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A sharp square function estimate
for the cone in R?

By LARRY GUTH, HONG WANG, and RUIXIANG ZHANG

Abstract

We prove a sharp square function estimate for the cone in R® and con-
sequently the local smoothing conjecture for the wave equation in 2 4+ 1

dimensions.

1. Introduction

1.1. Main results. This paper concerns the restriction theory of the cone
in R3. Let I' be the truncated light cone I' = {€? + &3 = £2,1/2 < & < 1},
and let Np-1(T) denote its R~!-neighborhood. Cover Np-1(T') by finitely
overlapping sectors  of angular width R~1/2, where each sector is a rectangular
box of dimensions about R~ x R~1/2 x 1. If f has support on Np-1(T), we

consider a set of functions {fg} such that

(a) fo is supported on 6, and
(b) f =229 fo-
For example,! here is a natural way to choose {fg}: let ¢)9 be a smooth partition

of unity subordinate to the covering {6}, and define fy by fy = f1be. We prove
the following sharp square function estimate for this decomposition:

THEOREM 1.1 (Square function estimate). For any € > 0, R > 1 and any
function f whose Fourier transform is supported on Nr-1(T'), we have

1/2
1£ll2as) < CeRS (Z \fe!2> :
f LA (R9)

This type of square function estimate was considered by Mockenhaupt
[19] who proved that it implies the cone multiplier conjecture in R?, and by
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!We remark that what we prove about {fs} in this paper is uniform as long as (a) and
(b) are satisfied, i.e., it does not depend on the particular choice of {fs}.
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Mockenhaupt—Seeger—Sogge [20] (in a slightly different form) who essentially
showed that it implies the local smoothing conjecture for the wave equation in
2 4+ 1 dimensions. Here we recall the local smoothing conjecture, and we refer
to [19] and [18] for more information about the cone multiplier conjecture. The
local smoothing conjecture was formulated by Sogge in [23]. If u is a solution to
the wave equation on R", a local smoothing inequality bounds ||u|r®nx1,2))
in terms of the Sobolev norms of the initial data. In particular, the local
smoothing conjecture in 2 + 1 dimensions is the following estimate.

THEOREM 1.2 (Local smoothing in 2+1 dimensions). Suppose that u(z,t)

is a solution of the wave equation in 2+1 dimensions, with initial data u(z,0) =
up(z) and dyu(z,0) = uy(x). Then for any p >4, and any o > 1 — %,

pa T [l p,—1+a) :

(1) |l o2 xp,2)) < Ca (Jluo

Theorem 1.2 follows by combining Theorem 1.1 with the arguments
in [20].

In [23], Sogge formulated the local smoothing conjecture, and he noticed
that Bourgain’s proof of the boundedness of the circular maximal operator
in [1] can be used to establish “local smoothing” estimates with a non-trivial
gain of regularity. The critical case of Theorem 1.2 is when p = 4 and « is
close to zero. Mockenhaupt, Seeger, and Sogge [20] proved that (1) holds for
p =4 with o > 1/8, and this was improved afterwards by several authors ([24],
[27], [17]). In [26], Wolff proved the local smoothing conjecture for p > 74 in
the full range? of . In that paper, Wolff introduced the idea of decoupling.
His method was extended to higher dimensions by Laba—Wolff [16] and refined
by Garrigbs—Seeger [12], [13] and Garrigés—Schlag—Seeger [11]. Then in [2],
Bourgain and Demeter proved a sharp decoupling estimate for the cone in
every dimension, in particular, proving the local smoothing conjecture in 2+ 1
dimensions for p > 6 in the full range of a. The sharp decoupling estimate for
the cone does not, however, imply the full range of local smoothing estimates;
at the end of the introduction we will discuss what the issue is.

In a different direction, Lee and Vargas [18] proved a sharp L? square
function estimate using multilinear restriction.

1.2. Proof strategy. One new feature of our approach is that we prove a
stronger estimate that works better for induction on scales. We need a little
notation to state this estimate. The precise details and definitions are provided

2To be more specific, Sogge originally made the conjecture for « in the range o > % — %

and Wolff confirmed Sogge’s conjecture for p > 74 and « in this range. Later in the work
[15] of Heo, Nazarov and Seeger it was conjectured further that when p > 4, the conjecture

should hold for a > 1 — %.
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in Section 3. First we recall the locally constant property of f. For each
sector 6, we let 8 denote the dual rectangular box: since # has dimensions
1 x R~Y2 x R™1, 6* has dimensions 1 x R/2 x R. We call such a 6* a plank.
Recall that |fy| is roughly constant® on each translated copy of #*. In this
paper we tile R? with translated copies of 8*. The restriction of f; to one
translated copy of 6* is called a wave packet. In addition to the sectors 6, we
will consider larger angular sectors 7 with any angle between R~/2 and 1. We
write d(7) to denote this angle, which we call the aperture of 7.

For each 7, we define? f, = > ocr fo, and we define 7% to be the dual
rectangle to 7. If d(7) = s, then 7* has dimensions 1 x 57! x s72, and |f,|
is roughly constant on each translated copy of 7*. Next we define U; r to be
a scaled copy of 7* with diameter R. If d(7) = s, then U, r has dimensions
Rs? x Rs x R. Note that if # C 7 and if T is a translated copy of #* that passes
through the center of U; g, then T' C 10U, g, where 10U, r means the dilation
of Ur g by a factor of 10 with respect to its centroid. For each 7, we tile R3
by translated copies of U g:

R3 = |_| U.

U a translated copy of U, g

This tiling is natural because for each # C 7, the support of each wave packet
of fy is essentially contained in ~ 1 tiles U in the tiling. Here the notation
for two quantities A ~ B means that A < C1B < (C3A for some positive
absolute constants C7 and Cy. We write ZU//Uﬂ L, to denote the sum over all
the translated copies U of U, g in the tiling of R3.

3Such kind of “locally constant” heuristic will be used a few times in the current paper.
To justify this intuition one can use Corollary 4.3 in [3]. See also Lemmas 6.1 and 6.2 in
Section 6 of the current paper.

4This definition works best if 7 is honestly tiled by 6. In general we abuse the notation
a bit: Throughout this paper, by writing “summing over § C 7,” we really mean “summing
over all € A(7)” where the collection A(7) is chosen as follows: Each A(7) only contains
those §’s who intersect 7, and all A(7) form a disjoint union {6} = | |, A(7).
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If U is a translated copy of U; g, then we define the square function Sy f
associated with U to be

1/2
Suf = (ZW) 22

ocr

We can now state our main estimate.

THEOREM 1.3. Suppose that f has Fourier support on Ng-1(I'). Then

(2) Il <CR ST S ST UM ISu L

R=1/2<s<1 d(7)=s U/lUr R
Here the sum over s is over dyadic values of s in the range R™1/% < s < 1.

Let us take a moment to digest the right-hand side of this estimate. For
this discussion, suppose that f is essentially supported on one Br. We start
with the term where s = R~/2. In this case 7 is one of the original sectors 0
of aperture R~Y/2, U, g is equal to 6*, and |Sy f| = |f9HU. Since |Su f| = | fol
is roughly constant on U,

UITHISu £l ~ N1Su fllzs-

If the functions fy are essentially supported on disjoint regions, we would have

lda~ S 3 ISusllke,

( =R~ I/QU//UTR

which matches the term s = R~'/2 on the right-hand side of (2). Next consider
the term where s = 1. In this case, there is only one 7 that covers all of T,
and the contribution to the right-hand side is essentially |Bg|™!||Sp, fl|7: ~
|Br|™ 1HfHL2 By I | f| is roughly constant on the whole Bg, then we would
have

11 2s ey~ N 2am ) ~ BRI T 28 ~ 1BRI T 1SR 725,

which matches the term s = 1 on the right-hand side of (2). Finally we consider
the intermediate values of s. It may happen that f = f. for some 7, that f is
essentially supported on a particular translated copy U of U, g, and that |f|
is roughly constant on U. In this case,

11 2s ey ~ e Ty ~ U I N L2y ~ U1 IS0 flZ,

which is the term corresponding to U on the right-hand side of (2).
The proof of Theorem 1.3 is based on a new Kakeya-type estimate, which
controls the overlapping of the planks in the wave packet decomposition of f.
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LEMMA 1.4. Suppose thatf has support on Nr—1(I'). Let g denote the
(squared) square function g = > d(0)=R-1/? |fol?. Then

/Rg‘g‘Q< S > Ut ISu sl

R-1/2<s<1d(m)=sU/lUr R

where A < B means that A < CB for some absolute positive constant C.

