r,R) ≤ 2 log r · SK(r, r2) max
r−1≤s≤1

SK(s2r2, s2R).

We bound the first SK factor using Lemma 3.1 and we bound the second

SK factor using induction, giving

SK(r,R) ≤ 2 log r · SK(r, r2) max
r−1≤s≤1

SK(s2r2, s2R) ≤ 2 log r · C‹Cε ÅR
r2

ãε
.

We choose K = K(ε) large enough so that for all r ≥ K1/2, we have 2 log r ·
Cr−ε ≤ 1, and the induction closes in this case. �

Finally we show how Proposition 3.4 implies Theorem 1.3.

Proof. Proposition 3.4 implies that for every ε > 0, we can choose K =

K(ε) so that SK(1, R) ≤ CεR
ε for all R. Suppose that the support of f̂ is

contained in NR−1(Γ 1
K

) ⊂ B3. Since |f | is morally constant on unit balls, we

have6 ∫
R3

|f |4 .
∑

B1⊂R3

‖f‖4L2(B1)=
∑

B1⊂R3

‖SB1f‖4L2(B1)

≤ CεRε
∑

R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUf‖4L2 .
(10)

This inequality is essentially Theorem 1.3 except that we assumed that f̂

is supported on NR−1(Γ 1
K

) instead of NR−1(Γ). Since NR−1(Γ) can be covered

by O(K) = Oε(1) affine copies of Γ 1
K

, we can reduce Theorem 1.3 to (10).

Here are the details.

Take {Aj}1≤j.K to be a collection of linear transformations such that

Γ ⊂
⋃
Aj(Γ 1

K
). Here each Aj is a composition of a scaling by a factor ∼ 1 and

6Strictly speaking, one need to apply Lemmas 6.1 and 6.2 to justify the first “.” in

inequality (10). This is similar to the arguments in Section 6, where we give full details.
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a rotation in the (ξ1, ξ2)-plane.7 Similarly, we can arrange that NR−1(Γ) ⊂⋃
Aj
(
NR−1(Γ 1

K
)
)
. Let {ψj} be a C∞ partition of unity subordinate to this

covering. This partition of unity only depends on K. If f is a function whose

Fourier transform is supported on NR−1(Γ), then f̂ =
∑

j ψj f̂ . Define fj by

f̂j = ψj f̂ and f̂j,θ = ψj f̂θ. The support of f̂j is contained in Aj(NR−1(Γ 1
K

)).

Since (10) is invariant under rotations and approximately invariant under

rescaling by a factor ∼ 1, (10) holds for each function fj .

Now by the triangle inequality and Hölder’s inequality,

‖f‖4L4(R3) . K
3
∑
j

‖fj‖4L4(R3)

. K3CεR
ε
∑
j

∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUfj‖4L2

. K3CεR
ε

∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1

Ñ∑
j

‖SUfj‖2L2

é2

.K CεR
ε

∑
R−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,R

|U |−1‖SUf‖4L2 .

To see the last inequality, note that fj,θ = fθ∗ψ̌j and ψ̌j is rapidly decaying

outside the ball of radius K centered at the origin. Hence, by Lemma 6.2, each

‖fj,θ‖L2(B1) .K ‖fθ‖L2(wB1,E
) for any polynomially decaying weight wB1,E . It

suffices to take E large enough.

Since K is a constant only depending on ε, this gives Theorem 1.3. �

4. A Kakeya-type estimate

In this section, we prove the Kakeya-type estimate Lemma 1.4, and we

use it to prove Lemma 3.1. First we recall the following statement:

Lemma. Suppose f̂ has support on Nr−2(Γ). Let g denote the (squared)

square function g =
∑

θ∈Sr−1
|fθ|2. Then∫

R3

|g|2 .
∑

R−1/2≤s≤1

∑
τ∈Ss

∑
U//Uτ,R

|U |−1‖SUf‖4L2 .

(Comparing with the statement in the introduction, we use r2 in place

of R. This makes the algebra in the proof a little simpler, and it connects with

the notation in Lemma 3.1.)

7One can choose . 1 rotations Rk such that
⋃
k Rk(Γ 1

K
) covers Γ(h) = Γ ∩ {h ≤ ξ3 ≤

h + K/10} for some h ∼ 1. Then we choose . K dilations Dl such that Γ ⊂
⋃
lDl(Γ(h)).

We define Aj = DlRk. for some l and k.
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Proof of Lemma 1.4. Suppose that supp f̂ ⊂ Nr−2(Γ). Recall that

g =
∑

θ∈Sr−1

|fθ|2.

The Fourier transform of |fθ|2 is supported on the Minkowski sum θ̃ =

θ + (−θ). The set θ̃ is itself a plank of dimensions ∼ r−2 × r−1 × 1 centered

at the origin. Notice that while the original sectors θ are disjoint, the planks

θ̃ are not disjoint. The way that they overlap plays an important role in the

proof.

The Minkowski sum θ̃(ξ) = θ(ξ) + (−θ(ξ)) is approximately equal to the

following rectangular box:

θ̃(ξ) ≈ {ω ∈ R3 : |c(ξ) · ω| ≤ 1 and |n(ξ) · ω| ≤ r−2 and |t(ξ) · ω| ≤ r−1},

where two convex sets A ≈ B means that A ⊂ 10B ⊂ 100A.

The overlapping of the boxes θ̃ is best described in terms of similar rect-

angular boxes at smaller scales. For any dyadic σ in the range r−1 ≤ σ ≤ 1,

and any ξ as above, we define a box Θ = Θ(σ, ξ) by

(11) Θ(σ, ξ) = {ω : |c(ξ) ·ω| ≤ σ2 and |n(ξ) ·ω| ≤ r−2 and |t(ξ) ·ω| ≤ r−1σ}.

Notice that Θ(1, ξ) is equal to θ̃(ξ), and for σ < 1, Θ(σ, ξ) ⊂ θ̃(ξ). At the other

extreme, Θ(r−1, ξ) is essentially the ball of radius r−2 centered at the origin,

regardless of ξ.