Recall that each function |fy| is morally constant on the translated copies
of 0*, where each 6* is a 1 x RY/2 x R plank. The estimate in Lemma 1.4 is a
Kakeya-type bound on the overlapping of these planks. The new feature of this
estimate compared to previous Kakeya-type estimates is the structure of the
right-hand side, which is designed to match the right-hand side of Theorem 1.3.
The terms on the right-hand side keep track of how planks are packed into the
rectangular boxes U. If the planks are spread out in the sense that each box
U does not contain too many planks, then it gives a strong bound.

In [26], Wolff connected Kakeya-type estimates for overlapping planks to
incidence geometry problems in the spirit of the Szemerédi—Trotter problem.
He adapted the cutting method from incidence geometry to this setting and he
used it to estimate the overlaps of planks. He applied those geometric estimates
at many scales to prove his results on local smoothing. In [2], Bourgain and
Demeter apply multilinear Kakeya estimates at many scales to prove decou-
pling. In this paper, we apply Lemma 1.4 at many scales to prove Theorem 1.3.

Lemma 1.4 is proven using Fourier analysis. By Plancherel, [ |g|*> = [ |g|*.
Roughly speaking, we decompose the Fourier space, and the contributions of
different regions to [ | §G|? correspond to the different terms on the right-hand
side of Lemma 1.4. This approach to proving Kakeya-type estimates is based
on some work of Orponen in projection theory [21] and is related to Vinh’s
work [25] about incidence geometry over finite fields. It builds on [14], which
applies similar ideas to rectangles and tubes instead of planks.

1.3. Local estimates. Our Theorem 1.3 and Lemma 1.4 have “local” coun-
terparts involving polynomially decaying weights that are essentially supported
on a given box. For any box Bp of diameter R, define the weight

dist(z, B -F
wmpta) = (14 G

Here is the local version of Theorem 1.3.

THEOREM 1.5. If f has Fourier support on Ng-1(I"), then for any E > 0,

B3)  Ifllzsp < CepR D> > > WU lwpes - Sufle.

R-1/2<s<1 d(T)=s UlUys. 1

Here the sum over s is over dyadic values of s in the range R~1/%2 < s < 1.
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In the above theorem, the sum on the right-hand side is also “morally
localized.” It is

>y > UTISu Sl

R-1/2<s<1d(7)=s U//U; r,UC100BR

plus some decaying error term. To prove Theorem 1.5, we multiply f by a
rapidly decaying bump function ¢ adapted to Br such that |¢r| > % > 0 on
Bpgr and QBR is supported on the ball Bp-1 centered at the origin, and then we
apply Theorem 1.3 to the decomposition ¢prf = > g drfy.

1.4. Relationship with decoupling. While working on this project, we were
strongly influenced by ideas related to decoupling, but the proof given here does
not use the decoupling theorem per se. It does make use of a nice observation
that Bourgain and Demeter used to reduce the decoupling theorem for the cone
to the decoupling theorem for the paraboloid. (See [2]. Similar ideas can also
be traced back to the iteration argument of Pramanik-Seeger [22].) Instead
of working with a truncated cone of height 1, Bourgain and Demeter worked
with a truncated cone of height 1/K for a large constant K, denoted I" 1. This
shorter truncated cone can be approximated by a parabola at various scales.
We will also work with I' 1, allowing us to bring into play some estimates for
the parabola. "

As we mentioned above, sharp decoupling theorems do not imply the full
range of local smoothing estimates or the square function estimate. Let us
explain a little further what the issue is. The decoupling theorem for the cone
gives the following bounds, which are sharp for every p between 2 and oc:

1/2
(4 fllr@s) < CeRS > ollioes) if2<p<6,
d(9)=R~1/?
1/2
18, :
(5)  [Ifllzersy < CRA™ 27 > M follZomsy if p>6.
d(0)=R-1/2

For any given p, (5) implies local smoothing for that p. But the inequal-
ity (5) cannot hold for any p < 6 because the power of R would be negative.
The power of R in a decoupling inequality cannot be negative because of the
following example: suppose that for each 0, |fy| is approximately the charac-
teristic function of Bg, and at each point |f| ~ (324 f4/?) 1/2

1flle ~ (ol f9||%p)1/ ? for all p. This example is not a counterexample for
local smoothing, but to prove local smoothing for some p < 6 we have to do
better than inequality (4) in some scenarios—for instance, if the supports of

. In this case,
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fo are essentially disjoint at time 0. Roughly speaking, we need to improve the
bound (4) when p < 6 and when each fy is essentially supported on a sparse
region of Br. Theorem 1.3 makes this precise.

There are similar issues in the problem of decoupling into small caps, which
was studied in [9]. For instance, consider an exponential sum of the form

;2
(6) f(z1,22) Za] <—:J:1 + 32 > , with |a;| <1 for all j.

The decoupling theorem for the parabola gives a sharp bound on || f|[1»(5,.,)
for every p. But suppose we want to bound ||f|z»(p,) for some R < N2, If
we divide the parabola into arcs 6 of length R~/2, then each fj is a sum of
~ NR~'/2 terms of (6). It is not hard to estimate the largest possible value of
| follzr(By) for each p. Combining this bound for || fo||zr(5,) With decoupling
gives an upper bound for | f|z»(B,), but it is not sharp. When || fg| z»(B,) is
close to its largest value, then |fy| is concentrated on a sparse region of Bp.
The argument in [9] exploits this sparsity to improve the bound from decou-
pling and give sharp estimates for || f||z»(,,) for every p. The proof of the main
theorem here builds on that proof.

The paper [9] also considers a decoupling problem in which the cone is
divided into small squares instead of sectors. This problem was raised by
Bourgain and Watt [5] in their work on the Gauss circle problem. The paper [9]
shows that the square function estimate Theorem 1.1 implies a sharp estimate
for this decoupling problem.
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2. Proof of the square function estimate from Theorem 1.3

In this section, we explain how Theorem 1.3 implies the square function es-
timate Theorem 1.1, and we discuss how the latter implies the local smoothing
Theorem 1.2. First we recall the statement of Theorem 1.1:

THEOREM. For any function f whose Fourier transform is supported on
Ng-1(T"), we have
1/2

[ £l z2msy < CeRe| Z | fol? | L4 (r3)-
d(9)=R~1/2

Proof. Let U be a translated copy of U, r. Recall that

150 £ 12 = / Sl

Ubcr
By Cauchy—Schwarz,

E (ZW)

ocCr
Therefore,

2> WSl < Z/ (ZW)

s UfU-r ocCr

< /Rj (%:Ifﬁ) : O

Summing in s (dyadic numbers) contributes an additional log R factor com-
pared to Theorem 1.3.

Essentially by [20], the square function estimate in Theorem 1.1 implies the
local smoothing Theorem 1.2 for the wave equation in 2 + 1 dimensions. This
implication was sketched in Proposition 6.2 of [24]. One technical difference is
that the square function considered in [20] was the one in terms of “small caps”
¢, R~Y2-squares on I'. Instead of the Littlewood—Paley estimate corresponding
to equally spaced decompositions in R? used in [20] (see (1.9) and the following
first two lines on page 214 of [20]), one needs such an estimate for angular
decompositions. In the L?* case, such an angular square function estimate
was proved by Cérdoba (see ii) on the first page of [8]). Another proof® by
Carbery—Seeger can be found in [6].

5See Proposition 4.6 in [6]. That proposition has two parameters and Cérdoba’s estimate
(up to an R°-loss) can be viewed as a simpler one-parameter variant. See also the remark in
the end of Section 4 in [6]
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3. Outline of the proof of the main theorem

In this section, we give an overview of the proof of Theorem 1.3 and
outline the rest of the paper. First we review the statement of Theorem 1.3
and present it in a more detailed way.

Let ' be the truncated light cone I' = {¢7 + &3 = ¢2,1/2 < |&| < 1}. We
now precisely define the sectors discussed in the introduction. For each point
¢ €T with & = 1, we define a basis of R? as follows: the core line direction is
c(&) = (&1,€2,1), the normal direction is n(§) = (£1,&2,—1), and the tangent
direction is t(7) = (—£2,&1,0). Now for each such £, and each s < 1, we define
the sector with direction £ and aperture s as follows:

7(s,8) ={w € R3:1< c(§) -w<2and n(&)  w| < s? and [t(§) - w| < s}.

Here s = d(7) is the aperture of 7 as described in the introduction.

For each s, We choose 105! evenly spaced ¢ in the circle I' N {&3 = 1},
and we let Sy be the set of 7(s,§) for these . It is straightforward to check
that these form a finitely overlapping cover of N (I').

In the introduction, we considered a finitely-overlapping cover of Np-1T’
by sectors 8 with dimensions ~ R~! x R~1/2 x 1. The set of these sectors is
Sp-1/2.

For each 7 = 7(s,&), and each p > s72, we define a box Uy, as follows:

(1) Upp={a €R?: |c(€) -] < ps® and [n(¢) - o] < p and [6(¢) - 2] < ps}.

The box U, is approximately the convex hull of the union of 6* over all
sectors  C 7 with d(f) = p~1/2. In other words, U:,, is approximately the
smallest rectangular box such that for any p_l/ 2_sector § C T, if a translated
copy of 6* intersects U ,, then it must lie in 10U, ,. We tile R3 by translated
copies of U ,.

If U is a translated copy of U; ,, then we define Sy f by

1/2

(8) Suf = S 1fl .

0€Sp_1/2:9CT

As written, this definition appears to depend upon U, 7, and p. But in
fact the parameters p and 7 can be read off from U. The parameter p is the
diameter of U. The aperture d(7) = s can be read off from the dimensions
of U, which are ps? x ps x p. And the direction ¢ of 7 can be read off from the
direction of U. To illustrate this, suppose that U is B, — a ball of radius r.
The diameter of U is r, and so p = r. The dimensions of U are r x r X r, and
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so d(7) = 1. Since 7 has aperture 1, it covers all of I". Therefore,

1/2

Sp, f = > 1fel? 5. -

OGST_I/Z

In particular, |Sp, f] is just | f]| restricted to Bj.
We define S(r, R) as the smallest constant such that for every function f
with suppf C Nr-1(T),

© S IBISs flhap, <SG RS S S U Su S,

B,CR3 R-1/2<s<1 T€Ss UJlUr R

On the left-hand side of inequality (9), >"p ~gs means the sum over the
balls B, in a finitely overlapping cover of R3. On the right-hand side of in-
equality (9), the first sum, > p 1/2.,<1, means the sum over dyadic numbers
s between R~/2 and 1. The last sum, ZU//UT, » means the sum over a set of
translates of U, r that tile R3.

By Hélder’s inequality, S(r, R) < oo for any 0 < r,R < oco. We will
only consider S(r, R) when r < R. Theorem 1.3 is equivalent to the bound
S(1,R) < CcR* since |Sp, f| = |f| on any By and |f| is morally constant on Bj.
We will derive Theorem 1.3 from a series of bounds for S(r, R).

In Section 4, we prove the Kakeya-type estimate Lemma 1.4, and we use

it to prove

LEMMA 3.1. For any r > 10, r € [r,r?],

S(rl,r2)§ C.

Next we bring into play a trick from the proof of decoupling for the cone
in [2]: instead of working with I' we work with a subset of I' that lies close
to a short parabolic cylinder. We let P denote an arc of a parabola of length
~ 1 lying in I'. For any K > 10, we define I'1 to be the 1/K-neighborhood
of P in I'. We will eventually choose K to be zf large constant depending on €
(which remains fixed as R — o0). The precise formula for T’ 1 is designed
to make Lorentz rescaling work in a clean way, and we give the formula in
Section 5 when we discuss Lorentz rescaling. We can define a sector 7 C I’ 1
and its aperture d(7) in the same way as before (again see Section 5). Then we
define Sk (r, R) as the smallest constant such that (9) holds for every f with
supp f C NR_1(F%). Since F% c T, Sk(r,R) < S(r,R). On the other hand,
since K will be a chosen constant, Sk (r, R) is almost equal to S(r, R) and we
can use it equally well to prove Theorem 1.3.
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If R = K, then N1 (F%) is the 1/ K-neighborhood of the parabolic arc P,

and the restriction theory for the parabola can be used to study Sk (1, K). In
Section 6 we use this idea to prove the following lemma:

LEMMA 3.2. For any K > 10, any 1 <r < K, and any § > 0, we have
Sk(r,K) < C(;Kd.

Theorem 1.3 will follow by combining Lemmas 3.1 and 3.2 with a Lorentz
rescaling argument. We review the Lorentz rescaling in Section 5. We use it
in Section 7 to prove the following lemma, which relates S (r, R) for various
values of r, R:

LEMMA 3.3. For any r; < ro <73,

Sk (ri,r3) <logry - Sk(ri,r2) max SK(S2’I"2,82T3).
ry t?<s<1
This lemma is an important motivation for working with Sg(r, R). It
allows Lemmas 3.1 and 3.2 to be applied at many different scales. A key point
of studying Theorem 1.3 instead of trying to prove Theorem 1.1 directly is that
it allows this multiscale analysis to come into play.
Assuming the lemmas, we now prove bounds on Sk (r, R) and use them
to deduce Theorem 1.3.

PROPOSITION 3.4. For any € > 0, there exists K = K(€) so that for any
1 <r <R, we have s
Sk(r,R) < C(R/r)".

Proof. First we note that if » > R'/2, then Lemma 3.1 tells us that
Sk(r,R) < S(r,R) < C, and so the conclusion holds.

Let K = K(e) > 10 be a constant depending only on € that we will
choose below. (The constant K (e) will depend on e and on the constants in
Lemmas 3.1 and 3.2.)

We apply induction on the ratio R/r.

Our base case is when R/r < /K. We have already checked the proposi-
tion in case r > RY2. If r < RY/2 and R/r < \/I?, then R < K. In this case,
since K is a constant depending only on ¢, it is straightforward to check that
Sk (r, R) is bounded by a constant éK = CN‘G. This finishes the base case.

Next we proceed with the induction. Given a pair (r, R), our induction
hypothesis is the following: for any pair (v, R') with R'/r" < R/2r, we have
Sk (r',R") < C.(R' /).