If we intersect Θ(σ, ξ) with the slab {(1/2)σ2 ≤ ω3 ≤ σ2}, then it lies in

the r−2-neighborhood of the light cone. Let Γ(σ2) denote the part of the light

cone where (1/2)σ2 ≤ ω3 ≤ σ2. Each Θ(σ, ξ)∩{(1/2)σ2 ≤ ω3 ≤ σ2} is a sector

of Nr−2(Γ(σ2)), just as θ is a sector of Nr−2(Γ). The number of such sectors

needed to cover Nr−2(Γ(σ2)) is ∼ σr. If |ξ − ξ′| > σ−1r−1, then Θ(σ, ξ) ∩
Θ(σ, ξ′)∩{(1/2)σ2 ≤ ω3 ≤ σ2} is empty. Conversely, if |ξ− ξ′| < σ−1r−1, then

Θ(σ, ξ)∩{(1/2)σ2 ≤ ω3 ≤ σ2} is comparable to Θ(σ, ξ′)∩{(1/2)σ2 ≤ ω3 ≤ σ2}.
By symmetry, the same holds when we intersect with {−σ2 ≤ ω3 ≤ −(1/2)σ2}
at the other side of the light cone. Now by convexity, we conclude that if

|ξ − ξ′| ≤ σ−1r−1, then Θ(σ, ξ) ⊂ 2Θ(σ, ξ′).

For each dyadic σ in the range r−1 ≤ σ ≤ 1, let CPσ be a set of ∼ σr

planks of the form Θ(σ, ξ) with the directions ξ evenly spaced in the circle.

(The letters CP stand for centered plank.) The size of CPσ is chosen so that

for any Θ(σ, ξ), we can choose Θ(σ, ξ′) ∈ CPσ so that Θ(σ, ξ) ⊂ 2Θ(σ, ξ′). We

define CP as a union over dyadic scales: CP = ∪r−1≤σ≤1CPσ. Since Θ(1, ξ)

is the same as θ̃(ξ), CP1 = Sr−1 . On the other hand, CPr−1 is a set with one

element, which is essentially the ball of radius r−2 around the origin.

For a given θ(ξ) and a given scale σ, there are ∼ 1 Θ =Θ(σ, ξ′) ∈ CPσ

with Θ ⊂ 2θ̃. To see this, note on the one hand that Θ(σ, ξ) ⊂ θ̃(ξ), and we

can choose Θ(σ, ξ′) ∈ CPσ so that Θ(σ, ξ′) ⊂ 2Θ(σ, ξ). On the other hand,
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θ̃(ξ) ∩ Nr−2(Γ(σ2)) is essentially equal to the sector Θ(σ, ξ) ∩ {(1/2)σ2 ≤ ω3

≤ σ2}, and so 2θ̃(ξ) contains Θ(σ, ξ′) only if |ξ − ξ′| . σ−1r−1.

In our proof, r remains fixed but we have to consider various scales σ.

To simplify notation, we abbreviate Sr−1 as S. Now for each scale σ, for

each θ = θ(ξ) ∈ S = Sr−1 , we associate one Θ = Θ(σ, ξ′) ∈ CPσ with

|ξ′−ξ| ≤ σ−1r−1. For each Θ ∈ CPσ, we let SΘ be the set of all θ ∈ S that are

associated with Θ. So for each σ, S =
⊔

Θ∈CPσ SΘ. If θ ∈ SΘ, then Θ ⊂ 2θ̃.

Let Ω = ∪θ∈Sθ̃ ∼ ∪Θ∈CP1Θ. Since (|fθ|2)∧ is supported on θ̃, it follows

that ĝ is supported on Ω. We break Ω into pieces associated with different scales

σ as follows. We define Ω≤σ = ∪Θ∈CPσΘ. Then we define Ωσ = Ω≤σ \ Ω≤σ/2
if σ > r−1, and we define Ωr−1 = Ω≤r−1 , so that

Ω =
⊔

r−1≤σ≤1

Ωσ.

(Here
⊔

denotes a disjoint union, and the union is over dyadic σ.)

Now if ω ∈ Ωσ, we bound |ĝ(ω)| as follows:

(12)
∣∣∣ĝ(ω)

∣∣∣ =
∣∣∣∑
θ∈S

(|fθ|2)∧(ω)
∣∣∣ ≤ ∑

Θ∈CPσ

∣∣∣ ∑
θ∈SΘ

(|fθ|2)∧(ω)
∣∣∣.

Lemma 4.1. If Θ ∈ CPσ makes a non-zero contribution to the right-hand

side of (12) for an ω ∈ Ωσ , then ω ∈ 4Θ.

Proof. Suppose that
∑

θ∈SΘ
(|fθ|2)∧(ω) is non-zero. Then we must have

ω ∈ θ̃ for some θ ∈ SΘ. Suppose θ = θ(ξ) and Θ = Θ(σ, ξ′). Since θ ∈ SΘ, we

know that |ξ − ξ′| ≤ σ−1r−1 and so Θ(σ, ξ) ⊂ 2Θ.

We claim that θ̃∩Ω≤σ is contained in 2Θ(σ, ξ). This will finish the proof,

because ω ∈ θ̃ ∩ Ω≤σ ⊂ 2Θ(σ, ξ) ⊂ 4Θ(σ, ξ′).

To check the claim, we have to understand the geometry of the set Ω≤σ. To

picture the set Ω≤σ, we found it helpful to consider the intersection of Θ(σ, ξ)

with the plane ω3 = h. We assume |h| ≤ σ2 — otherwise the intersection

is empty. The intersection Θ(σ, ξ) ∩ {ω3 = h} is a rectangle with dimensions

r−1σ×
√

2r−2, and the long side of the rectangle is tangent to the circle of radius

h around the origin at the point hξ. Therefore, Θ(σ, ξ)∩{ω3 = h} is contained

in the annulus {h2 ≤ ω2
1 + ω2

2 ≤ h2 + r−2σ2}. If we rotate ξ, the rectangle

Θ(σ, ξ)∩ {ω3 = h} rotates also, and the union of these rotated rectangles over

all ξ is equal to this annulus. Therefore, if h ≤ σ2, then Ω≤σ ∩ {ω3 = h} is

approximately equal to this annulus:

(13) Ω≤σ ∩ {ω3 = h} ∼ {ω : ω3 = h, h2 ≤ ω2
1 + ω2

2 ≤ h2 + r−2σ2}.

On the other hand, θ̃(ξ) ∩ {ω3 = h} = Θ(1, ξ) ∩ {ω3 = h} is a rectangle

of dimensions ∼ r−1 × r−2 that is tangent to the circle of radius h at hξ. The

intersection of this rectangle with the annulus above is contained in a shorter
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rectangle with the same center and with dimensions σr−1× r−2, which in turn

is contained in 2Θ(σ, ξ)∩{ω3 = h}. Since this holds for every h with |h| ≤ σ2,

we see that θ̃(ξ) ∩ Ω≤σ ⊂ 2Θ(σ, ξ) as claimed. �

Using Lemma 4.1, we can rewrite inequality (12): if ω ∈ Ωσ, then

(14) |ĝ(ω)| ≤
∑

Θ∈CPσ ,ω∈4Θ

∣∣∣ ∑
θ∈SΘ

(|fθ|2)∧(ω)
∣∣∣.

Lemma 4.2. For any ω ∈ Ωσ , the number of Θ ∈ CPσ so that ω ∈ 4Θ is

bounded by a constant C .

Proof. Building on the description of Ω≤σ in (13) above, we see that if

|h| ≤ σ2/4, then Ωσ ∩ {ω3 = h} is approximately given by

(15) {h2 + (1/4)r−2σ2 ≤ ω2
1 + ω2

2 ≤ h2 + r−2σ2}.

If σ2/4 ≤ |h| ≤ σ2, then Ωσ ∩ {ω3 = h} is approximately given by

(16) {h2 ≤ ω2
1 + ω2

2 ≤ h2 + r−2σ2}.

Let Ch,ρ be the circle defined by ω3 = h and ω2
1 + ω2

2 = ρ2 with |h| ≤ σ2

and ρ chosen such that Ch,ρ lies in (15) or (16). These circles cover Ωσ. For

any ξ, we will compute in the next two paragraphs that the fraction of Ch,ρ
contained in 4Θ(σ, ξ) is . σ−1r−1. There are ∼ σr different Θ(σ, ξ) ⊂ CPσ.

By circular symmetry, each frequency ω ∈ Ch,ρ lies in 4Θ for approximately

the same number of Θ ∈ CPσ, and so each frequency ω lies in 4Θ for ≤ C

different Θ ∈ CPσ.

We first do the case |h| ≤ σ2/4. Recall that Θ(σ, ξ) ∩ {ω3 = h} is a

rectangle with dimensions r−1σ×r−2 that is tangent to the circle of radius |h|.
Suppose for now that r−1σ ≤ |h|. If A,B are the two endpoints of this rectangle

and O is the origin, then the angle AOB is approximately r−1σ/|h|. The angle

between the rectangle Θ∩{ω3 = h} and the circle Ch,ρ is approximately equal

to the angle AOB. Therefore, the arc length of 4Θ ∩ Ch,ρ is bounded by

Length (4Θ ∩ Ch,ρ) . r−1σ−1|h|.

Since the length of Ch,ρ is 2πρ ∼ |h|, the fraction of Ch,ρ contained in 4Θ is

. r−1σ−1 as desired.

If |h|<r−1σ, then the angle AOB is ∼ 1, and the length of 4Θ ∩ Ch,ρ is

approximately r−2. In this case the length of Ch,ρ is 2πρ ∼ r−1σ, and so the

fraction of Ch,ρ covered by 4Θ is still . r−1σ−1.

Finally, suppose that σ2/4 ≤ |h| ≤ σ2. In this case 4Θ∩Ch,ρ has arc length

∼ σr−1 (the long side of the rectangle Θ∩ {ω3 = h}). Since the length of Ch,ρ
is 2πρ ∼ |h| ∼ σ2, the fraction of Ch,ρ covered by 4Θ is again . σ−1r−1. �
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Remark. If ω ∈ Ωσ and |ω3| is much smaller than σ2, then ω lies in two

rather different Θ ∈ CPσ, and maybe also on other Θ neighboring these two.

This is because a point outside a circle lies on two lines tangent to the circle.

Applying Cauchy–Schwarz to (14) and using Lemma 4.2 we see that if

ω ∈ Ωσ, then

(17) |ĝ(ω)|2 .
∑

Θ∈CPσ ,ω∈4Θ

∣∣∣ ∑
θ∈SΘ

(|fθ|2)∧(ω)
∣∣∣2.

We let ηΘ be a smooth function that is ≥ 1 on 4Θ and decays rapidly

outside 4Θ. Summing over all dyadic σ, we see that for every frequency ω,

|ĝ(ω)|2 .
∑

Θ∈CP

∣∣∣ηΘ(ω)
∑
θ∈SΘ

(|fθ|2)∧(ω)
∣∣∣2.

Now we integrate and use Plancherel, giving∫
|g|2 .

∑
Θ∈CP

∫ ∣∣∣η∨Θ ∗ ∑
θ∈SΘ

|fθ|2
∣∣∣2.

Now we can choose ηΘ so that |η∨Θ(x)| . |Θ∗|−1 for all x, and η∨Θ is

supported on Θ∗. Therefore, it is natural to break up the right integral into

translated copies of Θ∗:∫
|g|2 .

∑
Θ∈CP

∑
U//Θ∗

∫
U

∣∣∣η∨Θ ∗ ∑
θ∈SΘ

|fθ|2
∣∣∣2.

In the last integral, for each x ∈ U , we have∣∣∣η∨Θ ∗ ∑
θ∈SΘ

|fθ|2(x)
∣∣∣ . |U |−1

∫
ηU
∑
θ∈SΘ

|fθ|2,

where ηU (z) = |Θ∗| ·maxy∈z+Θ∗−U |η∨Θ(y)| is a bump function with ‖ηU‖∞ ∼ 1

supported on 2U . We remark that the arguments presented here exploit the

locally constant property. We shall discuss another variant of this property in

Lemma 6.1.

Therefore, ∫
|g|2 .

∑
Θ∈CP

∑
U//Θ∗

|U |−1

Ñ∫
ηU
∑
θ∈SΘ

|fθ|2
é2

.

We associate Θ(σ, ξ) to τ(σ−1r−1, ξ). This gives a bijection from CPσ to

Ss with s = σ−1r−1. If Θ(σ, ξ) ⊂ 2θ̃(ξ′), then we saw above that |ξ − ξ′| .
σ−1r−1, and so θ(ξ′) ⊂ 4τ(σ−1r−1, ξ). In particular, if θ ∈ SΘ, then θ ⊂ 4τ .