The proof of the induction has two cases, depending on whether r < K1/2,

If r < KY2, we apply Lemma 3.3 with r, = r, ro = K'/?r, and r3 = R,
which gives

Sk(r,R) <log K - Sk (r, K*/?r) Imax Sk (K'Y %r $*R).
ry 1 7<s<1
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We bound the first Si factor using Lemma 3.2, and we bound the second Sk
factor using induction. These bounds give

Sk (r,R) <log K - S (r, K'/?r) max Sk (s?KY?r $*R)
ry 1 7<s<1

€
<logK - C5C.K* (I(F/%) .
We choose 6 = €/4, and then we choose K =K () large enough so that log K -
CepaK —€/4 < 1, and the induction closes in this case.
Now suppose r > K1/2. Recall from the start of the proof that we may
assume r < RY2. We apply Lemma 3.3 with r = r, 7o = 2, and r3 = R,
which gives

Sk (r,R) < 2logr - Sk(r,r?) m<ax<15’K(s 2, s°R).

We bound the first Sk factor using Lemma 3.1 and we bound the second
Sk factor using induction, giving

Sk(r,R) < 2logr - Sk(r,r?) max Sk(s*r? s*R) < 2logr - CC. <R> :

r—1<s<1

We choose K = K(¢) large enough so that for all r > K'/2 we have 2logr -
Cr~—¢ <1, and the induction closes in this case. ([l

Finally we show how Proposition 3.4 implies Theorem 1.3.

Proof. Proposition 3.4 implies that for every ¢ > 0, we can choose K =
K(e) so that Sk (1,R) < C.R¢ for all R. Suppose that the support of f is
contained in Np-1(I"1) C Bs. Since |f| is morally constant on unit balls, we

1
K
have®
JEGEID SRS SR LA
(10) R By CR? B, CR?

SCR > Y > U ISus e

R~ 1/2<5<1 d(T)=s U//UTR

This inequality is essentially Theorem 1.3 except that we assumed that f
is supported on Np-1 (F%) instead of Np-1(T"). Since Nz-1(I") can be covered
by O(K) = O(1) affine copies of F%, we can reduce Theorem 1.3 to (10).
Here are the details.

Take {Aj}1<j<k to be a collection of linear transformations such that
I' C|UA;(I'1). Here each A; is a composition of a scaling by a factor ~ 1 and

1
K

5Strictly speaking, one need to apply Lemmas 6.1 and 6.2 to justify the first “<” in
inequality (10). This is similar to the arguments in Section 6, where we give full details.
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a rotation in the (£1,&)-plane.” Similarly, we can arrange that Np-1(I') C
UA; (NR—I(F%)). Let {¢;} be a C* partition of unity subordinate to this
covering. This partition of unity only depends on K. If f is a function whose
Fourier transform is supported on Nz-1(T"), then f =3, wjf. Define f; by
fj = wjf and fjﬂ = wjfg. The support of fj is contained in A]'(NR—I(F%)).
Since (10) is invariant under rotations and approximately invariant under
rescaling by a factor ~ 1, (10) holds for each function f;.
Now by the triangle inequality and Hélder’s inequality,

1145y S K Z 1l o)

<K3CR€Z 3 Z > OIS fillz

J R-1/2<s<1 d(1)=s UJUrr

SKCR Y Y > Ut ZHSUf]HLQ

R-1/2<5<1 d(r)=s UJUr.r

wor Y% zwrlusUfup.

R=1/2<s<1 d(r)=sUjlUr R

2

To see the last inequality, note that f; 9 = fo *1[@ and % is rapidly decaying
outside the ball of radius K centered at the origin. Hence, by Lemma 6.2, each
I fiellL2(B) Sk ||f9HL2(wB1,E) for any polynomially decaying weight wp, g. It
suffices to take E large enough.

Since K is a constant only depending on ¢, this gives Theorem 1.3. (]

4. A Kakeya-type estimate

In this section, we prove the Kakeya-type estimate Lemma 1.4, and we
use it to prove Lemma 3.1. First we recall the following statement:

LEMMA. Suppose f has support on N,—=(T'). Let g denote the (squared)
square function g = > ges _, |fol?. Then

/nggpg S S O YSu sl

R-1/2<5<17€Ss UJUr g

(Comparing with the statement in the introduction, we use r? in place
of R. This makes the algebra in the proof a little simpler, and it connects with

the notation in Lemma 3.1.)

h + K/10} for some h ~ 1. Then we choose S K dilations D; such that I' C |J, Di(T'(h)).
We define A; = Dy Ry,. for some [ and k.

"One can choose < 1 rotations Ry such that | J, Rk(F%) covers I'(h) = T'N{h < & <
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Proof of Lemma 1.4. Suppose that supp f C N,—2(T"). Recall that

9= |fel*

0€eS, 1

The Fourier transform of |fg|? is supported on the Minkowski sum 6 =
0 + (—0). The set 0 is itself a plank of dimensions ~ =2 x =1 x 1 centered
at the origin. Notice that while the original sectors # are disjoint, the planks
6 are not disjoint. The way that they overlap plays an important role in the
proof.

The Minkowski sum 6(¢) = 0(€) + (—60(€)) is approximately equal to the
following rectangular box:

0(&) ~{weR:|c(€) w <1and n(€)-w| <r~?and [t() - w| <r 1},

where two convex sets A =~ B means that A C 10B C 100A.

The overlapping of the boxes 0 is best described in terms of similar rect-
angular boxes at smaller scales. For any dyadic ¢ in the range r~! < o < 1,
and any & as above, we define a box © = (0, ) by

(11) ©(0,&) = {w: |e(§) -w| < 0® and [n(¢) w| < r~2 and [t(£) -w| <1~ 'o}.

Notice that ©(1,€) is equal to (¢), and for o < 1, ©(c,£) C 0(€). At the other
extreme, ©(r~1, &) is essentially the ball of radius 7=2 centered at the origin,
regardless of &.

If we intersect ©(o, &) with the slab {(1/2)0? < w3 < 0?2}, then it lies in
the r~2-neighborhood of the light cone. Let I'(c?) denote the part of the light
cone where (1/2)0? < w3 < 02, Each O(0,£)N{(1/2)0? < w3 < 02} is a sector
of N,—2(I'(c?)), just as 6 is a sector of N,—2(I'). The number of such sectors
needed to cover N,—2(I'(¢?)) is ~ or. If |¢ — &| > o~ 1r7L, then O(c,&) N
(0, &) N{(1/2)0? < w3 < 02} is empty. Conversely, if [¢ —¢&'| < o~ 1r~L, then
(0, &)N{(1/2)0? < w3 < 02} is comparable to O(a, &) N{(1/2)0? < w3 < 02}
By symmetry, the same holds when we intersect with {—0? < w3 < —(1/2)0?}
at the other side of the light cone. Now by convexity, we conclude that if
|¢ —¢&| <o~ lr~! then O(o,&) C 20(0, ¢).

For each dyadic ¢ in the range r~! < ¢ < 1, let CP, be a set of ~ or
planks of the form O(o, ) with the directions £ evenly spaced in the circle.
(The letters CP stand for centered plank.) The size of CP, is chosen so that
for any ©(c, ), we can choose O(0,¢’) € CP,, so that ©(c,&) C 20(0,&’). We
define CP as a union over dyadic scales: CP = U,-1.,<;CP,. Since O(1,¢)
is the same as 6(¢), CPy = S,—1. On the other hand, CP,-1 is a set with one
element, which is essentially the ball of radius »—2 around the origin.

For a given 6(¢) and a given scale o, there are ~ 1 © =0(0,¢’) € CP,
with © C 26. To see this, note on the one hand that ©(c,&) C 0(¢), and we
can choose O(0,¢’) € CP, so that O(c,¢') C 20(0,£). On the other hand,
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0(¢) N N,—2(T'(c?)) is essentially equal to the sector ©(c, &) N {(1/2)0? < ws
< 02}, and so 20(€) contains O(c, ') only if ¢ — &| S o lr L.