Also Θ(σ, ξ)∗ is comparable to Uτ(σ−1r−1,ξ),r2 , which we can see by comparing
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the definition of Uτ,r2 in (7) with the definition of Θ in (11). Rewriting the

last inequality in terms of τ ∈ Ss instead of Θ ∈ CPσ, we get∫
|g|2 .

∑
r−1≤s≤1

∑
τ∈Ss

∑
U//Uτ,r2

|U |−1

(∫
ηU
∑
θ⊂τ
|fθ|2

)2

.

By the definition of SUf ,∑
U//Uτ,r2

(∫
ηU
∑
θ⊂τ
|fθ|2

)2

.
∑

U//Uτ,r2

‖SUf‖4L2 .

Plugging this in, we get∫
|g|2 .

∑
r−1≤s≤1

∑
d(τ)=s

∑
U//Uτ,r2

|U |−1‖SUf‖4L2 .

This proves Lemma 1.4 by taking r = R
1
2 . �

We use this Kakeya-type estimate as well as local orthogonality to prove

Lemma 3.1. First we recall local orthogonality, and then we recall the state-

ment of Lemma 3.1.

Local orthogonality is written using a weight functions localized a given

ball. For a ball BR of radius R, define the weight

wBR,E(x) =

Å
1 +

dist(x,BR)

R

ã−E
.

Lemma 4.3 (Local L2 orthogonality lemma, essentially Proposition 6.1 in

[3]). Suppose that f ∈ L2(Rn). Suppose that f =
∑

θ fθ, where suppf̂θ ⊂ θ

in the Fourier space. In this statement the sets θ are arbitrary. Suppose that

r > 0 and that each ξ ∈ Rn lies in Nr−1(θ) for at most M different sets θ

appearing in the sum. Then for any E > 0,

‖f‖2L2(Br)
.M,E

∑
θ∈I
‖fθ‖2L2(wBr,E).

To prove Lemma 4.3, it suffices to take a function ψBr such that ψBr & 1

on Br, |ψBr(x)| ≤ CE(1 + r−1dist(x,Br))
−E/2, and ψ̂Br ⊂ B(0, r−1). Then

‖f‖L2(Br) . ‖fψBr‖L2 . We apply Plancherel’s theorem and observe that the

support of f̂θ ∗ ψ̂Br lies in Nr−1(θ).

Now we turn to the proof of Lemma 3.1. Unwinding the definition of

S(r,R), Lemma 3.1 says

Lemma. If f̂ is supported on Nr−2(Γ) and r1 ∈ [r, r2], then

(18)
∑

Br1⊂R3

|Br1 |−1‖SBr1f‖
4
L2(Br1 ).

∑
r−1≤s≤1

∑
d(τ)=s

∑
U//Uτ,r2

|U |−1‖SUf‖4L2 .
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Proof of Lemma 3.1. As in Lemma 1.4, let g =
∑

θ∈Sr−1
|fθ|2. The func-

tions fθ have essentially disjoint Fourier support. Since r ≤ r1, each point ξ

lies in . 1 many Nr−1
1

(θ).

We choose E sufficiently large (for instance E = 10). Then we apply the

local L2 orthogonality Lemma 4.3, on each Br1 :

‖SBr1f‖
2
L2(Br1 ) =

∫
Br1

∑
d(τ)=r

−1/2
1

|fτ |2

.

∫
R3

wBr1 ,E ·
∑

d(τ)=r
−1/2
1

∑
θ⊂τ
|fθ|2 ∼

∫
R3

wBr1 ,E ·g.

By Cauchy–Schwarz, we get

|Br1 |−1‖SBr1f‖
4
L2(Br1 ) .

∫
R3

wBr1 ,E/2·|g|
2.

Summing over Br1 ,∑
Br1⊂R3

|Br1 |−1‖SBr1f‖
4
L2(Br1 ) .

∫
R3

|g|2.

Lemma 1.4 bounds
∫
R3 |g|2 by the right-hand side of (18). �

5. The Lorentz rescaling

Lorentz transformations are the symmetries of our problem, and they have

been used in many earlier papers on this topic (cf. [26] and [2]). Here we review

the Lorentz rescaling and check the properties that we will need in our rescaling

argument in the next two sections.

The piece Γ 1
K

is defined to work well with Lorentz transformations, and

we now record the formula. This formula and the Lorentz rescaling generally

look nicest in a rotated coordinate system where the light cone is given by the

equation 2ν1ν3 = ν2
2 . Here ν2 = ξ1, ν1 = 2−1/2(ξ3−ξ2) and ν3 = 2−1/2(ξ3 +ξ2).

In these coordinates, if we intersect the light cone with the plane ν3 = 1, then

we get the parabola ν1 = (1/2)ν2
2 . So the light cone is actually the cone over

a parabola.

Now Γ 1
K

is defined as follows:

Γ 1
K

=

ß
2ν1ν3 = ν2

2 , 1−
1

K
≤ ν3 ≤ 1,

∣∣∣ν2

ν3

∣∣∣ ≤ 1

™
.

For any real number η with |η| < 1 and 0 < s < 1 satisfying−1 ≤ η±s ≤ 1,

we can define a surface sector Λ ⊆ Γ 1
K

by

(19) Λ = Λ(η, s) =

ß
(ν1, ν2, ν3) ∈ Γ 1

K
:
∣∣∣ν2

ν3
− η
∣∣∣ < s

™
.



570 LARRY GUTH, HONG WANG, and RUIXIANG ZHANG

Here s is the aperture of Λ, also denoted by d(Λ). For each Λ, let η(Λ) denote

the η in (19).

Each surface sector Λ is closely associated to a sector τ = τ(Λ), which

is a rectangular box containing Λ with smallest comparable dimensions. The

sector τ(Λ) is approximately the convex hull of Λ in the sense that 1
10τ(Λ) ⊂

ConvexHull(Λ) ⊂ 10τ(Λ). Similarly, starting with any sector τ , there is an

associated surface sector Λτ = τ ∩ Γ 1
K

. The aperture of Λτ and the aperture

of τ are approximately the same.

For any surface sector Λ ⊂ Γ 1
K

, there is a Lorentz transformation L that

maps Λ diffeomorphically onto Γ 1
K

. (The precise definition of Γ 1
K

was arranged

to make this work.) The formula for L is as follows.

Let L : Λ(d(Λ), η)→ Γ 1
K

be defined as follows (away from {z = 0}):

(20)


ν3 7→ ν3,

ν2
ν3
7→ 1

d(Λ)(ν2
ν3
− η(Λ)),

ν1
ν3
7→ 1

d(Λ)2 (ν1
ν3
− η(Λ) · ν2

ν3
+ η(Λ)2

2 ).

We can see that L is actually a linear transformation:

(21)


ν3 7→ ν3,

ν2 7→ 1
d(Λ)(ν2 − η(Λ)ν3),

ν1 7→ 1
d(Λ)2 (ν1 − η(Λ)ν2 + η(Λ)2

2 ν3).

This linear transformation L is called a Lorentz rescaling.

Suppose that τ is a sector with d(τ) = s, and let Λ = Λτ . We then study

the rescaling map L defined in (21). We will need to keep track of how this

change of variables affects the characters in our inequalities, like sectors τ ′ ⊂ τ
and the regions Uτ,R.

First, if Λ′ ⊂ Λ is a smaller surface sector, then L(Λ′) is a surface sector

of aperture ∼ s−1d(τ ′).

More precisely, since Λ′ ⊆ Λ, we have

(22) [η(Λ′)− d(Λ′), η(Λ′) + d(Λ′)] ⊆ [η(Λ)− d(Λ), η(Λ) + d(Λ)].

By the above definition of L, we can see that L(Λ′) is defined as{
(ν1, ν2, ν3) ∈ Γ 1

K
:
ν2

ν3
∈
[ 1

d(Λ)
(η(Λ′)− η(Λ))

− d(Λ′)

d(Λ)
,

1

d(Λ)
(η(Λ′)− η(Λ)) +

d(Λ′)

d(Λ)

]}
.
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We see that (22) implies the above range of ν2/ν3 is in [−1, 1], and that L(Λ′)

is a surface sector of aperture d(Λ′)
d(Λ) lying inside the whole Γ 1

K
= L(Λ).

Next we consider how L affects sectors τ ′ ⊂ τ . Suppose that Λτ ′ is a

surface sector associated to τ ′. Note that τ ′ is approximately the convex hull

of Λτ ′ . Since taking convex hulls commutes with linear transformations, we

see that L(τ ′) is approximately the convex hull of L(Λτ ′), which is a sector of

aperture ∼ s−1d(τ ′).

Next we consider L(NR−1(Λ)) for some R > s−2. Note that Ns2(Λ) is

approximately τ(Λ), but if R > s−2, then Ns2(Λ) is far from being a convex set.

The R−1-neighborhood of Γ 1
K

is covered by sectors θ ⊂ τ with d(θ) = R−1/2.

Therefore, L(NR−1(Λ)) is covered by sectors L(θ) with aperture ∼ s−1R−1/2.

The union of these sectors is the s−2R−1-neighorhood of Γ 1
K

. In summary

L(NR−1(Λ)) is approximately Ns−2R−1(Γ 1
K

).

Next we consider how the adjoint transformation, L∗, behaves on physical

space. It is standard that the adjoint transformation behaves naturally with

respect to taking duals, so, if θ is a sector, then we have L(θ)∗ = L∗(θ∗).
Finally we consider how L∗ affects the sets Uτ,R. Recall from (7) that if

τ = τ(s, ξ), then

(23) Uτ,R = {x ∈ R3 : |c(ξ) · x| ≤ Rs2 and |n(ξ) · x| ≤ R and |t(ξ) · x| ≤ Rs}.

There is an equivalent more conceptual description, which is useful for under-

standing L∗(Uτ,R):

(24) Uτ,R ≈ Convex Hull (∪θ⊂τ,d(θ)=R−1/2θ∗).

Now let τ again denote a fixed sector with d(τ) = s and let L be the

Lorentz rescaling that takes Λτ to Γ 1
K

.

Lemma 5.1. For any sector τ ′ ⊂ τ and any R ≥ s−2,

L∗(Uτ ′,R) = UL(τ ′),s2R.

Proof.

L∗(Uτ ′,R) ≈ ConvexHull(∪θ⊂τ ′,d(θ)=R−1/2L∗θ∗)

≈ Convex Hull (∪θ⊂τ ′,d(θ)=R−1/2L(θ)∗)

≈ Convex Hull (∪θ⊂L(τ ′),d(θ)=s−1R−1/2θ∗) ≈ UL(τ ′),s2R. �

We have now gathered enough background about Lorentz rescaling to

carry out our Lorentz rescaling arguments in the next two sections.
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6. The Proof of Lemma 3.2

In this section, we prove Lemma 3.2. First we prove several lemmas about

the “locally constant property” of fθ.

Lemma 6.1. Let θ ⊂ Rn be a compact convex set that is symmetric about

a center point c(θ). If suppf̂θ ⊂ θ and Tθ=θ∗={x : |x · (y − c(θ))| ≤ 1 for all

y ∈ θ}, then there exists a positive function ηTθ satisfying

(1) ηTθ is essentially supported on 10Tθ and rapidly decays away from it :

for any integer N ≥ 0, there exists a constant CN such that ηTθ(x) ≤
CN (n(x, 10Tθ))

−N , where n(x, 10Tθ) is the smallest positive integer n such

that x ∈ n · 10Tθ;

(2) ‖ηTθ‖L1 . 1;

(3) we have

(25) |fθ| ≤
∑
T//Tθ

cTχT ≤ |fθ| ∗ ηTθ ,

where cT is defined as maxx∈T |fθ|(x) and the sum
∑

T//Tθ
is over a finitely

overlapping cover {T} of Rn with each T //Tθ.

Proof. We bound |fθ| by

(26) |fθ| ≤
∑
T//Tθ

cTχT .

Let φθ be a smooth bump function supported on 2θ and φθ = 1 on θ. Since

suppf̂θ ⊂ θ, we have f̂θ = f̂θφθ and fθ = fθ ∗ φ∨θ . Let ηTθ(x) = max
t∈x+10Tθ

|φ∨θ |(t).

By non-stationary phase, φ∨θ is a function essentially supported on Tθ = θ∗,

|φ∨θ (x)| ≤ CN (n(x, Tθ))
−N and ‖φ∨θ ‖L1 ∼ 1, so ηTθ satisfies (1) and (2).