In our proof, r remains fixed but we have to consider various scales o.
To simplify notation, we abbreviate S,-1 as S. Now for each scale o, for
each § = 6(§) € S = S,-1, we associate one © = 0(0,¢) € CP, with
|¢/ —¢| < o~lr~l. For each © € CP,, we let Sg be the set of all # € S that are
associated with ©. So for each 0, S =| |gecp, Se. If 0 € Sg, then © C 26.

Let © = Upegl ~ Ueecp, ©. Since (|fy|?)" is supported on 0, it follows
that g is supported on £2. We break 2 into pieces associated with different scales
o as follows. We define Q<, = Ugecp,©. Then we define 0, = Q< \ Qeo)2
if ¢ > r~!, and we define -1 = <, -1, so that

= || 2.

(Here | | denotes a disjoint union, and the union is over dyadic o.)
Now if w € Q,, we bound |g(w)]| as follows:

= | S1HP @< X | 1P )]
S

0eS €CP, 0€Se

(12) 9(w)

LEMMA 4.1. If © € CP, makes a non-zero contribution to the right-hand
side of (12) for an w € Q, then w € 40.

Proof. Suppose that > peg, (| f9/*)" (w) is non-zero. Then we must have
w € 6 for some 6 € Se. Suppose § = 0(€) and © = O(c,£'). Since 0 € Sg, we
know that |¢ — ¢'| <o 1r~! and so O(0, &) C 26.

We claim that 6 N Q<, is contained in 20(c, £). This will finish the proof,
because w € 0 N N, C 20(0, ) C 40(0, £).

To check the claim, we have to understand the geometry of the set 2<,. To
picture the set Q<,, we found it helpful to consider the intersection of O(c, §)
with the plane w3z = h. We assume |h| < 02 — otherwise the intersection
is empty. The intersection ©(c,&) N {ws = h} is a rectangle with dimensions
r~lox+/2r~2, and the long side of the rectangle is tangent to the circle of radius
h around the origin at the point h€. Therefore, ©(o,£) N{ws = h} is contained
in the annulus {h? < w? + w} < A% + r~20%}. If we rotate &, the rectangle
©(0,&) N{ws = h} rotates also, and the union of these rotated rectangles over
all € is equal to this annulus. Therefore, if h < 02, then Q<, N {w3 = h} is
approximately equal to this annulus:

(13) Q<o N{ws =h} ~{w:ws =h,h? <w? +ws <h? +r 7267},

On the other hand, (&) N {ws = h} = O(1,€) N {ws = h} is a rectangle
of dimensions ~ 7~ x =2 that is tangent to the circle of radius h at h&. The
intersection of this rectangle with the annulus above is contained in a shorter
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rectangle with the same center and with dimensions or~! x r=2, which in turn
is contained in 20(c, &) N {ws = h}. Since this holds for every h with |h| < o2,
we see that 0(£) N Q<, C 20(0, &) as claimed. O

Using Lemma 4.1, we can rewrite inequality (12): if w € Q,, then

(14) D S DS (O™}
©cCP, wel® 0eSe
LEMMA 4.2. For any w € Qy, the number of © € CP, so that w € 40 is
bounded by a constant C.

Proof. Building on the description of (<, in (13) above, we see that if
|h| < 02/4, then Q, N {ws = h} is approximately given by

(15) (P24 (1/4)r~20% < w? +wi < h? + 1 2%0%}.
If 02 /4 < |h| < 02, then Q, N {w3 = h} is approximately given by
(16) {h? < w? 4 wi < h? +r 207,

Let Cp,, be the circle defined by w3 = h and w} + w3 = p? with |h| < o2
and p chosen such that Cj, , lies in (15) or (16). These circles cover €,. For
any &, we will compute in the next two paragraphs that the fraction of Cj, ,
contained in 40(c, &) is < o~ 'r~!. There are ~ or different O(c,£) C CP,.
By circular symmetry, each frequency w € C}, , lies in 40 for approximately
the same number of © € CP,, and so each frequency w lies in 40 for < C
different © € CP,,.

We first do the case |h| < 02/4. Recall that O(c,&) N {ws = h} is a
rectangle with dimensions r~!o x =2 that is tangent to the circle of radius |h/|.
Suppose for now that r~'o < |h|. If A, B are the two endpoints of this rectangle
and O is the origin, then the angle AOB is approximately 7~ 1o /|h|. The angle
between the rectangle © N {ws = h} and the circle C}, , is approximately equal
to the angle AOB. Therefore, the arc length of 406 N C}, , is bounded by

Length (40N Cy,,) Srto bl

Since the length of C}, , is 2mp ~ |h|, the fraction of C}, , contained in 40 is
<r~to~! as desired.

If |h|<r~'o, then the angle AOB is ~ 1, and the length of 40 N Cy, is
approximately 2. In this case the length of Ch,p is 2mp ~ r~lo, and so the
fraction of Cj, , covered by 40O is still < r~to~l.

Finally, suppose that 02/4 < |h| < 0. In this case 40NC}, , has arc length
~ or~! (the long side of the rectangle © N {ws = h}). Since the length of C}, ,

is 2p ~ |h| ~ 02, the fraction of Ch,p covered by 40 is again S o el O
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Remark. If w € Q, and |ws| is much smaller than o2, then w lies in two
rather different ©® € CP,, and maybe also on other © neighboring these two.
This is because a point outside a circle lies on two lines tangent to the circle.

Applying Cauchy—Schwarz to (14) and using Lemma 4.2 we see that if
w € ), then

(1) P Y | SRl
O€cCP, wed® 0eSe

We let ng be a smooth function that is > 1 on 40 and decays rapidly
outside 40. Summing over all dyadic o, we see that for every frequency w,

2
9P S D [new) 3 (el w)| -
©cCP 9cSe
Now we integrate and use Plancherel, giving

J1sPs S [lus > 1]

0cCP 0eSe
Now we can choose g so that [ng(z)] < |©*7! for all z, and ny is

supported on ©*. Therefore, it is natural to break up the right integral into
translated copies of ©*:

JuPs ¥ % [ fns+ 3 10

©cCP U/~ 0€Se

In the last integral, for each x € U, we have

s S UoP@| 101 [0 Y 1P,

0cSe 0€Se

where ny(z) = |0*| - maxye.+0+—v [nS ()] is a bump function with |7y || ~ 1
supported on 2U. We remark that the arguments presented here exploit the
locally constant property. We shall discuss another variant of this property in
Lemma 6.1.

Therefore,

JisPs S S wrt{ fa S 1ap

©€CP Ujjo 0cSe

We associate O(o, &) to (o~ 1r~1,€). This gives a bijection from CP,, to
S, with s = o~ 'r~L. If O(0,€) C 20(¢), then we saw above that |¢ — €| <
o~ lr~=l and so 0(¢') C 4r(o~1r~1€). In particular, if € Se, then 6 C 47.
Also ©(0,§)* is comparable to Ur(;-1,-1¢),2, which we can see by comparing



568 LARRY GUTH, HONG WANG, and RUIXIANG ZHANG

the definition of U, ,2 in (7) with the definition of © in (11). Rewriting the
last inequality in terms of 7 € S; instead of © € CP,, we get

s ¥ % > wr 1</nUZ|fe|2>2

r—1<s<17€Ss U//U ocr

By the definition of Sy f,

2 (/"Uz'f9|2)25 SRS

U, 2 ocr U, 2
Plugging this in, we get

JlsPs ¥ S5 WSl

r=1<s<1 d(7)=s UJU_ 2

This proves Lemma 1.4 by taking r = R3. (]

We use this Kakeya-type estimate as well as local orthogonality to prove
Lemma 3.1. First we recall local orthogonality, and then we recall the state-
ment of Lemma 3.1.