For any T //Tθ,

max
x∈T
|fθ|(x) ≤ max

x∈T

∫
|fθ|(y)|φ∨θ (x− y)|dy

≤ min
x∈T

∫
|fθ|(y)ηTθ(x− y)dy

because for each y, max
x∈T
|φ∨θ |(x− y) ≤ min

x∈T
max

t∈x−y+10Tθ
|φ∨θ |(t). �

Lemma 6.2. Let ηTθ be defined as in Lemma 6.1 and T//Tθ. Then for any

integer N > 0, there exists a positive function wT = 1 on 10T and wT (x) ≤
CN (1 + dist(x, T ))−N such that for any 1 ≤ p <∞,

(27)

∫
T

(|fθ| ∗ ηTθ)
p .p

∫
|fθ|pwT .
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Proof. We only need to prove the lemma for N sufficiently large (depend-

ing on p).

The function ηTθ satisfies

(28) ηTθ ≤
∑
T//Tθ

CTχT ,

where CT · |T | .N n(T, Tθ)
−N for any large integer N > 0 and n(T, Tθ) is the

smallest n ≥ 1 such that T ⊂ nTθ.
By Hölder’s inequality,∫

T

(|fθ| ∗ ηTθ)
p ≤

∫
T

Ñ∑
T ′//Tθ

|fθ| ∗ CT ′χT ′

ép

=

∫
T

Ñ∑
T ′//Tθ

n(T ′, Tθ

é− 4(p−1)
p

· n(T ′, Tθ)
4(p−1)
p |fθ| ∗ CT ′χT ′)p

.

Ñ∑
T ′//Tθ

n(T ′, Tθ)
−4

ép−1

·
∑
T ′//Tθ

n(T ′, Tθ)
4(p−1)

∫
T

(|fθ| ∗ CT ′χT ′)p

.
∑
T ′//Tθ

n(T ′, Tθ)
4(p−1)

∫
T

(|fθ| ∗ CT ′χT ′)p.

Let χT−T ′(x) be the characteristic function of the Minkowski sum T−T ′ =
T + (−T ′). Then by Young’s inequality,∫

T

(|fθ| ∗ CT ′χT ′)p ≤
∫

((|fθ|χT−T ′) ∗ (CT ′χT ′))
p

.N n(T ′, Tθ)
−pN .

∫
T−T ′

|fθ|p

It suffices to choose wT (x) ∼N
∑

T̃//T n(T̃ , T )−NχT̃ (x). �

Corollary 6.3. If U is tiled by T //Tθ, then for any 1 ≤ p <∞,

(29)

∫
U

(|fθ| ∗ ηTθ)
p .p

∫
|fθ|pwU ,

where wU≥ 0 is essentially supported on 10U and rapidly decays away from it.

Remark. It is important that wU can be taken uniformly independent of

the choice of T . To see this, simply notice that if x ∈ nU and x /∈ (n − 1)U ,

then x cannot be in (n − 1)T for any T ⊂ U . Moreover for any m, a point x

lies in mT for . m3 different T in a given tiling {T}T//Tθ of R3.
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Lemma 6.4. Let θ1, θ2 ⊂ τ be two sectors of aperture d(θ1) = d(θ2) =

K−1/2, and dist(θ1, θ2) ∼ d(τ) = s > K−1/2. Then for any functions suppf̂θ1 ⊂
N 1

K
Γ 1
K
∩ θ1 and suppf̂θ2 ⊂ N 1

K
Γ 1
K
∩ θ2,∑

B
K1/2⊂R3

∫
B
K1/2

|fθ1fθ2 |2 . s−1
∑

BK⊂R3

|BK |−1

∫
|fθ1 |2wBK

∫
|fθ2 |2wBK .

Proof. The proof is essentially a bilinear-Kakeya-style8 estimate in R2

plus the locally constant property in Lemma 6.1. This proof is a simple case of

the ball inflation theorem (Theorem 9.2 in [3]) in the proof of the Bourgain–

Demeter decoupling theorem. Since suppf̂θj ⊂ N 1
K

Γ 1
K
∩ θj for j = 1, 2, the

Fourier support of fθj lies inside a box θ̃j of dimensions K−1/2 ×K−1 ×K−1

with a commonK−1-side on the ν3-direction. (Recall the (ν1, ν2, ν3)-coordinate

system and the equation of Γ 1
K

from Section 5.) And Tθ̃j = θ̃∗j becomes a slab of

dimensions K1/2×K×K. Since dist(θ̃1, θ̃2) = dist(θ1, θ2) = s, for each T1//Tθ̃1 ,

T2 //Tθ̃2 and T1, T2 ⊂ BK , we have |T1 ∩ T2|∼K1/2 · (s−1K1/2) ·K = s−1K2.

Hence the key inequality |T1 ∩ T2| ∼ s−1|BK |−1|T1||T2| holds.9

Using Lemma 6.1, now we are ready to bound∑
B
K1/2⊂BK

∫
B
K1/2

|fθ1fθ2 |2

≤
∑

B
K1/2⊂BK

T1//Tθ̃1
,B
K1/2∩T1 6=∅

T2//Tθ̃2
,B
K1/2∩T2 6=∅

|BK1/2 |c2
T1
c2
T2

. s−1|BK |−1
(∫

BK

∑
T1//Tθ̃1

c2
T1
χT1

)(∫
BK

∑
T2//Tθ̃2

c2
T2
χT2

)

≤ s−1|BK |−1

∫
BK

(|fθ1 | ∗ ηTθ̃1 )2

∫
BK

(|fθ2 | ∗ ηTθ̃2 )2

(Corollary 6.3) . s−1|BK |−1

∫
|fθ1 |2wBK

∫
|fθ2 |2wBK . �

8Bilinear Kakeya is an elementary statement stating the following: Let |T1| and |T2|
be two finite families of infinite strips in R2 such that each strip has width 1. Assume

further that each T1 ∈ T1 and each T2 ∈ T2 have their directions ∼ 1-separated. Then∫
R2(
∑
T1∈T1

χT1) · (
∑
T2∈T2

χT2) . |T1| · |T2|.
9Note: All arguments in this paper work if we dilate a convex body by a constant. If we

replace BK by the slightly bigger B10K , then it is possible for T1 and T2 to miss each other,

hence we can only obtain “.”instead of the above “∼.” However we only use “.” in the

inequality below so “.” is sufficient.
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Lemma 6.5. Let f be a function whose Fourier transform is supported on

the 1
K -neighborhood of Γ 1

K
. For any δ > 0,

(30) ‖f‖4L4(R3) ≤ CδK
δ

∑
K−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,K

|U |−1‖SUf‖4L2 .

Proof. We induct on K. The base case K .δ 1 is easy by Hölder’s in-

equality.

Let 1� K0 � Kδ/10. We tile N 1
K

(Γ 1
K

) with sectors τ of aperture 1
K0

and

width 1
K , and we decompose f =

∑
d(τ)= 1

K0

fτ .

Now N 1
K

(Γ 1
K

) is the 1
K -neighborhood of an arc of a parabola of length 1,

and each τ is the 1
K -neighborhood of an arc of the parabola of length 1

K0
.

The Bourgain–Guth argument [4] says the following. At each point,

f(x) =
∑

τ fτ (x). Let τ∗ satisfy maxτ |fτ |(x) = |fτ∗ |(x). If |fτ∗ |(x) ≥
1/10|f |(x), then |f |4(x) .

∑
τ |fτ |4(x). Otherwise, there exists a τ∗∗ such

that dist(τ∗∗, τ∗) ≥ 1/K0 and |fτ∗ |(x) ≥ |fτ∗∗ |(x) ≥ 1
2K0
|f |(x). Hence,

|f |4 .
∑

d(τ)=1/K0

|fτ |4 +K4
0

∑
dist(τ1,τ2)≥1/K0

|fτ1fτ2 |2.

For the integral of the first term, we rescale τ to be the K−1K2
0 -neighbor-

hood of Γ1/K (the rescaling argument here is similar to the one in the proof of

Lemma 3.3 in Section 7, which we will do with full details), and then we apply

the induction hypothesis on the scale K/K2
0 < K.

For the integral of the second term, we decompose

fτj =
∑

θj⊂τj ,d(θj)=K−1/2

fθj , j = 1, 2.

The functions fθ1fθ2 are essentially orthogonal because they have almost dis-

joint Fourier support, as in the Fefferman–Córdoba proof of restriction for the

parabola [10], [7].

Since dist(τ1, τ2) is not less than 1
K0

, the Minkowski sum (θ1+θ2)∩(θ′1+θ′2)

is empty for θj , θ
′
j ⊂ τj , j = 1, 2, unless θ′1 ⊂ K0θ1 and θ′2 ⊂ K0θ2. Hence∑

B
K1/2⊂R3

∫
B
K1/2

|fτ1fτ2 |2 ≤ K2
0

∑
B
K1/2⊂R3

∑
dist(θ1,θ2)≥1/K0

∫
B
K1/2

|fθ1fθ2 |2,

(Lemma 6.4) . K3
0

∑
BK⊂R3

|BK |−1
∑

dist(θ1,θ2)≥1/K0

∫
|fθ1 |2wBK

∫
|fθ2 |2wBK

. K3
0

∑
BK⊂R3

|BK |−1‖SBKf‖
4
L2 . �
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The right-hand side of the final line corresponds to the s = 1 term of the

right-hand side of (30).

We recall the statement of Lemma 3.2. Unwinding the definition of

SK(r,K) it says the following:

Proposition 6.6. Let f be a function whose Fourier transform is sup-

ported on the 1
K -neighborhood of Γ 1

K
. For any δ > 0 and any r ≤ K ,

(31)∑
Br⊂R3

|Br|−1‖SBrf‖4L2(Br)
≤ CδKδ

∑
K−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,K

|U |−1‖SUf‖4L2 .

Proof. We take advantage that Γ 1
K

is well-approximated by a parabola at

the scale 1/K and use an approach similar to Fefferman–Córdoba’s to bound

the left-hand side of (31) by (essentially) the left-hand side of (30).10

Since the smallest aperture in this proposition is K−1/2, we use θ to denote

a sector on Γ 1
K

of aperture K−1/2 in the current proof.

Let A1, . . . , A1000 be disjoint sets of θ such that each θ is in one of them

and the following property holds:

(∗) Within each Aj , if the Minkowski sum (θ1 + θ2)∩ (θ′1 + θ′2) 6= ∅, then

(θ1, θ2) = (θ′1, θ
′
2) or (θ′2, θ

′
1).

Similar to Fefferman–Córdoba’s proof, we show that if we take each Aj
to be a collection of sectors that are sufficiently separated and on a short

enough arc, then (∗) holds. In fact, it suffices to justify (∗) when the constraint

(θ1 + θ2) ∩ (θ′1 + θ′2) 6= ∅ is replaced by the weaker one below: π3((θ1 + θ2)) ∩
π3((θ′1+θ′2)) 6= ∅. Here π3 is the standard projection to the first two coordinates

in the (ν1, ν2, ν3)-coordinate system. But the projection of Γ 1
K

onto the first

two coordinates is contained in the 2
K -neighborhood of the parabola ν2

2 = 2ν1,

and the projection of each θ is the corresponding cap inside that neighborhood.

We use “Error” to denote a number (the “error term”) whose absolute value

is ≤ 4K−1. If x1 + x2 = a + Error and x2
1 + x2

2 = b + Error with a, b ≤ 2,

then (x1 − x2)2 = 2b− a2 + 7 Error. Hence |x1 − x2| =
√
|2b− a2|+ 3

√
Error.

This would imply that the pair (x1, x2) is determined by the pair (a, b), up to

a swap in order and up to changing within 100 adjacent caps θ.

We use τ to denote caps with aperture r−1/2 ≥ K−1/2 in the current proof.

Consider the decomposition fj =
∑

θ∈Aj fθ, and let fj,τ =
∑

θ⊂τ,θ∈Aj fθ.

10Alternatively, one can blackbox the L4 angular square function estimate by Córdoba [8]

and have a slightly shorter proof. We present a self-contained proof here.
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By the property (∗) and Plancherel, we have for a fixed j,∫
R3

|fj |4 =

∫
R3

|
∑
τ

fj,τ |4

=

∫
R3

∑
τ1,τ2,τ3,τ4:(suppfj,τ1+suppfj,τ2 )∩(suppfj,τ3+suppfj,τ4 )6=∅

fj,τ1fj,τ2 f̄j,τ3 f̄j,τ4

=

∫
R3

∑
τ1,τ2

nτ1,τ2 |fj,τ1fj,τ2 |2

∼
∫
R3

Ç∑
τ

|fj,τ |2
å2

,

(32)

where nτ1,τ2 = 1 if τ1 = τ2 and nτ1,τ2 = 4/2 = 2 if τ1 6= τ2.