Local orthogonality is written using a weight functions localized a given
ball. For a ball Br of radius R, define the weight

dist(z, Br)\ ¥
U)BF“E(SC) = (1 + (_RR)> .

LEMMA 4.3 (Local L? orthogonality lemma, essentially Proposition 6.1 in
[3]). Suppose that f € L*(R™). Suppose that f = 3", fo, where suppfs C 0
in the Fourier space. In this statement the sets 0 are arbitrary. Suppose that
r > 0 and that each § € R"™ lies in Ny.-1(g) for at most M different sets 0
appearing in the sum. Then for any E > 0,

11725, SmE Y 10172 s, )-
0T
To prove Lemma 4.3, it suffices to take a function ¢p, such that ¢, 21
on By, [Yp. (x)| < Cg(1 + r~dist(z, B,))"%/2, and ¢p, € B(0,r~1). Then
1 £z, S f¢BrH 12. We apply Plancherel’s theorem and observe that the
support of fg * wB lies in N,-1(6).

Now we turn to the proof of Lemma 3.1. Unwinding the definition of
S(r, R), Lemma 3.1 says

LEMMA. If f is supported on N,—2(T) and ry € [r,r?], then

(18) > IBul NS, flas, S Do Do Do UMM ISuflge.

B, CR3 r=1<s<1 d(r)=s UJU, 2
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Proof of Lemma 3.1. As in Lemma 1.4, let g = 37peg |fo|?. The func-
tions fy have essentially disjoint Fourier support. Since r < rq, each point
lies in < 1 many Nr;1(9).

We choose E sufficiently large (for instance E = 10). Then we apply the
local L? orthogonality Lemma 4.3, on each B,,:

15,, 1320, / T

— *1/2

5/ wB,, E* Z > 1l /wBrl,E'g-

)=r —1/2 ocr

By Cauchy—Schwarz, we get

Bl 15, s,y % [ w0, 2ol

Summing over B,

S 1Bal 1S, s, 5 1o

By, CR3

Lemma 1.4 bounds [ps [g|* by the right-hand side of (18). O

5. The Lorentz rescaling

Lorentz transformations are the symmetries of our problem, and they have
been used in many earlier papers on this topic (cf. [26] and [2]). Here we review
the Lorentz rescaling and check the properties that we will need in our rescaling
argument in the next two sections.

The piece T’ 1 is defined to work well with Lorentz transformations, and
we now record the formula. This formula and the Lorentz rescaling generally
look nicest in a rotated coordinate system where the light cone is given by the
equation 2viv3 = v3. Here vg = &1, 1y = 2’1/2(53—52) and v3 = 2’1/2(53 +&).
In these coordinates, if we intersect the light cone with the plane v3 = 1, then
we get the parabola vy = (1/2)v3. So the light cone is actually the cone over
a parabola.

Now I 1 is defined as follows:

1
F}(:{21/11/3:113,1—[(§1/3§1,‘Z§‘§1}.

For any real number n with || < 1and 0 < s < 1 satisfying —1 < nts < 1,
we can define a surface sector A CT'1 by
K

(19) A=A(n,s) = {(ul,ug,yg)ef : Q—n <5}.
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Here s is the aperture of A, also denoted by d(A). For each A, let n(A) denote
the n in (19).

Each surface sector A is closely associated to a sector 7 = 7(A), which
is a rectangular box containing A with smallest comparable dimensions. The
sector 7(A) is approximately the convex hull of A in the sense that %T(A) C
ConvexHull(A) C 107(A). Similarly, starting with any sector 7, there is an
associated surface sector A, = 7NT 1. The aperture of A; and the aperture
of 7 are approximately the same.

For any surface sector A C T’ 1, there is a Lorentz transformation £ that
maps A diffeomorphically onto I" 1. (The precise definition of T’ 1 was arranged

to make this work.) The formula for £ is as follows.
Let £: A(d(A),n) — F% be defined as follows (away from {z = 0}):

V3 +— U3,

(20) 2o gy (72 = (),
v v v A)?
4 e (- () - 2+ 150,

We can see that £ is actually a linear transformation:
V3 V3,

(21) ve = guy (2 — n(M)rs),
v e (= (8w + 25 ).
This linear transformation L is called a Lorentz rescaling.

Suppose that 7 is a sector with d(7) = s, and let A = A,. We then study
the rescaling map £ defined in (21). We will need to keep track of how this
change of variables affects the characters in our inequalities, like sectors 7/ C 7
and the regions U g.

First, if A’ C A is a smaller surface sector, then L£(A’) is a surface sector
of aperture ~ s~1d(7").

More precisely, since A’ C A, we have

(22) [n(A') = d(A'), n(A) + d(A)] € [n(A) — d(A), n(A) + d(A)].

By the above definition of £, we can see that £(A’) is defined as

{ormmm er, 2 e [Zmu) —nw)
i) 1 , d(A')
G am ) ) + e |
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We see that (22) implies the above range of va/v3 is in [—1, 1], and that £(A’)
is a surface sector of aperture % lying inside the whole I’ 1= L(A).

Next we consider how L affects sectors 7/ C 7. Suppose that A, is a
surface sector associated to 7/. Note that 7’ is approximately the convex hull
of A,s. Since taking convex hulls commutes with linear transformations, we
see that L£(7') is approximately the convex hull of £(A,/), which is a sector of
aperture ~ s~ 1d(7’).

Next we consider £(Np-1(A)) for some R > s~2. Note that Nga(A) is
approximately 7(A), but if R > s72, then N, (A) is far from being a convex set.
The R~!-neighborhood of F% is covered by sectors # C 7 with d(f) = R~1/2.

Therefore, £L(Ng-1(A)) is covered by sectors £(6) with aperture ~ s~ 'R~1/2,
The union of these sectors is the s~2R~!-neighorhood of I'1 . In summary
L(Ng-1(A)) is approximately NS—ZR—I(F%). "

Next we consider how the adjoint transformation, £*, behaves on physical
space. It is standard that the adjoint transformation behaves naturally with
respect to taking duals, so, if 6 is a sector, then we have £(0)* = L£*(6%).

Finally we consider how L£* affects the sets U, g. Recall from (7) that if
T =17(s,&), then

(23) Urr={z € R?:|c(¢)-x| < Rs? and [n(¢) - x| < R and |t(£) - x| < Rs}.

There is an equivalent more conceptual description, which is useful for under-
standing £*(U; r):

(24) Ur,r ~ Convex Hull (Uyc, y9)=g-1/20")-

Now let 7 again denote a fixed sector with d(7) = s and let £ be the
Lorentz rescaling that takes A, to I' 1.

LEMMA 5.1. For any sector ' C 7 and any R > 572,
E*(UT/’R) = U[,(T’),SQR'
Proof.
L*(Uyp r) =~ ConvexHull(Up s q(g)=p-1/2L707)
~ Convex Hull (Upcrr gi9y=p-1/2£(0)")

~ Convex Hull (Upcz(r goy=s-1r-1/20") = Ur(rr) s2R- O

We have now gathered enough background about Lorentz rescaling to
carry out our Lorentz rescaling arguments in the next two sections.
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6. The Proof of Lemma 3.2

In this section, we prove Lemma 3.2. First we prove several lemmas about
the “locally constant property” of fj.

LEMMA 6.1. Let 8 C R™ be a compact convex set that is symmetric about

a center point ¢(0). If suppfy C 0 and Ty=0"={z: |z - (y —c(0))| < 1 for all

y € 0}, then there exists a positive function nr, satisfying

(1) nr, is essentially supported on 10Ty and rapidly decays away from it:
for any integer N > 0, there exists a constant Cn such that nr,(z) <
Cn(n(z,10Ty))~N, where n(x, 10Ty) is the smallest positive integer n such
that x € n - 10Tp;

(2) Izl S 15

(3) we have

(25) fol <D erxr < | fol %,
T)/To

where cr is defined as maxzer | fo|(x) and the sum Yy, is over a finitely
overlapping cover {T'} of R™ with each T [/ Ty.

Proof. We bound |fy| by

(26) 5l < Y erxr
T[Ty

Let ¢g be a smooth bump function supported on 26 and ¢9 = 1 on . Since

suppfy C 0, we have fy = fogy and fo = fo+ ). Let i, (v) =  max  |¢y|(2).
0

By non-stationary phase, ¢ is a function essentially supported on Ty = 6*,
lpy (2)] < On(n(z,Ty))~N and ||y |1 ~ 1, so nr, satisfies (1) and (2).
For any T'// Ty,

e |fol(e) < e [ 1£()l6 (o~ v)ldy

< iy [ 1], (2 )y
zeT
because for each y, ma%<|qbg|(:v —y)<min max __[¢)|(t). O
TE

z€T tex—y+10Ty

LEMMA 6.2. Let nr, be defined as in Lemma 6.1 and T//Ty. Then for any
integer N > 0, there exists a positive function wp = 1 on 10T and wp(z) <
Cn(1 +dist(x, T))~" such that for any 1 < p < oo,

(27) /T (ol S [ VfoPor.
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Proof. We only need to prove the lemma for N sufficiently large (depend-

ing on p).
The function n7, satisfies

(28) n, < Y Crxr,
T)/To
where Cp - |T| Sy n(T,Tp) ™™ for any large integer N > 0 and n(T, Tp) is the
smallest n > 1 such that T C nTp.
By Holder’s inequality,

p
Lamt=nmy< [ 3 1+ o
T T\
_4(p-1
! 4(p—1)
:/ > (T, T (T, Ty)" 7 |fol ¥ Crrxrr)?
T\ 1y,
p—1
S| ) X ) e | (] oy
T'//T T'//T T
S S T [ (falConro
T'//Ty T

Let x7_71/(x) be the characteristic function of the Minkowski sum T'—T7" =
T + (=T"). Then by Young’s inequality,

[ sl Conrr < [(saler-) x Concrn)?
T

SN n(T/aTe)_pN-/ | fol”
T

It suffices to choose wr(x) ~n > yp n(T,T) Nxz(z). O

COROLLARY 6.3. If U is tiled by T // Ty, then for any 1 < p < oo,

(29 [ sl 5 [ Vo,
U
where wyy> 0 is essentially supported on 10U and rapidly decays away from it.

Remark. Tt is important that wy can be taken uniformly independent of
the choice of T. To see this, simply notice that if x € nU and = ¢ (n — 1)U,
then x cannot be in (n — 1)T" for any 7' C U. Moreover for any m, a point x
lies in mT for < m? different 7T in a given tiling {TYryr, of RR3.
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LEMMA 6.4. Let 01,02 C 7 be two sectors of aperture d(61) = d(62) =
K12 and dist(0y,63) ~ d(t) = s > K~'/2. Then for any functions supp fo, C
N%I‘%ﬁﬁl and supp fo, CN%I% N6y,

S UtaPsst S Bl [l Pun [ 1nPu,

B/ CR3 Y Br1/ By CR3

Proof. The proof is essentially a bilinear-Kakeya-style® estimate in R?
plus the locally constant property in Lemma 6.1. This proof is a simple case of
the ball inflation theorem (Theorem 9.2 in [3]) in the proof of the Bourgain—
Demeter decoupling theorem. Since suppfy, C N%I‘% No; for j = 1,2, the
Fourier support of fp, lies inside a box éj of dimensions K~1/2 x K= x K~!

with a common K ~!-side on the v3-direction. (Recall the (v
system and the equation of I 1 from Section 5.) And Téj =

1, Va2, V3)-coordinate
0; becomes a slab of

dimensions K'/2 x K x K. Since dist(0y,0) = dist(61, 62) = s, for each T/ Tp,
Ty )/ Ts, and T1, Ty C Bg, we have [Ty N Ty|~K'?- (s7IKY?) - K = s71 K2
Hence the key inequality |Ty N Ty| ~ s71|Bg| ™| T3||T»| holds.”

Using Lemma 6.1, now we are ready to bound

Z / | fo, foo|?

B 1/2CBKk Bz

< Z ‘BK1/2|C%1C%2
B 1/2CBk
T[Ty, B 1 /20T17#0
T[Ty, B 172N T2#0

Sl ([ don) ([ Y )

Ky, K Ty,

<s Bl [l e, [ (il o,
By By

(Corollary 6'3)5S_IIBK|_1/|f91|2wBK/‘f02|2wBK' O

®Bilinear Kakeya is an elementary statement stating the following: Let |Ti| and |Ts|
be two finite families of infinite strips in R? such that each strip has width 1. Assume
further that each 77 € Ti and each T» € T3 have their directions ~ 1-separated. Then
fR2 (ZTle’ﬂ‘l XTI) ' (ZTQE’H‘Q XT2) 5 |T1‘ : |T2|'

9Note: All arguments in this paper work if we dilate a convex body by a constant. If we
replace Bk by the slightly bigger Biok, then it is possible for T1 and T to miss each other,
hence we can only obtain “<”instead of the above “~.” However we only use “<” in the
inequality below so “<” is sufficient.
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LEMMA 6.5. Let f be a function whose Fourier transform is supported on
the %—neighboﬂwod of I'1. For any § > 0,
K

(30) I Zseay < CsK° > D > U IS flze

K—1/2<s<1 d(7)=s UUr
Proof. We induct on K. The base case K <s 1 is easy by Holder’s in-
equality.
Let 1 < Ko < K910, We tile N% (I‘%) with sectors 7 of aperture K%) and
: 1
width &, and we decompose f = Zd(T):K% fr
Now N1 (I'1) is the %—neighborhood of an arc of a parabola of length 1,
K K

and each 7 is the %—neighborhood of an arc of the parabola of length K%)'
The Bourgain—Guth argument [4] says the following. At each point,

flz) = >, fr(x). Let 7 satisfy max,|f-|(z) = |fr|(z). If |fr|(x) >
1/10|f|(x), then |f|*(z) < 32, |f-*(x). Otherwise, there exists a 7** such

that dist(7**,7%) > 1/ Ky and | fr«|(x) > | fr=|(x) > ﬁ\!ﬂ(:p) Hence,
T DV o R YD A o o
d(1)=1/Ko dist(r1,m2)>1/Ko

For the integral of the first term, we rescale 7 to be the K ! KZ-neighbor-
hood of 'y /¢ (the rescaling argument here is similar to the one in the proof of
Lemma 3.3 in Section 7, which we will do with full details), and then we apply
the induction hypothesis on the scale K/K2 < K.

For the integral of the second term, we decompose

ij: Z fgjv J=12.

0;Crj,d(0;)=K~1/2

The functions fy, fp, are essentially orthogonal because they have almost dis-
joint Fourier support, as in the Fefferman—Cérdoba proof of restriction for the
parabola [10], [7].

Since dist(7, 72) is not less than K%)? the Minkowski sum (61 +602)N (0] +65%)

is empty for 0;,0; C 7j, j = 1,2, unless 0] C Ko and 0) C Koflz. Hence

SR RAACES TS > [ il

BKI/QCRS BK1/2 BKl/QCRS dist(61,02)>1/Ko K1/2
(Lomma 6.4) S K3 3 Byl [ 1guwn [ 1o,
BKCR3 dlSt 01,92 >1/K0
SKS D Bl IS fl7e 0

BiCR3
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The right-hand side of the final line corresponds to the s = 1 term of the
right-hand side of (30).