By (32) we have

∑
Br⊂R3

|Br|−1‖SBrf‖4L2(Br)
.

1000∑
j=1

∑
Br⊂R3

|Br|−1‖SBrfj‖4L2(Br)

≤
1000∑
j=1

∑
Br⊂R3

‖SBrfj‖4L4(Br)

=
1000∑
j=1

∫
R3

Ç∑
τ

|fj,τ |2
å2

∼
1000∑
j=1

∫
R3

|fj |4

(Lemma 6.5) ≤ CδKδ
1000∑
j=1

∑
K−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,K

|U |−1‖SUfj‖4L2

. CδK
δ

∑
K−1/2≤s≤1

∑
d(τ)=s

∑
U//Uτ,K

|U |−1‖SUf‖4L2 . �

7. The proof of Lemma 3.3

Now we prove Lemma 3.3 using the Lorentz rescaling. First we recall the

statement following statement:

Lemma. For any r1 < r2 ≤ r3,

SK(r1, r3) ≤ log r2 · SK(r1, r2) max
r
−1/2
2 ≤s≤1

SK(s2r2, s
2r3).
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Proof. Suppose that f̂ is supported on Nr−1
3

(Γ 1
K

). To bound SK(r1, r3),

we need to bound ∑
Br1⊂R3

|Br1 |−1‖SBr1f‖
4
L2(Br1 ).

We can apply the definition of SK(r1, r2) and get∑
Br1⊂R3

|Br1 |−1‖SBr1f‖
4
L2(Br1 )

≤ SK(r1, r2)
∑

r
−1/2
2 ≤s≤1

∑
d(τ)=s

∑
U1//Uτ,r2

|U1|−1‖SU1f‖4L2(U1).

Recall that if U//Uτ,r, then SUf = (
∑

d(θ′)=r−1/2,θ′⊂τ
|fθ′ |2)

1
2 |U . In particular,

SBrf = (
∑

d(θ′)=r−1/2

|fθ′ |2)
1
2 |Br .

Using Lorentz rescaling, we will prove the following lemma:

Lemma 7.1. For any sector τ with d(τ) = s,

∑
U1//Uτ,r2

|U1|−1‖SU1f‖4L2(U1)

≤ SK(s2r2, s
2r3)

∑
r
−1/2
3 ≤s′≤s

∑
d(τ ′)=s′,τ ′⊂τ

∑
U//Uτ ′,r3

|U |−1‖SUf‖4L2(U).

(33)

We defer the proof of Lemma 7.1 to the end of this section. If we plug in

Lemma 7.1 and expand everything, then we get Lemma 3.3:∑
Br1⊂R3

|Br1 |−1‖SBr1f‖
4
L2(Br1 ) ≤ log r2SK(r1, r2) max

r
−1/2
2 ≤s≤1

SK(s2r2, s
2r3)

×
∑

r
−1/2
3 ≤s′≤1

∑
d(τ ′)=s′

∑
U//Uτ ′,r3

|U |−1‖SUf‖4L2(U).

The factor log r2 appears here for the following reason: after we expand, each

sector τ ′ will appear at most log r2 times, because τ ′ lies in τ for at most log r2

sectors τ with r
−1/2
2 ≤ d(τ) ≤ 1. �

Proof of Lemma 7.1. The definition of SK(s2r2, s
2r3) says that if ĥ is sup-

ported on Ns−2r−1
3

(Γ 1
K

), then∑
Bs2r2

|Bs2r2 |
−1‖SBs2r2h‖

4
L2(Bs2r2

)

≤ SK(s2r2, s
2r3)

∑
s−1r

−1/2
2 ≤d(τ ′′)≤1

∑
U ′′//Uτ ′′,s2r3

|U ′′|−1‖SU ′′h‖4L2(U ′′).
(34)
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On the other hand, Lemma 7.1 says that if τ is a sector of Γ 1
K

with

d(τ) = s, and f̂τ is supported on Nr−1
3

(Γ 1
K

) ∩ τ , then∑
U1//Uτ,r2

|U1|−1‖SU1f‖4L2(U1)

≤ SK(s2r2, s
2r3)

∑
r
−1/2
3 ≤s′≤s

∑
d(τ ′)=s′,τ ′⊂τ

∑
U//Uτ ′,r3

|U |−1‖SUf‖4L2 .
(35)

To connect them, we begin with a Lorentz transformation L so that L :

τ ∩ Γ 1
K
→ Γ 1

K
is a diffeomorphism. This L is constructed in Section 5, where

it is shown that L takes Nr−1
3

(Γ 1
K

) ∩ τ to Ns−2r−1
3

(Γ 1
K

). Now we define h by

ĥ = f̂τ (L−1(·)). Moreover let ĥτ ′′ = f̂τ ′(L−1(·)) where L(τ ′) = τ ′′; see item

(1) below. We see that ĥ is supported on Ns−2r−1
3

(Γ 1
K

) and so h obeys (34).

When we unwind the Lorentz transformations, we claim that (34) becomes

(35), which proves the lemma. To see that this unwinding works as desired,

we check how each piece transforms.

(1) If τ ′ ⊂ τ is a sector of Γ 1
K

with aperture d(τ ′), then L(τ ′) is a sector τ ′′

of Γ 1
K

with d(τ ′′) = s−1d(τ ′), as we showed in Section 5. In particular, L

transforms a θ′ ⊂ τ with aperture d(θ′) = r
−1/2
3 into a sector with aperture

s−1r
−1/2
3 , which appears in the definition of SU ′′h.

(2) L∗(Uτ ′,r3) = Uτ ′′,s2r3 . Since τ ′′ = L(τ ′), this follows from Lemma 5.1.

(3) L∗(Uτ,r2) = Bs2r2 . Note that L(τ) is the sector corresponding to all of Γ 1
K

,

which is essentially the unit ball. We will denote this sector just by B1.

By Lemma 5.1, L∗(Uτ,r2) = UB1,s2r2 . By definition, the right-hand side is

the convex hull of the union of θ∗ over all sectors θ of aperture ∼ s−1r
− 1

2
2 ,

and this is approximately the ball of radius s2r2.

(4) The Jacobian factors from the change of variables work out the same on the

left-hand side and the right-hand side. Since both sides involve a volume

to the power −1 times an L2 norm to the power 4, the Jacobian factors

are the same on both sides of the inequality. �
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