We recall the statement of Lemma 3.2. Unwinding the definition of
Sk (r, K) it says the following;:

PROPOSITION 6.6. Let f be a function whose Fourier transform is sup-
ported on the %—neighborhood of I‘%. For any 6 > 0 and any r < K,

(31)
BT ISE fltapy < CsKS D> YT S U ISu e

B,CR3 K—1/2<s<1 d(T)=s UUs i

Proof. We take advantage that I' 1 is well-approximated by a parabola at
the scale 1/K and use an approach silrjnilar to Fefferman—Coérdoba’s to bound
the left-hand side of (31) by (essentially) the left-hand side of (30).'°

Since the smallest aperture in this proposition is K ~1/2, we use 6 to denote
a sector on I' 1 of aperture K~/2 in the current proof.

Let Aq,..., Ajpgo be disjoint sets of 6 such that each @ is in one of them
and the following property holds:

(%) Within each Aj;, if the Minkowski sum (61 4 62) N (6] + 05) # 0, then
(61,62) = (6),65) or (6),64).

Similar to Fefferman-Cérdoba’s proof, we show that if we take each A;
to be a collection of sectors that are sufficiently separated and on a short
enough arc, then (%) holds. In fact, it suffices to justify () when the constraint
(61 + 62) N (0] + 64) # 0 is replaced by the weaker one below: m3((61 + 62)) N
m3((07+65)) # 0. Here 73 is the standard projection to the first two coordinates
in the (v1, 9, v3)-coordinate system. But the projection of T’ 1 onto the first
two coordinates is contained in the %—neighborhood of the parabola v3 = 2,
and the projection of each 0 is the corresponding cap inside that neighborhood.
We use “Error” to denote a number (the “error term”) whose absolute value
is <4K~'. If 21 + 29 = a + Error and z? + 23 = b + Error with a,b < 2,
then (z1 — z2)? = 2b — a® + 7 Error. Hence |21 — 22| = 1/|2b — a2| + 3v/ Error.
This would imply that the pair (x1,x2) is determined by the pair (a, b), up to
a swap in order and up to changing within 100 adjacent caps 6.

We use 7 to denote caps with aperture r~/2 > K~1/2 in the current proof.

Consider the decomposition f; = > 0eA; fo, and let f;, = > 0CT0cA, fo-

10 Alternatively, one can blackbox the L* angular square function estimate by Cérdoba [8]
and have a slightly shorter proof. We present a self-contained proof here.
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By the property (%) and Plancherel, we have for a fixed j,

Lol =

= / Z fj,n fj,'rz ijﬂ'S fj,m

3
T1,72,73,T4:(SUPP f5,71 +SUPPfj, 79 )N(SUPPfj, 75 +supp f;,r, )70

2
:/ ZnleTQ‘fjﬂ-lfj?TQ’
R3

T1,T2

~ /. (;rfm)g

where ny, 7, =1if 7y =m and ny , =4/2=2if 7 # 1.
By (32) we have

(32)

1000

S B Ss fiemy SO D 1B ISB fill12 s,
B,CR3 Jj=1 B,CR3
1000

> 18, filltas,

Jj=1 B.CR3

=§)/ (Zrm?)
~1OZOO/ 5l

1000

(Lemma 6.5) <C’5K‘SZ Z Z Z UI7H1Sw £l 72

§=1 K=1/2<s<1d(7)=s UJUr K

SCGK® > > > WUMSuflz O

K-1/2<s<1d(m)=s UJJU; K

IN

7. The proof of Lemma 3.3

Now we prove Lemma 3.3 using the Lorentz rescaling. First we recall the
statement following statement:

LEMMA. For any ri <re <73,

Sk (r1,7r3) <logre - Sk (ri,ra) max SK(SZT’Q,SQTg).
r, 1°<s<1
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Proof. Suppose that f is supported on NTB—I(F ). To bound Sk(ri,r3),

==

we need to bound

> 1Bl S8, flkags,, )
By, CR3

We can apply the definition of Sk (r1,72) and get
Z ‘Br1’71||SBT1in2(BT1)

By, CR3

< Sk(ri,r2) Z Z Z |U1‘71||SU1f||iQ(U1)'

T;1/2§8§1 d(T):S Ul//[]‘r,rg

Recall that if U /Uy, then Sy f = ( > |for|2)2|v. In particular,
d(0")=r—1/2¢'Ct
1
(o) =r—1/2
Using Lorentz rescaling, we will prove the following lemma:
LEMMA 7.1. For any sector T with d(1) = s,
(33)

U ISv e
Ul//UT,r2

< SK(32r2,32r3) Z Z Z ‘UrlHSUfH;(U)'

T:;l/QSS/SS d(T’):S/,TICT U//Uv.,_/’r3

We defer the proof of Lemma 7.1 to the end of this section. If we plug in
Lemma 7.1 and expand everything, then we get Lemma 3.3:

Z ‘BT1|_1||SBr1fH%2(BT1) S IOgTQSK(T'l,TQ) lII;aX SK(S2T2782T3)
By, CR3 ry 2<s<1

x0T U ISu ey
rgl/zgslgl d(t")=s’ U//UTI,’V‘B

The factor logry appears here for the following reason: after we expand, each
sector 7/ will appear at most log ro times, because 7/ lies in 7 for at most log ry
sectors T with T;1/2 <d(r) < 1. O

Proof of Lemma 7.1. The definition of Sx (s%rg, s%r3) says that if h is sup-
ported on NS,QT?(I%), then
Z ‘B821”2‘71HSBSQT2h|’%2(BSQT2)

B32r2

< Sk (s%ra, s°r3) > > UM ISur kL2

8*17’;1/2§d(7'”)§1 U”//UT//’SQT.3

(34)
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On the other hand, Lemma 7.1 says that if 7 is a sector of I' 1 with
K
d(T) = s, and f; is supported on NT§1(F%) N 7, then

> T S Fl e
Ul//U‘r,r2

< Sk(s%ry, s°r3) > > > U ISu flize:

T;1/2§S/§S d(r")=s',7'CT U//UT/J3

(35)

To connect them, we begin with a Lorentz transformation £ so that L :
NI 1= r 1 is a diffeomorphism. This £ is constructed in Section 5, where

it is shown that £ takes NT?)—I(FL) N7 to N, ,27,3_1(I‘i). Now we define h by
K K

S
h = f-(£71(-)). Moreover let hyv = f(L71(:)) where L(7') = 7; see item
(1) below. We see that h is supported on NS_QT?(F%) and so h obeys (34).
When we unwind the Lorentz transformations, we claim that (34) becomes
(35), which proves the lemma. To see that this unwinding works as desired,
we check how each piece transforms.

(1) If 7/ C 7 is a sector of I'1 with aperture d(7’), then £(7') is a sector 7"
K

of T'1 with d(7") = s~!d(7'), as we showed in Section 5. In particular, £
K

1/

transforms a ¢’ C 7 with aperture d(0') = ry ? into a sector with aperture

s_lr; 1/ 2, which appears in the definition of Sy~ h.

(2) L*(Uyp y) = Usr 524, Since 7" = L(7'), this follows from Lemma 5.1.

(3) £*(Uryr,) = Bg2,,. Note that £(7) is the sector corresponding to all of F%,
which is essentially the unit ball. We will denote this sector just by Bj.
By Lemma 5.1, £L*(Usr,) = Up, s2,,- By definition, the right-hand side is
the convex hull of the union of 6* over all sectors 6 of aperture ~ 5_11“2_ %,
and this is approximately the ball of radius s%rs.

(4) The Jacobian factors from the change of variables work out the same on the
left-hand side and the right-hand side. Since both sides involve a volume
to the power —1 times an L? norm to the power 4, the Jacobian factors

are the same on both sides of the inequality. ([
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